WO2007020940A1 - Multistage gear processing equipment - Google Patents

Multistage gear processing equipment Download PDF

Info

Publication number
WO2007020940A1
WO2007020940A1 PCT/JP2006/316099 JP2006316099W WO2007020940A1 WO 2007020940 A1 WO2007020940 A1 WO 2007020940A1 JP 2006316099 W JP2006316099 W JP 2006316099W WO 2007020940 A1 WO2007020940 A1 WO 2007020940A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
gas
stage
pressure
transfer
Prior art date
Application number
PCT/JP2006/316099
Other languages
French (fr)
Japanese (ja)
Inventor
Kosuke Uchiyama
Original Assignee
Kosuke Uchiyama
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kosuke Uchiyama filed Critical Kosuke Uchiyama
Priority to JP2007531008A priority Critical patent/JP5563736B2/en
Priority to KR1020087004980A priority patent/KR101352346B1/en
Publication of WO2007020940A1 publication Critical patent/WO2007020940A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3469Cell or pore nucleation
    • B29C44/348Cell or pore nucleation by regulating the temperature and/or the pressure, e.g. suppression of foaming until the pressure is rapidly decreased
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0203Solvent extraction of solids with a supercritical fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0215Solid material in other stationary receptacles
    • B01D11/0223Moving bed of solid material
    • B01D11/0226Moving bed of solid material with the general transport direction of the solids parallel to the rotation axis of the conveyor, e.g. worm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/60Pump mixers, i.e. mixing within a pump
    • B01F25/62Pump mixers, i.e. mixing within a pump of the gear type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/70Mixers specially adapted for working at sub- or super-atmospheric pressure, e.g. combined with de-foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • B29C45/5008Drive means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/39Plasticisers, homogenisers or feeders comprising two or more stages a first extruder feeding the melt into an intermediate location of a second extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/41Intermeshing counter-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/585Screws provided with gears interacting with the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating

Definitions

  • the present invention relates to an apparatus for compressing a substance together with, for example, carbon dioxide gas as a fluid in a critical state, that is, processing such as kneading, decomposition, extraction or chemical synthesis under supercritical or subcritical carbon dioxide gas About.
  • Patent Document 1 discloses carbon dioxide gas in a continuous processing method in which liquid food or liquid chemical is subjected to enzyme deactivation, sterilization, deodorization, extraction processing, etc. using a supercritical fluid or subcritical fluid.
  • a compression process in which a liquid raw material is injected into a suction process or a compression process of a compressor serving as a working medium and compressed together with carbon dioxide, and carbon dioxide and the liquid raw material are brought into direct contact to form a high-pressure gas-liquid mixed fluid in a critical state; Liquid gas separation process that separates high pressure carbon dioxide gas and liquid substance from high pressure gas-liquid mixed fluid in a critical state into high pressure carbon dioxide gas, and high pressure that melts the separated liquid substance It has been proposed to use a decompression process in which the carbon dioxide gas is rapidly decompressed to discharge the low-temperature carbon dioxide gas by releasing the criticality and perform enzyme deactivation treatment, pasteurization treatment, and flavor extraction treatment.
  • Patent Document 2 the recovered polyester product is broken into flakes, washed, and devolatilized and dried with water in a pre-process screw kneading extruder, and added with a modifier and a catalyst.
  • a method and an apparatus for recycling recovered polyester products that are subjected to a quality reaction and further subjected to foam extrusion while adding a supercritical fluid with a post-process screw extruder.
  • Patent Document 3 proposes an extruder in which at least two gear pumps are connected and unmelted vinyl chloride powder is melted and mixed in the gear pump.
  • gear pumps it is preferable to connect two or more gear pumps in view of the kneading effect, and there is no description of a control method in the case where the number of rotations between the force gear pumps is different.
  • gear pumps of the same capacity are connected at the same speed, it is possible to operate without causing abnormal pressure between the connected gear pumps.
  • gear pumps with different capacities for example, when a small capacity gear pump is connected next to a large capacity gear pump, an abnormally high pressure is generated between the gear pumps, and the large capacity gear pump is excessive. The road is loaded, the shear pin flies, and you cannot actually drive.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-204942
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-264998
  • Patent Document 3 Japanese Patent Laid-Open No. 11-34045
  • An object of the present invention is to provide an apparatus capable of performing processing such as decomposition, mixing, or extraction of a substance with good operability using supercritical or subcritical gas.
  • the apparatus of the present invention is a processing apparatus for continuously kneading a substance in which gas is mixed, and includes gear-type transfer units having different gear dimensions (that is, different transfer unit capacities).
  • Two or more stages are provided, and the pressure difference in gas compression is controlled by the difference in transfer capacity between two successive gear-type transfer parts, or a part of the transferred substance is made to flow backward to make the actual transfer capacity constant. To do.
  • the continuous two-stage gear-type transfer unit is provided with a plurality of, preferably 2 to 4, gears paired between them, and is transferred by each gear-type transfer unit.
  • the transfer capacity varies depending on the rotation speed and dimensions (module, pitch circle diameter, gear thickness, etc.) of the gear type transfer section.
  • the capacity of the transfer section is approximately proportional to the product of the number of rotations of the gear, the module, the pitch circle diameter, and the gear thickness. In practice, however, the gas is compressed and adjusted so that the actual transfer capacity is constant. It is better to apply a method of adjusting the force by the back flow from the outlet side to the inlet side.
  • the powerful gear-type transfer unit is, for example, preferably provided following the extrusion screw, because the first gear transfer unit capacity of the gear transfer unit preferably smaller than the second gear transfer unit capacity is The pressure during that time can be made negative.
  • By providing a gear having a smaller transfer section capacity than the second gear behind the second gear it is possible to increase the pressure or to obtain a desired effect.
  • a low-viscosity raw material can be continuously processed, and a high-pressure condition of supercritical or subcritical gas can be generated by the gear-type transfer unit.
  • the apparatus of the present invention is an extruder or an injection molding machine, and at the same time, continuously decomposes, mixes or extracts a substance in a supercritical or subcritical carbon dioxide gas and performs a wide range of operating conditions.
  • This is a general-purpose chemical equipment that can be used and has many inexpensive processes, making it inexpensive and economical.
  • gear-type transfer units can be stacked vertically, and the installation area can be reduced with a compact device.
  • FIG. 1 is an explanatory diagram of a gear pump structure of a step-down unit.
  • FIG. 2 is an explanatory diagram of a gear pump structure of a boosting unit.
  • FIG. 3 is an explanatory diagram of a gear pump structure of a kneading part.
  • FIG. 4 is an explanatory view showing the structure of an orifice part.
  • FIG. 5 is an explanatory diagram showing a structure of a pressure control unit.
  • the structure of the multi-stage gear extruder is shown. (I) shows the front part and (II) shows the rear part.
  • FIG. 7 Shows the structure of a multi-stage gear type foam injection molding extruder.
  • FIG. 8 shows a structure in which multi-stage gear extruders are arranged horizontally, (1) is a plan sectional view, and (2) is a longitudinal sectional view.
  • the apparatus of the present invention uses a multi-stage gear-type transfer unit that combines gears as shown in FIGS. 1, 2, and 3, and processes a substance mixed with gas transferred between them as a fluid in a critical state.
  • the twin-shaft horizontal gear extruder in Fig. 6 is equipped with a multi-stage gear-type transfer section following the twin-screw extrusion screw of the raw material supply section, and inside the cylinder 1 heated by an electric heater, An A-axis screw and a B-axis screw are provided, and the resin raw material supplied from the hopper 8 is melted while being transferred, and the molten resin in the melt zone 23 is converted into the next gear as shown in FIG. Flow into.
  • the gear T1 and the subsequent gear T2 have a relationship of T1 ⁇ T2, and the gear shown in Fig. 1 has a pressure-lowering section X, and the gas is compressed by the supply pressure set by the pressure-reducing valve 21 and the gear thickness is reduced. A certain amount of volume transfer gas corresponding to the dimensional difference ( ⁇ 2-T1) is injected.
  • the fluid after gear ⁇ 2 is a mixture of gas and grease. Therefore, the gas injection amount is larger as the supply pressure set by the pressure reducing valve 21 is higher. This gas is degassed through a vent hole 10 sucked by a vacuum pump.
  • the screw may be a single axis with two axes.
  • FIG. 1 shows a gear pump structure of the step-down portion X
  • FIG. 1 (1) shows a plan view
  • (1) in Fig. 1 is a cross-sectional view of the axial force on the Out side
  • (3) and (4) in Fig. 1 are side views.
  • the A-axis and B-axis shafts 2 and 3 are driven in the direction of rotation as indicated by the arrow 15, and the grease filled in the flow passage 13 is conveyed to the Out side from the In side cover illustrated by the gears. .
  • TKT2 Under the condition that the thickness of the gears T1 and T2 is TKT2, it acts on the tendency to increase the transfer capacity of the gear T2 over the transfer capacity of the gear T1.
  • the transfer capacity of the gear T1 corresponds to the sum of the volume of the resin and the volume of gas compressed by pressure P1.
  • the transfer capacity of the gear T2 is equivalent to the sum of the volume of the resin that has passed through the gear T1 and the volume of the gas compressed by the pressure P2.
  • the gear thickness is TKT2
  • the transfer capacity is greater with the gear T2 than the gear T1, and the pressure P1> P2.
  • the structure of (3) in Fig. 1 is used in the first stage of the multi-stage gear group mainly for the purpose of gas injection.
  • Fig. 2 shows the gear pump structure of the boosting unit Y.
  • Fig. 2 (1) is a plan view
  • Fig. 2 (2) is a cross-sectional view seen from the axial direction of Fig. 2 (3 ) Shows a side view.
  • the fluid flowing from In is, for example, a sufficiently compressible fluid in which coagulate and gas are mixed.
  • Tl>T2> T3 the gear thicknesses are Tl>T2> T3
  • the actual transfer capacity is the same for each gear, so the internal pressure in the flow passage 13 is increased to ⁇ 1 ⁇ 2, and the pressures of Pl and ⁇ ⁇ ⁇ ⁇ 2 respectively.
  • the fluid is compressed and the transfer capacity is balanced.
  • Fig. 2 consists of a combination of three gears.
  • the structure in Figure 2 is mainly used for the following two applications:
  • the structure of Fig. 1 (3) is installed for the purpose of raising the pressure to the supercritical region in the next stage where carbon dioxide gas is injected.
  • the first stage of the booster can be considered as gear T2 in FIG.
  • FIG. 2 As an example of the use of the structure of FIG. 2, there is a blending example (for example, a mixture of 58% starch and 42% water by weight) to sufficiently pregelatinize starch.
  • the water is carbonated water in which carbon dioxide gas is previously dissolved in water, for example, in the apparatus shown in FIG. 6, when this mixture is supplied from the hopper 8, the screw 5 under the hopper is sufficiently eaten by the starch in the dilatant flow.
  • the water turns into steam during overheating transport to the first stage of the multi-stage gear. Since carbon dioxide is already contained in carbonated water, gas injection is unnecessary, and the structure shown in Fig. 2 is used to boost the pressure from the first stage of the multi-stage gear to the supercritical region.
  • FIG. 3 shows a gear pump structure of the kneading part Z
  • FIG. 3 (1) shows a plan view.
  • FIG. 3 is a cross-sectional view seen from the Out side axial direction
  • FIG. 3 is a side view.
  • (4) in Fig. 3 shows the movement relationship between the gears attached to the shafts 2, 3, and 4 of the A, B, and C axes and the fluid.
  • the flow path on the outer periphery of the A-axis gear a part of the fluid passes through the outer periphery of the A-axis gear from the Out side and is supplied to the inlet of the C-axis gear. From the exit of the gear, return to the In side through the return path 14 around the outer periphery of the A-axis gear. This amount of backflow is shown as (4) Koko FB in Fig. 3.
  • Fig. 4 shows the structure of the orifice part. Installed mainly in the supercritical section, the fluid flows from In and passes through the narrow groove of the orifice 9 to the flow path force Out. The fluidity of the fluid in the section where the gas is in the supercritical state is high. And the dispersion effect becomes even higher.
  • FIG. 5 shows the structure of the pressure control unit.
  • the pressure control unit is convenient for multi-stage gear type machining equipment for research and development use
  • the step-down unit X with the gear fixed to the A-axis and B-axis shown in Fig. 1 is simple, and the pressure control unit Do not need.
  • the purpose of providing a pressure control unit is mainly to investigate the relationship between the amount of carbon dioxide added and the pressure, etc., on the degree of chemical reaction, the degree of kneading and dispersion, or to determine the specifications of the production machine. It becomes.
  • the fluid passage is blocked at the non-flight section 27 without a screw groove in the rear stage of the orifice in the supercritical section of the screw, the bypass passage of the flow passage 13 is provided, and the gear 6 driven separately from the screw 5 by the servo 'motor 16 To the latter part of the no-flight section 27.
  • the gear 6 comprises the step-down part X with two stages of gears. If the rotation speed of the servo motor is lowered, the pressure at the mounting portion of the grease pressure gauge 19 will increase, and if the rotation speed of the servo motor is increased, the pressure at the mounting portion of the grease pressure gauge 19 will decrease.
  • the servo motor 16 is driven by the servo amplifier 17, and the electrical pressure signal 18 is fed back from the grease pressure gauge 19 in response to the pressure command commanded to the servo amplifier so that the servo motor 16 approaches the pressure set value.
  • the motor rotation speed is controlled to configure automatic pressure control.
  • FIG. 6 shows an example of a multi-stage gear extruder. Resin is supplied from the hopper 8 and heated by the heater, and the resin is heated and melted by the A-axis and B-axis twin-screws 5 installed in the cylinder 1 as shown in Fig. 1.
  • the first stage of a multi-stage gear Although this example consists of two axes, the objective can be achieved with one axis.
  • the carbon dioxide gas cylinder pressure is also reduced by the carbon dioxide gas pressure reducing valve 21 and supplied through the check valve 22. The pressure of the supplied carbon dioxide gas is confirmed with a pressure gauge 20.
  • the carbon dioxide gas is compressed and kneaded by the screw installed in the supercritical section 25 through the pressurizing section 24 together with the fat carried by the screw 5, and the carbon dioxide gas becomes supercritical.
  • the next orifice section 26 is reached.
  • the mixture of gas and gas that has passed through the orifice section 26 is blocked in the non-flight section 27 in the next stage, and flows into the pressure adjustment section 28 by the servo motor.
  • the fluid that has passed through the pressure adjustment section flows into the screw section where the vent hole 10 is installed.
  • the carbon dioxide gas is reduced in pressure from the supercritical state to the subcritical state.
  • the mixed fluid of oil and gas is sucked through the vent hole connected to the vacuum pump and degassed. To do.
  • Vent hole force The latter stage reaches the die 11 with the same structure as a general extruder, and the fluid (resin) is cooled in a strand water tank and cut with a strand cutter. Cut with a hot cutter or submerged cutter, etc. I will be deceived. In some cases, it can be taken out in liquid form.
  • the first to third gears are illustrated in the pressurizing section 24, the first and second gears are the step-down portion X described in FIG. 1, and the second and third gears are illustrated.
  • the gear is different in figure from the booster Y described in Fig. 2, but the transfer unit capacity of three gears (explained with the kneading unit Z in Fig. 3) forming the third pair and forming the backflow unit. Is smaller than the capacity of the second transfer section, and the gas is further compressed to form the pressurizing section Y.
  • FIG. 7 shows an example of a multi-stage gear type foam injection molding machine / extruder.
  • the rosin raw material is supplied from the hopper 8 and melted while passing through the screw 5 installed in the cylinder 1 heated by the heater.
  • the purpose of the screw is to melt either uniaxial or biaxial, and either may be used.
  • the melted resin reaches the gas injection section 29 (step-down section X as shown in FIG. 1) arranged at the first stage of the multi-stage gear section. In this section, gas is mixed into the resin and transferred to the pressurizing section 30 arranged in the next stage.
  • a method of combining three gears as shown in (1) of FIG. 3 is employed so that pressurization and kneading are simultaneously performed.
  • the fluid is then transferred to the supercritical section 31, and the gas mixture enters the details of the grease. It is convenient to monitor the supercritical pressure by attaching a grease pressure gauge 19 to this part.
  • the grease mixed with the gas passes through the pressure-lowering section 32 and is injected into the mold of the injection molding machine through the nozzle 12 at the tip.
  • the nozzle has a well-known mechanical nozzle structure that can be discharged from the nozzle when pressed against the mold.
  • FIG. 8 shows an example of a multi-stage gear extruder in which multi-stage gears are arranged horizontally.
  • (1) is a plan view and (2) is a side view.
  • the gear thickness is T1 ⁇ T2>T3> T4
  • the gear thickness can be selected and arranged as appropriate according to the purpose of use.
  • Fig. 9 shows an example of a multi-stage gear extruder with multi-stage gears arranged in an arc.
  • the difficulty in arranging multi-stage gears in a horizontal arrangement or arc arrangement is the seal of the gear shaft, and the higher the pressure side, the more likely the seal will be broken. .
  • this problem is solved by providing the conductive relay gear 7.
  • By installing conductive relay gears in a horizontal array or circular arc arrangement the complexity of the seal is eliminated, making it compact and ideal for various supercritical compounds for laboratory use, supercritical extraction and supercritical reaction testing machines. Became.
  • the gas is supplied through the check valve 21 through the check valve, but the gas mixed in the resin is injected.
  • it is not necessarily a gas. It may be liquid when injecting.
  • a liquid such as gas-injected rocker is also added, It may be a fluid mixed with gas by vaporizing with the internal heat of the multi-stage gear group. That is, in the present invention, a state where a gas component is mixed in a fluid passing through the multi-stage gear group is treated as a substance containing gas or a gas-containing substance.
  • a die is generally used for the outlet of the apparatus of the present invention.
  • the die hole and the shape of the die are appropriately selected according to the following steps. For example, if the next process is film or sheet production, the shape of the die hole can be made into a slit shape, and the film can be continuously produced. Also, if the next step is discontinuous, the processed material is taken out in the shape of a rope and cut with a cutter to produce pellets, extruded into a sheet to produce square pellets, or round pellets with a hot cutter or underwater cutter. Can also be manufactured. In some cases, it can be taken out in liquid form.
  • the gear type machining apparatus of the present invention may be incorporated into an extrusion screw as a part of a kneading part such as an injection molding machine, an injection blow molding machine, an inflation apparatus, or a T die.
  • the gear type carriage device of the present invention can be connected in a vertically stacked manner by combination with a mandrel. By stacking vertically, the installation area of the entire processing device can be made smaller than that of a general screw extrusion kneader.
  • the gear-type transfer unit used in the present invention focuses on the mixing effect rather than the metering.
  • the gear shape of the gear-type transfer unit changes the center elasticity depending on the size of the leading end R of the gear.
  • the difference in the angle between the tangent line and the center line of the gear groove changes the flow velocity of the material in the gear.
  • the material in the gear groove by rotating the gear Will be mixed and mixed.
  • the measuring ability is reduced, but this elastic force can be increased. It is the same as a general gear pump that the metric changes depending on the volume of the gear groove and the gear speed.
  • the gear-type transfer unit and the screw unit can be installed separately.
  • the groove of the gear-type transfer unit gear can be installed vertically so as to be orthogonal to the screw shaft.
  • the gear-type transfer unit is incorporated as a module to facilitate compatibility. This is the same as the case of the horizontal type, and the same module replacement method as that used in a general twin-screw extruder. This is because the viscosity varies depending on the material used, so even with the same gear 'clearance, the reverse flow resistance varies depending on the viscosity, making it easier to select the desired pressure and the required shear strength. . Module 'systems are also advantageous for equipment cleaning.
  • Supercritical or subcritical gas chemistry includes chemical decomposition such as hydrolysis, alcoholysis, enzymatic decomposition, mixing of fine particles without surface treatment, mixing of liquid and polymer, insoluble polymer without using compatibilizer Examples include chemicals such as mixing, solvent extraction, and steam extraction. Catalysts, auxiliary materials, and the like may be quantitatively supplied by a plunger pump, a gear pump, or the like by a low pressure gas supply unit that may be supplied quantitatively as appropriate, or by liquid injection.
  • Supercritical or subcritical gas may use low molecular weight compounds such as carbon dioxide, methanol, acetone, nitrogen gas, and water. Among them, carbon dioxide is often used because the critical conditions are mild and explosive. It is done.
  • hydrolysis examples include, for example, starch, kenaf, nocose, cellulose, protein, fat and the like, which are decomposed into polysaccharides, oligosaccharides, monosaccharides, amino acids, alcohols and the like.
  • acids are used for sugars
  • alkalis or enzymes such as amylase, peptidase, and lipase are used for proteins.
  • the supercritical conditions of carbon dioxide gas are 31 ° C and 7 MPa, but when using an enzyme as a catalyst, it is preferable to operate in a temperature range where the enzyme is not deactivated, for example, 35 to 40 ° C and 7 MPa or more.
  • an acid or alkali is used as a catalyst, it is preferable to increase the temperature because reaction efficiency can be improved and productivity can be improved.
  • alcoholysis for example, a so-called PET bottle is collected, and the pulverized flakes are supplied to the chemical action device of the present invention with flakes and methanol, and polyethylene terephthalate is metabolized. It can be alcoholicized with anol and recovered as terephthalic acid methyl ester. After rectification and removal of impurities, polyethylene terephthalate can be produced by polymerizing methyl terephthalate again. Also, ethylene diol can be used in place of methanol and recovered as bishydroxyethylene terephthalate, and polyethylene terephthalate can be produced in the same manner. Increasing the temperature of alcoholysis is preferable because it increases reaction efficiency and improves productivity.
  • orange peel is directly supplied to the processing apparatus of the present invention, and limonene can also be extracted from the orange peel.
  • limonene can also be extracted from the orange peel.
  • Increasing the extraction temperature to near the boiling point of limonene is preferable because it increases the extraction efficiency and improves the productivity.
  • the extracted crude limonene is rectified to improve purity and used.
  • inorganic fine particles can be supplied to the processing apparatus of the present invention as a crystallization nucleating agent to produce pellets.
  • the inorganic fine particle crystallization nucleating agent is supplied in an aqueous dispersion, mixed in a state in which polylactic acid is hydrolyzed to a low molecular weight under a carbon dioxide subcritical condition, and then dehydrated and condensed.
  • the dispersion is good, transparent polylactic acid pellets can be produced.
  • foaming examples include, for example, gas such as carbon dioxide and nitrogen gas, volatile substances such as butane and pentane, injection of reduced pressure, and thermochemical foaming agent such as diazo compound mixed and injected with hopper force.
  • gas such as carbon dioxide and nitrogen gas
  • volatile substances such as butane and pentane
  • thermochemical foaming agent such as diazo compound mixed and injected with hopper force.
  • Fig. 7 shows an example of a multi-stage gear type foam injection molding machine / extruder. In this case, it can be incorporated into a general plunger type injection molding machine.
  • the multistage gear extruder of the present invention shown in Fig. 6 was used.
  • a single screw with a length of 50 mm, a length of 350 mm and a biaxial paddle screw at the bottom of the feed hopper was used, followed by a 400 mm long single screw.
  • the multi-stage gear used all three stages, and the multi-stage gear driven by the servo 'motor used all two stages. The dimensions of the main part of the gear are described below.
  • tooth thickness Only the dimension of the gear thickness of the A-axis and B-axis (hereinafter referred to as “tooth thickness”) is described, the tooth thickness of the C-axis is described, and the stage is described as the step-down unit X or the step-up unit Y The stage with the tooth thickness on the C-axis is the structure shown as the kneading part Z.
  • the pressure described next corresponds to the inlet side pressure described in the next stage as the outlet side pressure in the indicated stage, and the unit is (MPa).
  • the pitch circle diameter of all gears is 46mm and module 2 is adopted.
  • Second stage A-axis and B-axis tooth thickness 92mm 5. 29 (design value)
  • Second stage A-axis and B-axis tooth thickness 28mm 4. 41 (design value)
  • the indicated pressure of the oil pressure gauge in the adjusting section is 8.8 MPa of carbon dioxide supercritical, the pressure adjusting section has a residence time of about 26 seconds (calculated value), and polylactic acid is decomposed in the flat screw decompression vent section.
  • the water pump reduced compression polymerization to restore the molecular weight of polylactic acid. It was clear that the pellets obtained were clear and dispersible to the nano level despite the starch content.
  • the multistage gear type foam injection molding 'extruder shown in Fig. 7 was used with the number of multistage gears changed to 10 stages.
  • a single screw flat screw with a diameter of 50 mm and a length of 750 mm at the bottom of the raw material supply was used.
  • the stage has the structure shown as the kneading part Z.
  • the pressure described below is the outlet pressure of the listed stage and corresponds to the inlet side of the next stage, and the unit is (MPa).
  • the pitch circle diameter of all gears is 46mm and module 2 is adopted.
  • a water-cooled round die with an effective total length of 1200 mm was attached to the rear of the 10th stage of the multi-stage gear group.
  • the inner diameter of the outer water-cooled round die is 80mm outlet diameter
  • the core water-cooled round die adopts a tapered taper
  • the outer diameter is 60mm outlet diameter.
  • the heater temperature was set to 160 ° C, the shaft rotation speed was 80 rpm, 99.5 wt% of the main raw material polyethylene and 0.5 wt% of wax were dry blended, and the hopper force was also added.
  • Compressed air from the compressor was reduced to 0.74 (MPa) by a pressure reducing valve and injected.
  • MPa 0.74
  • the foam cell had a small foaming ratio of about 50 times, and the time-equivalent discharge was 35 kg.
  • the multistage gear type foam injection molding extruder of FIG. 7 having the same gear as in Example 3 and having 10 stages was used.
  • the round die of the apparatus of Example 3 was removed, and a mechanical nozzle for an injection molding machine was attached and used.
  • aluminum was used for the mold, 6mm diameter holes for material leakage were provided at 8 locations, and the structure was configured to press the mechanical nozzle with hooks.
  • a drain was installed between the mechanical nozzle and the mold, and a switching valve was installed between the direction in which the mold flows in and the direction in which the drain force flows out.
  • the gas inlet was connected to a pressure-reducing valve of carbon dioxide and bomb that was reduced to 0.74 (MPa).

Abstract

Equipment for processing a substance mixed with gas as fluid under critical state by kneading/compressing it continuously. Two stages or more of gear transporting sections having different gear dimensions or different capacities are provided, pressure difference of gas compression is controlled by the difference in fluid transportation capacity between two continuous stages of gear transporting section, or a part of transportation fluid is fed reversely thus keeping the substantial transportation capacity at a constant level. A plurality of paired gears are preferably provided between the two continuous stages of gear transporting section.

Description

明 細 書  Specification
多段歯車式加工装置  Multi-stage gear type processing machine
技術分野  Technical field
[0001] 本発明は、物質を例えば炭酸ガスと共に圧縮して臨界状態の流体として、すなわち 炭酸ガス超臨界または亜臨界下で、混練、分解、抽出または化学合成等の加工をす るための装置に関する。  [0001] The present invention relates to an apparatus for compressing a substance together with, for example, carbon dioxide gas as a fluid in a critical state, that is, processing such as kneading, decomposition, extraction or chemical synthesis under supercritical or subcritical carbon dioxide gas About.
背景技術  Background art
[0002] 超臨界炭酸ガスを利用した物質混合、物質抽出、物質分解、化学合成は既に数多く 提案され、特に抽出の分野では実用化がなされている。  Numerous substance mixing, substance extraction, substance decomposition, and chemical synthesis using supercritical carbon dioxide have already been proposed, and in particular in the field of extraction.
[0003] 例えば、特許文献 1には、液状食品や液状薬品を超臨界流体または亜臨界流体を 使用して酵素失活、殺菌、脱臭、抽出処理等をする連続処理方法において、炭酸ガ スを作動媒体とする圧縮機の吸入工程または圧縮工程に液状原料を注入して炭酸 ガスとともに圧縮させ、二酸化炭素と液状原料とを直接接触させ臨界状態の高圧気 液混合流体を形成させる圧縮工程と、臨界状態にある高圧の気液混合流体より高圧 炭酸ガスと液状物質を溶カゝしこんだ高圧炭酸ガスとに分離する液 ガス分離工程と 、分離された液状物質を溶カゝしこんだ高圧炭酸ガスを急速に減圧して臨界解除によ る低温炭酸ガスの排出と酵素失活処理や低温殺菌処理やフレーバ抽出処理を行な う減圧工程を使用することが提案されている。  [0003] For example, Patent Document 1 discloses carbon dioxide gas in a continuous processing method in which liquid food or liquid chemical is subjected to enzyme deactivation, sterilization, deodorization, extraction processing, etc. using a supercritical fluid or subcritical fluid. A compression process in which a liquid raw material is injected into a suction process or a compression process of a compressor serving as a working medium and compressed together with carbon dioxide, and carbon dioxide and the liquid raw material are brought into direct contact to form a high-pressure gas-liquid mixed fluid in a critical state; Liquid gas separation process that separates high pressure carbon dioxide gas and liquid substance from high pressure gas-liquid mixed fluid in a critical state into high pressure carbon dioxide gas, and high pressure that melts the separated liquid substance It has been proposed to use a decompression process in which the carbon dioxide gas is rapidly decompressed to discharge the low-temperature carbon dioxide gas by releasing the criticality and perform enzyme deactivation treatment, pasteurization treatment, and flavor extraction treatment.
[0004] この提案では、原料液体をポンプにより圧縮機に供給し、さらに分離機で超臨界条 件を達成するため、多数の装置が必要であり、設備投資が過大となり、経済的に好ま しくない。また、作用条件が低温に限定され、適用範囲が狭くなる欠点もある。  [0004] In this proposal, in order to supply the raw material liquid to the compressor by a pump and to achieve the supercritical condition with the separator, a large number of devices are required, and the capital investment is excessive, which is economically favorable. Absent. In addition, the operating conditions are limited to low temperatures, and there is a drawback that the application range is narrowed.
[0005] また、特許文献 2では、回収ポリエステル製品をフレーク状に破枠し、洗浄し、前工程 用スクリュー混練押出機において、水分を脱揮乾燥し、改質剤および触媒を添加し て改質反応させ、さらに後工程用スクリュー式押出機により超臨界流体を添加しつつ 発泡押出しするという回収ポリエステル製品の再資源化方法および装置が提案され ている。  [0005] In Patent Document 2, the recovered polyester product is broken into flakes, washed, and devolatilized and dried with water in a pre-process screw kneading extruder, and added with a modifier and a catalyst. There has been proposed a method and an apparatus for recycling recovered polyester products that are subjected to a quality reaction and further subjected to foam extrusion while adding a supercritical fluid with a post-process screw extruder.
[0006] この提案ではスクリュー押出機が使用されているが、前工程で改質反応がなされ、後 工程で超臨界炭酸ガスが注入されることにより発泡製品が製造されるとするもので、 超臨界炭酸ガス中のおける反応は存在しない。また、スクリュー式であるためガス漏 れが発生し、低粘度物質にガスを封じ込めた状態で加工することはできな 、。 [0006] In this proposal, a screw extruder is used. It is assumed that foamed products are produced by injecting supercritical carbon dioxide in the process, and there is no reaction in supercritical carbon dioxide. In addition, because of the screw type, gas leakage occurs, and it is not possible to process the gas in a low-viscosity material.
[0007] 特許文献 3には、歯車ポンプを少なくとも 2基連結し、歯車ポンプ内で未溶融塩化ビ 二ル粉を溶融、混合する押出機が提案されている。  [0007] Patent Document 3 proposes an extruder in which at least two gear pumps are connected and unmelted vinyl chloride powder is melted and mixed in the gear pump.
[0008] この提案では 2基以上の歯車ポンプを連結することが混練効果上好ま 、とされて ヽ る力 歯車ポンプ間の回転数が異なる場合の制御方法が記載されていない。同じ容 量の歯車ポンプが同速度で連結されている場合には連結された歯車ポンプ間に異 常圧力が発生することはなぐ運転が可能である。しかし、容量の異なる歯車ポンプ が連結され、例えば大容量歯車ポンプの次に小容量歯車ポンプが連結されて 、る場 合、歯車ポンプ間に異常高圧力が発生し、大容量歯車ポンプに過大なロードが掛か り、シ アピンが飛び、実際には運転できない。  [0008] In this proposal, it is preferable to connect two or more gear pumps in view of the kneading effect, and there is no description of a control method in the case where the number of rotations between the force gear pumps is different. When gear pumps of the same capacity are connected at the same speed, it is possible to operate without causing abnormal pressure between the connected gear pumps. However, when gear pumps with different capacities are connected, for example, when a small capacity gear pump is connected next to a large capacity gear pump, an abnormally high pressure is generated between the gear pumps, and the large capacity gear pump is excessive. The road is loaded, the shear pin flies, and you cannot actually drive.
特許文献 1:特開 2002— 204942号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2002-204942
特許文献 2:特開 2000 - 264998号公報  Patent Document 2: Japanese Patent Laid-Open No. 2000-264998
特許文献 3:特開平 11― 34045号公報  Patent Document 3: Japanese Patent Laid-Open No. 11-34045
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、超臨界または亜臨界下ガスを利用して、物質の分解、混合または抽出等 の加工を操作性よく実施できる装置を提供することを課題とする。 [0009] An object of the present invention is to provide an apparatus capable of performing processing such as decomposition, mixing, or extraction of a substance with good operability using supercritical or subcritical gas.
[0010] 本発明では、気体が混在する物質を気体圧縮の圧力を制御し、または移送物質の 一部を逆流制御する方法を備えた多段歯車部を設置することにより、前記課題を解 決した。 [0010] In the present invention, the above-mentioned problem has been solved by installing a multi-stage gear unit equipped with a method for controlling the pressure of gas compression of a substance in which gas is mixed, or controlling the backflow of a part of the transferred substance. .
[0011] 即ち、本発明の装置は、気体が混在する物質を、連続して混練加工するための加工 装置であって、歯車寸法の異なる(すなわち、移送部容量の異なる)歯車式移送部を [0011] That is, the apparatus of the present invention is a processing apparatus for continuously kneading a substance in which gas is mixed, and includes gear-type transfer units having different gear dimensions (that is, different transfer unit capacities).
2段以上設け、連続する 2段の歯車式移送部間の移送容量差により気体圧縮の圧力 差を制御し、または移送物質の一部を逆流させ、実質移送容量を一定にすることを 特徴とする。 Two or more stages are provided, and the pressure difference in gas compression is controlled by the difference in transfer capacity between two successive gear-type transfer parts, or a part of the transferred substance is made to flow backward to make the actual transfer capacity constant. To do.
[0012] 以下、一定時間内に歯車式移送部を気体が混在する物質が通過する際の温度およ び圧力における物質および気体の体積の和を「移送容量」と述べ、歯車式移送部の 移送容量能力を「移送部容量」と述べる。前述の移送容量を同一温度および 1気圧 換算圧力における物質および気体の体積の和を「実質移送容量」と述べる。 [0012] Hereinafter, the temperature and temperature at which a gas-containing substance passes through the gear-type transfer unit within a certain time will be described. The sum of the volume of the substance and gas at the pressure and pressure is referred to as “transfer capacity”, and the transfer capacity capacity of the gear-type transfer part is referred to as “transfer part capacity”. The sum of the volume of substances and gases at the same temperature and the equivalent pressure of 1 atm is referred to as “substantial transfer capacity”.
[0013] なお、連続する 2段の歯車式移送部には、その間で対をなす歯車が複数個、好ましく は 2〜4個設けられているものであり、各歯車式移送部により移送される移送容量は、 歯車式移送部の回転数、寸法 (モジュール、ピッチ円径、歯車厚さ等)により異なる。 移送部容量は近似的に歯車の回転数、モジュール、ピッチ円径および歯車厚さの相 乗積に比例するが、実際には実質移送容量が一定になるように、気体を圧縮調節す る方法による力 一部を出口側から入口側に逆流させ調節する方法などを適用する のがよい。力かる歯車式移送部は、例えば、押出スクリューに続いて設けられるのが 好ましぐ歯車移送部の第一番目の歯車移送部容量が第二番目の歯車移送部容量 より小であることにより、その間の圧力を負圧にすることが可能になる。第二番目の歯 車より後方に第二番目の歯車より移送部容量が小である歯車を設けることにより昇圧 することが可能になるり、所望の効果が得られるのである。  [0013] It should be noted that the continuous two-stage gear-type transfer unit is provided with a plurality of, preferably 2 to 4, gears paired between them, and is transferred by each gear-type transfer unit. The transfer capacity varies depending on the rotation speed and dimensions (module, pitch circle diameter, gear thickness, etc.) of the gear type transfer section. The capacity of the transfer section is approximately proportional to the product of the number of rotations of the gear, the module, the pitch circle diameter, and the gear thickness. In practice, however, the gas is compressed and adjusted so that the actual transfer capacity is constant. It is better to apply a method of adjusting the force by the back flow from the outlet side to the inlet side. The powerful gear-type transfer unit is, for example, preferably provided following the extrusion screw, because the first gear transfer unit capacity of the gear transfer unit preferably smaller than the second gear transfer unit capacity is The pressure during that time can be made negative. By providing a gear having a smaller transfer section capacity than the second gear behind the second gear, it is possible to increase the pressure or to obtain a desired effect.
[0014] かかる本発明の装置では、低粘度の原料物質をも連続的に加工できるものであり、 前記歯車式移送部により、超臨界または亜臨界ガスの高圧条件を発生させることが できる。  [0014] In the apparatus of the present invention, a low-viscosity raw material can be continuously processed, and a high-pressure condition of supercritical or subcritical gas can be generated by the gear-type transfer unit.
[0015] 本発明の装置は、押出機または射出成型機であると同時に、超臨界または亜臨界炭 酸ガス下、物質の分解、混合または抽出などを連続し、広範囲の作用条件で実施す ることができる汎用化学装置であり、工程が多岐に渡らないため設備が廉価で経済 的に優れている。また、歯車式移送部を垂直に積み重ねることも可能であり、コンパク トな装置で設置面積が小さくて済む。  [0015] The apparatus of the present invention is an extruder or an injection molding machine, and at the same time, continuously decomposes, mixes or extracts a substance in a supercritical or subcritical carbon dioxide gas and performs a wide range of operating conditions. This is a general-purpose chemical equipment that can be used and has many inexpensive processes, making it inexpensive and economical. In addition, gear-type transfer units can be stacked vertically, and the installation area can be reduced with a compact device.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]降圧部のギアポンプ構造の説明図である。 FIG. 1 is an explanatory diagram of a gear pump structure of a step-down unit.
[図 2]昇圧部のギアポンプ構造の説明図である。  FIG. 2 is an explanatory diagram of a gear pump structure of a boosting unit.
[図 3]混練部のギアポンプ構造の説明図である。  FIG. 3 is an explanatory diagram of a gear pump structure of a kneading part.
[図 4]オリフィス部の構造を示す説明図である。  FIG. 4 is an explanatory view showing the structure of an orifice part.
[図 5]圧力制御部の構造を示す説明図である。 圆 6]多段歯車式押出機の構造を示すものであり、(I)はその前部を、(II)はその後部 を示す。 FIG. 5 is an explanatory diagram showing a structure of a pressure control unit. [6] The structure of the multi-stage gear extruder is shown. (I) shows the front part and (II) shows the rear part.
[図 7]多段歯車式発泡射出成形 ·押出機の構造を示すものである。  [Fig. 7] Shows the structure of a multi-stage gear type foam injection molding extruder.
[図 8]多段歯車式押出機を横に配列した構造を示すもので、(1)は平面断面図、(2) は縦断面図である。  FIG. 8 shows a structure in which multi-stage gear extruders are arranged horizontally, (1) is a plan sectional view, and (2) is a longitudinal sectional view.
圆 9]多段歯車式押出機を円弧状に配列した構造の平面断面図を示すものである。 符号の説明 [9] This is a plan sectional view of a structure in which multi-stage gear extruders are arranged in an arc. Explanation of symbols
1 シリンダー  1 cylinder
2 シャフト  2 shaft
3 シャフト  3 shaft
4 シャフト  4 shaft
5 スクリュー  5 screw
6 困单  6 Difficult
7 伝導中継歯車  7 Conduction relay gear
8 ホッノ一  8 Honoichi
9 オリフィス  9 Orifice
10 ベント孔  10 Vent hole
11 ダイス  11 Dice
12 ノズル  12 nozzles
13 流動通路  13 Flow passage
14 戻り通路  14 Return passage
15 矢印  15 arrows
16 サーボ 'モータ  16 Servo 'motor
17 サーボ 'アンプ  17 Servo 'Amplifier
18 圧刀電気信号  18 sword electrical signal
19 榭脂圧計  19 Oil pressure gauge
20 圧力計  20 Pressure gauge
21 減圧弁 22 逆止弁 21 Pressure reducing valve 22 Check valve
23 熔融区間  23 Melting section
24 加圧区間  24 Pressurization section
25 超臨界区間  25 Supercritical section
26 オリフィス区間  26 Orifice section
27 無フライト区間  27 No-flight section
28 圧力調整区間  28 Pressure adjustment section
29 気体注入区間  29 Gas injection section
30 昇圧区間  30 Boosting interval
31 超臨界区間  31 Supercritical section
32 降圧区間  32 Buck section
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 図面に示す一例に従って本発明を説明する。  [0018] The present invention will be described according to an example shown in the drawings.
本発明の装置は、図 1および図 2および図 3に示すような歯車を組み合わせた多段 歯車式移送部を使用し、その間を移送する気体が混在する物質を、臨界状態の流 体として加工するものである。例えば、図 6の 2軸横型歯車式押出機は、原料供給部 の 2軸押出スクリューに続いて、多段歯車式移送部を備えたものであり、電熱ヒーター により過熱されるシリンダー 1の内部に、 A軸スクリューおよび B軸スクリューを設け、ホ ッパー 8から供給される榭脂原料を移送しながら溶融させ、熔融区間 23の区間で溶 融した樹脂を、図 1に示されるような次段の歯車に流入する。歯車 T1とそれに続く歯 車 T2は、厚さが T1 <T2という関係にあり、図 1の歯車では降圧部 Xが構成され、ガ スが減圧弁 21で設定された供給圧で圧縮され歯車厚さの寸法差 (Τ2— T1)に相当 する体積移送量の一定量のガスが注入される。歯車 Τ2以降の流動体はガスと榭脂 が混在したものとなる。したがって、ガスの注入量は減圧弁 21により設定される供給 圧が高いほど大きい。このガスは真空ポンプにより吸引されるベント孔 10で脱気され る。なお、この例では、スクリューが 2軸となっている力 1軸であってもよい。  The apparatus of the present invention uses a multi-stage gear-type transfer unit that combines gears as shown in FIGS. 1, 2, and 3, and processes a substance mixed with gas transferred between them as a fluid in a critical state. Is. For example, the twin-shaft horizontal gear extruder in Fig. 6 is equipped with a multi-stage gear-type transfer section following the twin-screw extrusion screw of the raw material supply section, and inside the cylinder 1 heated by an electric heater, An A-axis screw and a B-axis screw are provided, and the resin raw material supplied from the hopper 8 is melted while being transferred, and the molten resin in the melt zone 23 is converted into the next gear as shown in FIG. Flow into. The gear T1 and the subsequent gear T2 have a relationship of T1 <T2, and the gear shown in Fig. 1 has a pressure-lowering section X, and the gas is compressed by the supply pressure set by the pressure-reducing valve 21 and the gear thickness is reduced. A certain amount of volume transfer gas corresponding to the dimensional difference (Τ2-T1) is injected. The fluid after gear Τ2 is a mixture of gas and grease. Therefore, the gas injection amount is larger as the supply pressure set by the pressure reducing valve 21 is higher. This gas is degassed through a vent hole 10 sucked by a vacuum pump. In this example, the screw may be a single axis with two axes.
[0019] 図 1は降圧部 Xのギアポンプ構造を示すものであり、図 1の(1)は平面図を示す。図 1 の(2)は Out側軸方向力 見た断面図、図 1の(3)および (4)はそれぞれ側面図を示 す。図示されるように、シリンダー 1の内部に A軸シャフト 2及び B軸シャフト 3が貫通し ており、それぞれの軸に互いに嚙み合って、厚さの異なる歯車 T1及び T2が固定さ れ、 2組のギアポンプを構成している。 A軸及び B軸のシャフト 2、 3は、矢印 15に示さ れるような回転方向に駆動され、流動通路 13に充満した榭脂は歯車により図示され る In側カゝら Out側に運搬される。歯車 T1及び T2の厚さが TKT2という条件下では 、歯車 T1の移送容量より歯車 T2の移送容量を多くしょうとする傾向に作用する。 FIG. 1 shows a gear pump structure of the step-down portion X, and FIG. 1 (1) shows a plan view. (1) in Fig. 1 is a cross-sectional view of the axial force on the Out side, and (3) and (4) in Fig. 1 are side views. The As shown in the drawing, the A-axis shaft 2 and the B-axis shaft 3 pass through the inside of the cylinder 1, and the gears T1 and T2 having different thicknesses are fixed to the respective shafts so as to be fixed to each other. It constitutes a set of gear pumps. The A-axis and B-axis shafts 2 and 3 are driven in the direction of rotation as indicated by the arrow 15, and the grease filled in the flow passage 13 is conveyed to the Out side from the In side cover illustrated by the gears. . Under the condition that the thickness of the gears T1 and T2 is TKT2, it acts on the tendency to increase the transfer capacity of the gear T2 over the transfer capacity of the gear T1.
[0020] 次に、物質が熱可塑性榭脂の熔融物であって気体が炭酸ガスである場合を例に説 明する。図 1において、榭脂と気体が混在する流体が Inから流入する場合、歯車 T1 の移送容量は榭脂体積と気体が圧力 P1により圧縮された体積との和に相当する。歯 車 T2の移送容量は歯車 T1を通過した榭脂体積と気体が圧力 P2により圧縮された 体積との和に相当する。歯車厚さが TKT2である条件下で、移送容量は歯車 T1よ り歯車 T2による方が大きぐ圧力は P1 >P2となる。図 1の(3)の構造は主として気体 注入の目的で多段歯車群の初段に用いる。気体を含有しない榭脂だけの流体が In 力 流入する場合、 PIに無関係に Gas注入ロカ 供給される炭酸ガス圧 P2に圧縮 されたガス体積が歯車厚さ寸法の差分 (T2—T1)相当の体積量になる。この場合、 I nから流入する流体は榭脂だけである必要はなく、榭脂と気体の混合物であっても歯 車 Tl、歯車 T2、 PIおよび Ρ2のバランスした条件下で炭酸ガスを注入させることが出 来る。図 1の (4)の構造は主として気体が混在する流動体を超臨界領域力 亜臨界 領域に降圧する目的で多段歯車群の最後部に用いる。  [0020] Next, an example in which the substance is a melt of thermoplastic resin and the gas is carbon dioxide will be described as an example. In FIG. 1, when a fluid containing a mixture of resin and gas flows from In, the transfer capacity of the gear T1 corresponds to the sum of the volume of the resin and the volume of gas compressed by pressure P1. The transfer capacity of the gear T2 is equivalent to the sum of the volume of the resin that has passed through the gear T1 and the volume of the gas compressed by the pressure P2. Under the condition that the gear thickness is TKT2, the transfer capacity is greater with the gear T2 than the gear T1, and the pressure P1> P2. The structure of (3) in Fig. 1 is used in the first stage of the multi-stage gear group mainly for the purpose of gas injection. In the case where a fluid containing only a resin containing no gas flows into the In force, the gas volume compressed to the carbon dioxide pressure P2 supplied to the Gas injection locus regardless of the PI is equivalent to the difference in gear thickness dimension (T2-T1). Become volume. In this case, it is not necessary for the fluid flowing from In to be only grease, and even if it is a mixture of grease and gas, carbon dioxide is injected under the balanced conditions of gear Tl, gears T2, PI and Ρ2. Things come out. The structure of (4) in Fig. 1 is used at the end of the multi-stage gear group mainly for the purpose of reducing the pressure of the fluid mixed with gas to the supercritical region force and subcritical region.
[0021] 図 2は昇圧部 Yのギアポンプ構造を示すもので、図 2の(1)は平面図、図 2の(2)は O ut側軸方向から見た断面図を、図 2 (3)は側面図を示す。 Inから流入する流体は、 例えば榭脂と気体が混在した充分に圧縮可能な流体である。それぞれの歯車厚さが 、 Tl >T2>T3の条件下においても実質移送容量は各歯車において同じであるか ら、流動通路 13における内部圧力は Ρ1 < Ρ2と昇圧し、それぞれ Pl、 Ρ2の圧力によ り流動体は圧縮されるので移送容量がバランスすることになる。仮に、実質移送容量 が不明で、 Inから流入する流体の圧力 Ρ0が極めて高い場合を想定すると、 T1 >T2 の条件において、必ずしも PC P1とは限らず、 Wは昇圧部とは定義できない。通常 、設計する段階では、実質移送容量および Ρ0が設計値として判明しているので、 2 段の歯車の組合わせでも昇圧部は構成可能である。前述のような理由で、図 2は 3段 の歯車の組合わせで構成した。図 2の構造は主として、次の 2つの用途に採用される [0021] Fig. 2 shows the gear pump structure of the boosting unit Y. Fig. 2 (1) is a plan view, Fig. 2 (2) is a cross-sectional view seen from the axial direction of Fig. 2 (3 ) Shows a side view. The fluid flowing from In is, for example, a sufficiently compressible fluid in which coagulate and gas are mixed. Even if the gear thicknesses are Tl>T2> T3, the actual transfer capacity is the same for each gear, so the internal pressure in the flow passage 13 is increased to <1 <Ρ2, and the pressures of Pl and そ れ ぞ れ 2 respectively. As a result, the fluid is compressed and the transfer capacity is balanced. Assuming that the actual transfer capacity is unknown and the pressure of fluid flowing from In is very high, it is not always PC P1 under the condition of T1> T2, and W cannot be defined as a booster. Usually, at the design stage, the actual transfer capacity and Ρ0 are known as design values. The booster can also be configured by a combination of stepped gears. For the reasons described above, Fig. 2 consists of a combination of three gears. The structure in Figure 2 is mainly used for the following two applications:
[0022] 図 2の構造の用途 1例として、図 1の(3)の構造で炭酸ガスを注入した次段に超臨界 領域まで昇圧する目的で設置する。この場合、昇圧部の 1段目は図 1の歯車 T2と考 えて良い。 [0022] Application of the structure of Fig. 2 As an example, the structure of Fig. 1 (3) is installed for the purpose of raising the pressure to the supercritical region in the next stage where carbon dioxide gas is injected. In this case, the first stage of the booster can be considered as gear T2 in FIG.
[0023] 図 2の構造の用途の一例として、デンプンを充分にアルファ化するための配合例 (例 えば、デンプン 58重量%と水 42重量%の混合物)がある。その水が、予め炭酸ガス を水に溶解させた炭酸水である場合、例えば図 6の装置では、この混合物をホッパー 8から供給すると、ホッパー下のスクリュー 5はダイラタント流動のデンプンが充分に食 い込む 2軸パドルスクリューを用い、多段歯車初段に過熱運搬する途中で水は水蒸 気になる。炭酸ガスはすでに炭酸水の中に含有しているので、ガス注入は不必要で あり、多段歯車の初段から超臨界領域に昇圧する目的で図 2の構造が使用される。  [0023] As an example of the use of the structure of FIG. 2, there is a blending example (for example, a mixture of 58% starch and 42% water by weight) to sufficiently pregelatinize starch. When the water is carbonated water in which carbon dioxide gas is previously dissolved in water, for example, in the apparatus shown in FIG. 6, when this mixture is supplied from the hopper 8, the screw 5 under the hopper is sufficiently eaten by the starch in the dilatant flow. Using a 2-shaft paddle screw, the water turns into steam during overheating transport to the first stage of the multi-stage gear. Since carbon dioxide is already contained in carbonated water, gas injection is unnecessary, and the structure shown in Fig. 2 is used to boost the pressure from the first stage of the multi-stage gear to the supercritical region.
[0024] 図 3は混練部 Zのギアポンプ構造を示すもので、図 3の(1)は平面図、を示す。図 3の  FIG. 3 shows a gear pump structure of the kneading part Z, and FIG. 3 (1) shows a plan view. Figure 3
(2)は Out側軸方向から見た断面図、図 3の(3)は側面図を示す。また、図 3の(4) は A軸、 B軸及び C軸のシャフト 2、 3、 4に取り付けられた歯車と流体の移動関係を図 示する。図 3の(2)〖こ A軸の歯車の外周に流動通路を示すように、流体の一部は Out 側から A軸の歯車の外周を通り C軸の歯車の入口に供給され、 C軸の歯車の出口か ら A軸の歯車の外周を戻り通路 14を通り In側に逆流する。この逆流する量を図 3の( 4)〖こ FBとして示した。 FB量により混練効果が優れ、さらに In側および Out側の圧力 が安定することを特徴とする。また、図 3の(5)に示すように C軸の歯車と同様の働き をする歯車を D軸に設け 4個の歯車を使用することもできる。 C軸の歯車で逆流させ る量を FBC、 D軸の歯車により逆流させる量を FBDと記した。この対をなす歯車部は 、昇圧部にも降圧部にも圧力が平衡する部にも使用することができる。混練及び分散 効果が極めて優れている。  (2) is a cross-sectional view seen from the Out side axial direction, and (3) in FIG. 3 is a side view. (4) in Fig. 3 shows the movement relationship between the gears attached to the shafts 2, 3, and 4 of the A, B, and C axes and the fluid. As shown in Fig. 3 (2), the flow path on the outer periphery of the A-axis gear, a part of the fluid passes through the outer periphery of the A-axis gear from the Out side and is supplied to the inlet of the C-axis gear. From the exit of the gear, return to the In side through the return path 14 around the outer periphery of the A-axis gear. This amount of backflow is shown as (4) Koko FB in Fig. 3. It is characterized by an excellent kneading effect depending on the amount of FB, and also by stabilizing the pressure on the In side and Out side. In addition, as shown in (5) of Fig. 3, it is possible to use four gears by providing a gear on the D-axis that works in the same way as a C-axis gear. The amount of reverse flow with the C-axis gear is indicated as FBC, and the amount of reverse flow with the D-axis gear is indicated as FBD. This pair of gears can be used for both the pressure raising part, the pressure reducing part and the part where the pressure is balanced. The kneading and dispersing effect is extremely excellent.
[0025] 図 4にオリフィス部構造を示す。主として超臨界区間に設置され、流体は Inから流入 し、オリフィス 9の狭い溝を通り流動通路力 Outに抜ける。気体が超臨界状態である 区間における流体の流動性は高ぐこの部にオリフィスを設けることにより、混練およ び分散効果はより一層高くなる。 [0025] Fig. 4 shows the structure of the orifice part. Installed mainly in the supercritical section, the fluid flows from In and passes through the narrow groove of the orifice 9 to the flow path force Out. The fluidity of the fluid in the section where the gas is in the supercritical state is high. And the dispersion effect becomes even higher.
[0026] 図 5に圧力制御部構造を示す。主として圧力制御部は研究開発用途の多段歯車式 加工装置には便利である力 生産機では図 1に示す A軸および B軸に固定された歯 車による降圧部 Xが簡便であり、圧力制御部を必要としない。圧力制御部を設けるの は、例えば炭酸ガスの添加量と圧力などの影響が化学反応の度合い、混練分散の 程度などに及ぼす関係を調査する目的、または、生産機の仕様を確定する目的が主 となる。スクリューの超臨界区間のオリフィス部後段にスクリュー溝の無い無フライト区 間 27で流体の通路を遮断し、流動通路 13のバイパス通路を設け、サーボ 'モーター 16によりスクリュー 5と別駆動される歯車 6を経由し、無フライト区間 27の後段に流入 する。通常、歯車 6は 2段の歯車で降圧部 Xを構成する。サーボ 'モーターの回転数 を下げれば榭脂圧計 19の取付部の圧力は上昇し、サーボ ·モーターの回転数を上 げれば榭脂圧計 19の取付部の圧力は下降する。サーボ ·モーター 16はサーボ ·ァ ンプ 17により駆動され、サーボ 'アンプに指令される圧力指令に対し、榭脂圧計 19か ら圧力電気信号 18がフィードバックされており、圧力設定値に近づくようにサーボ ·モ 一ターの回転数制御がなされ、圧力自動制御を構成している。  FIG. 5 shows the structure of the pressure control unit. Mainly the pressure control unit is convenient for multi-stage gear type machining equipment for research and development use In the production machine, the step-down unit X with the gear fixed to the A-axis and B-axis shown in Fig. 1 is simple, and the pressure control unit Do not need. The purpose of providing a pressure control unit is mainly to investigate the relationship between the amount of carbon dioxide added and the pressure, etc., on the degree of chemical reaction, the degree of kneading and dispersion, or to determine the specifications of the production machine. It becomes. The fluid passage is blocked at the non-flight section 27 without a screw groove in the rear stage of the orifice in the supercritical section of the screw, the bypass passage of the flow passage 13 is provided, and the gear 6 driven separately from the screw 5 by the servo 'motor 16 To the latter part of the no-flight section 27. Normally, the gear 6 comprises the step-down part X with two stages of gears. If the rotation speed of the servo motor is lowered, the pressure at the mounting portion of the grease pressure gauge 19 will increase, and if the rotation speed of the servo motor is increased, the pressure at the mounting portion of the grease pressure gauge 19 will decrease. The servo motor 16 is driven by the servo amplifier 17, and the electrical pressure signal 18 is fed back from the grease pressure gauge 19 in response to the pressure command commanded to the servo amplifier so that the servo motor 16 approaches the pressure set value. · The motor rotation speed is controlled to configure automatic pressure control.
[0027] 図 6に多段歯車式押出機の 1例を示す。ホッパー 8から樹脂が供給され、ヒーターに より加熱されたシリンダー 1の内部に設けられた A軸、 B軸の 2軸スクリュー 5により榭 脂は加熱熔融され流動化した榭脂が図 1に示すような多段歯車初段に到達する。こ の例は 2軸で構成したが、 1軸でも充分に目的は達成される。多段歯車初段の後部 には炭酸ガスボンベ力も炭酸ガス力 減圧弁 21により減圧され、逆止弁 22を通し、 供給されている。供給される炭酸ガスの圧力は圧力計 20で確認される。炭酸ガスは 、スクリュー 5により運ばれてきた榭脂と共に、加圧区間 24を経て、超臨界区間 25区 間に設置されたスクリューにより加圧、混練がなされ、炭酸ガスは超臨界状態になり、 次段のオリフィス区間 26に到達する。オリフィス区間 26を通過した榭脂と気体の混合 体は次段の無フライト区間 27で通路を遮断されサーボ 'モーターによる圧力調整区 間 28に流入する。圧力調整区間を通過した流動体はベント孔 10の設置されたスクリ ユー部に流入する。この際、炭酸ガスは減圧して超臨界から亜臨界状態になる。榭 脂と気体との混合流動体は真空ポンプが接続されているベント孔部で吸引され脱気 する。ベント孔力 後段は一般の押出機と同様な構造でダイス 11に達し、流動体 (榭 脂)はストランド水槽で冷却され、ストランドカッターで切断する力 ホットカッターや水 中カッター等により切断し、ペレツトイ匕される。また、場合によっては液状で取り出すこ とができる。なお、加圧区間 24に第一番目から第三番目の歯車を図示したが、第一 番目と第二番目の歯車は図 1で説明した降圧部 Xであり、第二番目と第三番目の歯 車は図 2で説明した昇圧部 Yとは図形が異なるが、第三番目の対をなして逆流部を 構成する 3個の歯車(図 3の混練部 Zで説明した)の移送部容量は第二番目の移送 部容量より小であり、気体はさらに圧縮され昇圧部 Yを構成している。 FIG. 6 shows an example of a multi-stage gear extruder. Resin is supplied from the hopper 8 and heated by the heater, and the resin is heated and melted by the A-axis and B-axis twin-screws 5 installed in the cylinder 1 as shown in Fig. 1. The first stage of a multi-stage gear. Although this example consists of two axes, the objective can be achieved with one axis. At the rear of the first stage of the multi-stage gear, the carbon dioxide gas cylinder pressure is also reduced by the carbon dioxide gas pressure reducing valve 21 and supplied through the check valve 22. The pressure of the supplied carbon dioxide gas is confirmed with a pressure gauge 20. The carbon dioxide gas is compressed and kneaded by the screw installed in the supercritical section 25 through the pressurizing section 24 together with the fat carried by the screw 5, and the carbon dioxide gas becomes supercritical. The next orifice section 26 is reached. The mixture of gas and gas that has passed through the orifice section 26 is blocked in the non-flight section 27 in the next stage, and flows into the pressure adjustment section 28 by the servo motor. The fluid that has passed through the pressure adjustment section flows into the screw section where the vent hole 10 is installed. At this time, the carbon dioxide gas is reduced in pressure from the supercritical state to the subcritical state. The mixed fluid of oil and gas is sucked through the vent hole connected to the vacuum pump and degassed. To do. Vent hole force The latter stage reaches the die 11 with the same structure as a general extruder, and the fluid (resin) is cooled in a strand water tank and cut with a strand cutter. Cut with a hot cutter or submerged cutter, etc. I will be deceived. In some cases, it can be taken out in liquid form. Although the first to third gears are illustrated in the pressurizing section 24, the first and second gears are the step-down portion X described in FIG. 1, and the second and third gears are illustrated. The gear is different in figure from the booster Y described in Fig. 2, but the transfer unit capacity of three gears (explained with the kneading unit Z in Fig. 3) forming the third pair and forming the backflow unit. Is smaller than the capacity of the second transfer section, and the gas is further compressed to form the pressurizing section Y.
[0028] 図 7に多段歯車式発泡射出成形機 ·押出機の例を示す。ホッパー 8から榭脂原料が 供給され、ヒーターにより加熱されたシリンダー 1の内部に設置されたスクリュー 5を通 過しながら熔融する。スクリューは単軸でも 2軸でも熔融させることが目的であり、何れ を採用しても良い。熔融した榭脂は多段歯車部初段に配置される気体注入区間 29 ( 図 1に示されるような降圧部 X)に到達する。この区間で榭脂に気体が混入され、次 段に配置された昇圧区間 30に移送される。この例では、昇圧と混練を同時に作用さ せるように、図 3の(1)に示したような 3枚の歯車を組合わせる方法を採用している。 次に流動体は超臨界区間 31に移送され、混合気体は榭脂細部に入り込む。この部 分に榭脂圧計 19を取り付けておくことは超臨界圧力を監視するのに便利である。次 に、気体と混合された榭脂は、降圧区間 32を通過し、先端のノズル 12を経て射出成 形機の金型に注入される。ノズルは金型に圧接した際にノズルから吐出できる周知 のメカ-カル ·ノズル構造になっている。 FIG. 7 shows an example of a multi-stage gear type foam injection molding machine / extruder. The rosin raw material is supplied from the hopper 8 and melted while passing through the screw 5 installed in the cylinder 1 heated by the heater. The purpose of the screw is to melt either uniaxial or biaxial, and either may be used. The melted resin reaches the gas injection section 29 (step-down section X as shown in FIG. 1) arranged at the first stage of the multi-stage gear section. In this section, gas is mixed into the resin and transferred to the pressurizing section 30 arranged in the next stage. In this example, a method of combining three gears as shown in (1) of FIG. 3 is employed so that pressurization and kneading are simultaneously performed. The fluid is then transferred to the supercritical section 31, and the gas mixture enters the details of the grease. It is convenient to monitor the supercritical pressure by attaching a grease pressure gauge 19 to this part. Next, the grease mixed with the gas passes through the pressure-lowering section 32 and is injected into the mold of the injection molding machine through the nozzle 12 at the tip. The nozzle has a well-known mechanical nozzle structure that can be discharged from the nozzle when pressed against the mold.
なお、ノズルの代りに丸ダイスまたは Tダイを取付け、連続発泡させることも可能であ る。図示は本発明の装置の一例であって、歯車段数が必ずしも図示された段数に限 定されるものではない。  It is also possible to attach a round die or a T die instead of the nozzle and continuously foam. The illustration is an example of the apparatus of the present invention, and the number of gear stages is not necessarily limited to the illustrated number of stages.
[0029] 図 8に多段歯車を横に配列した多段歯車式押出機の一例を示す。図 8の(1)は平面 図、(2)は側面図である。歯車厚さは T1 <T2>T3 >T4とした力 用途目的により 適宜、歯車厚さを選び配列することができる。同様に図 9に多段歯車を円弧状に配 列した多段歯車式押出機の一例を示す。多段歯車を横配列または円弧状配列にす る場合の難点は、歯車軸のシールであり、高圧側になるほどシールは破壊され易い 。本発明では、伝導中継歯車 7を設けることにより、この問題を解決した。横配列また は円弧配列において伝導中継歯車を設けることにより、シールの複雑さを解消し、小 型にまとまり、研究室向け各種の超臨界コンパゥンド、超臨界抽出や超臨界反応試 験機用途に最適になった。 FIG. 8 shows an example of a multi-stage gear extruder in which multi-stage gears are arranged horizontally. In FIG. 8, (1) is a plan view and (2) is a side view. The gear thickness is T1 <T2>T3> T4 The gear thickness can be selected and arranged as appropriate according to the purpose of use. Similarly, Fig. 9 shows an example of a multi-stage gear extruder with multi-stage gears arranged in an arc. The difficulty in arranging multi-stage gears in a horizontal arrangement or arc arrangement is the seal of the gear shaft, and the higher the pressure side, the more likely the seal will be broken. . In the present invention, this problem is solved by providing the conductive relay gear 7. By installing conductive relay gears in a horizontal array or circular arc arrangement, the complexity of the seal is eliminated, making it compact and ideal for various supercritical compounds for laboratory use, supercritical extraction and supercritical reaction testing machines. Became.
[0030] 気体の混在する物質を得るために、例えば、図 6の装置では、気体を減圧弁 21を経 て逆止弁を通して供給するとしているが、榭脂等に混入する気体は、注入する際に 必ずしも気体であることは必要ない。注入する際に液体であっても良い。例えば、ホ ッパー 8から榭脂または澱粉などに水を添加し、スクリューにより移送途中で水蒸気が 発生して、気体が混在する流動体となっても、またガス注入ロカゝら液体を添加し、多 段歯車群の内部熱で気化させる方法で、気体が混在する流動体となってもよいので ある。すなわち、本発明では、多段歯車群を通過する流動体に気体成分が混在して いる状態を気体が混在する物質または気体含有物質として扱う。  [0030] In order to obtain a gas-mixed substance, for example, in the apparatus of FIG. 6, the gas is supplied through the check valve 21 through the check valve, but the gas mixed in the resin is injected. Sometimes it is not necessarily a gas. It may be liquid when injecting. For example, even if water is added to rosin or starch from the hopper 8 and water vapor is generated in the middle of the transfer by the screw to form a fluid in which gas is mixed, a liquid such as gas-injected rocker is also added, It may be a fluid mixed with gas by vaporizing with the internal heat of the multi-stage gear group. That is, in the present invention, a state where a gas component is mixed in a fluid passing through the multi-stage gear group is treated as a substance containing gas or a gas-containing substance.
[0031] このような本発明の装置の取り出し口には、ダイスを一般的に用いる。ダイスのダイス 孔およびその形状は次の工程により、適宜選択される。例えば次の工程がフィルムま たはシート製作であればダイス孔の形状はスリット形状とし、連続してフィルムゃシー トの製造を可能とすることができる。また、次の工程が不連続であれば、加工物資を 索状に取り出し、カッターにより裁断しペレットを製造したり、シート状に押し出し、角 ペレットを製造したり、ホットカッターまたは水中カッターにより丸ペレットを製造したり することもできる。場合によっては液状で取り出すこともできる。  [0031] A die is generally used for the outlet of the apparatus of the present invention. The die hole and the shape of the die are appropriately selected according to the following steps. For example, if the next process is film or sheet production, the shape of the die hole can be made into a slit shape, and the film can be continuously produced. Also, if the next step is discontinuous, the processed material is taken out in the shape of a rope and cut with a cutter to produce pellets, extruded into a sheet to produce square pellets, or round pellets with a hot cutter or underwater cutter. Can also be manufactured. In some cases, it can be taken out in liquid form.
[0032] 場合によっては本発明の歯車式加工装置が射出成型機、射出ブロー成型機、インフ レーシヨン装置、 Tダイなどの混練部品の一部として押出しスクリューに組み込まれる こともある。また、本発明の歯車式カ卩ェ装置はマンドレルとの組み合わせにより、垂直 に積み重ねる形で連結することもできる。垂直に積み重ねることにより、加工装置全 体の設置面積を一般的なスクリュー押出し混練機より小さくすることができる。  [0032] In some cases, the gear type machining apparatus of the present invention may be incorporated into an extrusion screw as a part of a kneading part such as an injection molding machine, an injection blow molding machine, an inflation apparatus, or a T die. Further, the gear type carriage device of the present invention can be connected in a vertically stacked manner by combination with a mandrel. By stacking vertically, the installation area of the entire processing device can be made smaller than that of a general screw extrusion kneader.
[0033] 本発明に使用する歯車式移送部は一般的に使用されている歯車式計量ポンプとは 異なり、計量より混合効果を主眼としている。歯車式移送部の歯車形状は歯車の先 端 Rの大きさによりセン弾力を変化する。歯車の溝の接線と中心線との角度差により、 歯車内の物質の流速が変化する。歯車が回転することにより、歯車の溝の中で物質 はセン断を受け、混合される。歯車とハウジング表面形状を粗にすることにより、計量 性は低下するがこのセン弾力を大きくすることができる。計量が歯車溝の容積と歯車 回転数により変化することは一般的な歯車ポンプと同じである。 [0033] Unlike the gear-type metering pump that is generally used, the gear-type transfer unit used in the present invention focuses on the mixing effect rather than the metering. The gear shape of the gear-type transfer unit changes the center elasticity depending on the size of the leading end R of the gear. The difference in the angle between the tangent line and the center line of the gear groove changes the flow velocity of the material in the gear. The material in the gear groove by rotating the gear Will be mixed and mixed. By roughening the gear and housing surface shape, the measuring ability is reduced, but this elastic force can be increased. It is the same as a general gear pump that the metric changes depending on the volume of the gear groove and the gear speed.
[0034] また、歯車式移送部とスクリュー部の駆動を別に設置することも可能である。この場合 、歯車式移送部歯車の溝はスクリュー軸に対し直交するように縦型設置することもで きる。また、歯車式移送部はモジュールとして組み込まれ、互換性が容易にすること が好ましい。これは前記横型の場合でも同様で、一般的な 2軸押出し機で用いられ ている方法と同じモジュール交換方式である。これは使用する物質により、粘度が異 なるため、同じ歯車'クリアランスであっても逆流抵抗が粘度により異なり、所期の圧 力選択、また必要なセン断強さ選択が容易となるためである。モジュール 'システムは 装置のクリーニングに関しても有利である。  [0034] It is also possible to install the gear-type transfer unit and the screw unit separately. In this case, the groove of the gear-type transfer unit gear can be installed vertically so as to be orthogonal to the screw shaft. Further, it is preferable that the gear-type transfer unit is incorporated as a module to facilitate compatibility. This is the same as the case of the horizontal type, and the same module replacement method as that used in a general twin-screw extruder. This is because the viscosity varies depending on the material used, so even with the same gear 'clearance, the reverse flow resistance varies depending on the viscosity, making it easier to select the desired pressure and the required shear strength. . Module 'systems are also advantageous for equipment cleaning.
[0035] 超臨界または亜臨界ガス化学作用は例えば加水分解、アルコリシス、酵素分解など の化学分解、表面処理を行っていない微細粒子の混合、液体とポリマーの混合、相 溶化剤を用いない不溶性ポリマー混合などの混合、溶剤抽出、水蒸気抽出などの化 学作用が挙げられる。触媒、副原料などは原料供給部力 適宜定量的に供給されて も良ぐ低圧ガス供給部、または液注入などにより途中からプランジャーポンプ、歯車 ポンプなどにより定量的に供給されても良い。超臨界または亜臨界ガスは炭酸ガス、 メタノール、アセトン、窒素ガス、水などの低分子量ィ匕合物を使用することがあり、中 では臨界条件がマイルドで爆発性のな 、炭酸ガスが多く用いられる。  [0035] Supercritical or subcritical gas chemistry includes chemical decomposition such as hydrolysis, alcoholysis, enzymatic decomposition, mixing of fine particles without surface treatment, mixing of liquid and polymer, insoluble polymer without using compatibilizer Examples include chemicals such as mixing, solvent extraction, and steam extraction. Catalysts, auxiliary materials, and the like may be quantitatively supplied by a plunger pump, a gear pump, or the like by a low pressure gas supply unit that may be supplied quantitatively as appropriate, or by liquid injection. Supercritical or subcritical gas may use low molecular weight compounds such as carbon dioxide, methanol, acetone, nitrogen gas, and water. Among them, carbon dioxide is often used because the critical conditions are mild and explosive. It is done.
[0036] 加水分解例としては、例えばデンプン、ケナフ、ノ カス、セルロース、蛋白質、脂肪な どを原料とし、多糖類、オリゴ糖、単糖類、アミノ酸、アルコールなどに分解する。触媒 として糖類には酸、蛋白質にはアルカリまたはアミラーゼ、ぺプチターゼ、リパーゼな どの酵素を使用する。炭酸ガスの超臨界条件は 31°C、 7MPaであるが触媒として酵 素を使用する際には酵素が失活しない温度範囲例えば 35から 40°C、 7MPa以上の 条件で作用させることが好ましい。酸またはアルカリを触媒として使用する際には温 度を高くするほうが反応効率は上がり、生産性を向上することができ好ましい。  [0036] Examples of hydrolysis include, for example, starch, kenaf, nocose, cellulose, protein, fat and the like, which are decomposed into polysaccharides, oligosaccharides, monosaccharides, amino acids, alcohols and the like. As catalysts, acids are used for sugars, and alkalis or enzymes such as amylase, peptidase, and lipase are used for proteins. The supercritical conditions of carbon dioxide gas are 31 ° C and 7 MPa, but when using an enzyme as a catalyst, it is preferable to operate in a temperature range where the enzyme is not deactivated, for example, 35 to 40 ° C and 7 MPa or more. When an acid or alkali is used as a catalyst, it is preferable to increase the temperature because reaction efficiency can be improved and productivity can be improved.
[0037] アルコリシス例としては、例えば通称ペットボトルを回収し、粉砕したフレークを本発 明の化学作用装置にフレークとメタノールを供給し、ポリエチレンテレフタレートをメタ ノールによりアルコリシスし、テレフタール酸メチルエステルとして回収することができ る。精留し不純物を除去した後、テレフタール酸メチルを再度重合することにより、ポ リエチレンテレフタレートを製造することができる。また、メタノールの代わりにエチレン ジオールを使用し、ビスヒドロキシエチレンテレフタレートとして回収し、同様にしてポ リエチレンテレフタレートを製造することができる。アルコリシスの温度を高くするほう が反応効率は上がり、生産性を向上することができ好ましい。 [0037] As an example of alcoholysis, for example, a so-called PET bottle is collected, and the pulverized flakes are supplied to the chemical action device of the present invention with flakes and methanol, and polyethylene terephthalate is metabolized. It can be alcoholicized with anol and recovered as terephthalic acid methyl ester. After rectification and removal of impurities, polyethylene terephthalate can be produced by polymerizing methyl terephthalate again. Also, ethylene diol can be used in place of methanol and recovered as bishydroxyethylene terephthalate, and polyethylene terephthalate can be produced in the same manner. Increasing the temperature of alcoholysis is preferable because it increases reaction efficiency and improves productivity.
[0038] 抽出例としては、例えばオレンジ皮をそのまま原料として本発明の加工装置に供給し 、オレンジ皮カもリモネンを抽出することができる。抽出温度をリモネンの沸点近傍ま で高くするほうが抽出効率は上がり、生産性を向上することができ好ましい。抽出した 粗リモネンは精留し、純度を向上し、使用される。  [0038] As an extraction example, for example, orange peel is directly supplied to the processing apparatus of the present invention, and limonene can also be extracted from the orange peel. Increasing the extraction temperature to near the boiling point of limonene is preferable because it increases the extraction efficiency and improves the productivity. The extracted crude limonene is rectified to improve purity and used.
[0039] 混合例としては、例えば生分解性ポリ乳酸の耐熱性向上のため、無機微粒子を結晶 化核剤として本発明の加工装置に供給し、ペレットを製造することができる。本発明 の加工装置を使用することにより、無機微粒子結晶化核剤を水分散系で供給し、炭 酸ガス亜臨界条件でポリ乳酸を低分子量に加水分解した状態で混合し、次に脱水 縮合し、分散が良好であるため透明なポリ乳酸ペレットを製造することができる。  [0039] As an example of mixing, for example, in order to improve the heat resistance of biodegradable polylactic acid, inorganic fine particles can be supplied to the processing apparatus of the present invention as a crystallization nucleating agent to produce pellets. By using the processing apparatus of the present invention, the inorganic fine particle crystallization nucleating agent is supplied in an aqueous dispersion, mixed in a state in which polylactic acid is hydrolyzed to a low molecular weight under a carbon dioxide subcritical condition, and then dehydrated and condensed. In addition, since the dispersion is good, transparent polylactic acid pellets can be produced.
[0040] 発泡例としては、例えば炭酸ガス、窒素ガスなどのガス、ブタン、ペンタン等の揮発物 質を減圧部力 注入、ジァゾィ匕合物などの熱化学発泡剤などをホッパー力 混合投 入するなどにより、押出し発泡、射出発泡などの装置に組み込むことができる。 1例と して図 7に多段歯車式発泡射出成型機 ·押出機の例を示す。この場合、一般的なプ ランジャー方式の射出成型機に組み込むことができる。  [0040] Examples of foaming include, for example, gas such as carbon dioxide and nitrogen gas, volatile substances such as butane and pentane, injection of reduced pressure, and thermochemical foaming agent such as diazo compound mixed and injected with hopper force. By such means, it can be incorporated into devices such as extrusion foaming and injection foaming. As an example, Fig. 7 shows an example of a multi-stage gear type foam injection molding machine / extruder. In this case, it can be incorporated into a general plunger type injection molding machine.
実施例 1  Example 1
[0041] この例では、図 6に示される本発明の多段歯車式押出機を使用した。スクリューは水 分の多い原料に対応するため、原料供給ホッパーの下部の 50mm径、長さ 350mm 、 2軸パドル'スクリューに続いて長さ 400mm単軸スクリューを使用した。多段歯車は 全 3段を使用し、サーボ 'モーターにより駆動される多段歯車は全 2段を使用した。下 記に歯車主要部の寸法を記載する。 A軸及び B軸の歯車厚さの寸法 (以下、「歯厚」 と述べる)のみ記載し C軸の歯厚を記載して 、な 、段は降圧部 Xまたは昇圧部 Yとし て説明した構造であり、 C軸の歯厚の記載がある段は混練部 Zとして示した構造であ る。次に記載した圧力は記載段の出側圧力で次段記載の入側圧力に相当し、単位 は(MPa)である。 [0041] In this example, the multistage gear extruder of the present invention shown in Fig. 6 was used. In order to handle raw materials with high water content, a single screw with a length of 50 mm, a length of 350 mm and a biaxial paddle screw at the bottom of the feed hopper was used, followed by a 400 mm long single screw. The multi-stage gear used all three stages, and the multi-stage gear driven by the servo 'motor used all two stages. The dimensions of the main part of the gear are described below. Only the dimension of the gear thickness of the A-axis and B-axis (hereinafter referred to as “tooth thickness”) is described, the tooth thickness of the C-axis is described, and the stage is described as the step-down unit X or the step-up unit Y The stage with the tooth thickness on the C-axis is the structure shown as the kneading part Z. The The pressure described next corresponds to the inlet side pressure described in the next stage as the outlet side pressure in the indicated stage, and the unit is (MPa).
全歯車のピッチ円径は 46mm、モジュール 2を採用した。  The pitch circle diameter of all gears is 46mm and module 2 is adopted.
第 1段 A軸、 B軸の歯厚 87mm 0. 88 (測定値)  1st stage A-axis, B-axis tooth thickness 87mm 0.88 (measured value)
第 2段 A軸、 B軸の歯厚 92mm 5. 29 (設計値)  Second stage A-axis and B-axis tooth thickness 92mm 5. 29 (design value)
第 3段 A軸、 B軸の歯厚 48mmZC軸の歯車 20mm 8. 82 (設計値)  3rd stage A-axis, B-axis tooth thickness 48mm ZC-axis gear 20mm 8. 82 (design value)
以下、サーボ 'モーター駆動'圧力制御部  Servo 'motor drive' pressure controller
第 1段 A軸、 B軸の歯厚 20mm 8. 8 (測定値)  1st stage A-axis and B-axis tooth thickness 20mm 8.8 (measured value)
第 2段 A軸、 B軸の歯厚 28mm 4. 41 (設計値)  Second stage A-axis and B-axis tooth thickness 28mm 4. 41 (design value)
丸孔ノズル付きダイス、水中カッターおよびドライヤーカゝら構成される装置を使用した  Using a device consisting of a die with a round hole nozzle, underwater cutter and dryer
[0042] 以下の運転条件は押出機の軸回転数を 80rpm、サーボ 'モーターの回転数は 120r pmでバランスした。ヒーターによる設定温度を入口ホッパー下のみ 160°C、各部の 設定温度を 230°Cに設定し、原料ポリ乳酸と 5重量%雲母水分散液原料比 1. 0雲母 重量%をブレンドし、 30kgZ時間で供給した。ガス注入ロカも炭酸ガスを減圧弁で 0 . 88MPaに減圧し注入した。サーボ 'モーターによる圧力調整部における榭脂圧計 の指示圧力は 8. 8MPaの炭酸ガス超臨界下、圧力調整部歯車に到達する滞留時 間は約 20秒 (算出値)でポリ乳酸を分解し、フラットスクリュー減圧ベント部で水流ポ ンプ減圧縮重合し、ポリ乳酸の分子量を回復した。得られたペレットは無機物微粒子 が含まれているにもかかわらず透明で分散性がナノレベルに達していることが明白で めつに。 [0042] The following operating conditions were balanced at an extruder shaft speed of 80 rpm and a servo motor speed of 120 rpm. The temperature set by the heater is set to 160 ° C only under the inlet hopper, the set temperature of each part is set to 230 ° C, and the raw polylactic acid and 5% by weight mica water dispersion raw material ratio are blended. Supplied with. The gas injection loca was also injected with carbon dioxide reduced to 0.88 MPa with a pressure reducing valve. The indication pressure of the oil pressure gauge in the pressure adjustment part by the servo 'motor is 8.8 MPa of carbon dioxide gas supercritical, and the residence time to reach the pressure adjustment part gear is about 20 seconds (calculated value). The molecular weight of polylactic acid was recovered by reducing the pressure of the water pump at the flat screw vacuum vent. It is clear that the resulting pellets are transparent and dispersible at the nano level despite containing inorganic fine particles.
実施例 2  Example 2
[0043] この例では、図 6に示される多段歯車式押出機で実施例 1と同様のものを使用した。  [0043] In this example, the same multistage gear extruder as shown in Fig. 6 was used.
[0044] 以下の運転条件は押出機の軸回転数を 80rpm、サーボ 'モーターの回転数を 120r pmでバランスした。ヒーターによる設定温度を入口ホッパー下のみ 160°C、各部の 設定温度を 190°Cに設定し、原料ポリ乳酸 89. 3重量%とデンプン水分散液(固形 分 50重量%) 10. 7重量%をブレンドし、 30kgZ時間で供給した。ガス注入口から 炭酸ガスを減圧弁で 0. 88MPaに減圧し注入した。サーボ 'モーターによる圧力調 整部における榭脂圧計の指示圧力は 8. 8MPaの炭酸ガス超臨界下、圧力調整部 歯車に到達する滞留時間は約 26秒 (算出値)でポリ乳酸を分解し、フラットスクリュー 減圧ベント部で水流ポンプ減圧縮重合し、ポリ乳酸の分子量を回復した。得られたぺ レットはデンプンが含まれているにもかかわらず透明で分散性がナノレベルに達して いることが明白であった。 [0044] The following operating conditions were balanced at an extruder shaft speed of 80 rpm and a servo motor speed of 120 rpm. The temperature set by the heater is set to 160 ° C only under the inlet hopper, the temperature set for each part is set to 190 ° C, the raw material polylactic acid is 89.3% by weight, and the starch aqueous dispersion (solid content is 50% by weight). Were fed and fed at 30 kgZ hours. Carbon dioxide gas was decompressed to 0.88 MPa from the gas inlet and injected. Servo 'Motor pressure adjustment The indicated pressure of the oil pressure gauge in the adjusting section is 8.8 MPa of carbon dioxide supercritical, the pressure adjusting section has a residence time of about 26 seconds (calculated value), and polylactic acid is decomposed in the flat screw decompression vent section. The water pump reduced compression polymerization to restore the molecular weight of polylactic acid. It was clear that the pellets obtained were clear and dispersible to the nano level despite the starch content.
実施例 3 Example 3
この例では、図 7の多段歯車式発泡射出成型'押出機を、多段歯車の数を 10段に変 えて使用した。原料供給下部の 50mm径、長さ 750mm単軸フラットスクリューを使用 した。主要部の寸法を記載する。 A軸及び B軸の歯厚のみ記載し、 C軸の歯厚を記 載して 、な ヽ段は降圧部 Xまたは昇圧部 Yとして説明した構造であり、 C軸の歯厚の 記載がある段は混練部 Zとして示した構造である。次に記載した圧力は記載段の出 側圧力で次段記載の入側に相当し、単位は (MPa)である。 In this example, the multistage gear type foam injection molding 'extruder shown in Fig. 7 was used with the number of multistage gears changed to 10 stages. A single screw flat screw with a diameter of 50 mm and a length of 750 mm at the bottom of the raw material supply was used. Describe the dimensions of the main part. Only the tooth thickness of the A-axis and B-axis is described, the tooth thickness of the C-axis is described, and the lower stage is the structure described as the step-down part X or the step-up part Y, and there is a description of the tooth thickness of the C-axis The stage has the structure shown as the kneading part Z. The pressure described below is the outlet pressure of the listed stage and corresponds to the inlet side of the next stage, and the unit is (MPa).
全歯車のピッチ円径は 46mm、モジュール 2を採用した。 The pitch circle diameter of all gears is 46mm and module 2 is adopted.
1段 A軸、 B軸の歯厚 l2mm 0. 74 (測定値)  1st stage A-axis, B-axis tooth thickness l2mm 0.74 (measured value)
2段 A軸、 B軸の歯厚 92mm 5. 19 (設計値)  2nd stage A-axis, B-axis tooth thickness 92mm 5. 19 (design value)
3段 A軸、 B軸の歯厚 44mmZC軸の歯厚 18mm 9. 8 (設計値) 3-stage A-axis, B-axis tooth thickness 44 mm ZC-axis tooth thickness 18 mm 9.8 (design value)
4段 A軸、 B軸の歯厚 36mmZC軸の歯厚 18mm 9. 8 (設計値)4-stage A-axis, B-axis tooth thickness 36 mm ZC-axis tooth thickness 18 mm 9.8 (design value)
5段 A軸、 B軸の歯厚 l8mm 9. 8 (設計値) 5-stage A-axis, B-axis tooth thickness l8mm 9.8 (design value)
6段 A軸、 B軸の歯厚 36mmZC軸の歯厚 18mm 9. 8 (測定値) 6-stage A-axis, B-axis tooth thickness 36 mm ZC-axis tooth thickness 18 mm 9.8 (measured value)
7段 A軸、 B軸の歯厚 l8mm 5. 88 (設計値) 7-stage A-axis, B-axis tooth thickness l8mm 5. 88 (design value)
8段 A軸、 B軸の歯厚 22mm 2. 94 (設計値)  8 steps A-axis, B-axis tooth thickness 22mm 2. 94 (design value)
9段 A軸、 B軸の歯厚 32mm 0. 2 (設計値)  9th stage A-axis, B-axis tooth thickness 32mm 0.2 (design value)
第 10段 A軸、 B軸の歯厚 312mm 10th stage A-axis, B-axis tooth thickness 312mm
多段歯車群の第 10段後部に実効全長 1200mmの水冷丸ダイスを取付けた。外側 水冷丸ダイスの内径は 80mm出口径で、中子水冷丸ダイスは先細りテーパーを採用 し、外径は 60mm出口径である。 A water-cooled round die with an effective total length of 1200 mm was attached to the rear of the 10th stage of the multi-stage gear group. The inner diameter of the outer water-cooled round die is 80mm outlet diameter, the core water-cooled round die adopts a tapered taper, and the outer diameter is 60mm outlet diameter.
ヒーター温度を 160°Cに設定し、軸回転数を 80rpm、主原料ポリエチレン 99. 5重量 %とワックス 0. 5重量%をドライブレンドし、ホッパー力も投入した。気体注入口には コンプレッサーから圧縮空気を減圧弁で 0. 74 (MPa)に減圧し注入した。結果は、 外径 80mm径、内径 60mm径の円筒形状の連続発泡体がえられた。発泡セルは小 さぐ発泡倍率は約 50倍、時間換算吐出量は 35kgであった。 The heater temperature was set to 160 ° C, the shaft rotation speed was 80 rpm, 99.5 wt% of the main raw material polyethylene and 0.5 wt% of wax were dry blended, and the hopper force was also added. In the gas inlet Compressed air from the compressor was reduced to 0.74 (MPa) by a pressure reducing valve and injected. As a result, a cylindrical continuous foam having an outer diameter of 80 mm and an inner diameter of 60 mm was obtained. The foam cell had a small foaming ratio of about 50 times, and the time-equivalent discharge was 35 kg.
実施例 4  Example 4
[0047] この例では、図 7の多段歯車式発泡射出成型 ·押出機で実施例 3と同様の歯車を 10 段としたものを使用した。ただし、実施例 3の装置の丸ダイスを外し、射出成型機用メ 力-カル ·ノズルを取付け使用した。簡便な試作試験のため、金型にはアルミ材を採 用し、 8箇所に 6mm径の材料漏れ用の穴を設け、フックでメカ-カル 'ノズルに圧接 する構造にした。また、メカ-カル 'ノズルと金型間にドレンを設け、金型流入する方 向とドレン力 流出する方向との切替えバルブを取付けた。気体注入口には炭酸ガ ス ·ボンべ力 減圧弁で 0. 74 (MPa)に減圧し接続した。  [0047] In this example, the multistage gear type foam injection molding extruder of FIG. 7 having the same gear as in Example 3 and having 10 stages was used. However, the round die of the apparatus of Example 3 was removed, and a mechanical nozzle for an injection molding machine was attached and used. For a simple prototype test, aluminum was used for the mold, 6mm diameter holes for material leakage were provided at 8 locations, and the structure was configured to press the mechanical nozzle with hooks. In addition, a drain was installed between the mechanical nozzle and the mold, and a switching valve was installed between the direction in which the mold flows in and the direction in which the drain force flows out. The gas inlet was connected to a pressure-reducing valve of carbon dioxide and bomb that was reduced to 0.74 (MPa).
[0048] 乾燥した原料ポリ乳酸 99重量%とトリメリット酸無水物 1重量%をドライブレンドし、ホ ッパーから 35kgZ時間で供給し、炭酸ガス注入ロカも 0. 74MPaの炭酸ガスを供給 し、温度 230°C、第 6段の後部圧力 9. 8MPaの超臨界炭酸ガス条件下連続混練りし 、切替えバルブでドレン側力 金型側に一時的に切替えることにより、発泡ポリ乳酸 を常温のトロ箱金型に射出後、金型を水冷却した。発泡ポリ乳酸のトロ箱は約 50倍 発泡し、微細発泡核を生成し、フラッシュ跡もないトロ箱を成型できた。  [0048] 99% by weight of the dried polylactic acid and 1% by weight of trimellitic anhydride were dry blended and supplied from the hopper at a rate of 35 kgZ, and the carbon dioxide injection loca was also supplied with carbon dioxide of 0.774 MPa. 230 ° C, 6th stage rear pressure 9.8 KMP under continuous supercritical carbon dioxide conditions After injection into the mold, the mold was water cooled. The foamed polylactic acid Toro box expanded approximately 50 times, produced fine foam nuclei, and was able to mold a Toro box with no flash marks.

Claims

請求の範囲 The scope of the claims
[1] 気体が混在する物質を、連続して混練圧縮し、臨界状態の流体として、加工するた めの加工装置であって、移送部容量の異なる歯車式移送部を 2段以上設け、連続す る 2段の歯車式移送部の移送部容量差により流体に含有する気体を圧縮する圧力を 制御し、または移送流体の一部を逆流させ実質移送容量を一定にすることを特徴と する多段歯車式加工装置。  [1] A processing device for continuously kneading and compressing a gas-mixed substance to process it as a fluid in a critical state, and has two or more gear-type transfer units with different transfer unit capacities. A multi-stage characterized by controlling the pressure to compress the gas contained in the fluid by the difference in the transfer section capacity of the two-stage gear-type transfer section, or by making a part of the transfer fluid flow backward to make the actual transfer capacity constant. Gear type processing equipment.
[2] 前記連続する移送部容量が異なる 2段の歯車式移送部に対をなす複数個の歯車が 設けられていることを特徴とする請求項 1の多段歯車式加工装置。  [2] The multi-stage gear type machining apparatus according to claim 1, wherein a plurality of gears paired with the two-stage gear type transfer part having different continuous transfer part capacities are provided.
[3] 押出スクリューに続いて、前記歯車式移送部が設けられていることを特徴とする請求 項 1または 2の多段歯車式加工装置。  [3] The multi-stage gear type machining apparatus according to claim 1 or 2, wherein the gear type transfer unit is provided following the extrusion screw.
[4] 前記歯車式移送部間に気体注入口を設け、注入口前段の歯車による移送部容量が 注入口後段の歯車による移送部容量より小であり、注入ロカ 気体注入を可能にし たことを特徴とする請求項 1から 3いずれ力 1項の多段歯車式カ卩ェ装置。  [4] A gas injection port is provided between the gear-type transfer unit, and the transfer unit capacity by the gear at the front stage of the injection port is smaller than the transfer unit capacity by the gear at the rear stage of the injection port, which enables injection of the injection loca gas. The multistage gear type carriage device according to any one of claims 1 to 3, wherein the force is one.
[5] 前記歯車式移送部により超臨界または亜臨界状態を形成するに足る圧力を発生す る請求項 1から 4いずれか 1項の多段歯車式加工装置。  5. The multistage gear type machining apparatus according to any one of claims 1 to 4, wherein the gear type transfer unit generates a pressure sufficient to form a supercritical or subcritical state.
[6] ガス発泡成形に用いる請求項 1から 5のいずれ力 1項の多段歯車式カ卩ェ装置。  [6] The multistage gear type cache device according to any one of claims 1 to 5, wherein the multistage gear type cache device is used for gas foam molding.
[7] 請求項 1から 5のいずれか 1項の多段歯車式加工装置を使用する混練、分解、抽出 または化学合成等の加工方法。  [7] A processing method such as kneading, decomposition, extraction or chemical synthesis using the multistage gear type processing apparatus according to any one of claims 1 to 5.
PCT/JP2006/316099 2005-08-17 2006-08-16 Multistage gear processing equipment WO2007020940A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007531008A JP5563736B2 (en) 2005-08-17 2006-08-16 Multi-stage gear type processing machine
KR1020087004980A KR101352346B1 (en) 2005-08-17 2006-08-16 Multistage gear processing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005236639 2005-08-17
JP2005-236639 2005-08-17

Publications (1)

Publication Number Publication Date
WO2007020940A1 true WO2007020940A1 (en) 2007-02-22

Family

ID=37757599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316099 WO2007020940A1 (en) 2005-08-17 2006-08-16 Multistage gear processing equipment

Country Status (3)

Country Link
JP (1) JP5563736B2 (en)
KR (1) KR101352346B1 (en)
WO (1) WO2007020940A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013252694A (en) * 2011-10-09 2013-12-19 Research Laboratory Of Plastics Technology Co Ltd Method and device for manufacturing stereocomplex polylactic acid molded article
AT520439B1 (en) * 2017-12-15 2019-04-15 Engel Austria Gmbh Injection unit for a molding machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836677A (en) * 1981-08-19 1983-03-03 ノードソン・コーポレーション Hot melt adhesive device
JP2002018853A (en) * 2000-04-25 2002-01-22 Hennecke Gmbh Method and apparatus for pressurizing flowable reaction component
JP2003326571A (en) * 2002-05-16 2003-11-19 Meiki Co Ltd Plastication device and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7318713B2 (en) * 2002-07-18 2008-01-15 Trexel, Inc. Polymer processing systems including screws
JP4102260B2 (en) * 2003-07-02 2008-06-18 日立電線株式会社 Polymer supercritical processing equipment
WO2005030845A1 (en) * 2003-09-30 2005-04-07 Kosuke Uchiyama Screw type processing device and product using the device
JP2005161596A (en) * 2003-12-01 2005-06-23 Mitsui Chemicals Inc Manufacturing method of thermoplastic resin blend

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836677A (en) * 1981-08-19 1983-03-03 ノードソン・コーポレーション Hot melt adhesive device
JP2002018853A (en) * 2000-04-25 2002-01-22 Hennecke Gmbh Method and apparatus for pressurizing flowable reaction component
JP2003326571A (en) * 2002-05-16 2003-11-19 Meiki Co Ltd Plastication device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013252694A (en) * 2011-10-09 2013-12-19 Research Laboratory Of Plastics Technology Co Ltd Method and device for manufacturing stereocomplex polylactic acid molded article
AT520439B1 (en) * 2017-12-15 2019-04-15 Engel Austria Gmbh Injection unit for a molding machine
AT520439A4 (en) * 2017-12-15 2019-04-15 Engel Austria Gmbh Injection unit for a molding machine
DE102018127995A1 (en) 2017-12-15 2019-06-19 Engel Austria Gmbh Injection unit for a molding machine

Also Published As

Publication number Publication date
JP5563736B2 (en) 2014-07-30
KR20080039955A (en) 2008-05-07
JPWO2007020940A1 (en) 2009-02-26
KR101352346B1 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP3434418B2 (en) High-melting point resin dewatering system with co-rotating twin screw extruder
AU677964B2 (en) Process for producing biodegradable films from vegetable raw materials
US8721312B2 (en) Kneading extruder
CN100519637C (en) Method of treating polymer compound and treatment system for the same
CN109228003B (en) Device and method for preparing low-density polymer foam beads by extruding and foaming supercritical mixed fluid
EP0629479B1 (en) Apparatus and process for continuously pelletizing synthetic thermoplastic materials
CN109320952B (en) Method for preparing low-density TPU bead foam through extrusion foaming based on coupling modification of polytetrafluoroethylene and talcum powder
JP4285323B2 (en) Polymer compound treatment method and apparatus
JP5563736B2 (en) Multi-stage gear type processing machine
JP4114562B2 (en) Polymer processing method and apparatus thereof
TWI329562B (en)
JP2001179808A (en) Continuous method for molding foamed object and apparatus for the method
JP2007130775A (en) Tandem type reactive extruder and reactive extrusion method
JP5553370B2 (en) Polyurethane volume reduction treatment equipment
JP5553343B2 (en) Method for treating foamed polyurethane and volumetric treatment equipment for foamed polyurethane
KR100610289B1 (en) Method and apparatus for polymer processing treatment
EP1778771B1 (en) Method for extracting nylon from waste materials
JP3976713B2 (en) Polyvinyl acetal resin pellet and method for producing the same
JP2000264998A (en) Method and apparatus for recycling recovered polyester product
CN211640920U (en) Plastics extrusion cooling arrangement
JP3178249B2 (en) Continuous regeneration treatment of resin with foamed polyurethane
JP4385853B2 (en) Polymer compound treatment method and apparatus
Lechner The Co‐rotating Twin‐Screw Extruder for Reactive Extrusion
JP5617770B2 (en) Polymer compound processing method and apparatus
CN214773490U (en) Special equipment for supercritical carbon dioxide polyurethane foaming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007531008

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087004980

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06796458

Country of ref document: EP

Kind code of ref document: A1