WO2007026701A1 - Wing-flapping flying apparatus - Google Patents

Wing-flapping flying apparatus Download PDF

Info

Publication number
WO2007026701A1
WO2007026701A1 PCT/JP2006/316989 JP2006316989W WO2007026701A1 WO 2007026701 A1 WO2007026701 A1 WO 2007026701A1 JP 2006316989 W JP2006316989 W JP 2006316989W WO 2007026701 A1 WO2007026701 A1 WO 2007026701A1
Authority
WO
WIPO (PCT)
Prior art keywords
flapping
wing
crank
flapping flight
motion
Prior art date
Application number
PCT/JP2006/316989
Other languages
French (fr)
Japanese (ja)
Inventor
Koju Hiraki
Naofumi Goto
Original Assignee
Kyushu Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute Of Technology filed Critical Kyushu Institute Of Technology
Priority to JP2007533258A priority Critical patent/JP4150799B2/en
Publication of WO2007026701A1 publication Critical patent/WO2007026701A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H27/00Toy aircraft; Other flying toys
    • A63H27/008Propelled by flapping of wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C33/00Ornithopters
    • B64C33/02Wings; Actuating mechanisms therefor

Definitions

  • the present invention relates to a flapping flight apparatus that flies with wings provided on both sides of a body part to generate propulsive force and lift and fly.
  • the reciprocating motion (also referred to as flubbing motion) of the wing which is the main motion of the wing flapping motion, is the rotational motion generated by a rotational power source such as a motor mounted on the fuselage. This is realized by converting to a reciprocating rotary motion around the fulcrum used.
  • a flapping flight apparatus 100 includes a rotary power source (not shown) mounted on a fuselage (not shown), a wing support member 102 attached to the center of the fuselage, and a wing support member 102.
  • the left and right blades 104 and 105 are When launching (crank pin 106 goes from bottom dead center to top dead center) and when lowering left and right wings 104, 105 (crank pin 106 also goes to top dead center force), it is connected to crank pin 106
  • the two crankshafts 109 and 110 It is not possible to carry out the universal exercise.
  • the actual way of moving a bird's wing is a reciprocating motion (also referred to as a fuzzing motion or pitching motion) related to the twisting of the wing, which is not just a flapping motion, and the wing is pushed forward or retracted. It is a motion with a large degree of freedom that combines various motions such as a motion that moves (with lead lug motion!), And a motion that moves the wing fulcrum itself up and down (also with heaving motion). Use according to the situation, and separate!
  • the present invention has been made in view of the power situation, and provides a flapping flight device capable of simultaneously performing a flapping motion and a feathering motion to generate a large propulsive force and lift force with a single rotational power source.
  • the purpose is to do.
  • the flapping flight apparatus that meets the above-mentioned object is (1) a body part, and (2) is rotationally driven by a rotational drive source, and the rotation shaft is in a lateral direction with respect to the body part.
  • a crank mechanism having a crank member disposed in the moon body portion and a crank rod connected to the crank member to move up and down and move up and down, and (3) directly above the axis of the body portion.
  • a spine whose front end is connected to the upper end of the crank rod at a constant angle; and (4) left and right connected to the front end of the spine so that the inner end is rotatable (flexible).
  • a pair of left and right wing seats which are stretched between the left and right front wing support materials around the backbone and fixed to the backbone at the center and can be folded.
  • crank rod can be moved back and forth with respect to the body portion and moved up and down.
  • the upper end of the crank rod and the front end of the spine are connected at a fixed angle, and the spine also swings and moves up and down as the crank rod tilts and moves up and down.
  • a front wing support member extending from side to side is pivotally connected to the front end portion of the backbone material, and an intermediate portion of the bracket front support member is swingably supported attached to the left and right sides of the body portion. Since it is supported by the member, the backbone and the left and right wing front support materials are interlocked by raising and lowering and swinging the crank rod.
  • the total flapping angle can be adjusted by changing the support position of the front blade support member to which the left and right swing support members are connected.
  • the total flapping angle refers to the front support member when the wing is launched to the maximum when the fuselage is viewed from the front (i.e., the tip of the wings in the pair of left and right are at the top). This is the sum of the angle between the horizontal axis (upper flapping angle) and the angle (lower flapping angle) between the front support member and the horizontal when the blade is fully lowered.
  • a flapping flight apparatus is the flapping flight apparatus according to the first invention, wherein the crank member includes a rotating disk and a pin provided around the rotating disk, The lower end of the crank rod is rotatably connected to the pin.
  • the crank member can be rotated smoothly using the inertial force effectively. Further, the mechanism is simplified and the overall length is shortened, and it is easy to place the body horizontally.
  • a flapping flight apparatus is the flapping flight apparatus according to the first and second aspects of the present invention, wherein the left and right swing support members are respectively connected at the lower end to the body part.
  • a front diagonal member and a rear diagonal member are respectively connected at the lower end to the body part.
  • the swing support member can be configured more strongly, and the intermediate portion of the blade front support member can be supported without being easily moved in the front-rear direction.
  • the load applied to the swing support member can be dispersed in the body portion.
  • the flapping flight apparatus according to the fourth invention is the flapping flight apparatus according to the third invention, wherein either one or both of the front oblique member and the rear oblique member is Adjustably attached to the body.
  • This makes it possible to adjust the position at which the intermediate part of the blade front support member is rotatably supported, and to adjust the distribution of the upper feathering angle and the lower feathering angle.
  • the upper feathering angle refers to a horizontal line in a state where the rear end side of the backbone is raised from the horizontal line (the axis of the trunk) when the trunk is viewed from the side (i.e., the backbone is most downward). The maximum angle with the back aggregate.
  • the lower feathering angle refers to the horizontal line and the backbone when the rear end side of the backbone is lowered from the horizontal line (the axis of the trunk) (that is, the backbone is most upward) when the body is viewed from the side.
  • the maximum angle between It is possible to change the magnitude and direction of the generated aerodynamic force by adjusting the distribution of the upper and lower fuzzing angles during the flight, and to move straight flight flight up or down flight. Is possible.
  • the right and left wings are set to a desired angle by stopping the rotational drive source during flight and simultaneously moving the upper end of the left and right swing support members back and forth with respect to the fuselage. Can change the trajectory of the flight.
  • a flapping flight apparatus is the flapping flight apparatus according to the third and fourth aspects of the present invention. One or both are attached to the body part so that the vertical movement can be adjusted.
  • the flapping flight apparatus according to the sixth invention is the flapping flight apparatus according to the third to fifth inventions, wherein one or both of the deviation of the front diagonal member and the rear diagonal member are: The telescopic adjustment is possible.
  • the positions of the upper end portions of the left and right swing support members can be changed up and down with respect to the body portion, and the distribution of the upper flapping angle and the lower flapping angle can be adjusted. It becomes possible.
  • the magnitude and direction of the generated aerodynamic force can be changed, and the flight trajectory can be changed. become.
  • a flapping flight apparatus is the flapping flight apparatus according to the first to sixth inventions, wherein the crank rod is adjustable in expansion and contraction.
  • the crank rod is adjustable in expansion and contraction.
  • the average position of the front end portion of the backbone can be changed up and down, and the total flapping angle can be changed.
  • the crank rod by extending and retracting the crank rod, the angle between the crank rod and the vertical direction can be changed, and the total fusing angle can be freely adjusted.
  • the total feathering angle refers to the sum of the upper and lower feathering angles.
  • the flapping flight apparatus is the flapping flight apparatus according to the first to seventh aspects of the present invention, which has rubber-wound power, a motor or an engine as the rotational drive source of the crank member. .
  • the flapping flight device can be operated by changing it with a remote controller etc.
  • FIG. 1 is an explanatory diagram of a flapping flight apparatus according to an embodiment of the present invention.
  • FIG. 2 (A) and (B) are a partially cutaway side sectional view and a partially front sectional view, respectively, of the flapping flight apparatus.
  • FIG. 3 (A) and (B) are a partially cutaway side sectional view and a partially front sectional view of the flapping flight apparatus, respectively.
  • FIG. 4 (A) and (B) are a partially cutaway side sectional view and a partially front sectional view of the flapping flight apparatus, respectively.
  • FIG. 5 (A) and (B) are a partially cutaway side sectional view and a partially front sectional view, respectively, of the flapping flight apparatus.
  • FIG. 6 is an explanatory view showing a connection state between a wing body and a bent portion of the flapping flight apparatus.
  • FIG. 7 is an explanatory view showing a connection state between a wing body and a swing support member of the flapping flight apparatus.
  • FIG. 10 An illustration of the total flapping angle, upper flapping angle, and lower flapping angle in the wing body.
  • FIG. 11 (A) and (B) are explanatory diagrams showing changes in distribution of the upper flapping angle and the lower flapping angle in the wing body.
  • FIG. 12 is an explanatory diagram of the total feathering angle, upper feathering angle, and lower feathering angle in the wing body.
  • FIG. 14 (A) and (B) are explanatory diagrams showing changes in the distribution of the upper and lower fusing angles in the wing body.
  • FIG. 15 (A) and (B) are explanatory views showing a change in distribution of the upper flapping angle and the lower flapping angle in accordance with the change in the vertical position of the upper fulcrum portion relative to the body portion.
  • FIG. 16 (A) and (B) are explanatory diagrams showing changes in the distribution of the upper and lower fuzzing angles in accordance with the change in the front-rear position of the upper fulcrum with respect to the body.
  • FIGS. 17 (A) and 17 (B) are explanatory diagrams showing changes in distribution of the upper flapping angle and the lower flapping angle when the vertical positions of the left and right upper fulcrum portions with respect to the body portion are independently changed.
  • FIG. 18 is an explanatory diagram of a flapping flight apparatus according to a conventional example.
  • FIG. 19 (A) is a graph showing the wind speed and aerodynamic force (lift direction) when the flapping motion and the fusing motion are linked. (B) is the wind velocity and aerodynamic force (lift direction) of the flapping motion only. It is a graph which shows the relationship.
  • FIG. 20 (A) is a graph showing the wind speed and aerodynamic force (thrust direction) when the flapping motion and the fusing motion are linked. (B) is the wind velocity and aerodynamic force (thrust direction) of the flapping motion only. It is a graph which shows the relationship.
  • a flapping flight apparatus 10 includes a body part 11, a backbone material 40 provided immediately above the axis of the body part 11, and a backbone material 40. And a pair of left and right wing bodies 12 and 13 provided on both sides of the wing. These will be described in detail below.
  • the body portion 11 is provided, for example, in parallel with the bottom member 14 and both sides of the bottom member 14.
  • Left and right side members 15 and 16, bottom member 14 and front member 17 provided on the front side of left and right side members 15 and 16, bottom member 14 and rear side member 18 provided on the rear side of left and right side members 15 and 16 Have.
  • crank member 19 that rotates in a vertical plane extending in the front-rear direction of the body part 11 and a rotation drive source (not shown) of the crank member 19 are mounted.
  • the crank member 19 includes a rotating disk 20a, the rotating shaft 20 of which is attached perpendicularly to the left member 15 via a non-illustrated bearing and arranged in parallel to the left member 15, and a rotating disk 20a. It has a pin 21 attached to the edge in parallel (eccentrically) to the axis of the rotary shaft 20.
  • the rotary shaft 20 is connected to a rotary power shaft of a rotary drive source such as a motor, engine, rubber winding power or the like via a power transmission mechanism (not shown) such as a gear.
  • a power transmission mechanism such as a gear.
  • the lower end portion of the crank rod 22 is rotatably connected to the tip portion of the pin 21.
  • a mechanical length expansion / contraction mechanism 23 using a screw is provided so that the length of the crank rod 22 can be expanded / contracted.
  • a crank mechanism having a crank member 19 and a crank rod 22 is formed to change the rotational motion into a vertical motion (including a case of moving in the front-rear direction).
  • each of the pair of left and right wing bodies 12 and 13 is linear in the left-right direction with the front end portion of the spine 40 provided just above the axial center of the body portion 11 as a center, for example.
  • Long wing support members 24, 25 extending in the direction of the left and right and left and right wing support members 24, 25 in parallel with each other, and in the lateral direction around the rear end of the spine 40
  • Side frames 26 and 27, and left and right front wing support members 24 and 25 and left and right rear frames 26 and 27 having left and right connecting frames 28 and 29 for connecting the front ends thereof, respectively.
  • the wing bodies 12, 13 are The right wing front support member 24, 25, the left and right rear frames 26, 27, and the left and right connecting frames 28, 29 are provided as a single wing sheet 30.
  • the central portion of the wing sheet 30 is fixed to the backbone 40 and can be bent at the central portion around the backbone 40.
  • the base end portions (center side) of the left and right blade front support members 24, 25 are respectively inserted between mounting members 31, 32 arranged in parallel with a gap in the front-rear direction,
  • the left and right pins 33 are pivotally attached to the attachment members 31 and 32 to form a front bending mechanism 34.
  • the base end portions (center side) of the left and right rear frames 26, 27 are respectively inserted between mounting members 35, 36 arranged in parallel with a gap in the front-rear direction, and left and right pins
  • the rear bending mechanism 38 is formed by being rotatably attached to the attachment members 35 and 36 by 37.
  • the pair of left and right wing bodies 12 and 13 are connected to each other via the front bending mechanism 34 and the rear bending mechanism 38 so as to be bent.
  • a bent portion 39 is configured having the front bending mechanism 34, the rear bending mechanism 38, and the spine 40, and the inner ends of the wing bodies 12 and 13 are connected to the bent portion 39.
  • the front end portion of the backbone 40 is fixed to the upper end portion of the crank rod 22 at a fixed angle (in this embodiment, a right angle), and the front bending mechanism 34 is formed on the upper portion of the crank rod 22 and the rear bending portion.
  • Mechanisms 3 and 8 are respectively connected to the rear ends of the backbone 40.
  • upper fulcrum portions 43, 44 provided at the upper end portions of the swing support members 41, 42 are provided at midway positions of the front blade support members 24, 25 of the pair of left and right blade bodies 12, 13, respectively. It is connected.
  • the upper fulcrum portions 43 and 44 are provided in the middle of the blade front support members 24 and 25 as shown in FIGS. 7 and 8A to 8C, for example.
  • a frame receiving member 45 that is rotatably supported around the axis thereof, and a handle 45a on which the frame receiving member 45 is mounted and grips on both sides.
  • the joint 45a includes a base member 45b for placing the frame receiving member 45 and a pair of pin receiving members 46 sandwiching the frame receiving member 45 provided on both sides of the base member 45b and placed on the base member 45b. 47, and the pin receiving members 46, 47 are provided with holes 47b through which the short pin members 47a provided on both sides of the frame receiving member 45 are inserted.
  • the joint 45a is attached to the upper end of the swing support members 41, 42, and the blade support members 24, 25 through which the frame receiving member 45 is inserted are provided with stopper members 47c so as to sandwich the frame receiving member 45. It has been. Accordingly, the upper end portions of the swing support members 41 and 42 can be coupled to the front blade support members 24 and 25 so as to be swingable and rotatable.
  • the left and right swing support members 41 and 42 include front oblique members 48 and 4 9 and rear oblique members 50 and 51, respectively, as shown in FIG.
  • lower fulcrum portions 52 and 53 for attaching the lower end portions to the left side member 15 of the body portion 11 are provided at the lower end portions of the front oblique member 48 and the rear oblique member 50 of the left swing support member 41, respectively.
  • lower fulcrum portions 54 and 55 for attaching the lower end portions to the right side member 16 of the body portion 11 are provided at the lower end portions of the front oblique member 49 and the rear oblique member 51 of the right swing support member 42, respectively. Yes.
  • a frame receiving member 45 is attached to the upper end portions of the front oblique members 48, 49, and portions on both sides of the rear oblique members 50, 51 are provided on the upper end portions of the rear oblique members 50, 51.
  • a cutout portion 54a is formed in the central portion in the center portion, leaving the cutout portion 54a on the upper end side of the front oblique members 48 and 49.
  • a through hole 55a is formed on the upper end side of each of the front oblique members 48 and 49 passing through the notch 54a, and the through hole 55a is formed on each of the protrusions 54b on both sides of the notch 54a.
  • the connecting pin 55b is inserted through the hole 54c.
  • the lower fulcrum portions 52 (54) and 53 (55) are formed at the lower ends of the front diagonal member 48 (49) and the rear diagonal member 50 (51) as shown in FIGS. 9 (A) and (B), for example.
  • a rotation connecting mechanism 59 is rotatably connected to the lower end portion of the oblique member 50 (51).
  • the lower fulcrum portions 52 (54) and 53 (55) support the forward / backward movement mechanism 60 that supports the rotational connection mechanism 59 so as to be movable back and forth with respect to the left side member 15 (right side member 16) of the body portion 11. And a pair that supports both sides of the front-rear moving mechanism 60 so that the front-rear moving mechanism 60 can be moved up and down with respect to the left-side member 15 (right member 16) provided on the left member 15 (right member 16). It has a vertical movement mechanism 60a.
  • a mechanical length expansion / contraction mechanism using a screw can be used for the back-and-forth movement mechanism 60 and the vertical movement mechanism 60a.
  • the upper end of the front diagonal member 48 (49) moves back and forth with respect to the body part 11 without changing the height position with respect to the body part 11, and the upper fulcrum part 43 (44) is moved to the body part. It can be moved back and forth with respect to the body part 11 with the height position with respect to 11 constant.
  • the rotational connecting mechanism 59 connected to the front oblique member 48 (49) and the rear oblique member 50 (51) is substantially substantially simultaneously moved in the opposite direction.
  • the upper end of the front oblique member 48 (49) can be moved up and down with respect to the body part 11 without changing the front-rear position with respect to the body part 11.
  • the upper fulcrum part 43 (44) can be moved up and down with respect to the body part 11 with the front-rear position with respect to the body part 11 kept constant.
  • the front and rear moving mechanism 60 and the vertical moving mechanism 60a are linked to each other so that the front side is connected to the front side diagonal member 48 (49) and the rear side diagonal member 50 (51) via the rotating connection mechanism 59.
  • the upper end of the oblique member 48 (49) is moved back and forth and up and down with respect to the body part 11, and the upper fulcrum part 43 (44) is moved with respect to the body part 11, and more specifically with respect to the axis of the crank member 19. It can be moved back and forth and up and down.
  • the position of the upper fulcrum portion 43 (44) is moved in the front-rear direction, the position in the front-rear direction of the backbone 40, specifically, the front-rear position with respect to the axis of the crank member 19 changes.
  • the position of the lower fulcrum portions 52 to 55 on the left and right members 15 and 16 of the body portion 11 is determined and fixed using the front and rear moving mechanism 60, and the front oblique member 48 and the length extending and contracting mechanisms 61 to 64 are used.
  • the lengths of 49 and rear oblique members 50 and 51 are determined and fixed, the size of a triangle having two sides of the front oblique members 48 and 49 and the rear oblique members 50 and 51 is determined.
  • the upper and lower and front and rear positions of the upper fulcrum parts 43 and 44 are fixed, and the left and right wing bodies 12 and 13 are fixed to the body part 11 side at the connection positions with the upper fulcrum parts 43 and 44.
  • crank rod 22 When the crank member 19 is rotated by driving the rotational drive source, the crank rod 22 connected to the pin 21 repeats the vertical movement, and the backbone 40 fixed to the crank rod 22 is also connected to the shaft of the body portion 11. Swing up and down repeatedly with respect to the parallel line directly above the heart.
  • the left and right wing bodies 12 and 13 are fixed to the body part 11 side at the connection position with the upper fulcrum parts 43 and 44, and therefore the front side bending mechanism 34 constituting the bending part 39 and
  • the rear bending mechanism 38 moves up and down, the wing bodies 12 and 13 are bent up and down through the central bent portion 39 and repeat the bending and moving operation to realize the flapping motion.
  • the lower fulcrum portions 52 to 55 are configured such that the lower end portions of the front oblique members 48 and 49 and the rear oblique members 50 and 51 can be rotated to the left and right members 15 and 16 of the body portion 11, respectively. Since the rotating connecting mechanism 59 to be connected is provided, the lower end portions of the front oblique members 48 and 49 and the rear oblique members 50 and 51 can swing left and right with respect to the body portion 11. For this reason, the distance between the upper fulcrum portions 43, 44 connected to the intermediate portions of the blade support members 24, 25 and the front bending mechanism 34 is shown in, for example, FIGS. 2 (B) and 4 (B).
  • the swing support members 41 and 42 are adjusted in advance so that the swing support members 41 and 42 are opened vertically or slightly outward from the vertical direction when viewed from the front. It is preferable that the position of the pin 21 is set at the center position in the vertical direction of the rotating disk 20a of the crank member 19.
  • the wing bodies 12, 13 are in the most advanced state
  • the wing bodies 12, 13 are in the most lowered state.
  • the front oblique members 48 and 49 and the rear oblique members 50 and 51 swing inward so that the upper fulcrum portions 43 and 44 are close to the front bending mechanism 34 side (inner side).
  • the wing body is launched. “Attached” means the state where the front side of the wing body is raised, and “when the wing body is lowered” means the state where the front part of the wing body is lowered.
  • the wing bodies 12 and 13 are bent to the maximum through the central bent portion 39, and the wing bodies 12 and 13 are in the most lowered state. Then, as shown in Fig. 10, the upper flapping angle ⁇ and the wing bodies 12 and 13 are pushed down most when the wing bodies 12 and 13 are pushed up most. The sum of the lower flapping angles ⁇ formed by the wing front support members 24 and 25 becomes the total flapping angle ⁇ , and the total flapping angle d
  • the propulsive force changes according to the magnitude of ⁇ .
  • the wrapping angle can be changed to 0 « ⁇ ), and the total flapping angle ⁇ can be changed to 0 dP dQ dP uP
  • the dP force can also be reduced to uQ dQ. Therefore, the total flapping angle ⁇ is set by adjusting the connection position of the wing body 12 and the upper fulcrum 43 according to the specifications of the flapping flight apparatus 10 to be produced.
  • FIG. 12 shows an example in which the front end portion of the backbone 40 is not located immediately above the axis of the crank member 19 and the front end of the backbone 40 is located in front of the axis of the crank member 19. ing.
  • the upper feathering angle ⁇ is larger than the lower feathering angle ⁇ .
  • the wing bodies 12 and 13 are Tilt so that the front side of 13 is up.
  • the lower end force of the crank rod 22 is the lowest point position of the crank member 19 and the wing bodies 12 and 13 are the most uplifted state force, so that the lower end of the crank rod 22 is at the uppermost position of the crank member 19 and the wing body 12,
  • the wing bodies 12 and 13 are placed on the front side of the wing bodies 12 and 13 with respect to the traveling direction of the fuselage section 11 as shown in FIGS. Tilt so that is at the bottom.
  • the flapping flight apparatus 10 can fly.
  • the relationship between the lift force and the downward force varies depending on whether the position of the front end portion of the backbone 40 is on the front side or the rear side with respect to the axis of the crank member 19. Therefore, the position of the front end portion of the spine 40 can be adjusted by changing the positions and lengths of the rear oblique members 50 and 51 and the front oblique members 48 and 49 attached to the trunk portion 11.
  • the sum of the upper feathering angle ⁇ which is the level of the backbone 40, becomes the total feathering angle ⁇ , Ud by the size of the Zaring angle ⁇ and the distribution of the upper and lower feathering angles ⁇ and ⁇
  • the position of the front end portion of the spine 40 can be adjusted by the front diagonal members 48 and 49 and the rear diagonal members 50 and 51.
  • the expansion / contraction range of the crank rod 22 is determined according to the flight performance of the flapping flight apparatus 10 to be manufactured, and the total fusing angle ⁇ is set.
  • the length extending and contracting mechanisms 61 to 64 provided on the front oblique members 48 and 49 and the rear oblique members 50 and 51 are driven in conjunction with each other.
  • the lengths of the front diagonal members 48 and 49 and the rear diagonal members 50 and 51 are expanded and contracted, for example, as shown in FIGS.
  • the distribution of the corner angle and the lower flapping angle can be changed.
  • FIG. 1 when the front and rear moving mechanisms 60 are driven to change the positions of the lower fulcrum portions 52 to 55 without changing the lengths of the front oblique members 48 and 49 and the rear oblique members 50 and 51, FIG. As shown in (A) and (B), the upper fulcrum parts 43 and 44 can be moved forward relative to the body part 11, the total feathering angle ⁇ is kept constant, and the upper feathering angle is changed from ⁇ . ⁇ (>), lower featherin uF uG uF
  • the propulsive force and lift force can be changed during flight by adjusting the distribution of the upper and lower flapping angles and the distribution of the upper and lower feathering angles.
  • the ascending angle and the descending angle of the flapping flight apparatus 10 can be adjusted.
  • the length extension / contraction mechanisms 61 and 63 provided on the front oblique member 48 and the rear oblique member 50, the front oblique member 49, and the rear oblique member are provided.
  • the length expansion and contraction mechanisms 62 and 64 provided in 51 the lengths of the front diagonal members 48 and 49 and the rear diagonal members 50 and 51 can be expanded and contracted independently.
  • the height of the upper fulcrum 43 connected to the left wing 12 with respect to the body 11 is set to the upper fulcrum 44 connected to the right wing 13. It can be made higher than the height position with respect to the body part 11.
  • the upper flapping angle ⁇ of the wing body 12 is made ul2 ul3 larger than the upper flapping angle ⁇ of the wing body 13, and the lower flapping angle ⁇ of the wing body 12 is made smaller than the lower flapping angle ⁇ of the wing body 13.
  • the pivot coupling mechanism 59 is simultaneously moved in the opposite direction by substantially the same distance to move the upper fulcrum portion 43 (44) up and down with respect to the body portion 11 with the front-rear position with respect to the body portion 11 being constant.
  • the angle of attack of the left and right wing bodies 12 and 13 is changed by moving the pivot coupling mechanism 59 independently and moving the upper fulcrum 43 (44) back and forth and up and down with respect to the body 11.
  • Figure 19 (A) is a graph showing the wind speed and aerodynamic force (lift direction) when the flapping motion and the fusing motion are linked, and (B) is the relationship between the wind speed and aerodynamic force (lift direction) of the flapping motion only. It is a graph which shows. In the case of flapping motion only, even if the wind speed (horizontal axis) is increased, if the elevation angle is not increased, positive lift will not occur, but if linked to the fusing motion, positive lift will be generated at almost any elevation angle. .
  • Fig. 20 (A) is a graph showing the wind speed and aerodynamic force (thrust direction) when the flapping motion and the fusing motion are linked, and (B) is the wind velocity and aerodynamic force (thrust direction) of the flapping motion only. ) Is a graph showing the relationship. As the wind speed (horizontal axis) is increased, the resistance increases, so if only the flapping motion is used, the thrust will be negative.However, if the flapping motion and the feathering motion are linked together, even if the wind speed is increased, the thrust will be almost positive. Generate thrust!
  • the power of explaining the embodiment of the present invention is not limited to this embodiment, and can be changed without changing the gist of the invention.
  • the case where the flapping flight apparatus of the present invention is configured by combining a part or all of the modified examples is also included in the scope of the right of the present invention.
  • the flapping flight device of the present invention does not have a tail, but a tail can be attached.
  • a tail By attaching the tail wing, it is possible to prevent the fuselage from shaking due to the reaction force when the left and right wings are flapping, and stable flight can be performed.
  • the wings do not flutter during flight, by changing the vertical and front / rear positions of the upper fulcrum body connected to the left and right wings, it is possible to fly up and down from straight flight. It is possible to shift to 1 between flying and turning flight.
  • crank rod 22, the backbone 40, the wing front support members 24 and 25, the rear frames 26 and 27, and the swing support members 41 and 42 are connected rotatably using pins or shafts.
  • Elastic part It is also possible to use a material or a member that can be bent repeatedly and can be connected so that it can rotate or bend repeatedly.
  • the positions of the lower fulcrum portions are independently changed while the lengths of the front and rear oblique members are independently expanded and contracted, so that the flapping angles of the left and right wing bodies and It is also possible to change the aerodynamic vector acting on the flapping flight system by simultaneously changing the feathering angle independently.
  • the industrial fields of the flapping flight apparatus according to the present invention include the following fields.
  • an imaging device for example, a CCD camera or an infrared camera
  • the wind is observed around the airport, it can detect microbursts that endanger the aircraft during take-off and landing, and it is equipped with an atmospheric analyzer to fly over the crater of the volcano. By doing so, it can contribute to understanding eruption activities, and of course, it can also be used to observe greenhouse gases (such as carbon dioxide and carbon dioxide) and air pollution.
  • greenhouse gases such as carbon dioxide and carbon dioxide
  • a data transmission device is installed and the planetary explorer power is released to fly through the planetary atmosphere, a wider range of observations will be possible compared to the conventional parachute descent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)

Abstract

A wing-flapping flying apparatus comprising a body part (11) in which a rotatingly driven crank member (19) is disposed, a backbone member (40) installed just above the axis of the body part (11), right and left wing front side support members (24, 25) connected to the front end part of the backbone member (40) so that their inner end parts can be rotated, right and left side wing bodies (12, 13) having wing sheets (30) stretched between the right and left wing front side support members (24, 25) and the backbone member (40) and bendable at the center part thereof, swing support members (41, 42) swingably fitted to the body part (11) and supporting the intermediate parts of the wing front support members (24, 25), and a crank rod (22) having an upper end part fixed to the front end part of the backbone member (40) at a predetermined angle and a lower end part connected to the crank member (19). The crank rod (22) is lifted by rotatingly driving the crank member (19) to simultaneously provide both a flapping motion to vertically move the wing bodies (12, 13) and a feathering motion to provide a torsional operation to the wing bodies (12, 13) to the flying apparatus.

Description

明 細 書  Specification
羽ばたき式飛行装置  Flapping flight equipment
技術分野  Technical field
[0001] 本発明は、胴体部の両側に設けられた翼を羽ばたカゝせて推進力と揚力を発生させて 飛行する羽ばたき式飛行装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a flapping flight apparatus that flies with wings provided on both sides of a body part to generate propulsive force and lift and fly.
背景技術  Background art
[0002] 翼の羽ばたき動作の主運動である翼の打ち上げ及び打ち下ろしの往復運動(フラッ ビング運動ともいう)は、胴体に搭載したモータ等の回転動力源により発生させた回 転運動をクランクを利用してある支点回りの往復回転運動に変換することで実現して いる。ここで、図 18に示すように、羽ばたき式飛行装置 100を、図示しない胴体に搭 載された図示しない回転動力源と、胴体の中央部に取付けられた翼支持部材 102と 、翼支持部材 102に中央の屈曲部 103を介して折れ曲がり可能に連結される左右一 対の翼 104、 105と、回転動力源に連結され進行方向に対して垂直な面内(左右に 延びる垂直面内)で回転運動を行なうクランクピン 106と、クランクピン 106の先端部 と翼 104、 105の各支持部 107、 108を接続するクランクシャフト 109、 110とを有して 構成した場合、左右の翼 104、 105を打ち上げる(クランクピン 106が下死点から上 死点に向かう)とき及び左右の翼 104、 105を打ち下げる(クランクピン 106が上死点 力も下死点に向かう)とき、クランクピン 106に連結された 2つのクランクシャフト 109、 110は対称的な運動を行なうことができない。このため、左右の翼 104、 105の動き は完全に対称とはならず、左右の翼 104、 105の動作には位相差が発生する。この ため、羽ばたき式飛行装置 100では左右のバランスが崩れて、羽ばたき式飛行装置 100は左右に揺れ動きながら飛行を行なうことになる。  [0002] The reciprocating motion (also referred to as flubbing motion) of the wing, which is the main motion of the wing flapping motion, is the rotational motion generated by a rotational power source such as a motor mounted on the fuselage. This is realized by converting to a reciprocating rotary motion around the fulcrum used. Here, as shown in FIG. 18, a flapping flight apparatus 100 includes a rotary power source (not shown) mounted on a fuselage (not shown), a wing support member 102 attached to the center of the fuselage, and a wing support member 102. A pair of left and right wings 104 and 105 connected to each other via a central bent portion 103, and a rotary power source connected to a plane perpendicular to the direction of travel (in a vertical plane extending to the left and right). In the case of a crank pin 106 that moves, and a crankshaft 109 and 110 that connect the tip of the crank pin 106 and the support portions 107 and 108 of the blades 104 and 105, the left and right blades 104 and 105 are When launching (crank pin 106 goes from bottom dead center to top dead center) and when lowering left and right wings 104, 105 (crank pin 106 also goes to top dead center force), it is connected to crank pin 106 The two crankshafts 109 and 110 It is not possible to carry out the universal exercise. For this reason, the movements of the left and right wings 104 and 105 are not completely symmetrical, and a phase difference occurs in the operation of the left and right wings 104 and 105. For this reason, the right and left balance is lost in the flapping flight apparatus 100, and the flapping flight apparatus 100 flies while swinging left and right.
[0003] 一方、実際の鳥の翼の動かし方は、フラッピング運動だけではなぐ翼の捩じりに関 する往復運動 (フ ザリング運動又はピッチング運動ともいう)、翼を前方に押し出し たり後退させたりする運動 (リードラグ運動とも!、う)、翼の支点自身を上下動する運動 (ヒービング運動とも 、う)等の各種運動を組み合わせた自由度の大きな運動となって おり、飛行中は各種運動を状況に応じて使 、分けて!/、る。 [0004] このため、翼の動作に、例えば、フラッピング運動とフ ザリング運動を実現させるた めには、フラッピング運動用とフエザリング運動用の回転動力源をそれぞれ搭載すれ ばよいが、 2つの回転動力源を搭載すると、胴体のサイズや重量が大きくなるため、 飛行の面で不利となる。そこで、例えば、日本国特開 2004— 237975号公報に提案 されているように、 1つの回転動力源力 フラッピング運動とフエザリング運動を得る羽 ばたき装置として、回転して 、る円板上でストッパーのつ 、た小径円板を転がすこと で、翼を前後方向に打ち上げ打ち下ろしするフラッピング運動を行なうと共に、打ち 上げ打ち下ろしの切り返しのタイミングで揚力が大きくなるように翼を捩じるフエザリン グ運動を与える装置が提案されて!、る。 [0003] On the other hand, the actual way of moving a bird's wing is a reciprocating motion (also referred to as a fuzzing motion or pitching motion) related to the twisting of the wing, which is not just a flapping motion, and the wing is pushed forward or retracted. It is a motion with a large degree of freedom that combines various motions such as a motion that moves (with lead lug motion!), And a motion that moves the wing fulcrum itself up and down (also with heaving motion). Use according to the situation, and separate! / [0004] For this reason, in order to realize the flapping motion and the fusing motion, for example, in the operation of the blade, it is only necessary to mount a rotational power source for the flapping motion and the feathering motion, respectively. Installing a rotating power source increases the size and weight of the fuselage, which is disadvantageous in terms of flight. Therefore, for example, as proposed in Japanese Patent Application Laid-Open No. 2004-237975, as a flapping device that obtains a flapping motion and a feathering motion as one rotational power source force, it rotates on a circular disk. The stopper, which is a small-diameter disk, rolls the wings up and down to perform a flapping motion, and twists the wings so that the lift increases at the timing of the up and down turning. Proposal of a device that gives motion!
しかしながら、 日本国特開 2004— 237975号公報に記載された発明では、翼を捩じ るフエザリング運動が円板上を小径円板が転がるという 2次的な運動によって与えら れるため、動力の伝達効率が悪ぐ実用的には揚力の向上を期待できないという問 題がある。  However, in the invention described in Japanese Patent Application Laid-Open No. 2004-237975, the feathering motion that twists the wing is given by the secondary motion that the small-diameter disc rolls on the disc, so that the transmission of power There is a problem that improvement in lift cannot be expected in practical use due to poor efficiency.
[0005] 本発明は力かる事情に鑑みてなされたもので、 1つの回転動力源力 大きな推進力 及び揚力を発生させるフラッピング運動とフエザリング運動を同時に行なうことが可能 な羽ばたき式飛行装置を提供することを目的とする。  [0005] The present invention has been made in view of the power situation, and provides a flapping flight device capable of simultaneously performing a flapping motion and a feathering motion to generate a large propulsive force and lift force with a single rotational power source. The purpose is to do.
発明の開示  Disclosure of the invention
[0006] 前記目的に沿う第 1の発明に係る羽ばたき式飛行装置は、(1)胴体部と、(2)回転駆 動源によって回転駆動され、回転軸が前記胴体部に対して左右方向を向いて該月同 体部内に配置されるクランク部材、及び該クランク部材に連結されて前後動すると共 に上下動するクランクロッドを有するクランク機構と、 (3)前記胴体部の軸心の直上に あって、前記クランクロッドの上端部にその前端部が一定角度で連結された背骨材と 、(4)前記背骨材の前端部に内側端部が回動可能 (屈曲自在)に連結された左右の 翼前支持材と、前記背骨材を中心にして左右の前記翼前支持材の間に張られかつ 中央部で前記背骨材に固定されて折れ曲がり可能な翼シートとを有する左右対とな る翼体と、(5)前記胴体部に揺動 (傾動)可能に取付けられて、前記左右の翼前支持 材の中間部をそれぞれ支持する左右の揺動支持部材とを有し、前記クランク部材の 回転によって前記クランクロッドを昇降し、前記対となる翼体を上下に動かすフラッピ ング運動と、前記対となる翼体に捩じり動作を与えるフ ザリング運動とを同時に与え る。 [0006] The flapping flight apparatus according to the first invention that meets the above-mentioned object is (1) a body part, and (2) is rotationally driven by a rotational drive source, and the rotation shaft is in a lateral direction with respect to the body part. And a crank mechanism having a crank member disposed in the moon body portion and a crank rod connected to the crank member to move up and down and move up and down, and (3) directly above the axis of the body portion. A spine whose front end is connected to the upper end of the crank rod at a constant angle; and (4) left and right connected to the front end of the spine so that the inner end is rotatable (flexible). A pair of left and right wing seats, which are stretched between the left and right front wing support materials around the backbone and fixed to the backbone at the center and can be folded. A wing body, and (5) attached to the fuselage section so as to be able to swing (tilt). Furappi the intermediate portion of the blade front support member and having right and left rocking support member for supporting each of the crank rod to the lift by the rotation of the crank member moves the blade body forming the pair in the vertical And a fuzzing motion that imparts a twisting motion to the pair of wings.
[0007] 即ち、クランク部材に連結された 1つの回転駆動源 (例えば、モータやエンジン)を回 転させることによって、クランクロッドを胴体部に対して前後動すると共に上下動させ ることができる。クランクロッドの上端部と背骨材の前端部は一定角度で連結され、ク ランクロッドの傾き及び昇降によって、背骨材も揺動並びに上下動する。そして、背骨 材の前端部には、左右に伸びる翼前支持材が回動可能に連結され、かっこの翼前 支持材の中間部は胴体部の左右に揺動可能に取付けられた揺動支持部材によって 支持されているので、クランクロッドの昇降及び揺動によって、背骨材と左右の翼前 支持材が連動する。これによつて、背骨材を中心にして左右の翼前支持材との間に 張られた翼シートを有する翼体のフラッピング及びフエザリング運動力^つの回転駆 動源により実現可能となるとともに、フラッピング運動のみの場合に比べ、揚力及び 推進力を増大させることが可能となる。  That is, by rotating one rotational drive source (for example, a motor or an engine) connected to the crank member, the crank rod can be moved back and forth with respect to the body portion and moved up and down. The upper end of the crank rod and the front end of the spine are connected at a fixed angle, and the spine also swings and moves up and down as the crank rod tilts and moves up and down. A front wing support member extending from side to side is pivotally connected to the front end portion of the backbone material, and an intermediate portion of the bracket front support member is swingably supported attached to the left and right sides of the body portion. Since it is supported by the member, the backbone and the left and right wing front support materials are interlocked by raising and lowering and swinging the crank rod. This makes it possible to realize the flapping and feathering kinetics of a wing body with a wing seat stretched between the left and right wing front support centering on the backbone, with two rotational drive sources. It is possible to increase lift and propulsion compared to the case of flapping motion alone.
[0008] なお、クランクロッドの長さ、クランクロッドに背骨材を固着する際の角度、及び左右の 揺動支持部材が連結される左右の翼前支持材の途中位置を変更することにより、左 右の翼体のフラッピング運動に対して連成させるフ ザリング運動のタイミングを設定 することが可能になり、翼の打ち上げ時の抗カを小さくし、翼の打ち下げ時の上昇力 を大きくすることができ、安定した揚力を発生させることが可能になる。 [0008] By changing the length of the crank rod, the angle at which the backbone is fixed to the crank rod, and the intermediate position of the left and right wing front support members to which the left and right swing support members are connected, It is possible to set the timing of the fuzzing movement that is coupled to the flapping movement of the right wing body, reducing the resistance when the wing is launched, and increasing the lifting force when the wing is lowered And stable lift can be generated.
更に、左右の揺動支持部材が連結される翼前支持材の支持位置を変更することによ り、総フラッピング角度を調整することが可能となる。ここで、総フラッピング角度とは、 胴体部を正面視して、翼体を最大に打ち上げた (即ち、左右対となる翼体の両先部 を最上部にする)ときに翼前支持材が水平となす角度 (上フラッピング角度)と、翼体 を最大に打ち下げたときに翼前支持材が水平となす角度 (下フラッピング角度)の和 を指す。  Furthermore, the total flapping angle can be adjusted by changing the support position of the front blade support member to which the left and right swing support members are connected. Here, the total flapping angle refers to the front support member when the wing is launched to the maximum when the fuselage is viewed from the front (i.e., the tip of the wings in the pair of left and right are at the top). This is the sum of the angle between the horizontal axis (upper flapping angle) and the angle (lower flapping angle) between the front support member and the horizontal when the blade is fully lowered.
[0009] 第 2の発明に係る羽ばたき式飛行装置は、第 1の発明に係る羽ばたき式飛行装置に おいて、前記クランク部材は回転円板と、その周囲に設けられたピンを有し、前記クラ ンクロッドの下端部は前記ピンに回転自由に連結されている。クランク部材に回転円 板を用いることによって、慣性力を有効に利用してクランク部材の回転が円滑になり、 更にその機構も簡略化され全長も短くなり、胴体部に横置きすることが容易となる。 [0009] A flapping flight apparatus according to a second invention is the flapping flight apparatus according to the first invention, wherein the crank member includes a rotating disk and a pin provided around the rotating disk, The lower end of the crank rod is rotatably connected to the pin. By using a rotating disk for the crank member, the crank member can be rotated smoothly using the inertial force effectively. Further, the mechanism is simplified and the overall length is shortened, and it is easy to place the body horizontally.
[0010] 第 3の発明に係る羽ばたき式飛行装置は、第 1、第 2の発明に係る羽ばたき式飛行装 置において、前記左右の揺動支持部材は、それぞれ前記胴体部に下端部が連結さ れる前側斜め部材と後側斜め部材とを有する。これによつて、揺動支持部材をより強 固に構成でき、翼前支持材の中間部を前後方向に容易に移動させな!/、で支持する ことが可能となる。更に、揺動支持部材に加わる荷重を胴体部に分散させることがで きる。  [0010] A flapping flight apparatus according to a third aspect of the present invention is the flapping flight apparatus according to the first and second aspects of the present invention, wherein the left and right swing support members are respectively connected at the lower end to the body part. A front diagonal member and a rear diagonal member. As a result, the swing support member can be configured more strongly, and the intermediate portion of the blade front support member can be supported without being easily moved in the front-rear direction. Furthermore, the load applied to the swing support member can be dispersed in the body portion.
[0011] 第 4の発明に係る羽ばたき式飛行装置は、第 3の発明に係る羽ばたき式飛行装置に おいて、前記前側斜め部材及び前記後側斜め部材のいずれか一方又は双方は、前 後動調整可能に前記胴体部に取付けられている。これによつて、翼前支持材の中間 部を回動自在に支持する位置を調節することができ、上フエザリング角度と下フエザリ ング角度の配分を調整することが可能になる。ここで、上フエザリング角度とは、胴体 部を側面視して、背骨材の後端側が水平線 (胴体部の軸心)より持ち上がった (即ち 、背骨材が最も下向きとなった)状態の水平線と背骨材とのなす最大角度をいう。下 フエザリング角度とは、胴体部を側面視して、背骨材の後端側が水平線 (胴体部の軸 心)より下がった (即ち、背骨材が最も上向きとなった)状態の水平線と背骨材とのな す最大角度をいう。なお、飛行中に上フ ザリング角度と下フ ザリング角度の配分 を調整することにより、発生する空気力の大きさと方向を変化させることが可能になり 、直進飛行力 上昇又は下降飛行に移行することが可能になる。また、例えば、飛行 中に回転駆動源を停止して、左右の揺動支持部材の上端部の位置を同時に胴体部 に対して前後に移動させることにより、左右の翼体を所望の角度に設定することが可 能になり、飛行の軌道を変更することができる。  [0011] The flapping flight apparatus according to the fourth invention is the flapping flight apparatus according to the third invention, wherein either one or both of the front oblique member and the rear oblique member is Adjustably attached to the body. This makes it possible to adjust the position at which the intermediate part of the blade front support member is rotatably supported, and to adjust the distribution of the upper feathering angle and the lower feathering angle. Here, the upper feathering angle refers to a horizontal line in a state where the rear end side of the backbone is raised from the horizontal line (the axis of the trunk) when the trunk is viewed from the side (i.e., the backbone is most downward). The maximum angle with the back aggregate. The lower feathering angle refers to the horizontal line and the backbone when the rear end side of the backbone is lowered from the horizontal line (the axis of the trunk) (that is, the backbone is most upward) when the body is viewed from the side. The maximum angle between It is possible to change the magnitude and direction of the generated aerodynamic force by adjusting the distribution of the upper and lower fuzzing angles during the flight, and to move straight flight flight up or down flight. Is possible. In addition, for example, the right and left wings are set to a desired angle by stopping the rotational drive source during flight and simultaneously moving the upper end of the left and right swing support members back and forth with respect to the fuselage. Can change the trajectory of the flight.
[0012] 第 5の発明に係る羽ばたき式飛行装置は、第 3、第 4の発明に係る羽ばたき式飛行装 置にお 1、て、前記前側斜め部材及び前記後側斜め部材の!、ずれか一方又は双方 は、上下動調整可能に前記胴体部に取付けられている。また、第 6の発明に係る羽 ばたき式飛行装置は、第 3〜第 5の発明に係る羽ばたき式飛行装置において、前記 前側斜め部材及び前記後側斜め部材の ヽずれか一方又は双方は、伸縮調整可能 になっている。 第 5、第 6の発明によって、左右の揺動支持部材の上端部の位置を胴体部に対して 上下に変化させることができ、上フラッピング角度と下フラッピング角度の配分を調整 することが可能になる。なお、飛行中に上フラッピング角度と下フラッピング角度の配 分を調整することにより、発生する空気力の大きさと方向を変化させることが可能にな り、飛行の軌道を変更することが可能になる。 [0012] A flapping flight apparatus according to a fifth aspect of the present invention is the flapping flight apparatus according to the third and fourth aspects of the present invention. One or both are attached to the body part so that the vertical movement can be adjusted. Further, the flapping flight apparatus according to the sixth invention is the flapping flight apparatus according to the third to fifth inventions, wherein one or both of the deviation of the front diagonal member and the rear diagonal member are: The telescopic adjustment is possible. According to the fifth and sixth inventions, the positions of the upper end portions of the left and right swing support members can be changed up and down with respect to the body portion, and the distribution of the upper flapping angle and the lower flapping angle can be adjusted. It becomes possible. By adjusting the distribution of the upper and lower flapping angles during flight, the magnitude and direction of the generated aerodynamic force can be changed, and the flight trajectory can be changed. become.
[0013] 第 7の発明に係る羽ばたき式飛行装置は、第 1〜第 6の発明に係る羽ばたき式飛行 装置において、前記クランクロッドは、伸縮調整可能になっている。これによつて、背 骨材の前端部の平均的位置を上下に変化させることが可能となり総フラッピング角度 を変えることができる。またクランクロッドを伸縮することによって、クランクロッドの鉛直 方向とのなす角を変化し、総フ ザリング角度を自由に調整することが可能となる。こ こで、総フエザリング角度とは、上フエザリング角度と下フエザリング角度の和を指す。  [0013] A flapping flight apparatus according to a seventh invention is the flapping flight apparatus according to the first to sixth inventions, wherein the crank rod is adjustable in expansion and contraction. As a result, the average position of the front end portion of the backbone can be changed up and down, and the total flapping angle can be changed. In addition, by extending and retracting the crank rod, the angle between the crank rod and the vertical direction can be changed, and the total fusing angle can be freely adjusted. Here, the total feathering angle refers to the sum of the upper and lower feathering angles.
[0014] そして、第 8の発明に係る羽ばたき式飛行装置は、第 1〜第 7の発明に係る羽ばたき 式飛行装置において、前記クランク部材の回転駆動源として、ゴム巻き動力、モータ 又はエンジンを有する。これによつて、この羽ばたき式飛行装置を飛ばすことができ、 特にモータやエンジンを用いて、例えば、左右の揺動支持部材をそれぞれ構成する 前側斜め部材ゃ後側斜め部材の長さなどを無線を用いたリモートコントローラ等によ つて変えると、この羽ばたき式飛行装置の操縦を行うことができる。  [0014] The flapping flight apparatus according to the eighth aspect of the present invention is the flapping flight apparatus according to the first to seventh aspects of the present invention, which has rubber-wound power, a motor or an engine as the rotational drive source of the crank member. . This makes it possible to fly this flapping flight device, especially using motors and engines, for example, the length of the front diagonal members and the rear diagonal members constituting the left and right swing support members, respectively. The flapping flight device can be operated by changing it with a remote controller etc.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の一実施例に係る羽ばたき式飛行装置の説明図である。 FIG. 1 is an explanatory diagram of a flapping flight apparatus according to an embodiment of the present invention.
[図 2] (A)、(B)はそれぞれ同羽ばたき式飛行装置の一部切欠き側断面図、一部正 断面図である。  [FIG. 2] (A) and (B) are a partially cutaway side sectional view and a partially front sectional view, respectively, of the flapping flight apparatus.
[図 3] (A)、(B)はそれぞれ同羽ばたき式飛行装置の一部切欠き側断面図、一部正 断面図である。  [FIG. 3] (A) and (B) are a partially cutaway side sectional view and a partially front sectional view of the flapping flight apparatus, respectively.
[図 4] (A)、(B)はそれぞれ同羽ばたき式飛行装置の一部切欠き側断面図、一部正 断面図である。  [FIG. 4] (A) and (B) are a partially cutaway side sectional view and a partially front sectional view of the flapping flight apparatus, respectively.
[図 5] (A)、(B)はそれぞれ同羽ばたき式飛行装置の一部切欠き側断面図、一部正 断面図である。  [FIG. 5] (A) and (B) are a partially cutaway side sectional view and a partially front sectional view, respectively, of the flapping flight apparatus.
[図 6]同羽ばたき式飛行装置の翼体と屈曲部との連結状態を示す説明図である。 圆 7]同羽ばたき式飛行装置の翼体と揺動支持部材との連結状態を示す説明図であ る。 FIG. 6 is an explanatory view showing a connection state between a wing body and a bent portion of the flapping flight apparatus. [7] FIG. 7 is an explanatory view showing a connection state between a wing body and a swing support member of the flapping flight apparatus.
圆 8] (A)〜 (C)は同羽ばたき式飛行装置の揺動支持部材の説明図である。 8] (A) to (C) are explanatory views of the swing support member of the flapping flight apparatus.
圆 9] (A)、 (B)はそれぞれ揺動支持部材と胴体部との連結状態を示す説明図であ る。 [9] (A) and (B) are explanatory views showing the connected state of the swing support member and the body portion, respectively.
[図 10]翼体における総フラッピング角、上フラッピング角、及び下フラッピング角の説 明図である。  [Fig. 10] An illustration of the total flapping angle, upper flapping angle, and lower flapping angle in the wing body.
[図 11] (A)、 (B)は翼体における上フラッピング角と下フラッピング角の配分変化を示 す説明図である。  [Fig. 11] (A) and (B) are explanatory diagrams showing changes in distribution of the upper flapping angle and the lower flapping angle in the wing body.
[図 12]翼体における総フ ザリング角、上フエザリング角、及び下フ ザリング角の説 明図である。  FIG. 12 is an explanatory diagram of the total feathering angle, upper feathering angle, and lower feathering angle in the wing body.
圆 13]翼体のフラッピング運動とフ ザリング運動の連成状態を示す説明図である。 [13] It is an explanatory diagram showing the coupled state of the flapping motion and the fusing motion of the wing body.
[図 14] (A)、 (B)は翼体における上フ ザリング角と下フ ザリング角の配分変化を示 す説明図である。 [FIG. 14] (A) and (B) are explanatory diagrams showing changes in the distribution of the upper and lower fusing angles in the wing body.
[図 15] (A)、 (B)は胴体部に対する上支点部の上下位置の変化に伴う上フラッピング 角と下フラッピング角の配分変化を示す説明図である。  [FIG. 15] (A) and (B) are explanatory views showing a change in distribution of the upper flapping angle and the lower flapping angle in accordance with the change in the vertical position of the upper fulcrum portion relative to the body portion.
[図 16] (A)、 (B)は胴体部に対する上支点部の前後位置の変化に伴う上フ ザリン グ角と下フ ザリング角の配分変化を示す説明図である。  [FIG. 16] (A) and (B) are explanatory diagrams showing changes in the distribution of the upper and lower fuzzing angles in accordance with the change in the front-rear position of the upper fulcrum with respect to the body.
[図 17] (A)、 (B)は胴体部に対する左右の上支点部の上下位置を独立に変化した場 合の上フラッピング角と下フラッピング角の配分変化を示す説明図である。  FIGS. 17 (A) and 17 (B) are explanatory diagrams showing changes in distribution of the upper flapping angle and the lower flapping angle when the vertical positions of the left and right upper fulcrum portions with respect to the body portion are independently changed.
圆 18]従来例に係る羽ばたき式飛行装置の説明図である。 [18] FIG. 18 is an explanatory diagram of a flapping flight apparatus according to a conventional example.
[図 19] (A)はフラッピング運動とフ ザリング運動を連動させた場合の風速と空気力( 揚力方向)を示すグラフ、 (B)はフラッピング運動のみの風速と空気力(揚力方向)の 関係を示すグラフである。  [Fig. 19] (A) is a graph showing the wind speed and aerodynamic force (lift direction) when the flapping motion and the fusing motion are linked. (B) is the wind velocity and aerodynamic force (lift direction) of the flapping motion only. It is a graph which shows the relationship.
[図 20] (A)はフラッピング運動とフ ザリング運動を連動させた場合の風速と空気力( 推力方向)を示すグラフ、 (B)はフラッピング運動のみの風速と空気力(推力方向)の 関係を示すグラフである。  [Fig. 20] (A) is a graph showing the wind speed and aerodynamic force (thrust direction) when the flapping motion and the fusing motion are linked. (B) is the wind velocity and aerodynamic force (thrust direction) of the flapping motion only. It is a graph which shows the relationship.
発明を実施するための最良の形態 [0016] 続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本 発明の理解に供する。 BEST MODE FOR CARRYING OUT THE INVENTION [0016] Next, with reference to the accompanying drawings, embodiments that embody the present invention will be described for understanding of the present invention.
図 1〜図 5に示すように、本発明の一実施例に係る羽ばたき式飛行装置 10は、胴体 部 11と、胴体部 11の軸心の直上に設けられた背骨材 40と、背骨材 40の両側に設け られた左右一対の翼体 12、 13とを有している。以下、これらについて詳細に説明す る。  As shown in FIGS. 1 to 5, a flapping flight apparatus 10 according to an embodiment of the present invention includes a body part 11, a backbone material 40 provided immediately above the axis of the body part 11, and a backbone material 40. And a pair of left and right wing bodies 12 and 13 provided on both sides of the wing. These will be described in detail below.
[0017] 図 2 (A)、 (B)〜図 5 (A)、 (B)に示すように、胴体部 11は、例えば、底部材 14と、底 部材 14の両側に平行に設けられた左、右側部材 15、 16と、底部材 14及び左、右側 部材 15、 16の前側に設けられる正面部材 17、底部材 14及び左、右側部材 15、 16 の後側に設けられる背面部材 18を有している。  [0017] As shown in Figs. 2 (A), (B) to Fig. 5 (A), (B), the body portion 11 is provided, for example, in parallel with the bottom member 14 and both sides of the bottom member 14. Left and right side members 15 and 16, bottom member 14 and front member 17 provided on the front side of left and right side members 15 and 16, bottom member 14 and rear side member 18 provided on the rear side of left and right side members 15 and 16 Have.
[0018] そして、胴体部 11内には、胴体部 11の前後方向に延びる垂直面内を回転するクラ ンク部材 19と、クランク部材 19の回転駆動源(図示せず)が搭載されている。ここで、 クランク部材 19は、その回転軸 20が図示しな ヽ軸受を介して左側部材 15に直交し て取付けられ左側部材 15に平行に配置された回転円板 20aと、回転円板 20aの縁 部に回転軸 20の軸心に平行に (偏心して)取付けられたピン 21とを有している。なお 、回転軸 20は、例えば、歯車等の図示しない動力伝達機構を介してモータ、ェンジ ン、ゴム巻き動力等の回転駆動源の回転動力軸と接続している。また、ピン 21の先 部には、クランクロッド 22の下端部が回動自在に連結されている。更に、クランクロッ ド 22の途中には、例えば、ねじを用いた機械式の長さ伸縮機構 23が設けられて、ク ランクロッド 22の長さが伸縮可能になっている。クランク部材 19及びクランクロッド 22 を有して、回転運動を上下運動 (前後方向に運動する場合も含む)に変えるクランク 機構が形成される。  [0018] In the body part 11, a crank member 19 that rotates in a vertical plane extending in the front-rear direction of the body part 11 and a rotation drive source (not shown) of the crank member 19 are mounted. Here, the crank member 19 includes a rotating disk 20a, the rotating shaft 20 of which is attached perpendicularly to the left member 15 via a non-illustrated bearing and arranged in parallel to the left member 15, and a rotating disk 20a. It has a pin 21 attached to the edge in parallel (eccentrically) to the axis of the rotary shaft 20. The rotary shaft 20 is connected to a rotary power shaft of a rotary drive source such as a motor, engine, rubber winding power or the like via a power transmission mechanism (not shown) such as a gear. Further, the lower end portion of the crank rod 22 is rotatably connected to the tip portion of the pin 21. Further, in the middle of the crank rod 22, for example, a mechanical length expansion / contraction mechanism 23 using a screw is provided so that the length of the crank rod 22 can be expanded / contracted. A crank mechanism having a crank member 19 and a crank rod 22 is formed to change the rotational motion into a vertical motion (including a case of moving in the front-rear direction).
[0019] 図 6に示すように、左右一対の翼体 12、 13はそれぞれ、例えば、胴体部 11の軸心直 上に設けられた背骨材 40の前端部を中心にして左右方向に直線状に延びる長尺の 翼前支持材 24、 25と、左右の翼前支持材 24、 25とそれぞれ平行に、しかも、背骨材 40の後端部を中心にして左右方向に配置される短尺の後側フレーム 26、 27と、左 右の翼前支持材 24、 25の先端部及び左右の後側フレーム 26、 27の先端部をそれ ぞれ接続する左右の連結フレーム 28、 29とを有している。更に、翼体 12、 13は、左 右の翼前支持材 24、 25、左右の後側フレーム 26、 27、及び左右の連結フレーム 28 、 29全体を覆う 1枚の翼シート 30を有している。なお、この翼シート 30の中央部は背 骨材 40に固定され、背骨材 40を中心として中央部で折れ曲がり可能となつて 、る。 As shown in FIG. 6, each of the pair of left and right wing bodies 12 and 13 is linear in the left-right direction with the front end portion of the spine 40 provided just above the axial center of the body portion 11 as a center, for example. Long wing support members 24, 25 extending in the direction of the left and right and left and right wing support members 24, 25 in parallel with each other, and in the lateral direction around the rear end of the spine 40 Side frames 26 and 27, and left and right front wing support members 24 and 25 and left and right rear frames 26 and 27 having left and right connecting frames 28 and 29 for connecting the front ends thereof, respectively. Yes. In addition, the wing bodies 12, 13 are The right wing front support member 24, 25, the left and right rear frames 26, 27, and the left and right connecting frames 28, 29 are provided as a single wing sheet 30. The central portion of the wing sheet 30 is fixed to the backbone 40 and can be bent at the central portion around the backbone 40.
[0020] ここで、左右の翼前支持材 24、 25の基端部(中心側)は、前後方向に隙間を設けて 平行に配置された取付け部材 31、 32の間にそれぞれ装入され、左右のピン 33によ り取付け部材 31、 32に回動可能に取付けられて前側屈曲機構 34を形成して 、る。 同様に、左右の後側フレーム 26、 27の基端部(中心側)は、前後方向に隙間を設け て平行に配置された取付け部材 35、 36の間にそれぞれ装入されて、左右のピン 37 により取付け部材 35、 36に回動可能に取付けられて後側屈曲機構 38を形成してい る。これによつて、左右一対の翼体 12、 13は、前側屈曲機構 34及び後側屈曲機構 3 8を介して折れ曲がり可能に連結される。なお、前側屈曲機構 34、後側屈曲機構 38 及び背骨材 40を有して屈曲部 39が構成され、この屈曲部 39に翼体 12、 13の内側 端部が連結されている。  [0020] Here, the base end portions (center side) of the left and right blade front support members 24, 25 are respectively inserted between mounting members 31, 32 arranged in parallel with a gap in the front-rear direction, The left and right pins 33 are pivotally attached to the attachment members 31 and 32 to form a front bending mechanism 34. Similarly, the base end portions (center side) of the left and right rear frames 26, 27 are respectively inserted between mounting members 35, 36 arranged in parallel with a gap in the front-rear direction, and left and right pins The rear bending mechanism 38 is formed by being rotatably attached to the attachment members 35 and 36 by 37. Accordingly, the pair of left and right wing bodies 12 and 13 are connected to each other via the front bending mechanism 34 and the rear bending mechanism 38 so as to be bent. It should be noted that a bent portion 39 is configured having the front bending mechanism 34, the rear bending mechanism 38, and the spine 40, and the inner ends of the wing bodies 12 and 13 are connected to the bent portion 39.
[0021] また、クランクロッド 22の上端部には、背骨材 40の前端部が一定角度 (この実施例で は直角)で固着され、前側屈曲機構 34はクランクロッド 22の上部に、後側屈曲機構 3 8は背骨材 40の後端部にそれぞれ連結されている。  [0021] Further, the front end portion of the backbone 40 is fixed to the upper end portion of the crank rod 22 at a fixed angle (in this embodiment, a right angle), and the front bending mechanism 34 is formed on the upper portion of the crank rod 22 and the rear bending portion. Mechanisms 3 and 8 are respectively connected to the rear ends of the backbone 40.
[0022] 更に、左右一対の翼体 12、 13の翼前支持材 24、 25の途中位置には、揺動支持部 材 41、 42の上端部にそれぞれ設けられた上支点部 43、 44が連結されている。ここ で、上支点部 43、 44は、例えば、図 7、図 8 (A)〜(C)に示すように、翼前支持材 24 、 25の途中位置に設けられ翼前支持材 24、 25を挿通させてその軸心回りに回動可 能に支持するフレーム受部材 45と、フレーム受部材 45を載置して両側力 把持する ϋ手 45aとを有して!/ヽる。  [0022] Furthermore, upper fulcrum portions 43, 44 provided at the upper end portions of the swing support members 41, 42 are provided at midway positions of the front blade support members 24, 25 of the pair of left and right blade bodies 12, 13, respectively. It is connected. Here, the upper fulcrum portions 43 and 44 are provided in the middle of the blade front support members 24 and 25 as shown in FIGS. 7 and 8A to 8C, for example. And a frame receiving member 45 that is rotatably supported around the axis thereof, and a handle 45a on which the frame receiving member 45 is mounted and grips on both sides.
[0023] そして、継手 45aは、フレーム受部材 45を載置する台座部材 45bと、台座部材 45b の両側に設けられ台座部材 45bに載置されたフレーム受部材 45を挟む一対のピン 受け部材 46、 47とを備え、ピン受け部材 46、 47にはフレーム受部材 45の両側にそ れぞれ設けられた短ピン部材 47aが揷通する孔 47bが設けられている。ここで、継手 45aは揺動支持部材 41、 42の上端部に取付けられ、フレーム受部材 45を挿通する 翼前支持材 24、 25には、フレーム受部材 45を挟むようにストッパー部材 47cが設け られている。これによつて、翼前支持材 24、 25に揺動及び回動可能に揺動支持部 材 41、 42の上端部を連結することができる。 [0023] The joint 45a includes a base member 45b for placing the frame receiving member 45 and a pair of pin receiving members 46 sandwiching the frame receiving member 45 provided on both sides of the base member 45b and placed on the base member 45b. 47, and the pin receiving members 46, 47 are provided with holes 47b through which the short pin members 47a provided on both sides of the frame receiving member 45 are inserted. Here, the joint 45a is attached to the upper end of the swing support members 41, 42, and the blade support members 24, 25 through which the frame receiving member 45 is inserted are provided with stopper members 47c so as to sandwich the frame receiving member 45. It has been. Accordingly, the upper end portions of the swing support members 41 and 42 can be coupled to the front blade support members 24 and 25 so as to be swingable and rotatable.
[0024] また、図 7、図 8に示すように、左右の揺動支持部材 41、 42は、前側斜め部材 48、 4 9と後側斜め部材 50、 51をそれぞれ備え、図 9に示すように、左の揺動支持部材 41 の前側斜め部材 48及び後側斜め部材 50の各下端部には、下端部を胴体部 11の左 側部材 15にそれぞれ取付ける下支点部 52、 53が設けられ、右の揺動支持部材 42 の前側斜め部材 49及び後側斜め部材 51の各下端部には、下端部を胴体部 11の右 側部材 16にそれぞれ取付ける下支点部 54、 55が設けられている。  Further, as shown in FIGS. 7 and 8, the left and right swing support members 41 and 42 include front oblique members 48 and 4 9 and rear oblique members 50 and 51, respectively, as shown in FIG. Further, lower fulcrum portions 52 and 53 for attaching the lower end portions to the left side member 15 of the body portion 11 are provided at the lower end portions of the front oblique member 48 and the rear oblique member 50 of the left swing support member 41, respectively. Further, lower fulcrum portions 54 and 55 for attaching the lower end portions to the right side member 16 of the body portion 11 are provided at the lower end portions of the front oblique member 49 and the rear oblique member 51 of the right swing support member 42, respectively. Yes.
[0025] ここで、前側斜め部材 48、 49の上端部にはフレーム受部材 45が取付けられ、後側 斜め部材 50、 51の上端部側には、後側斜め部材 50、 51の両側の部分を残して中 央部に軸心方向に切り欠き部 54aが形成されて、前側斜め部材 48、 49の上端部側 は、この切り欠き部 54aを揷通している。そして、切り欠き部 54aを揷通している前側 斜め部材 48、 49の上端部側には貫通孔 55aがそれぞれ形成され、貫通孔 55aには 切り欠き部 54aの両側の突出部 54bにそれぞれ形成された孔 54cを介して連結ピン 55bが装入されている。また、下支点部 52 (54)、 53 (55)は、例えば、図 9 (A)、(B) に示すように、前側斜め部材 48 (49)及び後側斜め部材 50 (51)の下端部に設けら れた孔を貫通するピン部材 56と、ピン部材 56の両端側を回動可能に支持する一対 のピン受け部材 57、 58を備えて、前側斜め部材 48 (49)及び後側斜め部材 50 (51) の下端部と回動可能に連結する回動連結機構 59を有している。  Here, a frame receiving member 45 is attached to the upper end portions of the front oblique members 48, 49, and portions on both sides of the rear oblique members 50, 51 are provided on the upper end portions of the rear oblique members 50, 51. A cutout portion 54a is formed in the central portion in the center portion, leaving the cutout portion 54a on the upper end side of the front oblique members 48 and 49. A through hole 55a is formed on the upper end side of each of the front oblique members 48 and 49 passing through the notch 54a, and the through hole 55a is formed on each of the protrusions 54b on both sides of the notch 54a. The connecting pin 55b is inserted through the hole 54c. Further, the lower fulcrum portions 52 (54) and 53 (55) are formed at the lower ends of the front diagonal member 48 (49) and the rear diagonal member 50 (51) as shown in FIGS. 9 (A) and (B), for example. And a pair of pin receiving members 57 and 58 that rotatably support both end sides of the pin member 56, a front diagonal member 48 (49) and a rear side. A rotation connecting mechanism 59 is rotatably connected to the lower end portion of the oblique member 50 (51).
[0026] 更に、下支点部 52 (54)、 53 (55)は、回動連結機構 59を胴体部 11の左側部材 15 ( 右側部材 16)に対して前後移動可能に支持する前後移動機構 60と、左側部材 15 ( 右側部材 16)上に設けられ前後移動機構 60を左側部材 15 (右側部材 16)に対して 上下移動可能となるように前後移動機構 60の両側をそれぞれ支持する対となる上下 移動機構 60aを有している。ここで、前後移動機構 60及び上下移動機構 60aには、 例えば、ねじを用いた機械式の長さ伸縮機構を使用することができる。更に、前側斜 め部材 48、 49と後側斜め部材 50、 51の途中には、例えば、ねじを用いた機械式の 長さ伸縮機構 61〜64が設けられて、前側斜め部材 48 (49)と後側斜め部材 50 (51 )の長さが伸縮調整可能になっている。 [0027] このような構成とすることにより、前後移動機構 60 (上下移動機構 60a)を駆動させる ことにより、回動連結機構 59を介して前側斜め部材 48 (49)と後側斜め部材 50 (51) の下端をそれぞれ胴体部 11に対しての前後(上下)に移動させることができ、前側斜 め部材 48 (49)と後側斜め部材 50 (51)の下端部を胴体部 11に対して左右にそれ ぞれ摇動させることができる。 [0026] Further, the lower fulcrum portions 52 (54) and 53 (55) support the forward / backward movement mechanism 60 that supports the rotational connection mechanism 59 so as to be movable back and forth with respect to the left side member 15 (right side member 16) of the body portion 11. And a pair that supports both sides of the front-rear moving mechanism 60 so that the front-rear moving mechanism 60 can be moved up and down with respect to the left-side member 15 (right member 16) provided on the left member 15 (right member 16). It has a vertical movement mechanism 60a. Here, for example, a mechanical length expansion / contraction mechanism using a screw can be used for the back-and-forth movement mechanism 60 and the vertical movement mechanism 60a. Furthermore, for example, mechanical length expansion / contraction mechanisms 61 to 64 using screws are provided in the middle of the front side slanting members 48 and 49 and the rear side slanting members 50 and 51, so that the front side slanting member 48 (49) The length of the rear oblique member 50 (51) is adjustable. [0027] With such a configuration, by driving the forward / backward moving mechanism 60 (vertical moving mechanism 60a), the front diagonal member 48 (49) and the rear diagonal member 50 ( 51) can be moved back and forth (up and down) with respect to the body part 11, and the lower end parts of the front slanting member 48 (49) and the rear slanting member 50 (51) can be moved relative to the body part 11. To the left and right.
ここで、前後移動機構 60を操作して、前側斜め部材 48 (49)及び後側斜め部材 50 ( 51)にそれぞれ連結している回動連結機構 59を同時に同一方向に実質的に同一距 離だけ移動させると、前側斜め部材 48 (49)の上端が胴体部 11に対する高さ位置を 変えずに胴体部 11に対して前後に移動することになり、上支点部 43 (44)を胴体部 11に対する高さ位置を一定にして胴体部 11に対して前後に移動させることができる  Here, by operating the forward / backward moving mechanism 60, the rotational connecting mechanism 59 connected to the front oblique member 48 (49) and the rear oblique member 50 (51), respectively, at the same time in substantially the same distance in the same direction. The upper end of the front diagonal member 48 (49) moves back and forth with respect to the body part 11 without changing the height position with respect to the body part 11, and the upper fulcrum part 43 (44) is moved to the body part. It can be moved back and forth with respect to the body part 11 with the height position with respect to 11 constant.
[0028] また、前後移動機構 60を操作して、前側斜め部材 48 (49)及び後側斜め部材 50 (5 1)にそれぞれ連結している回動連結機構 59を同時に反対方向に実質的に同一距 離だけ移動させたり、上下移動機構 60aを操作することにより、前側斜め部材 48 (49 )の上端が胴体部 11に対する前後位置を変えずに胴体部 11に対して上下に移動す ることになり、上支点部 43 (44)を胴体部 11に対する前後位置を一定にして胴体部 1 1に対して上下に移動させることができる。更に、前後移動機構 60及び上下移動機 構 60aを連動させることにより、前側斜め部材 48 (49)及び後側斜め部材 50 (51)に それぞれ連結して ヽる回動連結機構 59を介して前側斜め部材 48 (49)の上端を胴 体部 11に対して前後及び上下に移動させて、上支点部 43 (44)を胴体部 11、更に 詳細には、クランク部材 19の軸心に対して前後及び上下に移動させることができる。 上支点部 43 (44)の位置を前後方向に移動させると、これに伴!、背骨材 40の前後 方向の位置、詳細にはクランク部材 19の軸心に対する前後位置が変わる。 [0028] Further, by operating the forward / backward movement mechanism 60, the rotational connecting mechanism 59 connected to the front oblique member 48 (49) and the rear oblique member 50 (51) is substantially substantially simultaneously moved in the opposite direction. By moving the same distance or operating the vertical movement mechanism 60a, the upper end of the front oblique member 48 (49) can be moved up and down with respect to the body part 11 without changing the front-rear position with respect to the body part 11. Thus, the upper fulcrum part 43 (44) can be moved up and down with respect to the body part 11 with the front-rear position with respect to the body part 11 kept constant. In addition, the front and rear moving mechanism 60 and the vertical moving mechanism 60a are linked to each other so that the front side is connected to the front side diagonal member 48 (49) and the rear side diagonal member 50 (51) via the rotating connection mechanism 59. The upper end of the oblique member 48 (49) is moved back and forth and up and down with respect to the body part 11, and the upper fulcrum part 43 (44) is moved with respect to the body part 11, and more specifically with respect to the axis of the crank member 19. It can be moved back and forth and up and down. When the position of the upper fulcrum portion 43 (44) is moved in the front-rear direction, the position in the front-rear direction of the backbone 40, specifically, the front-rear position with respect to the axis of the crank member 19 changes.
[0029] 続いて、本発明の羽ばたき式飛行装置 10の作用について説明する。  [0029] Next, the operation of the flapping flight apparatus 10 of the present invention will be described.
前後移動機構 60を用いて胴体部 11の左、右側部材 15、 16上における下支点部 52 〜55の位置を決定して固定し、長さ伸縮機構 61〜64を用いて前側斜め部材 48、 4 9と後側斜め部材 50、 51の長さを決定して固定すると、前側斜め部材 48、 49と後側 斜め部材 50、 51を二辺とする三角形の大きさが決まる。これにより、胴体部 11に対し て、上支点部 43、 44の上下及び前後位置がそれぞれ固定され、左右の翼体 12、 13 は上支点部 43、 44との連結位置において胴体部 11側に固定される状態になる。そ して、回転駆動源を駆動させてクランク部材 19を回転させると、ピン 21に連結するク ランクロッド 22は上下動を繰り返し、クランクロッド 22に固着する背骨材 40も、胴体部 11の軸心の直上にある平行線に対して上下に揺動を繰り返す。 The position of the lower fulcrum portions 52 to 55 on the left and right members 15 and 16 of the body portion 11 is determined and fixed using the front and rear moving mechanism 60, and the front oblique member 48 and the length extending and contracting mechanisms 61 to 64 are used. When the lengths of 49 and rear oblique members 50 and 51 are determined and fixed, the size of a triangle having two sides of the front oblique members 48 and 49 and the rear oblique members 50 and 51 is determined. As a result, against the body part 11 Thus, the upper and lower and front and rear positions of the upper fulcrum parts 43 and 44 are fixed, and the left and right wing bodies 12 and 13 are fixed to the body part 11 side at the connection positions with the upper fulcrum parts 43 and 44. When the crank member 19 is rotated by driving the rotational drive source, the crank rod 22 connected to the pin 21 repeats the vertical movement, and the backbone 40 fixed to the crank rod 22 is also connected to the shaft of the body portion 11. Swing up and down repeatedly with respect to the parallel line directly above the heart.
[0030] このとき、左右の翼体 12、 13は、上支点部 43、 44との連結位置において胴体部 11 側に固定される状態であるので、屈曲部 39を構成する前側屈曲機構 34と後側屈曲 機構 38が上下動を行なうと、翼体 12、 13は中央の屈曲部 39を介して上下に折れ曲 力 ¾動作を繰り返し、フラッピング運動が実現される。 [0030] At this time, the left and right wing bodies 12 and 13 are fixed to the body part 11 side at the connection position with the upper fulcrum parts 43 and 44, and therefore the front side bending mechanism 34 constituting the bending part 39 and When the rear bending mechanism 38 moves up and down, the wing bodies 12 and 13 are bent up and down through the central bent portion 39 and repeat the bending and moving operation to realize the flapping motion.
ここで、クランク部材 19の回転円板 20aは胴体部 11の前後方向に延びる垂直面内 で回転するので、クランクロッド 22は、正面視して胴体部 11に対して上下動を行なう ことになり、クランクロッド 22の上下動と屈曲部 39における翼体 12、 13の折れ曲がり 動作は同期する。このため、各翼体 12、 13のフラッピング運動は対称に (位相差なく )行なわれる。これによつて、翼体 12、 13の上下の空気が後方に安定して押し出され ることになり、その反力として胴体部 11に推進力を発生させることができる。  Here, since the rotating disk 20a of the crank member 19 rotates in a vertical plane extending in the front-rear direction of the body part 11, the crank rod 22 moves up and down with respect to the body part 11 when viewed from the front. The vertical movement of the crank rod 22 and the bending motion of the wing bodies 12 and 13 at the bent portion 39 are synchronized. For this reason, the flapping motion of each wing body 12 and 13 is performed symmetrically (without phase difference). As a result, the air above and below the wing bodies 12 and 13 is stably pushed out rearward, and a propulsive force can be generated in the body portion 11 as a reaction force.
[0031] また、下支点部 52〜55には、それぞれ前側斜め部材 48、 49と後側斜め部材 50、 5 1の下端部を胴体部 11の左、右側部材 15、 16に回動可能に連結する回動連結機 構 59が設けられているので、前側斜め部材 48、 49と後側斜め部材 50、 51の下端部 は胴体部 11に対して左右に揺動可能となる。このため、翼前支持材 24、 25の中間 部に連結される上支点部 43、 44と前側屈曲機構 34との間の距離を、例えば、図 2 ( B)、図 4 (B)に示すように、翼前支持材 24、 25が水平状態のときに、正面視して揺 動支持部材 41、 42がそれぞれ垂直又は垂直より外側に少し開くように予め調整し、 クランクロッド 22の下端部のピン 21の位置をクランク部材 19の回転円板 20aの上下 方向中央位置にしておくのが好ましい。これによつて、図 3 (B)に示すように翼体 12、 13が最も打ち上げられた状態と、図 5 (B)に示すように翼体 12、 13が最も打ち下げ られた状態の場合は、上支点部 43、 44が前側屈曲機構 34側(内側)に寄るように、 前側斜め部材 48、 49と後側斜め部材 50、 51は内側に揺動する。これによつて、円 滑なフラッピング運動を実現できる。なお、この実施例においては、翼体が打ち上げ られたとは、翼体の先側が上がった状態を、翼体が打ち下げられたとは翼体の先部 が下がった状態をいう。 [0031] Further, the lower fulcrum portions 52 to 55 are configured such that the lower end portions of the front oblique members 48 and 49 and the rear oblique members 50 and 51 can be rotated to the left and right members 15 and 16 of the body portion 11, respectively. Since the rotating connecting mechanism 59 to be connected is provided, the lower end portions of the front oblique members 48 and 49 and the rear oblique members 50 and 51 can swing left and right with respect to the body portion 11. For this reason, the distance between the upper fulcrum portions 43, 44 connected to the intermediate portions of the blade support members 24, 25 and the front bending mechanism 34 is shown in, for example, FIGS. 2 (B) and 4 (B). Thus, when the blade support members 24 and 25 are in a horizontal state, the swing support members 41 and 42 are adjusted in advance so that the swing support members 41 and 42 are opened vertically or slightly outward from the vertical direction when viewed from the front. It is preferable that the position of the pin 21 is set at the center position in the vertical direction of the rotating disk 20a of the crank member 19. As a result, as shown in Fig. 3 (B), the wing bodies 12, 13 are in the most advanced state, and as shown in Fig. 5 (B), the wing bodies 12, 13 are in the most lowered state. The front oblique members 48 and 49 and the rear oblique members 50 and 51 swing inward so that the upper fulcrum portions 43 and 44 are close to the front bending mechanism 34 side (inner side). As a result, a smooth flapping motion can be realized. In this embodiment, the wing body is launched. “Attached” means the state where the front side of the wing body is raised, and “when the wing body is lowered” means the state where the front part of the wing body is lowered.
[0032] 図 3 (A)、 (B)に示すようにクランクロッド 22の下端が胴体部 11に対して最下点位置 にあるとき、前側屈曲機構 34と後側屈曲機構 38も胴体部 11に対して最下点位置に あり、翼体 12、 13は中央の屈曲部 39を介して上側に最大に折れ曲がり、翼体 12、 1 3は最も打ち上げた状態になる。また、図 5 (A)、(B)に示すようにクランクロッド 22の 下端が胴体部 11に対して最上点位置にあるとき、前側屈曲機構 34と後側屈曲機構 38も胴体部 11に対して最上点位置にあり、翼体 12、 13は中央の屈曲部 39を介して 下側に最大に折れ曲がり、翼体 12、 13は最も打ち下げた状態になる。そして、図 10 に示すように、翼体 12、 13を最も打ち上げた状態で翼前支持材 24、 25が水平とな す上フラッピング角 Θ と翼体 12、 13を最も打ち下げた状態で翼前支持材 24、 25が 水平となす下フラッピング角 Θ の和が総フラッピング角 Θとなり、総フラッピング角度 d  As shown in FIGS. 3A and 3B, when the lower end of the crank rod 22 is at the lowest point position with respect to the body part 11, the front bending mechanism 34 and the rear bending mechanism 38 are also used in the body part 11. In contrast, the wing bodies 12 and 13 are bent to the uppermost side via the central bent portion 39, and the wing bodies 12 and 13 are in the most uplifted state. Further, as shown in FIGS. 5A and 5B, when the lower end of the crank rod 22 is at the uppermost position with respect to the body portion 11, the front side bending mechanism 34 and the rear side bending mechanism 38 are also located with respect to the body portion 11. The wing bodies 12 and 13 are bent to the maximum through the central bent portion 39, and the wing bodies 12 and 13 are in the most lowered state. Then, as shown in Fig. 10, the upper flapping angle Θ and the wing bodies 12 and 13 are pushed down most when the wing bodies 12 and 13 are pushed up most. The sum of the lower flapping angles Θ formed by the wing front support members 24 and 25 becomes the total flapping angle Θ, and the total flapping angle d
Θの大きさに応じて推進力が変化する。  The propulsive force changes according to the magnitude of Θ.
[0033] なお、図 11 (A)、 (B)に示すように、翼体 12と上支点部 43との連結位置を P点力も Q 点に移動させて連結位置と前側屈曲機構 34との間の距離を大きくすると、翼体 12が 中央の屈曲部 39において上方に折れ曲がる際の上フラッピング角が 0 力も 0 ( uP uQ[0033] As shown in FIGS. 11 (A) and 11 (B), the connecting position between the wing body 12 and the upper fulcrum 43 is also moved to the point Q by moving the point P force to the point Q. When the wing body 12 bends upward at the central bend 39, the upper flapping angle becomes 0 (uP uQ
< θ )に変化し、翼体 12が中央の屈曲部 39において下方に折れ曲がる際の下フラ uP <θ) and the lower frame uP when the wing body 12 bends downward at the central bend 39.
ッピング角を Θ 力も 0 « Θ )に変化させることができ、総フラッピング角 Θを 0 dP dQ dP uP The wrapping angle can be changed to 0 «Θ), and the total flapping angle Θ can be changed to 0 dP dQ dP uP
+ Θ 0 + Θ + Θ 0 + Θ
dP力も uQ dQに減少させることができる。従って、作製する羽ばたき式飛行装 置 10の仕様に応じて、翼体 12と上支点部 43との連結位置を調整し総フラッピング角 度 Θを設定する。  The dP force can also be reduced to uQ dQ. Therefore, the total flapping angle Θ is set by adjusting the connection position of the wing body 12 and the upper fulcrum 43 according to the specifications of the flapping flight apparatus 10 to be produced.
[0034] 左右の翼体 12、 13において、揺動支持部材 41、 42の上支点部 43、 44の胴体部 1 1に対する前後方向の位置が固定されて 、るので、前側屈曲機構 34が上下動を行 なっても、前側屈曲機構 34の胴体部 11に対する前後位置は略一定に保持される。 従って、クランクロッド 22の下端部がピン 21と共に回転軸 20の回りを回転移動する 際、図 12に示すように、前側屈曲機構 34に連結するクランクロッド 22の上端部の胴 体部 11に対する前後位置は一定に保持されて、クランクロッド 22は上下する。この場 合、クランクロッド 22の上端部は胴体部 11に対して前後方向は一定に保持されて!ヽ る力 上下方向には移動し、これに伴い一定角度で連結されている背骨材 40の前端 部もクランクロッド 22の上端部と同じ運動を繰り返す。なお、図 12ではクランク部材 1 9の軸心の直上に背骨材 40の前端部が位置しておらず、背骨材 40の前端部がクラ ンク部材 19の軸心より前側に位置する例を示している。これによつて、上フエザリング 角 φ が下フエザリング角 φより大きくなる。 [0034] In the left and right wing bodies 12 and 13, the position of the upper fulcrum portions 43 and 44 of the swing support members 41 and 42 in the front-rear direction with respect to the body portion 11 is fixed. Even when moving, the front-rear position of the front bending mechanism 34 with respect to the body portion 11 is held substantially constant. Therefore, when the lower end portion of the crank rod 22 rotates around the rotary shaft 20 together with the pin 21, as shown in FIG. 12, the upper end portion of the crank rod 22 connected to the front bending mechanism 34 is front and rear with respect to the body portion 11. The position is held constant and the crank rod 22 moves up and down. In this case, the upper end of the crank rod 22 is held constant in the front-rear direction with respect to the body 11! Along with this movement, the front end of the backbone 40 connected at a constant angle repeats the same movement as the upper end of the crank rod 22. FIG. 12 shows an example in which the front end portion of the backbone 40 is not located immediately above the axis of the crank member 19 and the front end of the backbone 40 is located in front of the axis of the crank member 19. ing. As a result, the upper feathering angle φ is larger than the lower feathering angle φ.
d  d
[0035] そして、クランクロッド 22の上端部の上下動に連動して、背骨材 40が揺動を繰り返す と、屈曲部 39の後側屈曲機構 38の位置が前側屈曲機構 34に対して上下及び前後 に変化する。このため、翼体 12、 13のフラッピング運動を行ないながら、翼体 12、 13 を胴体部 11の進行方向に対して傾斜する(捩じる)フ ザリング運動を行なうことがで きる。ここで、クランクロッド 22の下端力クランク部材 19の最上点位置にあって翼体 1 2、 13が最も打ち下げた状態力もクランクロッド 22の下端がクランク部材 19の最下点 位置にあって翼体 12、 13が最も打ち上げた状態に向力 際に、図 2 (A)、(B)に示 すように、胴体部 11の進行方向に対して翼体 12、 13を、翼体 12、 13の前側が上に なるように傾ける。また、クランクロッド 22の下端力クランク部材 19の最下点位置にあ つて翼体 12、 13が最も打ち上げた状態力もクランクロッド 22の下端がクランク部材 19 の最上点位置にあって翼体 12、 13が最も打ち下げた状態に向力 際に、図 4 (A)、 ( B)に示すように、胴体部 11の進行方向に対して翼体 12、 13を、翼体 12、 13の前側 が下になるように傾ける。以上のようにすると、図 13に示すように、翼体 12、 13の打 ち下げ時には推進力と共に打ち下げの反力としての揚力を効率的に得ることができ 、翼体 12、 13の打ち上げ時には推進力と共に打ち上げの反力としての下向き力を 小さくすることができる。これによつて、羽ばたき式飛行装置 10は飛行を行なうことが できる。なお、揚力と下向き力との関係は、背骨材 40の前端部の位置がクランク部材 19の軸心に対して前側にある力、後側にあるかで変わる。従って、後側斜め部材 50 、 51、前側斜め部材 48、 49の胴体部 11への取り付け位置、その長さを変更すること によって背骨材 40の前端部の位置を調整できる。  [0035] Then, when the spine 40 repeatedly swings in conjunction with the vertical movement of the upper end of the crank rod 22, the position of the rear bending mechanism 38 of the bent portion 39 moves up and down with respect to the front bending mechanism 34. Change back and forth. For this reason, it is possible to perform a fusing motion that inclines (twists) the wing bodies 12 and 13 with respect to the advancing direction of the body portion 11 while performing the flapping movement of the wing bodies 12 and 13. Here, the state force when the lower end force crank member 19 of the crank rod 22 is at the uppermost point position of the crank member 19 and the blade bodies 12 and 13 are pushed down most is also the blade with the lower end of the crank rod 22 at the lowermost point position of the crank member 19. When the bodies 12 and 13 are directed to the most advanced state, as shown in FIGS. 2 (A) and 2 (B), the wing bodies 12 and 13 are Tilt so that the front side of 13 is up. The lower end force of the crank rod 22 is the lowest point position of the crank member 19 and the wing bodies 12 and 13 are the most uplifted state force, so that the lower end of the crank rod 22 is at the uppermost position of the crank member 19 and the wing body 12, As shown in FIGS. 4 (A) and 4 (B), the wing bodies 12 and 13 are placed on the front side of the wing bodies 12 and 13 with respect to the traveling direction of the fuselage section 11 as shown in FIGS. Tilt so that is at the bottom. As described above, as shown in FIG. 13, when the wing bodies 12 and 13 are lowered, it is possible to efficiently obtain the lift force as the reaction force of the lowering together with the propulsive force. Sometimes, the downward force can be reduced as the reaction force of the launch along with the propulsion force. As a result, the flapping flight apparatus 10 can fly. The relationship between the lift force and the downward force varies depending on whether the position of the front end portion of the backbone 40 is on the front side or the rear side with respect to the axis of the crank member 19. Therefore, the position of the front end portion of the spine 40 can be adjusted by changing the positions and lengths of the rear oblique members 50 and 51 and the front oblique members 48 and 49 attached to the trunk portion 11.
[0036] そして、図 12に示すように、翼体 12、 13が前側を上にして最も傾いた状態で背骨材 40が水平となす下フエザリング角 φ と翼体 12、 13が前側を下にして最も傾いた状態 d  [0036] Then, as shown in FIG. 12, the lower feathering angle φ that the spine 40 becomes horizontal with the wing bodies 12 and 13 tilted most with the front side up, and the wing bodies 12 and 13 with the front side down. Most inclined state d
で背骨材 40が水平となす上フエザリング角 φ の和が総フエザリング角 Φとなり、総フ ザリング角 Φの大きさと、上フ ザリング角 φ及び下フエザリング角 φ の配分により u d The sum of the upper feathering angle φ, which is the level of the backbone 40, becomes the total feathering angle φ, Ud by the size of the Zaring angle Φ and the distribution of the upper and lower feathering angles φ and φ
、揚力及び下向き力を変化させることができる。従って、作製しょうとする羽ばたき式 飛行装置 10の飛行性能に応じて、総フエザリング角 Φの大きさと、上フエザリング角 , Lift and downward force can be changed. Therefore, depending on the flight performance of the flapping flight device 10 to be manufactured, the size of the total feathering angle Φ and the upper feathering angle
Φ及び下フ ザリング角 φ の配分を決定する。なお、この配分は背骨材 40の前端 u d Determine the distribution of Φ and lower fusing angle φ. This distribution is the front end u d of the backbone 40
部の前後方向位置、クランクロッド 22の長さによって変わる。背骨材 40の前端部の位 置は、前側斜め部材 48、 49及び後側斜め部材 50、 51によって調整できる。  It depends on the position of the front / rear direction and the length of the crank rod 22. The position of the front end portion of the spine 40 can be adjusted by the front diagonal members 48 and 49 and the rear diagonal members 50 and 51.
[0037] なお、図 14 (A)、 (B)に示すように、長さ伸縮機構 23を駆動させクランクロッド 22の 長さを長くして、前側屈曲機構 34を D点力も E点にすると、翼体 12、 13が最も下向き 傾斜した状態で背骨材 40が水平となす上フエザリング角は φ から φ « φ )に uD uE uD 変化し、翼体 12、 13が最も上向き傾斜した状態で背骨材 40が水平となす下フエザリ ング角は φ 力も φ « )に変化させることができ、総フエザリング角 Φを φ + dD dE dD uD[0037] As shown in FIGS. 14 (A) and 14 (B), when the length extension mechanism 23 is driven to increase the length of the crank rod 22 and the front bending mechanism 34 is also set to the D point force. The upper feathering angle that the spine 40 is horizontal with the wings 12 and 13 tilted down most is changed from u to u «φ, and the spine with the wings 12 and 13 tilted up most The lower feathering angle that the material 40 is horizontal can be changed to φ force and φ «), and the total feathering angle Φ can be changed to φ + dD dE dD uD
Φ から Φ + Φ Φ to Φ + Φ
dD dE dEに減少させることができる。従って、作製しょうとする羽ばたき式飛 行装置 10の飛行性能に応じて、クランクロッド 22の伸縮範囲を決定し総フ ザリング 角度 Φを設定する。  dD dE can be reduced to dE. Therefore, the expansion / contraction range of the crank rod 22 is determined according to the flight performance of the flapping flight apparatus 10 to be manufactured, and the total fusing angle Φ is set.
[0038] ここで、下支点部 52〜55の位置を変えずに、前側斜め部材 48、 49及び後側斜め 部材 50、 51に設けられている長さ伸縮機構 61〜64を連動して駆動させて前側斜め 部材 48、 49及び後側斜め部材 50、 51の長さを伸縮すると、例えば、図 15 (A)、(B) に示すように、上支点部 43の胴体部 11に対する高さ位置を R点から S点に移動させ て低くすると、総フラッピング角 Θを一定にして、上フラッピング角を 0 力も 0 « uR uS θ )に、下フラッピング角を 0 力も 0 ( > Θ )にそれぞれ変化させて、上フラッピ uR dR dS dR  [0038] Here, without changing the positions of the lower fulcrum portions 52 to 55, the length extending and contracting mechanisms 61 to 64 provided on the front oblique members 48 and 49 and the rear oblique members 50 and 51 are driven in conjunction with each other. When the lengths of the front diagonal members 48 and 49 and the rear diagonal members 50 and 51 are expanded and contracted, for example, as shown in FIGS. 15A and 15B, the height of the upper fulcrum portion 43 relative to the body portion 11 When the position is lowered from point R to point S, the total flapping angle Θ is kept constant, the upper flapping angle is 0 force and 0 «uR uS θ), and the lower flapping angle is 0 force and 0 force (> Θ ) To change the upper flap uR dR dS dR
ング角と下フラッピング角の配分を変化させることができる。  The distribution of the corner angle and the lower flapping angle can be changed.
[0039] 一方、前側斜め部材 48、 49及び後側斜め部材 50、 51の長さを変えずに、前後移動 機構 60を駆動させて下支点部 52〜55の位置を変化させると、図 16 (A)、(B)に示 すように、上支点部 43、 44を胴体部 11に対して前側に移動することができ、総フエ ザリング角 Φを一定にして、上フエザリング角を Φ から φ ( > )に、下フエザリン uF uG uF On the other hand, when the front and rear moving mechanisms 60 are driven to change the positions of the lower fulcrum portions 52 to 55 without changing the lengths of the front oblique members 48 and 49 and the rear oblique members 50 and 51, FIG. As shown in (A) and (B), the upper fulcrum parts 43 and 44 can be moved forward relative to the body part 11, the total feathering angle Φ is kept constant, and the upper feathering angle is changed from Φ. φ (>), lower featherin uF uG uF
グ角を Φ から φ « φ )にして、上フエザリング角と下フエザリング角の配分を変 dF dG dF  Change the distribution of the upper and lower feathering angles from Φ to φ «φ) dF dG dF
ィ匕させることができる。これによつて、飛行中に上フラッピング角と下フラッピング角の 配分及び上フエザリング角と下フエザリング角の配分を調整して推進力と揚力を変え ることができ、羽ばたき式飛行装置 10の例えば、上昇角及び下降角を調整できる。 You can make it. As a result, the propulsive force and lift force can be changed during flight by adjusting the distribution of the upper and lower flapping angles and the distribution of the upper and lower feathering angles. For example, the ascending angle and the descending angle of the flapping flight apparatus 10 can be adjusted.
[0040] また、飛行中に、例えばリモコン装置等によって、前側斜め部材 48及び後側斜め部 材 50にそれぞれ設けられている長さ伸縮機構 61、 63と、前側斜め部材 49及び後側 斜め部材 51にそれぞれ設けられている長さ伸縮機構 62、 64を独立して駆動させる ことにより、前側斜め部材 48、 49及び後側斜め部材 50、 51の長さを独立に伸縮す ることができ、例えば、図 17 (A)、(B)に示すように、左の翼体 12と連結する上支点 部 43の胴体部 11に対する高さ位置を、右の翼体 13と連結する上支点部 44の胴体 部 11に対する高さ位置より高くすることができる。 [0040] Further, during flight, for example, by a remote control device, the length extension / contraction mechanisms 61 and 63 provided on the front oblique member 48 and the rear oblique member 50, the front oblique member 49, and the rear oblique member are provided. By independently driving the length expansion and contraction mechanisms 62 and 64 provided in 51, the lengths of the front diagonal members 48 and 49 and the rear diagonal members 50 and 51 can be expanded and contracted independently. For example, as shown in FIGS. 17A and 17B, the height of the upper fulcrum 43 connected to the left wing 12 with respect to the body 11 is set to the upper fulcrum 44 connected to the right wing 13. It can be made higher than the height position with respect to the body part 11.
これによつて、翼体 12の上フラッピング角 Θ を翼体 13の上フラッピング角 Θ より ul2 ul3 大きくし、翼体 12の下フラッピング角 Θ を翼体 13の下フラッピング角 Θ より小さく dl2 dl3 することができる。その結果、翼体 12に加わる空気力の大きさ及び方向と、翼体 13に 加わる空気力の大きさ及び方向を別々に変えることができ、尾翼を用いることなく直 進飛行力 旋回飛行に移行することが可能になる。  As a result, the upper flapping angle Θ of the wing body 12 is made ul2 ul3 larger than the upper flapping angle Θ of the wing body 13, and the lower flapping angle Θ of the wing body 12 is made smaller than the lower flapping angle Θ of the wing body 13. Can be small dl2 dl3. As a result, the magnitude and direction of the aerodynamic force applied to the wing body 12 and the magnitude and direction of the aerodynamic force applied to the wing body 13 can be changed separately, and transition to straight flight power and swirl flight without using the tail wing It becomes possible to do.
[0041] 更に、回転駆動源の運転を止めて左右の翼体 12、 13のフラッピング運動及びフエザ リング運動を停止させて羽ばたき式飛行装置 10が慣性飛行を行なって ヽるときに、 例えば、リモコン装置によって、前後駆動機構 60を操作して回動連結機構 59を同時 に同一方向に実質的に同一距離だけ移動させて上支点部 43 (44)の胴体部 11に 対する高さ位置を一定にして胴体部 11に対して前後に移動させると、左右の翼体 12 、 13の迎え角を変更することができ、翼体 12、 13に働く空気力のベクトルを変化させ て、上昇飛行又は下降飛行に移行できる。なお、回動連結機構 59を同時に反対方 向に実質的に同一距離だけ移動させて上支点部 43 (44)の胴体部 11に対する前後 位置を一定にして胴体部 11に対して上下に移動させても、回動連結機構 59を独立 に移動させて上支点部 43 (44)を胴体部 11に対して前後及び上下に移動させるよう にして、左右の翼体 12、 13の迎え角を変更することもできる。  [0041] Further, when the operation of the rotary drive source is stopped to stop the flapping motion and the feathering motion of the left and right wing bodies 12, 13, and the flapping flight device 10 performs inertial flight, for example, The height of the upper fulcrum 43 (44) with respect to the body 11 is fixed by operating the front / rear drive mechanism 60 by the remote control device and simultaneously moving the pivot coupling mechanism 59 by the same distance in the same direction. When the body 11 is moved back and forth, the angle of attack of the left and right wings 12 and 13 can be changed, and the vector of the aerodynamic force acting on the wings 12 and 13 can be changed to fly up or You can transition to descending flight. In addition, the pivot coupling mechanism 59 is simultaneously moved in the opposite direction by substantially the same distance to move the upper fulcrum portion 43 (44) up and down with respect to the body portion 11 with the front-rear position with respect to the body portion 11 being constant. However, the angle of attack of the left and right wing bodies 12 and 13 is changed by moving the pivot coupling mechanism 59 independently and moving the upper fulcrum 43 (44) back and forth and up and down with respect to the body 11. You can also
[0042] また、回転駆動源の運転を止めて左右の翼体 12、 13のフラッピング運動及びフエザ リング運動を停止させて羽ばたき式飛行装置 10が慣性飛行を行なって ヽるときに、 左右の揺動支持部材 41、 42の前後駆動機構 60及び上下移動機構 60aのいずれか 一方又は双方をそれぞれ独立に操作して、左右の上支点部 43、 44の胴体部 11に 対する上下位置、又は胴体部 11に対する前後及び上下位置が異なるようにする。こ れによって、左右の翼体 12、 13で迎え角が異なることにより左右の翼体 12、 13に作 用する空気力のベクトルも異なり、旋回飛行に移行することができる。 [0042] Further, when the flapping motion and the feathering motion of the left and right wing bodies 12 and 13 are stopped by stopping the operation of the rotary drive source and the flapping flight device 10 performs inertial flight, Either or both of the front and rear drive mechanism 60 and the vertical movement mechanism 60a of the swing support members 41 and 42 are independently operated to move the body portions 11 of the left and right upper fulcrum portions 43 and 44. The vertical position or the vertical and vertical positions relative to the body part 11 should be different. As a result, the angle of attack between the left and right wing bodies 12 and 13 is different, and the vector of the aerodynamic force acting on the left and right wing bodies 12 and 13 is also different.
実験例  Experimental example
[0043] 次に、図 19、図 20を参照しながら、フラッピング運動にフエザリング運動を加えた場 合の作用、効果を確認する実験について説明する。  Next, with reference to FIGS. 19 and 20, an experiment for confirming the action and effect when the feathering motion is added to the flapping motion will be described.
図 19 (A)はフラッピング運動とフ ザリング運動を連動させた場合の風速と空気力( 揚力方向)を示すグラフ、 (B)はフラッピング運動のみの風速と空気力(揚力方向)の 関係を示すグラフである。フラッピング運動のみの場合は、風速 (横軸)を上げても仰 角を増やさなければ正の揚力は生じないが、フ ザリング運動と連動させるとほぼど の仰角でも正の揚力を生じている。  Figure 19 (A) is a graph showing the wind speed and aerodynamic force (lift direction) when the flapping motion and the fusing motion are linked, and (B) is the relationship between the wind speed and aerodynamic force (lift direction) of the flapping motion only. It is a graph which shows. In the case of flapping motion only, even if the wind speed (horizontal axis) is increased, if the elevation angle is not increased, positive lift will not occur, but if linked to the fusing motion, positive lift will be generated at almost any elevation angle. .
[0044] 図 20 (A)はフラッピング運動とフ ザリング運動を連動させた場合の風速と空気力( 推力方向)を示すグラフ、 (B)はフラッピング運動のみの風速と空気力(推力方向)の 関係を示すグラフである。風速 (横軸)を上げると抵抗が増すので、フラッピング運動 のみの場合は、推力は負の値になってしまうが、フラッピング運動とフエザリング運動 を連動させると風速を増してもほぼ正の推力を発生して!/、る。  [0044] Fig. 20 (A) is a graph showing the wind speed and aerodynamic force (thrust direction) when the flapping motion and the fusing motion are linked, and (B) is the wind velocity and aerodynamic force (thrust direction) of the flapping motion only. ) Is a graph showing the relationship. As the wind speed (horizontal axis) is increased, the resistance increases, so if only the flapping motion is used, the thrust will be negative.However, if the flapping motion and the feathering motion are linked together, even if the wind speed is increased, the thrust will be almost positive. Generate thrust!
[0045] 以上、本発明の実施例を説明した力 本発明は、この実施例に限定されるものでは なぐ発明の要旨を変更しない範囲での変更は可能であり、前記したそれぞれの実 施例や変形例の一部又は全部を組み合わせて本発明の羽ばたき式飛行装置を構 成する場合も本発明の権利範囲に含まれる。  [0045] As described above, the power of explaining the embodiment of the present invention The present invention is not limited to this embodiment, and can be changed without changing the gist of the invention. The case where the flapping flight apparatus of the present invention is configured by combining a part or all of the modified examples is also included in the scope of the right of the present invention.
例えば、本発明の羽ばたき式飛行装置には尾翼を設けなかったが、尾翼を取付ける こともできる。尾翼を取付けることにより、左右の翼体を羽ばた力せた際の反力で胴体 部が揺れるのを防止でき、安定した飛行を行なうことができる。また、飛行中に、翼体 の羽ばたき動作を行なわな 、状態でも、左右の翼体と連結する上支点部の胴体部に 対する上下及び前後位置を変化することにより、直進飛行から上昇飛行、下降飛行 、及び旋回飛行の 、ずれか 1に移行することが可能になる。  For example, the flapping flight device of the present invention does not have a tail, but a tail can be attached. By attaching the tail wing, it is possible to prevent the fuselage from shaking due to the reaction force when the left and right wings are flapping, and stable flight can be performed. In addition, even if the wings do not flutter during flight, by changing the vertical and front / rear positions of the upper fulcrum body connected to the left and right wings, it is possible to fly up and down from straight flight. It is possible to shift to 1 between flying and turning flight.
なお、クランクロッド 22、背骨材 40、翼前支持材 24、 25、後側フレーム 26、 27、揺動 支持部材 41、 42の連結はピン又は軸を用いて回動可能に連結しているが、弾性部 材又は自由に繰り返し折り曲げ可能な部材を用いて、回動可能又は繰り返し屈曲可 能に連結することもできる。 The crank rod 22, the backbone 40, the wing front support members 24 and 25, the rear frames 26 and 27, and the swing support members 41 and 42 are connected rotatably using pins or shafts. , Elastic part It is also possible to use a material or a member that can be bent repeatedly and can be connected so that it can rotate or bend repeatedly.
[0046] また、飛行中に、前側斜め部材及び後側斜め部材の長さを独立に伸縮させながら、 下支点部の位置をそれぞれ独立に変化させることにより、左右の翼体のフラッピング 角及びフエザリング角を同時に独立に変化させて、羽ばたき式飛行装置に作用する 空気力のベクトルを変化させることもできる。  [0046] Further, during flight, the positions of the lower fulcrum portions are independently changed while the lengths of the front and rear oblique members are independently expanded and contracted, so that the flapping angles of the left and right wing bodies and It is also possible to change the aerodynamic vector acting on the flapping flight system by simultaneously changing the feathering angle independently.
産業上の利用可能性  Industrial applicability
[0047] 本発明に係る羽ばたき式飛行装置の産業上の利用分野として、次の分野がある。  [0047] The industrial fields of the flapping flight apparatus according to the present invention include the following fields.
( 1)模型飛行機等の玩具分野  (1) Toys such as model airplanes
回転動力源が 1つで、簡単な機構で左右の翼体のフラッピング運動及びフエザリング 運動を実現して ヽるので、低コストで故障発生が少な ヽ玩具を提供できる。  With a single rotational power source, a simple mechanism realizes the flapping and feathering movements of the left and right wings, so it is possible to provide a kite toy that is low in cost and has few failures.
(2)災害救援ロボット分野  (2) Disaster relief robot field
無線操縦化して撮影装置 (例えば、 CCDカメラや赤外線カメラ)を搭載することによつ て、例えば半倒壊した建物の中など、狭くあるいは危険で容易に人間の近づけない 場所に ヽち早く到着して生存者を発見するなど、災害発生時の迅速な被災状況把 握や人命救助が可能になる。  By adopting radio control and mounting an imaging device (for example, a CCD camera or an infrared camera), it arrives quickly in a narrow or dangerous place that is not easily accessible by humans, such as in a partially collapsed building. This makes it possible to quickly find out the status of disasters and save lives when a disaster occurs.
(3)大気探査ロボット分野  (3) Atmospheric exploration robot field
自律飛行を可能にして、例えば空港周辺で風の観測を行えば、離着陸時の航空機 を危険にさらすマイクロバーストを検知することができ、大気の分析装置を搭載して火 山の火口上空を飛行させれば噴火活動把握に貢献させることができ、もちろん温室 効果ガス (二酸ィ匕炭素など)や大気汚染の観測にも利用できる。さらにデータ送信装 置を搭載して惑星探査機力 放出して惑星大気中を飛行させれば従来行われてき たパラシュートによる降下に比べより広範囲での観測が可能になる。  For example, if the wind is observed around the airport, it can detect microbursts that endanger the aircraft during take-off and landing, and it is equipped with an atmospheric analyzer to fly over the crater of the volcano. By doing so, it can contribute to understanding eruption activities, and of course, it can also be used to observe greenhouse gases (such as carbon dioxide and carbon dioxide) and air pollution. In addition, if a data transmission device is installed and the planetary explorer power is released to fly through the planetary atmosphere, a wider range of observations will be possible compared to the conventional parachute descent.

Claims

請求の範囲 The scope of the claims
[1] (1)胴体部と、  [1] (1) The body part,
(2)回転駆動源によって回転駆動され、回転軸が前記胴体部に対して左右方向を向 いて該胴体部内に配置されるクランク部材、及び該クランク部材に連結されて前後動 すると共に上下動するクランクロッドを有するクランク機構と、  (2) Rotation driven by a rotation drive source, the rotation axis of which is disposed in the body part with the rotation axis facing in the left-right direction, and connected to the crank member to move back and forth and move up and down A crank mechanism having a crank rod;
(3)前記胴体部の軸心の直上にあって、前記クランクロッドの上端部にその前端部が 一定角度で連結された背骨材と、  (3) a spine that is directly above the axis of the body part, and whose front end is connected to the upper end of the crank rod at a constant angle;
(4)前記背骨材の前端部に内側端部が回動可能に連結された左右の翼前支持材と 、前記背骨材を中心にして左右の前記翼前支持材の間に張られかつ中央部で前記 背骨材に固定されて折れ曲がり可能な翼シートとを有する左右対となる翼体と、 (4) The left and right wing front support members whose inner end portions are rotatably connected to the front end portion of the spine material, and are stretched between the left and right wing front support materials around the spine material and the center. A pair of left and right wing bodies having a wing sheet that is fixed to the backbone material and can be bent at a portion;
(5)前記胴体部に揺動可能に取付けられて、前記左右の翼前支持材の中間部をそ れぞれ支持する左右の揺動支持部材とを有し、 (5) left and right swing support members attached to the body portion so as to be swingable and supporting intermediate portions of the left and right wing front support members,
前記クランク部材の回転によって前記クランクロッドを昇降し、前記対となる翼体を上 下に動かすフラッピング運動と、前記対となる翼体に捩じり動作を与えるフ ザリング 運動とを同時に与えることを特徴とする羽ばたき式飛行装置。  The crank rod is moved up and down by the rotation of the crank member, and a flapping motion for moving the paired wings up and down and a fuzzing motion for twisting the paired wings are given simultaneously. Flapping flight device characterized by.
[2] 請求項 1記載の羽ばたき式飛行装置にぉ 、て、前記クランク部材は回転円板と、そ の周囲に設けられたピンを有し、前記クランクロッドの下端部は前記ピンに回転自由 に連結されて ヽることを特徴とする羽ばたき式飛行装置。 [2] In the flapping flight apparatus according to claim 1, the crank member has a rotating disk and a pin provided around the rotating disk, and a lower end portion of the crank rod is freely rotatable on the pin. A flapping flight device characterized by being connected to the wing.
[3] 請求項 1及び 2の 、ずれか 1項に記載の羽ばたき式飛行装置にお!、て、前記左右の 揺動支持部材は、それぞれ前記胴体部に下端部が連結される前側斜め部材と後側 斜め部材とを有することを特徴とする羽ばたき式飛行装置。 [3] In the flapping flight apparatus according to any one of claims 1 and 2, the left and right swing support members are front diagonal members whose lower end portions are connected to the body portion, respectively. A flapping flight apparatus comprising a slanted member on the rear side.
[4] 請求項 3記載の羽ばたき式飛行装置にお!、て、前記前側斜め部材及び前記後側斜 め部材のいずれか一方又は双方は、前後動調整可能に前記胴体部に取付けられて[4] In the flapping flight apparatus according to claim 3, one or both of the front oblique member and the rear oblique member are attached to the body portion so as to be adjustable in the longitudinal direction.
Vヽることを特徴とする羽ばたき式飛行装置。 V Flapping flight device characterized by slamming.
[5] 請求項 3及び 4の 、ずれか 1項に記載の羽ばたき式飛行装置にお!、て、前記前側斜 め部材及び前記後側斜め部材の 、ずれか一方又は双方は、上下動調整可能に前 記胴体部に取付けられて ヽることを特徴とする羽ばたき式飛行装置。 [5] In the flapping flight apparatus according to any one of claims 3 and 4, wherein either one or both of the front side slanting member and the rear side slanting member is adjusted up and down. A flapping flight device characterized by being attached to the fuselage as possible.
[6] 請求項 3〜5の 、ずれか 1項に記載の羽ばたき式飛行装置にお!、て、前記前側斜め 部材及び前記後側斜め部材の 、ずれか一方又は双方は、伸縮調整可能になって 、 ることを特徴とする羽ばたき式飛行装置。 [6] In the flapping flight apparatus according to claim 3 in any one of claims 3 to 5,! One or both of the displacement of the member and the rear oblique member can be expanded and contracted, and the flapping flight apparatus is characterized in that
[7] 請求項 1〜6のいずれか 1項に記載の羽ばたき式飛行装置において、前記クランク口 ッドは、伸縮調整可能になって 、ることを特徴とする羽ばたき式飛行装置。  [7] The flapping flight apparatus according to any one of claims 1 to 6, wherein the crank mouth is adjustable in expansion and contraction.
[8] 請求項 1〜7のいずれか 1項に記載の羽ばたき式飛行装置において、前記クランク部 材の回転駆動源として、ゴム巻き動力、モータ又はエンジンを有することを特徴とする 羽ばたき式飛行装置。  [8] The flapping flight apparatus according to any one of claims 1 to 7, wherein the flapping flight apparatus has rubber winding power, a motor, or an engine as a rotational drive source of the crank member. .
PCT/JP2006/316989 2005-08-30 2006-08-29 Wing-flapping flying apparatus WO2007026701A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007533258A JP4150799B2 (en) 2005-08-30 2006-08-29 Flapping flight equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005249996 2005-08-30
JP2005-249996 2005-08-30

Publications (1)

Publication Number Publication Date
WO2007026701A1 true WO2007026701A1 (en) 2007-03-08

Family

ID=37808788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316989 WO2007026701A1 (en) 2005-08-30 2006-08-29 Wing-flapping flying apparatus

Country Status (2)

Country Link
JP (1) JP4150799B2 (en)
WO (1) WO2007026701A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120115390A1 (en) * 2009-07-28 2012-05-10 Kyushu Institute Of Technology Flapping flying robot
CN102556347A (en) * 2011-11-17 2012-07-11 沈阳航空航天大学 Novel flapping wing delta wing
CN105035290A (en) * 2015-07-02 2015-11-11 哈尔滨工程大学 Bionic propulsion device capable of backing up underwater
US9216823B2 (en) 2013-03-15 2015-12-22 Francois MATTE Wing flapping mechanism and method
EP2437980A4 (en) * 2009-06-05 2016-03-23 Aerovironment Inc Air vehicle flight mechanism and control method
CN106986021A (en) * 2016-01-21 2017-07-28 李维农 It is a kind of to include the compound machine scheme of fluttering its wings up and down fluttered its wings up and down
CN107200129A (en) * 2017-06-22 2017-09-26 武汉科技大学 A kind of coupling driving bionic flapping-wing flying vehicle
KR101873422B1 (en) 2017-04-03 2018-07-02 이상철 rotating horizontal wing flight device
CN108248856A (en) * 2018-01-02 2018-07-06 南京航空航天大学 Double crank rocker is double to wing flapping wing aircraft and its method of work without difference
US10065737B2 (en) 2011-02-16 2018-09-04 Aerovironment, Inc. Air vehicle flight mechanism and control method for non-sinusoidal wing flapping
WO2018164170A1 (en) * 2017-03-09 2018-09-13 学校法人東京電機大学 Ornithopter
WO2021047988A1 (en) * 2019-09-13 2021-03-18 Technische Universiteit Delft Attitude control mechanism for a flapping wing aerial vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100894968B1 (en) * 2008-11-18 2009-04-24 목포시 Device for driving formative structure and formative structure using the same
CN102180267A (en) * 2011-04-22 2011-09-14 南京航空航天大学 Umbrella-shaped foldable multi-rotor aircraft
KR101477687B1 (en) * 2013-04-03 2014-12-30 건국대학교 산학협력단 Flapping-wing system having a pitching moment generator for longitudinal attitude control
WO2014172672A1 (en) * 2013-04-19 2014-10-23 New York University Flapping wing device
CN109018338B (en) * 2018-07-23 2021-10-15 黄永胜 Bionic flapping wing flight mechanism and aircraft

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1564469A (en) * 1925-04-13 1925-12-08 Henry M Cosey Aeroplane
US1835630A (en) * 1930-01-13 1931-12-08 Glenn H Bowlus Airplane
FR736100A (en) * 1931-05-04 1932-11-18 Improvements to airplanes
US1980002A (en) * 1931-06-30 1934-11-06 Evan P Savidge Aircraft
FR960496A (en) * 1950-04-20
DE1025275B (en) * 1956-09-08 1958-02-27 Martin Reindl Hydraulic gear for flapping wings or fins
JPH05178293A (en) * 1991-12-27 1993-07-20 Komota Masayuki Flapping airplane
JPH06287839A (en) * 1993-03-29 1994-10-11 Komano:Kk Loom stopper
FR2776937A1 (en) * 1998-04-07 1999-10-08 Albert Kempf Flapping wing mechanism for a model aircraft

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR960496A (en) * 1950-04-20
US1564469A (en) * 1925-04-13 1925-12-08 Henry M Cosey Aeroplane
US1835630A (en) * 1930-01-13 1931-12-08 Glenn H Bowlus Airplane
FR736100A (en) * 1931-05-04 1932-11-18 Improvements to airplanes
US1980002A (en) * 1931-06-30 1934-11-06 Evan P Savidge Aircraft
DE1025275B (en) * 1956-09-08 1958-02-27 Martin Reindl Hydraulic gear for flapping wings or fins
JPH05178293A (en) * 1991-12-27 1993-07-20 Komota Masayuki Flapping airplane
JPH06287839A (en) * 1993-03-29 1994-10-11 Komano:Kk Loom stopper
FR2776937A1 (en) * 1998-04-07 1999-10-08 Albert Kempf Flapping wing mechanism for a model aircraft

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10266258B2 (en) 2009-06-05 2019-04-23 Aerovironment, Inc. Air vehicle flight mechanism and control method
EP2437980A4 (en) * 2009-06-05 2016-03-23 Aerovironment Inc Air vehicle flight mechanism and control method
US10919623B2 (en) 2009-06-05 2021-02-16 Aerovironment, Inc. Air vehicle flight mechanism and control method
US9950790B2 (en) 2009-06-05 2018-04-24 Aerovironment, Inc. Air vehicle flight mechanism and control method
US9957044B2 (en) 2009-06-05 2018-05-01 Aerovironment, Inc. Air vehicle flight mechanism and control method
US9016619B2 (en) * 2009-07-28 2015-04-28 Kyushu Institute Of Technology Flapping flying robot
US20120115390A1 (en) * 2009-07-28 2012-05-10 Kyushu Institute Of Technology Flapping flying robot
US10850837B2 (en) 2011-02-16 2020-12-01 Aerovironment, Inc. Air vehicle flight mechanism and control method for non-sinusoidal wing flapping
US10065737B2 (en) 2011-02-16 2018-09-04 Aerovironment, Inc. Air vehicle flight mechanism and control method for non-sinusoidal wing flapping
CN102556347A (en) * 2011-11-17 2012-07-11 沈阳航空航天大学 Novel flapping wing delta wing
US9216823B2 (en) 2013-03-15 2015-12-22 Francois MATTE Wing flapping mechanism and method
CN105035290A (en) * 2015-07-02 2015-11-11 哈尔滨工程大学 Bionic propulsion device capable of backing up underwater
CN106986021A (en) * 2016-01-21 2017-07-28 李维农 It is a kind of to include the compound machine scheme of fluttering its wings up and down fluttered its wings up and down
WO2018164170A1 (en) * 2017-03-09 2018-09-13 学校法人東京電機大学 Ornithopter
KR101873422B1 (en) 2017-04-03 2018-07-02 이상철 rotating horizontal wing flight device
CN107200129A (en) * 2017-06-22 2017-09-26 武汉科技大学 A kind of coupling driving bionic flapping-wing flying vehicle
CN107200129B (en) * 2017-06-22 2023-03-31 武汉科技大学 Coupling driving bionic flapping wing aircraft
CN108248856B (en) * 2018-01-02 2020-11-06 南京航空航天大学 Double-crank rocker phase-difference-free double-pair-wing flapping wing aircraft and working method thereof
CN108248856A (en) * 2018-01-02 2018-07-06 南京航空航天大学 Double crank rocker is double to wing flapping wing aircraft and its method of work without difference
WO2021047988A1 (en) * 2019-09-13 2021-03-18 Technische Universiteit Delft Attitude control mechanism for a flapping wing aerial vehicle
NL2023828B1 (en) * 2019-09-13 2021-05-18 Univ Delft Tech Attitude control mechanism for a flapping wing aerial vehicle

Also Published As

Publication number Publication date
JPWO2007026701A1 (en) 2009-03-26
JP4150799B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
WO2007026701A1 (en) Wing-flapping flying apparatus
US10850837B2 (en) Air vehicle flight mechanism and control method for non-sinusoidal wing flapping
KR102018970B1 (en) Rotorcraft
KR101744721B1 (en) Insect-like tailless flapping-wing micro air vehicle
KR20060030317A (en) Actuation system of ornithopter
WO2009062407A1 (en) Single rotor model helicopter with improved stability behavior
CN110171568A (en) One kind can hover flapping wing aircraft
WO2017126964A1 (en) Multiple pairs of flapping wings for attitude control
CN107416198B (en) Aircraft and flight method thereof
WO2012112816A1 (en) Air vehicle flight mechanism and control method for non-sinusoidal wing flapping
JP2020026270A (en) Rotary wing aircraft
JP6550563B2 (en) Rotorcraft
JP2011195050A (en) Small flight device
JP2006027588A (en) Small-sized flying device
JP2012180050A (en) Flapping flight device
WO2019076341A1 (en) Flap retraction and releasing apparatus
JP2006142913A (en) Small flight machine
JPWO2019234945A1 (en) Electronic parts and aircraft equipped with the electronic parts
JP6607480B1 (en) Rotorcraft
KR200336766Y1 (en) Driving mechanism of ornithopter
JP6550562B2 (en) Rotorcraft
JP5857658B2 (en) Flapping robot
KR101826230B1 (en) Ornithopter
KR102381052B1 (en) VTOL Drone
KR20050011646A (en) Driving mechanism of ornithopter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007533258

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796966

Country of ref document: EP

Kind code of ref document: A1