JP4102260B2 - Polymer supercritical processing equipment - Google Patents

Polymer supercritical processing equipment Download PDF

Info

Publication number
JP4102260B2
JP4102260B2 JP2003190416A JP2003190416A JP4102260B2 JP 4102260 B2 JP4102260 B2 JP 4102260B2 JP 2003190416 A JP2003190416 A JP 2003190416A JP 2003190416 A JP2003190416 A JP 2003190416A JP 4102260 B2 JP4102260 B2 JP 4102260B2
Authority
JP
Japan
Prior art keywords
polymer
extruder
supercritical
fluid
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003190416A
Other languages
Japanese (ja)
Other versions
JP2005022245A (en
Inventor
敏晴 後藤
孝則 山崎
圭彦 岩本
淳 柿崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Japan Steel Works Ltd
Original Assignee
Hitachi Cable Ltd
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Japan Steel Works Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003190416A priority Critical patent/JP4102260B2/en
Publication of JP2005022245A publication Critical patent/JP2005022245A/en
Application granted granted Critical
Publication of JP4102260B2 publication Critical patent/JP4102260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/365Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pumps, e.g. piston pumps
    • B29C48/37Gear pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/385Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/387Plasticisers, homogenisers or feeders comprising two or more stages using a screw extruder and a gear pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/41Intermeshing counter-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリマーを変性、分解したり、架橋ポリマーの架橋点或いは分子鎖を切断して熱可塑性ポリマーやワックス等に分解するポリマーの超臨界処理装置に関するものである。
【0002】
【従来の技術】
近年、超臨界流体を用いたポリマーの変性や分解などに関する研究が活発に行なわれている。特に環境問題への関心の高まりから、ポリマーのリサイクルに超臨界流体を用いる研究が盛んになってきた。
【0003】
このような研究では、▲1▼高圧容器にポリマーを入れて昇温し、ポリマーを超臨界処理して、その後、高圧容器を冷却して生成物を取り出す方法、▲2▼スラリー状のポリマー含有流体を高圧容器に連続的に供給して生成物を取り出す方法などが研究されている。
【0004】
しかし、▲1▼の方法は、高圧容器を昇温して冷却する工程を繰り返すために時間と熱量が必要な方法となりコスト高であり、また▲2▼の方法は、変性したい目的のポリマーと、分散液として用いる流体の割合に制限があり、多量のポリマーを処理するためには多量の流体と大きな設備が必要となる。
【0005】
そこで、特許文献1に示されるように、▲3▼押出機にポリマーを連続的に供給し、ここに超臨界又は亜臨界流体を供給する方法が提案されている。
【0006】
図4は、押出機により架橋ポリエチレン等のポリマーを連続的に超臨界処理する処理装置を示し、図において、40は、シリンダー41内に、二軸のスクリュー42が同方向或いは異方向に回転自在に設けられた二軸押出機で、分解すべきポリマーをホッパー43よりシリンダー41内に供給し、さらにそのシリンダー41内に注入口44から超臨界水(アルコール)を供給して分解させて、吐出口45から排出するようにしたものである。
【0007】
この押出機40を用いた超臨界処理は、ポリマーを連続的に供給して分解でき、しかも設備が小さくてすむ利点がある。
【0008】
【特許文献1】
特開2001−253967号公報
【0009】
【発明が解決しようとする課題】
しかしながら、押出機のシリンダー径は小さく、供給できる超臨界又は亜臨界流体の量に限りがあり、超臨界流体を多く供給すると安定したポリマーの吐出や反応容器内の圧力調整が不可能となり、安定した超臨界処理が行えない問題がある。
【0010】
そこで、本発明の目的は、ポリマーを連続的に、しかも安定して分解処理できるポリマーの超臨界処理装置を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために請求項1の発明は、ポリマーを押出機に供給すると共に、その押出機に、超臨界流体又は亜超臨界流体を供給して、ポリマーを分解処理するポリマーの超臨界処理装置において、上記押出機の吐出口に、押出機内の圧力を調整する圧力調整装置を接続したポリマーの超臨界処理装置である。
【0012】
請求項2の発明は、上記押出機は、シリンダーとそのシリンダー内に回転自在に設けられたスクリューからなり、シリンダー基部には、ポリマーを供給するホッパーが設けられ、該ホッパーからシリンダー内に供給されたポリマーの充満率が100%になる位置より下流側に位置したシリンダーに、超臨界流体又は亜超臨界流体の注入口が設けられる請求項1記載のポリマーの超臨界処理装置である。
【0013】
請求項3の発明は、上記押出機が、シリンダー内に一対のスクリューを設けた二軸押出機からなる請求項1又は2記載のポリマーの超臨界処理装置である。
【0014】
請求項4の発明は、上記圧力調整装置は、上記押出機の吐出口の開度を調整する高圧バルブからなる請求項1〜3いずれかに記載のポリマーの超臨界処理装置である。
【0015】
請求項5の発明は、上記高圧バルブは、上記吐出口に直交するよう接続された吐出管と、その吐出管内に移動自在に設けられ、上記吐出口の開度を調整する弁体からなる請求項4記載のポリマーの超臨界処理装置である。
【0016】
請求項6の発明は、上記圧力調整装置は、上記押出機の吐出口に接続したギアポンプからなる請求項1〜3いずれかに記載のポリマーの超臨界処理装置である。
【0017】
請求項7の発明は、上記圧力調整装置の下流側には、超臨界又は亜臨界により分解されたポリマーを導入すると共に超臨界流体又は亜臨界流体として用いた溶媒やガスの脱気を行なうと共に分解物を押し出す排出用押出機が接続される請求項1〜6いずれかに記載のポリマーの超臨界処理装置である。
【0018】
請求項8の発明は、ポリマーとして押出機に架橋ポリマーを供給し、超臨界流体又は亜超臨界流体として高温のアルコール、水、二酸化炭素、窒素あるいはこれらの組み合わせを供給し、架橋ポリマーのシロキサン結合を切断して該ポリマーをリサイクルする請求項1〜7いずれかに記載のポリマーの超臨界処理装置である。
【0019】
【発明の実施の形態】
以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。
【0020】
図1において、10は、二軸押出機で、図2に示すように断面ダルマ形状に形成したシリンダー11内に一対のスクリュー12,12を互いに同方向或いは異方向に回転自在に設けて構成される。シリンダー11とスクリュー12の材質としては、超臨界に耐えられる材質であればよく、例えばハステロイ、ステンレス鋼等を用いる。
【0021】
この二軸押出機10のシリンダー11の基部には、分解すべきポリマー、例えば、シロキサン結合した架橋ポリマー等のペレットや粘性液体等の処理物を投入するホッパー13が設けられ、その先端には、吐出口14が形成される。
【0022】
ホッパー13から吐出口14に至るシリンダー11には、ホッパー13から投入された処理物の充満率が100%になる位置より下流側(吐出口側)に、亜臨界流体又は超臨界流体の注入口15が設けられる。
【0023】
またシリンダー11の外周は図示していないが、シリンダー11内を所定の温度に保つためのジャケットやヒータなどの加熱手段が設けられている。
【0024】
この二軸押出機10の吐出口14には、押出機10内の圧力を調整する圧力調整装置16が接続される。
【0025】
この圧力調整装置16は、吐出口14に直交するように接続した吐出管17と、その吐出管17内に移動自在に設けられ、吐出口14の開度を調整する弁体18からなる高圧バルブ19で構成される。この弁体18は、詳細は図示していないが、ピストン部とネジ部とからなり、そのネジ部が吐出管17やその上方に形成した雌ネジに螺合して設けられ、その弁体18を回転させることで開度が調整できるようになっている。
【0026】
この高圧バルブ19の下流側、すなわち吐出管17には、二軸押出機10で、超臨界などにより分解されたポリマーを導入すると共に超臨界流体として用いた溶媒やガスの脱気を行なうと共に分解物を押し出す排出用押出機20が接続される。
【0027】
この排出用押出機20は、分解用の二軸押出機10と同様に、シリンダー21に一対のスクリュー22を設けた二軸押出機で構成され、そのシリンダー21に、吐出口14を挟んで、上流と下流に脱気用のベント口23、24が設けられる。
【0028】
また、排出用押出機20の吐出口25には、図示していないが分解物を所定の断面形状に排出するためのダイスが設けられている。
【0029】
次に本発明の作用を説明する。
【0030】
先ず、ホッパー13に投入するポリマーは、粘性流体や弾性的な物質などである。
【0031】
ここで、粘性流体とはポリマーや溶融金属、クレイなど粘性が高く単純なパイプ等を用いて輸送することが困難な物質のことを言う。また、弾性的な物質とは架橋ポリマー、ゴムおよびこれらの混合物など流動性の低い物質を言う。
【0032】
粘性流体あるいは弾性的な物質をホッパー13から供給するには、ペレットあるいは粉体状のものが好ましい。
【0033】
ホッパー13からシリンダー11内に供給されたポリマーは、加熱手段(図示せず)からの熱で適宜溶融乃至軟化され、二軸のスクリュー12により混練されながら吐出口14側に移動する。ここでポリマーの充満率が100%となった位置より下流側に設けた注入口15から、亜臨界又は超臨界流体として高温のアルコール、水、二酸化炭素、窒素あるいはこれらの組み合わせからなる分解用処理流体が供給される。
【0034】
この分解用処理流体により、ポリマーは分解されて低分子化された分解生成物となって吐出口14から吐出される。
【0035】
この際、吐出口14には、圧力調整装置16として、高圧バルブ19が接続されており、注入口15から吐出口14までのシリンダー11内の分解反応ゾーン11R内の圧力を分解反応に必要な圧力に維持すると共に、そのポリマーの滞留時間も調整して分解反応をより完全に行うことが可能となる。
【0036】
高圧バルブ19は、亜臨界又は超臨界の圧力を調整するためのものなので、超臨界流体として利用する物質が、例えば水やアルコールの場合、これらの物質の臨界点以上の高温高圧に耐えられるもので、かつ粘性流体あるいは弾性的な物質の流量を制御できるものであればよい。
【0037】
二軸押出機10内で分解された分解生成物は、高圧バルブ19より排出用押出機20に導入され、ベント23、24から超臨界流体として用いた溶媒やガスが脱気され、また分解物生成物は、排出用押出機20の吐出口25からダイス(図示せず)を通して所定断面形状に押し出され、リサイクル材料とされる。
【0038】
二軸押出機10内での分解生成物とは、架橋ポリマーの分子鎖が切れたもので、架橋点のみが切れたもの、あるいは主鎖が切れて分子量が小さくなったものである。
【0039】
前記超臨界流体とは、メタノール、水、CO2 などの物質が臨界点よりも高い温度、圧力になった状態をいい、密度は通常の気体よりも高く、分子の運動量は気体と同程度である流体のことをいう。
【0040】
また、亜臨界流体とは臨界点近傍で臨界温度よりも低い温度領域のものであり、反応性は超臨界流体に準じている。
【0041】
分解処理するポリマーとしての架橋ポリマーとは、ポリエチレン、塩化ビニル、シリコーン樹脂、ゴム、エチレン共重合体を架橋したものか挙げられるが、特にこれらに限られるものではない。
【0042】
前記ゴムとは、ブタジエンゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、ブチルゴム、エチレンプロピレンゴムなどである。
【0043】
前記エチレン共重合体とは、エチレン酢酸ビニル共重合体、エチレンエチルアクリレート共重合体、エチレンメタクリレート共重合体、エチレンメチルメタクリレート共重合体、エチレンプロピレンゴム、エチレンブテン−1共重合体、エチレンオクテン共重合体等を言う。
【0044】
前記架橋ポリマーの流動性を高めたり、分解生成物の物性を向上させるために、熱可塑性ポリマーを、ブレンドして分解処理しても良い。
【0045】
熱可塑性ポリマーのブレンド方法は、架橋ポリマーと熱可塑性ポリマーをドライブレンドして二軸押出機10のホッパー13から投入したり、或いは二軸押出機10の途中に、サブ押出機(図示せず)を接続し、そのサブ押出機を用いて入れる方法等があげられる。
【0046】
架橋ポリマーの架橋の方法としては、ビニルトリメトキシシラン等のビニルシラン化合物を有機過酸化物を用いてポリマーに共重合した後、シラノール縮合触媒と水の存在下で架橋を行う方法や、ジクミルパーオキサイド等の有機過酸化物を使う方法、硫黄を用いる方法、電子線等の電離放射線を用いて架橋する方法があげられる。
【0047】
なお、これらの架橋ポリマーに酸化防止剤、充填剤、着色剤、銅害防止剤、難燃剤、耐候性付与剤等が加えられていても良い。
【0048】
アルコールまたは水を、注入口15から二軸押出機10に供給するにおいて、シリンダー11内のポリマー圧力が、超臨界流体または亜臨界流体の圧力を超えているか、あるいはそれ以下の圧力であるかは特に問題とならないが、ガスの分散性を考慮した場合、ポリマーの圧力は低い方が望ましいが、充満率は100%であることが必要である。
【0049】
分解用の二軸押出機10中での超臨界による反応時間を十分にとれる様に、押出機のL/Dは25以上が良い。
【0050】
また、排出用押出機20は、シリンダー21内で、分解物が詰らない様に温度制御できる方が望ましい。すなわち、吐出量が制御できず、シリンダー21のベント23、24から分解物が噴き出す場合はシリンダー21を冷却することが有効であり、シリンダー20で分解物が詰る場合には粘度を下げるために加熱することが有効な場合が多い。
【0051】
上述の実施形態では、押出機10として、ポリマーの供給やシリンダー11内の圧力の調整、ポリマーとガスの攪拌を容易にするために二軸押出機の例で説明したが、これは二本のスクリュー12でポリマーを押し出しながら混練するので、単軸の押出機と比較するとガスとの混練性が良く、またポリマーが粉体などスクリュー12への食いこみが悪い材料の供給も容易なので有利であるためであるが、本発明では、単軸の押出機を用いても、もしくは、シリンダーとピストンからなり、ピストンによってポリマーを吐出する、いわゆるラム押出しのどちらを用いても良い。
【0052】
図3は、本発明の他の実施の形態を示したもので、圧力調整装置16として、ギヤポンプ30を用いた例を示し、吐出口14と排出用押出機20を結ぶ吐出管31にギヤポンプ30を接続して圧力調整装置16を構成したものである。
【0053】
このギヤポンプ30は、ケーシング32内に、互いに噛合すると共に図示の矢印方向に回転する一対のギヤ33、33を設けて構成される。
【0054】
このギヤポンプ30からなる圧力調整装置16は、ギヤ33、33の回転数を制御して、吐出管31から排出用押出機20に流れる分解物の流量を調整することで、結果的に二軸押出機10の分解反応ゾーン11Rの圧力を調整することが可能となる。
【0055】
【実施例】
以下、本発明のより具体的な実施例を比較例と共に説明する。
【0056】
実施例1
図1で説明した装置を用いてシラン架橋ポリエチレンを超臨界エタノールで処理した。
【0057】
二軸押出機10のシリンダーサイズは66mm、L/D=65を用いた。排出用押出機20にはシリンダーサイズ33mm、L/D=40の押出機を用い、これにベントを設けてアルコールを除去した。押出機10、20はいずれも二軸押出機である。
【0058】
押出機10のホッパー13にシラン架橋ポリエチレンを仕込み、注入口15からエタノールを供給した。
【0059】
シラン架橋ポリエチレンはポリエチレンをシロキサン結合で架橋したものである。ここではゲル分率60%のものを用いた。
【0060】
エタノールの供給量はシラン架橋ポリエチレン100重量部に対し20重量部とした。注入口15の位置でのシリンダー内の温度を320℃、圧力を3MPaとし、反応ゾーン11Rの温度は320℃とし、反応ゾーン11Rの圧力は、高圧バルブ19にて10〜14MPaとなるように調整した。
【0061】
また、吐出管17は、熱媒体で加熱し、200℃に保って分解生成物が詰らないようにした。
【0062】
排出用押出機20は、樹脂を吐出するダイス部分で190℃とし、ストランド状にリサイクル材料を押出した。この結果、シラン架橋ポリエチレンを連続的に処理し、分解生成物を取り出すことができた。
【0063】
この分解生成物のゲル分率をJISC3005に準拠して40メッシュの金網の中に試料を入れて、110℃のキシレン中で可溶分を24時間抽出した。その後80℃で4時間真空乾燥し、抽出乾燥後の重量と抽出前の重量から求めた。
【0064】
また、高温GPC(ゲルパーミエーションクロマトグラフィー)により分子量を求めた。溶媒としてジクロロベンゼンを用い、この結果、分解生成物のゲル分率は0%で、分子量は44000で架橋前のべースポリマー(45000)とほほ同じ分子量のポリエチレンであった。
【0065】
実施例2
実施例1におけるエタノールに代えて水を用い、分解反応ゾーン11Rの圧力を20〜23MPaに調整し、温度を370℃とした。
【0066】
この分解生成物の分子量分布とゲル分率を実施例1と同様の方法で確認した。この結果、分解生成物のゲル分率は0%で、分子量は30000で架橋前のべースポリエチレン(45000)よりもやや小さい分子量のポリエチレンであった。
【0067】
実施例3
実施例2における分解反応ゾーン11Rの温度を400℃、圧力20〜23MPaとした。
【0068】
この分解生成物の分子量分布とゲル分率を実施例1と同様の方法で確認した。
【0069】
この結果分子量10000、ゲル分率0%のワックス状ポリエチレンであった。
【0070】
実施例4
実施例1におけるエタノールに代えて、メタノールと炭酸ガスを重量比1:4で混合したものを用い、分解反応ゾーン11Rの圧力が10〜14Mpa、温度320℃とした。
【0071】
この分解生成物の分子量分布とゲル分率を実施例1と同様の方法で確認した。
【0072】
この結果、分解生成物のゲル分率は10%で、分子量は30000で架橋前のべースポリエチレン(45000)よりもやや小さい分子量のポリエチレンであった。
【0073】
比較例
実施例1において図1に示す装置に代えて、図4に示す従来の二軸押出機40を用いて超臨界処理を行った。
【0074】
この結果、シラン架橋ポリエチレン100%に対して5%以上エタノールを注入すると押出機40内の圧力を超臨界以上に保てず、0〜10MPaの間で変動し、シラン架橋ポリエチレンを連続的に処理することができなかった。
【0075】
以上の実施例1〜4と比較例の結果を表1にまとめて示した。
【0076】
【表1】

Figure 0004102260
【0077】
【発明の効果】
以上要するに本発明によれば、超臨界処理を行う押出機の吐出側に、高圧バルブなどの圧力調整装置を接続することにより、連続的に押出機中でポリマーと超臨界流体とを混練して反応させて分解生成物を連続的に取り出すことができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す図である。
【図2】図1のA−A線断面図である。
【図3】本発明の他の実施の形態を示す図である。
【図4】従来例を示す図である。
【符号の説明】
10 二軸押出機
11 シリンダー
12 スクリュー
13 ホッパー
14 吐出口
15 注入口
16 圧力調整装置
20 排出用押出機[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a supercritical processing apparatus for a polymer that modifies and decomposes a polymer, or breaks a crosslinking point or a molecular chain of a crosslinked polymer into a thermoplastic polymer or wax.
[0002]
[Prior art]
In recent years, research on modification and decomposition of polymers using supercritical fluids has been actively conducted. In particular, research on the use of supercritical fluids for polymer recycling has become active due to growing interest in environmental issues.
[0003]
In such research, (1) a method of putting a polymer in a high-pressure vessel and raising the temperature, supercritically treating the polymer, and then cooling the high-pressure vessel and taking out the product, (2) containing a slurry polymer Research has been conducted on a method of continuously supplying a fluid to a high-pressure vessel and taking out a product.
[0004]
However, the method {circle around (1)} requires a lot of time and heat to repeat the process of raising and cooling the high-pressure vessel, and the method {circle around (2)} is expensive. The ratio of the fluid used as the dispersion is limited, and a large amount of fluid and large equipment are required to process a large amount of polymer.
[0005]
Therefore, as shown in Patent Document 1, (3) a method has been proposed in which a polymer is continuously supplied to an extruder and a supercritical or subcritical fluid is supplied thereto.
[0006]
FIG. 4 shows a processing apparatus for continuously supercritically processing a polymer such as cross-linked polyethylene by an extruder. In FIG. 4, reference numeral 40 denotes a cylinder 41 in which a biaxial screw 42 can be rotated in the same direction or in different directions. Is supplied to the cylinder 41 from the hopper 43, and supercritical water (alcohol) is supplied from the injection port 44 into the cylinder 41 for decomposition. The liquid is discharged from the outlet 45.
[0007]
The supercritical processing using the extruder 40 has an advantage that the polymer can be continuously supplied and decomposed, and the equipment can be reduced.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-253967
[Problems to be solved by the invention]
However, the cylinder diameter of the extruder is small, and the amount of supercritical or subcritical fluid that can be supplied is limited. If a large amount of supercritical fluid is supplied, stable polymer discharge and pressure adjustment in the reaction vessel become impossible, which makes it stable. There is a problem that supercritical processing cannot be performed.
[0010]
Accordingly, an object of the present invention is to provide a polymer supercritical processing apparatus capable of continuously and stably decomposing a polymer.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 provides a supercritical fluid of a polymer in which a polymer is supplied to an extruder and a supercritical fluid or a subsupercritical fluid is supplied to the extruder to decompose the polymer. In the processing apparatus, a supercritical processing apparatus for a polymer in which a pressure adjusting device for adjusting a pressure in the extruder is connected to a discharge port of the extruder.
[0012]
According to a second aspect of the present invention, the extruder includes a cylinder and a screw rotatably provided in the cylinder, and a hopper for supplying a polymer is provided at the cylinder base, and the hopper is supplied into the cylinder. 2. The polymer supercritical processing apparatus according to claim 1, wherein a supercritical fluid or subsupercritical fluid inlet is provided in a cylinder located downstream of a position where the polymer filling rate is 100%.
[0013]
A third aspect of the invention is the polymer supercritical processing apparatus according to the first or second aspect, wherein the extruder is a twin-screw extruder having a pair of screws in a cylinder.
[0014]
A fourth aspect of the present invention is the polymer supercritical processing apparatus according to any one of the first to third aspects, wherein the pressure adjusting device comprises a high-pressure valve for adjusting the opening degree of the discharge port of the extruder.
[0015]
According to a fifth aspect of the present invention, the high-pressure valve includes a discharge pipe connected to be orthogonal to the discharge port, and a valve body that is movably provided in the discharge pipe and adjusts the opening degree of the discharge port. Item 4. A supercritical processing apparatus for a polymer according to Item 4.
[0016]
A sixth aspect of the invention is the polymer supercritical processing apparatus according to any one of the first to third aspects, wherein the pressure adjusting device comprises a gear pump connected to a discharge port of the extruder.
[0017]
The invention of claim 7, downstream of the pressure regulating device performs deaeration of the solvent or gas used as the supercritical fluid or subcritical fluid is introduced more degraded polymer in a supercritical or subcritical The polymer supercritical processing apparatus according to any one of claims 1 to 6, wherein a discharge extruder for extruding a decomposition product is connected to the polymer.
[0018]
The invention of claim 8 supplies a cross-linked polymer to the extruder as a polymer, supplies high-temperature alcohol, water, carbon dioxide, nitrogen or a combination thereof as a supercritical fluid or subsupercritical fluid , and siloxane bonds of the cross-linked polymer The polymer supercritical processing apparatus according to claim 1, wherein the polymer is recycled by cutting the polymer.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0020]
In FIG. 1, reference numeral 10 denotes a twin-screw extruder, which is configured by providing a pair of screws 12 and 12 rotatably in the same direction or different directions in a cylinder 11 having a cross-sectional shape as shown in FIG. The The material of the cylinder 11 and the screw 12 may be any material that can withstand supercriticality. For example, Hastelloy, stainless steel, or the like is used.
[0021]
The base of the cylinder 11 of the twin screw extruder 10 is provided with a hopper 13 for introducing a polymer to be decomposed, for example, a pellet of a siloxane-bonded cross-linked polymer or a processed product such as a viscous liquid, A discharge port 14 is formed.
[0022]
In the cylinder 11 from the hopper 13 to the discharge port 14, a subcritical fluid or supercritical fluid injection port is provided downstream (discharge port side) from the position where the filling rate of the processed material charged from the hopper 13 becomes 100%. 15 is provided.
[0023]
Although the outer periphery of the cylinder 11 is not shown, heating means such as a jacket and a heater for keeping the inside of the cylinder 11 at a predetermined temperature is provided.
[0024]
A pressure adjusting device 16 that adjusts the pressure in the extruder 10 is connected to the discharge port 14 of the biaxial extruder 10.
[0025]
The pressure adjusting device 16 is a high-pressure valve comprising a discharge pipe 17 connected so as to be orthogonal to the discharge port 14 and a valve body 18 that is movably provided in the discharge pipe 17 and adjusts the opening degree of the discharge port 14. 19. Although not shown in detail, the valve body 18 includes a piston portion and a screw portion, and the screw portion is provided by being screwed into the discharge pipe 17 or a female screw formed thereabove. The opening can be adjusted by rotating.
[0026]
On the downstream side of the high-pressure valve 19, that is, the discharge pipe 17, the twin-screw extruder 10 introduces a polymer decomposed by supercritical or the like, and degass and decomposes the solvent or gas used as the supercritical fluid. A discharge extruder 20 for extruding the product is connected.
[0027]
This discharge extruder 20 is composed of a twin screw extruder in which a pair of screws 22 are provided in a cylinder 21, similar to the twin screw extruder 10 for decomposition, with the discharge port 14 sandwiched between the cylinder 21, Vent ports 23 and 24 for deaeration are provided upstream and downstream.
[0028]
The discharge port 25 of the discharge extruder 20 is provided with a die (not shown) for discharging the decomposed product into a predetermined cross-sectional shape.
[0029]
Next, the operation of the present invention will be described.
[0030]
First, the polymer charged into the hopper 13 is a viscous fluid or an elastic substance.
[0031]
Here, the viscous fluid means a substance that is difficult to transport using a simple pipe or the like having high viscosity such as a polymer, molten metal, or clay. Further, the elastic substance means a substance having low fluidity such as a crosslinked polymer, rubber, and a mixture thereof.
[0032]
In order to supply a viscous fluid or an elastic substance from the hopper 13, a pellet or powder is preferable.
[0033]
The polymer supplied from the hopper 13 into the cylinder 11 is appropriately melted or softened by heat from a heating means (not shown), and moves to the discharge port 14 side while being kneaded by the biaxial screw 12. Here, from the inlet 15 provided on the downstream side from the position where the polymer filling rate becomes 100%, a decomposition treatment comprising high-temperature alcohol, water, carbon dioxide, nitrogen or a combination thereof as a subcritical or supercritical fluid. Fluid is supplied.
[0034]
By this decomposition processing fluid, the polymer is decomposed to become a decomposition product having a reduced molecular weight, and is discharged from the discharge port 14.
[0035]
At this time, a high pressure valve 19 is connected to the discharge port 14 as a pressure adjusting device 16, and the pressure in the decomposition reaction zone 11R in the cylinder 11 from the injection port 15 to the discharge port 14 is necessary for the decomposition reaction. While maintaining the pressure, it is possible to adjust the residence time of the polymer to perform the decomposition reaction more completely.
[0036]
Since the high-pressure valve 19 is for adjusting the subcritical or supercritical pressure, when the material used as the supercritical fluid is, for example, water or alcohol, it can withstand high temperature and high pressure above the critical point of these materials. And any fluid that can control the flow rate of the viscous fluid or the elastic substance.
[0037]
The decomposition product decomposed in the twin-screw extruder 10 is introduced into the discharge extruder 20 through the high-pressure valve 19, and the solvent and gas used as the supercritical fluid are degassed from the vents 23 and 24, and the decomposition product. The product is extruded from a discharge port 25 of the discharge extruder 20 through a die (not shown) into a predetermined cross-sectional shape to be a recycled material.
[0038]
The decomposition product in the twin-screw extruder 10 is a product in which the molecular chain of the cross-linked polymer is cut and only the cross-linking point is cut, or the main chain is cut and the molecular weight is reduced.
[0039]
The supercritical fluid refers to a state in which a substance such as methanol, water, CO 2 is at a temperature and pressure higher than the critical point, the density is higher than that of a normal gas, and the momentum of molecules is about the same as that of a gas. A fluid.
[0040]
The subcritical fluid is in the temperature range near the critical point and lower than the critical temperature, and the reactivity is similar to that of the supercritical fluid.
[0041]
Examples of the crosslinked polymer as a polymer to be decomposed include polyethylene, vinyl chloride, silicone resin, rubber, and a copolymer of ethylene copolymer, but are not particularly limited thereto.
[0042]
Examples of the rubber include butadiene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, butyl rubber, and ethylene propylene rubber.
[0043]
The ethylene copolymer is an ethylene vinyl acetate copolymer, an ethylene ethyl acrylate copolymer, an ethylene methacrylate copolymer, an ethylene methyl methacrylate copolymer, an ethylene propylene rubber, an ethylene butene-1 copolymer, an ethylene octene copolymer. Say polymer.
[0044]
In order to improve the fluidity of the crosslinked polymer or improve the physical properties of the decomposition product, thermoplastic polymers may be blended and decomposed.
[0045]
The blending method of the thermoplastic polymer is such that the cross-linked polymer and the thermoplastic polymer are dry blended and fed from the hopper 13 of the twin-screw extruder 10, or a sub-extruder (not shown) is provided in the middle of the twin-screw extruder 10. And the like using a sub-extruder.
[0046]
Crosslinking of the crosslinked polymer may be carried out by copolymerizing a vinylsilane compound such as vinyltrimethoxysilane with a polymer using an organic peroxide, followed by crosslinking in the presence of a silanol condensation catalyst and water, Examples thereof include a method using an organic peroxide such as oxide, a method using sulfur, and a method of crosslinking using ionizing radiation such as an electron beam.
[0047]
In addition, antioxidants, fillers, colorants, copper damage inhibitors, flame retardants, weather resistance imparting agents, and the like may be added to these crosslinked polymers.
[0048]
In supplying alcohol or water from the inlet 15 to the twin-screw extruder 10, whether the polymer pressure in the cylinder 11 exceeds the pressure of the supercritical fluid or the subcritical fluid or less than that. Although there is no particular problem, in consideration of the dispersibility of the gas, it is desirable that the pressure of the polymer is low, but the filling rate needs to be 100%.
[0049]
The L / D of the extruder is preferably 25 or more so that the reaction time due to supercriticality in the twin screw extruder 10 for decomposition can be sufficiently taken.
[0050]
Further, it is desirable that the temperature of the discharge extruder 20 can be controlled in the cylinder 21 so as not to clog decomposition products. That is, it is effective to cool the cylinder 21 when the discharge amount cannot be controlled and the decomposed product is ejected from the vents 23 and 24 of the cylinder 21, and when the decomposed product is clogged with the cylinder 20, the heating is performed to reduce the viscosity. It is often effective to do this.
[0051]
In the above-described embodiment, the extruder 10 has been described as an example of a twin-screw extruder in order to facilitate the supply of the polymer, the adjustment of the pressure in the cylinder 11, and the stirring of the polymer and the gas. Since the polymer is kneaded while extruding the polymer with the screw 12, it is advantageous because it has a better kneadability with gas compared to a single screw extruder, and it is easy to supply a material such as a powder that does not easily penetrate the screw 12. For this reason, in the present invention, either a single-screw extruder or a so-called ram extrusion in which a polymer is discharged by a piston consisting of a cylinder and a piston may be used.
[0052]
FIG. 3 shows another embodiment of the present invention, showing an example in which a gear pump 30 is used as the pressure adjusting device 16, and the gear pump 30 is connected to a discharge pipe 31 connecting the discharge port 14 and the discharge extruder 20. Are connected to form the pressure adjusting device 16.
[0053]
The gear pump 30 is configured by providing a pair of gears 33 and 33 that mesh with each other and rotate in the direction of the arrow in the casing 32.
[0054]
The pressure adjusting device 16 including the gear pump 30 controls the rotational speed of the gears 33 and 33 to adjust the flow rate of the decomposition product flowing from the discharge pipe 31 to the discharge extruder 20, resulting in the twin screw extrusion. The pressure in the decomposition reaction zone 11R of the machine 10 can be adjusted.
[0055]
【Example】
Hereinafter, more specific examples of the present invention will be described together with comparative examples.
[0056]
Example 1
Silane-crosslinked polyethylene was treated with supercritical ethanol using the apparatus described in FIG.
[0057]
The cylinder size of the twin screw extruder 10 was 66 mm and L / D = 65. The discharge extruder 20 was an extruder having a cylinder size of 33 mm and L / D = 40, and a vent was provided to remove the alcohol. The extruders 10 and 20 are both twin screw extruders.
[0058]
Silane-crosslinked polyethylene was charged into the hopper 13 of the extruder 10 and ethanol was supplied from the injection port 15.
[0059]
Silane-crosslinked polyethylene is obtained by crosslinking polyethylene with a siloxane bond. Here, a gel fraction of 60% was used.
[0060]
The amount of ethanol supplied was 20 parts by weight per 100 parts by weight of silane-crosslinked polyethylene. The temperature in the cylinder at the position of the inlet 15 is 320 ° C., the pressure is 3 MPa, the temperature of the reaction zone 11 R is 320 ° C., and the pressure of the reaction zone 11 R is adjusted by the high pressure valve 19 to 10 to 14 MPa. did.
[0061]
Further, the discharge pipe 17 was heated with a heat medium and maintained at 200 ° C. so that the decomposition products were not clogged.
[0062]
The discharge extruder 20 was 190 ° C. at the die portion for discharging the resin, and the recycled material was extruded in a strand shape. As a result, the silane-crosslinked polyethylene was continuously treated, and the decomposition product could be taken out.
[0063]
In accordance with JISC3005, the sample was put into a 40-mesh wire mesh and the soluble fraction was extracted in xylene at 110 ° C. for 24 hours. Thereafter, vacuum drying was performed at 80 ° C. for 4 hours, and the weight was obtained from the weight after extraction and the weight before extraction.
[0064]
The molecular weight was determined by high temperature GPC (gel permeation chromatography). Dichlorobenzene was used as the solvent, and as a result, the gel fraction of the decomposition product was 0%, the molecular weight was 44,000, and the polyethylene had almost the same molecular weight as the base polymer (45000) before crosslinking.
[0065]
Example 2
Water was used in place of ethanol in Example 1, the pressure in the decomposition reaction zone 11R was adjusted to 20 to 23 MPa, and the temperature was set to 370 ° C.
[0066]
The molecular weight distribution and gel fraction of this decomposition product were confirmed by the same method as in Example 1. As a result, the gel fraction of the decomposition product was 0%, the molecular weight was 30000, and the molecular weight was slightly smaller than the base polyethylene (45000) before crosslinking.
[0067]
Example 3
The temperature of the decomposition reaction zone 11R in Example 2 was 400 ° C. and the pressure was 20 to 23 MPa.
[0068]
The molecular weight distribution and gel fraction of this decomposition product were confirmed by the same method as in Example 1.
[0069]
As a result, it was a waxy polyethylene having a molecular weight of 10,000 and a gel fraction of 0%.
[0070]
Example 4
Instead of ethanol in Example 1, a mixture of methanol and carbon dioxide at a weight ratio of 1: 4 was used, and the pressure in the decomposition reaction zone 11R was 10 to 14 MPa and the temperature was 320 ° C.
[0071]
The molecular weight distribution and gel fraction of this decomposition product were confirmed by the same method as in Example 1.
[0072]
As a result, the gel fraction of the decomposition product was 10%, the molecular weight was 30000, and the molecular weight was slightly smaller than the base polyethylene (45000) before crosslinking.
[0073]
In Comparative Example 1, supercritical processing was performed using a conventional twin-screw extruder 40 shown in FIG. 4 instead of the apparatus shown in FIG.
[0074]
As a result, when 5% or more of ethanol is injected with respect to 100% of the silane-crosslinked polyethylene, the pressure in the extruder 40 cannot be maintained above the supercritical level, and varies between 0 to 10 MPa, and the silane-crosslinked polyethylene is continuously processed. I couldn't.
[0075]
The results of Examples 1 to 4 and the comparative example are summarized in Table 1.
[0076]
[Table 1]
Figure 0004102260
[0077]
【The invention's effect】
In short, according to the present invention, a polymer and a supercritical fluid are continuously kneaded in an extruder by connecting a pressure adjusting device such as a high pressure valve to the discharge side of the extruder that performs supercritical processing. The decomposition product can be continuously removed by the reaction.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a diagram showing another embodiment of the present invention.
FIG. 4 is a diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Twin screw extruder 11 Cylinder 12 Screw 13 Hopper 14 Discharge port 15 Inlet 16 Pressure regulator 20 Extruder for discharge

Claims (8)

ポリマーを押出機に供給すると共に、その押出機に、超臨界流体又は亜超臨界流体を供給して、ポリマーを分解処理するポリマーの超臨界処理装置において、上記押出機の吐出口に、押出機内の圧力を調整する圧力調整装置を接続したことを特徴とするポリマーの超臨界処理装置。In a polymer supercritical processing apparatus for supplying a polymer to an extruder and supplying a supercritical fluid or a subsupercritical fluid to the extruder to decompose the polymer, the discharge port of the extruder is connected to the inside of the extruder. A supercritical processing apparatus for a polymer, wherein a pressure adjusting device for adjusting the pressure of the polymer is connected. 上記押出機は、シリンダーとそのシリンダー内に回転自在に設けられたスクリューからなり、シリンダー基部には、ポリマーを供給するホッパーが設けられ、該ホッパーからシリンダー内に供給されたポリマーの充満率が100%になる位置より下流側に位置したシリンダーに、超臨界流体又は亜超臨界流体の注入口が設けられる請求項1記載のポリマーの超臨界処理装置。The extruder is composed of a cylinder and a screw rotatably provided in the cylinder, and a hopper for supplying a polymer is provided at the cylinder base, and a filling rate of the polymer supplied from the hopper into the cylinder is 100. The supercritical processing apparatus for a polymer according to claim 1, wherein an injection port for a supercritical fluid or a subsupercritical fluid is provided in a cylinder located downstream from a position where the polymer becomes a percentage . 上記押出機が、シリンダー内に一対のスクリューを設けた二軸押出機からなる請求項1又は2記載のポリマーの超臨界処理装置。  The polymer supercritical processing apparatus according to claim 1 or 2, wherein the extruder comprises a twin-screw extruder provided with a pair of screws in a cylinder. 上記圧力調整装置は、上記押出機の吐出口の開度を調整する高圧バルブからなる請求項1〜3いずれかに記載のポリマーの超臨界処理装置。  The polymer supercritical processing apparatus according to any one of claims 1 to 3, wherein the pressure adjusting device comprises a high-pressure valve for adjusting an opening degree of the discharge port of the extruder. 上記高圧バルブは、上記吐出口に直交するよう接続された吐出管と、その吐出管内に移動自在に設けられ、上記吐出口の開度を調整する弁体からなる請求項4記載のポリマーの超臨界処理装置。  The polymer high-pressure valve according to claim 4, wherein the high-pressure valve includes a discharge pipe connected to be orthogonal to the discharge port, and a valve body that is movably provided in the discharge pipe and adjusts the opening degree of the discharge port. Critical processing equipment. 上記圧力調整装置は、上記押出機の吐出口に接続したギアポンプからなる請求項1〜3いずれかに記載のポリマーの超臨界処理装置。  The polymer supercritical processing apparatus according to any one of claims 1 to 3, wherein the pressure adjusting device includes a gear pump connected to a discharge port of the extruder. 上記圧力調整装置の下流側には、超臨界又は亜臨界により分解されたポリマーを導入すると共に超臨界流体又は亜臨界流体として用いた溶媒やガスの脱気を行なうと共に分解物を押し出す排出用押出機が接続される請求項1〜6いずれかに記載のポリマーの超臨界処理装置。At the downstream side of the pressure regulating device, for discharging extruding the decomposition product with performing deaeration of the solvent or gas used as the supercritical fluid or subcritical fluid is introduced more degraded polymer in a supercritical or subcritical The polymer supercritical processing apparatus according to claim 1, to which an extruder is connected. ポリマーとして押出機に架橋ポリマーを供給し、超臨界流体又は亜超臨界流体として高温のアルコール、水、二酸化炭素、窒素あるいはこれらの組み合わせを供給し、架橋ポリマーのシロキサン結合を切断して該ポリマーをリサイクルする請求項1〜7いずれかに記載のポリマーの超臨界処理装置。A cross-linked polymer is supplied to the extruder as a polymer, and high-temperature alcohol, water, carbon dioxide, nitrogen or a combination thereof is supplied as a supercritical fluid or a subsupercritical fluid , and the siloxane bond of the cross-linked polymer is cut to remove the polymer. The polymer supercritical processing apparatus according to any one of claims 1 to 7, which is recycled.
JP2003190416A 2003-07-02 2003-07-02 Polymer supercritical processing equipment Expired - Fee Related JP4102260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003190416A JP4102260B2 (en) 2003-07-02 2003-07-02 Polymer supercritical processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190416A JP4102260B2 (en) 2003-07-02 2003-07-02 Polymer supercritical processing equipment

Publications (2)

Publication Number Publication Date
JP2005022245A JP2005022245A (en) 2005-01-27
JP4102260B2 true JP4102260B2 (en) 2008-06-18

Family

ID=34188314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190416A Expired - Fee Related JP4102260B2 (en) 2003-07-02 2003-07-02 Polymer supercritical processing equipment

Country Status (1)

Country Link
JP (1) JP4102260B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5563736B2 (en) * 2005-08-17 2014-07-30 周 延儒 Multi-stage gear type processing machine
JP4534945B2 (en) * 2005-10-12 2010-09-01 日立電線株式会社 Method for treating crosslinked polyethylene
JP2009051868A (en) * 2007-08-23 2009-03-12 Hitachi Cable Ltd Method and apparatus for treating polymer compound
JP4974924B2 (en) * 2008-02-14 2012-07-11 国立大学法人宇都宮大学 Recycling method for crosslinked polymer
JP4935710B2 (en) * 2008-02-21 2012-05-23 日立電線株式会社 Polymer compound processing method and apparatus
JP5146140B2 (en) * 2008-06-20 2013-02-20 日立電線株式会社 Method for decomposing organic compounds
JP2013053210A (en) * 2011-09-02 2013-03-21 Hitachi Ltd Apparatus and method for decomposing thermosetting resin
JP5544664B2 (en) * 2011-09-12 2014-07-09 株式会社日立製作所 Decomposition processing apparatus for thermosetting resin and method for decomposing the resin
CN110997275B (en) * 2017-07-10 2023-10-24 阿朗新科德国有限责任公司 Extruder system with pressure regulating device
CN107662326B (en) * 2017-09-18 2024-02-23 青岛科技大学 Double-screw machine barrel structure for realizing supercritical fluid dispersion injection
JP2024022994A (en) * 2022-08-08 2024-02-21 株式会社日本製鋼所 Resin decomposition treatment method and decomposition treatment apparatus
JP2024022995A (en) * 2022-08-08 2024-02-21 株式会社日本製鋼所 Resin decomposition treatment method and decomposition treatment apparatus
CN116102742A (en) * 2022-12-23 2023-05-12 天华化工机械及自动化研究设计院有限公司 Supercritical CO 2 Method for reducing VOCs content of plastic

Also Published As

Publication number Publication date
JP2005022245A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP4102260B2 (en) Polymer supercritical processing equipment
JPS634842B2 (en)
KR102265766B1 (en) Method for degrading (co)polymers in an extruder and extruder for performing the method
JP4081454B2 (en) Polymer compound treatment method and treatment apparatus
JP4935710B2 (en) Polymer compound processing method and apparatus
JP4537614B2 (en) Recycling method for crosslinked polymer
JP4285323B2 (en) Polymer compound treatment method and apparatus
JP2002355880A (en) Kneading/devolatilizing extrusion molding apparatus utilizing supercritical fluid
JP4325542B2 (en) Polymer compound treatment method and apparatus
JP3731825B2 (en) Supercritical fluid processing equipment
JP4306463B2 (en) Method and apparatus for regenerating crosslinked polyethylene
JP4114562B2 (en) Polymer processing method and apparatus thereof
JP4534945B2 (en) Method for treating crosslinked polyethylene
JP2005058897A (en) Supercritical fluid treatment apparatus
JP2002187192A (en) Extrusion molding machine
JP6735885B1 (en) Regeneration method of polymer compound
KR100610289B1 (en) Method and apparatus for polymer processing treatment
JP5029493B2 (en) Method for separating and recycling a mixture of a polymer compound and a gaseous substance, a method for producing an electric wire / cable provided with a recycled coating material, and a separation and recycling apparatus
KR101095774B1 (en) Additivising polymer powders
JP7281860B1 (en) Method for producing polymer compound
EP3318582B1 (en) Peroxide reaction method and apparatus using an extruder
JP4385853B2 (en) Polymer compound treatment method and apparatus
JP2009051868A (en) Method and apparatus for treating polymer compound
EP0723977B1 (en) Method for product recovery of polyolefins
JP2009508715A (en) Method to increase production rate of continuous kneader or extruder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4102260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees