WO2007023575A1 - Mapping sensor system - Google Patents

Mapping sensor system Download PDF

Info

Publication number
WO2007023575A1
WO2007023575A1 PCT/JP2005/018747 JP2005018747W WO2007023575A1 WO 2007023575 A1 WO2007023575 A1 WO 2007023575A1 JP 2005018747 W JP2005018747 W JP 2005018747W WO 2007023575 A1 WO2007023575 A1 WO 2007023575A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sensor
detection
mapping
mapping sensor
Prior art date
Application number
PCT/JP2005/018747
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshitane Saitou
Kenji Nishikido
Original Assignee
Anywire Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anywire Corporation filed Critical Anywire Corporation
Priority to CN2005800513478A priority Critical patent/CN101238498B/en
Publication of WO2007023575A1 publication Critical patent/WO2007023575A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • H01L21/67265Position monitoring, e.g. misposition detection or presence detection of substrates stored in a container, a magazine, a carrier, a boat or the like
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C15/00Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
    • G08C15/06Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path successively, i.e. using time division
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67778Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving loading and unloading of wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Definitions

  • the present invention relates to a muffing sensor system that detects the presence or absence or storage position of a flat article, a fixed article, and the like.
  • the present invention relates to a tumbling sensor system that detects the presence or absence of a thin plate in a liquid crystal factory, or the presence or absence of a semiconductor wafer in a semiconductor factory, or a storage position.
  • detecting the presence or absence or storage position of the flat article or article in a fixed form is a process of manufacturing or using these articles. It is an important requirement to store and manage objects in the factory, and to realize the automation of the process in the production line, inspection line or storage management by transferring this information to the host system and the automation machine of the next process.
  • the presence or absence and storage position of semiconductor wafer in a semiconductor factory are detected by a mapping sensor, and the above detection result data is delivered to automated manufacturing equipment, inspection equipment, storage management equipment to automate the line, or for liquid crystal Mapping sensors are also used in the production of glass, glass plates for disks, printed circuit boards, etc. in the same manner as described above.
  • the presence or absence or storage position of the article is detected by the mapping sensor.
  • the above-mentioned mapping sensor is provided with a detection head having a light emitting element and a light receiving element, and a detecting device such as a wafer or the like using this mapping sensor or a mapping sensor is disclosed in Patent Documents 1 to 4.
  • Patent Documents 1 and 2 use a compact bi-directional detection head capable of projecting or receiving light in two directions opposite to each other mainly with a prism structure including a pair of prisms, which are used for projecting light and receiving light.
  • a detection device such as a wafer arrayed alternately for use is disclosed.
  • a detection device such as a Whaha et al.
  • one light emitting element or light receiving element corresponds to two detection optical axes that are reversed in a straight line, that is, a pair of light emitting elements supported by a fiber holder. Since the incident optical axis or the output optical axis in the reflecting prism is along one straight line, the number of light emitting elements and light receiving elements can be saved and Now it is possible to detect the position of dense owha etc.
  • a prism structure including a pair of prisms is formed of a transparent resin, and compact single-sided detection heads capable of projecting or receiving light in two opposite directions.
  • a fiber sensor detection head is disclosed in which a polarity detection head is configured, and bidirectional light emitting and receiving heads are alternately arranged.
  • the detection head for a fiber sensor configured in this way one light emitting element or light receiving element can be made to correspond to two detected light axes, so that a large number of thin articles arranged in series can be detected. It has become.
  • Patent Document 4 discloses a wafer sensor that optically couples a light emitting element of a main body case and a light receiving element via a light emitting portion and a light receiving portion provided in a detection head.
  • electrical wiring can be performed extremely easily, and even when an individual detection head fails, it is sufficient to replace only the detection head without performing wiring work. Therefore, daily maintenance and inspection can be easily performed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-074331 (Paragraph [0006], Paragraph [0019])
  • Patent Document 2 Japanese Patent Application Laid-Open No. 11-074332 (Paragraph [0006], Paragraph [0019])
  • Patent Document 3 Japanese Patent Application Laid-Open No. 11-064101 (Paragraph [0018])
  • Patent Document 4 Japanese Patent Application Laid-Open No. 10-070176 (paragraph [0014])
  • the light projection element is made to correspond to the two detection light axes which are contradicted in a straight line.
  • the number of light receiving elements can be reduced, or electrical connection can be made easily by optically coupling the light emitting element and the light receiving element, but as the number of mapping sensors increases, the number of electrical signal wiring can be increased. For example, signal lines and power supply lines are wired for each mapping sensor group around the mapping sensor, and these signals are received. Connection to the host system or automation equipment It is necessary to wire each of the mapping sensors for each terminal location.
  • each detection head is operating at the same time, and the power consumption of the circuit increases and the power supply capacity also increases in proportion to the number of mapping sensors. There was also a malfunction of malfunction due to
  • the present invention superimposes detection information of an object to be detected on a common signal line, that is, a line carrying power for operating a terminal, reduces connection of a power source and a signal line, and emits light from each mapping sensor.
  • the structure and adjustment that can perform each sensor sensitivity adjustment simply from both the left and right while having the light emission drive circuit and the light reception timing adjustment circuit which suppress the interference of the mutual mapping sensor by time-dividing the light reception operation timing. It has a circuit.
  • sensor sensitivity adjustment is completed, and a display indicating that the circuit operation is normal can also be confirmed with multi-directional force, and the amount of power at the time of operation of the mapping sensor system can be reduced. Installation and adjustment can be facilitated, and wiring saving and wiring work can be simplified.
  • the first object of the present invention is to reduce wiring and connection of the power supply and the signal line, and to connect the easy-to-wiring connection even if the number of mapping sensors is increased. It is an object of the present invention to provide a mapping sensor system capable of suppressing the interference of mapping sensors with each other.
  • the second object of the present invention is that each sensor sensitivity adjustment can be performed simply from both right and left directions, and when the sensor sensitivity adjustment is completed, a display indicating that the circuit operation is normal can also confirm multi-directional force , Providing a mapping sensor system.
  • the third object of the present invention is to reduce the amount of power during operation of the mapping sensor group and to facilitate the installation and preparation, and further simplify the wiring work by omitting the wiring.
  • the invention according to claim 1 is a sensor unit (124) of a controlled unit.
  • the mapping sensor (111) which has mapping sensors (111) that are a plurality of detection heads that monitor the sensor, is connected to the common data signal line (11, 12), and from the sensor unit (124) The monitoring signal is transmitted to the control unit (24) through the common data signal line (11, 12).
  • the signal from the mapping sensor (111) is superimposed on the power from the power supply, and each signal is transferred by the shift register structure, and the respective mapping sensors (111) are transmitted.
  • the number of signal lines can be set to two power supply lines (common data signal line D + (common data signal line D 11) and 0- (12)), which makes it possible to greatly reduce the number of wires.
  • common data signal line D + common data signal line D 11
  • 0- (12) common data signal line
  • the invention according to claim 2 is a light projection synchronized with a predetermined synchronous transmission clock as shown in FIGS. 1 to 3 and 7, 9, 11, 12, 13 and 17.
  • a timing shift signal generation circuit (113, 120, 121, 122) for generating a timing shift signal (60) or a timing shift signal, and control of a light projection timing shift signal (60) or a timing shift signal.
  • mapping sensor (111) which is a plurality of detection heads for detecting the detection object (8)
  • a projection signal generation circuit (114) for causing the detection light projectors (18) in the individual mapping sensors to emit light sequentially based on the synchronous transmission clock and the single detection light projector (18) or the plurality of detection light projectors;
  • An operation display circuit (118) which holds a single detection light reception signal (5) or a plurality of detection light reception signals according to the light emission timing of a single detection light projector (18) or a plurality of detection light projectors.
  • a transmission output signal circuit (117) for transmitting a single detection light reception signal (5) or a plurality of detection light reception signals to the common data signal line (11, 12) as a monitoring signal. It is a mapping sensor system characterized by the above.
  • mapping sensor system by operating each of the mapping sensors (111) in time division, the problem of light interference from each other mapping sensor (111) can be solved. At the same time, it is possible to curb the increase in circuit operating current, resulting in smaller equipment and reduced equipment costs.
  • the detection light projector (18) configured in the mapping sensor (111) which is each detection head for detecting the detection target, is sequentially based on the synchronous transmission clock.
  • Light is emitted individually, and the light reception signal for detection is held according to the light emission timing, and this detection light reception signal is sent as a monitoring signal to the common data signal line (11, 12). It is possible to minimize the current due to the light operation and solve the light interference problem.
  • the invention according to claim 3 is the mapping sensor system according to claim 1 or 2 as shown in FIG. 1, FIG. 2, FIG. 3 or FIG. Mapping sensors that are multiple detection heads by sequentially sending, as electrical signals, timing movement signals at sequential addresses of the mapping sensor (111) that is the detection head, to the mapping sensor (111) that is the next detection head.
  • This mapping sensor system is characterized in that it can capture sensor signals from (111).
  • time-division operation of each of the mapping sensors (111) eliminates interference with other sensor operations, and the luminance from the outside can be increased by increasing the light emission luminance. Can improve the intensity ratio of light noise, and The sensitivity of detection can be easily adjusted as well as the detection sensitivity to the detection object is enhanced.
  • the number of displays can be reduced by changing the sensor operation display, which indicates that sensitivity adjustment is being properly performed, to a multi-directional display that can be easily viewed from multiple directions, and the circuit current and circuit cost can be reduced. Therefore, the number of wires and connections can be reduced, operation adjustment can be simplified, and adjustment can be omitted, and the burden of installation and periodic adjustment can be significantly reduced.
  • the invention according to claim 4 is, as shown in FIG. 1 to FIG. 3, FIG. 7 or FIG.
  • a mapping sensor system characterized in that a plurality of arbitrary detection heads, that is, a mapping sensor (111) force sensor signal, can be taken in by sequentially sending a light emission signal to a mapping sensor (111) which is the next detection head.
  • mapping sensor system a plurality of arbitrary detection heads are sequentially sent as a light projection signal to the mapping sensor (111) which is the next detection head, the timing movement signal of the sequential address.
  • the sensor signal can be taken from the mapping sensor (111).
  • the invention according to claim 5 is the mapping sensor system according to claim 1 or 2, as shown in FIG. 1, FIG. 2, FIG. 7 or FIG. 9, FIG. 11, FIG. ,
  • the detection sensitivity adjustment variable resistors (19, 20) are provided on the left and right of the mapping sensor (111) which is the detection head, and a single sensor operation display (23) is provided at a position where it can be confirmed from multiple directions.
  • It is a mapping sensor system characterized by
  • mapping sensor (111) uses fixed crossover wiring or superimposes a signal on the power supply line, so that the connection to the power supply superimposed common data signal line can be fixed simultaneously with the mapping sensor (111) fixed.
  • the number of wiring steps can be reduced by reducing the number of wiring lines.
  • the mapping sensor (111) is a plurality of detection heads. To the mounting plate 97, and using the crossover wiring (96) sequentially between each mapping sensor (111), transmit the timing movement signal and the power and transmission data signal of the power supply for circuits common to the detection head. Can be configured to
  • a common conductor (13) is provided on the mounting plate 1 to which the mapping sensor (111), which is a plurality of detection heads, is attached, and a mapping sensor (111) is provided on the conductor (13). ), And to transmit the power and transmission data signal of the circuit power supply common to the mapping sensor (111), which is the detection head.
  • the detection signal of the detection object by the mapping sensor is placed on the power supply line, that is, the signal wiring is omitted by superimposing the detection signal and the power of the power supply, thereby mapping Wiring between sensors and wiring between the mapping sensor and the master station can be omitted, and wiring man-hours can be reduced and wiring space can be reduced.
  • mapping sensors can be easily adjusted and changed, and the number of mapping sensors can be easily increased or decreased.
  • the mapping sensor since the mapping sensor receives light to the detection object at different timings in synchronization with the light projection timing, it is not affected by the other mapping sensor signals at all, and therefore the light emission amount is increased, and the sensitivity is high. Power consumption can be reduced during detection because detection is possible and light is not emitted at the same time.
  • signal transmission between the mapping sensors is performed using crossover wiring of the same standard, the interval between the mapping sensors can be easily set and changed. Furthermore, if the signal transmission between the adjacent mapping sensors is performed by light, the wiring between the mapping sensors can be further reduced.
  • FIG. 1 is a side view showing a plurality of mapping sensors (111) and an object to be detected (8) according to a first embodiment of the present invention.
  • FIG. 2 It is a schematic diagram which fixes those mapping sensors (111) to a mounting plate (1) by screwing, and is a perspective view which shows the attachment state of each component.
  • FIG. 5 is a block diagram showing details of functional blocks in a master station.
  • FIG. 7 is a circuit diagram of sensor slave station A.
  • FIG. 8 A timing chart showing changes in each signal in sensor slave station A.
  • FIG. 9 is a circuit diagram of a sensor slave station B.
  • FIG. 10 is a timing chart showing changes in each signal in sensor slave station B.
  • FIG. 11 A block diagram showing an example of transmission of a light projection signal and a light reception signal by the crossover wiring of the sensor slave station.
  • FIG. 12 The circuit diagram of the crossover type sensor slave station A to which the timing movement signal (87) for transmitting the light projection timing shift signal to the next sensor slave station B is added following the sensor slave station A. is there.
  • FIG. 10 is a circuit diagram of a station B.
  • FIG. 16 is a perspective view of relevant parts showing a state immediately before connection is made by connection between the bus cable connector (95) and the mapping sensor module (96).
  • FIG. 15 is a perspective view of relevant parts showing an example of fixing a mapping sensor module (103) to a DIN standard rail (99) and configuring a mapping sensor.
  • FIG. 16 is a circuit diagram of a sensor slave station A including a plurality of detection light emitting photodiodes LEDsn (107) and a plurality of detection light receiving phototransistors PHTRsn (108).
  • FIG. 17 A configuration diagram showing that a sensor section (124) of a controlled section of a conventional control system is replaced with a plurality of mapping sensors (111) including this sensor section.
  • FIG. 17 shows the entire mapping sensor system of the present invention.
  • reference numeral 124 in FIG. 17 denotes a force which is a sensor unit of a conventional controlled unit.
  • This mapping sensor system according to the present invention is a portion where this portion is replaced with the mapping sensor (111).
  • FIG. 1 shows a side view of a mapping sensor system according to the present invention.
  • the mapping sensor (111) comprises a plurality of mapping sensor slave stations (9, 7a to 7h) and a mounting plate (1) for mounting these sensor slave stations (9, 7a to 7h).
  • the mounting plate (1) is provided with a plate-like insulator (14) extending in the vertical direction and extending at a predetermined distance in the vertical direction and the surface is exposed to the insulator (14) And two square prism-like conductors (13, 13) embedded respectively (Fig. 2).
  • the plurality of mapping sensor slave stations (9, 7a to 7h) are fixed to the mounting plate (1) at predetermined intervals in the longitudinal direction.
  • two conductors (13, 13) transmit power from the power source to the mapping sensor slave station (9, 9) via the power superimposing common data signal line D + (11) and the power superimposing common data signal line D- (12). 7a to 7h), and also sends the monitoring signal of the sensor section (124) to the power-superimposed common data signal line D + (11) and the power-superimposed common data signal line D- (12).
  • FIG. 1 which is a schematic view
  • nine sets of mapping sensor slave stations (9, 7a to 7h) are fixed to a mounting plate (1).
  • more mapping sensors are attached to the mounting plate and used for ease of explanation. It is a thing.
  • FIG. 1 for example, only the sensor slave station A (9) located at the lowermost level has a sensor A circuit (FIG. 7) in which the circuit of station B (7a to 7h) (FIG. 9) and the signal transmission circuit are different is used.
  • FIG. 1 is an example of the case where the detection subject (8) is in the missing state.
  • the lower force also transmits the signal upward, but when transmitting the signal from top to bottom, the sensor slave station A (9) is provided at the top, and the sensor slave station B (7a Use ⁇ 7h)
  • FIG. 2 shows a schematic view of fixing the mapping sensor in the present invention to the mounting plate (1) by screwing.
  • the attached state of each part is shown in FIG.
  • a plurality of screw holes (15) are formed on the surfaces of the two conductors (13, 13) at predetermined intervals in the longitudinal direction of these conductors, and the screw holes of the conductors (13, 13) are formed.
  • the three surfaces other than the formed surface of (15) are covered with an insulator (14) to be electrically insulated, and these conductors (13, 13) are sensor slave station A (9) or a sensor It has sufficient strength to fix the slave station B (7a to 7h).
  • mapping sensor slave stations (9, 7a to 7h) are screwed with the mounting screw (16) for attaching the mapping sensor (111), which is the detection head, to the sensor slave station ( 9, 7a-7h) are fixed to the mounting plate (1).
  • the circuits (FIGS. 7 and 7) of the mapping sensor slave stations (9, 7a to 7h) are connected via the conductor (13) to the power supply superimposed common data signal line D + (11) and the power supply superimposed common data signal line D ⁇
  • the mapping sensor information that is, the information of the presence or absence of the detected object (8) detected by the sensor section (124) can be transmitted to the master station (29).
  • the light emitted from the LED for light emission (18) of the sensor section (124) is reflected by the object to be detected (8), The reflected light is received by the phototransistor PHTRs (17) for light reception of the sensor section (124) to detect the presence of the detected object (8), and the detected object (8) is positioned at a predetermined location. If not, the light emitted from the LED for light emission (18) of the sensor unit (124) is not reflected by the detection object (8), and the phototransistor PHTRs (17) for light reception of the sensor unit (124) It is configured not to receive the reflected light, and to detect that the object to be detected (8) is not present.
  • the light emitting LED (18) and the light receiving phototransistor PHTRs (17) can obtain optimum detection sensitivity by adjusting the number of mountings depending on the type of object to be detected.
  • the detection sensitivity of the sensor unit (124) can be adjusted by the detection sensitivity adjustment circuit (119).
  • This detection sensitivity adjustment circuit (119) is the right edge of each sensor slave station (9, 7a to 7h).
  • a left detection sensitivity adjustment volume VR1 (20) provided at the left edge of each sensor slave station (9, 7a to 7h).
  • the initial setting of each sensor slave station (9, 7a to 7h) and the detection sensitivity setting when replacing the sensor slave station (9, 7a to 7h) are the right detection sensitivity adjustment volume VRr (19) or the left detection sensitivity.
  • Adjustment volume V Rl (20) makes it easy to do while looking at the sensor activity indicator LED (23) from either side.
  • the address light emission LEDa (21) sends an address signal to the sensor slave station of the next address, which is received by the address light reception phototransistor PHTRa (22).
  • FIG. 3 shows a plurality of sensor slave stations (9, 7a to 7h) according to the present invention, a power superimposing common data signal line D + (11), a power superimposing common data signal line D- (12) and a master station 29), and a block diagram showing the connection status for data exchange between the master station (29) and the external input unit (25) and external output unit (26) of the control unit (24).
  • Fig. 3 shows a block diagram for transmitting signals between sensor slave stations (9, 7a to 7h) according to the present invention, thereby omitting the signal transmission line. It has become possible.
  • FIG. 4 shows a specific configuration of the master station (29) in FIG.
  • the master station (29) receives the mapping sensor information of a plurality of sensor slave stations via the power-superimposed common data signal line D + (11) and the power-superimposed common data signal line D- (12).
  • the transmission bleeder current circuit (40) which is the interface circuit of the master station (29), is connected to the line driver (34) in the master station output section (32), and receives control data generation means (33).
  • the control data is sent via the external signal connection (41) together with the clock signal sent from the timing generation means (36) to the power supply superimposed common data signal line D + (11) and the external signal connection (42). Send it to the power supply superimposed common data signal line D-(12).
  • the line driver (34) passes a data signal to the supervisory signal detection means (39) of the master station input unit (37), and the supervisory data extraction means (38) receives the timing generation means (36).
  • the monitor data signal is obtained in synchronization with the clock signal.
  • This supervisory data signal is passed to the input data section (30), and transmitted to the input unit (25) of the control section (24) as a master station transmission signal (27).
  • the output unit (26) of the control unit (24) transmits the master station reception signal (28) to the output data unit (31) of the master station, and the signal component is received by the timing generation means (36).
  • control signal generation means (33) in the master station output part (32) Generates control data in the control signal generation means (33) in the master station output part (32) by Then, the signal passes through the line driver (34) and is sent out to the power-superposed common data signal line D-(12) through the external signal connection section (42).
  • a DC power supply (35) is connected to supply power to the master station (29).
  • FIG. 5 shows the detailed wiring and block diagram of the inside of the master station in FIG.
  • the timing generation means (36) sends the clock signal Dck (48) to the output data portion (31) and sends the data input clock signal Dick (51) to the input data portion (30).
  • the timing generation means (36) transmits a start signal ST (50) of control data generation (33), and uses this signal as a preset signal for parallel / serial conversion of the output data portion (31). This is a preset signal of the serial-to-parallel conversion input data division shift register of the input data division (30).
  • the master station reception signal (28) transmitted from the output unit (26) of the control unit (24) to the output data unit (31) of the master station (29) is the master station output data unit (31).
  • the signal is parallel-serial converted and sent as a serial data signal D (49) to the control data generation unit (33), and in the control data generation unit (33), the line driver (34) as the signal Pck (53). Sent.
  • the transmission pre-driver current circuit (40) is connected in parallel to the power-superposed common data signal line D + (11) and the power-superimposed common data signal line D- (12), and the output current of the line driver (34)
  • a monitoring signal flowing in the circuit of the monitoring signal detection means (39) is detected as a current signal Is (56), and a combined current of the flowing signal Ip (55) and the current signal lis (57) is detected.
  • a serial data input monitoring signal Diis (52) which is a status signal of each mapping sensor is stored in the shift register of the input data unit (30).
  • the data of each cell of the shift register, which is serial data, is passed as parallel data as it is to input port i "0" (43) force input port i "31” (44), and the input unit of the control unit Is sent out as parallel data.
  • the master station reception signal (28) sent from the output unit of the control unit is sent from output port p "0" (45) to output port p "31” (46), and the output data section 31)
  • Serial conversion of parallel data is performed internally, and control data generation is performed as serial data signal D (49). It is sent to the part (33).
  • FIG. 6 shows signal waveforms of respective portions of the wiring functional block diagram of the master station (29) in FIG.
  • the data input clock signal Dick (51) is a clock signal for performing signal processing of the input data section (30), and is shifted by one clock period from the clock start point of the clock signal Dck (48). Wait for the monitoring signal of the bing system to process the signal.
  • the data input monitoring signal Diis (52) shows a signal example in the case where the monitoring signal is in the state of “0”, “1”, “0”, “1”.
  • the signal Pck (53) is a clock signal exhibiting a phase opposite to that of the clock signal Dck (48), and (changes) the line driver (34) to the power supply superimposed common data signal line D + (11) It is sent to signal line D-(12) and performs status signal processing of the mapping sensor.
  • the signal Diip (54) is an input current signal obtained by inverting the monitoring signal detected by the monitoring signal detection means (39) by the inverter (47), and the monitoring signal information is input to the input of the flip-flop which is a monitoring data extraction means. To communicate.
  • the data input monitoring signal Diis (52) is sent to the input data section (30) in synchronization with the data input clock signal Dick (51) to the flip-flop which is the monitoring data extracting means.
  • the signal current Ip (55) is a signal current of the transmission bleeder current circuit according to a signal that is placed on the power superimposed common data signal line D + (11) and the power superimposed common data signal line D-(12). .
  • FIG. 7 shows a wiring diagram inside sensor slave station A (# 0) (9).
  • Sensor slave station A (# 0) is a circuit configuration used only in the lowermost stage in the mapping sensor system.
  • the clock signal sent from the master station via the common data signal line D + (11) and 0- (12) is detected by the clock detection circuit (112).
  • the clock detection circuit (112) has a function of transmitting the light emission timing movement signal (60) in its own station in the light emission timing movement signal generation circuit A (113).
  • the light emission signal generation circuit (114) receives the detection light emission signal detected by the light emission phototransistor PHTRs (17), which also emits the light emission LED (18) that emits the light emission LED (18) that detects the detection object (8).
  • the detection sensitivity of the detection object (8) is adjusted by the mapping sensor (111) in the detection sensitivity adjustment circuit (119), with the right detection sensitivity adjustment volume VRr (19) and the left detection sensitivity connected in series.
  • the adjustment volume VR1 (20) enables adjustment from the left and right sides of the mapping sensor system. This has the advantage that the detection sensitivity can be adjusted without having to move around the periphery of a relatively large installation to which the mapping sensor system (110) is attached and moving to the opposite side.
  • the operation state in the adjustment of the detection sensitivity is performed by the sensor operation display LED (23) in the operation display circuit (118).
  • the sensor operation display LED (23) has a multi-faced reflector so that the operation can be checked from multiple directions, which makes it easy to check the adjustment of the operating range such as detection sensitivity and dead zone! .
  • the address for the phototransistor PHTRa (22) for address light reception of sensor slave station B (7a) corresponding to the next address is
  • the LED for LED light (21) emits an address light signal to transmit and transmit an operation signal (Fig. 7 and 9).
  • the zener diode ZD (78) detects the clock with a threshold value of 21 V to obtain a sensor slave clock signal CK (58) (Fig. 7)
  • Further slave control power supply CV (64) forms a control power supply for sensor slave station A.
  • the sensor slave station clock signal CK (58) is amplified by the transistor TRc (65), and a part of its output signal passes through the inverter (66).
  • the RC circuit becomes a time constant 3t on-de relay signal (68).
  • a diode and a resistor provide a 1Z4T off relay signal (67). This signal is
  • a flip-flop (69) force S is set at the falling timing of the start signal ST (59) and the clock signal CK (58), and a light projection timing shift signal (60) is obtained as an output.
  • the light emission signal generation circuit (114) amplifies the light emission timing shift signal (60) by the transistor TR1 (70), and the light emission LED (18) and the address light emission circuit (115) connected in series.
  • LEDa for address light emission (21) Force Generate address light emission signal (3).
  • the detection signal adjusted by the right detection sensitivity adjustment volume VRr (19) and the left detection sensitivity adjustment volume VR1 (20) is adjusted as the input voltage of the operational amplifier (74) of the detection light receiving circuit (116), and the comparator (75) Output signal S (61) of the operation display circuit (118)
  • the output of the AND gate (71) enters the S terminal of the flip flop (72).
  • the output of the flip flop (72) causes the sensor operation display LED (23) to emit light as a drive signal SD (62) for the transistor TR (76).
  • the AND gate (73) of the transmission output signal circuit (117) is the logical product of the output signal of the flip flop (72) and the clock signal which is the output signal of the transistor T Rc (65) and the light emission timing shift signal (60).
  • the signal Dip (63) is transmitted to the transistor TRi (77), and the output signal of the sensor slave station A (9) is superimposed on the transistor TRi (77) power supply common data signal line D + (11) Send between common data signal line D-(12).
  • FIG. 8 shows signals of respective units in the sensor slave station A (9) shown in FIG. 7 as a timing chart.
  • a signal voltage of 24 V and a pulse signal are superimposed between the power supply superimposed common data signal line D + (11) which is a transmission line and the power supply superimposed common data signal line D-(12).
  • the sensor slave station clock signal CK (58) is detected as a voltage.
  • the first falling edge of the sensor slave station clock signal CK (58) and the inverted signal of the sensor slave station start signal ST (59) become the on timing of the light emission timing shift signal (60).
  • a falling signal one cycle later indicates that the light projection timing shift signal (60) is turned off.
  • the signal S (61) which is the output of the comparator (75), slightly rises after the light emission timing shift signal (60) due to phototransistor detection, and is delayed together with the light emission timing shift signal (60). Falling signal.
  • Signal SD (62) is a drive signal of the sensor operation display LED (23).
  • the signal Dip (63) drives the output transistor TRi of the sensor slave station A, and transmits it to the master station via the power superimposed common data signal line D + (11) and the power superimposed common data signal line D-(12). Signal.
  • FIG. 9 shows a circuit configuration diagram of a sensor slave station B (7a to 7h) which is a sensor slave station other than the sensor slave station A used only in the lowermost stage in the mapping sensor, for example.
  • the sensor slave station B (7a to 7h) is the lowermost sensor slave station A or the address slave station B (7a to 7h) of the address from the sensor slave station B (7a to 7h).
  • the address light emission signal emitted from the LEDa (21) is received by the address light reception phototransistor PHTRa (22), and the sensor slave station B (7a to 7h) starts operation.
  • Phototransistor PHTRa (22) for address reception And sends the signal AD (81) to the flip flop (80) via the inverter (79).
  • the flip-flop (80) generates the light emission timing shift signal LT at the timing when the signal AD (81) and the sensor slave station B clock signal CK (82) are received via the transistor TRc. Since the subsequent circuit operation is the same as that of the sensor slave station A, not all of them are described. However, the sensor slave station B signal S (83) which is a comparator output signal becomes an input signal of the flip flop FF, and the sensor slave station The B signal SD (84) serves as a drive signal for the transistor TR that drives the sensor operation display LED.
  • the signal Dip (85) transmits the output signal of the sensor slave station B (7a to 7h) to the master station via the power superimposition common data signal line D + (11) and the power superimposition common data signal line D- (12) To drive the transistor TRi.
  • FIG. 10 shows signals of respective parts in the sensor slave station B shown in FIG. 9 as a timing chart. Similar to the operation of the sensor slave station A, the sensor slave station B clock signal CK (82) is detected as a clock signal with a threshold voltage of 21 V from the transmission line.
  • the signal AD (81) is an address signal of the sensor slave station B, and generates a light projection timing shift signal LT of the sensor slave station B via a flip-flop.
  • LT (# 1), LT (# 2), LT (# 3), and LT (# n) are the light emission timing shift signal LT (# 1) of the sensor slave station B, and this sensor slave station.
  • the sensor slave station B signal S (83) turns on after the rise of the light emission timing shift signal LT (# 1), and falls with the fall of one cycle of the clock signal CK (82).
  • Sensor slave station B signal SD (84) rises with sensor slave station B signal S (83).
  • the signal Dip (85) rises with the sensor slave station B signal S (83) and falls at a half clock cycle.
  • FIG. 11 shows an example in which the light projection signal and the light reception signal are transmitted by the wiring (86) between the sensor slave stations.
  • Crossover wiring between sensor slave stations (86) is a crossover wiring that connects between sensor slave stations.
  • the sensor slave station bus cable unit (109) Connected with a standard length connector cable. Therefore, by changing the cable length of the standard length, it is possible to freely change the distance between sensor slave stations, and it is also possible to change the distance slightly due to the allowance of wiring.
  • the mapping sensor system (110) is configured by optimally arranging the plurality of sensor slave stations. In addition, it is not limited to only connecting adjacent sensor slave stations by the crossover wiring. For example, even if the sensor slave station A is set to be interrupted, the sensor slave stations are separated by the crossover wiring.
  • each of them including the crossover wiring portion can be manufactured in a fixed shape and a fixed shape, it is easy to manufacture a stock method in which each is prepared in advance and assembled as needed with simple work and short delivery time. is there.
  • FIG. 12 shows a circuit diagram of the sensor wiring station A of the crossover wiring type.
  • the timing shift signal generation circuit AW (121) sets the light projection timing of the detected light projection signal of the sensor slave station A, and the crossover passes the timing shift signal (87) to the sensor slave station B.
  • a timing shift signal (87) for transmitting a light projection timing shift signal to the next sensor slave station B is added. As described above, this can be easily realized by the crossover wiring without using the method of transmitting the timing shift signal (87) by light. However, as shown in Fig.
  • both the connection and the sensor slave station are fixed In order to achieve this, there is a great advantage to using the method of connecting by the light projection timing movement signal without using the crossover wiring.
  • FIG. 13 shows a circuit diagram of the sensor wiring station B of the crossover wiring type.
  • Sensor slave station B following sensor slave station A shown in FIG. 12 and sensor slave station B following it all have the same configuration as the circuit shown in FIG. 13, and the timing movement signal generation circuit BW (122)
  • the slave station Upon receiving the signal AD (88) from the sensor slave station, the slave station sends out a timing movement signal (87) to the subsequent sensor slave station after the light projection and light reception operations are completed. Except for the circuit for generating this timing transfer signal (87) and the circuit for receiving the signal AD (88), all of them are The circuit operation remains unchanged except for the terminal that sends the timing movement signal (87) and part of the timing movement signal generation circuit BW (122), regardless of the method of passing the light emission signal. Is possible.
  • FIG. 14 shows an assembly procedure of the mapping sensor module (89) to the mapping sensor base (92).
  • the mapping sensor module (89) is fixed to the mapping sensor base (92) by the mapping sensor module fixing screw (90).
  • the mapping sensor base fixing screw (91) is inserted into the through hole of the mating sensor base (92) to which the mapping sensor module (89) is fixed, the mapping sensor base fixing female screw of the mounting plate (97) Screw on (98).
  • the mapping sensor system (110) is also made by connecting the bus cable connector (95) and the wiring between the mapping sensor modules (96).
  • the spacer (93) the distance between the mapping sensor assembly (94) can be easily determined and accurate distance adjustment can be performed.
  • Fig. 15 shows an example of a mapping sensor system in which the mapping sensor module (103) is fixed to a rail (99) of DIN standard.
  • the mapping sensor module (103) is fixed to the rack mount mapping sensor base (101) from the mapping sensor base fixing screw (105).
  • the hopping sensor module (103) can be easily fixed to the rail (99) at a fixed interval.
  • the rail (99) is formed with a plurality of free holes (100) extending in the longitudinal direction of the rail, and these free holes (100) are used to attach and fix the mapping sensor system to a structure such as a post or rack.
  • the positional relationship with the detection subject (8) can be easily adjusted.
  • the rack mount mapping sensor base (101) can be simply mounted on a DIN standard rail (99), and can be fixed without any angular deviation or the like by means of fixing screws. Also, the rack mount mapping sensor base (101) is provided with a bus cable connector (104), and this bus cable connector (104) mounts the mapping sensor module (103) to the rack mount mapping sensor base (101). And the replacement of the mapping module (103) can be easily performed.
  • FIG. 16 shows a plurality of detection light emitting photodiodes LEDs.sub.n (107) and a plurality of light reception detection light
  • the circuit block diagram of the sensor slave station A using the autotransistor PHTRsn (108) is shown.
  • the plurality of detection light emitting photodiodes LEDsn (107) and the plurality of light reception detection phototransistors PHT Rsn (108) are indicated by reference numeral 123.
  • the detection object (8) can be detected with high sensitivity by including a plurality of detection light emitting photodiodes LEDsn (107) and a plurality of detection light receiving phototransistors PHTRsn (108), and a disturbance signal It is possible to improve the S / N ratio, which is the signal-to-noise ratio for.
  • the plurality of detection projection photodiodes LEDsn (107) are connected with resistors (106) for supplying signal current to the detection projection photodiodes LEDsn (107).
  • the entire mapping sensor system does not emit light simultaneously but operates in a time-division manner.
  • the power can be minimized, and the miniaturization of the device and the power saving can be realized.
  • the present invention is used in the process of producing plate-like objects to be detected, such as liquid crystal glass, silicon wafer, and semiconductor mounting substrates, but it can be used to produce, process, store, etc. parts having a fixed shape. It can be widely used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

A monitor signal is superimposed on a power supply superimposing common data signal line so as to reduce connections of the power supply and signal lines. By time-dividing operation period of each sensor child station, power of the mapping sensor system during operation is reduced and mounting adjustment is facilitated. The mapping sensor system has a plurality of sensor stations (9, 7a to 7h) including a sensor unit monitoring an object (8) to be detected. The sensor child stations (9, 7a to 7h) are connected to common data signals (11, 12) and configured so as to transmit a monitor signal from the sensor unit to a control unit via the common data signal lines (11, 12).

Description

明 細 書  Specification
マッピングセンサシステム 技術分野  Mapping sensor system
[0001] 本発明は、平板状の物品や定形状の物品等の有無又は保管位置を検出するマツ ビングセンサシステムに関する。特に、液晶工場における薄板の有無又は保管位置 あるいは、半導体工場における半導体ゥエーハの有無又は保管位置を検出するマツ ビングセンサシステムに関するものである。  TECHNICAL FIELD [0001] The present invention relates to a muffing sensor system that detects the presence or absence or storage position of a flat article, a fixed article, and the like. In particular, the present invention relates to a tumbling sensor system that detects the presence or absence of a thin plate in a liquid crystal factory, or the presence or absence of a semiconductor wafer in a semiconductor factory, or a storage position.
背景技術  Background art
[0002] 平板上の物品、定形状の物品の保管や管理において、上記平板状の物品や定形 状の物品等の有無又は保管位置を検出することは、これらの物品の製造工程や使 用時における物の保管や管理を行う上で重要な要件であり、これらの情報をホストシ ステムや次工程の自動化機械に伝えることで、製造ラインや検査ライン又は保管管 理における工程の自動化を実現することができる。例えば、半導体工場における半 導体ゥエーハの有無や保管位置をマッピングセンサにより検出し、上記検出結果デ ータを自動化された製造機器や検査設備、保管管理機器に受け渡してラインを自動 化し、或いは液晶用ガラス、ディスク用ガラス板、プリント基板等の生産においても、 上記と同様にマッピングセンサが使用されている。更に定形の医療器具の保管管理 においても、物品の有無又は保管位置をマッピングセンサにより検出している。  [0002] In storage and management of articles on a flat plate and articles of a fixed shape, detecting the presence or absence or storage position of the flat article or article in a fixed form is a process of manufacturing or using these articles. It is an important requirement to store and manage objects in the factory, and to realize the automation of the process in the production line, inspection line or storage management by transferring this information to the host system and the automation machine of the next process. Can. For example, the presence or absence and storage position of semiconductor wafer in a semiconductor factory are detected by a mapping sensor, and the above detection result data is delivered to automated manufacturing equipment, inspection equipment, storage management equipment to automate the line, or for liquid crystal Mapping sensors are also used in the production of glass, glass plates for disks, printed circuit boards, etc. in the same manner as described above. Furthermore, also in storage management of a fixed-shaped medical device, the presence or absence or storage position of the article is detected by the mapping sensor.
[0003] 上記マッピングセンサは投光素子及び受光素子を有する検出ヘッドを備え、このマ ッビングセンサ、或いはマッピングセンサを用いたゥエーハ等の検出装置は特許文 献 1〜4に開示されている。特許文献 1及び 2には、一対のプリズムを含むプリズム構 造体を主体として背反する 2方向に投光若しくは受光することができるコンパクトな両 方向性検出ヘッドを用い、これらを投光用及び受光用として交互に配列したゥエー ハ等の検出装置が開示されて 、る。このように構成されたゥエーハ等の検出装置で は、 1個の投光素子又は受光素子を一直線上に背反した 2本の検出光軸に対応させ るため、即ちファイバホルダに支持された一対の反射プリズムにおける入射光軸又は 出射光軸が 1本の直線に沿うため、投光素子及び受光素子の数を節約でき、かつ厳 密なゥエーハ等の位置を検出することができるようになって 、る。 The above-mentioned mapping sensor is provided with a detection head having a light emitting element and a light receiving element, and a detecting device such as a wafer or the like using this mapping sensor or a mapping sensor is disclosed in Patent Documents 1 to 4. Patent Documents 1 and 2 use a compact bi-directional detection head capable of projecting or receiving light in two directions opposite to each other mainly with a prism structure including a pair of prisms, which are used for projecting light and receiving light. A detection device such as a wafer arrayed alternately for use is disclosed. In a detection device such as a Whaha et al. Configured in this manner, one light emitting element or light receiving element corresponds to two detection optical axes that are reversed in a straight line, that is, a pair of light emitting elements supported by a fiber holder. Since the incident optical axis or the output optical axis in the reflecting prism is along one straight line, the number of light emitting elements and light receiving elements can be saved and Now it is possible to detect the position of dense owha etc.
[0004] また特許文献 3には、透明榭脂により一対のプリズムを含むプリズム構造体を形成 し、 1個のファイバ用検出ヘッドにおいて背反する 2方向に投光若しくは受光すること ができるコンパクトな両方向性検出ヘッドを構成し、投光用及び受光用の両方向性 ヘッドを交互に配列したファイバセンサ用検出ヘッドが開示されている。このように構 成されたファイバセンサ用検出ヘッドでは、 1個の投光素子又は受光素子で 2本の検 出光軸に対応させることができるので、直列配列された多数の薄物を検出できるよう になっている。  [0004] Further, in Patent Document 3, a prism structure including a pair of prisms is formed of a transparent resin, and compact single-sided detection heads capable of projecting or receiving light in two opposite directions. A fiber sensor detection head is disclosed in which a polarity detection head is configured, and bidirectional light emitting and receiving heads are alternately arranged. In the detection head for a fiber sensor configured in this way, one light emitting element or light receiving element can be made to correspond to two detected light axes, so that a large number of thin articles arranged in series can be detected. It has become.
更に特許文献 4には、検出ヘッドに設けられた投光部及び受光部を介して本体ケ 一スの投光素子と受光素子とを光結合するゥエーハセンサが開示されて 、る。このよ うに構成されたゥエーハセンサでは、電気的な配線を極めて容易に行うことができる とともに、個々の検出ヘッドが故障したときでも、配線作業を行うことなく検出ヘッドの みを差し替え交換するだけで済むので、 日常の保守点検を簡単に行えるようになつ ている。  Further, Patent Document 4 discloses a wafer sensor that optically couples a light emitting element of a main body case and a light receiving element via a light emitting portion and a light receiving portion provided in a detection head. In the case of the sensor configured as described above, electrical wiring can be performed extremely easily, and even when an individual detection head fails, it is sufficient to replace only the detection head without performing wiring work. Therefore, daily maintenance and inspection can be easily performed.
特許文献 1 :特開平 11— 074331号公報 (段落 [0006]、段落 [0019])  Patent Document 1: Japanese Patent Application Laid-Open No. 11-074331 (Paragraph [0006], Paragraph [0019])
特許文献 2 :特開平 11— 074332号公報 (段落 [0006]、段落 [0019])  Patent Document 2: Japanese Patent Application Laid-Open No. 11-074332 (Paragraph [0006], Paragraph [0019])
特許文献 3 :特開平 11— 064101号公報 (段落 [0018])  Patent Document 3: Japanese Patent Application Laid-Open No. 11-064101 (Paragraph [0018])
特許文献 4:特開平 10— 070176号公報 (段落 [0014])  Patent Document 4: Japanese Patent Application Laid-Open No. 10-070176 (paragraph [0014])
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0005] しかし、上記特許文献 1〜4に示された検出装置等では、 1個の投光素子又は受光 素子を一直線上に背反した 2本の検出光軸に対応させることにより、投光素子及び 受光素子の数を節約し、或いは投光素子と受光素子とを光結合することにより、電気 的な配線を容易に行うことができるけれどもマッピングセンサの数が増えると、電気信 号配線の本数が増大するため、電気信号線の配線作業が煩わしくなる問題があった 例えば、マッピングセンサの周辺は、各々のマッピングセンサー組毎に信号線ゃ電 源線が配線されており、これらの信号を受けてホストシステムや自動化機器に接続す る端末箇所は、各々のマッピングセンサ毎に配線をする必要があった。その結果、配 線数が多ぐ端子台や配線の増加が問題であると共に、配線作業工数の増カロ、組立 て検査、各センサの調整などに著しく時間や労力を払う必要があった。また配線工数 の増加する分、ェ期の伸張やコストアップや、設備の容積増に繋がる問題があった。 またマッピングセンサの故障が上記配線の断線である場合、配線の多さに比例して 、保守作業が煩雑になり、多くの作業時間を要すると共に、装置の小型化における配 線の取り回しが問題となっており、多くの配線数力 信頼性の低下にも繋がっていた また信号処理も同時に複数のセンサが動作している場合、他のマッピングセンサか ら出る光の漏れや、マッピングセンサ近傍の照明などの光による信号ノイズを拾い易 ぐ微調整を要するなどの扱いの煩雑さが伴っていた。また被検出体の検出感度を 上げると他の照明などが発する光を誤って検知し、或いは他のマッピングセンサの光 を拾って、誤動作するなどの不具合が発生するため、感度の微調整を要する不具合 が生じていた。 However, in the detection devices and the like shown in the above-mentioned Patent Documents 1 to 4, the light projection element is made to correspond to the two detection light axes which are contradicted in a straight line. The number of light receiving elements can be reduced, or electrical connection can be made easily by optically coupling the light emitting element and the light receiving element, but as the number of mapping sensors increases, the number of electrical signal wiring can be increased. For example, signal lines and power supply lines are wired for each mapping sensor group around the mapping sensor, and these signals are received. Connection to the host system or automation equipment It is necessary to wire each of the mapping sensors for each terminal location. As a result, the problem of increasing the number of wiring lines and terminal blocks and wiring was a problem, and it was necessary to spend much time and labor for increasing the number of wiring work, assembling and testing, adjusting each sensor, and so on. In addition, as the number of wiring man-hours increases, there are problems such as expansion of costs, cost increase, and increase in equipment volume. In addition, when the failure of the mapping sensor is a break in the above wiring, the maintenance work becomes complicated in proportion to the number of wiring, requiring a lot of work time, and the wiring management in the miniaturization of the device becomes a problem. In addition, it has also led to a decrease in the reliability of many wires. Also, when multiple sensors are operating at the same time as signal processing, light leaks from other mapping sensors, illumination near the mapping sensors The complexity of handling was accompanied by the need for fine adjustment to easily pick up signal noise due to light and the like. In addition, if the detection sensitivity of the object to be detected is increased, it is necessary to finely adjust the sensitivity, since it may detect the light emitted by other illumination etc. by mistake or pick up the light of the other mapping sensor and cause malfunction. There was a problem.
更にそれぞれの検出ヘッドは、同時に作動しており、マッピングセンサの数に比例 して、回路の消費電力が増加し、電源容量も増加すると共に、検出ヘッドであるマツ ビングセンサの間での回りこみによる誤動作の不具合もあった。  Furthermore, each detection head is operating at the same time, and the power consumption of the circuit increases and the power supply capacity also increases in proportion to the number of mapping sensors. There was also a malfunction of malfunction due to
本発明は、共通の信号線、即ちターミナルが作動するための電力を搬送する線に 、被検出体の検出情報を重畳し、電源及び信号線の接続を減ずると共に、各々のマ ッビングセンサの投光および受光動作時期を時分割することによって、相互のマツピ ングセンサの干渉を抑制する投光駆動回路及び受光タイミング調整回路を有すると 共に、各々のセンサ感度調整を左右両方向から簡潔に行い得る構造及び調整回路 を有する。これによりセンサ感度調整が完了し、回路動作が正常であることを示す表 示を多方位力も確認でき、また当該マッピングセンサシステムの動作時の電力量を減 らすことができると共に、マッピングセンサの取付け調整を容易にすることができ、省 配線ィ匕及び配線作業の簡素化を図ることができる。  The present invention superimposes detection information of an object to be detected on a common signal line, that is, a line carrying power for operating a terminal, reduces connection of a power source and a signal line, and emits light from each mapping sensor. The structure and adjustment that can perform each sensor sensitivity adjustment simply from both the left and right while having the light emission drive circuit and the light reception timing adjustment circuit which suppress the interference of the mutual mapping sensor by time-dividing the light reception operation timing. It has a circuit. As a result, sensor sensitivity adjustment is completed, and a display indicating that the circuit operation is normal can also be confirmed with multi-directional force, and the amount of power at the time of operation of the mapping sensor system can be reduced. Installation and adjustment can be facilitated, and wiring saving and wiring work can be simplified.
即ち、本発明の第 1の目的は、電源や信号線の配線と接続を低減することができる とともに、マッピングセンサ数が増カロしても、配線と接続が簡単な渡り配線を接続する ことにより、相互のマッピングセンサの干渉を抑制することができる、マッピングセンサ システムを提供することにある。 That is, the first object of the present invention is to reduce wiring and connection of the power supply and the signal line, and to connect the easy-to-wiring connection even if the number of mapping sensors is increased. It is an object of the present invention to provide a mapping sensor system capable of suppressing the interference of mapping sensors with each other.
本発明の第 2の目的は、各々のセンサ感度調整を左右両方向から簡潔に行うこと ができ、センサ感度調整が完了したときに、回路動作が正常であることを示す表示を 多方向力も確認できる、マッピングセンサシステムを提供することにある。  The second object of the present invention is that each sensor sensitivity adjustment can be performed simply from both right and left directions, and when the sensor sensitivity adjustment is completed, a display indicating that the circuit operation is normal can also confirm multi-directional force , Providing a mapping sensor system.
本発明の第 3の目的は、マッピングセンサ群の動作時の電力量を低減することがで きるとともに、取付け調製を容易に行うことができ、更に配線を省くことにより配線作業 を簡素化することができる、マッピングセンサシステムを提供することにある。  The third object of the present invention is to reduce the amount of power during operation of the mapping sensor group and to facilitate the installation and preparation, and further simplify the wiring work by omitting the wiring. Providing a mapping sensor system that can
課題を解決するための手段  Means to solve the problem
[0007] 請求項 1に係る発明は、図 1〜図 3、図 7、図 9、図 11、図 12、図 13、図 17に示すよ うに、各々が被制御部のセンサ部(124)を監視する複数の検出ヘッドであるマツピン グセンサ(111)を有し、複数の検出ヘッドであるマッピングセンサ(111)が共通デー タ信号線(11, 12)に接続され、センサ部(124)からの監視信号を、共通データ信号 線(11, 12)を介して、制御部(24)に伝送することを特徴とするマッピングセンサシス テムである。 As shown in FIGS. 1 to 3, 7, 9, 11, 12, 13 and 17, the invention according to claim 1 is a sensor unit (124) of a controlled unit. The mapping sensor (111), which has mapping sensors (111) that are a plurality of detection heads that monitor the sensor, is connected to the common data signal line (11, 12), and from the sensor unit (124) The monitoring signal is transmitted to the control unit (24) through the common data signal line (11, 12).
この請求項 1に記載されたマッピングセンサシステムでは、電源からの電力にマツピ ングセンサ(111)の信号を重畳し、それぞれの信号をシフトレジスタ構造で信号を転 送すると共に、それぞれのマッピングセンサ(111)間を渡り配線で接続する力、或い はそれぞれのマッピングセンサ(111)間を光により信号伝達する方法を用いることに よって、信号線の数を電源線 2本 (共通データ信号線 D+ (11)及び0—(12) )にま とめることが可能となり配線の数を大幅に減ずることが可能となる。特に半導体工場 設備や、液晶工場設備においては、設備の小型化、省スペース化を図ることができる  In the mapping sensor system according to the first aspect, the signal from the mapping sensor (111) is superimposed on the power from the power supply, and each signal is transferred by the shift register structure, and the respective mapping sensors (111) are transmitted. The number of signal lines can be set to two power supply lines (common data signal line D + (common data signal line D 11) and 0- (12)), which makes it possible to greatly reduce the number of wires. In particular, in the semiconductor plant and liquid crystal plant, it is possible to miniaturize the equipment and save space.
[0008] 請求項 2に係る発明は、図 1〜図 3及び図 7、図 9、図 11、図 12、図 13、図 17に示 すように、所定の同期伝送クロックに同期した投光タイミング移動信号 (60)又はタイミ ング移動信号を発生するためのタイミング移動信号発生回路(113, 120, 121, 12 2)と、投光タイミング移動信号 (60)又はタイミング移動信号の制御下で、被検出体( 8)を検出する各々の複数の検出ヘッドであるマッピングセンサ(111)の中に構成さ れる単一の検出用投光器(18)或いは複数の検出用投光器を、同期伝送クロックに 基づいて順次個別のマッピングセンサ中の検出用投光器(18)を発光させる投光信 号発生回路(114)と、単一の検出用投光器 (18)或 、は複数の検出用投光器の発 光タイミングに応じ、単一の検出用受光信号 (5)或いは複数の検出用受光信号を保 持する動作表示回路(118)と、単一の検出用受光信号 (5)或いは複数の検出用受 光信号を監視信号として共通データ信号線(11, 12)に送出する伝送出力信号回路 (117)とを備えたことを特徴とするマッピングセンサシステムである。 The invention according to claim 2 is a light projection synchronized with a predetermined synchronous transmission clock as shown in FIGS. 1 to 3 and 7, 9, 11, 12, 13 and 17. A timing shift signal generation circuit (113, 120, 121, 122) for generating a timing shift signal (60) or a timing shift signal, and control of a light projection timing shift signal (60) or a timing shift signal. Configured in the mapping sensor (111) which is a plurality of detection heads for detecting the detection object (8) A projection signal generation circuit (114) for causing the detection light projectors (18) in the individual mapping sensors to emit light sequentially based on the synchronous transmission clock and the single detection light projector (18) or the plurality of detection light projectors; An operation display circuit (118) which holds a single detection light reception signal (5) or a plurality of detection light reception signals according to the light emission timing of a single detection light projector (18) or a plurality of detection light projectors. And a transmission output signal circuit (117) for transmitting a single detection light reception signal (5) or a plurality of detection light reception signals to the common data signal line (11, 12) as a monitoring signal. It is a mapping sensor system characterized by the above.
この請求項 2に記載されたマッピングセンサシステムでは、それぞれのマッピングセ ンサ( 111)を時分割して動作させることにより、それぞれの他のマッピングセンサ( 11 1)からの光の干渉問題が解消でき、同時に回路動作電流の増加を抑えることが可能 となり、設備の小型化や設備コストの削減ができる。具体的には、所定の同期伝送ク ロックに同期した投光タイミング移動信号 (60)又はタイミング移動信号を発生するた めのタイミング移動信号発生回路(113)と、タイミング移動信号 (60)又はタイミング 移動信号の制御下で、被検出体を検出する各々の検出ヘッドであるマッピングセン サ( 111 )の中に構成される検出用投光器( 18)を、同期伝送クロックに基づ!/ヽて順次 個別に発光させ、その発光タイミングに応じ、検出用受光信号を保持し、この検出受 光信号を監視信号として、共通データ信号線(11, 12)に送出するので、上記時分 割して投光動作することによる電流の最小化を図ることができると共に、及び光の干 渉問題を解消できる。  In the mapping sensor system according to claim 2, by operating each of the mapping sensors (111) in time division, the problem of light interference from each other mapping sensor (111) can be solved. At the same time, it is possible to curb the increase in circuit operating current, resulting in smaller equipment and reduced equipment costs. Specifically, a timing shift signal generation circuit (113) for generating a light emission timing shift signal (60) or a timing shift signal synchronized with a predetermined synchronous transmission clock, and a timing shift signal (60) or timing Under the control of the movement signal, the detection light projector (18) configured in the mapping sensor (111), which is each detection head for detecting the detection target, is sequentially based on the synchronous transmission clock. Light is emitted individually, and the light reception signal for detection is held according to the light emission timing, and this detection light reception signal is sent as a monitoring signal to the common data signal line (11, 12). It is possible to minimize the current due to the light operation and solve the light interference problem.
請求項 3に係る発明は、図 1、図 2、図 3又は図 7、図 9、図 11、図 12、図 13、図 17 に示すように、請求項 1又は 2記載のマッピングセンサシステムにおいて、当該検出 ヘッドであるマッピングセンサ(111)の順次アドレス番地のタイミング移動信号を、次 の検出ヘッドであるマッピングセンサ(111)に順次電気信号として送ることにより、複 数の検出ヘッドであるマッピングセンサ(111)からセンサ信号を取り込めることを特徴 とするマッピングセンサシステムである。  The invention according to claim 3 is the mapping sensor system according to claim 1 or 2 as shown in FIG. 1, FIG. 2, FIG. 3 or FIG. Mapping sensors that are multiple detection heads by sequentially sending, as electrical signals, timing movement signals at sequential addresses of the mapping sensor (111) that is the detection head, to the mapping sensor (111) that is the next detection head. This mapping sensor system is characterized in that it can capture sensor signals from (111).
この請求項 3に記載されたマッピングセンサシステムでは、それぞれのマッピングセ ンサ(111)を時分割動作させることにより、他のセンサ動作との干渉がなくなり、投光 輝度を上げることにより、外部からの光ノイズの強度比率を改善でき、それぞれの被 検出体に対する検出感度を高めると共に、感度調整を容易に行える。また感度調整 が適切に行われていることを表示するセンサ動作表示を多方向から見易い多方位表 示に変えることで、表示器の数も減ずることができ、回路電流及び回路コストを低減 できる。従って、配線数と接続を減ずることができると共に、動作調整の簡潔化や、無 調整化を可能とし、設置作業や、定期的な調整の負担を著しく軽減できる。 In the mapping sensor system according to the third aspect, time-division operation of each of the mapping sensors (111) eliminates interference with other sensor operations, and the luminance from the outside can be increased by increasing the light emission luminance. Can improve the intensity ratio of light noise, and The sensitivity of detection can be easily adjusted as well as the detection sensitivity to the detection object is enhanced. In addition, the number of displays can be reduced by changing the sensor operation display, which indicates that sensitivity adjustment is being properly performed, to a multi-directional display that can be easily viewed from multiple directions, and the circuit current and circuit cost can be reduced. Therefore, the number of wires and connections can be reduced, operation adjustment can be simplified, and adjustment can be omitted, and the burden of installation and periodic adjustment can be significantly reduced.
[0010] 請求項 4に係る発明は、図 1〜図 3、図 7又は図 9に示すように、請求項 1又は 2記載 のマッピングセンサシステムにお 、て、順次アドレス番地のタイミング移動信号を次の 検出ヘッドであるマッピングセンサ(111)に投光信号として順次送ることにより、複数 の任意の検出ヘッドであるマッピングセンサ(111)力 センサ信号を取り込めることを 特徴とするマッピングセンサシステムである。  [0010] The invention according to claim 4 is, as shown in FIG. 1 to FIG. 3, FIG. 7 or FIG. A mapping sensor system characterized in that a plurality of arbitrary detection heads, that is, a mapping sensor (111) force sensor signal, can be taken in by sequentially sending a light emission signal to a mapping sensor (111) which is the next detection head.
この請求項 4に記載されたマッピングセンサシステムでは、順次アドレス番地のタイ ミング移動信号を次の検出ヘッドであるマッピングセンサ(111)に投光信号として順 次送ることにより、複数の任意の検出ヘッドであるマッピングセンサ(111)からセンサ 信号を取り込むことができる。この結果、それぞれのマッピングセンサ(111)を時分 割動作させることにより、他のセンサ動作との干渉がなくなり、投光輝度を上げること により、外部からの光ノイズの強度比率を改善でき、それぞれの被検出体に対する検 出体感度を高めると共に、感度調整を容易に行える。  In the mapping sensor system according to the fourth aspect, a plurality of arbitrary detection heads are sequentially sent as a light projection signal to the mapping sensor (111) which is the next detection head, the timing movement signal of the sequential address. The sensor signal can be taken from the mapping sensor (111). As a result, by making each mapping sensor (111) operate in a time-division manner, interference with other sensor operations is eliminated, and by raising the light emission luminance, the intensity ratio of the light noise from the outside can be improved. The sensitivity of the detection object to the object to be detected can be enhanced and the sensitivity can be easily adjusted.
[0011] 請求項 5に係る発明は、図 1、図 2、図 7或いは図 9、図 11、図 12、図 13、図 17に 示すように、請求項 1又は 2記載のマッピングセンサシステムにおいて、検出ヘッドで あるマッピングセンサ(111)の左右に検出感度調整用可変抵抗器 (19, 20)を有し、 多方向から確認できる位置に単一のセンサ動作表示 (23)が設けられたことを特徴と するマッピングセンサシステムである。  The invention according to claim 5 is the mapping sensor system according to claim 1 or 2, as shown in FIG. 1, FIG. 2, FIG. 7 or FIG. 9, FIG. 11, FIG. , The detection sensitivity adjustment variable resistors (19, 20) are provided on the left and right of the mapping sensor (111) which is the detection head, and a single sensor operation display (23) is provided at a position where it can be confirmed from multiple directions. It is a mapping sensor system characterized by
この請求項 5に記載されたマッピングセンサシステムでは、単一のセンサ動作表示 2 3を多方向から確認できる。またそれぞれのマッピングセンサ(111)は、規格化され た長さの渡り配線の使用或 、は電源線への信号重畳により、電源重畳共通データ信 号線への接続が同時にマッピングセンサ(111)の固定を兼ねることができるため、配 線数低減により、配線工数も低減できる。  In the mapping sensor system described in claim 5, a single sensor operation display 23 can be confirmed from multiple directions. In addition, each mapping sensor (111) uses fixed crossover wiring or superimposes a signal on the power supply line, so that the connection to the power supply superimposed common data signal line can be fixed simultaneously with the mapping sensor (111) fixed. The number of wiring steps can be reduced by reducing the number of wiring lines.
[0012] なお、図 11〜図 14に示すように、複数の検出ヘッドであるマッピングセンサ(111) を取付け板 97に取付け、各々のマッピングセンサ(111)間を順次渡り配線 (96)を使 用して、タイミング移動信号、検出ヘッド共通の回路用供給電源の電力及び伝送デ ータ信号を伝送するように構成することができる。 As shown in FIGS. 11 to 14, the mapping sensor (111) is a plurality of detection heads. To the mounting plate 97, and using the crossover wiring (96) sequentially between each mapping sensor (111), transmit the timing movement signal and the power and transmission data signal of the power supply for circuits common to the detection head. Can be configured to
また、図 2に示すように、複数の検出ヘッドであるマッピングセンサ(111)を取付け る取付け板 1に共通の導体(13)を設け、この導体(13)に検出ヘッドであるマツピン グセンサ(111)を取付ける導電性固定具(16)を使用し、検出ヘッドであるマッピング センサ(111)共通の回路用供給電源の電力及び伝送データ信号を伝送するように 構成してちょい。  Also, as shown in FIG. 2, a common conductor (13) is provided on the mounting plate 1 to which the mapping sensor (111), which is a plurality of detection heads, is attached, and a mapping sensor (111) is provided on the conductor (13). ), And to transmit the power and transmission data signal of the circuit power supply common to the mapping sensor (111), which is the detection head.
発明の効果  Effect of the invention
[0013] 本発明によれば、マッピングセンサによる被検出体の検出信号を電源線に載せる、 即ち上記検出信号と電源力 の電力とを重畳することにより、信号配線を省略し、こ れによってマッピングセンサ間の配線や、マッピングセンサと親局との配線を省略す ることができ、配線工数の低減や配線スペースの小型化が実現できる。  According to the present invention, the detection signal of the detection object by the mapping sensor is placed on the power supply line, that is, the signal wiring is omitted by superimposing the detection signal and the power of the power supply, thereby mapping Wiring between sensors and wiring between the mapping sensor and the master station can be omitted, and wiring man-hours can be reduced and wiring space can be reduced.
またマッピングセンサ間の間隔を容易に調整変更でき、かつマッピングセンサ数を 容易に増減できる利点がある。またマッピングセンサがそれぞれ異なるタイミングで被 検出体に対し、投光するタイミングに同期して受光することから、他のマッピングセン サ信号の影響を全く受けないため、投光量を増大し、高感度の検知が可能であり、 同時に投光しないために、投光時の電力消費を低減することできる。また各マツピン グセンサ間の信号伝達を同一規格の渡り配線を用いて行えば、各マッピングセンサ 間の間隔を容易に設定変更することができる。更に隣同士のマッピングセンサ間の 信号伝達を光によって行えば、マッピングセンサ間の配線を更に低減できる。  In addition, the distance between mapping sensors can be easily adjusted and changed, and the number of mapping sensors can be easily increased or decreased. In addition, since the mapping sensor receives light to the detection object at different timings in synchronization with the light projection timing, it is not affected by the other mapping sensor signals at all, and therefore the light emission amount is increased, and the sensitivity is high. Power consumption can be reduced during detection because detection is possible and light is not emitted at the same time. In addition, if signal transmission between the mapping sensors is performed using crossover wiring of the same standard, the interval between the mapping sensors can be easily set and changed. Furthermore, if the signal transmission between the adjacent mapping sensors is performed by light, the wiring between the mapping sensors can be further reduced.
図面の簡単な説明  Brief description of the drawings
[0014] [図 1]本発明第 1実施形態の複数のマッピングセンサ(111)及び被検出体 (8)を示 す側面図である。  FIG. 1 is a side view showing a plurality of mapping sensors (111) and an object to be detected (8) according to a first embodiment of the present invention.
[図 2]それらのマッピングセンサ(111)を取付け板(1)にネジ止めによって固定する 模式図であり、各部品の取付け状態を示す斜視図である。  [FIG. 2] It is a schematic diagram which fixes those mapping sensors (111) to a mounting plate (1) by screwing, and is a perspective view which shows the attachment state of each component.
[図 3]複数のマッピングセンサ力 電源重畳共通データ信号線 D+ (11)及び電源重 畳共通データ信号線 D— (12)に接続され、更に親局と接続され、外部入力ユニット 及び外部出力ユニットとデータのやり取りのための接続を示すブロック図である。 圆 4]親局内部の機能ブロック及び電源重畳共通データ信号線との接続と制御部と のデータのやり取りを示すブロック図である。 [Figure 3] Multiple mapping sensor power The power superimposition common data signal line D + (11) and the power superimposition common data signal line D-(12) are connected and further connected to the master station, external input unit And a connection for exchanging data with an external output unit. 4) It is a block diagram showing exchange of data with connection with a functional block inside a parent station and a power superimposition common data signal line, and a control part.
[図 5]親局内部の機能ブロックの詳細を示すブロック図である。  FIG. 5 is a block diagram showing details of functional blocks in a master station.
圆 6]親局内部の各信号の変化を示すタイミングチャートである。 6) It is a timing chart showing change of each signal inside the parent station.
[図 7]センサ子局 Aの回路図である。  7 is a circuit diagram of sensor slave station A. FIG.
[図 8]センサ子局 A内部の各信号の変化を示すタイミングチャートである。  [FIG. 8] A timing chart showing changes in each signal in sensor slave station A.
[図 9]センサ子局 Bの回路図である。 FIG. 9 is a circuit diagram of a sensor slave station B.
[図 10]センサ子局 B内部の各信号の変化を示すタイミングチャートである。  FIG. 10 is a timing chart showing changes in each signal in sensor slave station B.
[図 11]センサ子局の渡り配線による投光信号及び受光信号の伝達を行う例を示すブ ロック図である。  [FIG. 11] A block diagram showing an example of transmission of a light projection signal and a light reception signal by the crossover wiring of the sensor slave station.
[図 12]センサ子局 Aに続き、次のセンサ子局 Bに投光タイミング移動信号を送信する ためのタイミング移動信号 (87)が付加された渡り配線型のセンサ子局 Aの回路図で ある。  [Fig. 12] The circuit diagram of the crossover type sensor slave station A to which the timing movement signal (87) for transmitting the light projection timing shift signal to the next sensor slave station B is added following the sensor slave station A. is there.
圆 13]前のセンサ子局から信号 ADを受け取り、当該子局が投光および受光動作が 完了した後、続くセンサ子局に対し、タイミング移動信号 (87)を送出する渡り配線型 のセンサ子局 Bの回路図である。 圆 13] A crossover wiring type sensor element that receives the signal AD from the previous sensor slave station and sends the timing movement signal (87) to the subsequent sensor slave station after the slave station has completed the light emitting and receiving operations. FIG. 10 is a circuit diagram of a station B.
[図 14]マッピングセンサモジュール(89)をマッピングセンサベース(92)に固定し、マ ッビングセンサモジュール(89)をマッピングセンサベース(92)と共に取付け板(97) に固定し、各モジュール間の繋ぎを、バスケーブルコネクタ(95)及びマッピングセン サモジュール間渡り配線 (96)にて接続する直前の状態を示す要部斜視図である。  [Fig. 14] Fix the mapping sensor module (89) on the mapping sensor base (92), and fix the mapping sensor module (89) together with the mapping sensor base (92) on the mounting plate (97). FIG. 16 is a perspective view of relevant parts showing a state immediately before connection is made by connection between the bus cable connector (95) and the mapping sensor module (96).
[図 15]DIN規格レール(99)にマッピングセンサモジュール(103)を固定し、マツピン グセンサを構成する事例を示す要部斜視図である。 FIG. 15 is a perspective view of relevant parts showing an example of fixing a mapping sensor module (103) to a DIN standard rail (99) and configuring a mapping sensor.
[図 16]複数の検出投光フォトダイオード LEDsn(107)及び複数の検出受光フォトトラ ンジスタ PHTRsn(108)を具備したセンサ子局 Aの回路構成図である。  FIG. 16 is a circuit diagram of a sensor slave station A including a plurality of detection light emitting photodiodes LEDsn (107) and a plurality of detection light receiving phototransistors PHTRsn (108).
[図 17]従来の制御系の被制御部のセンサ部(124)を、このセンサ部を含む複数のマ ッビングセンサ(111)に置き換えたことを示す構成図である。 [FIG. 17] A configuration diagram showing that a sensor section (124) of a controlled section of a conventional control system is replaced with a plurality of mapping sensors (111) including this sensor section.
符号の説明 ,97 取付け板 Explanation of sign , 97 Mounting plate
検出投光信号  Detection flood signal
検出受光信号 Detection light reception signal
a センサ子局 B(#l)a Sensor slave station B (# l)
b センサ子局 B(#2)b Sensor slave station B (# 2)
c センサ子局 B(#3)c Sensor slave station B (# 3)
d センサ子局 B(#n— 4)d Sensor slave station B (# n — 4)
e センサ子局 B(#n— 3)e Sensor slave station B (# n-3)
f センサ子局 B(#n— 2)f Sensor slave station B (# n — 2)
g センサ子局 B(#n— 1)g Sensor slave station B (# n — 1)
h センサ子局 B(#n) h Sensor slave station B (# n)
被検出体  Detected body
センサ子局 A (#0) Sensor slave station A (# 0)
1 電源重畳共通データ信号線 D +1 Power supply overlapping common data signal line D +
2 電源重畳共通データ信号線 D—2 Power supply superimposed common data signal line D—
3 導体3 conductor
6 取り付けネジ (導電性固定具)6 Mounting screw (conductive fixture)
7 受光用フォトトランジスタ PHTRs7 Phototransistor for light reception PHTRs
8 投光用 LED (検出用投光器)8 LED for floodlighting (sender for detection)
9 右側検出感度調整ボリューム VRr (検出感度調整用可変抵抗器)0 左側検出感度調整ボリューム VR1 (検出感度調整用可変抵抗器)4 制御部9 Right detection sensitivity adjustment volume VRr (Variable resistance for detection sensitivity adjustment) 0 Left detection sensitivity adjustment volume VR1 (Variable resistance for detection sensitivity adjustment) 4 Controller
5 DC電源(回路用供給電源)5 DC power supply (supply power for circuit)
6 タイミング発生手段6 Timing generation means
0 投光タイミング移動信号0 Projection timing movement signal
6,96 渡り酉己線6,96 Crossing Line
7 タイミング移動信号7 Timing movement signal
2 子局ベース 107 検出投光フォトダイオード LEDs (検出投光器) 2 base station base 107 Detection floodlighting photodiode LEDs (Detection floodlight)
110 マッピングセンサシステム  110 Mapping Sensor System
111 マッピングセンサ  111 Mapping Sensor
113, 120, 121, 122タイミング移動信号発生回路  113, 120, 121, 122 Timing movement signal generation circuit
124 センサ部  124 Sensor
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下に本発明を実施するための最良の形態を実施例に基づき説明する。 Hereinafter, the best mode for carrying out the present invention will be described based on examples.
<第 1の実施の形態 >  First Embodiment
本発明の第 1の実施の形態を図 1から図 17によって説明する。  A first embodiment of the present invention will be described with reference to FIGS.
図 17に、本発明のマッピングセンサシステム全体を示す。ここで、図 17中の符号 1 24は従来の被制御部のセンサ部である力 この部分がマッピングセンサ(111)に置 き換わったものが、本発明に係るマッピングセンサシステムである。  FIG. 17 shows the entire mapping sensor system of the present invention. Here, reference numeral 124 in FIG. 17 denotes a force which is a sensor unit of a conventional controlled unit. This mapping sensor system according to the present invention is a portion where this portion is replaced with the mapping sensor (111).
図 1に、本発明に係るマッピングセンサシステムの側面図を示す。マッピングセンサ (111)は、複数のマッピングセンサ子局(9, 7a〜7h)と、これらのセンサ子局(9, 7a 〜7h)を取付ける取付け板(1)とを備える。取付け板(1)は、鉛直方向に延びて設け られた板状の絶縁体(14)と、鉛直方向に所定の間隔をあけてそれぞれ延びて設け られかつ絶縁体(14)に表面が露出するようにそれぞれ埋設された 2本の角柱状の 導体(13, 13)とを有する(図 2)。上記複数のマッピングセンサ子局(9, 7a〜7h)は 取付け板(1)にその長手方向に所定の間隔をあけて固定される。また 2本の導体(1 3, 13)は、電源からの電力を電源重畳共通データ信号線 D+ (11)及び電源重畳 共通データ信号線 D— (12)を介してマッピングセンサ子局(9, 7a〜7h)に供給する と共に、センサ部(124)の監視信号を電源重畳共通データ信号線 D+ (11)及び電 源重畳共通データ信号線 D— (12)に送出する役割を果たしている。  FIG. 1 shows a side view of a mapping sensor system according to the present invention. The mapping sensor (111) comprises a plurality of mapping sensor slave stations (9, 7a to 7h) and a mounting plate (1) for mounting these sensor slave stations (9, 7a to 7h). The mounting plate (1) is provided with a plate-like insulator (14) extending in the vertical direction and extending at a predetermined distance in the vertical direction and the surface is exposed to the insulator (14) And two square prism-like conductors (13, 13) embedded respectively (Fig. 2). The plurality of mapping sensor slave stations (9, 7a to 7h) are fixed to the mounting plate (1) at predetermined intervals in the longitudinal direction. Also, two conductors (13, 13) transmit power from the power source to the mapping sensor slave station (9, 9) via the power superimposing common data signal line D + (11) and the power superimposing common data signal line D- (12). 7a to 7h), and also sends the monitoring signal of the sensor section (124) to the power-superimposed common data signal line D + (11) and the power-superimposed common data signal line D- (12).
[0017] 摸式図である図 1の事例において、 9セットのマッピングセンサ子局(9, 7a〜7h)を 取付け板(1)に固定した例である。実際の使用においては、 25セット、 32セット、 50 セットと言うように、より多くのマッピングセンサを取付け板に取付けて使用するのであ る力 説明を容易にするため、数を減らして、図示したものである。図 1において、例 えば、最下段に位置するセンサ子局 A (9)のみに、その上方に配置されたセンサ子 局 B (7a〜7h)の回路(図 9)と信号の伝送回路が異なる回路(図 7)が用いられる。ま た図 1は、被検出体 (8)が歯抜け状態に存在する場合の事例である。 In the example of FIG. 1 which is a schematic view, nine sets of mapping sensor slave stations (9, 7a to 7h) are fixed to a mounting plate (1). In actual use, as the 25 sets, 32 sets, 50 sets and so on, more mapping sensors are attached to the mounting plate and used for ease of explanation. It is a thing. In FIG. 1, for example, only the sensor slave station A (9) located at the lowermost level has a sensor A circuit (FIG. 7) in which the circuit of station B (7a to 7h) (FIG. 9) and the signal transmission circuit are different is used. Also, FIG. 1 is an example of the case where the detection subject (8) is in the missing state.
図 1の事例は、下力も上へと信号を伝えているが、上から下へ信号を伝える場合は 、最上部にセンサ子局 A (9)を設け、その下方にセンサ子局 B (7a〜7h)を使用する ことちでさる。  In the example of Fig. 1, the lower force also transmits the signal upward, but when transmitting the signal from top to bottom, the sensor slave station A (9) is provided at the top, and the sensor slave station B (7a Use ~ 7h)
[0018] 図 2に、本発明におけるマッピングセンサを取付け板(1)にネジ止めによって固定 する模式図を示す。図 2において、各部品の取付け状態を示す。 2本の導体(13, 1 3)の表面には、これらの導体の長手方向に所定の間隔をあけて複数のネジ穴(15) がそれぞれ形成され、導体(13, 13)のうちネジ穴(15)の形成された面以外の 3面 は絶縁体(14)で覆われて電気的に絶縁されると共に、これらの導体(13, 13)はセ ンサ子局 A (9)又は、センサ子局 B (7a〜7h)を固定するに十分な強度を有する。マ ッビングセンサ子局(9, 7a〜7h)は、検出ヘッドであるマッピングセンサ(111)を取 付けるための取付けネジ(16)を上記ネジ穴(15)に螺合することにより、センサ子局( 9, 7a〜7h)が取付け板(1)に固定される。またマッピングセンサ子局(9, 7a〜7h) の回路(図 7及び図)は、導体(13)を介して、電源重畳共通データ信号線 D+ (11) 及び電源重畳共通データ信号線 D— (12)に接続されることによって、マッピングセ ンサ情報、即ちセンサ部(124)の検出した被検出体 (8)の有無の情報を親局(29) に伝達できるようになつている。具体的には、所定の場所に被検出体 (8)が位置する 場合には、センサ部(124)の投光用 LED (18)が発した光が被検出体 (8)で反射し 、その反射光をセンサ部(124)の受光用フォトトランジスタ PHTRs (17)によって受 けて、被検出体 (8)が存在することを検出し、所定の場所に被検出体 (8)が位置しな い場合には、センサ部(124)の投光用 LED (18)が発した光が被検出体 (8)で反射 されず、センサ部(124)の受光用フォトトランジスタ PHTRs (17)が反射光を受光せ ず、被検出体 (8)が存在しな 、ことを検出するように構成される。  FIG. 2 shows a schematic view of fixing the mapping sensor in the present invention to the mounting plate (1) by screwing. The attached state of each part is shown in FIG. A plurality of screw holes (15) are formed on the surfaces of the two conductors (13, 13) at predetermined intervals in the longitudinal direction of these conductors, and the screw holes of the conductors (13, 13) are formed. The three surfaces other than the formed surface of (15) are covered with an insulator (14) to be electrically insulated, and these conductors (13, 13) are sensor slave station A (9) or a sensor It has sufficient strength to fix the slave station B (7a to 7h). The mapping sensor slave stations (9, 7a to 7h) are screwed with the mounting screw (16) for attaching the mapping sensor (111), which is the detection head, to the sensor slave station ( 9, 7a-7h) are fixed to the mounting plate (1). Also, the circuits (FIGS. 7 and 7) of the mapping sensor slave stations (9, 7a to 7h) are connected via the conductor (13) to the power supply superimposed common data signal line D + (11) and the power supply superimposed common data signal line D− By being connected to 12), the mapping sensor information, that is, the information of the presence or absence of the detected object (8) detected by the sensor section (124) can be transmitted to the master station (29). Specifically, when the object to be detected (8) is located at a predetermined place, the light emitted from the LED for light emission (18) of the sensor section (124) is reflected by the object to be detected (8), The reflected light is received by the phototransistor PHTRs (17) for light reception of the sensor section (124) to detect the presence of the detected object (8), and the detected object (8) is positioned at a predetermined location. If not, the light emitted from the LED for light emission (18) of the sensor unit (124) is not reflected by the detection object (8), and the phototransistor PHTRs (17) for light reception of the sensor unit (124) It is configured not to receive the reflected light, and to detect that the object to be detected (8) is not present.
[0019] この場合、投光用 LED (18)及び受光用フォトトランジスタ PHTRs (17)は、被検出 体の種類によって取付け数を加減することにより、最適検出感度を得ることができる。 またセンサ部(124)の検出感度は検出感度調整回路(119)により調整できるように 構成される。この検出感度調整回路(119)は、各センサ子局(9, 7a〜7h)の右側縁 に設けられた右側検出感度調整ボリューム VRr (19)と、各センサ子局(9, 7a〜7h) の左側縁に設けられた左側検出感度調整ボリューム VR1 (20)とを有する。各センサ 子局(9, 7a〜7h)の初期設定や、センサ子局(9, 7a〜7h)の交換時の検出感度設 定は、右側検出感度調整ボリューム VRr (19)、又は左側検出感度調整ボリューム V Rl (20)によってどちらの側からもセンサ動作表示 LED (23)を見ながら容易に行える 。アドレス投光用 LEDa (21)により次のアドレスのセンサ子局にアドレス信号を送出 し、これをアドレス受光用フォトトランジスタ PHTRa (22)によって受信する。 In this case, the light emitting LED (18) and the light receiving phototransistor PHTRs (17) can obtain optimum detection sensitivity by adjusting the number of mountings depending on the type of object to be detected. The detection sensitivity of the sensor unit (124) can be adjusted by the detection sensitivity adjustment circuit (119). This detection sensitivity adjustment circuit (119) is the right edge of each sensor slave station (9, 7a to 7h). And a left detection sensitivity adjustment volume VR1 (20) provided at the left edge of each sensor slave station (9, 7a to 7h). The initial setting of each sensor slave station (9, 7a to 7h) and the detection sensitivity setting when replacing the sensor slave station (9, 7a to 7h) are the right detection sensitivity adjustment volume VRr (19) or the left detection sensitivity. Adjustment volume V Rl (20) makes it easy to do while looking at the sensor activity indicator LED (23) from either side. The address light emission LEDa (21) sends an address signal to the sensor slave station of the next address, which is received by the address light reception phototransistor PHTRa (22).
[0020] 図 3には、本発明における複数のセンサ子局(9, 7a〜7h)と電源重畳共通データ 信号線 D+ (11)及び電源重畳共通データ信号線 D—(12)と親局(29)との接続状 況と、親局(29)と制御部(24)の外部入力ユニット (25)及び外部出力ユニット (26) とのデータのやり取りのための接続状況を示すブロック、図を示す。図 3は、本発明に おけるセンサ子局(9, 7a〜7h)間を光信号で、信号の伝達を行う場合のブロックダイ ャグラムを現したもので、これによつて、信号伝達線を省略できるようになつている。 図 4には、図 3における親局(29)の具体的な構構成を示す。親局(29)は、複数の センサ子局力 のマッピングセンサ情報を電源重畳共通データ信号線 D+ (11)及 び電源重畳共通データ信号線 D—(12)を経由して受け取る。親局(29)のインタフ イス回路である伝送ブリーダ電流回路 (40)は、親局出力部(32)内のラインドライ バ(34)に接続されており、制御データ発生手段(33)力 受けた制御データをタイミ ング発生手段(36)から送られるクロック信号と共に外部信号接続部 (41)を経由して 、電源重畳共通データ信号線 D+ (11)に、また外部信号接続部 (42)を経由して電 源重畳共通データ信号線 D— (12)に送出する。  [0020] FIG. 3 shows a plurality of sensor slave stations (9, 7a to 7h) according to the present invention, a power superimposing common data signal line D + (11), a power superimposing common data signal line D- (12) and a master station 29), and a block diagram showing the connection status for data exchange between the master station (29) and the external input unit (25) and external output unit (26) of the control unit (24). Show. Fig. 3 shows a block diagram for transmitting signals between sensor slave stations (9, 7a to 7h) according to the present invention, thereby omitting the signal transmission line. It has become possible. FIG. 4 shows a specific configuration of the master station (29) in FIG. The master station (29) receives the mapping sensor information of a plurality of sensor slave stations via the power-superimposed common data signal line D + (11) and the power-superimposed common data signal line D- (12). The transmission bleeder current circuit (40), which is the interface circuit of the master station (29), is connected to the line driver (34) in the master station output section (32), and receives control data generation means (33). The control data is sent via the external signal connection (41) together with the clock signal sent from the timing generation means (36) to the power supply superimposed common data signal line D + (11) and the external signal connection (42). Send it to the power supply superimposed common data signal line D-(12).
[0021] ラインドライバ(34)からは、親局入力部(37)の監視信号検出手段(39)にデータ 信号が渡され、監視データ抽手段 (38)によって、タイミング発生手段 (36)力 受け たクロック信号と同期して監視データ信号を得る。この監視データ信号を入力データ 部(30)に渡し、制御部(24)の入力ユニット (25)に親局送信信号(27)として伝送す る。一方、制御部(24)の出力ユニット(26)は親局受信信号(28)を親局の出力デー タ部(31)に伝送し、その信号成分をタイミング発生手段(36)力 受けるクロック信号 により親局出力部(32)の中の制御信号発生手段(33)において制御データを発生 し、ラインドライバ(34)を通り、外部信号接続部 (42)を経由して電源重畳共通デー タ信号線 D— (12)に送出する。 DC電源(35)は、親局(29)に電力を供給するため に接続される。 The line driver (34) passes a data signal to the supervisory signal detection means (39) of the master station input unit (37), and the supervisory data extraction means (38) receives the timing generation means (36). The monitor data signal is obtained in synchronization with the clock signal. This supervisory data signal is passed to the input data section (30), and transmitted to the input unit (25) of the control section (24) as a master station transmission signal (27). On the other hand, the output unit (26) of the control unit (24) transmits the master station reception signal (28) to the output data unit (31) of the master station, and the signal component is received by the timing generation means (36). Generates control data in the control signal generation means (33) in the master station output part (32) by Then, the signal passes through the line driver (34) and is sent out to the power-superposed common data signal line D-(12) through the external signal connection section (42). A DC power supply (35) is connected to supply power to the master station (29).
[0022] 図 5には、図 4における親局内部の詳細な配線及びブロック図の構成を示す。  FIG. 5 shows the detailed wiring and block diagram of the inside of the master station in FIG.
タイミング発生手段(36)は、クロック信号 Dck (48)を出力データ部(31)に送出す ると共に、入力データ部(30)にデータ入力クロック信号 Dick (51)を送出する。  The timing generation means (36) sends the clock signal Dck (48) to the output data portion (31) and sends the data input clock signal Dick (51) to the input data portion (30).
またタイミング発生手段(36)は、制御データ発生(33)のスタート信号 ST (50)を送 出し、この信号を用いて、出力データ部(31)の並列 ·直列変換のプリセット信号とす ると共に、入力データ部(30)の直列 ·並列変換入力データ部シフトレジスタのプリセ ット信号となっている。  The timing generation means (36) transmits a start signal ST (50) of control data generation (33), and uses this signal as a preset signal for parallel / serial conversion of the output data portion (31). This is a preset signal of the serial-to-parallel conversion input data division shift register of the input data division (30).
[0023] 制御部(24)の出力ユニット (26)から親局(29)の出力データ部(31)に送出される 親局受信信号 (28)は、親局出力データ部 (31)において、信号が並列'直列変換さ れ、直列データ信号 D (49)として、制御データ発生部(33)に送出され、制御データ 発生部(33)において、信号 Pck (53)としてラインドライバ(34)に送られる。伝送プリ ーダ電流回路 (40)は、電源重畳共通データ信号線 D+ (11)と電源重畳共通デー タ信号線 D— (12)に並列に接続されており、ラインドライバ(34)の出力電流とブリー ダ電流回路力 流れ出る信号 Ip (55)と電流信号 lis (57)の合成電流が電流信号 Is ( 56)として監視信号検出手段 (39)の回路に流れる監視信号が検出され、インバータ (47)を介して監視データ抽出手段であるフリップフロップに信号 Diip (54)として伝 達される。このフリップフロップの出力はデータ入力監視信号 Diis (52)として、入力 データ部に伝えられる。  The master station reception signal (28) transmitted from the output unit (26) of the control unit (24) to the output data unit (31) of the master station (29) is the master station output data unit (31). The signal is parallel-serial converted and sent as a serial data signal D (49) to the control data generation unit (33), and in the control data generation unit (33), the line driver (34) as the signal Pck (53). Sent. The transmission pre-driver current circuit (40) is connected in parallel to the power-superposed common data signal line D + (11) and the power-superimposed common data signal line D- (12), and the output current of the line driver (34) A monitoring signal flowing in the circuit of the monitoring signal detection means (39) is detected as a current signal Is (56), and a combined current of the flowing signal Ip (55) and the current signal lis (57) is detected. ) Is transmitted as a signal Diip (54) to a flip-flop which is monitoring data extraction means. The output of this flip-flop is transmitted to the input data section as the data input monitoring signal Diis (52).
[0024] 各マッピングセンサの状態信号である直列のデータ入力監視信号 Diis (52)は、一 且入力データ部(30)のシフトレジスタに蓄えられる。直列データであるシフトレジスタ の各セルのデータは、そのまま並列データとして、入力ポート i番" 0" (43)力 入力ポ ート i番" 31" (44)に渡され、制御部の入力ユニットに対し、並列データとして送出さ れる。一方、制御部の出力ユニットから送出された親局受信信号(28)は、出力ポー ト p番" 0" (45)から出力ポート p番" 31" (46)に送り込まれ、出力データ部(31)内部 で並列データの直列変換がなされ、直列データ信号 D (49)として、制御データ発生 部(33)に送出される。 A serial data input monitoring signal Diis (52) which is a status signal of each mapping sensor is stored in the shift register of the input data unit (30). The data of each cell of the shift register, which is serial data, is passed as parallel data as it is to input port i "0" (43) force input port i "31" (44), and the input unit of the control unit Is sent out as parallel data. On the other hand, the master station reception signal (28) sent from the output unit of the control unit is sent from output port p "0" (45) to output port p "31" (46), and the output data section 31) Serial conversion of parallel data is performed internally, and control data generation is performed as serial data signal D (49). It is sent to the part (33).
[0025] 図 6には、図 5における親局(29)の配線機能ブロック図の各部の信号波形を示す。  FIG. 6 shows signal waveforms of respective portions of the wiring functional block diagram of the master station (29) in FIG.
クロック信号 Dck (48)は、スタート信号 ST (50)の立ち上がり信号後、次のスタート信 号の立ち上がりまでの間、一定周期のクロック信号を継続的に送出する。またデータ 入力クロック信号 Dick(51)は、入力データ部(30)の信号処理の行う上でのクロック 信号であり、クロック信号 Dck(48)のクロック開始点よりクロック一周期分シフトし、マ ッビングシステムの監視信号を待って信号処理する。  After the rising edge of the start signal ST (50), the clock signal Dck (48) continuously sends out a clock signal of a fixed cycle until the next rising edge of the start signal. The data input clock signal Dick (51) is a clock signal for performing signal processing of the input data section (30), and is shifted by one clock period from the clock start point of the clock signal Dck (48). Wait for the monitoring signal of the bing system to process the signal.
[0026] データ入力監視信号 Diis (52)は、監視信号が" 0"、 "1"、 "0"、 "1"の状態である 場合の信号事例を示す。信号 Pck (53)は、クロック信号 Dck (48)の逆相を呈するク ロック信号であり、(変更する)ラインドライバ(34)から電源重畳共通データ信号線 D + (11) ,電源重畳共通データ信号線 D— (12)に送出され、マッピングセンサの状 態信号処理を行う。信号 Diip (54)は、監視信号検出手段 (39)において検出された 監視信号をインバータ (47)で反転させた入力電流信号であり、監視データ抽出手 段であるフリップフロップの入力に監視信号情報を伝達する。当該監視データ抽出 手段であるフリップフロップには、データ入力クロック信号 Dick (51)に同期し、デー タ入力監視信号 Diis (52)を入力データ部(30)に送出する。信号電流 Ip (55)は、 電源重畳共通データ信号線 D+ (11)、電源重畳共通データ信号線 D— (12)に載 つて!、る信号に従!、伝送ブリーダ電流回路の信号電流である。  The data input monitoring signal Diis (52) shows a signal example in the case where the monitoring signal is in the state of “0”, “1”, “0”, “1”. The signal Pck (53) is a clock signal exhibiting a phase opposite to that of the clock signal Dck (48), and (changes) the line driver (34) to the power supply superimposed common data signal line D + (11) It is sent to signal line D-(12) and performs status signal processing of the mapping sensor. The signal Diip (54) is an input current signal obtained by inverting the monitoring signal detected by the monitoring signal detection means (39) by the inverter (47), and the monitoring signal information is input to the input of the flip-flop which is a monitoring data extraction means. To communicate. The data input monitoring signal Diis (52) is sent to the input data section (30) in synchronization with the data input clock signal Dick (51) to the flip-flop which is the monitoring data extracting means. The signal current Ip (55) is a signal current of the transmission bleeder current circuit according to a signal that is placed on the power superimposed common data signal line D + (11) and the power superimposed common data signal line D-(12). .
[0027] 図 7には、センサ子局 A ( # 0) (9)の内部の配線図を示す。センサ子局 A ( # 0)は、 マッピングセンサシステムにおいて、最下段にのみ使用する回路構成である。ここで 、親局から共通データ信号線 D+ (11)及び0—(12)を介して送られるクロック信号 はクロック検知回路( 112)にお 、て検出される。クロック検知回路( 112)にお 、て検 出されたクロック信号は、投光タイミング移動信号発生回路 A(113)において、投光 タイミング移動信号 (60)を自局内で発信する機能を有する。また投光信号発生回路 (114)は、被検出体 (8)を検出する投光用 LED (18)力も発せられた検出投光信号 を受光用フォトトランジスタ PHTRs (17)により検出受光信号を受光し、被検出体 (8) の有無、状態を親局に、電源重畳共通データ信号線 D+ (11)と電源重畳共通デー タ信号線 D— (12)を介して伝送する。 [0028] マッピングセンサ(111)による被検出体 (8)の検出感度の調整は、検出感度調整 回路(119)において、直列に接続された右側検出感度調整ボリューム VRr ( 19)及 び左側検出感度調整ボリューム VR1 (20)によって、マッピングセンサシステムの左右 両側から調整できるようになつている。これにより当該マッピングセンサシステム(110 )が取付けられた比較的大きな設備の周辺を回って一々反対側へ移動しなくても検 出感度を調整できるという利点がある。上記検出感度の調整における動作状態は、 動作表示回路(118)において、センサ動作表示 LED (23)によって行う。センサ動 作表示 LED (23)は、多方向から動作確認できるように多面反射板を有しており、こ れにより検出感度及び不感帯などの動作範囲の調整確認作業を容易にして!/、る。 [0027] FIG. 7 shows a wiring diagram inside sensor slave station A (# 0) (9). Sensor slave station A (# 0) is a circuit configuration used only in the lowermost stage in the mapping sensor system. Here, the clock signal sent from the master station via the common data signal line D + (11) and 0- (12) is detected by the clock detection circuit (112). The clock detection circuit (112) has a function of transmitting the light emission timing movement signal (60) in its own station in the light emission timing movement signal generation circuit A (113). In addition, the light emission signal generation circuit (114) receives the detection light emission signal detected by the light emission phototransistor PHTRs (17), which also emits the light emission LED (18) that emits the light emission LED (18) that detects the detection object (8). Then, the presence or absence of the detected object (8) and the state are transmitted to the master station via the power superimposed common data signal line D + (11) and the power superimposed common data signal line D − (12). The detection sensitivity of the detection object (8) is adjusted by the mapping sensor (111) in the detection sensitivity adjustment circuit (119), with the right detection sensitivity adjustment volume VRr (19) and the left detection sensitivity connected in series. The adjustment volume VR1 (20) enables adjustment from the left and right sides of the mapping sensor system. This has the advantage that the detection sensitivity can be adjusted without having to move around the periphery of a relatively large installation to which the mapping sensor system (110) is attached and moving to the opposite side. The operation state in the adjustment of the detection sensitivity is performed by the sensor operation display LED (23) in the operation display circuit (118). The sensor operation display LED (23) has a multi-faced reflector so that the operation can be checked from multiple directions, which makes it easy to check the adjustment of the operating range such as detection sensitivity and dead zone! .
[0029] センサ子局 A( # 0) (9)のセンサ動作が終了した後、次のアドレスに相当するセン サ子局 B (7a)のアドレス受光用フォトトランジスタ PHTRa(22)に対し、アドレス投光用 LEDa (21)がアドレス投光信号を発して動作信号を送信し、伝達する(図 7及び図 9 )。またクロック検知回路(112)において、ツエナーダイオード ZD (78)は、 21Vをス レショールド値として、クロックを検出し、センサ子局クロック信号 CK (58)を得る(図 7 ) o更に子局制御電源 CV (64)は、センサ子局 Aの制御電源を形成する。  After the sensor operation of sensor slave station A (# 0) (9) is completed, the address for the phototransistor PHTRa (22) for address light reception of sensor slave station B (7a) corresponding to the next address is The LED for LED light (21) emits an address light signal to transmit and transmit an operation signal (Fig. 7 and 9). Also, in the clock detection circuit (112), the zener diode ZD (78) detects the clock with a threshold value of 21 V to obtain a sensor slave clock signal CK (58) (Fig. 7) o Further slave control power supply CV (64) forms a control power supply for sensor slave station A.
一方、投光タイミング移動信号発生回路(113)において、センサ子局クロック信号 CK(58)は、トランジスタ TRc (65)により増幅され、その出力信号の一部がインバー タ(66)を通った後に、 RC回路により時定数 3tオンディリレー信号 (68)となる。また  On the other hand, in the light emission timing shift signal generation circuit (113), the sensor slave station clock signal CK (58) is amplified by the transistor TRc (65), and a part of its output signal passes through the inverter (66). The RC circuit becomes a time constant 3t on-de relay signal (68). Also
0  0
ダイオード及び抵抗により 1Z4Tオフディリレー信号 (67)が得られる。この信号がセ  A diode and a resistor provide a 1Z4T off relay signal (67). This signal is
0  0
ンサ子局スタート信号 ST (59)となる。  The slave station start signal ST (59).
[0030] スタート信号 ST(59)とクロック信号 CK(58)の立ち下りのタイミングでフリップフロッ プ (69)力 Sセットされ、出力として投光タイミング移動信号 (60)が得られる。 A flip-flop (69) force S is set at the falling timing of the start signal ST (59) and the clock signal CK (58), and a light projection timing shift signal (60) is obtained as an output.
投光信号発生回路( 114)は、投光タイミング移動信号 (60)をトランジスタ TR1 (70) により増幅し、投光用 LED (18)および直列に接続されているアドレス投光回路(11 5)のアドレス投光用 LEDa (21)力 アドレス投光信号(3)を発生する。  The light emission signal generation circuit (114) amplifies the light emission timing shift signal (60) by the transistor TR1 (70), and the light emission LED (18) and the address light emission circuit (115) connected in series. LEDa for address light emission (21) Force Generate address light emission signal (3).
右側検出感度調整ボリューム VRr (19)及び左側検出感度調整ボリューム VR1(20 )によって調整された検出信号は、検出受光回路(116)のオペアンプ(74)の入力電 圧として調整され、コンパレータ(75)の出力信号 S (61)が動作表示回路(118)のフ リップフロップ(72)に伝えられ、同時にアンドゲート(71)の出力がフリップフロップ(7 2)の S端子に入る。フリップフロップ(72)の出力は、トランジスタ TR (76)に対する駆 動信号 SD (62)としてセンサ動作表示 LED (23)を投光動作させる。伝送出力信号 回路(117)のアンドゲート(73)は、フリップフロップ(72)の出力信号とトランジスタ T Rc (65)の出力信号であるクロック信号及び投光タイミング移動信号 (60)との論理積 をとつて信号 Dip (63)をトランジスタ TRi (77)に伝達し、当該センサ子局 A (9)の出 力信号をトランジスタ TRi(77)力 電源重畳共通データ信号線 D+ (11)と電源重畳 共通データ信号線 D— (12)間に送出する。 The detection signal adjusted by the right detection sensitivity adjustment volume VRr (19) and the left detection sensitivity adjustment volume VR1 (20) is adjusted as the input voltage of the operational amplifier (74) of the detection light receiving circuit (116), and the comparator (75) Output signal S (61) of the operation display circuit (118) At the same time, the output of the AND gate (71) enters the S terminal of the flip flop (72). The output of the flip flop (72) causes the sensor operation display LED (23) to emit light as a drive signal SD (62) for the transistor TR (76). The AND gate (73) of the transmission output signal circuit (117) is the logical product of the output signal of the flip flop (72) and the clock signal which is the output signal of the transistor T Rc (65) and the light emission timing shift signal (60). Then, the signal Dip (63) is transmitted to the transistor TRi (77), and the output signal of the sensor slave station A (9) is superimposed on the transistor TRi (77) power supply common data signal line D + (11) Send between common data signal line D-(12).
[0031] 図 8には、図 7に示すセンサ子局 A (9)内部の各部の信号をタイミングチャートとし て示す。伝送ラインである電源重畳共通データ信号線 D+ (11)と電源重畳共通デ ータ信号線 D— (12)間には、 24Vの信号電圧とパルス信号が重畳されており、 21V をスレショールド電圧として、センサ子局クロック信号 CK (58)が検出される。  [0031] FIG. 8 shows signals of respective units in the sensor slave station A (9) shown in FIG. 7 as a timing chart. A signal voltage of 24 V and a pulse signal are superimposed between the power supply superimposed common data signal line D + (11) which is a transmission line and the power supply superimposed common data signal line D-(12). The sensor slave station clock signal CK (58) is detected as a voltage.
図 8では、センサ子局クロック信号 CK (58)の最初の立ち下り及びセンサ子局スタ ート信号 ST(59)の反転信号が投光タイミング移動信号 (60)のオンタイミングとなり、 またクロックの 1周期後の立ち下り信号によって投光タイミング移動信号 (60)がオフと なることを示している。  In FIG. 8, the first falling edge of the sensor slave station clock signal CK (58) and the inverted signal of the sensor slave station start signal ST (59) become the on timing of the light emission timing shift signal (60). A falling signal one cycle later indicates that the light projection timing shift signal (60) is turned off.
図 8において、コンパレータ(75)の出力である信号 S (61)は、投光タイミング移動 信号 (60)に僅かにフォトトランジスタ検出により遅延して立ち上がり、投光タイミング 移動信号 (60)と共に遅延して立ち下がる信号である。信号 SD (62)は、センサ動作 表示 LED (23)のドライブ信号である。信号 Dip (63)は、センサ子局 Aの出カトラン ジスタ TRiをドライブし、電源重畳共通データ信号線 D+ (11)と電源重畳共通デー タ信号線 D— (12)を介して親局に伝送する信号である。  In FIG. 8, the signal S (61), which is the output of the comparator (75), slightly rises after the light emission timing shift signal (60) due to phototransistor detection, and is delayed together with the light emission timing shift signal (60). Falling signal. Signal SD (62) is a drive signal of the sensor operation display LED (23). The signal Dip (63) drives the output transistor TRi of the sensor slave station A, and transmits it to the master station via the power superimposed common data signal line D + (11) and the power superimposed common data signal line D-(12). Signal.
[0032] 図 9には、マッピングセンサで例えば、最下段のみに用いるセンサ子局 A以外のセ ンサ子局であるセンサ子局 B (7a〜7h)の回路構成図を示す。センサ子局 B (7a〜7 h)は、最下段のセンサ子局 A或 、は当該センサ子局 B (7a〜7h)よりアドレスの若 ヽ センサ子局 B (7a〜7h)のアドレス投光用 LEDa (21)から投光されるアドレス投光信 号をアドレス受光用フォトトランジスタ PHTRa (22)によって受信し、当該センサ子局 B (7a〜7h)の作動を開始する。受光用フォトトランジスタ PHTRa (22)がアドレス信 号を受け取り、インバータ(79)を介してフリップフロップ(80)に信号 AD (81)を送出 するように構成される。 FIG. 9 shows a circuit configuration diagram of a sensor slave station B (7a to 7h) which is a sensor slave station other than the sensor slave station A used only in the lowermost stage in the mapping sensor, for example. The sensor slave station B (7a to 7h) is the lowermost sensor slave station A or the address slave station B (7a to 7h) of the address from the sensor slave station B (7a to 7h). The address light emission signal emitted from the LEDa (21) is received by the address light reception phototransistor PHTRa (22), and the sensor slave station B (7a to 7h) starts operation. Phototransistor PHTRa (22) for address reception , And sends the signal AD (81) to the flip flop (80) via the inverter (79).
フリップフロップ(80)は、上記信号 AD (81)及びセンサ子局 Bクロック信号 CK (82 )をトランジスタ TRc経由で受けたタイミングで投光タイミング移動信号 LTを生成する 。その後の回路動作は、前記センサ子局 Aと同様であるので、全ては記載しないが、 コンパレータ出力信号であるセンサ子局 B信号 S (83)は、フリップフロップ FFの入力 信号となり、センサ子局 B信号 SD (84)は、センサ動作表示 LEDをドライブするトラン ジスタ TRの駆動信号となる。信号 Dip (85)は、当該センサ子局 B (7a〜7h)の出力 信号を電源重畳共通データ信号線 D+ (11)と電源重畳共通データ信号線 D— (12 )を介して親局に伝送するためのトランジスタ TRiのドライブ信号となる。  The flip-flop (80) generates the light emission timing shift signal LT at the timing when the signal AD (81) and the sensor slave station B clock signal CK (82) are received via the transistor TRc. Since the subsequent circuit operation is the same as that of the sensor slave station A, not all of them are described. However, the sensor slave station B signal S (83) which is a comparator output signal becomes an input signal of the flip flop FF, and the sensor slave station The B signal SD (84) serves as a drive signal for the transistor TR that drives the sensor operation display LED. The signal Dip (85) transmits the output signal of the sensor slave station B (7a to 7h) to the master station via the power superimposition common data signal line D + (11) and the power superimposition common data signal line D- (12) To drive the transistor TRi.
[0033] 図 10は、図 9に示すセンサ子局 B内部の各部の信号をタイミングチャートとして示す 。センサ子局 Bクロック信号 CK (82)は、上記センサ子局 Aの動作と同様に、伝送ライ ンから 21Vをスレショールド電圧としてクロック信号として検出されたものである。信号 AD (81)は、当該センサ子局 Bのアドレス信号であり、フリップフロップを経由して当 該センサ子局 Bの投光タイミング移動信号 LTを生成する。 FIG. 10 shows signals of respective parts in the sensor slave station B shown in FIG. 9 as a timing chart. Similar to the operation of the sensor slave station A, the sensor slave station B clock signal CK (82) is detected as a clock signal with a threshold voltage of 21 V from the transmission line. The signal AD (81) is an address signal of the sensor slave station B, and generates a light projection timing shift signal LT of the sensor slave station B via a flip-flop.
図 10において、 LT( # 1)、LT( # 2)、LT( # 3)、 LT( # n)は、当該センサ 子局 Bの投光タイミング移動信号 LT( # 1)、このセンサ子局 Bに隣接するセンサ子局 Bの投光タイミング移動信号 LT( # 2)、その次のセンサ子局 Bに隣接する投光タイミ ング移動信号 LT( # 3)、 n番目のセンサ子局 Bの投光タイミング移動信号 LT( In FIG. 10, LT (# 1), LT (# 2), LT (# 3), and LT (# n) are the light emission timing shift signal LT (# 1) of the sensor slave station B, and this sensor slave station. A light emission timing movement signal LT (# 2) of sensor slave station B adjacent to B, a light emission timing movement signal LT (# 3) adjacent to the next sensor slave station B, the nth sensor slave station B Flash timing change signal LT (
# n)をそれぞれ示す。 # n) are shown respectively.
センサ子局 B信号 S (83)は、投光タイミング移動信号 LT ( # 1)の立ち上り後にオン となり、クロック信号 CK(82)の一周期の立ち下りと共に立ち下がる。センサ子局 B信 号 SD (84)は、センサ子局 B信号 S (83)と共に立ち上がる。信号 Dip (85)は、セン サ子局 B信号 S (83)と共に立ち上がり、クロック半サイクルで立ち下がる。  The sensor slave station B signal S (83) turns on after the rise of the light emission timing shift signal LT (# 1), and falls with the fall of one cycle of the clock signal CK (82). Sensor slave station B signal SD (84) rises with sensor slave station B signal S (83). The signal Dip (85) rises with the sensor slave station B signal S (83) and falls at a half clock cycle.
[0034] <第 2の実施の形態 > Second Embodiment
図 11には、各センサ子局間を渡り配線 (86)で、投光信号及び受光信号の伝達す る例を示す。センサ子局間渡り配線 (86)が、各センサ子局間を接続する渡り配線で ある。それぞれのセンサ子局の間は、センサ子局間バスケーブルユニット(109)によ つて、標準長のコネクタケーブルで接続される。従って、標準長のケーブル長さを変 えることで、センサ子局の間隔を自由に変更でき、また配線のゆとり分で、間隔の多 少の変更も可能になっている。このように、複数のセンサ子局を最適に配列すること により、マッピングセンサシステム(110)が構成される。なお、渡り配線により、隣接す るセンサ子局同士を接続することに限るだけではなぐ例えば、センサ子局 Aを中断 に設定した場合であっても、このセンサ子局 Aを渡り配線によりセンサ子局 Aの直上 のセンサ子局 Bに接続し、このセンサ子局 Bを渡り配線によりセンサ子局 Aの直下の センサ子局 Bに接続し、更に上下のセンサ子局 Bに順に接続してもよい。位置関係に ぉ 、て順位付けを行 ヽた 、場合には、この方法によることもできる。 FIG. 11 shows an example in which the light projection signal and the light reception signal are transmitted by the wiring (86) between the sensor slave stations. Crossover wiring between sensor slave stations (86) is a crossover wiring that connects between sensor slave stations. Between sensor slave stations, the sensor slave station bus cable unit (109) Connected with a standard length connector cable. Therefore, by changing the cable length of the standard length, it is possible to freely change the distance between sensor slave stations, and it is also possible to change the distance slightly due to the allowance of wiring. Thus, the mapping sensor system (110) is configured by optimally arranging the plurality of sensor slave stations. In addition, it is not limited to only connecting adjacent sensor slave stations by the crossover wiring. For example, even if the sensor slave station A is set to be interrupted, the sensor slave stations are separated by the crossover wiring. Connect to sensor slave station B directly above station A, connect this sensor slave station B to sensor slave station B directly below sensor slave station A by crossover wiring, and connect to sensor slave stations B on top and bottom in order. Good. Positional relationship is ぉ, and ranking is performed, and in this case, this method can also be used.
このように、渡り配線部分まで含め、それぞれが一定形状、一定形態で作製できて いるため、それぞれを事前に作製しておき、必要時に単純作業、短納期で組み立て るストック方式の生産も容易である。  As described above, since each of them including the crossover wiring portion can be manufactured in a fixed shape and a fixed shape, it is easy to manufacture a stock method in which each is prepared in advance and assembled as needed with simple work and short delivery time. is there.
[0035] 図 12には、渡り配線型のセンサ子局 Aの回路図を示す。タイミング移動信号発生 回路 AW(121)によって、当該センサ子局 Aの検出投光信号の投光タイミングが設 定されると共に、渡り線によってセンサ子局 Bにタイミング移動信号 (87)が渡される。 図 12において、センサ子局 Aに続き、次のセンサ子局 Bに投光タイミング移動信号を 送信するためのタイミング移動信号 (87)が付加されている。このように、タイミング移 動信号 (87)を光により送信する方式を用いずとも、渡り配線により、容易に実現でき る。しかし、図 2に示すように、電源重畳共通データ信号線 D+ (11)、電源重畳共通 データ信号線 D— (12)に導体(13)を使って、接続とセンサ子局の固定を両立させ るためには、渡り配線を用いず、光による投光タイミング移動信号で繋ぐ方式を用い る利点は大きい。 FIG. 12 shows a circuit diagram of the sensor wiring station A of the crossover wiring type. The timing shift signal generation circuit AW (121) sets the light projection timing of the detected light projection signal of the sensor slave station A, and the crossover passes the timing shift signal (87) to the sensor slave station B. In FIG. 12, following the sensor slave station A, a timing shift signal (87) for transmitting a light projection timing shift signal to the next sensor slave station B is added. As described above, this can be easily realized by the crossover wiring without using the method of transmitting the timing shift signal (87) by light. However, as shown in Fig. 2, using the conductor (13) for the power superimposition common data signal line D + (11) and the power superimposition common data signal line D-(12), both the connection and the sensor slave station are fixed In order to achieve this, there is a great advantage to using the method of connecting by the light projection timing movement signal without using the crossover wiring.
[0036] 図 13には、渡り配線型のセンサ子局 Bの回路図を示す。図 12に示すセンサ子局 A に続くセンサ子局 B、その後に続くセンサ子局 Bは、いずれも図 13に示す回路と同じ 構成であり、タイミング移動信号発生回路 BW( 122)において、前のセンサ子局から 信号 AD (88)を受け取り、当該子局が投光及び受光動作が完了した後、続くセンサ 子局に対し、タイミング移動信号 (87)を送出する。このタイミング移動信号 (87)の発 生回路、センサ子局力も信号 AD (88)を受け取る回路を除き、全て光を用いてァドレ ス投光信号を受け渡す方式と変わらず、タイミング移動信号 (87)を送る端子とタイミ ング移動信号発生回路 BW(122)の一部を除き、回路動作は変わらず、プリント基板 配線の部分共用が可能である。 FIG. 13 shows a circuit diagram of the sensor wiring station B of the crossover wiring type. Sensor slave station B following sensor slave station A shown in FIG. 12 and sensor slave station B following it all have the same configuration as the circuit shown in FIG. 13, and the timing movement signal generation circuit BW (122) Upon receiving the signal AD (88) from the sensor slave station, the slave station sends out a timing movement signal (87) to the subsequent sensor slave station after the light projection and light reception operations are completed. Except for the circuit for generating this timing transfer signal (87) and the circuit for receiving the signal AD (88), all of them are The circuit operation remains unchanged except for the terminal that sends the timing movement signal (87) and part of the timing movement signal generation circuit BW (122), regardless of the method of passing the light emission signal. Is possible.
[0037] 図 14には、マッピングセンサモジュール(89)のマッピングセンサベース(92)への 組立て手順を示す。先ずマッピングセンサモジュール(89)をマッピングセンサモジュ ール固定ネジ(90)によりマッピングセンサベース(92)に固定する。次にマッピング センサベース固定ネジ(91)を、マッピングセンサモジュール(89)が固定されたマツ ビングセンサベース(92)の通孔に揷通した後に、取付け板(97)のマッピングセンサ ベース固定雌ネジ(98)に螺合する。これによりマッピングセンサシステム(110)が完 成する。この場合、各モジュール間の繋ぎは、バスケーブルコネクタ(95)力もマツピ ングセンサモジュール間渡り配線 (96)により接続されて 、る。またスぺーサ(93)を 用いることにより、マッピングセンサアッセンプリ(94)の間隔を容易に割り出し、正確 な間隔調整を行い得る。  [0037] FIG. 14 shows an assembly procedure of the mapping sensor module (89) to the mapping sensor base (92). First, the mapping sensor module (89) is fixed to the mapping sensor base (92) by the mapping sensor module fixing screw (90). Next, after the mapping sensor base fixing screw (91) is inserted into the through hole of the mating sensor base (92) to which the mapping sensor module (89) is fixed, the mapping sensor base fixing female screw of the mounting plate (97) Screw on (98). This completes the mapping sensor system (110). In this case, the connection between the modules is also made by connecting the bus cable connector (95) and the wiring between the mapping sensor modules (96). In addition, by using the spacer (93), the distance between the mapping sensor assembly (94) can be easily determined and accurate distance adjustment can be performed.
[0038] 図 15には、 DIN規格のレール(99)にマッピングセンサモジュール(103)を固定し たマッピングセンサシステムの事例を示す。マッピングセンサモジュール(103)は、マ ッビングセンサベース固定ネジ(105)〖こより、ラックマウントマッピングセンサベース( 101)に固定される。位置決めスぺーサ(102)を用いることにより、レール(99)にマツ ビングセンサモジュール(103)を一定の間隔をあけて簡便に固定することができる。 レール(99)にはレールの長手方向に延びる複数の自在穴(100)が形成され、これ らの自在穴(100)を用いて、マッピングセンサシステムを支柱又はラック等の構造物 に取付け固定することにより、被検出体 (8)との位置関係を容易に調整できるように なっている。ラックマウントマッピングセンサベース(101)は、 DIN規格のレール(99) に簡易的に取付けることができ、更に固定ネジにより、角度振れなどが生じることなく 固定することができる。またラックマウントマッピングセンサベース(101)にはバスケー ブルコネクタ(104)が設けられ、このバスケーブルコネクタ(104)により、マッピングセ ンサモジュール(103)のラックマウントマッピングセンサベース(101)への取付け作 業や、マッピングモジュール(103)の交換作業を容易におこなえるようになつている。  [0038] Fig. 15 shows an example of a mapping sensor system in which the mapping sensor module (103) is fixed to a rail (99) of DIN standard. The mapping sensor module (103) is fixed to the rack mount mapping sensor base (101) from the mapping sensor base fixing screw (105). By using the positioning spacer (102), the hopping sensor module (103) can be easily fixed to the rail (99) at a fixed interval. The rail (99) is formed with a plurality of free holes (100) extending in the longitudinal direction of the rail, and these free holes (100) are used to attach and fix the mapping sensor system to a structure such as a post or rack. Thus, the positional relationship with the detection subject (8) can be easily adjusted. The rack mount mapping sensor base (101) can be simply mounted on a DIN standard rail (99), and can be fixed without any angular deviation or the like by means of fixing screws. Also, the rack mount mapping sensor base (101) is provided with a bus cable connector (104), and this bus cable connector (104) mounts the mapping sensor module (103) to the rack mount mapping sensor base (101). And the replacement of the mapping module (103) can be easily performed.
[0039] 図 16には、複数の検出投光フォトダイオード LEDsn (107)及び複数の受光検出フ オトトランジスタ PHTRsn (108)を用いたセンサ子局 Aの回路構成図を示す。複数の 検出投光フォトダイオード LEDsn (107)及び複数の受光検出フォトトランジスタ PHT Rsn (108)は符号 123で示される。複数の検出投光フォトダイオード LEDsn(107) を具備し、また、複数の検出受光フォトトランジスタ PHTRsn(108)を具備することに より、被検出体 (8)を高感度で検出でき、また外乱信号に対する信号対ノイズ比であ る S/N比を改善できるようになつている。図 16において、複数の検出投光フォトダイ オード LEDsn(107)には、これらの検出投光フォトダイオード LEDsn (107)に信号 電流を供給するための抵抗(106)が接続される。 [0039] FIG. 16 shows a plurality of detection light emitting photodiodes LEDs.sub.n (107) and a plurality of light reception detection light The circuit block diagram of the sensor slave station A using the autotransistor PHTRsn (108) is shown. The plurality of detection light emitting photodiodes LEDsn (107) and the plurality of light reception detection phototransistors PHT Rsn (108) are indicated by reference numeral 123. The detection object (8) can be detected with high sensitivity by including a plurality of detection light emitting photodiodes LEDsn (107) and a plurality of detection light receiving phototransistors PHTRsn (108), and a disturbance signal It is possible to improve the S / N ratio, which is the signal-to-noise ratio for. In FIG. 16, the plurality of detection projection photodiodes LEDsn (107) are connected with resistors (106) for supplying signal current to the detection projection photodiodes LEDsn (107).
複数の検出投光フォトダイオード LEDsn(107)及び複数の検出受光フォトトランジ スタ PHTRsn (108)を作動させても、マッピングセンサシステム全体では、同時発光 せず、時分割動作しているため、回路使用電力は最小化できており、装置の小型化 、省電力を実現できる。  Even if the multiple detection light emitting photodiodes LEDsn (107) and multiple detection light receiving phototransistors PHTRsn (108) are activated, the entire mapping sensor system does not emit light simultaneously but operates in a time-division manner. The power can be minimized, and the miniaturization of the device and the power saving can be realized.
産業上の利用可能性 Industrial applicability
本発明の利用は、板状の被検出体である液晶ガラス、シリコンゥエーハ、半導体実 装基板を生産する工程で使用されるが、形状が定形の部品類の生産、加工、保管等 にお ヽても広く使用が可能である。  The present invention is used in the process of producing plate-like objects to be detected, such as liquid crystal glass, silicon wafer, and semiconductor mounting substrates, but it can be used to produce, process, store, etc. parts having a fixed shape. It can be widely used.

Claims

請求の範囲 The scope of the claims
[1] 各々が被制御部のセンサ部(124)を監視する複数の検出ヘッドであるマッピング センサ(111)を有し、前記複数の検出ヘッドである前記マッピングセンサが共通デー タ信号線(11, 12)に接続され、前記センサ部(124)からの監視信号を、前記共通 データ信号線(11, 12)を介して、制御部(24)に伝送することを特徴とするマツピン グセンサシステム。  [1] Each of the mapping sensors (111), which has a plurality of detection heads that monitor the sensor unit (124) of the controlled part, has a plurality of detection heads, and the mapping sensors that are the plurality of detection heads have common data signal lines , 12), and transmits the monitoring signal from the sensor unit (124) to the control unit (24) via the common data signal line (11, 12). .
[2] 所定の同期伝送クロックに同期した投光タイミング移動信号 (60)又はタイミング移 動信号 (87)を発生するためのタイミング移動信号発生回路(113, 120, 121, 122 )と、前記投光タイミング移動信号 (60)又は前記タイミング移動信号 (87)の制御下 で、被検出体 (8)を検出する各々の前記複数の検出ヘッドである前記マッピングセン サの中に構成される単一の検出用投光器(18)或いは複数の検出用投光器を、前記 同期伝送クロックに基づいて順次個別の前記マッピングセンサ中の前記単一の検出 用投光器 (18)或 、は複数の前記検出用投光器を発光させる投光信号発生回路(1 14)と、前記単一の検出用投光器(18)或いは複数の前記検出用投光器の発光タイ ミングに応じ、単一の検出用受光信号 (5)或いは複数の前記検出用受光信号を受 光する検出受光回路(116)と、前記検出用受光信号を保持する動作表示回路(11 8)と、前記単一の検出用受光信号 (5)或いは複数の前記検出用受光信号を監視信 号として共通データ信号線(11, 12)に送出する伝送出力信号回路(117)とを備え たことを特徴とするマッピングセンサシステム。  [2] A timing shift signal generation circuit (113, 120, 121, 122) for generating a light projection timing shift signal (60) or a timing shift signal (87) synchronized with a predetermined synchronous transmission clock; A single configured in the mapping sensor which is each of the plurality of detection heads for detecting the object (8) under the control of the optical timing movement signal (60) or the timing movement signal (87) A plurality of detection light projectors (18) or a plurality of detection light projectors in sequence based on the synchronous transmission clock, the single detection light projector (18) or the plurality of detection light projectors in the individual individual mapping sensors. A single detection light receiving signal (5) or a plurality of detection light reception signals (5) or a plurality of detection light emission timings according to the light emission timing of the light emission signal generation circuit (114) for emitting light and the single detection light projector (18) Detection light reception circuit for receiving the detection light reception signal Path (116), an operation display circuit (118) holding the detection light reception signal, and the common data signal using the single detection light reception signal (5) or a plurality of detection light reception signals as a monitoring signal What is claimed is: 1. A mapping sensor system comprising: a transmission output signal circuit (117) for sending out to lines (11, 12).
[3] 請求項 1又は 2記載のマッピングセンサシステムにおいて、検出ヘッドである前記マ ッビングセンサの順次アドレス番地のタイミング移動信号を、次の検出ヘッドである前 記マッピングセンサに順次電気信号として送ることにより、前記複数の検出ヘッドであ る前記マッピングセンサ力 センサ信号を取り込めることを特徴とするマッピングセン サシステム。  [3] In the mapping sensor system according to claim 1 or 2, a timing movement signal at a sequential address of the mapping sensor as the detection head is sequentially sent as an electric signal to the mapping sensor as the next detection head. A mapping sensor system characterized in that the mapping sensor force sensor signal which is the plurality of detection heads can be taken.
[4] 請求項 1又は 2記載の前記マッピングセンサシステムにおいて、順次アドレス番地 の前記タイミング移動信号を次の前記検出ヘッドである前記マッピングセンサに検出 投光信号 (6)として順次送ることにより、複数の任意の前記検出ヘッドである前記マツ ビングセンサ力 前記センサ信号を取り込めることを特徴とするマッピングセンサシス テム。 [4] In the mapping sensor system according to claim 1 or 2, a plurality of the timing shift signals of sequential addresses are sequentially sent as the detection light projection signal (6) to the mapping sensor which is the next detection head. A mapping sensor system characterized in that the sensor signal can be captured. System.
[5] 請求項 1又は 2記載のマッピングセンサシステムにおいて、検出ヘッドである前記マ ッビングセンサの左右どちら力ィ匕一方に一つあるいは両方に検出感度調整用可変 抵抗器(19, 20)を有し、多方向から確認できる位置に単一のセンサ動作表示(23) が設けられたことを特徴とするマッピングセンサシステム。  [5] The mapping sensor system according to claim 1 or 2, wherein one or both of the left and right forces of the mapping sensor which is a detection head has a variable resistor (19, 20) for adjusting detection sensitivity. A mapping sensor system characterized in that a single sensor operation display (23) is provided at a position where it can be confirmed from multiple directions.
[6] 請求項 1ないし 3いずれか 1項に記載のマッピングセンサシステムにおいて、複数の 検出ヘッドである前記マッピングセンサが取付け板(1, 97)に取り付けられ、各々の 前記マッピングセンサ間を順次渡り配線(96)を使用して、タイミング移動信号、前記 検出ヘッド共通の回路用供給電源の電力及び伝送データ信号を伝送することを特 徴とするマッピングセンサシステム。  [6] The mapping sensor system according to any one of claims 1 to 3, wherein the mapping sensors, which are a plurality of detection heads, are attached to the mounting plate (1, 97), and sequentially pass between the mapping sensors. A mapping sensor system characterized by transmitting a timing movement signal, a power of a power supply for a circuit common to the detection head, and a transmission data signal using a wire (96).
[7] 請求項 1、 2又は 4いずれか 1項に記載のマッピングセンサシステムにおいて、複数 の検出ヘッドである前記マッピングセンサを取付ける取付け板( 1)に共通の導体( 13 )が設けられ、前期導体(13)に検出ヘッドである前記マッピングセンサを取付ける導 電性固定具(16)を使用し、前記検出ヘッドである前記マッピングセンサ共通の回路 用供給電源の電力及び伝送データ信号を伝送することを特徴とするマッピングセン サシステム。  [7] In the mapping sensor system according to any one of claims 1, 2 or 4, a common conductor (13) is provided on a mounting plate (1) to which the mapping sensor, which is a plurality of detection heads, is attached. Using a conductive fixture (16) for attaching the mapping sensor, which is a detection head, to a conductor (13), transmitting power and transmission data signals of a power supply common to the mapping sensor, which is the detection head Mapping sensor system characterized by
PCT/JP2005/018747 2005-08-25 2005-10-12 Mapping sensor system WO2007023575A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2005800513478A CN101238498B (en) 2005-08-25 2005-10-12 Mapping sensor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-274634 2005-08-25
JP2005274634A JP2007059856A (en) 2005-08-25 2005-08-25 Mapping sensor system

Publications (1)

Publication Number Publication Date
WO2007023575A1 true WO2007023575A1 (en) 2007-03-01

Family

ID=37771333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018747 WO2007023575A1 (en) 2005-08-25 2005-10-12 Mapping sensor system

Country Status (5)

Country Link
JP (1) JP2007059856A (en)
KR (1) KR100976194B1 (en)
CN (1) CN101238498B (en)
TW (1) TWI326117B (en)
WO (1) WO2007023575A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009113130A1 (en) * 2008-03-14 2011-07-14 株式会社 エニイワイヤ Transmission control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9308305B2 (en) * 2014-06-18 2016-04-12 Ch Biomedical (Usa) Inc. Implantable blood pump with integrated controller

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493720A (en) * 1990-08-10 1992-03-26 Mitsubishi Electric Corp Position measuring apparatus
JPH06132269A (en) * 1992-10-20 1994-05-13 Tokyo Electron Ltd Detector for substance to be processed, and method
JP2001222788A (en) * 1999-10-29 2001-08-17 Omron Corp Sensor system
JP3245645B2 (en) * 1997-03-19 2002-01-15 オムロン株式会社 Multiple transmission type photoelectric sensor, transmission type photoelectric sensor, and photoelectric detection method
JP2004295276A (en) * 2003-03-26 2004-10-21 Keyence Corp Continuously arranged sensor system, master unit, sensor unit and sensor relaying unit
JP3611207B2 (en) * 1999-10-25 2005-01-19 オムロン株式会社 Sensor unit for continuous mounting

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217440A (en) 1998-03-26 2005-08-11 Tokyo Electron Ltd Substrate processing apparatus
DE10059815A1 (en) * 2000-12-01 2002-06-13 Grieshaber Vega Kg Electronic measuring device for detecting a process variable, in particular radar or ultrasonic level measuring device and method for operating such a measuring device
KR100642517B1 (en) 2005-09-06 2006-11-03 삼성전자주식회사 Teaching apparatus of transfer robot

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493720A (en) * 1990-08-10 1992-03-26 Mitsubishi Electric Corp Position measuring apparatus
JPH06132269A (en) * 1992-10-20 1994-05-13 Tokyo Electron Ltd Detector for substance to be processed, and method
JP3245645B2 (en) * 1997-03-19 2002-01-15 オムロン株式会社 Multiple transmission type photoelectric sensor, transmission type photoelectric sensor, and photoelectric detection method
JP3611207B2 (en) * 1999-10-25 2005-01-19 オムロン株式会社 Sensor unit for continuous mounting
JP2001222788A (en) * 1999-10-29 2001-08-17 Omron Corp Sensor system
JP2004295276A (en) * 2003-03-26 2004-10-21 Keyence Corp Continuously arranged sensor system, master unit, sensor unit and sensor relaying unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009113130A1 (en) * 2008-03-14 2011-07-14 株式会社 エニイワイヤ Transmission control system
JP5008764B2 (en) * 2008-03-14 2012-08-22 株式会社 エニイワイヤ Transmission control system

Also Published As

Publication number Publication date
TWI326117B (en) 2010-06-11
TW200709326A (en) 2007-03-01
JP2007059856A (en) 2007-03-08
CN101238498B (en) 2013-03-27
CN101238498A (en) 2008-08-06
KR20080038249A (en) 2008-05-02
KR100976194B1 (en) 2010-08-17

Similar Documents

Publication Publication Date Title
EP3641505B1 (en) Luminaire controllers
EP2796008B1 (en) Lighting system and method of retrieving status information of a lighting system
US8832344B2 (en) Baseboard, extension module, and structure for connecting baseboard and extension module
RU2718746C1 (en) Modular plug-in connector system having an integrated data bus
CN101640012B (en) LED display module
EP4190126A1 (en) Linear lighting device
US20100026666A1 (en) Infrared transmitting or receiving circuit board unit and infrared touch screen using the same
WO2007023575A1 (en) Mapping sensor system
JP7293018B2 (en) APPARATUS AND METHOD FOR CONTROLLING LIGHTING IN INDUSTRIAL CAMERA SYSTEM
CN201206791Y (en) Lighting system
WO2016090655A1 (en) Embedded display screen having touch function, terminal and touch detection method
JP4717121B2 (en) Sensor slave station system
WO2001031607A1 (en) Contiguously mountable sensor unit
JP4844965B2 (en) Sensor terminal system
JP2014078483A (en) Power supply apparatus for controlling lighting apparatus
CN102142231A (en) Control system of extra large LED (Light-Emitting Diode) display screen
CN102162582A (en) Lighting body provided with integrated intelligence
CN203823690U (en) Electric connection device and lamp applying electric connection device
RU2012136215A (en) DEVICE AND METHOD OF CONTROL OF ELECTRICAL DEVICE OR INSTALLATION AND ELECTRICAL INSTALLATION CONTAINING ONE SUCH DEVICE
WO2014121716A1 (en) Transparent display device
CN209787507U (en) Intelligent wireless remote control switch device for guide rail lamp strip
CN219812279U (en) Dual-bus light control system
CN101639180B (en) LED lamp belt
LV14991B (en) Light emitting module and system of modules
JP5573576B2 (en) Lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580051347.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087007189

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 05793134

Country of ref document: EP

Kind code of ref document: A1