WO2007026757A1 - キャリアや2次成分を消去可能なdsb-sc変調システム - Google Patents

キャリアや2次成分を消去可能なdsb-sc変調システム Download PDF

Info

Publication number
WO2007026757A1
WO2007026757A1 PCT/JP2006/317096 JP2006317096W WO2007026757A1 WO 2007026757 A1 WO2007026757 A1 WO 2007026757A1 JP 2006317096 W JP2006317096 W JP 2006317096W WO 2007026757 A1 WO2007026757 A1 WO 2007026757A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
signal
optical
waveguide
output
Prior art date
Application number
PCT/JP2006/317096
Other languages
English (en)
French (fr)
Inventor
Tetsuya Kawanishi
Masayuki Izutsu
Takahide Sakamoto
Masahiro Tsuchiya
Original Assignee
National Institute Of Information And Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Information And Communications Technology filed Critical National Institute Of Information And Communications Technology
Priority to US12/065,218 priority Critical patent/US7991298B2/en
Priority to EP06797069A priority patent/EP1921486B1/en
Publication of WO2007026757A1 publication Critical patent/WO2007026757A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5051Laser transmitters using external modulation using a series, i.e. cascade, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5053Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5165Carrier suppressed; Single sideband; Double sideband or vestigial

Definitions

  • the present invention relates to an optical modulator and the like. More specifically, the present invention relates to a DSB-SC modulation system that can obtain a high extinction ratio modulation by suppressing higher-order components such as carriers and second-order components generated during DSB modulation.
  • Optical modulation includes direct modulation for modulating the driving power of the semiconductor laser and external modulation for modulating light of the semiconductor laser power by means other than the light source.
  • a modulator used for external modulation is generally called an optical modulator.
  • An optical modulator modulates the intensity, phase, etc. of light by causing a physical change in the modulator according to the signal.
  • Technical challenges for optical modulators include a reduction in drive voltage, a high extinction ratio for improving modulation efficiency, and a high light utilization efficiency for wider bandwidth, higher speed, and reduced loss. That is, development of an optical modulator having a high extinction ratio is desired.
  • the extinction ratio means the ratio of the light intensity when the light intensity is the highest to the light intensity when the light intensity is the weakest.
  • Optical single sideband modulators Optical SSB (Single Si de-Band) modulators
  • Optical frequency shifter used ", IEICE Technical Report, TECHNICAL
  • Non-Patent Document 1 Optical FSK modulator using an
  • Non-Patent Document 2 [Tetsuya Kawanishi et al.” Analysis and application of FSKZlM simultaneous modulation "Science Technique,
  • FIG. 12 is a schematic diagram showing a basic configuration of a conventional optical modulation system that functions as an optical SSB modulator or an optical FSK modulator. As shown in Fig. 12, this optical modulation system consists of a first sub-Mahzander waveguide (MZ) (2) and a second sub-Mahzander waveguide (MZ).
  • MZ first sub-Mahzander waveguide
  • MZ second sub-Mahzander waveguide
  • MZ The
  • the first electrode (RF) for inputting radio frequency (RF) signals to the two arms
  • Frequency shift keying is achieved by changing the USB and LSB into information using the electrodes of the main Mach-Zehnder waveguide.
  • an optical carrier-suppressed double sideband (DSB-SC) modulator As an optical modulator, an optical carrier-suppressed double sideband (DSB-SC) modulator is known! /.
  • the above optical modulation system also functions as a DSB-SC modulator.
  • the DSB-SC modulator ideally outputs two side nodes and suppresses the carrier component.
  • the output of the DSB-SC modulator as shown in the figure below cannot be fully suppressed.
  • the carrier component (f) and higher-order components for example, the second-order component (f ⁇ 2f)
  • Etc. remain, so the extinction ratio cannot be increased.
  • FIG. 37 of Japanese Patent Application Laid-Open No. 2004-252386 shows a DSB having an MZ, a PM provided on both arms, and a fixed phase shifter provided on one arm.
  • a -SC modulator is disclosed.
  • the optical DSB-SC modulator ideally outputs two sideband signals and suppresses the carrier signal component.
  • odd order The ingredients remain slightly.
  • the third-order component is theoretically the best.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-252386
  • An object of the present invention is to provide a novel light modulation system.
  • the present invention can suppress a carrier component (f), a higher-order component (for example, a second-order component (f ⁇ 2f)), and the like.
  • the purpose is to provide a DSB-SC modulation system.
  • the main Mach-Zehnder waveguide (MZ) of the conventional light modulation system is used.
  • the electrode part provided for C) is a two-electrode type instead of a one-electrode type, which makes it possible to individually adjust the phase of the output signal from each sub-MZ.
  • the phase of the output signal from each sub-MZ signal can be adjusted, so suppressed! /, And the phase of the component can be adjusted to be opposite in each sub-MZ. This is based on the knowledge that the carrier component and higher order components (especially second order components) can be suppressed.
  • the present invention basically has an optical signal input section (2), a branch section (3) from which the optical signal branches, and an optical signal branched from the branch section (3).
  • the optical signals output from the first arm (4) and the second arm (5) and the first arm (4) and the second arm (5) are combined.
  • a Mach-Zehnder waveguide (8) including an optical signal output unit (7) for outputting an optical signal multiplexed by the multiplexing unit; and the first arm ( A first intensity modulator (9) provided in 4) for controlling the amplitude of an optical signal propagating through the first arm (4); and provided in the second arm (5), A second intensity modulator (10) for controlling the amplitude of the optical signal propagating through the second arm (5); and the first electrode (electrode A) (11) of the first intensity modulator (9) A second electrode (electrode B) (12) of the second intensity modulator (10); A first main waveguide provided along at least a part of the waveguide between the output section of the first intensity modulator (9) and the multiplexing section of the first waveguide (8).
  • Mach-Zehnder electrode (MZ electrode) 13a)
  • the present invention relates to a light modulation system comprising a dashing electrode (MZ electrode) (13b).
  • the phase of the output signal of each sub-MZ waveguide force can be adjusted individually, and the phase of the component is reversed, with each sub-MZ waveguide force suppressed. By combining them later, it is possible to suppress the components effectively suppressed.
  • the DSB-SC modulator theoretically has odd-order components, so the third-order component can be cited as a component that lowers the extinction ratio.
  • the system of the present invention dares to focus on carrier components and secondary components that do not remain in theory and effectively suppress these components (of course, according to the system of the present invention). 3rd order components can also be suppressed). In other words, by controlling the output signal from the two sub Mach-Zehnder waveguides so that the phase of the component to be suppressed is opposite in phase, the suppressed component can be effectively suppressed.
  • Another aspect of the present invention relates to a method for acquiring an optical modulation signal using the system as described above, and the first sub Mach-Zehnder waveguide before being multiplexed at a multiplexing unit. (MZ) and the phase of the output signal from the second sub Mach-Zehnder waveguide (MZ)
  • the phase of the minute is controlled to be opposite, the components to be suppressed cancel each other after they are combined at the combining section, and a high extinction ratio can be obtained.
  • a preferred embodiment of the second aspect of the present invention is (0 the main Mach-Zehnder waveguide)
  • the main Mach-Zehnder waveguide (MZ) is reduced so that the output is reduced.
  • Sub-Maz-Hander waveguide (MZ) or the second sub-Maz-Hander waveguide (MZ) are Sub-Maz-Hander waveguide (MZ) or the second sub-Maz-Hander waveguide (MZ)
  • the main pine so that the output of the main Mach-Zehnder waveguide (MZ) is small.
  • the above optical modulation method adjusts the bias voltage applied to each Mach-Zehnder waveguide.
  • This noise adjustment is preferably one in which the bias signal source is automatically controlled by using an optical modulation system having a control unit that controls the above-described process.
  • the first main Mach-Zehnder electrode MZ electrode
  • MZ electrode second main Mach-Zehnder electrode
  • the portion including each electrode portion functions as a phase modulator, the phase of the optical signal propagating through each waveguide can be effectively adjusted.
  • the first sub Mach-Zehnder waveguide (MZ) is configured.
  • RF signal that is a radio frequency signal applied to an optical signal propagating through two arms
  • An RF signal which is a radio frequency signal applied to the optical signal, and the first main matsuhatsu.
  • a preferred embodiment of the present invention is the above-described first sub Mach-Zehnder waveguide (MZ).
  • the first main Mach-Zehnder electrode (MZ electrode) and the second main Mach-Zehnder electrode (M (Z electrode) is provided with a controller for adjusting the voltage applied to any one of the above light modulation systems.
  • the component can be effectively suppressed.
  • the output light is detected by a photodetector, the detected signal strength is extracted by the control unit, the signal output from the signal source is adjusted, and the suppressed component is detected. If you adjust so that the strength of the.
  • a preferred embodiment of the present invention is the optical modulation system according to any one of the above, which functions as an optical carrier-suppressed double sideband modulator (DSB-SC modulator).
  • DSB-SC modulator optical carrier-suppressed double sideband modulator
  • the present invention was originally discovered when improving a DSB-SC modulator, and the system of the present invention can be suitably used as a DSB-SC modulator.
  • another aspect of the present invention provides a bias applied to the first electrode (electrode A) (9), the second electrode (electrode B) (10), the MZ electrode, and the MZ electrode.
  • a bias applied to the first electrode (electrode A) (9), the second electrode (electrode B) (10), the MZ electrode, and the MZ electrode to supply voltage
  • a triple signal generator (17) for generating the signal (3f) and the second signal source (high frequency signal source) (m
  • Phase adjuster (18) m for adjusting the phase difference of the electrical signal (3f) having a frequency three times that of this signal
  • a signal intensity adjusting unit (19) that adjusts the m intensity of the electric signal (3f) having a frequency three times that of the basic signal generated from the signal generating unit (17). It is a modulation system.
  • the first component (f ⁇ 3f) of the optical signal generated by the modulation signal is the m 0 m described above.
  • the triple signal generator (17) generates an electric signal (3f m m having a frequency three times that of the basic signal (f)).
  • phase adjustment unit (18) sends the second signal source (high-frequency signal).
  • the degree adjuster (19) adjusts the strength of the electric signal (3f).
  • the basic signal m such as the modulation signal
  • phase of the 3rd order signal with f) is opposite to that of the 3rd order component (f ⁇ 3f) described earlier, and m 0 m
  • the intensities are adjusted so that they are about the same, they are suppressed and optical modulation such as DSB-SC modulation with a high extinction ratio can be achieved.
  • the first intensity modulator (9) is a Mach-Zehnder waveguide including the first electrode (electrode A) (11), and the second intensity modulation.
  • the light modulation system (1) according to any one of the above, wherein the device (10) is a Mach-Zehnder waveguide including the second electrode (electrode B) (12).
  • an optical modulator established as an optical SSB modulator or an optical FSK modulator can be preferably used.
  • the light intensity correction mechanism (31) or the second arm (5) provided, and the second intensity modulator (10) and the multiplexing unit of the second arm (5) are provided.
  • the light modulation system (1) according to any one of the above, comprising either or both of the light intensity correction mechanisms (32) provided between the two.
  • the light intensity correction mechanism for example, an intensity modulator
  • the magnitude of the component to be effectively suppressed is adjusted to the same level, so that the suppression adjusted to have the opposite phase is performed. Therefore, the component can be effectively suppressed.
  • Another aspect of the present invention provides any one of the above-described optical modulation systems as an optical modulator, and a phase modulator for modulating the output light of the optical modulator or the input light to the optical modulator.
  • a control unit for adjusting the modulation time of the modulation signal of the optical modulator and the modulation signal of the phase modulator or the intensity modulator. It is a light modulation system.
  • This optical modulation system includes optical modulation and a phase / intensity modulator (specifically, a two-electrode MZ modulator) that modulates the output light of the optical modulator or the input light to the optical modulator.
  • a phase / intensity modulator specifically, a two-electrode MZ modulator
  • Light It relates to modulation systems.
  • the optical modulation output has carrier components that cannot be suppressed, and the extinction ratio cannot be increased. Therefore, phase modulation and Z or intensity modulation are applied to the output light from the optical modulation, or the input light to the optical modulator is modulated so that the unsuppressed ⁇ component is canceled.
  • the phase and timing are adjusted so as to cancel the carrier component (or cancel the higher-order component) of the side hand (the frequency coincides with the carrier or higher-order component) derived from the cytodon. Then, since the carrier component (or higher order component) can be suppressed, an optical modulation system capable of obtaining a high extinction ratio modulation can be obtained.
  • the control unit converts either or both of the double-sideband signals of the output light from the optical modulator (USB or LSB, shift or both) into the phase.
  • the power of both sideband signals generated by modulation by the modulator or intensity modulator (USB or LSB) matches the frequency of the optical carrier signal or higher-order optical signal in the output light of the optical modulator, and the optical carrier A signal or a higher-order optical signal is controlled to cancel, or the input light to the optical modulator is modulated by the phase modulator or the intensity modulator to generate a double-sideband signal, which is an optical amplitude modulator.
  • a double-sideband signal is generated for each optical signal (USB signal and LSB signal). Therefore, the difference between the double-sideband signals (USB signal or LSB signal) generated in this way is detected. , Out of the output light of the optical amplitude modulator Consistent with the frequency of the transmitting signal or high-order optical signal, and the like to control so as to cancel the optical carrier signal or higher order optical signal.
  • the optical modulation system of the present invention preferably includes an optical modulation comprising a circulator to which an optical signal combined by the multiplexing unit is input, and a fiber grating to which output light from the circulator is incident.
  • the optical modulation system of this aspect is preferably an optical carrier suppressed double sideband modulation system. This type of optical modulation system is preferable because unnecessary components can be removed by the fiber grating and the circulator, and the removed components can be used as feedback signals.
  • Another aspect of the present invention is the light modulation system according to any one of the above, which is connected to a detection unit for an output signal of a Matsuhatsu Ender Waveguide (8) and controls the voltage applied to each electrode.
  • a control unit that outputs a control signal to the signal source (0 Mach-Zehnder waveguide ( 8) Adjust the voltage applied to the first electrode (electrode A) (9), the second electrode (electrode B) (10), the MZ electrode, and the MZ electrode so that the power output increases.
  • Waveguide (8) Applied to the MZ electrode and the MZ electrode so that the force output is reduced.
  • Mach-Zehnder waveguide Decrease the bias voltage of one of the sub-Mach-Zehnder electrodes so that the output of the force is reduced, and (iv) Matsuhatsu-ender waveguide (8) To the MZ electrode and the MZ electrode
  • An optical modulation system including a control unit that adjusts an applied bias voltage.
  • the light modulation system has a first electrode (electrode A) (11) and a second electrode (electrode B so that the output from the 0 Mach-Zehnder waveguide (8) becomes large. ) Adjusting the voltage applied to (12) and the third electrode (electrode C) (13) and the third electrode (electrode) to reduce the output force S from the GO Mach-Zehnder waveguide (8) C) adjusting the bias voltage applied to (13); (iii) reducing the bias voltage of any sub-Mach-Zehnder electrode so that the output from the Mach-Zehnder waveguide (8) is reduced; (Iv) adjusting the bias voltage applied to the third electrode (electrode C) (13) so that the output of the Mach-Zehnder waveguide (8) is reduced.
  • the voltage value can preferably be obtained automatically.
  • the optical phase of an output signal having a sub-MZ waveguide force can be controlled, and a carrier component (f) or higher-order component (for example, Secondary
  • FIG. 1 is a schematic configuration diagram of an optical modulation system of the present invention.
  • Fig. 2 shows DSB modulation with suppressed carrier signals using the optical modulation system of the present invention. It is a conceptual diagram which shows the example of the acquisition method of a tone signal.
  • Figure 2 (b) is a conceptual diagram showing an example of an SSB (single sideband) modulation signal acquisition method that suppresses the carrier signal using the optical modulation system of the present invention.
  • FIG. 3 is a diagram showing a signal source system according to a preferred aspect of the present invention.
  • FIG. 4 is a conceptual diagram for explaining the state of the intensity and phase of an optical signal in a DSB-SC modulation system according to a preferred aspect of the present invention.
  • Figure 4 (a) is a conceptual diagram showing the optical signal spectrum in the first arm.
  • Figure 4 (b) is a conceptual diagram showing the optical signal spectrum in the second arm.
  • Figure 4 (c) is a conceptual diagram showing a state in which a phase change of + 90 ° is added to the optical signal spectrum in the first arm.
  • Figure 4 (d) is a conceptual diagram showing a state where a 90 ° phase change is added to the optical signal spectrum in the second arm.
  • Figure 4 (e) is a conceptual diagram showing the spectrum of the output signal, which is the result of interference between the optical signals of the first and second arm forces at the multiplexing point.
  • Fig. 4 (f) the 3f signal is applied and 3 m
  • FIG. 5 is a schematic configuration diagram of an optical modulation system according to a second aspect of the present invention.
  • FIG. 6 is a schematic diagram showing a basic configuration of an optical modulation system according to the third aspect of the present invention.
  • FIG. 7 is a schematic diagram showing a basic configuration of an optical modulation system according to the fourth aspect of the present invention.
  • FIG. 8 is a conceptual diagram showing an example of a modulation signal output from a phase modulator in the optical modulation system according to the fourth aspect.
  • FIG. 9 is a conceptual diagram for explaining a modulation signal in which an intensity modulator force is also output.
  • FIG. 10 is a conceptual diagram showing a modulation signal output from the intensity modulator.
  • FIG. 11 is a schematic diagram showing a basic configuration of an optical modulation system according to the fifth aspect of the present invention.
  • FIG. 12 is a schematic diagram showing the basic configuration of a conventional optical modulation system that functions as an optical SSB modulator or optical FSK modulator.
  • MZ electrode 12Second main Mach-Zehnder electrode
  • Figure 1 is a schematic diagram of the optical modulation system of the present invention.
  • the optical modulation system (1) of the present invention includes an optical signal input section (2), a branch section (3) where the optical signal branches, and the branch section (3 Output from the first arm (4) and the second arm (5), which are waveguides through which the optical signal branched from the first arm (4) propagates, and from the first arm (4) and the second arm (5).
  • a Mach-Zehnder waveguide (8) including a multiplexing unit (6) for combining the optical signals to be combined and an output unit (7) for outputting the optical signal combined by the multiplexing unit
  • a first main provided along the at least part of the waveguide between the output portion of the first intensity modulator (9) and the multiplexing portion of the Mach-Zehnder waveguide (8).
  • the second main Mach-Zehnder electrode (MZ electrode) (13b) provided along at least a part of the waveguide between the output section of the second intensity modulator (10) and the multiplexing section
  • the light modulation system A preferred embodiment of the above system is shown in Fig. 1 (b).
  • the first arm (4) and the second arm (5) are each formed as a sub Mach-Zehnder waveguide.
  • the optical modulation system of the present invention includes a first main Mach-Zehnder electrode (MZ electrode) that can adjust the phase of an output signal such as a sub-Mach-Zehnder waveguide provided in both arms.
  • MZ electrode Mach-Zehnder electrode
  • MZ electrode main Mach-Zehnder electrode
  • the carrier wave (carrier signal) or higher-order component (for example, second-order component (f ⁇ 2f)) of the optical signal is combined
  • Control is performed so that the phase such as 0 m is reversed, and then the components are combined, so that these components can be suppressed.
  • the output signal is detected by a photodetector
  • the optical signal measured by the photodetector is received by the control unit, and the predetermined signal included in the detected optical signal is detected. It is only necessary to analyze the intensity of the suppressed component and issue a command to the signal source so that the intensity of the component is reduced. By doing so, it is possible to obtain a voltage that can automatically suppress a given signal component.
  • Each sub Mach-Zehnder waveguide includes, for example, a substantially hexagonal waveguide (which forms two arms), and includes two phase modulators arranged in parallel.
  • a phase modulator can be achieved with electrodes along the waveguide.
  • the Mach-Zehnder waveguide and the electrode are provided on the substrate.
  • the substrate and each waveguide are not particularly limited as long as they can propagate light.
  • a Ti diffusion lithium niobate waveguide may be formed on an LN substrate, or a silicon dioxide (SiO 2) waveguide may be formed on a silicon (Si) substrate.
  • Si silicon
  • An optical semiconductor waveguide in which an aAlAs waveguide is formed may be used.
  • LiNbO: LN is preferred. This is a low-power drive because it can use a large electro-optic effect
  • An optical waveguide is formed on the X-cut surface (Y-Z surface) of this substrate, and the guided light propagates along the Z-axis (optical axis).
  • a lithium niobate substrate other than the X cut may be used.
  • the substrate is a triaxial or hexagonal uniaxial crystal having an electro-optic effect, or the point group of the crystal is C,
  • Materials that are C, D, C, and D can be used. These materials are applied by applying an electric field. Therefore, it has a function of adjusting the refractive index so that the change in refractive index has a different sign depending on the mode of propagating light. Specific examples include lithium tantalate in addition to lithium niobate.
  • LiTO LiTO: LT
  • ⁇ -BaB 2 O abbreviation BBO
  • LilO LilO
  • the size of the substrate is not particularly limited as long as it is a size capable of forming a predetermined waveguide.
  • each waveguide are not particularly limited as long as the module of the present invention can exert its function.
  • the width of each waveguide is, for example, about 1 to 20 micrometers, preferably 5 to about L0 micrometers.
  • the depth (thickness) of the waveguide is 10 nm to 1 micrometer, preferably 50 nm to 200 nm.
  • a bias adjustment electrode may be provided in the sub Mach-Zehnder waveguide.
  • the first bias adjustment electrode (electrode A) has two arms (Pathl and Path3) that make up the MZ.
  • the second bias adjustment electrode (electrode B) constitutes MZ
  • Electrodes A and B are preferably applied with a normal DC or low frequency signal.
  • “low frequency” in a low-frequency signal means a frequency of 0 Hz to 500 MHz, for example.
  • the output of the signal source of this low frequency signal is preferably provided with a phase modulator that adjusts the phase of the electrical signal so that the phase of the output signal can be controlled.
  • the first sub Mach-Zehnder waveguide as the light intensity modulator
  • MZ is provided along at least a part of the waveguide between the output unit and the multiplexing unit.
  • Electrode And at least part of the output signal may be long enough to adjust the phase of the output signal.
  • the second sub Mach-Zehnder waveguide as the light intensity modulator
  • MZ is provided along at least a part of the waveguide between the output unit and the multiplexing unit.
  • the first main Mach Zender electrode (MZ electrode) and second main Mach-Zehnder electrode (MZ) is the same as the MZ electrode [11].
  • the first main Mach Zender electrode (MZ electrode) and second main Mach-Zehnder electrode (MZ) are the same as the MZ electrode [11].
  • the first main Mach Zender electrode (MZ electrode) and second main Mach-Zehnder electrode (MZ) are the same as the MZ electrode [11].
  • the electrode may function as an optical phase modulator in the waveguide portion in which each electrode is provided.
  • the MZ electrode and the MZ electrode are preferably connected to a high-frequency electric signal source. High frequency
  • the electrical signal source is the MZ electrode, and the MZ electrode transmits the adjacent waveguide.
  • a known high-frequency electrical signal source can be used.
  • the M Z electrode and MZ electrode are, for example, the frequency (f) of the high-frequency signal input to
  • the output of a high-frequency electrical signal source is a sine wave with a constant frequency. It is preferable that a phase modulator is provided at the output of this high-frequency electric signal source so that the phase of the output signal can be controlled.
  • the MZ electrode and the MZ electrode are made of, for example, gold or platinum. MZ Electric
  • the width of the pole and MZ electrode can be 1 m to 10 m, specifically 5 m.
  • the length of the MZ electrode and the MZ electrode is (f
  • MZ electrodes and MZ electrodes have a length of 3250 ⁇ m.
  • the resonance type electrode and traveling wave type electrode will be described.
  • a resonant optical electrode is an electrode that performs modulation using resonance of a modulation signal.
  • Known electrodes can be used as the resonance type electrodes, for example, Japanese Patent Application Laid-Open No. 2002-268025, “Tetsuya Kawanishi, Satoshi Oikawa, Masayuki Izutsu, Sakai Plane Structure Resonance Type Optical Modulator”, IEICE Tech.
  • a traveling wave electrode is an electrode (modulator) that modulates light while guiding and guiding light waves and electrical signals in the same direction (for example, Nishihara). Hiroshi, Masami Haruna, Toshiaki Sugawara, “Optical Integrated Circuits” (Revised Supplement) Ohmsha, pp. 119-120).
  • the traveling wave type electrode a known one can be adopted, for example, JP-A-11 295674, JP-A-11 295674, JP-A 2002-169133, JP-A 2002-40381, JP-A 2000-267056.
  • public Information disclosed in Japanese Patent Laid-Open No. 2000-471159, Japanese Patent Laid-Open No. 10-133159, and the like can be used.
  • the traveling wave electrode preferably employs a so-called symmetrical ground electrode arrangement (having at least a pair of ground electrodes on both sides of the traveling wave signal electrode).
  • a so-called symmetrical ground electrode arrangement having at least a pair of ground electrodes on both sides of the traveling wave signal electrode.
  • the MZ electrode and the MZ electrode serve as both an RF signal electrode and a DC signal electrode.
  • bias circuit that mixes and supplies signal and RF signal.
  • the branch part (5) included in the main Mach-Zehnder waveguide (MZ) has an optical signal as described above.
  • the multiplexing unit (6) includes the first sub Mach-Zehnder waveguide (MZ
  • the Y shape above may be the target or asymmetric.
  • a directional coupler (force bra) may be used as the branching section (5) or the combining section (6).
  • a control unit is preferably provided.
  • Such a control unit includes a signal applied to the first electrode (electrode A) and the second electrode (electrode B), the first main Mach-Zender electrode (MZ electrode) and the second electrode. Mark on the main Mach-Zehnder electrode (MZ electrode)
  • the adjustment time may be an appropriate value depending on the distance between the electrodes.
  • the control unit outputs an output signal from the first sub Mach-Zehnder waveguide (MZ).
  • the second sub Mach-Zehnder waveguide (MZ).
  • An example of such a control unit is a computer that stores a processing program connected to the signal source of each electrode.
  • the computer receives input device control information such as a keyboard, the CPU
  • the processing program stored in the main program is read, the necessary information is read from various memories according to the program instructions, the information stored in the memory is rewritten as appropriate, and the signal source is output to the signal source.
  • a command that controls the timing and phase difference of the optical signal may be output to the external output device.
  • the computer uses the means for grasping the phase of a specific component in each sub Mach-Zehnder waveguide and the phase information of the component of the characteristic grasped by the means to The first main Mach-Zehnder electrode (MZ)
  • Any device may be used as long as it functions as a device including a means for generating a command.
  • a bias voltage is applied to electrodes A and B so that the phase difference between the four optical phase modulators in parallel in the sub Mach-Zehnder waveguide is 90 °.
  • the phase difference of these electrical signals and the phase difference of the optical signal may be adjusted as appropriate, but basically they are adjusted so that they are shifted by an integer multiple of 90 °.
  • optical signals contain a carrier wave of the optical signal (carrier signal) or a higher-order component (eg, second-order component (f ⁇ 2f)).
  • the light modulation system of the invention operates to suppress at least one of them.
  • phase of the carrier wave (carrier signal) or higher order component (for example, second order component (f ⁇ 2f)) of the optical signal included in the optical signal output from each sub Mach-Zehnder waveguide is
  • phase of the output signal from each sub-Mach-Zehnder waveguide before being multiplexed by the multiplexing unit is determined. , Suppressed! /, Component (carrier of optical signal (carrier signal) or higher order component (e.g. second order component (f
  • the optical modulation system of the present invention can function as a DSB — SC modulator, FSK modulator, SSB modulator, etc., but preferably DSB — SC Used as a modulator.
  • Fig. 2 (a) is a conceptual diagram showing an example of a method for acquiring a DSB modulation signal in which a carrier signal is suppressed using the optical modulation system of the present invention.
  • carrier signals with the same phase remain in the optical signal obtained in each sub-MZ waveguide, so that the phase of each output signal is modulated by 180 °.
  • the phase of the carrier component is shifted by 180 ° at points P and Q in Fig. 1.
  • the carrier components cancel each other and are suppressed.
  • the upper sideband component (USB): + 1 and the lower sideband (LSB): — 1 are not in antiphase, so they remain unsuppressed and DSB-SC modulation is achieved.
  • Fig. 2 (b) is a conceptual diagram showing an example of a method for acquiring an SSB (single sideband) modulated signal in which a carrier signal is suppressed using the optical modulation system of the present invention.
  • the optical signal obtained in each sub-MZ waveguide has, for example, a carrier signal with the same phase remaining! /, So that the phase of each output signal is 180 °.
  • the phase of the carrier component is shifted by 180 ° at points P and Q in Fig. 1.
  • the carrier components cancel each other and are suppressed.
  • the upper sideband component (USB): + 1 is not anti-phase and remains unsuppressed.
  • the lower sidebands (LSBs) are out of phase and cancel each other out and are suppressed. In this way, SSB-SC modulation is achieved.
  • the light modulation system of the present invention also has power such as a substrate, a waveguide provided on the substrate, an electrode, a signal source, a measurement unit, and a control unit.
  • a method for forming the optical waveguide a known forming method such as an internal diffusion method such as a titanium diffusion method or a proton exchange method can be used. That is, the light modulation system of the present invention can be manufactured as follows, for example. First, the lithium niobate An optical waveguide is formed on the wafer by patterning titanium by a photolithography method and diffusing titanium by a thermal diffusion method. The conditions for this are as follows: titanium thickness is 100 to 2000 years old, diffusion temperature is 500 to 2000 ° C, and diffusion time is 10 to 40 hours.
  • An insulating buffer layer (thickness 0.5-2 m) of silicon dioxide is formed on the main surface of the substrate. Next, an electrode with a metal plating force of 15-30 m thick is formed on these. The wafer is then cut. In this way, an optical modulator formed with a titanium diffusion waveguide is formed.
  • the light modulation system can be manufactured, for example, as follows. First, a waveguide is formed on the substrate.
  • the waveguide can be provided on the surface of the lithium niobate substrate by applying the proton exchange method or titanium thermal diffusion method. For example, Ti metal stripes of a few micrometers are formed on an LN substrate in rows on the LN substrate by photolithography. After that, the LN substrate is exposed to a high temperature around 1000 ° C to diffuse Ti metal inside the substrate. In this way, a waveguide can be formed on the LN substrate.
  • the electrode can be manufactured in the same manner as described above.
  • the gap between the electrodes is set to about 1 to 50 micrometers on both sides of a large number of waveguides formed with the same width by photolithography as in the formation of optical waveguides. It is possible to form a cocoon so that it does.
  • silicon substrate when used, for example, it can be manufactured as follows. Silicon
  • a layer is then deposited, followed by diacid silicate with the addition of germanium dioxide (GeO) as a dopant.
  • germanium dioxide GeO
  • a core layer mainly composed of recon (SiO 2) is deposited. After that, it is made into transparent glass in an electric furnace.
  • the optical waveguide part is fabricated by etching, and again silicon dioxide (SiO 2) as the main component.
  • thermo-optic intensity modulator and a thin film heater type thermo-optic phase modulator are formed on the upper cladding layer.
  • FIG. 3 is a block diagram showing a signal source unit of the light modulation system according to a preferred aspect of the present invention.
  • the signal source section according to this aspect includes the first electrode (electrode A), the second electrode (electrode B), and the third electrode (electrode C: MZ, and MZ )
  • the second signal source (high frequency signal source) (15) is an electrical signal (3) times the frequency of the basic signal (f) ( 3f), a triple signal generator (17)
  • the triple signal generator (17) generates an electrical signal (3f m
  • phase adjuster (18) then sends the second signal source (high frequency m
  • the signal strength adjusting section (19) adjusts the strength of the electric signal (3f).
  • the frequency is 3 m 0 m for the third-order component (f ⁇ 3f) generated when the signal f is marked as the signal.
  • the m-times signal generator (17) is an electrical signal (3f) having a frequency three times that of the basic signal (f).
  • phase adjustment unit (18) generates the phase of the basic signal (f) output from the second signal source (high frequency signal source) (15) and the triple signal generation unit (17).
  • the part (19) adjusts the strength of the electric signal (3f). Then, f m
  • the fundamental signal having the frequency f and the frequency m Number 3
  • a signal 3 times f is applied to electrode C (MZ and MZ).
  • control unit in order to appropriately control the timing and phase of the signal applied to each electrode, it is electrically connected to the signal source of each electrode (or by an optical signal).
  • a control unit is preferably provided.
  • Such a control unit includes RF electrodes, RF power
  • Signal applied to the pole and RF electrode ie, RF signal, RF signal and RF signal change
  • the light propagation time is adjusted so that modulation by each electrode is performed for a specific signal.
  • This adjustment time may be an appropriate value depending on the distance between the electrodes.
  • the signal source section (16) is connected to the first electrode (electrode A) (9), the second electrode (electrode B) (10), and the third electrode (electrode C) (13).
  • Source) (15).
  • the intensity, delay (phase), application timing, etc. of the bias voltage may be appropriately adjusted by the adjustment unit (20). Note that the optical signal from the high-frequency signal source is separated into two routes by, for example, conductors, and the amplitude and phase are adjusted appropriately, and the modulation signal is applied to the MZ electrode and MZ electrode.
  • the second signal source (high frequency signal source) (15) has a frequency three times that of the basic signal (f).
  • Phase m that adjusts the phase difference of the electrical signal (3f) that has a frequency three times that of the fundamental signal
  • An electrical signal (f) output from a high-frequency signal source (15) such as a wave signal is transmitted by m
  • the control unit is connected to the first sub Mach-Zehnder waveguide (MZ).
  • the voltage applied to the electrode C is adjusted so that the phase of the optical carrier signal or the specific higher-order optical signal is 180 ° out of phase.
  • An example of such a control unit is a computer storing a processing program connected to the signal source of each electrode.
  • the CPU reads out the processing program stored in the main program, for example, and in accordance with the program commands, the necessary information is read from various memories.
  • the information stored in the memory is appropriately rewritten, and a command to control the timing and phase difference of the optical signal output to the signal source is output from the external output device.
  • the computer uses a means for grasping the phase of a specific component in each sub-Matsuhnder waveguide and the phase information of the component of the characteristic grasped by the means.
  • Any device may be used as long as it has a means for preparing a command for adjusting the modulation signal applied to the electrode C so that the phase of the phase is reversed.
  • the optical modulator of the present invention functions as a DSB-SC modulator, even if it is adjusted so that the third-order component is canceled at the stage of the electrical signal, it is not always canceled successfully. It is preferable to adjust so that the third-order component is canceled by the control unit.
  • the intensity of the output signal is proportional to I cos (g (t)) / 2 I. This is why the Matsuhatsu Ender waveguide is called an intensity modulator. Since the ideal OFF state intensity is 0, the intensity ratio between the ON state and OFF state is ideally infinite. On the other hand, in reality, since carrier components and higher-order components remain, the strength is maintained even in the OFF state. Does not become zero.
  • the extinction ratio which is the intensity ratio between the ON and OFF states, is an important value for evaluating the characteristics of Mach-Zehnder waveguides.
  • be the phase difference between the optical signals of both arms caused by the bias voltage from electrode C.
  • the frequency of the modulation signal applied to electrode C is (f), and g (t) is a sine wave 2 ⁇ ⁇ ⁇ 2 ⁇ ⁇ t + ⁇
  • the even-order component such as the second-order component is 0, and the average intensity is approximately 2 IA w I. Since the third and higher order components do not remain so strong, the first order components (USB and LSB) remain, and DSB-SC modulation is achieved.
  • the triple signal generator (17) has a frequency three times that of the basic signal (f).
  • phase adjustment unit (18) sends the second signal source (
  • the The signal strength adjusting unit (19) adjusts the strength of the electric signal (3f). And as a modulation signal
  • Adjust to the degree may be performed manually while monitoring the output from the Mach-Zehnder waveguide.
  • the control unit can adjust the phase and timing of the signal output from the signal source unit appropriately so that a suitable signal can be applied to the electrode (particularly electrode C). It may be.
  • the frequency is f
  • FIG. 4 is a conceptual diagram for explaining the state of the intensity and phase of an optical signal in a DSB-SC modulation system according to a preferred aspect of the present invention.
  • Figure 4 (a) is a conceptual diagram showing the optical signal spectrum in the first arm.
  • Figure 4 (b) is a conceptual diagram showing the optical signal spectrum in the second arm.
  • Figure 4 (c) is a conceptual diagram showing a state in which a phase change of + 90 ° is added to the optical signal spectrum in the first arm.
  • Figure 4 (d) is a conceptual diagram showing a state where a phase change of -90 degrees is added to the optical signal spectrum in the second arm.
  • Fig. 5 is a conceptual diagram showing the output signal spur that is the result of interference of the optical signals from the first arm and the second arm at the multiplexing point.
  • the 3f signal is applied and the third-order signal component m
  • Such optical signals in the first arm and the second arm interfere with each other at the multiplexing point.
  • the third-order component f ⁇ 3f) is effectively suppressed. 5th, 7th, etc.
  • the stem operates to suppress at least one of them.
  • phase of the carrier wave (carrier signal) or higher order component (for example, second order component (f ⁇ 2f)) of the optical signal included in the optical signal output from each sub Mach-Zehnder waveguide is
  • FIG. 5 is a schematic configuration diagram of an optical modulation system according to the second aspect of the present invention. In this way, it has an MZ electrode and an MZ electrode (that is, the main Mach-Zehnder power supply).
  • Pole is a two-pole electrode
  • the component to be suppressed can be controlled effectively by controlling the phase of the component to be suppressed (carrier, second-order, third-order component, etc.) to be opposite in phase.
  • a bias voltage is applied to the DC and DC electrodes so that the phase difference between each of the four optical phase modulators in parallel in the sub-Matsuhender waveguide is 90 °. The phase difference between these electrical signals
  • the phase difference of the optical signal can be adjusted as appropriate, but basically it is adjusted so that it deviates by an integral multiple of 90 °.
  • optical signals contain a carrier wave of the optical signal (carrier signal) or a higher-order component (eg, second-order component (f ⁇ 2f)).
  • the light modulation system of the invention operates to suppress at least one of them.
  • phase of the carrier wave (carrier signal) or higher order component (eg, second order component (f ⁇ 2f)) of the optical signal included in the optical signal output from each sub Mach-Zehnder waveguide is
  • phase of the output signal from each sub-Mach-Zehnder waveguide before being multiplexed by the multiplexing unit is determined. , Suppressed! /, Component (carrier of optical signal (carrier signal) or higher order component (e.g. second order component (f
  • FIG. 6 is a schematic diagram showing a basic configuration of an optical modulation system according to the third aspect of the present invention.
  • an optical modulation system according to the third aspect of the present invention is provided along the first arm (4), and the first arm (4) includes the first A light intensity correction mechanism (31) provided between the intensity modulator (9) and the multiplexing unit (6) or the second arm (5) is provided along the second arm (5).
  • the optical modulation system comprising either or both of the light intensity correction mechanisms (32) provided between the second intensity modulator (10) and the multiplexing unit (6).
  • the optical modulation system comprising either or both of the light intensity correction mechanisms (32) provided between the second intensity modulator (10) and the multiplexing unit (6).
  • the light intensity correction mechanism for example, an intensity modulator
  • the magnitude of the component to be effectively suppressed is adjusted to the same level, so that the suppression adjusted to have an opposite phase is performed. It is possible to effectively suppress the desired component.
  • the configuration of the light modulation system according to the second aspect described earlier may be adopted.
  • FIG. 7 is a schematic diagram showing a basic configuration of an optical modulation system according to the fourth aspect of the present invention.
  • an optical modulation system according to the fourth aspect of the present invention is the optical modulation system described above as an optical modulator, and is converted into output light or input light of the optical modulator. Adjusting the modulation time of the phase modulator or the intensity modulator for adjusting the phase, the deviation or both, and the modulation signal of the optical modulator and the modulation signal of the phase modulator or intensity modulator And a control unit for the optical modulation system.
  • phase modulator or intensity modulator is placed on the output light of the optical amplitude modulator and modulation is shown, but a phase modulator or intensity modulator is placed upstream of the optical amplitude modulator.
  • the one that modulates the input light of the optical amplitude modulator functions in the same way.
  • PM indicates a phase modulator
  • IM indicates an intensity modulator.
  • An example of a phase modulator is one that can control the amount of phase modulation of the optical signal to be modulated by applying an electric field to the waveguide. Specifically, there are those having a waveguide and an electrode adapted to apply an electric field to the waveguide.
  • An optical modulation system includes an optical modulator and output light from the optical modulator.
  • the present invention also relates to a light modulation system including a phase / intensity modulator (specifically, a two-electrode MZ modulator) that modulates input light.
  • a phase / intensity modulator specifically, a two-electrode MZ modulator
  • the extinction ratio cannot be increased because carrier components that cannot be suppressed remain in the output of an optical modulator such as an optical DSB-SC modulator. Therefore, phase modulation and Z or intensity modulation are applied to the output light from the optical modulator, or the input light is modulated so that components that cannot be suppressed are canceled out.
  • control unit converts either or both of the double sideband signals of the output light from the optical modulator to the phase modulator or One of the double-sideband signals generated by the modulation by the intensity modulator matches the frequency of the optical carrier signal or higher-order optical signal in the output light of the optical modulator, and cancels the optical carrier wave signal or higher-order optical signal.
  • the phase modulator or the intensity modulator modulates the input light to the optical modulator to generate a double sideband signal, which is input to the optical amplitude modulator, and Since each optical signal (USB signal and LSB signal) generates a double-sideband signal, any of the double-sideband signals (USB signal or LSB signal) generated in this way is the output light of the optical amplitude modulator.
  • Optical carrier signal or higher-order light Consistent with the frequency of the issue, which is above the light modulation system for controlling the consumption Suyo out the optical carrier signal or higher order optical signal.
  • FIG. 8 is a conceptual diagram showing an example of the modulation signal output from the phase modulator in the optical modulation system according to the fourth aspect.
  • This example shows an example of canceling a carrier signal component using a first-order sideband signal (side, half, side, side, and side). As shown in FIG.
  • the modulation signal output from the detector is the side,
  • phase of the primary component is modulated.
  • phase of the primary component is modulated.
  • the phase modulator knows the optical signal (carrier signal or higher-order component signal) to be canceled and the phase after modulation by the intensity modulator of the sinusoidal signal used to cancel it. Control is performed so that the phase of the signal modulated by the optical modulator is reversed.
  • the phase of the carrier signal component that cannot be fully suppressed and the site signal is shifted by ⁇ ⁇ 2, so the phase modulator receives the command from the control unit and receives the site signal.
  • the voltage applied to the electrode is controlled so that the phase of the signal is further shifted by ⁇ ⁇ 2.
  • the phase of the carrier signal component and the side signal is shifted by ⁇ (ie, the phase is reversed).
  • FIG. 9 is a conceptual diagram for explaining the modulation signal output from the intensity modulator.
  • FIG. 10 is a conceptual diagram showing a modulation signal output from the intensity modulator.
  • the modulated signal output from the intensity modulator has the same frequency as the optical signal (carrier signal or higher-order component signal) to be canceled, and the side signal and signal for canceling it. , The phase is reversed.
  • the phase of the carrier signal and the USB signal LSB signal or LSB signal USB are reversed. Therefore, as shown in Fig. 10, the intensity of the signal to be canceled is reduced (ideally suppressed) in the modulation signal output from the intensity modulator.
  • FIG. 11 is a diagram for explaining an optical modulation system according to the fifth aspect of the present invention.
  • FIG. 11 (a) shows a preferred embodiment of the light modulation system according to the fifth aspect of the present invention
  • FIG. 11 (b) shows another embodiment.
  • the optical modulation system according to the fifth aspect of the present invention includes a circulator (42) to which the optical signal combined by the multiplex unit (6) is input, and the circulator model.
  • the above-described optical modulation system as an optical modulator, a circulator to which an output signal of the optical modulator is input, and output light of the circulator cable are incident, and a desired optical signal component of the optical modulator is input.
  • the optical detector Based on the fiber grating through which the optical signal component is reflected, the optical detector that detects the optical signal transmitted through the fiber grating, and the optical signal detected by the optical detector.
  • An optical modulation system provided. This type of optical modulation system is preferable because unnecessary components can be removed by fiber gratings and circulators, and the removed components can be used as feedback signals.
  • the fiber grating (43) can be set to reflect only the desired component as the output component. Then, the necessary component (for example, (f ⁇ f) component) of the optical signal incident on the circulator (42) force fiber grating (43)
  • the optical signal incident on the circulator via the fiber bag rating is transmitted to the output section, not the multiplexing section.
  • the optical signal transmitted through the fiber grating is not a necessary component.
  • the photodetector (44) detects the optical signal removed by the fiber grating and transmits the detected signal to the control unit (23), except for the necessary components (for example, (f ⁇ f) component).
  • the necessary components for example, (f ⁇ f) component.
  • Controlling the signal of the signal source system (16) so as to reduce the number is a preferred embodiment of the present invention.
  • components other than the necessary components can be reduced by adjusting the voltage values applied to various signal sources.
  • the optical modulation system according to the fifth aspect of the present invention is preferably a DSB-SC modulation system.
  • the optical frequency reflected by the fiber grating is expressed as (f ⁇ f
  • It may be set so that 0 m) is reflected. In this case, it can be used as an SSB modulation system.
  • the light modulation system according to the fifth aspect of the present invention may be set so that necessary components are transmitted through the fiber grating as shown in Fig. 11 (b). In this case, unnecessary components are reflected from the output signal and reduced.
  • the signal source can be controlled by the control unit so as to reduce unnecessary components as described above.
  • FBG fiber grating
  • uniform fiber grating examples include a pug grating or a multi-section grating, and a tunable fiber grating may be used.
  • FBG can be obtained, for example, by irradiating ultraviolet rays through a phase mask and changing the refractive index of the core with a predetermined pitch.
  • Uniform FBG is an FBG with a uniform grating period and refractive index.
  • the grating pitch should be appropriate depending on the wavelength of the target light, for example, 100nm to 1000nm, 300 ⁇ ! It may be ⁇ 800nm.
  • the refractive index difference with respect to the core of the grayed rating, 1 X 10- 6 ⁇ 1 X 10- 2 and the like, may also IX 10 to 5 X 10 one 3, even 1 X 10 one 4 ⁇ 1 X 10 one 3 Good.
  • the chirped grating is a chirped FBG in which the refractive index period and the grating period are changed in the longitudinal direction of the FBG.
  • the chirp grating With the chirp grating, the reflection position can be varied according to the wavelength of the input signal.
  • the grating pitch of the capped FBG usually changes gradually, but it is sufficient to use one with an appropriate interval according to the wavelength of the target light, for example, 100 nm to 1000 nm, 300 ⁇ ! It can be ⁇ 800nm.
  • the refractive index difference with respect to the core of the grating 1 X 10- 6 ⁇ IX 10- 2 is Agerare may even 1 X 10- 5 ⁇ 5 X 10- 3 , 1 X 10- 4 ⁇ 1 X 10- 3 But you can.
  • the multi-section FBG is an FBG with discrete wavelength changes and reflection point changes.
  • an optical signal with a wavelength component in a certain range is reflected at almost the same reflection point, but the reflection point is discretely changed for a wavelength component in a different range.
  • the pitch of the multi-section FBG lining is usually adjusted according to the purpose, but it is sufficient to use one with an appropriate interval according to the wavelength of the target light, for example, 100 nm to 1000 nm. 300 ⁇ ! It may be ⁇ 800nm.
  • the refractive index difference with respect to the core of the grating, IX 10- 6 ⁇ 1 X 10- 2 and the like, may even 1 X 10- 5 ⁇ 5 X 10 3 , even 1 X 10- 4 ⁇ 1 X 10- 3 Good.
  • the light modulation system is the light modulation system described above, connected to the output signal detection unit from the Mach-Zehnder waveguide (8), and applied to each electrode.
  • a control unit that outputs a control signal for controlling the applied voltage to the signal source (the first electrode (electrode A) (9), so that the output of the 0 Mach-Zehnder waveguide (8) force is increased).
  • the bias voltage applied to the third electrode (electrode C) (13) is adjusted so that the output of one waveguide (8) force is small.
  • the output from the Mach-Zehnder waveguide (8) The third electrode (electrode C) (13) is reduced so that the output of the Mach-Zehnder waveguide (8) is reduced.
  • the present invention relates to an optical modulation system including a control unit that adjusts a bias voltage applied to a light source.
  • the light modulation system includes a first electrode (electrode A) (9), a second electrode such that the output from the 0 Mach-Zehnder waveguide (8) is increased. Adjusting the voltage applied to the electrode (electrode B) (10) and the third electrode (electrode C) (13); and (ii) the Mach-Zehnder waveguide (8) The process of adjusting the noise voltage applied to the three electrodes (electrode C) (13), and (iii) the output of one of the sub Mach-Zehnder electrodes so that the output from the Mach-Zehnder waveguide (8) is reduced. And (iv) adjusting the bias voltage applied to the third electrode (electrode C) (13) so that the output of the Mach-Zehnder waveguide (8) is reduced.
  • a suitable bias voltage value can be preferably obtained automatically by the bias adjustment method.
  • the adjustment method of the present invention basically includes the following steps. (0 Adjusting the bias voltage of the main MZ electrode (electrode C) and the bias voltage of the two sub-MZ electrodes so that the output from the main MZ waveguide increases, and (ii) Adjusting the bias voltage of electrode C so that the output of
  • bias voltage of any sub-MZ electrode is reduced so that the output from the main MZ waveguide is reduced, and (iv) the bias voltage of electrode C is set so that the output of the main MZ waveguide is reduced. Adjusting. In addition, repeating the above steps (iii) and (iv) is a preferred embodiment of the present invention. Below, each process is demonstrated.
  • control system is connected to the measurement system and the power supply system that supplies each bias voltage, and the magnitude of each bias voltage is controlled so that the light intensity measured by the measurement system increases. You may do it.
  • the control device includes an input unit for inputting information, an output unit for outputting information, a storage unit for storing information (including memory and main memory), and a calculation unit such as a CPU for performing various operations. Information on the light intensity measured by the measurement system is input to the control device by the input unit and stored in the memory.
  • the CPU of the control device receives the control program command in the main memory and reads the information on the light intensity stored in the memory.
  • the CPU of the control device receives a control program command in the main memory and outputs a signal that changes the bias voltage applied to any one or more electrodes from the output unit. In this way, the intensity of the output light changes. This information is read out, compared with the previous light intensity, and a command to change the bias voltage so that the light intensity increases is output from the output unit.
  • the power supply that receives this output signal changes the voltage applied to each electrode in accordance with the command, resulting in an increase in optical output.
  • This process is for adjusting the bias voltage applied to the main MZ electrode so that the intensity of the output light from the main MZ waveguide is reduced. Since the main MZ waveguide is connected to a measurement system (not shown), the bias voltage applied to the main MZ electrode can be adjusted while observing the output value from the measurement system.
  • control system is connected to the measurement system and the power supply system that supplies the bias voltage to the main MZ electrode, and the bias voltage of the main MZ electrode is reduced so that the light intensity measured by the measurement system is reduced. You may make it control the magnitude
  • Information on the light intensity measured by the measurement system is input to the controller by the input unit and stored in the memory.
  • the CPU of the control unit In response to a control program command in the main memory, information on the light intensity stored in the memory is read.
  • the CPU of the control device receives a command from the control program in the main memory and outputs a signal that changes the bias voltage applied to the main MZ electrode from the output section. In this way, the intensity of the output light changes.
  • This information is read out, compared with the previous light intensity, and a command to change the bias voltage so that the light intensity becomes smaller is output from the output section.
  • the power supply that receives this output signal changes the voltage applied to the main MZ electrode in accordance with the command, so the optical output decreases.
  • the bias voltage of one of the sub MZ electrodes is reduced so that the output from the main MZ waveguide is reduced.
  • the noise voltage of one of the sub MZ electrodes is reduced, so the output of the main MZ waveguide force is reduced, so the sub MZ electrode with the smaller output of the main MZ waveguide force is reduced.
  • the bias voltage is controlled to be small.
  • the voltage value that decreases or increases in this process may be predetermined.
  • Such a change voltage value is 0.01V to 0.5V, preferably 0.05V to 0.1V.
  • This process reduces the output intensity of the main MZ waveguide force.
  • the main MZ waveguide is connected to a measurement system (not shown), so the noise voltage may be adjusted while observing the output value from the measurement system.
  • control system is connected to the measurement system and the power supply system that supplies the bias voltage to the electrodes A and B, so that the magnitude of the bias voltage applied to the electrode A or the electrode B is controlled. You may rub.
  • information on the electrode for changing the voltage value and information on the voltage value to be changed may be stored in a memory or the like.
  • the CPU of the control device receives a control program command in the main memory, reads the control information stored in the memory, and outputs a signal that changes the bias voltage applied to the electrode A or electrode B from the output unit. . In this way, the value of the bias voltage applied to electrode A or electrode B changes by a predetermined amount.
  • the intensity of the output light from the main MZ changes.
  • Information on the light intensity observed by the measurement system is input from the input unit and stored in the memory.
  • the CPU of the control unit In response to a control program command in the in-memory, the information on the light intensity stored in the memory is read, and the bias voltage applied to the sub MZ electrode is changed so that the light intensity of the main MZ waveguide force is reduced.
  • the command also outputs the output force.
  • the power supply that receives this output signal changes the voltage applied to the electrode in accordance with the command, so the optical output decreases.
  • This process is for adjusting the bias voltage of electrode C so that the output of the main MZ waveguide is reduced.
  • the main MZ waveguide is connected to a measurement system (not shown), so the bias voltage may be adjusted while observing the output value from the measurement system. Note that this step, or the step (iii) and this step may be repeated.
  • the measurement system and the power supply system that supplies the bias voltage to the electrode C are connected by a control device, and the magnitude of the noise voltage applied to the electrode C may be controlled.
  • the CPU of the control device receives a control program command in the main memory, reads the control information stored in the memory, and outputs a signal that changes the bias voltage applied to the electrode C as well as the output. In this way, the value of the bias voltage applied to electrode C changes by a predetermined amount.
  • the CPU of the control device receives a control program command in the main memory, reads the control information stored in the memory and information on the output light, and determines that the adjustment of the bias voltage is stopped. May be. It is also possible to feed back the intensity information of the output light from the measurement system and continue to adjust the noise voltage.
  • An optical modulation system includes an optical modulator, a circulator (42) to which an output signal of the optical modulator is input, and output light from the circulator is incident on the optical modulator.
  • a fiber grating (43) that reflects the desired optical signal component of the modulator and transmits other optical signal components, a photodetector (44) that detects the optical signal transmitted through the fiber grating,
  • the optical modulation system comprises: a signal source (16) applied to the optical modulator based on the optical signal detected by the photodetector; and a control unit (23) for controlling the output signal.
  • the light modulation system according to the fifth aspect of the present invention and Similarly, the signal source system is controlled so that the predetermined optical signal is extracted effectively, and the unnecessary optical signal component is separated and its intensity is weakened. Therefore, unnecessary components can be reduced more effectively. It will be.
  • the optical modulator includes an optical signal input unit (2), a branching unit (3) for branching the optical signal,
  • the first arm (4) and the second arm (5) which are waveguides through which the optical signal branched from the branch (3) propagates, and the first arm (4) and the second arm (
  • a high extinction ratio can be obtained. Also, as shown in Example 2, since the carrier can be suppressed by using the modulation method of the present invention, a modulation method such as DSB-SC modulation can be suitably achieved and can be used for optical information communication.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

 本発明は,キャリア成分(f0)や高次成分(例えば2次成分(f0±2fm))などを抑圧できる光変調システムを提供することを目的とする。  上記課題は,マッハツェンダー導波路(8)と;前記第1のアーム(4)に設けられた第1の強度変調器(9)と;前記第2のアーム(5)に設けられた第2の強度変調器(10)と;第1のメインマッハツェンダー用電極(MZCA電極)(13a)と;第2のメインマッハツェンダー用電極(MZCB電極)(13b)とを具備する光変調システムにより,それぞれのアームを伝播する抑圧成分の位相を逆位相とした後に合波することにより解決される。

Description

明 細 書
キャリアや 2次成分を消去可能な DSB-SC変調システム
技術分野
[0001] 本発明は,光変調器などに関する。より詳しく説明すると,本発明は, DSB変調の際 に生じるキャリアや 2次成分などの高次成分を抑圧することで高い消光比変調を得る ことができる DSB-SC変調システムなどに関する。
背景技術
[0002] 光通信において、光に信号を乗せるために光を変調する必要がある。光変調には 、半導体レーザの駆動パワーを変調する直接変調と、半導体レーザ力 の光を光源 以外の手段で変調する外部変調とがある。外部変調で使用される変調器を一般に光 変調器とよぶ。光変調器では、変調器に信号に応じて物理的変化を起こして、光の 強度、位相などを変調する。光変調器の技術課題として、駆動電圧の低減、変調効 率向上のための高消光比、広帯域化、高速化および損失低減のための高光利用効 率とがある。すなわち,高い消光比を持った光変調器の開発が望まれている。なお, 消光比とは,光の強度が最も高い時の光強度と光の強度が最も弱くなる時の光強度 の比を意味する。
[0003] 光信号の周波数をシフトして出力するものに光単側波帯変調器 (光 SSB (Single Si de-Band)変調器)がある (川西哲也,井筒雅之,〃光 SSB変調器を用いた光周波数 シフター",信学技報, TECHNICAL
REPORT OF IEICE, OCS2002- 49, PS2002- 33, OFT2002- 30(2002- 08)。
[0004] また,光 SSB変調器を改良した光 FSK変調器も知られて ヽる(非特許文献 1[T. Ka wanishi and M. Izutsu, Optical FSK modulator using an
integrated light wave circuit consisting of four optical phase modulator", CPT 2004 G-2, Tokyo, Japan, 14-16 Jan.2004],非特許文献 2 [川西哲也ら" FSKZlM同 時変調の解析および応用"信学技法,
Tech. Rep. of IEICE. EMD2004-47, CPM2004- 73, OPE2004- 130, LQE2004- 45(20 04-08), pp.41- 46]参照)。
[0005] 図 12は,光 SSB変調器又は光 FSK変調器として機能する従来の光変調システム の基本構成を示す概略図である。図 12に示されるとおり,この光変調システムは,第 1のサブマツハツヱンダー導波路(MZ ) (2)と;第 2のサブマツハツヱンダー導波路(M
A
Z ) (3)と; 光信号の入力部 (4)と,前記光信号が前記第 1のサブマッハツェンダー導
B
波路 (MZ )と前記第 2のサブマツハツ ンダー導波路 (MZ )とへ分岐する分岐部 (5)
A B
と,前記第 1のサブマッハツェンダー導波路 (MZ )と,前記第 2のサブマッハツエンダ
A
一導波路 (MZ )と,前記第 1のサブマッハツェンダー導波路 (MZ )と前記第 2のサ
B A
ブマッハツェンダー導波路 (MZ )から出力される光信号が合波される合波部 (6)と,
B
前記合波部で合波された光信号が出力される光信号の出力部 (7)とを含むメインマツ ハツエンダー導波路 (MZ ) (8)と;前記第 1のサブマッハツェンダー導波路 (MZ )を
C A
構成する 2つのアームにラジオ周波数 (RF)信号を入力するための第 1の電極 (RF
A
電極) (9)と;前記第 2のサブマツハツヱンダー導波路 (MZ )を構成する 2つのアーム
B
にラジオ周波数 (RF)信号を入力するための第 2の電極 (RF電極)(10)と;メインマツ
B
ハツエンダー導波路(MZ )のうち,前記メインマツハツヱンダー導波路
C
に設けられた一つの変調電極を具備する。そして,メインマッハツェンダー導波路の 電極により, USBと LSBとを変化させて情報とすることにより周波数シフトキーイング を達成する。
[0006] 光変調器として,光搬送波抑圧両側波帯 (DSB-SC)変調器が知られて!/、る。上記 の光変調システムは, DSB-SC変調器としても機能する。 DSB-SC変調器は理想的に は, 2つのサイドノ ンドを出力し,キャリア成分を抑圧する。し力しながら,実際は, 下記の図に示されるような DSB-SC変調器の出力には,抑圧しきれな 、キャリア成分( f )や高次成分 (例えば 2次成分 (f ±2f ) )などが残留するので,消光比を高くできな
0 0 m
い。
[0007] たとえば,特開平 2004-252386号公報(下記特許文献 1)の図 37には, MZと,その 両アームに設けられた PMと,一方のアームに設けられた固定位相器を有する DSB-S C変調器が開示されている。光 DSB- SC変調器は,理想的には, 2つのサイドバンド( 両側波帯)信号を出力し,キャリア (搬送波)信号成分が抑圧される。ただし,奇数次 成分についてはわずかに残留する。このような残留成分としては,理論上は 3次成分 が最もつよいと考えられる。
特許文献 1:特開平 2004-252386号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は,新規な光変調システムを提供することを目的とする。
[0009] 本発明は,キャリア成分 (f )や高次成分 (例えば 2次成分 (f ±2f ) )などを抑圧でき
0 0 m
る DSB-SC変調システムを提供することを目的とする。
課題を解決するための手段
[0010] 本発明では,従来の光変調システムのメインマッハツェンダー導波路 (MZ
C )にそつ て設けられた電極部分を, 1電極型ではなく 2電極型としたものであり,これにより各サ ブ MZからの出力信号の位相を個別に調整可能としたものである。それにより,各サブ MZ信号からの出力信号の位相を調整できるので,抑圧した!/、成分の位相を各サブ MZで逆位相となるように調整でき,これにより合波される光信号力 効果的にキャリア 成分や高次成分 (特に 2次成分)を抑圧できるという知見に基づくものである。
[0011] すなわち,本発明は,基本的には,光信号の入力部 (2)と,前記光信号が分岐する 分岐部 (3)と,前記分岐部 (3)から分岐した光信号が伝播する導波路である第 1のァー ム (4)及び第 2のアーム (5)と,前記第 1のアーム (4)及び第 2のアーム (5)から出力される 光信号が合波される合波部 (6)と,前記合波部で合波された光信号が出力される光 信号の出力部 (7)とを含むマッハツェンダー導波路 (8)と;前記第 1のアーム (4)に設けら れ,前記第 1のアーム (4)を伝播する光信号の振幅を制御する第 1の強度変調器 (9)と ;前記第 2のアーム (5)に設けられ,前記第 2のアーム (5)を伝播する光信号の振幅を制 御する第 2の強度変調器 (10)と;前記第 1の強度変調器 (9)の第 1の電極 (電極 A) (11) と;前記第 2の強度変調器 (10)の第 2の電極 (電極 B) (12)と;マッハツェンダー導波路( 8)のうち,前記第 1の強度変調器 (9)の出力部と前記合波部との間の導波路の少なくと も一部に沿うように設けられた第 1のメインマッハツェンダー用電極 (MZ 電極)(13a)
CA
と;マッハツェンダー導波路 (8)のうち,前記第 2の強度変調器 (10)の出力部と前記合 波部との間の導波路の少なくとも一部に沿うように設けられた第 2のメインマツハツヱン ダー用電極 (MZ 電極)(13b)とを具備する光変調システムに関する。
CB
[0012] このように,第 1のメインマッハツェンダー用電極(MZ 電極)と第 2のメインマツハツ
CA
エンダー用電極 (MZ 電極)とを具備するので (すなわちメインマッハツェンダー用電
CB
極 (電極 C)が 2極電極であるので),各サブ MZ導波路力 の出力信号の位相を個別 に調整できることとなり,各サブ MZ導波路力 の抑圧した 、成分の位相を逆位相とし た後に合波することで,効果的に抑圧した 、成分を抑圧できることとなる。
[0013] 先に説明したとおり, DSB— SC変調器は,理論上は奇数次成分が残留するので, 消光比を下げる成分として, 3次成分があげられる。し力しながら,本発明のシステム は,あえて,理論上は残留しない,キャリア成分や 2次成分に着目し,それらの成分を 有効に抑圧するというものである (勿論,本発明のシステムによれば, 3次成分につい ても抑圧することができる)。すなわち, 2つのサブマッハツェンダー導波路からの出 力信号のうち,抑圧したい成分の位相が逆位相となるように,制御することで,抑圧し た 、成分を効果的に抑圧できる。
[0014] 本発明の別の側面は,上記のようなシステムを利用した光変調信号の取得方法に 関するものであり,合波部で合波される前の前記第 1のサブマッハツェンダー導波路 (MZ )及び前記第 2のサブマッハツェンダー導波路 (MZ )からの出力信号の位相
A B
を,抑圧した!/、成分の位相が逆位相となるように制御する光変調方法である。
[0015] 合波部で合波される前の前記第 1のサブマッハツェンダー導波路 (MZ )及び前記
A
第 2のサブマッハツェンダー導波路 (MZ )からの出力信号の位相を,抑圧したい成
B
分の位相が逆位相となるように制御するので,それらが合波部で合波された後に抑 圧したい成分が互に打ち消しあうこととなり,高い消光比を得ることができる。
[0016] 本発明の第 2の側面の好ましい実施態様は,(0前記メインマッハツェンダー導波路
(MZ )からの出力が大きくなるように,前記メインマッハツェンダー導波路 (MZ )に
C C
印加するバイアス電圧及び前記第 1のサブマッハツェンダー導波路 (MZ )及び前記
A
第 2のサブマッハツェンダー導波路 (MZ )に印加するバイアス電圧を調整する工程
B
と, GO
前記メインマッハツェンダー導波路 (MZ )からの出力が小さくなるように,前記メイン
C
マッハツェンダー導波路 (MZ )に印加するバイアス電圧を調整する工程と, (iii) 前記メインマッハツェンダー導波路 (MZ )からの出力が小さくなるように,前記第 1の
C
サブマツハツヱンダー導波路 (MZ )又は前記第 2のサブマツハツヱンダー導波路(
A
MZ )のバイアス電圧を減少させる工程と, (iv)
B
前記メインマッハツェンダー導波路 (MZ )の出力が小さくなるように,前記メインマツ
C
ハツエンダー導波路 (MZ )に印加するバイアス電圧を調整する工程とを含む工程に
C
より,各マッハツェンダー導波路に印加するバイアス電圧を調整する,上記の光変調 方法である。このノィァス調整は,好ましくはバイアス信号源を,上記の工程で制御 するような制御部を具備する光変調システムを用いて, 自動的に制御するものがあげ られる。
[0017] このように調整したノィァス電圧を用いれば,キャリア成分や高次成分が比較的少 ない信号を用い,更に先に説明した方法によりこれらの成分を抑圧することとなるの で,より効果的に抑圧したい成分を抑圧できることとなる。
[0018] 本発明の好ましい態様は,前記第 1のメインマッハツェンダー用電極 (MZ 電極)
CA
及び前記第 2のメインマッハツェンダー用電極 (MZ 電極)は,それぞれが設けられ
CB
る導波路部分を光位相変調器として機能させる上記いずれかの光変調システムであ る。このように各電極部を含む部位が位相変調器として機能するので,それぞれの導 波路を伝播する光信号の位相を効果的に調整できることとなる。
[0019] 本発明の好ましい態様は,前記第 1のサブマッハツェンダー導波路 (MZ )を構成
A
する 2つのアームを伝播する光信号に印加されるラジオ周波数信号である RF信号
A
と;前記第 2のサブマツハツヱンダー導波路 (MZ )を構成する 2つのアームを伝播す
B
る光信号に印加されるラジオ周波数信号である RF信号と,前記第 1のメインマツハツ
B
エンダー用電極 (MZ 電極)に印加される変調信号と,第 2のメインマッハツェンダー
CA
用電極 (MZ 電極)に印加される変調信号との変調時間を調整する制御部を具備
CB
する上記!、ずれかの光変調システムである。
[0020] 本発明の好ましい態様は,前記第 1のサブマッハツェンダー導波路 (MZ )からの
A
出力信号と前記第 2のサブマッハツェンダー導波路 (MZ )からの出力信号に含まれ
B
る光搬送波信号又は特定の高次光信号の位相が 180° ずれるように前記第 1のメイ ンマッハツェンダー用電極(MZ 電極)及び第 2のメインマッハツェンダー用電極(M Z 電極)に印加される電圧を調整する制御部を具備する上記いずれかの光変調シ
CB
ステムである。このように抑圧した 、成分の光信号を逆位相とするように調整すること で,効果的にその成分を抑圧できる。具体的には,出力光を光検出器で検出し,そ の検出信号力 抑圧したい成分の強度を制御部が抽出し,信号源から出力される信 号を調整して,その抑圧した 、成分の強度が小さくなるように調整すればょ 、。
[0021] 本発明の好ましい態様は,光搬送波抑圧両側波帯変調器 (DSB— SC変調器)とし て機能する上記いずれかに記載の光変調システムである。本発明は,もともとは DSB -SC変調器を改善する際に見出されたものであり,本発明のシステムは DSB-SC変調 器として好適に用いることができる。
[0022] 本発明の好ま 、別の側面は,前記第 1の電極 (電極 A) (9),前記第 2の電極 (電極 B) (10),前記 MZ 電極及び前記 MZ 電極に印加するバイアス電圧を供給するた
CA CB
めの第 1の信号源 (14)と,前記前記 MZ 電極及び前記 MZ 電極にラジオ周波数信
CA CB
号を供給するための第 2の信号源 (高周波信号源) (15)とを含む信号源部 (16)と;前記 第 2の信号源 (高周波信号源) (15)は,基本信号 (f )の 3倍の周波数を有する電気信 m
号 (3f )を生成するための 3倍信号生成部 (17)と,前記第 2の信号源 (高周波信号源 )( m
15)から出力される基本信号 (f )の位相と,前記 3倍信号生成部 (17)カゝら生成される基 m
本信号の 3倍の周波数を有する電気信号 (3f )の位相差を調整する位相調整部 (18) m
と,前記第 2の信号源 (高周波信号源) (15)力も出力される基本信号 (f )又は前記 3倍 m
信号生成部 (17)から生成される基本信号の 3倍の周波数を有する電気信号 (3f )の m 強度を調整する信号強度調整部 (19)とを具備する,上記 、ずれかに記載の光変調シ ステムである。
[0023] DSB-SC変調などの光変調を行う際に,変調信号として f の信号を印力!]した際に発 m
生する 3次成分 (f ±3f )について,信号として 3
0 m
f の信号を,その変調信号により発生する光信号の 1次成分 (f ±3f )が先に説明した m 0 m
3次成分と位相が逆で,強度が同程度となるように調整したものを印加すれば,それ らが抑圧しあうので高 、消光比を有する DSB-SC変調などの光変調を達成できる。す なわち, 3倍信号生成部 (17)が,基本信号 (f )の 3倍の周波数を有する電気信号 (3f m m
)である 3倍信号を生成する。そして,位相調整部 (18)が前記第 2の信号源 (高周波信 号源) (15)から出力される基本信号 (f )の位相と,前記 3倍信号生成部 (17)から生成さ m
れる基本信号の 3倍の周波数を有する電気信号 (3f )の位相差を調整する。信号強 m
度調整部 (19)が電気信号 (3f )の強度を調整する。そして,変調信号などの基本信号 m
として fの信号を印カロした際に発生する 3次成分 (f ±3f )について,基本信号の周波 m 0 m
数成分の 3倍周波数 (3
f )を有する 3倍信号をその 1次成分 (f ±3f )が先に説明した 3次成分と位相が逆で, m 0 m
強度が同程度となるように調整して印加するので,それらが抑圧しあって,高い消光 比を有する DSB-SC変調などの光変調を達成できる。
[0024] 本発明の好ましい態様は,前記第 1の強度変調器 (9)が,前記第 1の電極 (電極 A) ( 11)を具備するマッハツェンダー導波路であり,前記第 2の強度変調器 (10)が,前記第 2の電極 (電極 B) (12)を具備するマッハツェンダー導波路である上記 、ずれかに記載 の光変調システム (1)である。このような態様の光変調システムであれば,光 SSB変調 器や光 FSK変調器として確立した光変調器を好適に利用することができる。
[0025] 前記第 1のアーム (4)に沿って設けられ,前記第 1のアーム (4)のうち前記第 1の強度 変調器 (9)と前記合波部 (6)との間に設けられた光強度補正機構 (31),又は 前記第 2 のアーム (5)に沿って設けられ,前記第 2のアーム (5)のうち前記第 2の強度変調器 (10) と前記合波部 (6)との間に設けられた光強度補正機構 (32)のいずれか又は両方を具 備する上記いずれかに記載の光変調システム (1)である。
[0026] このように光強度補正機構 (たとえば,強度変調器)を具備するので,効果的に抑 圧したい成分の大きさを同程度に調整するので,逆位相となるように調整された抑圧 した 、成分を効果的に抑圧できることとなる。
[0027] 本発明の別の側面は,光変調器としての上記いずれかの光変調システムと,前記 光変調器の出力光または前記光変調器への入力光に変調を加えるための位相変調 器又は強度変調器の!/ヽずれかまたは両方と,前記光変調器の変調信号と前記位相 変調器又は強度変調器の変調信号との変調時間を調整するための制御部と,を具 備する光変調システムである。
[0028] この光変調システムは,光変調と,光変調器の出力光または光変調器への入力光 に変調を加える位相 ·強度変調器 (具体的には 2電極 MZ型変調器)とを具備する光 変調システムなどに関する。すなわち,光変調の出力には,抑圧しきれないキャリア 成分などが残留するので,消光比が高くできない。そこで,光変調からの出力光に対 し位相変調及び Z又は強度変調を施すか,又は抑圧しきれな ヽ成分が打ち消され るように光変調器への入力光に変調を施す。この際,サイト ンド由来のサイドハ "ンド(キャリアまたは高次成分と周波数が一致する)をキャリア成分を打ち消すよう( 又は高次成分を打ち消すよう)に,位相とタイミングとを調整する。このようにすれば, キャリア成分 (又は高次成分)を抑圧できるので,高 、消光比変調を得ることができる 光変調システムを得ることができる。
[0029] この側面に係る光変調システムでは,前記制御部は,前記光変調器からの出力光 の両側波帯信号の 、ずれか又は両方 (USB又は LSBの 、ずれか又は両方)を前記 位相変調器又は強度変調器が変調することにより生ずる両側波帯信号のいずれ力^ USB又は LSB)が,前記光変調器の出力光のうち光搬送波信号又は高次光信号の 周波数と一致し,前記光搬送波信号又は高次光信号を打ち消すように制御するか, 又は前記光変調器への入力光を前記位相変調器又は強度変調器が変調することに より両側波帯信号を生成し,それが光振幅変調器へと入力して,さらにそれぞれの光 信号 (USB信号及び LSB信号)ごとに両側波帯信号を生ずるので,そのようにして生 ずる両側波帯信号 (USB信号又は LSB信号)の ヽずれかが,前記光振幅変調器の 出力光のうち光搬送波信号又は高次光信号の周波数と一致し,前記光搬送波信号 又は高次光信号を打ち消すように制御するものがあげられる。
[0030] 本発明の光変調システムは,好ましくは,前記合波部で合波された光信号が入力 するサーキユレータと,前記サーキユレータからの出力光が入射するファイバグレー ティングとを具備する,光変調システムである。この態様の光変調システムは,好まし くは光搬送波抑圧両側波帯変調システムである。このような態様の光変調システムは ,ファイバグレーティングとサーキユレータとにより不要成分を取り除くと共に,取り除 V、た成分をフィードバック信号として利用しうるので好ま 、。
[0031] 本発明の別の側面は,上記いずれかに記載の光変調システムであって,マツハツ エンダー導波路 (8)力もの出力信号の検出部と接続され,各電極に印加する電圧を 制御する制御信号を信号源に出力する制御部であって,(0マッハツェンダー導波路 ( 8)力もの出力が大きくなるように,第 1の電極 (電極 A) (9),第 2の電極 (電極 B) (10), 前記 MZ 電極及び前記 MZ 電極に印加する電圧を調整し, GOマッハツェンダー
CA CB
導波路 (8)力 の出力が小さくなるように,前記 MZ 電極及び前記 MZ 電極に印加
CA CB
するバイアス電圧を調整し,(iii)マッハツェンダー導波路 (8)力もの出力が小さくなるよ うに,いずれかのサブマッハツェンダー電極のバイアス電圧を減少させ,(iv)マツハツ エンダー導波路 (8)の出力が小さくなるように,前記 MZ 電極及び前記 MZ 電極に
CA CB
印加するバイアス電圧を調整する制御部を具備する,光変調システムである。
[0032] この側面に係る光変調システムは,(0マッハツェンダー導波路 (8)からの出力が大き くなるように,第 1の電極(電極 A) (11),第 2の電極(電極 B) (12)及び第 3の電極(電極 C) (13)に印加する電圧を調整する工程と, GOマッハツェンダー導波路 (8)からの出力 力 S小さくなるように,第 3の電極 (電極 C) (13)に印加するバイアス電圧を調整する工程 と,(iii)マッハツェンダー導波路 (8)からの出力が小さくなるように,いずれかのサブマ ッハツェンダー電極のバイアス電圧を減少させる工程と,(iv)マッハツェンダー導波路 (8)の出力が小さくなるように,第 3の電極 (電極 C) (13)に印加するバイアス電圧を調 整する工程とを含む,ノィァス調整方法により好適なバイアス電圧値を,好ましくは自 動的に得ることができる。
[0033] このように調整したノィァス電圧を用いれば,キャリア成分や高次成分が比較的少 ない信号を用い,更に先に説明した方法によりこれらの成分を抑圧することとなるの で,より効果的に抑圧したい成分を抑圧できることとなる。
発明の効果
[0034] 本発明によれば,サブ MZ導波路力もの出力信号の光位相をそれぞれ制御できる 光変調システムを提供できる。
[0035] 本発明によれば,サブ MZ導波路力もの出力信号の光位相を制御でき,そのような 位相を制御した光信号を合波することでキャリア成分 (f )や高次成分 (例えば 2次成
0
分 (f ±2f ) )などを抑圧できる DSB-SC変調システムを提供できる。
0 m
図面の簡単な説明
[0036] [図 1]図 1は,本発明の光変調システムの概略構成図である。
[図 2]図 2 (a)は,本発明の光変調システムを用いたキャリア信号を抑圧した DSB変 調信号の取得方法の例を示す概念図である。図 2 (b)は,本発明の光変調システム を用いたキャリア信号を抑圧した SSB (単側波側帯)変調信号の取得方法の例を示 す概念図である。
[図 3]図 3は,本発明の好ましい側面における信号源系を示す図である。
[図 4]図 4は,本発明の好ましい側面に係る DSB— SC変調システムにおける光信号 の強度と位相の状況を説明するための概念図である。図 4 (a)は,第 1のアームにお ける光信号スペクトルを示す概念図である。図 4 (b)は,第 2のアームにおける光信号 スペクトルを示す概念図である。図 4 (c)は,第 1のアームにおける光信号スペクトル に位相変化 + 90度が加えられた状態を示す概念図である。図 4 (d)は,第 2のアーム における光信号スペクトルに位相変化 90度が加えられた状態を示す概念図である 。図 4 (e)は,第 1のアーム及び第 2のアーム力もの光信号が合波点で干渉した結果 である出力信号のスペクトルを示す概念図である。図 4 (f)は, 3f信号が印加され, 3 m
次信号成分が打ち消される状態を示す概念図である。
[図 5]図 5は,本発明の第 2の側面に係る光変調システムの概略構成図である。
[図 6]図 6は,本発明の第 3の側面に係る光変調システムの基本構成を示す概略図で ある。
[図 7]図 7は,本発明の第 4の側面に係る光変調システムの基本構成を示す概略図で ある。
[図 8]図 8は,第 4の側面に係る光変調システムにおける位相変調器から出力される 変調信号の例を示す概念図である。
[図 9]図 9は,強度変調器力も出力される変調信号を説明するための概念図である。
[図 10]図 10は,強度変調器カゝら出力される変調信号を示す概念図である。
[図 11]図 11は,本発明の第 5の側面に係る光変調システムの基本構成を示す概略 図である。
[図 12]図 12は,光 SSB変調器又は光 FSK変調器として機能する従来の光変調シス テムの基本構成を示す概略図である。
符号の説明
1 光変調システム 2 第 1のサブマツハツヱンダー導波路(MZ )
A
3 第 2のサブマツハツヱンダー導波路(MZ )
B
4 入力部
5 分岐部
6 合波部
7 出力部
8 メインマツハツヱンダー導波路(MZ )
c
9 第 1の電極 (RF電極)
A
10第 2の電極 (RF電極)
B
11第 1のメインマッハツェンダー用電極(MZ 電極)
CA
12第 2のメインマッハツェンダー用電極(MZ 電極)
CB
発明を実施するための最良の形態
以下,図面にしたがって,本発明を説明する。図 1は,本発明の光変調システムの 概略構成図である。図 1 (a)に示されるように,本発明の光変調システム (1)は,光信 号の入力部 (2)と,前記光信号が分岐する分岐部 (3)と,前記分岐部 (3)から分岐した 光信号が伝播する導波路である第 1のアーム (4)及び第 2のアーム (5)と,前記第 1のァ ーム (4)及び第 2のアーム (5)から出力される光信号が合波される合波部 (6)と,前記合 波部で合波された光信号が出力される光信号の出力部 (7)とを含むマッハツェンダー 導波路 (8)と;前記第 1のアーム (4)に設けられ,前記第 1のアーム (4)を伝播する光信号 の振幅を制御する第 1の強度変調器 (9)と;前記第 2のアーム (5)に設けられ,前記第 2 のアーム (5)を伝播する光信号の振幅を制御する第 2の強度変調器 (10)と;前記第 1の 強度変調器 (9)の第 1の電極 (電極 A) (11)と;前記第 2の強度変調器 (10)の第 2の電極 (電極 B) (12)と;マッハツェンダー導波路 (8)のうち,前記第 1の強度変調器 (9)の出力 部と前記合波部との間の導波路の少なくとも一部に沿うように設けられた第 1のメイン マッハツェンダー用電極(MZ 電極)(13a)と;マッハツェンダー導波路 (8)のうち,前
CA
記第 2の強度変調器 (10)の出力部と前記合波部との間の導波路の少なくとも一部に 沿うように設けられた第 2のメインマッハツェンダー用電極 (MZ 電極)(13b)とを具備
CB
する光変調システムである。なお,上記のシステムの好ましい態様は,図 1(b)に示さ れるように第 1のアーム (4)及び第 2のアーム (5)がそれぞれサブマッハツェンダー導波 路として形成されるものである。
[0039] 本発明の光変調システムは,両アームに設けられるサブマッハツェンダー導波路な どの出力信号の位相を調整できる第 1のメインマッハツェンダー用電極 (MZ 電極)
CA
と第 2のメインマッハツェンダー用電極 (MZ 電極)とを具備するので,各サブサブマ
CB
ッハツエンダー導波路からの出力信号の光位相を制御できることとなる。それにより, 合波される光信号の搬送波 (キャリア信号)又は高次成分 (例えば 2次成分 (f ±2f ) )
0 m などの位相が逆位相となるように制御し,その後合波するので,それらの成分を抑圧 できることとなる。このように所定の成分を抑圧するためには,好ましくは出力信号を 光検出器で検出し,その光検出器が測定した光信号を制御部が受取り,検出される 光信号に含まれる所定の抑圧した 、成分の強度を分析し,その成分の強度が小さく なるように信号源へ指令を出すようにすればよい。そのようにすることで, 自動的に所 定の信号成分を抑圧できる電圧などを得ることができることとなる。
[0040] それぞれのサブマッハツェンダー導波路は,例えば,略六角形状の導波路 (これが 2つのアームを構成する)を具備し,並列する 2つの位相変調器を具備するようにして 構成される。位相変調器は,導波路に沿った電極により達成できる。
[0041] 通常,マッハツェンダー導波路や電極は基板上に設けられる。基板及び各導波路 は,光を伝播することができるものであれば,特に限定されない。例えば, LN基板上 に, Ti拡散のニオブ酸リチウム導波路を形成しても良いし,シリコン (Si)基板上に二 酸ィ匕シリコン (SiO )導波路を形成しても良い。また, InPや GaAs基板上に InGaAsP, G
2
aAlAs導波路を形成した光半導体導波路を用いても良い。基板として, Xカット Z軸伝 搬となるように切り出されたニオブ酸リチウム
(LiNbO: LN)が好ましい。これは大きな電気光学効果を利用できるため低電力駆動
3
が可能であり,かつ優れた応答速度が得られるためである。この基板の Xカット面 (Y Z面)の表面に光導波路が形成され,導波光は Z軸 (光学軸)に沿って伝搬することと なる。 Xカット以外のニオブ酸リチウム基板を用いても良い。また,基板として,電気光 学効果を有する三方晶系,六方晶系といった一軸性結晶,又は結晶の点群が C ,
3V
C, D, C , D である材料を用いることができる。これらの材料は,電界の印加によ つて屈折率変化が伝搬光のモードによって異符号となるような屈折率調整機能を有 する。具体例としては,ニオブ酸リチウムの他に,タンタル酸リチウム
(LiTO: LT) , β— BaB O (略称 BBO) , LilO等を用いることができる。
3 2 4 3
[0042] 基板の大きさは,所定の導波路を形成できる大きさであれば,特に限定されない。
各導波路の幅,長さ,及び深さも本発明のモジュールがその機能を発揮しうる程度の ものであれば特に限定されない。各導波路の幅としては,たとえば 1〜20マイクロメ 一トル程度,好ましくは 5〜: L0マイクロメートル程度があげられる。また,導波路の深さ (厚さ)として, 10nm〜lマイクロメートルがあげられ,好ましくは 50nm〜200nmで ある。
[0043] なお,サブマッハツェンダー導波路には,バイアス調整電極が設けられてもよい。第 1のバイアス調整電極(電極 A)は, MZを構成する 2つのアーム(Pathl及び Path3)
A
間のバイアス電圧を制御することにより, MZの 2つのアームを伝播する光の位相を
A
制御するための電極である。一方,第 2のバイアス調整電極(電極 B)は, MZを構成
B
する 2つのアーム(Path2及び Path4)間のバイアス電圧を制御することにより, MZの
B
2つのアームを伝播する光の位相を制御するための電極である。電極 A,及び電極 B は,好ましくは通常直流または低周波信号が印加される。ここで低周波信号における 「低周波」とは,例えば, 0Hz〜500MHzの周波数を意味する。なお,この低周波信 号の信号源の出力には電気信号の位相を調整する位相変調器が設けられ,出力信 号の位相を制御できるようにされて 、ることが好ま 、。
[0044] 第 1のメインマッハツェンダー用電極(MZ 電極)(11)は,メインマッハツェンダー導
CA
波路 (MZ )のうち,光強度変調器としての前記第 1のサブマッハツェンダー導波路(
C
MZ )の出力部と前記合波部との間の導波路の少なくとも一部に沿うように設けられ
A
た電極である。そして,少なくとも一部とは,出力信号の位相を調整できる程度の長さ であればよい。
[0045] 第 2のメインマッハツェンダー用電極(MZ 電極)(12)は,メインマッハツェンダー導
CB
波路 (MZ )のうち,光強度変調器としての前記第 2のサブマッハツェンダー導波路(
C
MZ )の出力部と前記合波部との間の導波路の少なくとも一部に沿うように設けられ
B
た電極であり,これについては MZ 電極 (11)と同様である。なお,第 1のメインマッハ ツェンダー用電極 (MZ 電極)及び前記第 2のメインマッハツェンダー用電極 (MZ
CA CB
電極)は,それぞれが設けられる導波路部分を光位相変調器として機能させるもので あってもよい。
[0046] MZ 電極,及び MZ 電極は,好ましくは高周波電気信号源と接続される。高周波
CA CB
電気信号源は, MZ 電極,及び MZ 電極は,それぞれ近接する導波路を伝達す
CA CB
る信号を制御するためのデバイスであり,公知の高周波電気信号源を採用できる。 M Z 電極,及び MZ 電極は,に入力される高周波信号の周波数 (f )として,例えば
CA CB m
lGHz〜100GHzがあげられる。高周波電気信号源の出力としては,一定の周波数 を有する正弦波があげられる。なお,この高周波電気信号源の出力には位相変調器 が設けられ,出力信号の位相を制御できるようにされて 、ることが好ま 、。
[0047] MZ 電極,及び MZ 電極は,たとえば金, 白金などによって構成される。 MZ 電
CA CB CA
極,及び MZ 電極は,の幅としては, 1 m〜10 mが挙げられ,具体的には 5 m
CB
が挙げられる。 MZ 電極,及び MZ 電極は,の長さとしては,変調信号の波長の (f
CA CB m
)の 0.1倍〜 0.9倍が挙げられ, 0.18〜0.22倍,又は 0.67倍〜 0.70倍が挙げられ,より好 ましくは,変調信号の共振点より 20〜25%短いものである。このような長さとすることで ,スタブ電極との合成インピーダンスが適度な領域に留まるからである。より具体的な MZ 電極,及び MZ 電極は,の長さとしては, 3250 μ mがあげられる。以下では,
CA CB
共振型電極と,進行波型電極について説明する。
[0048] 共振型光電極 (共振型光変調器)は,変調信号の共振を用いて変調を行う電極で ある。共振型電極としては公知のものを採用でき,例えば特開 2002-268025号公報, 「川西哲也,及川哲,井筒雅之,〃平面構造共振型光変調器",信学技報, TECHNI CAL
REPORT OF IEICE, IQE2001-3(2001-05)」に記載のものを採用できる。
[0049] 進行波型電極 (進行波型光変調器)は,光波と電気信号を同方向に導波させ導波 している間に光を変調する電極 (変調器)である(例えば,西原浩,春名正光,栖原 敏明著, 「光集積回路」(改訂増補版)オーム社, 119頁〜 120頁)。進行波型電極は 公知のものを採用でき,例えば,特開平 11 295674号公報,特開平 11 295674号 公報,特開 2002— 169133号公報,特開 2002-40381号公報,特開 2000-267056号公 報,特開 2000-471159号公報,特開平 10- 133159号公報などに開示されたものを用 いることがでさる。
[0050] 進行波型電極として,好ましくは,いわゆる対称型の接地電極配置 (進行波型の信 号電極の両側に,少なくとも一対の接地電極が設けられているもの)を採用するもの である。このように,信号電極を挟んで接地電極を対称に配置することによって,信号 電極から出力される高周波は,信号電極の左右に配置された接地電極に印加され やすくなるので,高周波の基板側への放射を,抑圧できる。
[0051] MZ 電極,及び MZ 電極は, RF信号用の電極と, DC信号用の電極とを兼ねた
CA CB
ものでもよい。すなわち, MZ 電極,及び MZ 電極のいずれか又は両方は, DC信
CA CB
号と RF信号とを混合して供給する給電回路 (バイアス回路)と連結されて!ヽる。
[0052] なお,メインマッハツェンダー導波路 (MZ )に含まれる分岐部 (5)は,光信号が前記
C
第 1のサブマッハツェンダー導波路 (MZ )と前記第 2のサブマッハツェンダー導波路
A
(MZ )とへ分岐するようにされた部位であり,導波路が Y字型に分岐した構成をとる
B
ものがあげられる。また,合波部 (6)は,前記第 1のサブマッハツェンダー導波路 (MZ
A
)と前記第 2のサブマッハツェンダー導波路 (MZ )から出力される光信号が合波され
B
る部位であり,導波路が Y字型に形成されたものがあげられる。上記の Y字型は対象 であっても,非対称であってもよい。なお,分岐部 (5)又は合波部 (6)として方向性結合 器 (力ブラ)を用いてもよい。
[0053] なお,本発明の光変調システムにおいては,各電極に印加される信号のタイミング や位相を適切に制御するため,各電極の信号源と電気的に(又は光信号により)接 続された制御部が設けられることが好ましい。そのような制御部は,前記第 1の電極( 電極 A)及び第 2の電極 (電極 B)に印加される信号と,前記第 1のメインマッハツエン ダー用電極(MZ 電極)及び第 2のメインマッハツェンダー用電極(MZ 電極)に印
CA CB
カロされる変調信号との変調時間を調整するように機能する。すなわち,各電極による 変調がある特定の信号に対して行われるように,光の伝播時間を考慮して調整する。 この調整時間は,各電極間の距離などによって適切な値とすればよい。
[0054] また,制御部は,前記第 1のサブマッハツェンダー導波路 (MZ )とからの出力信号
A
と前記第 2のサブマッハツェンダー導波路 (MZ )とからの出力信号に含まれる光搬 送波信号又は特定の高次光信号の位相が 180° ずれるように前記第 1のメインマッハ ツェンダー用電極(MZ 電極)及び第 2のメインマッハツェンダー用電極(MZ 電極
CA CB
)に印加される電圧を調整するものがあげられる。このような制御部としては,各電極 の信号源と接続された処理プログラムを格納したコンピュータがあげられる。そして, コンピュータは,キーボードなどの入力装置力 制御情報の入力を受けると, CPUは
,たとえばメインプログラムに格納された処理プログラムを読み出し,よりプログラムの 指令に従って,各種メモリから必要な情報を読み出して,適宜メモリに格納される情 報を書き換え,信号源へ信号源カゝら出力される光信号のタイミングと位相差を制御す るような指令を外部出力装置力も出力すればよい。なお,そのような処理プログラムと しては,コンピュータを,各サブマッハツェンダー導波路における特定の成分の位相 を把握する手段と,前記手段が把握した特性の成分の位相情報を用いて,それらの 位相が逆位相となるように前記第 1のメインマッハツェンダー用電極 (MZ
CA電極)及 び第 2のメインマッハツェンダー用電極 (MZ 電極)に印加される変調信号を調整す
CB
る指令を作製する手段とを具備するものとして機能させるようなものであればよい。
[0055] 2.光変調システムの動作例
光変調システムの動作を以下に説明する。サブマッハツェンダー導波路の並列す る 4つの光位相変調器に,光に関して,それぞれの位相差が 90° となるようにバイァ ス電圧を電極 A及び電極 Bに印加する。これらの電気信号の位相差や光信号の位相 差は,適宜調整すればよいが,基本的には 90° の整数倍ずれるように調整する。
[0056] 理想的には,サブマッハツェンダー導波路力 各 RF信号の周波数分だけ周波数 がシフトした光が出力される。しかし,実際には,これらの光信号には,光信号の搬送 波(キャリア信号)又は高次成分 (例えば 2次成分 (f ±2f ) )が含まれることとなる。本
0 m
発明の光変調システムでは,それらのうち少なくともひとつ以上を抑圧するように動作 する。
[0057] すなわち,各サブマッハツェンダー導波路から出力される光信号に含まれる光信号 の搬送波(キャリア信号)又は高次成分 (例えば 2次成分 (f ±2f ) )の位相は,各サブ
0 m
マッハツェンダー導波路に印加する信号の位相やバイアス電圧によって求まるので, 合波部で合波される前の,各サブマッハツェンダー導波路からの出力信号の位相を ,抑圧した!/、成分 (光信号の搬送波 (キャリア信号)又は高次成分 (例えば 2次成分 (f
0
±2f ) ) )の位相が逆位相となるように制御する。そのように制御するので,抑圧した m
い成分が効果的に抑圧されることとなる。
[0058] なお,相殺しあう光信号成分を制御することで,本発明の光変調システムは, DSB — SC変調器, FSK変調器, SSB変調器などとして機能しうるが,好ましくは DSB— SC変調器として用いられる。
[0059] 図 2 (a)は,本発明の光変調システムを用いたキャリア信号を抑圧した DSB変調信 号の取得方法の例を示す概念図である。図 2 (a)されるように,各サブ MZ導波路で 得られた光信号には,たとえば同位相のキャリア信号が残留しているので,それぞれ の出力信号の位相が 180° ずれるように変調を施すことで,図 1の P点及び Q点では ,キャリア成分の位相が 180° ずれるようにされる。そのような光信号が合波部 (6)で 合波されるとキャリア成分が互に打ち消しあい抑圧される。一方,上側波側帯成分( USB) : + 1と,下側波側帯 (LSB) :— 1とは,逆位相ではないので,抑圧されずに残 り, DSB—SC変調が達成される。
[0060] 図 2(b)は,本発明の光変調システムを用いたキャリア信号を抑圧した SSB (単側波 側帯)変調信号の取得方法の例を示す概念図である。図 2 (b)に示されるように,各 サブ MZ導波路で得られた光信号には,たとえば同位相のキャリア信号が残留して!/、 るので,それぞれの出力信号の位相が 180° ずれるように変調を施すことで,図 1の P点及び Q点では,キャリア成分の位相が 180° ずれるようにされる。そのような光信 号が合波部 (6)で合波されるとキャリア成分が互に打ち消しあい抑圧される。一方,上 側波側帯成分 (USB) : + 1は,それぞれ逆位相ではないので,抑圧されずに残る。 一方,下側波側帯 (LSB)は,逆位相となるので互に打ち消しあい抑圧される。このよ うに, SSB— SC変調が達成される。
[0061] 3.光変調システムの製造方法
本発明の光変調システムは,基板,基板上に設けられた導波路,電極,信号源,測 定部,制御部など力もなる。そして,光導波路の形成方法としては,チタン拡散法等 の内拡散法やプロトン交換法など公知の形成方法を利用できる。すなわち,本発明 の光変調システムは,例えば以下のようにして製造できる。まず,ニオブ酸リチウムの ウェハー上に,フォトリソグラフィ一法によって,チタンをパター-ングし,熱拡散法に よってチタンを拡散させ,光導波路を形成する。この際の条件は,チタンの厚さを 10 0〜2000才ングストロームとし,拡散温度を 500〜2000°Cとし,拡散時間を 10〜40 時間とすればよい。基板の主面に,二酸ィ匕珪素の絶縁バッファ層(厚さ 0. 5— 2 m )を形成する。次いで,これらの上に厚さ 15— 30 mの金属メツキ力もなる電極を形 成する。次いでウェハーを切断する。このようして,チタン拡散導波路が形成された 光変調器が形成
される。
[0062] 光変調システムは,たとえば以下のようにして製造できる。まず基板上に導波路を 形成する。導波路は,ニオブ酸リチウム基板表面に,プロトン交換法やチタン熱拡散 法を施すことにより設けることができる。例えば,フォトリソグラフィー技術によって LN 基板上に数マイクロメートル程度の Ti金属のストライプを, LN基板上に列をなした状 態で作製する。その後, LN基板を 1000°C近辺の高温にさらして Ti金属を当該基板 内部に拡散させる。このようにすれば, LN基板上に導波路を形成できる。
[0063] また,電極は上記と同様にして製造できる。例えば,電極を形成するため,光導波 路の形成と同様にフォトリソグラフィー技術によって,同一幅で形成した多数の導波 路の両脇に対して電極間ギャップが 1マイクロメートル〜 50マイクロメートル程度にな るよう〖こ形成することがでさる。
[0064] なお,シリコン基板を用いる場合は,たとえば以下のようにして製造できる。シリコン
(Si)基板上に火炎堆積法によって二酸ィ匕シリコン (SiO )を主成分とする下部クラッド
2
層を堆積し,次に,二酸ィ匕ゲルマニウム (GeO )をドーパントとして添加した二酸ィ匕シ
2
リコン (SiO )を主成分とするコア層を堆積する。その後,電気炉で透明ガラス化する。
2
次に,エッチングして光導波路部分を作製し,再び二酸ィ匕シリコン (SiO )を主成分と
2
する上部クラッド層を堆積する。そして,薄膜ヒータ型熱光学強度変調器及び薄膜ヒ 一タ型熱光学位相変調器を上部クラッド層に形成する。
[0065] 図 3は,本発明の好ましい側面に係る光変調システムの信号源部を示すブロック図 である。図 3に示されるように,この側面に係る信号源部は,前記第 1の電極 (電極 A) ,前記第 2の電極(電極 B)及び前記第 3の電極(電極 C : MZ ,及び MZ )に印加 するバイアス電圧を供給するための第 1の信号源 (14)と,前記第 3の電極 (電極 C) (13) にラジオ周波数信号を供給するための第 2の信号源 (高周波信号源) (15)とを含む信 号源部 (16)と;を具備し,前記第 2の信号源 (高周波信号源) (15)は,基本信号 (f )の 3 m 倍の周波数を有する電気信号 (3f )を生成するための 3倍信号生成部 (17)と,前記第 m
2の信号源 (高周波信号源) (15)から出力される基本信号 (f )の位相と,前記 3倍信号 m
生成部 (17)から生成される基本信号の 3倍の周波数を有する電気信号 (3f )の位相 m 差を調整する位相調整部 (18)と,前記第 2の信号源 (高周波信号源) (15)から出力さ れる基本信号 (f )又は前記 3倍信号生成部 (17)カゝら生成される基本信号の 3倍の周 m
波数を有する電気信号 (3f )の強度を調整する信号強度調整部 (19)とを具備する。
m
[0066] そして, 3倍信号生成部 (17)が,基本信号 (f )の 3倍の周波数を有する電気信号 (3f m
)である 3倍信号を生成する。そして,位相調整部 (18)が前記第 2の信号源 (高周波 m
信号源) (15)から出力される基本信号 (f )の位相と,前記 3倍信号生成部 (17)から生 m
成される基本信号の 3倍の周波数を有する電気信号 (3f )の位相差を調整する。信 m
号強度調整部 (19)が電気信号 (3f )の強度を調整する。そして,変調信号などの基本 m
信号として f の信号を印カロした際に発生する 3次成分 (f ±3f )について,周波数が 3 m 0 m
f の 3倍信号を,光信号の 1次成分 (f ±3f )が先に説明した光信号の 3次成分と位相 m 0 m
が逆で,強度が同程度となるように調整して,印加する。これにより,それらが抑圧し あって,高い消光比を有する光変調を達成できる。
[0067] 3倍信号生成部 (17)が,基本信号 (f )の 3倍の周波数を有する電気信号 (3f )である m m
3倍信号を生成する。そして,位相調整部 (18)が前記第 2の信号源 (高周波信号源 )( 15)から出力される基本信号 (f )の位相と,前記 3倍信号生成部 (17)カゝら生成される基 m
本信号の 3倍の周波数を有する電気信号 (3f )の位相差を調整する。信号強度調整 m
部 (19)が電気信号 (3f )の強度を調整する。そして,変調信号などの基本信号として f m
の信号を印カロした際に発生する 3次成分 (f ±3f )について,周波数が 3
m 0 m
f の 3倍信号を,光信号の 1次成分 (f ±3f )が先に説明した光信号の 3次成分と位相 m 0 m
が逆で,強度が同程度となるように調整して,印加する。これにより,それらが抑圧し あって,高い消光比を有する光変調を達成できる。
[0068] なお,本発明の光変調システムでは,好ましくは,周波数が fの基本信号及び周波 m 数が 3
f の 3倍信号ともに電極 C (MZ ,及び MZ )に印加する。
m CA CB
[0069] なお,本発明の光変調システムにおいては,各電極に印加される信号のタイミング や位相を適切に制御するため,各電極の信号源と電気的に(又は光信号により)接 続された制御部が設けられることが好ましい。そのような制御部は, RF電極, RF電
A B
極及び RF電極に印加される信号,すなわち RF信号, RF信号及び RF信号の変
C A B C
調時間を調整するように機能する。すなわち,各電極による変調が,ある特定の信号 に対して行われるように,光の伝播時間を考慮して調整する。この調整時間は,各電 極間の距離などによって適切な値とすればよい。
[0070] 信号源部 (16)は,前記第 1の電極 (電極 A) (9),前記第 2の電極 (電極 B) (10)に前記 第 3の電極 (電極 C) (13)に印加するバイアス電圧を供給するための第 1の信号源 (14) と,及び前記第 3の電極 (電極 C) (13)にラジオ周波数信号を供給するための第 2の信 号源 (高周波信号源)(15)とを含むものがあげられる。バイアス電圧は,調整部 (20)に より,その強度,遅延 (位相),印加タイミングなどが適宜調整されてもよい。なお,高 周波信号源からの光信号は,たとえば,導線などで 2つのルートに分離され,それぞ れ振幅や位相が適宜調整されて MZ 電極及び MZ 電極に変調信号が印加される
CA CB
[0071] 前記第 2の信号源 (高周波信号源) (15)は,基本信号 (f )の 3倍の周波数を有する m
電気信号 (3f )を生成するための 3倍信号生成部 (17)と,前記第 2の信号源 (高周波 m
信号源) (15)から出力される基本信号 (f )の位相と,前記 3倍信号生成部 (17)から生 m
成される基本信号の 3倍の周波数を有する電気信号 (3f )の位相差を調整する位相 m
調整部 (18)と,前記第 2の信号源 (高周波信号源) (15)から出力される基本信号 (f )又 m は前記 3倍信号生成部 (17)力 生成される基本信号の 3倍の周波数を有する電気信 号 (3f )の強度を調整する信号強度調整部 (19)とを具備するものがあげられる。正弦 m
波信号など高周波信号源 (15)から出力された電気信号 (f )は,たとえば,導線などで m
2つのルートに分けられ,一方のルートでは 3倍信号生成部 (19)に入力され,周波数 3f mの電気信号とされ振幅や位相が調整された後,先の電気信号 (f )
mと合波され,光変 調器へ入力される。 [0072] また,制御部(PC)は,前記第 1のサブマッハツェンダー導波路 (MZ )とからの出
A
力信号と前記第 2のサブマッハツェンダー導波路 (MZ )とからの出力信号に含まれ
B
る光搬送波信号又は特定の高次光信号の位相が 180° ずれるように電極 Cに印加さ れる電圧を調整するものがあげられる。このような制御部としては,各電極の信号源と 接続された処理プログラムを格納したコンピュータがあげられる。そして,コンピュータ は,キーボードなどの入力装置力も制御情報の入力を受けると, CPUは,たとえばメ インプログラムに格納された処理プログラムを読み出し,よりプログラムの指令に従つ て,各種メモリから必要な情報を読み出して,適宜メモリに格納される情報を書き換え ,信号源へ信号源力 出力される光信号のタイミングと位相差を制御するような指令 を外部出力装置から出力すればよい。なお,そのような処理プログラムとしては,コン ピュータを,各サブマツハツヱンダー導波路における特定の成分の位相を把握する 手段と,前記手段が把握した特性の成分の位相情報を用いて,それらの位相が逆位 相となるように電極 Cに印加される変調信号を調整する指令を作製する手段とを具備 するものとして機能させるようなものであればよい。なお,特に本発明の光変調器が, DSB-SC変調器として機能する際などでは,単に電気信号の段階で 3次成分などが 打ち消されるように調整しても必ずしもうまく打ち消されないので,上記のような制御 部により 3次成分などが打ち消されるように調整することが好ましい。
[0073] 本発明の光変調システムの動作を以下に説明する。 MZcの電極によって,マツハツ エンダー導波路の第 1のアーム (4)及び第 2のアーム (5)を伝播する光信号の位相差が 制御される。この両アームを伝播する光信号の位相差を g(t)とする。 nを整数として, g( t)が 2η πであるとき,光変調システムは ON状態となる。一方, g(t)が(2η+1) πであると き,光変調システムは OFF状態となる。すなわち,この場合は,高次の放射モード光 に変換され,出力まで伝播しないで放射される。このように変調システムの電極に印 加される電圧を調整することで ONと OFFを切り換えて,信号を出力する。
[0074] すなわち,出力信号の強度は, I cos (g(t)) /2 Iに比例することとなる。これが,マツ ハツエンダー導波路が強度変調器とよばれるゆえんである。なお,理想的な OFF状 態の強度が 0なので,理想的には ON状態と OFF状態の強度比が無限大となる。一方 ,現実にはキャリア成分や高次成分などが残留するので, OFF状態であっても強度 がゼロにならない。 ON状態と OFF状態の強度比である消光比は,マッハツェンダー 導波路の特性を評価するうえで重要な値である。
[0075] 電極 Cによるバイアス電圧によりもたらされる両アームの光信号の位相差を φ とし,
B
電極 Cに印加される変調信号の周波数を (f )とし, g(t)が正弦波 2Ακ η2 π ί t+ φ
m m B とすると,理想的には, 1次成分 (USB又は LSB)の光強度 (D )と 2次成分の光強度 (D
1
)は以下の式で表される値となる。
2
[0076] [数 1] I
D _ I _ I I
[0077] 上記の式から, φ が πとなるようにバイアス電源を調整すれば,キャリア成分を含
Β
む 2次成分など偶数次の成分は 0となり,平均強度はほぼ 2 I Aw Iとなる。 3次以上 の成分は,それほど強く残らないので,結局 1次の成分 (USB及び LSB)が残留するこ ととなり,これにより DSB— SC変調が達成される。
[0078] ただし,実際の DSB-SC変調システムなどの光変調システムでは,キャリアや高次成 分 (特に 3次成分)が残留し,その結果消光比が無限大とならない。そこで,本発明の 好ましい側面に係る光変調 (1)は, 3倍信号生成部 (17)が,基本信号 (f )の 3倍の周波
m
数を有する電気信号 (3f )を生成する。そして,位相調整部 (18)が前記第 2の信号源(
m
高周波信号源) (15)から出力される基本信号 (f )の位相と,前記 3倍信号生成部 (17)
m
から生成される基本信号の 3倍の周波数を有する電気信号 (3f )の位相差を調整す
m
る。信号強度調整部 (19)が電気信号 (3f )の強度を調整する。そして,変調信号とし
m
て f の信号を印加した際に発生する 3次成分 (f ±3f )について,変調信号として 3 m 0 m
f の信号をその 1次成分 (f ±3f )が先に説明した 3次成分と位相が逆で,強度が同程 m 0 m
度となるように調整する。このような調整は,マッハツェンダー導波路からの出力をモ ユタしながら,手動によって行ってもよい。また,マッハツェンダー導波路力もの出力 をモニタしながら,制御部が信号源部から出力される信号の位相やタイミングなどを 適宜調整して,好適な信号を電極 (特に電極 C)に印加できるようにしてもよい。この 光変調システムでは,周波数が f の
m 変調信号,周波数が 3
f の変調信号ともに電極 Cに印加する。 [0079] 図 4は,本発明の好ましい側面に係る DSB— SC変調システムにおける光信号の強 度と位相の状況を説明するための概念図である。図 4 (a)は,第 1のアームにおける 光信号スペクトルを示す概念図である。図 4 (b)は,第 2のアームにおける光信号スぺ タトルを示す概念図である。図 4 (c)は,第 1のアームにおける光信号スペクトルに位 相変化 + 90度が加えられた状態を示す概念図である。図 4 (d)は,第 2のアームにお ける光信号スペクトルに位相変化— 90度が加えられた状態を示す概念図である。図 4 (e)
は,第 1のアーム及び第 2のアームからの光信号が合波点で干渉した結果である出力 信号のスぺ外ルを示す概念図である。図 4 (f)は, 3f信号が印加され, 3次信号成分 m
が打ち消される状態を示す概念図である。
[0080] このような第 1のアーム及び第 2のアームにおける光信号は,合波点で干渉しあう。
その結果図 4 (e)に示されるように,理想的にはキャリア成分 (f )や 2次成分 (f ±2f )
0 0 m が抑圧され, USB (f +f
0 m
)及び LSB (f— f )成分が残留する。なお, 3次成分など奇数次成分も残留するが,
0 m
その強度は 1次成分に比べると大きくない。
[0081] ただし, 3次成分が残留すると,消光比が高くならないので,本発明では,図 4 (f)に 示されるように,周波数 (f )由来の 3次成分と,周波数 (3f )由来の 1次成分が互に抑 m m
圧しあうように,周波数 (3f
m
)の 3倍信号をも電極 Cに印加する。これは,図 4(1)に示されるように,周波数 (f ) m 由来 の 3次成分と,周波数 (3f
m
)由来の 1次成分が位相が逆位相で,強度がほぼ同じとなるように信号源部の出力を 調整することにより達成される。図 4(1)に示されるように,周波数 (f
m
)由来の 3次成分と,周波数 (3f )由来の 1次成分が位相が逆位相で,強度がほぼ同 m
じとなるので, 3次成分 f ±3f )が効果的に抑圧されることとなる。なお, 5次, 7次など
0 m
さらに高次成分も残留するが,これらの強度は相対的にわずかであり,それほど問題 とならない。ただし,本発明のシステムを応用すれば,たとえば変調信号として 5f , 7f m などの位相や強度 (振幅)などを調整した高周波信号を電極 Cに印加することで,効 m
果的にそれらの成分を抑圧できる。 [0082] なお,実際には,奇数次成分のみならず,光信号の搬送波 (キャリア信号)又は偶 数次の高次成分 (例えば 2次成分 (f ±2f ) )も含まれることとなる。本発明の光変調シ
0 m
ステムでは,それらのうち少なくともひとつ以上を抑圧するように動作する。
[0083] すなわち,各サブマッハツェンダー導波路から出力される光信号に含まれる光信号 の搬送波(キャリア信号)又は高次成分 (例えば 2次成分 (f ±2f ) )の位相は,各サブ
0 m
マッハツェンダー導波路に印加する信号の位相やバイアス電圧によって求まるので, 合波部で合波される前の,各サブマッハツェンダー導波路からの出力信号の位相を ,抑圧した!/、成分 (光信号の搬送波 (キャリア信号)又は高次成分 (例えば 2次成分 (f
0
±2f ) ) )の位相が逆位相となるように制御する。そのように制御するので,抑圧した m
い成分が効果的に抑圧されることとなる。
[0084] 図 5は,本発明の第 2の側面に係る光変調システムの概略構成図である。このよう に, MZ 電極と MZ 電極とを具備するので (すなわちメインマッハツェンダー用電
CA CB
極 (電極 C)が 2極電極であるので),抑圧したい成分 (キャリア, 2次, 3次成分など)の 位相を逆位相となるように制御して,効果的に抑圧したい成分を抑圧できることとなる 。本発明の第 2の側面に係る光変調システムの動作を以下に説明する。サブマツハツ エンダー導波路の並列する 4つの光位相変調器に,それぞれの位相差が 90° となる ようにバイアス電圧を DC電極, DC電極に印加する。これらの電気信号の位相差
A B
や光信号の位相差は,適宜調整すればよいが,基本的には 90° の整数倍ずれるよ うに調整する。
[0085] 理想的には,サブマッハツェンダー導波路力 各 RF信号の周波数分だけ周波数 がシフトした光が出力される。しかし,実際には,これらの光信号には,光信号の搬送 波(キャリア信号)又は高次成分 (例えば 2次成分 (f ±2f ) )が含まれることとなる。本
0 m
発明の光変調システムでは,それらのうち少なくともひとつ以上を抑圧するように動作 する。
[0086] すなわち,各サブマッハツェンダー導波路から出力される光信号に含まれる光信号 の搬送波(キャリア信号)又は高次成分 (例えば 2次成分 (f ±2f ) )の位相は,各サブ
0 m
マッハツェンダー導波路に印加する信号の位相やバイアス電圧によって求まるので, 合波部で合波される前の,各サブマッハツェンダー導波路からの出力信号の位相を ,抑圧した!/、成分 (光信号の搬送波 (キャリア信号)又は高次成分 (例えば 2次成分 (f
0
±2f ) ) )の位相が逆位相となるように制御する。そのように制御するので,抑圧した m
い成分が効果的に抑圧されることとなる。
[0087] 図 6は,本発明の第 3の側面に係る光変調システムの基本構成を示す概略図であ る。図 6に示されるように,本発明の第 3の側面に係る光変調システムが,前記第 1の アーム (4)に沿って設けられ,前記第 1のアーム (4)のうち前記第 1の強度変調器 (9)と前 記合波部 (6)との間に設けられた光強度補正機構 (31),又は前記第 2のアーム (5)に沿 つて設けられ,前記第 2のアーム (5)のうち前記第 2の強度変調器 (10)と前記合波部 (6) との間に設けられた光強度補正機構 (32)のいずれか又は両方を具備する上記の光 変調システムに関する。
[0088] このように光強度補正機構 (たとえば,強度変調器)を具備するので,効果的に抑 圧したい成分の大きさを同程度に調整するので,逆位相となるように調整された抑圧 したい成分を効果的に抑圧できることとなる。そして,位相制御については,先に説 明した第 2の側面に係る光変調システムの構成を採用してもよい。
[0089] 図 7は,本発明の第 4の側面に係る光変調システムの基本構成を示す概略図であ る。図 7に示されるように,本発明の第 4の側面に係る光変調システムは,光変調器と しての上記に記載の光変調システムと,前記光変調器の出力光または入力光に変 調をカ卩えるための位相変調器又は強度変調器の 、ずれかまたは両方と,前記光変 調器の変調信号と前記位相変調器又は強度変調器の変調信号との変調時間を調 整するための制御部と,を具備する光変調システムである。図 7においては,光振幅 変調器の出力光に位相変調器又は強度変調器を置き,変調を加えるものを図示し ているが,光振幅変調器の上流に位相変調器又は強度変調器をおいて,光振幅変 調器の入力光を変調するものも同様に機能する。なお,図中 PMは,位相変調器を 示し, IMは強度変調器を示す。位相変調器は,たとえば導波路に電界を印加するこ とにより変調する光信号の位相変調量を制御できるものがあげられる。具体的には, 導波路と導波路に電界を印加できるようにされた電極とを具備するものがあげられる
[0090] 本発明の第 4の側面に係る光変調システムは,光変調器と,光変調器の出力光ま たは入力光に変調を加える位相 ·強度変調器 (具体的には 2電極 MZ型変調器)とを 具備する光変調システムなどに関する。すなわち,光 DSB-SC変調器などの光変調 器の出力には,抑圧しきれないキャリア成分などが残留するので,消光比が高くでき ない。そこで,光変調器からの出力光に対し位相変調及び Z又は強度変調を施すか ,又は抑圧しきれない成分が打ち消されるように入力光に変調を施す。この際,サイト '、ンド由来のサイドノ、'ンド(キャリアまたは高次成分と周波数が一致する)をキ ャリア成分を打ち消すよう(又は高次成分を打ち消すよう)に,位相とタイミングとを調 整する。このようにすれば,キャリア成分 (又は高次成分)を抑圧できるので,高い消 光比変調を得ることができる光変調システムを得ることができる。
[0091] 本発明の第 4の側面に係る光変調システムの好ましい態様は,前記制御部は,前 記光変調器からの出力光の両側波帯信号のいずれか又は両方を前記位相変調器 又は強度変調器が変調することにより生ずる両側波帯信号のいずれかが,前記光変 調器の出力光のうち光搬送波信号又は高次光信号の周波数と一致し,前記光搬送 波信号又は高次光信号を打ち消すように制御するか,又は前記光変調器への入力 光を前記位相変調器又は強度変調器が変調することにより両側波帯信号を生成し, それが光振幅変調器へと入力して,さらにそれぞれの光信号 (USB信号及び LSB 信号)ごとに両側波帯信号を生ずるので,そのようにして生ずる両側波帯信号 (USB 信号又は LSB信号)のいずれかが,前記光振幅変調器の出力光のうち光搬送波信 号又は高次光信号の周波数と一致し,前記光搬送波信号又は高次光信号を打ち消 すように制御する上記の光変調システムである。
[0092] 以下,光変調器として,位相変調器 (PM)及び強度変調器 (IM)をこの順で接続し た本発明の第 4の側面に係る光変調システムにおける光信号のスペクトルについて 説明する。図 8は,第 4の側面に係る光変調システムにおける位相変調器から出力さ れる変調信号の例を示す概念図である。この例は, 1次の側波帯信号 (サイド、ハ'、ント つの,サイドノ、'ンドを用いて,キャリア信号成分を打ち消すものの例を示すもので ある。図 8に示されるとおり,位相変調器から出力される変調信号は,サイド、ハ'、ンド 信号 (+
1次, -1次),キャリア信号,又は,図示しない高次成分信号のうちいずれか又は 2つ 以上の光位相が変調される。図では 1次成分の位相が変調されている。具体的には
,位相変調器は,打ち消したい光信号 (キャリア信号又は高次成分信号)と,それを 打ち消すために利用するサイト ンド信号の強度変調器による変調後の位相を 把握し,位相変調器はそれらの信号の光変調器による変調後の位相が逆位相にな るよう〖こ制御する。すなわち,図 8の例では,抑圧しきれず残留しているキャリア信号 成分と,サイト ンド信号との位相がもともと π Ζ2ずれているので,位相変調器が ,制御部の指令を受けて,サイト ンド信号の位相を更に π Ζ2ずらすように電極 に印加する電圧を制御する。これにより,キャリア信号成分とサイドハ'、ンド信号との 位相が πずれる(すなわち逆位相となる)こととなる。
[0093] 図 9は,強度変調器から出力される変調信号を説明するための概念図である。図 1 0は,強度変調器から出力される変調信号を示す概念図である。図 9に示されるとお り,強度変調器から出力される変調信号は,打ち消したい光信号 (キャリア信号又は 高次成分信号)と,それを打ち消すためのサイドハ'、ンド信号との周波数が一致し, 位相が逆位相となる。図 9では,キャリア信号と, USB信号の LSB信号や LSB信号 の USB信号の位相が逆位相となる。よって,図 10に示されるとおり,強度変調器から 出力される変調信号は,打ち消したい信号の強度が弱められる (理想的には抑圧さ れる)こととなる。
[0094] 図 11は,本発明の第 5の側面に係る光変調システムを説明するための図である。図 11(a)は,本発明の第 5の側面に係る光変調システムの好ましい実施態様を示し,図 1 1(b)は別の実施態様を示す。図 11に示されるように,本発明の第 5の側面に係る光変 調システムは,前記合波部 (6)で合波された光信号が入力するサーキユレータ (42)と, 前記サーキユレ一タカ の出力光が入射するファイバグレーティング (43)とを具備す る,上記に記載の光変調システムである。具体的には,光変調器としての上記の光 変調システムと,前記光変調器の出力信号が入力するサーキユレータと,前記サー キュレータカ の出力光が入射し,前記光変調器の所望の光信号成分が反射し,そ れ以外の光信号成分が透過するファイバグレーティングと,前記ファイバグレーティン グを透過した光信号を検出する光検出器と,前記光検出器が検出した光信号に基 づ ヽて,前記光変調器に印加する信号源から出力される信号を制御する制御部とを 具備する光変調システムである。このような態様の光変調システムは,ファイバグレー ティングとサーキユレータとにより不要成分を取り除くと共に,取り除いた成分をフィー ドバック信号として利用しうるので好まし 、。
[0095] 具体的には,ファイバグレーティング (43)は,出力成分として欲しい成分のみを反射 するように設定しておくものがあげられる。すると,サーキユレータ (42)力 ファイバグ レーティング (43)に入射した光信号のうち,必要な成分 (たとえば, (f ±f )成分)がフ
0 m アイバグレーティングにより反射され,サーキユレータ (42)に入力される。そして,フアイ バグレーティングを介してサーキユレータに入射した光信号は,合波部ではなく,出 力部へと伝えられる。一方,ファイバグレーティングを透過した光信号は,必要な成分 以外
の成分である。よって,ファイバグレーティングにより不要成分が取り除かれるので,よ り理想的なスペクトルを有する光信号を得ることができることとなる。
[0096] 一方,ファイバグレーティングにより取り除かれた光信号を光検出器 (44)が検出して ,検出信号を制御部 (23)へ伝え,必要な成分 (たとえば, (f ±f )成分)以外の成分が
0 m
少なくなるように信号源系 (16)の信号を制御するものは本発明の好ましい実施態様で ある。具体的には,本発明の第 6の側面に係る光変調システムと併用して,各種信号 源に与える電圧値を調整することで,必要な成分以外の成分を軽減することができる
[0097] なお,本発明の第 5の側面に係る光変調システムは,好ましくは DSB-SC変調システ ムである。この態様の光変調システムでは,たとえば,ファイバグレーティングにより反 射される光周波数を (f ±f
0 m )と設定すればよい。なお, (f +f
0 m )又は (f f
0 m )が反射する ように設定してもよい。この場合は, SSB変調システムとして利用しうる。
[0098] また,本発明の第 5の側面に係る光変調システムは,図 11(b)に示されるように必要 な成分が,ファイバグレーティングを透過するように設定してもよい。その場合,出力 信号から不必要な成分が反射されて軽減されることとなる。また,不必要な成分を, サーキユレータを介して検出することで,先に説明したと同様に不必要な成分を軽減 するよう,制御部により信号源を制御することができることとなる。
[0099] ファイバグレーティング(FBG)として,ユニフォームファイバグレーティング,チヤ一 プグレーティング,又はマルチセクショングレーティングを用いるものがあげられ,変 調可能なファイバグレーティングであってもよい。以下, FBGについて説明する。 FBG は,たとえば,位相マスクを介して紫外線を照射し,そのコアの屈折率を所定のピッ チで変ィ匕させること〖こより得ることができる。
[0100] ユニフォーム FBGは,グレーティングの周期 '屈折率などが均一な FBGである。グ レーティングのピッチは,対象とする光の波長などに応じて適切な間隔のものを用い ればよく,たとえば, 100nm〜1000nmがあげられ, 300ηπ!〜 800nmでもよい。また,グ レーティングのコアに対する屈折率差として, 1 X 10— 6〜1 X 10— 2があげられ, I X 10 〜5 X 10一3でもよく, 1 X 10一4〜 1 X 10一3でもよい。
[0101] チヤープグレーティングは, FBGの長手方向に屈折率周期やグレーティングの周 期を変化させたチヤープド FBGである。チヤープグレーティングにより,入力信号の波 長に応じて,反射する位置を異ならせることができる。チヤープド FBGのグレーティン グのピッチは,通常は,徐々に変化するが,対象とする光の波長などに応じて適切な 間隔のものを用いればよく,たとえば, 100nm〜1000nmがあげられ, 300ηπ!〜 800nm でもよい。また,グレーティングのコアに対する屈折率差として, 1 X 10— 6〜 I X 10— 2が あげられ, 1 X 10— 5〜5 X 10— 3でもよく, 1 X 10— 4〜1 X 10— 3でもよい。
[0102] マルチセクション FBGは,波長変化と反射点変化が離散的な FBGである。すなわち ,ある範囲の波長成分の光信号は,ほぼ同じ反射点で反射するが,それと異なる範 囲の波長成分は反射点が離散的に変化することとなる。マルチセクション FBGのダレ 一ティングのピッチは,通常は, 目的にあわせて調整するが,対象とする光の波長な どに応じて適切な間隔のものを用いればよく,たとえば, 100nm〜1000nmがあげられ , 300ηπ!〜 800nmでもよい。また,グレーティングのコアに対する屈折率差として, I X 10— 6〜1 X 10— 2があげられ, 1 X 10— 5〜5 X 103でもよく, 1 X 10— 4〜1 X 10— 3でもよい。
[0103] 本発明の第 6の側面に係る光変調システムは,上記に記載の光変調システムであ つて,マッハツェンダー導波路 (8)からの出力信号の検出部と接続され,各電極に印 加する電圧を制御する制御信号を信号源に出力する制御部であって,(0マッハツ ンダー導波路 (8)力 の出力が大きくなるように,第 1の電極 (電極 A) (9),第 2の電極( 電極 B) (10)及び第 3の電極 (電極 C) (13)に印加する電圧を調整し,(ii)マツハツヱンダ 一導波路 (8)力もの出力が小さくなるように,第 3の電極 (電極 C) (13)に印加するバイ ァス電圧を調整し,(iii)マッハツェンダー導波路 (8)からの出力が小さくなるように,い ずれかのサブマッハツェンダー電極のバイアス電圧を減少させ,(iv)マッハツェンダー 導波路 (8)の出力が小さくなるように,第 3の電極 (電極 C) (13)に印加するバイアス電 圧を調整する制御部を具備する,光変調システムに関する。
[0104] 本発明の第 6の側面に係る光変調システムは,(0マッハツェンダー導波路 (8)からの 出力が大きくなるように,第 1の電極 (電極 A) (9),第 2の電極 (電極 B) (10)及び第 3の 電極 (電極 C) (13)に印加する電圧を調整する工程と,(ii)マッハツェンダー導波路 (8) 力もの出力が小さくなるように,第 3の電極 (電極 C) (13)に印加するノ ィァス電圧を調 整する工程と,(iii)マッハツェンダー導波路 (8)からの出力が小さくなるように,いずれ かのサブマッハツェンダー電極のバイアス電圧を減少させる工程と,(iv)マッハツエン ダー導波路 (8)の出力が小さくなるように,第 3の電極 (電極 C) (13)に印加するバイァ ス電圧を調整する工程とを含む,バイアス調整方法により好適なバイアス電圧値を, 好ましくは自動的に得ることができる。
[0105] このように調整したノィァス電圧を用いれば,キャリア成分や高次成分が比較的少 ない信号を用い,更に先に説明した方法によりこれらの成分を抑圧することとなるの で,より効果的に抑圧したい成分を抑圧できることとなる。
[0106] 本発明の好ましい実施形態である消光比変調方法を説明する。本発明の調整方 法は,基本的には以下の工程を含むものである。(0メイン MZ導波路からの出力が 大きくなるように,メイン MZ電極(電極 C)のバイアス電圧及び 2つのサブ MZ電極の バイアス電圧を調整する工程と,(ii)メイン MZ導波路力ゝらの出力が小さくなるように, 電極 Cのバイアス電圧を調整する工程と, (iii)
メイン MZ導波路からの出力が小さくなるように,いずれかのサブ MZ電極のバイアス 電圧を減少させる工程と,(iv)メイン MZ導波路の出力が小さくなるように,電極 Cのバ ィァス電圧を調整する工程とを含む。なお,上記 (iii)と (iv)の工程を繰り返し行うことは ,本発明の好ましい実施態様である。以下では,各工程について説明する。
[0107] (0メイン MZ導波路からの出力が大きくなるように,電極 Cのバイアス電圧及び 2つ のサブ MZ電極のバイアス電圧を調整する工程 この工程は,メイン MZ導波路からの出力が大きくなるように (好ましくはできるだけ 大きくなるように,より好ましくは最大となるように),電極 Cのバイアス電圧及び 2つの サブ MZ電極のノ ィァス電圧を調整する工程である。メイン MZ導波路は,たとえば, 測定系と連結されているので,測定系による出力値を観測しつつ,各 MZ電極に印 加するバイアス電圧を調整してもよ ヽ。
[0108] また,測定系と,各バイアス電圧を供給する電源系とが制御装置により接続されて おり,測定系が測定した光強度が大きくなるように,各バイアス電圧の大きさを制御す るようにしてもよい。制御装置は,情報を入力する入力部,情報を出力する出力部, 情報を記憶する記憶部 (メモリ,メインメモリを含む),各種演算を行う CPUなどの演 算部とを具備する。測定系が測定した光強度に関する情報は,入力部により制御装 置に入力され,メモリに記憶される。制御装置の CPUは,メインメモリ中の制御プログ ラムの指令を受け,メモリに記憶された光強度に関する情報を読み出す。また,制御 装置の CPUは,メインメモリ中の制御プログラムの指令を受け,いずれか 1つ又は 2つ 以上の電極に印加されるバイアス電圧を変化する信号を出力部から出力する。この ようにすると,出力光の強度が変化する。この情報を読み出し,先の光強度と比較し, 光強度が大きくなるようにバイアス電圧を変化させる指令を出力部から出力する。こ の出力信号を受けた電源は,その指令にしたがって,各電極に印加する電圧値を変 ィ匕させるので,光出力が増大することとなる。
[0109] (ii)メイン MZ導波路からの出力が小さくなるように,電極 Cのバイアス電圧を調整す る工程
この工程は,メイン MZ導波路からの出力光の強度が小さくなるように,メイン MZ電 極に印加されるバイアス電圧を調整するための工程である。メイン MZ導波路は,図 示しない測定系と連結されているので,測定系による出力値を観測しつつ,メイン M Z電極に印加するバイアス電圧を調整してもよ 、。
[0110] また,測定系とメイン MZ電極へバイアス電圧を供給する電源系とが制御装置により 接続されており,測定系が測定した光強度が小さくなるように,メイン MZ電極のバイ ァス電圧の大きさを制御するようにしてもよい。測定系が測定した光強度に関する情 報は,入力部により制御装置に入力され,メモリに記憶される。制御装置の CPUは, メインメモリ中の制御プログラムの指令を受け,メモリに記憶された光強度に関する情 報を読み出す。また,制御装置の CPUは,メインメモリ中の制御プログラムの指令を 受け,メイン MZ電極に印加されるバイアス電圧を変化する信号を出力部から出力す る。このようにすると,出力光の強度が変化する。この情報を読み出し,先の光強度と 比較し,光強度が小さくなるようにバイアス電圧を変化させる指令を出力部から出力 する。この出力信号を受けた電源は,その指令にしたがって,メイン MZ電極に印加 する電圧値を変化させるので,光出力が減少することとなる。
[0111] (iii)メイン MZ導波路からの出力が小さくなるように,いずれかのサブ MZ電極のバ ィァス電圧を減少させる工程
この工程では,メイン MZ導波路からの出力が小さくなるように,いずれかのサブ M Z電極のバイアス電圧を減少させる。この工程では,いずれか一方のサブ MZ電極の ノィァス電圧を減少させた場合に,メイン MZ導波路力もの出力が小さくなるので,そ のメイン MZ導波路力 の出力が小さくなる方のサブ MZ電極のバイアス電圧を小さく するように制御する。この工程で,減少又は増加する電圧値は,予め決めておいても よい。このような変化電圧値として, 0.01V〜0.5Vがあげられ,好ましくは 0.05V〜0.1V である。本工程によりメイン MZ導波路力もの出力強度が減少する。メイン MZ導波路 は,たとえば,図示しない測定系と連結されているので,測定系による出力値を観測 しつつ,ノィァス電圧を調整してもよい。
[0112] また,測定系と電極 A及び電極 Bへバイアス電圧を供給する電源系とが制御装置 により接続されており,電極 A又は電極 Bへ印加されるバイアス電圧の大きさを制御 するよう〖こしてもよい。この際,電圧値を変化させる電極に関する情報や,変化させる 電圧値に関する情報は,メモリなどに記憶されていてもよい。制御装置の CPUは,メ インメモリ中の制御プログラムの指令を受け,メモリに記憶された制御情報を読み出し ,電極 A又は電極 Bに印加されるバイアス電圧を変化する信号を,出力部から出力 する。このようにすると,電極 A又は電極 Bに印加されるバイアス電圧の値が,所定量 だけ変化する。なお,電極 A又は電極 Bに印加されるバイアス電圧の値が,所定量だ け変化すると,メイン MZからの出力光の強度が変化する。測定系が観測した光強度 に関する情報は,入力部から入力され,メモリに記憶される。制御装置の CPUは,メ インメモリ中の制御プログラムの指令を受け,メモリに記憶された光強度に関する情 報を読み出し,メイン MZ導波路力 の光強度が小さくなるように,サブ MZ電極へ印 加するバイアス電圧を変化させる指令を出力部力も出力する。この出力信号を受け た電源は,その指令にしたがって,電極に印加する電圧値を変化させるので,光出 力が減少することとなる。
[0113] (iv)メイン MZ導波路の出力が小さくなるように,電極 Cのバイアス電圧を調整するェ 程
この工程は,メイン MZ導波路の出力が小さくなるように,電極 Cのバイアス電圧を 調整するための工程である。メイン MZ導波路は,たとえば,図示しない測定系と連 結されているので,測定系による出力値を観測しつつ,バイアス電圧を調整してもよ い。なお,本工程,又は前記 (iii)の工程と本工程とを,繰り返し行っても良い。
[0114] また,測定系と電極 Cへバイアス電圧を供給する電源系とが制御装置により接続さ れており,電極 Cへ印加されるノ ィァス電圧の大きさを制御するようにしてもよい。制 御装置の CPUは,メインメモリ中の制御プログラムの指令を受け,メモリに記憶された 制御情報を読み出し,電極 Cに印加されるバイアス電圧を変化する信号を,出力部 力も出力する。このようにすると,電極 Cに印加されるバイアス電圧の値が,所定量だ け変化する。
[0115] また,制御装置の CPUは,メインメモリ中の制御プログラムの指令を受け,メモリに 記憶された制御情報や,出力光に関する情報を読み出し,バイアス電圧の調整を止 めるという判断をしても良い。また,測定系からの出力光の強度情報をフィードバック し,ノィァス電圧の調整をし続けても良い。
[0116] 本発明の第 7の側面に係る光変調システムは,光変調器と,前記光変調器の出力 信号が入力するサーキユレータ (42)と,前記サーキユレータからの出力光が入射し, 前記光変調器の所望の光信号成分が反射し,それ以外の光信号成分が透過するフ アイバグレーティング (43)と,前記ファイバグレーティングを透過した光信号を検出す る光検出器 (44)と,前記光検出器が検出した光信号に基づいて,前記光変調器に印 加する信号源 (16)力 出力される信号を制御する制御部 (23)とを具備する光変調シ ステムである。このようなシステムでは,本発明の第 5の側面に係る光変調システムと 同様にして,所定の光信号を効果的に抽出し,しかも不要な光信号成分を分離して その強度が弱くなるよう信号源系を制御するので,より効果的に不要な成分を軽減で さることとなる。
[0117] 本発明の第 7の側面に係る光変調システムは,好ましくは,前記光変調器は,光信 号の入力部 (2)と,前記光信号が分岐する分岐部 (3)と,前記分岐部 (3)から分岐した 光信号が伝播する導波路である第 1のアーム (4)及び第 2のアーム (5)と,前記第 1のァ ーム (4)及び第 2のアーム (5)から出力される光信号が合波される合波部 (6)と,前記合 波部で合波された光信号が出力される光信号の出力部 (7)とを含むマッハツェンダー 導波路 (8)と;前記第 1のアーム (4)に設けられ,前記第 1のアーム (4)を伝播する光信号 の振幅を制御する第 1の強度変調器 (9)と;前記第 2のアーム (5)に設けられ,前記第 2 のアーム (5)を伝播する光信号の振幅を制御する第 2の強度変調器 (10)と;前記第 1の 強度変調器 (9)の第 1の電極 (電極 A) (9)と;前記第 2の強度変調器 (10)の第 2の電極 ( 電極 B) (10)と;前記第 1のアーム (4)を伝播する光信号と前記第 2のアーム (5)を伝播す る光信号との位相差を制御すると共に,変調信号が印加されるマッハツェンダー導波 路 (8)の第 3の電極(電極 C) (13)と;前記第 1の電極(電極 A) (9),前記第 2の電極(電 極 B) (10)及び前記第 3の電極 (電極 C) (13)に印加するバイアス電圧を供給するため の第 1の信号源 (14)と,前記第 3の電極 (電極 C) (13)にラジオ周波数信号を供給する ための第 2の信号源 (高周波信号源) (15)とを含む信号源部 (16)と;を具備する上記に 記載の光変調システムである。
[0118] 本発明の第 7の側面に係る光変調システムの構成や動作は,本発明の第 5の側面 に係る光変調システムにおいて説明したとおりである。
産業上の利用可能性
[0119] 本発明の光変調器の変調方法によれば,高い消光比を得ることができるので,光 情報通信などの分野において好適に利用できる。また,実施例 2で示されたとおり, 本発明の変調方法を利用すれば,キャリアを抑圧できるので,好適に DSB— SC変 調などの変調方法を達成でき,光情報通信に利用できる。

Claims

請求の範囲
[1] 光信号の入力部 (2)と,前記光信号が分岐する分岐部 (3)と,前記分岐部 (3)から分 岐した光信号が伝播する導波路である第 1のアーム (4)及び第 2のアーム (5)と,前記 第 1のアーム (4)及び第 2のアーム (5)から出力される光信号が合波される合波部 (6)と, 前記合波部で合波された光信号が出力される光信号の出力部 (7)とを含むマツハツ ンダー導波路 (8)と;
前記第 1のアーム (4)に設けられ,前記第 1のアーム (4)を伝播する光信号の振幅を 制御する第 1の強度変調器 (9)と;
前記第 2のアーム (5)に設けられ,前記第 2のアーム (5)を伝播する光信号の振幅を 制御する第 2の強度変調器 (10)と;
前記第 1の強度変調器 (9)の第 1の電極 (電極 A) (11)と;
前記第 2の強度変調器 (10)の第 2の電極 (電極 B) (12)と;
マッハツェンダー導波路 (8)のうち,前記第 1の強度変調器 (9)の出力部と前記合波 部との間の導波路の少なくとも一部に沿うように設けられた第 1のメインマツハツヱンダ 一用電極(MZ 電極)(13a)と;
CA
マッハツェンダー導波路 (8)のうち,前記第 2の強度変調器 (10)の出力部と前記合波 部との間の導波路の少なくとも一部に沿うように設けられた第 2のメインマツハツヱンダ 一用電極 (MZ 電極)(13b)とを具備する
CB
光変調システム。
[2] 前記第 1のメインマッハツェンダー用電極(MZ 電極)及び前記第 2のメインマッハ
CA
ツェンダー用電極 (MZ 電極)は,それぞれが設けられる導波路部分を光位相変調
CB
器として機能させる請求項 1に記載の光変調システム。
[3] 前記第 1の強度変調器 (9)が,前記第 1の電極 (電極 A) (ll)を具備する第 1のマツノ、 ツェンダー導波路であり,
前記第 2の強度変調器 (10)が,前記第 2の電極 (電極 B) (12)を具備する第 2のマツ ハツヱンダー導波路である
請求項 1に記載の光変調システム (1)。
[4] 前記第 1の強度変調器 (9)が,前記第 1の電極 (電極 A) (ll)を具備する第 1のマツノ、 ツェンダー導波路であり,
前記第 2の強度変調器 (10)が,前記第 2の電極 (電極 B) (12)を具備する第 2のマツ ハツエンダー導波路であり,
前記第 1のサブマツハツヱンダー導波路 (MZ )を構成する 2つのアームを伝播する
A
光信号に印加されるラジオ周波数信号である RF信号と;前記第 2のサブマッハツエ
A
ンダー導波路 (MZ )を構成する 2つのアームを伝播する光信号に印加されるラジオ
B
周波数信号である RF信号と,前記第 1のメインマッハツェンダー用電極 (MZ 電極
B CA
)に印加される変調信号と,第 2のメインマッハツェンダー用電極 (MZ 電極)に印加
CB
される変調信号との変調時間を調整する制御部を具備する請求項 1に記載の光変調 システム。
[5] 前記第 1の強度変調器 (9)力 の出力信号と前記第 2の強度変調器 (10)力 の出力 信号に含まれる光搬送波信号又は特定の高次光信号の位相が 180° ずれるように 前記第 1のメインマッハツェンダー用電極(MZ 電極)及び第 2のメインマッハツエン
CA
ダー用電極 (MZ 電極)に印加される電圧を調整する制御部を具備する請求項 1に
CB
記載の光変調システム。
[6] 光搬送波抑圧両側波帯変調器 (DSB— SC変調器)として機能する請求項 1に記載 の光変調システム。
[7] 前記第 1の電極(電極 A) (9),前記第 2の電極(電極 B) (10),前記 MZ 電極及び前
CA
記 MZ 電極に印加するバイアス電圧を供給するための第 1の信号源 (14)と,
CB
前記前記 MZ 電極及び前記 MZ 電極にラジオ周波数信号を供給するための第
CA CB
2の信号源 (高周波信号源) (15)とを含む信号源部 (16)と;
前記第 2の信号源 (高周波信号源) (15)は,基本信号 (f )の 3倍の周波数を有する m
電気信号 (3f )を生成するための 3倍信号生成部 (17)と,前記第 2の信号源 (高周波 m
信号源) (15)から出力される基本信号 (f )の位相と,前記 3倍信号生成部 (17)から生 m
成される基本信号の 3倍の周波数を有する電気信号 (3f )の位相差を調整する位相 m
調整部 (18)と,前記第 2の信号源 (高周波信号源) (15)から出力される基本信号 (f )又 m は前記 3倍信号生成部 (17)力 生成される基本信号の 3倍の周波数を有する電気信 号 (3f )の強度を調整する信号強度調整部 (19)とを具備する,
m 請求項 1に記載の光変調システム。
[8] 前記第 1のアーム (4)に沿って設けられ,前記第 1のアーム (4)のうち前記第 1の強度 変調器 (9)と前記合波部 (6)との間に設けられた光強度補正機構 (31),又は 前記第 2 のアーム (5)に沿って設けられ,前記第 2のアーム (5)のうち前記第 2の強度変調器 (10) と前記合波部 (6)との間に設けられた光強度補正機構 (32)のいずれか又は両方を具 備する請求項 1に記載の光変調システム (1)。
[9] 光変調器としての請求項 1に記載の光変調システムと,
前記光変調器の出力光または前記光変調器への入力光に変調を加えるための位 相変調器又は強度変調器のいずれかまたは両方と,
前記光変調器の変調信号と前記位相変調器又は強度変調器の変調信号との変調 時間を調整するための制御部と,
を具備する光変調システム。
[10] 前記制御部は,
前記光変調器からの出力光の両側波帯信号のいずれか又は両方,又は前記光変 調器への入力光を前記位相変調器又は強度変調器が変調することにより,前記光 振幅変調器から出力光される両側波帯信号のいずれかが,前記光変調器の出力光 のうち光搬送波信号又は高次光信号の周波数と一致し,前記光搬送波信号又は高 次光信号を打ち消すように制御する,
請求項 9に記載の光変調システム。
[11] 前記合波部で合波された光信号が入力するサーキユレータと,前記サーキユレータ 力 の出力光が入射するファイバグレーティングとを具備する,請求項 1に記載の光 変調システム。
[12] 光搬送波抑圧両側波帯 (DSB-SC)変調システムである請求項 11に記載の光変調 システム (1)。
[13] 請求項 1,又は請求項 12に記載の光変調システムであって,
マッハツェンダー導波路 (8)からの出力信号の検出部と接続され,各電極に印加す る電圧を制御する制御信号を信号源に出力する制御部であって,
(0マッハツェンダー導波路 (8)からの出力が大きくなるように,第 1の電極 (電極 A) (9) ,第 2の電極(電極 B) (10),前記 MZ 電極及び前記 MZ 電極に印加する電圧を調
CA CB
整し,
(ii)マッハツェンダー導波路 (8)からの出力が小さくなるように,前記 MZ 電極及び
CA
前記 MZ 電極に印加するバイアス電圧を調整し,
CB
(m)マッハツェンダー導波路 (8)からの出力が小さくなるように,いずれかのサブマツ ハツヱンダー電極のバイアス電圧を減少させ,
(iv)マッハツェンダー導波路 (8)の出力が小さくなるように,前記 MZ 電極及び前記
CA
MZ 電極に印加するバイアス電圧を調整する制御部を具備する,
CB
光変調システム。
請求項 13に記載の光変調システムを用い,
(0前記メインマッハツェンダー導波路 (MZ )からの出力が大きくなるように,前記メイ
C
ンマッハツェンダー導波路 (MZ )に印加するバイアス電圧及び前記第 1のサブマツ
C
ハツエンダー導波路 (MZ )及び前記第 2のサブマツハツヱンダー導波路 (MZ )に印
A B
加するバイアス電圧を調整する工程と,
GO前記メインマッハツェンダー導波路 (MZ )からの出力が小さくなるように,前記メ
C
インマッハツェンダー導波路 (MZ )に印加するバイアス電圧を調整する工程と,
C
(iii)前記メインマッハツェンダー導波路 (MZ )からの出力が小さくなるように,前記
C
第 1のサブマッハツェンダー導波路 (MZ )又は前記第 2のサブマッハツェンダー導
A
波路 (MZ )のバイアス電圧を減少させる工程と,
B
(iv)前記メインマッハツェンダー導波路 (MZ )の出力が小さくなるように,前記メイ
C
ンマッハツェンダー導波路 (MZ )に印加するバイアス電圧を調整する工程とを含む
C
工程により,
各マッハツェンダー導波路に印加するバイアス電圧を調整する ,
光変調方法。
PCT/JP2006/317096 2005-08-31 2006-08-30 キャリアや2次成分を消去可能なdsb-sc変調システム WO2007026757A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/065,218 US7991298B2 (en) 2005-08-31 2006-08-30 DSB-SC modulation system capable of erasing carrier and secondary component
EP06797069A EP1921486B1 (en) 2005-08-31 2006-08-30 Modulation system capable of erasing third order component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005250716A JP4547552B2 (ja) 2005-08-31 2005-08-31 キャリアや2次成分を消去可能なdsb−sc変調システム
JP2005-250716 2005-08-31

Publications (1)

Publication Number Publication Date
WO2007026757A1 true WO2007026757A1 (ja) 2007-03-08

Family

ID=37808842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317096 WO2007026757A1 (ja) 2005-08-31 2006-08-30 キャリアや2次成分を消去可能なdsb-sc変調システム

Country Status (4)

Country Link
US (1) US7991298B2 (ja)
EP (1) EP1921486B1 (ja)
JP (1) JP4547552B2 (ja)
WO (1) WO2007026757A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7991298B2 (en) 2005-08-31 2011-08-02 National Institute Of Information And Communications Technology DSB-SC modulation system capable of erasing carrier and secondary component

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552032B2 (ja) * 2005-08-31 2010-09-29 独立行政法人情報通信研究機構 高次成分を消去可能な光振幅変調システム
JP5354528B2 (ja) * 2009-02-25 2013-11-27 独立行政法人情報通信研究機構 バイアス点調整機能を有する光変調器及びスイッチ
JP4893776B2 (ja) * 2009-05-07 2012-03-07 富士通株式会社 光変調装置
EP2453295B1 (en) * 2009-07-10 2014-09-10 Nippon Telegraph And Telephone Corporation Optical modulator
JP5390972B2 (ja) * 2009-07-16 2014-01-15 古河電気工業株式会社 光位相変調器および光位相変調装置
EP2782270A1 (en) * 2013-03-20 2014-09-24 Xieon Networks S.à.r.l. Optical IQ modulator control
JP2018105975A (ja) * 2016-12-26 2018-07-05 株式会社フジクラ 光変調素子
CN110224758B (zh) * 2019-06-27 2022-05-24 云南德通科技有限公司 一种光信号调制系统及其传输系统
CN113922878B (zh) * 2021-09-24 2024-02-02 杭州电子科技大学 抗色散功率衰弱且能切换多格式啁啾波形的光子产生装置
CN115037374B (zh) * 2022-04-28 2023-07-07 苏州大学 一种宽带双路偏振混沌激光产生方法及装置
CN115314114B (zh) * 2022-07-29 2024-02-23 中国科学技术大学 单一频率的信号产生方法、系统及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635306A (ja) * 1986-06-25 1988-01-11 Nec Corp 光分波素子
JPS6313017A (ja) * 1986-07-03 1988-01-20 Nec Corp 光振幅位相変調器
JP2003234703A (ja) * 2002-02-07 2003-08-22 Nippon Telegr & Teleph Corp <Ntt> 光送信回路
JP2004252386A (ja) 2003-02-21 2004-09-09 Japan Science & Technology Agency 光ミリ波・マイクロ波信号生成方法及びその装置
WO2006080168A1 (ja) * 2005-01-25 2006-08-03 Matsushita Electric Industrial Co., Ltd. 光送信装置
EP1918761A1 (en) 2005-08-24 2008-05-07 National Institute of Information and Communicatons Technology Light fsk/ssb modulator having intensity balance function

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3603977B2 (ja) 1996-09-06 2004-12-22 日本碍子株式会社 進行波形光変調器およびその製造方法
JP3179408B2 (ja) * 1998-04-06 2001-06-25 日本電気株式会社 導波路型光デバイス
JP3548042B2 (ja) 1999-03-18 2004-07-28 住友大阪セメント株式会社 導波路型光デバイス
GB0000657D0 (en) * 2000-01-12 2000-03-01 Cit Alcatel An optical transmission system
JP4443011B2 (ja) * 2000-07-27 2010-03-31 日本碍子株式会社 進行波型光変調器
JP4471520B2 (ja) 2000-09-22 2010-06-02 日本碍子株式会社 進行波形光変調器
US6791733B2 (en) * 2001-03-09 2004-09-14 National Institute Of Information And Communications Technology Resonance type optical modulator using symmetric or asymmetric electrode
JP3592245B2 (ja) 2001-03-09 2004-11-24 独立行政法人情報通信研究機構 共振型光変調器
JP4184131B2 (ja) * 2003-03-31 2008-11-19 三菱電機株式会社 光ssb変調装置
JP4547552B2 (ja) 2005-08-31 2010-09-22 独立行政法人情報通信研究機構 キャリアや2次成分を消去可能なdsb−sc変調システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635306A (ja) * 1986-06-25 1988-01-11 Nec Corp 光分波素子
JPS6313017A (ja) * 1986-07-03 1988-01-20 Nec Corp 光振幅位相変調器
JP2003234703A (ja) * 2002-02-07 2003-08-22 Nippon Telegr & Teleph Corp <Ntt> 光送信回路
JP2004252386A (ja) 2003-02-21 2004-09-09 Japan Science & Technology Agency 光ミリ波・マイクロ波信号生成方法及びその装置
WO2006080168A1 (ja) * 2005-01-25 2006-08-03 Matsushita Electric Industrial Co., Ltd. 光送信装置
EP1918761A1 (en) 2005-08-24 2008-05-07 National Institute of Information and Communicatons Technology Light fsk/ssb modulator having intensity balance function

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KAWANISHI T. AND IZUTSU M.: "Linear Single-Sideband Modulation for High-SNR Wavelenth Conversion", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 16, no. 6, June 2004 (2004-06-01), pages 1534 - 1536, XP011113268 *
KAWANISHI T. ET AL.: "High-Speed Optical FSK Modulator for Optical Packet Labeling", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 23, no. 1, January 2005 (2005-01-01), pages 87 - 94, XP001227312 *
KAWANISHI T. ET AL.: "Ultra high extinction ratio intensity modulation using optica FSK modulator", IEICE, vol. 105, no. 243, 19 August 2005 (2005-08-19), pages 41 - 44, XP003003920 *
See also references of EP1921486A4 *
TETSUYA KAWANISHI; MASAYUKI IZUTSU: "Linear Single-Sideband Modulation for High-SNR Wavelength Conversion", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 16, no. 6, 6000420, pages 1534 - 1536

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7991298B2 (en) 2005-08-31 2011-08-02 National Institute Of Information And Communications Technology DSB-SC modulation system capable of erasing carrier and secondary component

Also Published As

Publication number Publication date
EP1921486B1 (en) 2012-10-03
US7991298B2 (en) 2011-08-02
EP1921486A4 (en) 2009-05-13
US20090232440A1 (en) 2009-09-17
EP1921486A1 (en) 2008-05-14
JP4547552B2 (ja) 2010-09-22
JP2007065240A (ja) 2007-03-15

Similar Documents

Publication Publication Date Title
JP4552032B2 (ja) 高次成分を消去可能な光振幅変調システム
JP4547552B2 (ja) キャリアや2次成分を消去可能なdsb−sc変調システム
JP4631006B2 (ja) Fsk変調器の自動調整システム
EP1918761B1 (en) Light fsk/ssb modulator having intensity balance function
JP4771216B2 (ja) 超平坦光周波数コム信号発生器
JP4665134B2 (ja) 光搬送波抑圧両側波帯変調器を用いた4倍波発生システム
JP4771067B2 (ja) 光干渉による光スイッチシステム
EP2239620B1 (en) Optical pulse generator
JP4798338B2 (ja) 超高消光比変調方法
JP2010072462A (ja) 光変調器
JP4793550B2 (ja) 高消光比変調可能な光搬送波抑圧両側波帯(dsb−sc)変調システム
JP2006267201A (ja) 位相連続光fsk変調方法,位相連続光fsk変調器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006797069

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12065218

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE