WO2007020911A9 - イオントフォレーシス装置 - Google Patents

イオントフォレーシス装置

Info

Publication number
WO2007020911A9
WO2007020911A9 PCT/JP2006/316000 JP2006316000W WO2007020911A9 WO 2007020911 A9 WO2007020911 A9 WO 2007020911A9 JP 2006316000 W JP2006316000 W JP 2006316000W WO 2007020911 A9 WO2007020911 A9 WO 2007020911A9
Authority
WO
WIPO (PCT)
Prior art keywords
exchange membrane
ion exchange
electrode structure
conductivity type
drug
Prior art date
Application number
PCT/JP2006/316000
Other languages
English (en)
French (fr)
Other versions
WO2007020911A1 (ja
Inventor
Mizuo Nakayama
Kiyoshi Kanamura
Takehiko Matsumura
Hidero Akiyama
Akihiko Matsumura
Original Assignee
Transcutaneous Tech Inc
Mizuo Nakayama
Kiyoshi Kanamura
Takehiko Matsumura
Hidero Akiyama
Akihiko Matsumura
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Transcutaneous Tech Inc, Mizuo Nakayama, Kiyoshi Kanamura, Takehiko Matsumura, Hidero Akiyama, Akihiko Matsumura filed Critical Transcutaneous Tech Inc
Publication of WO2007020911A1 publication Critical patent/WO2007020911A1/ja
Publication of WO2007020911A9 publication Critical patent/WO2007020911A9/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0428Specially adapted for iontophoresis, e.g. AC, DC or including drug reservoirs
    • A61N1/0444Membrane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0428Specially adapted for iontophoresis, e.g. AC, DC or including drug reservoirs
    • A61N1/0448Drug reservoir

Definitions

  • the present invention relates to an iontophoresis device for administering ion-dissociated drug ions to a living body driven by a voltage having the same conductivity type as the drug ions.
  • An iontophoresis device generally comprises a working electrode structure that holds a drug ion dissociated into positive or negative ions, and a non-working electrode structure that serves as a counter electrode of the working electrode structure.
  • the drug ions are administered into the living body by applying a voltage having the same polarity as that of the drug ions to the working electrode structure in a state where both the structures are brought into contact with the living body skin.
  • Patent Document 1 discloses an iontophoresis device capable of preventing the decomposition of a drug during energization when the drug administration efficiency is high.
  • FIG. 5 is an explanatory diagram showing the configuration of the iontophoresis device disclosed in Patent Document 1.
  • the iontophoresis device of Patent Document 1 includes an electrode 111 to which a voltage of the first conductivity type is applied from a power supply 130, an electrolyte holding unit 112 that holds the electrolyte, and a second A working-type electrode structure 110 having a conductive ion exchange membrane 113, a drug solution holding unit 114 holding a drug solution containing a first conductive type drug ion, and a first conductive type ion exchange membrane 115; Electrode 121 to which a second conductivity type voltage is applied from 130, electrolyte solution holding unit 122 for holding electrolyte solution, first conductivity type ion exchange membrane 123, electrolyte solution holding unit 124 for holding electrolyte solution, and second conductivity And a non-working side electrode structure 120 having an ion exchange membrane 125 of the type.
  • the applicant of the present application is a working electrode structure in the iontophoresis device of Patent Document 1.
  • FIG. 6A is an explanatory view showing a working electrode structure 210 disclosed as one embodiment in the first application.
  • the working electrode structure 210 includes an electrode 211 to which a first conductivity type voltage is applied, an electrolyte solution holding part 212 for holding an electrolyte solution, and a second conductivity type ion exchange membrane 213. And ion exchange membrane 215 of the first conductivity type, and ion exchange membrane 215 is doped with drug ions of the first conductivity type.
  • the migration force of biological counter ions is blocked by the on-exchange membrane 215, so that the drug administration efficiency is increased, and the electrolyte solution of the drug ion is increased.
  • the effect similar to that of the iontophoresis device of Patent Document 1 is achieved, for example, since the transfer force to the holding part 212 is blocked by the ion exchange membrane 213, so that the decomposition of the drug during energization can be prevented.
  • the drug ion is held by the ion exchange membrane 215, which is a member disposed closest to the living body skin, so that the drug administration efficiency is improved.
  • the drug ion force S is maintained in a state bonded to the ion exchange group in the S ion exchange membrane 215, so that the stability and storage stability of the drug ion are improved, and the working electrode structure 210 is further improved. Additional effects such as simplification of the manufacturing process can be achieved because the chemical solution holding unit 114, which had to be handled in a wet state during assembly, is omitted.
  • FIGS. 6B and 6C are explanatory diagrams showing a working electrode structure 310 and a non-working electrode structure 320 disclosed as embodiments in the application 2.
  • the working electrode structure 310 includes an electrode 311 to which a first conductivity type voltage is applied, an electrolyte solution holding unit 312 that holds an electrolyte solution, and a first conductivity type ion exchange membrane 313.
  • the side electrode structure 320 includes an electrode 321 to which a second conductivity type voltage is applied, an electrolyte solution holding unit 322 that holds an electrolyte solution, a second conductivity type ion exchange membrane 323, and a first conductivity type ion exchange membrane. 323, an electrolyte solution holding unit 324 that holds the electrolyte solution, and a second conductivity type ion exchange membrane 325.
  • two ion exchange membranes 313 and 313 ′ having opposite conductivity types are disposed between the electrolyte solution holding unit 312 and the drug solution holding unit 314. Ion transfer between the electrolyte solution holding unit 312 and the drug solution holding unit 314 during storage can be blocked. Accordingly, a supplementary calorie effect is achieved in which the alteration of the drug during storage of the apparatus due to the migration of the second conductivity type ions of the electrolyte solution holding unit 312 to the drug solution holding unit 314 can be achieved.
  • the electrolytic solution holding part 322 uses an electrolytic solution that suppresses the electrode reaction and has an excellent buffering effect
  • the electrolytic solution holding part 324 uses an electrolytic solution that is highly safe for living bodies.
  • Patent Document 1 Pamphlet of International Publication No. 03Z037425
  • the present invention achieves the same effect as the iontophoresis device disclosed in Application 2.
  • the present invention can automate manufacturing and mass production, and can be easily added.
  • Another object of the present invention is to provide an iontophoresis device capable of achieving the above.
  • the present invention achieves the same effect as the iontophoresis device disclosed in the application 2, and in addition to the iontophoresis capable of achieving the additional effect of reducing the manufacturing cost. It is another object of the present invention to provide a race device.
  • Another object of the present invention is to provide a composite ion exchange membrane that can be suitably used in the iontophoresis device disclosed in Application 2.
  • the present invention comprises a first conductivity type first ion exchange membrane and a second conductivity type second ion exchange membrane laminated on the first ion exchange membrane, the first ion exchange membrane and the first ion exchange membrane
  • An iontophoresis device comprising an electrode structure having a composite ion exchange membrane in which two ion exchange membranes are integrally joined (Claim 1), and a first conductivity type first ion exchange membrane And the second conductivity type second ion exchange membrane laminated on the first ion exchange membrane, wherein the first ion exchange membrane and the second ion exchange membrane are integrally joined.
  • a composite ion exchange membrane for iontophoresis (Claim 7).
  • the composite ion exchange membrane according to claims 1 and 7 includes a first conductivity type first ion exchange membrane and a second conductivity type second ion exchange membrane laminated thereon. Therefore, this composite ion exchange membrane is the working side of the iontophoresis device disclosed in the application 1, such as the ion exchange membrane 213 and the first conductivity type ion exchange membrane 215 in the working side electrode structure 210. It can be used as a member constituting the electrode structure. Similarly, this composite ion exchange membrane is, for example, an ion exchange membrane 313 and an ion exchange membrane 313 ′ in the working electrode structure 310 or the non-working electrode structure 320, or an ion exchange membrane 323 and an ion exchange membrane 32, etc. It can be used as a member constituting the working electrode structure or the non-working electrode structure of the iontophoresis device disclosed in Application 2.
  • the composite ion exchange membrane according to claims 1 and 7 includes a first ion exchange membrane and a second ion exchange membrane. Since the replacement membrane has a structure joined integrally, it is possible to simplify the manufacturing process of the working side electrode structure and the non-working side electrode structure in each of the above cases. It is possible to automate manufacturing, mass production, or reduce manufacturing costs.
  • the method of joining the first ion exchange membrane and the second ion exchange membrane in the composite ion exchange membrane is arbitrary.
  • the first and second ion exchange membranes are stacked and bonded by thermocompression bonding, or the first and second ion exchange membranes are bonded using an adhesive, or the first or second ion exchange membranes are bonded.
  • the above-mentioned joining can be performed by various methods such as joining by applying and curing an ion exchange resin to form a second or first ion exchange membrane.
  • the first and second ion exchange membranes need to be joined with a strength of a degree that at least the two can be easily separated by handling during the production of the electrode structure.
  • the present invention includes a first conductivity type first ion exchange membrane, a semipermeable membrane laminated on the first ion exchange membrane, and a second conductivity type second ion exchange membrane laminated on the semipermeable membrane.
  • An iontophoresis device comprising an electrode structure having a composite ion exchange membrane in which the first ion exchange membrane, the semipermeable membrane and the second ion exchange membrane are joined together (Claim 2), the first conductivity type first ion exchange membrane, the semipermeable membrane laminated on the first ion exchange membrane, and the second conductivity laminated on the semipermeable membrane.
  • a composite ion exchange membrane for iontophoresis characterized in that the first ion exchange membrane, the semipermeable membrane and the second ion exchange membrane are integrally joined. (Claim 8).
  • the composite ion exchange membrane according to claims 2 and 8 is formed by laminating a first conductivity type first ion exchange membrane, a semipermeable membrane, and a second conductivity type second ion exchange membrane.
  • the working electrode structure of the iontophoresis device disclosed in application 1 can be used as a member constituting the working electrode structure of the iontophoresis device, or the working electrode structure of the iontophoresis device disclosed in application 2 or non- It can be used as a member constituting the working electrode structure.
  • the composite ion exchange membrane according to claims 2 and 8 has a configuration in which the first ion exchange membrane, the semipermeable membrane and the second ion exchange membrane are integrally joined, In each case, the manufacturing process of the working electrode structure and the non-working electrode structure can be simplified. It is possible to automate manufacturing, mass production, or reduce manufacturing costs.
  • the method of joining the first ion exchange membrane, the semipermeable membrane and the second ion exchange membrane in the composite ion exchange membrane is arbitrary.
  • these three membranes are bonded together by thermocompression bonding, or by an adhesive interposed at the interface between the first ion exchange membrane and the semipermeable membrane, or at the interface between the semipermeable membrane and the second ion exchange membrane.
  • the above-mentioned joining is performed by various methods such as joining these, or joining by applying and curing ion exchange resin on both sides of the semipermeable membrane to form the first and second ion exchange membranes. Can do.
  • the first ion-exchange membrane, the semipermeable membrane and the second ion-exchange membrane each have a strength that can be easily separated by handling at least during the production of the electrode structure! / Need to be joined.
  • an iontophoresis device usually has a working electrode structure that holds a drug to be administered to a living body and a non-working electrode structure that serves as a counter electrode.
  • an iontophoresis device according to claim 1 or 2 is provided, wherein at least one of the working electrode structure and the non-working electrode structure comprises the composite ion exchange membrane. It is a cis apparatus, and preferably both of them can be provided with the composite ion exchange membrane.
  • the composite ion exchange membrane according to claims 7 and 8 is used for at least one of the working electrode structure and the non-working electrode structure in the above case, and preferably used for both.
  • a drug to be administered to a living body may be held in both of the two electrode structures connected to both electrodes of the power supply (in this case, both electrode structures May be a working electrode structure and a non-working electrode structure), or a plurality of electrode structures may be connected to each pole of a power source.
  • An iontophoresis device in which at least one of the electrode structures is provided with the composite ion exchange membrane is the iontophoresis device according to claims 1 and 2, and preferably all of the iontophoresis devices have the composite ion exchange membrane. It can be provided.
  • the composite ion exchange membrane according to claims 7 and 8 is used in at least one electrode structure in the above case, and preferably used in all of them.
  • the electrode structure is a first electrode.
  • a first electrolyte solution holding unit that holds an electrolyte solution that contacts the first electrode, wherein the composite ion exchange membrane is disposed on a front side of the first electrolyte solution holding unit, and the first ion exchange membrane Is disposed on the front side of the second ion exchange membrane,
  • the first ion exchange membrane may be doped with a first conductivity type drug ion (claim 3).
  • the action of the first ion exchange membrane blocks the transfer of biological counter ions to the first ion exchange membrane side, thereby improving the administration efficiency of drug ions, and the action of the second ion exchange membrane.
  • the transfer of drug ions to the electrolyte solution holding part is blocked, so that the drug is not decomposed during energization, and the drug ions are doped into the first ion exchange membrane, which is the member closest to the living skin.
  • drug administration efficiency is further increased, and drug ions are held in an ion-bonded state with the ion exchange groups of the first ion exchange membrane. It is possible to achieve an effect such as simplification of the manufacturing process due to the absence of the drug solution holding part that requires handling in a difficult state.
  • the iontophoresis device according to claim 3 has a structure in which the composite ion exchange membrane is integrally joined, so that the manufacturing process is further simplified, the manufacturing is automated, and mass production is achieved. An additional effect is achieved that makes it easier to reduce the manufacturing cost.
  • the electrode structure is a first electrode.
  • a first electrolyte solution holding unit for holding an electrolyte solution in contact with the first electrode
  • a drug solution holding unit that is disposed on the front side of the first electrolyte solution holding unit and holds a drug solution containing drug ions of the first conductivity type;
  • the composite ion exchange membrane may be arranged between the first electrolyte solution holding unit and the drug solution holding unit (claim 4).
  • the composite ion exchange membrane having the first conductivity type first ion exchange membrane and the second conductivity type second ion exchange membrane is disposed between the drug solution holding unit and the electrolyte solution holding unit, The transfer of the drug ion to the electrolyte holding part and the transfer of ions of the second conductivity type from the electrolyte holding part to the drug holding part are blocked, and the drug is decomposed during energization and the device is being stored. The alteration of drugs in is prevented.
  • the iontophoresis device according to claim 4 has a structure in which the composite ion exchange membrane is integrally joined in addition to the above-described effects, so that the manufacturing process is further simplified and the manufacturing is automated. Therefore, an additional effect is achieved in that mass production can be facilitated and manufacturing costs can be reduced.
  • the present invention provides a working electrode structure for holding a first conductivity type drug ion
  • An iontophoresis device comprising a non-working side electrode structure as a counter electrode of the working side electrode structure
  • the non-working side electrode structure is
  • a second electrolyte holding unit for holding an electrolyte in contact with the second electrode
  • a third electrolytic solution holding unit for holding an electrolytic solution disposed on the front side of the second electrolytic solution holding unit;
  • a composite ion exchange membrane disposed between the second electrolyte solution holding unit and the third electrolyte solution holding unit, and is laminated on the first conductivity type first ion exchange membrane and the first ion exchange membrane.
  • An iontophoresis device comprising the second ion exchange membrane of the second conductivity type, and the composite ion exchange membrane having the first ion exchange membrane and the second ion exchange membrane joined together. (Claim 5).
  • the composite having the first conductivity type first ion exchange membrane and the second conductivity type second ion exchange membrane between the second and third electrolyte holding parts. Ion exchange Since the membrane is disposed, the migration of ions contained in the electrolyte solution of both electrolyte solution holding units between the electrolyte solution holding units is blocked. Therefore, the two electrolyte holding units use an electrolyte that suppresses the electrode reaction and has an excellent buffering effect for the second electrolyte holding unit, and uses a highly safe electrolyte for the living body for the third electrolyte holding unit. When the electrolytes having different compositions are used, it is possible to prevent the electrolytes in both electrolyte holding parts from being mixed during storage of the apparatus.
  • the present invention provides a working electrode structure for holding a first conductivity type drug ion
  • An iontophoresis device comprising a non-working side electrode structure as a counter electrode of the working side electrode structure
  • the non-working side electrode structure is
  • a second electrolyte holding unit for holding an electrolyte in contact with the second electrode
  • a third electrolytic solution holding unit for holding an electrolytic solution disposed on the front side of the second electrolytic solution holding unit;
  • a semiconducting membrane and a second ion exchange membrane of a second conductivity type laminated on the semipermeable membrane, wherein the first ion exchange membrane, the semipermeable membrane and the second ion exchange membrane are integrally joined It is also possible to provide an iontophoresis device characterized by having a composite ion exchange membrane (claim 6).
  • the semipermeable membrane is disposed between the first and second ion exchange membranes. This prevents electrolysis of water between the first and second ion exchange membranes when energized.
  • the term “medicament” has a certain medicinal or pharmacological action, whether or not it is prepared !, treatment, recovery or prevention of illness, health It is used to mean a substance that is applied to a living body for the purpose of promoting or maintaining, or promoting or maintaining beauty.
  • drug ion refers to an ion generated by ion dissociation of a drug and is responsible for drug efficacy or pharmacological action
  • drug counter ion refers to a counter ion of drug ion.
  • Dissociation of a drug into drug ions can be accomplished by water, alcohols, acids, It may be generated by dissolving it in a solvent such as an alkali, or may be generated by further applying a voltage or adding an ionizing agent.
  • the "drug solution” is a suspension or emulsion of a drug in a solvent as long as at least a part of the drug dissociates into drug ions in a solvent consisting of only a liquid solution in which the drug is dissolved.
  • a solvent consisting of only a liquid solution in which the drug is dissolved.
  • Skin in the present specification means a biological surface on which a drug can be administered by iontophoresis, and includes, for example, the oral mucosa.
  • Delivery organism means a human or animal.
  • first conductivity type means positive or negative electric polarity
  • second conductivity type means a conductivity type opposite to the first conductivity type (minus or plus).
  • the first electrolytic ions and the second electrolytic ions contained in the electrolytic solution of the electrolytic solution holding part in the present invention do not necessarily need to be a single type, and either one or both may be a plurality of types.
  • the drug ions contained in the drug solution holding part or the drug ions doped in the first ion exchange membrane may not necessarily be a single type but may be a plurality of types.
  • the ion exchange membrane is obtained by dispersing the ion exchange resin in the form of a membrane in addition to the ion exchange resin formed into a film shape, and obtaining it by forming the film by heat molding or the like. Dissolve in a solvent an ion exchange membrane, a composition comprising a monomer capable of introducing an ion exchange group, a crosslinkable monomer, a polymerization initiator, or a resin having a functional group capable of introducing an ion exchange group.
  • Various materials such as homogeneous ion exchange membranes obtained by impregnating and filling a substrate such as cloth, mesh, or porous film, and introducing ion exchange groups after polymerization or solvent removal are performed. Things are known. Any of these ion exchange membranes can be used for the ion exchange membrane of the present invention, and among these, an ion exchange membrane of the type in which the pores of the porous film are filled with ion exchange resin is particularly preferably used.
  • Neoceptor CM-1 manufactured by Tokuyama Co., Ltd., CM
  • Ion exchange membranes with cation exchange groups such as CMX, CMS, and CMB can be used.
  • ion exchange membranes include Neoceptor AM-1 and AM-3 manufactured by Tokuyama Corporation. , AMX, AHA, ACH, ACS, and other ion exchange membranes with anion exchange groups introduced can be used.
  • the "first conductivity type ion exchange membrane” is an ion exchange membrane having a function of selectively passing the first conductivity type ions, that is, the first conductivity type ions are the second conductivity type. It means an ion exchange membrane that is easier to pass than conductive ions.
  • the “first conductivity type ion exchange membrane” is a cation exchange membrane, and when the first conductivity type is negative, the “first conductivity type ion exchange membrane” is It is a key-on exchange membrane.
  • the “second conductivity type ion exchange membrane” is an ion exchange membrane having a function of selectively passing the second conductivity type ions, that is, the second conductivity type ions are the first conductivity type ions. It is easier to pass than conductive ions! It means an ion exchange membrane.
  • the “second conductivity type ion exchange membrane” is a cation exchange membrane, and when the second conductivity type is negative, the “second conductivity type ion exchange membrane”. Is a key-on exchange membrane.
  • Examples of the cation exchange group introduced into the cation exchange membrane include a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, and the like. It is possible to control the transport number of the ion exchange membrane depending on the type of cation exchange group to be introduced.
  • Examples of the anion exchange group introduced into the anion exchange membrane include primary to tertiary amino groups, quaternary ammonium groups, pyridyl groups, imidazole groups, quaternary pyridinium groups, and quaternary imidazoliums.
  • the quaternary ammonium group which is a strongly basic group, can be used to obtain a high-transport ion exchange membrane by using a quaternary pyridinium group, etc.
  • the transport number of the ion exchange membrane can be controlled by the type of anion exchange group to be introduced.
  • cation exchange group introduction treatment various methods such as sulfonation, chlorosulfonation, phosphorylation, hydrolysis and the like can be used, and as the anion exchange group introduction treatment, amino acid can be used. Various methods such as alkylation are known. By adjusting the conditions for this ion exchange group introduction treatment, the transport number of the ion exchange membrane can be adjusted.
  • the transport number of the ion exchange membrane can also be adjusted by the amount of ion exchange resin in the ion exchange membrane, the pore size of the membrane, and the like.
  • ion exchange resin in which a porous film is filled with ion exchange resin, 0.005-5.O / zm Preferably ⁇ or 0.01 to 2.
  • O ⁇ m O ⁇ m, most preferably ⁇ or 0.0 to 0.2 m, mean diameter (average flow pore diameter measured according to the Knob Point method (JIS K3832-1990)) 5) formed with a porosity of 20-95%, more preferably 30-90%, most preferably 30-60%, more preferably 10-120 ⁇ m
  • a porous film having a film thickness of 15 to 55 ⁇ m is used, and a filling rate of 5 to 95% by mass, more preferably 10 to 90% by mass, and particularly preferably 20 to 60% by mass.
  • the transport number of the ion exchange membrane is also determined by the average pore size, porosity, and ion exchange resin filling rate of the small pores of these porous films. It is possible to adjust.
  • the "blocking of ion passage" described in the present specification for the first-conductivity-type or second-conductivity-type ion exchange membrane does not necessarily mean that no ions are allowed to pass. Even when ions pass at a high speed, the degree of the passage is so small that even if the device is stored for a practically sufficient period of time, there will be no deterioration of the drug near the electrode during energization. Examples include cases where the passage of drug ions is suppressed or the passage of biological counter ions is suppressed to such an extent that the administration efficiency of the drug can be sufficiently increased.
  • allowing the passage of ions described in the present specification for the first-conductivity-type or second-conductivity-type ion-exchange membrane means that there are no restrictions on the passage of ions. Therefore, even if the passage of ions is limited to some extent, it includes a case where the ions are allowed to pass at a sufficiently high speed or amount as compared with ions of the opposite conductivity type.
  • FIG. 1 is an explanatory diagram showing a configuration of an iontophoresis device according to the present invention.
  • FIG. 2 (A) and (B) are cross-sectional explanatory views showing the configuration of the working electrode structure of the iontophoresis device according to one embodiment of the present invention.
  • FIG. 3 (A) to (F) are cross-sectional explanatory views showing the configuration of the working electrode structure of the iontophoresis device according to one embodiment of the present invention.
  • FIGS. 4 (A) to (D) are cross-sectional explanatory views showing the configuration of the non-working side electrode structure of the iontophoresis device according to one embodiment of the present invention.
  • FIG. 5 is an explanatory diagram showing a configuration of a conventional iontophoresis device.
  • FIG. 6 (A) to (C) are explanatory diagrams showing configurations of a working electrode structure and a non-working electrode structure of an iontophoresis device described in another application filed by the applicant of the present application. is there.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of an iontophoresis device X according to the present invention.
  • an iontophoresis device for administering a drug for example, lidocaine hydrochloride, morphine hydrochloride, etc.
  • a drug for example, lidocaine hydrochloride, morphine hydrochloride, etc.
  • negative drug ions for example, ascorbic acid, etc.
  • the iontophoresis device X includes a power source 30, a working electrode structure 10 connected by a positive electrode of the power source 30 and a power supply line 31, and a negative electrode of the power source 30 and a power supply line 32. It is comprised from the non-working side electrode structure 20 connected by these.
  • the working-side electrode structure 10 and the non-working-side electrode structure 20 are provided with containers 16 and 26 in which spaces capable of accommodating various structures described below are formed and whose lower surfaces 16b and 26b are opened. ing.
  • the containers 16 and 26 can form any material force such as plastic, but it is preferable to prevent moisture from evaporating from inside and intrusion of foreign substances by external force. Flexible material strength that can be followed is also formed.
  • a removable liner having an appropriate material strength is applied to the lower surfaces 16b and 26b of the containers 16 and 26 to prevent evaporation of moisture and mixing of foreign substances during storage of the iontophoresis device X.
  • the bottom edges 16e and 26e of the containers 16 and 26 can be provided with a pressure-sensitive adhesive layer for improving the adhesion to the skin during drug administration.
  • a battery a constant voltage device, a constant current device, a constant voltage / constant current device, or the like can be used, but from 0.01 to: L 0 mAZcm2, preferably from 0.01 to 0 It is preferable to use a constant current device that can adjust the current in the range of 5 mA / cm 2 and operates under a safe voltage condition of 50 V or less, preferably 30 V or less.
  • the working-side electrode structure 10a includes an electrode 11 connected to the power supply line 31 of the power supply 30, an electrolyte solution holding unit 12 that holds an electrolyte solution that contacts the electrode 11, and a front side of the electrolyte solution holding unit 12 And a composite ion exchange membrane 15a.
  • the composite ion exchange membrane 15a is disposed on the front side of the ion exchange membrane 15A and the ion exchange membrane 15A disposed in contact with the electrolyte solution of the electrolyte solution holding unit 12, and is a positive drug.
  • a cation exchange membrane 15C force doped with ions is also formed, and the ion exchange membrane 15A and the cation exchange membrane 15C are joined.
  • the bonding method of the ion-exchange membrane 15A and the cation-exchange membrane 15C is arbitrary, but examples thereof include a method of bonding them together by thermocompression bonding, and caton exchange on the ion-exchange membrane 15A.
  • the resin is applied and cured to form the cation exchange membrane 15C, or the cation exchange membrane 15C is applied and cured on the cation exchange membrane 15C to form the ion exchange membrane 15A.
  • Examples thereof include a method of applying an adhesive between the ion exchange membrane 15A and the cation exchange membrane 15C, and bonding with the adhesive.
  • Doping of cation exchange membrane 15C with drug ions can be performed by immersing cation exchange membrane 15C in a drug solution containing drug ions.
  • the amount of drug ions doped into the cation exchange membrane 15C can be controlled by the concentration of drug ions in the drug solution, the immersion time, the number of immersions, and the like.
  • the cation exchange membrane 15C may be doped with drug ions before and after the bonding with the key-on exchange membrane 15A.
  • the ion exchange membrane 15A has a low transport number, for example, 0.7 to 0.98. Is used.
  • the transport number of the ion-exchange membrane 15A is determined by the electrolyte solution in the electrolyte solution holding unit 12 and a drug solution containing drug ions at an appropriate concentration (for example, the drug ions to the cation exchange membrane 15C
  • a drug solution containing drug ions at an appropriate concentration for example, the drug ions to the cation exchange membrane 15C
  • the first-conductivity type voltage is applied to the electrolyte side with the key-on exchange membrane 15A placed between the drug solution used in the dope
  • It is defined as the ratio of the amount of charge carried by passing negative ions in the drug solution through the ion exchange membrane 15A out of the total charge.
  • the electrolyte solution holding unit 12 can hold an electrolyte solution in which an arbitrary electrolyte is dissolved, but uses an electrolyte having an oxidation potential lower than that of water electrolysis or a buffer in which a plurality of types of electrolytes are dissolved.
  • an electrolyte having an oxidation potential lower than that of water electrolysis or a buffer in which a plurality of types of electrolytes are dissolved.
  • the electrolyte solution of the electrolyte solution holding unit 12 has a composition that does not contain positive ions having higher mobility than drug ions.
  • the electrolyte solution holding unit 12 can hold the electrolyte solution in a liquid state, and can also be held by impregnating a suitable absorbent carrier such as gauze, filter paper, or aqueous gel.
  • a suitable absorbent carrier such as gauze, filter paper, or aqueous gel.
  • iontophoresis device X including the working electrode structure 10a
  • drug ions are administered by the same mechanism as the iontophoresis device disclosed in Application 1.
  • the iontophoresis device X including the working electrode structure 10a can achieve the following effects (1) to (4).
  • the cation exchange membrane 15C blocks the entry of negatively charged biological counter ions, so that the drug administration efficiency can be increased.
  • the drug ion is held in an ion-bonded state with the ion exchange group in the cation exchange membrane 15C, stability against alteration and storage stability are improved. Therefore, the storage period of the device can be extended, or stabilizers, antibacterial agents, preservatives and the like are not required, or the usage amount can be reduced.
  • the iontophoresis device X including the working electrode structure 10a further uses a composite ion exchange membrane 15a in which the ion exchange membrane 15A and the cation exchange membrane 15C are integrated by bonding.
  • a composite ion exchange membrane 15a in which the ion exchange membrane 15A and the cation exchange membrane 15C are integrated by bonding.
  • electrolysis of water may occur between the ion exchange membrane 15A and the cation exchange membrane 15C during energization. Since the efficiency is lowered and the pH is changed at the biological interface, the electrolysis condition of the water or the ion exchange membrane is set so that the above water electrolysis does not occur or can be kept within the allowable range. It is desirable to adjust the transport number of 15A and cation exchange membrane 15C.
  • the working electrode structure 10b has the same configuration as that of the working electrode structure 10a except that a composite ion exchange membrane 15b is provided instead of the composite ion exchange membrane 15a.
  • the composite ion exchange membrane 15b includes a key-on exchange membrane 15A, a semi-permeable membrane 15S disposed on the front side of the key-on exchange membrane 15A, and a front side of the semi-permeable membrane 15S.
  • the ion exchange membrane 15A, the semipermeable membrane 15S, and the cationic exchange membrane 15C are integrally joined.
  • This bonding can be performed by the same method as described above for the composite ion exchange membrane 15a. That is, it is possible to adopt a method such as bonding by thermocompression bonding, film formation of the key-on exchange membrane 15A and Z or cation exchange membrane 15C on the semipermeable membrane 15S, or bonding by an adhesive.
  • Doping of the cation exchange membrane 15C with drug ions can be performed by the same method as described above for the composite ion exchange membrane 15a.
  • any semipermeable membrane having a characteristic capable of allowing the passage of positive ions in the electrolytic solution of the electrolytic solution holding unit 12 can be used.
  • An aqueous gel, a filter paper such as filter paper, and a molecular weight cut-off membrane can be used.
  • the working electrode structure 10b can achieve the same effect as described above for the working electrode structure 10a, and the ion exchange membrane 15A and the cation exchange membrane 15C are separated by the semipermeable membrane 15S. Therefore, an additional effect is achieved in that the occurrence of water vapor decomposition between the ion exchange membrane 15A and the cation exchange membrane 15C can be prevented or suppressed.
  • FIGS. 3 (A) to 3 (F) show another embodiment of the working electrode structure 10c ⁇ : LOh that can be used as the working electrode structure 10 of the iontophoresis device X.
  • FIG. 3 (A) to 3 (F) show another embodiment of the working electrode structure 10c ⁇ : LOh that can be used as the working electrode structure 10 of the iontophoresis device X.
  • the working electrode structure 10c includes an electrode 11 connected to the power supply line 31 of the power source 30, an electrolyte solution holding unit 12 that holds an electrolyte solution that contacts the electrode 11, and a composite disposed on the front side thereof.
  • the ion exchange membrane 13c and the drug solution holding part 14 for holding the drug solution arranged on the front side thereof are provided.
  • the composite ion exchange membrane 13c is a cation arranged in contact with the drug solution in the drug exchange membrane 13A and the drug solution holding unit 14 arranged in contact with the electrolyte solution in the electrolyte solution holding unit 12.
  • Exchange membrane 1 A 3C force is also configured, and the ion exchange membrane 13A and the cation exchange membrane 13C are integrally joined in the same manner as the composite ion exchange membrane 15a.
  • the composite ion exchange membrane 13c needs to have a characteristic that allows passage of positive ions of the electrolyte solution holding unit 12 and / or negative ions of the drug solution holding unit 14 when energized. For this reason, at least one of the ion exchange membrane 13A and the cation exchange membrane 13C is used which has a low transport number such as 0.7 to 0.98.
  • the transport number of the ion exchange membrane 13A here is such that the ion exchange membrane 13A is disposed between the electrolyte solution in the electrolyte solution holding unit 12 and the drug solution in the drug solution holding unit 14.
  • the transport number of the cation exchange membrane 13C is defined as the amount of electrolyte in the state where the cation exchange membrane 13C is placed between the electrolyte solution in the electrolyte solution holding unit 12 and the drug solution in the drug solution holding unit 14. It is defined as the ratio of the amount of charge carried by passing positive ions in the electrolyte through the cation exchange membrane 13C out of the total charge carried through the cation exchange membrane 13C when a positive voltage is applied to the liquid side.
  • the electrolyte solution holding unit 12 can hold an electrolyte solution in which an arbitrary electrolyte is dissolved, but uses an electrolyte having an oxidation potential lower than that of water electrolysis or a buffer in which a plurality of types of electrolytes are dissolved. By using the electrolyte, it is possible to suppress the generation of oxygen gas and hydrogen ions during energization, or to suppress pH changes due to the generation of hydrogen ions.
  • the drug solution holding unit 14 holds a drug solution that dissociates medicinal components into positive drug ions as a drug solution.
  • the drug solution holding unit 14 can hold the drug solution in a liquid state, or it can be obtained by impregnating and holding a suitable absorbent carrier such as gauze, filter paper, or aqueous gel.
  • the electrode is in a state where the drug solution holding portion 14 is in contact with the living skin.
  • drug ions are administered to the living body.
  • An iontophoresis device X comprising a working electrode structure 10c is disclosed in Application 2. An effect similar to that of the iontophoresis device can be achieved.
  • the drug ion during storage of the device can be obtained even when using a low ion transport membrane number (from 0.7 to 0.98) such as the above-mentioned ion exchange membrane 13A or cation exchange membrane 13C.
  • a low ion transport membrane number from 0.7 to 0.98
  • the migration of negative ions in the electrolyte solution holding unit 12 can be sufficiently suppressed.
  • a composite ion exchange membrane 13c in which the ion exchange membrane 13A and the cation exchange membrane 13C are integrated by bonding is used.
  • the assembly work of the working electrode structure 10c can be facilitated, automation of production and mass production can be facilitated, and the additional calorie effect can be achieved in which the production cost can be reduced.
  • water electrolysis may occur between the key-on exchange membrane 13A and the cation exchange membrane 13C.
  • the drug administration efficiency may be reduced. Since pH fluctuations will occur at the interface of the living body, the energization conditions or the ion exchange membrane 13A, cation exchange so that the above water electrolysis does not occur or can be kept within the allowable range. It is desirable to adjust the transport number of membrane 13C.
  • the working electrode structure 10d has the same configuration as that of the working electrode structure 10c except that the composite ion exchange membrane 13c is provided instead of the composite ion exchange membrane 13c.
  • the composite ion exchange membrane 13d includes a key-on exchange membrane 13A, a semipermeable membrane 13S disposed on the front side of the key-on exchange membrane 13A, and a cation exchange disposed on the front side of the semipermeable membrane 13S.
  • the ion exchange membrane 13A, the semipermeable membrane 13S, and the cation exchange membrane 13C are integrally joined.
  • This joining can be performed by the same method as described above for the composite ion exchange membrane 15a.
  • the ion exchange membrane 13A and cation exchange membrane 13C the same ion exchange membrane 13A and cation exchange membrane 13C as the composite ion exchange membrane 13c can be used.
  • any membrane can be used as long as it has a characteristic of allowing at least positive ions in the electrolyte solution of the electrolyte solution holding unit 12 to pass through.
  • a water-based gel such as a ethane-based gel, a filter paper such as a filter paper or a fractional molecular weight membrane can be used.
  • the working electrode structure lOd is used in the same manner as described above for the working electrode structure 10c, and can achieve the same effect. Furthermore, in the working-side electrode structure 10d, since the ion-exchange membrane 13A and the cation exchange membrane 13C are separated by the semipermeable membrane 13S, the gap between the ion-exchange membrane 13A and the cation exchange membrane 13C is reduced. An additional effect is achieved in that the occurrence of water electrolysis can be prevented or suppressed.
  • the working electrode structures 10e, 10f are the same as the working electrode structures 10c, except that the directions of the composite ion exchange membranes 13e, 13f are opposite to those in the working electrode structures 10c, 10d. 10d.
  • the cation exchange membrane 13C is arranged so as to contact the electrolyte solution in the electrolyte solution holding unit 12, and the ion exchange membrane 13A is used in the drug solution holding unit 14 as a drug. It is arranged so as to come into contact with the chemical solution.
  • the iontophoresis device X including the working electrode structures 10e and 10f achieves the same effect as described above for the iontophoresis device X including the working electrode structures 10c and 10d.
  • an ion exchange membrane (cation exchange membrane 13C) having the same conductivity type as the voltage (plus) applied to the electrode 11 is disposed on the side close to the electrode 11, Since the opposite conductivity type ion exchange membrane (the ion exchange membrane 13A) is arranged on the side far from the electrode 11, the ion exchange membrane 13A is more than in the case of the working electrode structures 10c and 10d. An additional effect is achieved in that water electrolysis is less likely to occur between the catalyst and the cation exchange membrane 13C.
  • the working electrode structures 10g and 10h have the same configuration as the working electrode structures 10e and 10f, respectively, and have a cation exchange membrane 15 on the front surface side of the drug solution holding part 14. ing.
  • the iontophoresis device X provided with the working electrode structures 10g and 10h can achieve the above-described effect with respect to the iontophoresis device X provided with the working electrode structures 10e and 10f. Since the transfer of the biological counter ions to the drug solution holding unit 14 is blocked by the cation exchange membrane 15, an additional effect of increasing the drug administration efficiency can be achieved.
  • a working electrode structure in which a cation exchange membrane is arranged on the front side of the drug solution holding portion 14 of the working electrode structures 10c and 10d (this working electrode structure is referred to as each).
  • the “working electrode structure 10i” and the “working electrode structure 10j” are also referred to as the additional effects of increasing the drug administration efficiency in addition to the effects described above for the working electrode structures 10c and 10d. The effect is achieved.
  • either the ion exchange membrane 13A or the proton exchange membrane 13C holds the electrolyte molecules and Z or the chemical solution in the electrolyte holding unit 12. It is possible to have a molecular weight fractionation characteristic that can block the passage of drug molecules in the part 14, so that undissociated electrolyte molecules and Z or drug molecules are stored in the drug solution during storage of the device. Transition to the holding unit 14 or the electrolytic solution holding unit 12, and as a result, it is possible to prevent the drug in the drug solution holding unit 14 from being deteriorated or the drug from being decomposed in the vicinity of the electrode 11 when energized.
  • any one of the ion exchange membrane 13A, the semipermeable membrane 13S, and the cation exchange membrane 13C is formed by the electrolyte molecules in the electrolyte holding unit 12 and / or It is possible to have a molecular weight fractionation characteristic that can block the passage of the drug molecules in the drug solution holding part 14, and thereby the same effect as described above can be achieved.
  • FIGS. 4 (A) to (D) are cross-sectional explanations showing configurations of non-working side electrode structures 20a to 20d that can be used as the non-working side electrode structure 20 of the iontophoresis device X. It is a figure [0123]
  • the non-working side electrode structure 20a is arranged on the front side of the electrode 21 connected to the power supply line 32 of the power source 30, the electrolyte holding part 22 holding the electrolyte contacting the electrode 21, A composite ion exchange membrane 23a having the same configuration as that of the composite ion exchange membrane 13e, an electrolyte solution holding portion 24 for holding an electrolyte solution arranged on the front surface side thereof, and a key ion arranged on the front surface side thereof.
  • An exchange membrane 25 is provided.
  • Electrolyte solution holding parts 22, 24 are capable of holding an electrolyte solution of any composition. It is preferable that the electrolyte solution holding parts 22, 24 hold electrolyte solutions of different compositions.
  • An iontophoresis device having a function can be provided.
  • the electrolytic solution holding unit 22 uses an electrolyte having an oxidation potential lower than that of water electrolysis, or uses a buffer electrolytic solution in which a plurality of types of electrolytes are dissolved.
  • the electrolyte solution holding unit 24 can use an electrolyte solution that is excellent in safety against living organisms, while using an electrolyte solution that is excellent in suppressing pH fluctuation.
  • the composite ion exchange membrane 23a in which the ion exchange membrane 23A and the cation exchange membrane 23C are integrated by bonding is used. Therefore, the assembling work of the non-working side electrode structure 20a can be facilitated, and the additional effect of facilitating the automation and mass production of the production and reducing the production cost is achieved.
  • the non-working side electrode structure 20b has the same configuration as the non-working side electrode structure 20a except that the composite ion exchange membrane 23b is provided instead of the composite ion exchange membrane 23a.
  • the composite ion exchange membrane 23b has the same configuration as the composite ion exchange membrane 13f.
  • the non-working side electrode structure 20b can achieve the same effect as described above with respect to the non-working side electrode structure 20a.
  • the ion exchange membrane 13A and the cation exchange membrane 13C are separated by the semipermeable membrane 13S.
  • An additional effect is achieved in that it is less likely to cause electrolysis of water between them.
  • the non-working side electrode structures 20c and 20d are non-working side electrodes except that the directions of the composite ion exchange membranes 23c and 23d are opposite to those of the non-working side electrode structures 20a and 20b. It has the same structure as the structures 20a and 20b!
  • the key-on exchange membrane 23A is disposed so as to contact the electrolyte solution in the electrolyte solution holding unit 22, and the cation exchange membrane 13C is provided in the electrolyte solution holding unit 24. It is placed in contact with the electrolyte.
  • the iontophoresis device X including the non-working-side electrode structures 20c and 20d has the same effect as described above for the iontophoresis device X including the non-working-side electrode structures 20a and 20b.
  • the electrolysis of water between the ion exchange membrane 23A and the cation exchange membrane 23C is less likely to occur due to the same reason as described above for the working electrode structure 10e and lOf. The effect is achieved.
  • one of the ion exchange membrane 23A and the cation exchange membrane 23C is formed by the electrolyte molecules and Z or the electrolyte holding portion in the electrolyte holding portion 22. It is possible to have a molecular weight fractionation characteristic that can block the passage of electrolyte molecules in 24, so that undissociated electrolyte molecules are stored in the two electrolyte holding parts 22, 24 during storage of the device. As a result, it is possible to prevent the composition of both electrolyte solution holding parts 22 and 24 from being mixed.
  • any of the ion exchange membrane 23A, the semipermeable membrane 23S, and the cation exchange membrane 23C is formed by the electrolyte molecules in the electrolyte holding unit 22 and Z or It is possible to have molecular weight fractionation characteristics that can block the passage of electrolyte molecules in the electrolyte solution holding unit 24, thereby achieving the same effect as described above.
  • the iontophoresis device X having the working electrode structure and the non-working electrode structure in the combination of (1) and (2) below is a composite structure of both electrode structures. It is possible to use a member having the same configuration as the on-exchange membrane. This greatly contributes to simplifying the manufacturing process of the iontophoresis device X, facilitating manufacturing automation, mass production, or reducing manufacturing costs.
  • a composite ion exchange membrane is used in the iontophoresis device X in the combination of (3) to (6). Therefore, the manufacturing process can be simplified, the manufacturing can be automated, the mass production can be made, or the manufacturing cost can be reduced.
  • the effect equivalent to the above is achieved. That is, the cation exchange membrane 15C of the composite ion exchange membranes 15a and 15b used for the working electrode structures 10a and 10b needs to be doped with drug ions, but the composite ion exchange of both electrode structures. It is possible to use the same member as the membrane, which simplifies the manufacturing process of the iontophoresis device X, facilitates manufacturing automation, mass production, or manufacturing costs. It greatly contributes to reducing.
  • an iontophoresis device including a working electrode structure that holds a drug to be administered to a living body and a non-working electrode structure that serves as a counter electrode thereof will be described as an example.
  • the iontophoresis device that holds the drug to be administered to the living body on both sides of the two electrode structures connected to both poles of the power supply, and multiple electrode structures to each pole of the power supply.
  • the present invention can be applied.
  • At least one of the one or more working electrode structures and the one or more non-working electrode structures is defined in claim 1 or 2.
  • An iontophoresis device having the configuration is included in the scope of the present invention.
  • an iontophoresis device of a type comprising a working electrode structure for holding a drug to be administered to a living body and a non-working electrode structure having a role as its counter electrode
  • examples of the non-working electrode structure include non-working electrode structure 120 shown in FIG.
  • the working electrode structure according to claim 1 or 2 of the present application is provided, while the iontophoresis device itself is not provided with the non-working electrode structure, for example, the working electrode structure on the living skin. It is also possible to administer the drug by applying a voltage tl to the working electrode structure in a state where a part of the living body is in contact with the member serving as the ground. Even in this case, the basic effect of the present invention is achieved, and such an iontophoresis device is also included in the scope of the present invention.
  • the non-working electrode structure according to claim 1 or 2 of the present application is provided, while the working electrode structure includes, for example, the working electrode structure 110 shown in FIG.
  • the iontophoresis device having the working electrode structure not conforming to 2 can achieve the basic effect of the present invention, and such an iontophoresis device is also within the scope of the present invention. include.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)

Abstract

 イオントフォレーシス装置の少なくとも一つの電極構造体を、第1導電型の第1イオン交換膜/第2導電型の第2イオン交換膜の積層体、或いは第1導電型の第1イオン交換膜/半透膜/第2導電型の第2イオン交換膜の積層体からなり、これらの各膜が一体に接合された複合イオン交換膜を備えるように構成することにより、生体界面に配置される第1導電型のイオン交換膜に第1導電型の薬剤イオンがドープされたタイプのイオントフォレーシス装置、或いは電解液保持部と第1導電型の薬剤イオンを含む薬剤液保持部との間に反対導電型の2枚のイオン交換膜を介在させるタイプのイオントフォレーシス装置において、製造工程の簡略化、製造の自動化、大量生産化、或いは製造コストの低減を達成する。

Description

明 細 書
イオントフォレーシス装置
技術分野
[0001] 本発明は、イオン解離した薬剤イオンを、当該薬剤イオンと同一導電型の電圧によ り駆動して生体に投与するためのイオントフォレーシス装置に関する。
背景技術
[0002] イオントフォレーシス装置は一般に、プラス又はマイナスのイオンに解離した薬剤ィ オンを保持する作用側電極構造体と、作用側電極構造体の対極の役割を有する非 作用側電極構造体を備えており、これら両構造体を生体皮膚に当接させた状態で、 作用側電極構造体に薬剤イオンと同一極性の電圧を印加することにより薬剤イオン が生体内に投与される。
[0003] 特許文献 1は、薬剤の投与効率が高ぐ通電時における薬剤の分解を防止できるィ オントフォレーシス装置を開示して 、る。
[0004] 図 5は、特許文献 1に開示されるイオントフォレーシス装置の構成を示す説明図で ある。
[0005] 図示されるように、特許文献 1のイオントフォレーシス装置は、電源 130から第 1導 電型の電圧を印加される電極 111、電解液を保持する電解液保持部 112、第 2導電 型のイオン交換膜 113、第 1導電型の薬剤イオンを含む薬剤液を保持する薬剤液保 持部 114及び第 1導電型のイオン交換膜 115を有する作用側電極構造体 110と、電 源 130から第 2導電型の電圧を印加される電極 121、電解液を保持する電解液保持 部 122、第 1導電型のイオン交換膜 123、電解液を保持する電解液保持部 124及び 第 2導電型のイオン交換膜 125を有する非作用側電極構造体 120とを備えている。
[0006] このイオントフォレーシス装置では、薬剤液保持部 114と皮膚の間にイオン交換膜 115が介在するため、生体表面又は生体内に存在するイオンであって、薬剤イオン の反対導電型に荷電したイオン (以下、「生体対イオン」 、う)の薬剤液保持部 114 への移行が遮断される。従って、生体対イオンの移動により消費される電流量が低減 され、その結果、薬剤イオンの投与効率が上昇する。また、薬剤イオンの電解液保持 部 112への移行はイオン交換膜 113により遮断されるため、通電の際に薬剤が電極
111の近傍で分解することが防止される。
[0007] 本願出願人は、特許文献 1のイオントフォレーシス装置における作用側電極構造体
110を更に改良したイオントフォレーシス装置を案出し、これを米国特許仮出願第 60
Z693668号 (以下、「出願 1」 t ヽぅ)として出願して!/ヽる。
[0008] 図 6 (A)は、出願 1にお 、て一実施形態として開示される作用側電極構造体 210を 示す説明図である。
[0009] 図示されるように、作用側電極構造体 210は、第 1導電型の電圧を印加される電極 211、電解液を保持する電解液保持部 212、第 2導電型のイオン交換膜 213及び第 1導電型のイオン交換膜 215とから構成されており、イオン交換膜 215には第 1導電 型の薬剤イオンがドープされて 、る。
[0010] 作用側電極構造体 210を備えるイオントフォレーシス装置では、生体対イオンの移 行力 オン交換膜 215により遮断されるために薬剤の投与効率が上昇し、薬剤ィォ ンの電解液保持部 212への移行力イオン交換膜 213により遮断されるために通電時 における薬剤の分解が防止できるなど、特許文献 1のイオントフォレーシス装置と同 様の効果が達成される。
[0011] 力!]えて、作用側電極構造体 210を備えるイオントフォレーシス装置では、薬剤ィォ ンが生体皮膚に最も近接して配置される部材であるイオン交換膜 215に保持される ために薬剤の投与効率が更に上昇し、薬剤イオン力 Sイオン交換膜 215中のイオン交 換基に結合した状態で保持されるために薬剤イオンの安定性、保存性が向上し、更 に作用側電極構造体 210の組み立てに際してウエットな状態での取り扱いが必要で あった薬剤液保持部 114が省略されて ヽるために製造工程が簡略化されるなどの追 加的な効果が達成される。
[0012] 本願出願人は、特許文献 1のイオントフォレーシス装置の改良に係る更に他のィォ ントフォレーシス装置を案出し、これを特願 2005— 222893号 (以下、「出願 2」という )として出願している。
[0013] 図 6 (B)、 (C)は、出願 2において実施形態として開示される作用側電極構造体 31 0及び非作用側電極構造体 320を示す説明図である。 [0014] 図示されるように作用側電極構造体 310は、第 1導電型の電圧を印加される電極 3 11、電解液を保持する電解液保持部 312、第 1導電型のイオン交換膜 313、第 2導 電型のイオン交換膜 313' 、第 1導電型の薬剤イオンを含む薬剤液を保持する薬剤 液保持部 314及び第 1導電型のイオン交換膜 315から構成されており、非作用側電 極構造体 320は、第 2導電型の電圧を印加される電極 321、電解液を保持する電解 液保持部 322、第 2導電型のイオン交換膜 323、第 1導電型のイオン交換膜 323, 、 電解液を保持する電解液保持部 324及び第 2導電型のイオン交換膜 325から構成 されている。
[0015] 作用側電極構造体 310を備えるイオントフォレーシス装置では、イオン交換膜 313 ' 、 315を備えるが故に、薬剤の投与効率が上昇し、通電時における薬剤の分解が 防止されるなど、特許文献 1のイオントフォレーシス装置と同様の効果が達成される。
[0016] 加えて作用側電極構造体 310では、電解液保持部 312と薬剤液保持部 314の間 に反対導電型の 2つのイオン交換膜 313、 313' が配置されているために、装置の 保存中における電解液保持部 312と薬剤液保持部 314の間でのイオンの移行を遮 断できる。従って、電解液保持部 312の第 2導電型のイオンが薬剤液保持部 314〖こ 移行することに起因する装置の保存中における薬剤の変質を防止できるという追カロ 的な効果が達成される。
[0017] 非作用側電極構造体 320を備えるイオントフォレーシス装置では、電解液保持部 3 22と電解液保持部 324の間に反対導電型の 2つのイオン交換膜 323、 323' が配 置されているために、装置の保存中における 2つの電解液保持部 322、 324間での イオンの移行を遮断できる。従って、電解液保持部 322に電極反応の抑止や緩衝効 果に優れる電解液を使用し、電解液保持部 324に生体への安全性の高 、電解液を 使用するなど、それぞれに異なる組成の電解液を使用した場合に、両電解液保持部 の電解液が装置の保存中に混合してしまうことを防止することができる。
[0018] 特許文献 1:国際公開第 03Z037425号パンフレット
発明の開示
発明が解決しょうとする課題
[0019] 本発明は、出願 2に開示されるイオントフォレーシス装置と同様の効果が達成さ れることに加えて、製造工程の簡略ィ匕という追加的な効果を達成することが可能なィ オントフォレーシス装置を提供することをその目的とする。
[0020] 本発明は、出願 2に開示されるイオントフォレーシス装置と同様の効果が達成さ れることに加えて、製造の自動化や大量生産化を行 、易 、と 、う追加的な効果を達 成することが可能なイオントフォレーシス装置を提供することをもその目的とする。
[0021] 本発明は、出願 2に開示されるイオントフォレーシス装置と同様の効果が達成さ れることに加えて、製造コストを低減できるという追加的な効果を達成することが可能 なイオントフォレーシス装置を提供することをもその目的とする。
[0022] 本発明は、出願 2に開示されるイオントフォレーシス装置に好適に使用できる複 合イオン交換膜を提供することをもその目的とする。
課題を解決するための手段
[0023] 本発明は、第 1導電型の第 1イオン交換膜及び前記第 1イオン交換膜に積層された 第 2導電型の第 2イオン交換膜からなり、前記第 1イオン交換膜及び前記第 2イオン 交換膜が一体に接合された複合イオン交換膜を有する電極構造体を備えることを特 徴とするイオントフォレーシス装置であり(請求項 1)、第 1導電型の第 1イオン交換膜 及び前記第 1イオン交換膜に積層された第 2導電型の第 2イオン交換膜からなり、前 記第 1イオン交換膜及び前記第 2イオン交換膜が一体に接合されていることを特徴と するイオントフォレーシス用複合イオン交換膜である(請求項 7)。
[0024] 請求項 1、 7における複合イオン交換膜は、第 1導電型の第 1イオン交換膜と、これ に積層された第 2導電型の第 2イオン交換膜とから構成される。従って、この複合ィォ ン交換膜は、例えば作用側電極構造体 210におけるイオン交換膜 213及び第 1導 電型のイオン交換膜 215など、出願 1に開示されるイオントフォレーシス装置の作用 側電極構造体を構成する部材として使用することができる。同様に、この複合イオン 交換膜は、例えば作用側電極構造体 310又は非作用側電極構造体 320におけるィ オン交換膜 313及びイオン交換膜 313' 、或いはイオン交換膜 323及びイオン交換 膜 32 など、出願 2に開示されるイオントフォレーシス装置の作用側電極構造体又 は非作用側電極構造体を構成する部材として使用することができる。
[0025] 更に、請求項 1、 7における複合イオン交換膜は、第 1イオン交換膜と第 2イオン交 換膜が一体に接合された構成を有して ヽために、上記のそれぞれの場合における作 用側電極構造体や非作用側電極構造体の製造工程を簡略化させることが可能であ り、製造の自動化、大量生産化、或いは製造コストの低減を図ることが可能である。
[0026] 上記複合イオン交換膜における第 1イオン交換膜と第 2イオン交換膜の接合の方法 は任意である。例えば、第 1、第 2イオン交換膜を重ね合わせて熱圧着することにより 接合し、或いは接着剤を用いて第 1、第 2イオン交換膜間を接合し、或いは第 1又は 第 2イオン交換膜上において、イオン交換榭脂を塗布、硬化させて第 2又は第 1ィォ ン交換膜を製膜することにより接合するなど、多様な方法で上記接合を行うことがで きる。
[0027] 第 1、第 2イオン交換膜は、少なくとも電極構造体の製造中における取り扱いにより 両者が容易に分離してしまわな!/、程度の強度をもって接合されて ヽる必要がある。
[0028] 本発明は、第 1導電型の第 1イオン交換膜、前記第 1イオン交換膜に積層された半 透膜及び前記半透膜に積層された第 2導電型の第 2イオン交換膜からなり、前記第 1 イオン交換膜、前記半透膜及び前記第 2イオン交換膜が一体に接合された複合ィォ ン交換膜を有する電極構造体を備えることを特徴とするイオントフォレーシス装置とす ることも可能であり(請求項 2)、第 1導電型の第 1イオン交換膜、前記第 1イオン交換 膜に積層された半透膜及び前記半透膜に積層された第 2導電型の第 2イオン交換膜 からなり、前記第 1イオン交換膜、前記半透膜及び前記第 2イオン交換膜が一体に接 合されていることを特徴とするイオントフォレーシス用複合イオン交換膜とすることも可 能である(請求項 8)。
[0029] 請求項 2、 8における複合イオン交換膜は、第 1導電型の第 1イオン交換膜、半透膜 及び第 2導電型の第 2イオン交換膜が積層されて構成されているために、出願 1に開 示されるイオントフォレーシス装置の作用側電極構造体を構成する部材として使用す ることができ、或いは出願 2に開示されるイオントフォレーシス装置の作用側電極構造 体又は非作用側電極構造体を構成する部材として使用することができる。
[0030] 更に、請求項 2、 8における複合イオン交換膜は、第 1イオン交換膜、半透膜及び第 2イオン交換膜が一体に接合された構成を有して ヽるために、上記のそれぞれの場 合における作用側電極構造体や非作用側電極構造体の製造工程を簡略化させるこ とが可能であり、製造の自動化、大量生産化、或いは製造コストの低減を図ることが 可能である。
[0031] 上記複合イオン交換膜における第 1イオン交換膜、半透膜及び第 2イオン交換膜の 接合の方法は任意である。例えば、これら 3つの膜を重ね合わせて熱圧着することに より接合し、或いは第 1イオン交換膜と半透膜の界面、半透膜と第 2イオン交換膜の 界面に介在させた接着剤によりこれらを接合し、或いは半透膜の両面に、イオン交換 榭脂を塗布、硬化させて第 1、第 2イオン交換膜を製膜することで接合するなど、多様 な方法で上記接合を行うことができる。
[0032] 第 1イオン交換膜、半透膜及び第 2イオン交換膜は、少なくとも電極構造体の製造 中における取り扱 、により、それぞれが容易に分離してしまわな!/、程度の強度をもつ て接合されて ヽる必要がある。
[0033] イオントフォレーシス装置は、上記の通り、生体に投与すべき薬剤を保持する作用 側電極構造体と、その対極としての役割を有する非作用側電極構造体とを有するこ とが通常であるが、その場合には、作用側電極構造体と非作用側電極構造体の少な くとも一方が上記複合イオン交換膜を備えるイオントフォレーシス装置が上記請求項 1、 2のイオントフォレーシス装置であり、好ましくはその双方が上記複合イオン交換 膜を備えるものとすることができる。また請求項 7、 8の複合イオン交換膜は、上記の 場合における作用側電極構造体と非作用側電極構造体の少なくとも一方に使用さ れ、好ましくはその双方に使用される。
[0034] イオントフォレーシス装置の種類によっては、電源の両極に接続される 2つの電極 構造体の双方に生体に投与すべき薬剤が保持される場合があり(この場合は双方の 電極構造体が、作用側電極構造体であるとともに非作用側電極構造体である)、或 いは電源のそれぞれの極に複数の電極構造体が接続される場合もあるが、そのよう な場合は、これらの電極構造体の少なくとも一つが上記複合イオン交換膜を備えるィ オントフォレーシス装置が上記請求項 1、 2のイオントフォレーシス装置であり、好まし くはその全てが上記複合イオン交換膜を備えるものとすることができる。また請求項 7 、 8の複合イオン交換膜は、上記の場合における少なくとも一つの電極構造体に使用 され、好ましくはその全てに使用される。 [0035] 請求項 1又は 2の発明においては、
前記電極構造体が、
第 1電極と、
前記第 1電極に接触する電解液を保持する第 1電解液保持部とを更に有し、 前記複合イオン交換膜が前記第 1電解液保持部の前面側に配置され、 前記第 1イオン交換膜が前記第 2イオン交換膜の前面側に配置され、
前記第 1イオン交換膜に第 1導電型の薬剤イオンがドープされているものとすること もできる(請求項 3)。
[0036] 請求項 3のイオントフォレーシス装置では、出願 1に係るイオントフォレーシス装置と 同様の効果が達成される。
[0037] 即ち、第 1イオン交換膜の作用により、生体対イオンの第 1イオン交換膜側への移 行が遮断されるために薬剤イオンの投与効率が向上し、第 2イオン交換膜の作用に より、薬剤イオンの電解液保持部への移行が遮断されるために通電時における薬剤 の分解が防止され、薬剤イオンが生体皮膚に最も近接する部材である第 1イオン交 換膜にドープされているために薬剤の投与効率が一層上昇し、薬剤イオンが第 1ィ オン交換膜のイオン交換基にイオン結合した状態で保持されるために薬剤イオンの 安定性、保存性が向上し、ウエットな状態での取り扱いが必要となる薬剤液保持部を 備えな!/ヽために製造工程が簡略化されるなどの効果が達成される。
[0038] 力!]えて、請求項 3のイオントフォレーシス装置では、複合イオン交換膜が一体に接 合された構成を有しているため、製造工程を更に簡略ィ匕し、製造の自動化、大量生 産化を容易なものとし、製造コストを低減することが可能になるという追加的な効果が 達成される。
[0039] 請求項 1又は 2の発明においては、
前記電極構造体が、
第 1電極と、
前記第 1電極に接触する電解液を保持する第 1電解液保持部と、
前記第 1電解液保持部の前面側に配置され、第 1導電型の薬剤イオンを含む薬剤 液を保持する薬剤液保持部と更に備え、 前記複合イオン交換膜が前記第 1電解液保持部と前記薬剤液保持部の間に配置 されて 、るものとすることもできる(請求項 4)。
[0040] 請求項 4のイオントフォレーシス装置では、出願 2に係るイオントフォレーシス装置と 同様の効果が達成される。
[0041] 即ち、薬剤液保持部と電解液保持部の間に第 1導電型の第 1イオン交換膜及び第 2導電型の第 2イオン交換膜を有する複合イオン交換膜が配置されるため、薬剤ィォ ンの電解液保持部への移行、及び電解液保持部の第 2導電型のイオンの薬剤液保 持部への移行が遮断され、通電時における薬剤の分解や、装置の保存中における 薬剤の変質が防止される。
[0042] 力!]えて、請求項 4のイオントフォレーシス装置では、上記の効果に加え、複合イオン 交換膜が一体に接合された構成を有しているため、製造工程を更に簡略ィ匕し、製造 の自動化、大量生産化を容易なものとし、製造コストを低減することが可能になるとい う追加的な効果が達成される。
[0043] 本発明は、第 1導電型の薬剤イオンを保持する作用側電極構造体と、
前記作用側電極構造体の対極としての非作用側電極構造体とを備えるイオントフ ォレーシス装置であって、
前記非作用側電極構造体が、
第 2電極と、
前記第 2電極に接触する電解液を保持する第 2電解液保持部と、
前記第 2電解液保持部の前面側に配置された電解液を保持する第 3電解液保持 部と、
前記第 2電解液保持部と前記第 3電解液保持部の間に配置された複合イオン交換 膜であって、第 1導電型の第 1イオン交換膜及び前記第 1イオン交換膜に積層された 第 2導電型の第 2イオン交換膜からなり、前記第 1イオン交換膜及び前記第 2イオン 交換膜が一体に接合された前記複合イオン交換膜とを有することを特徴とするイオン トフォレーシス装置とすることもできる(請求項 5)。
[0044] 請求項 5のイオントフォレーシス装置では、第 2、第 3電解液保持部の間に第 1導電 型の第 1イオン交換膜及び第 2導電型の第 2イオン交換膜を有する複合イオン交換 膜が配置されるため、両電解液保持部の電解液に含まれるイオンの両電解液保持 部間での移行が遮断される。従って、第 2電解液保持部に電極反応の抑止や緩衝 効果に優れる電解液を使用し、第 3電解液保持部に生体への安全性の高い電解液 を使用するなど、両電解液保持部に異なる組成の電解液を使用した場合に、両電解 液保持部の電解液が装置の保存中に混合してしまうことが防止される。
[0045] 本発明は、第 1導電型の薬剤イオンを保持する作用側電極構造体と、
前記作用側電極構造体の対極としての非作用側電極構造体とを備えるイオントフ ォレーシス装置であって、
前記非作用側電極構造体が、
第 2電極と、
前記第 2電極に接触する電解液を保持する第 2電解液保持部と、
前記第 2電解液保持部の前面側に配置された電解液を保持する第 3電解液保持 部と、
前記第 2電解液保持部と前記第 3電解液保持部の間に配置された複合イオン交換 膜であって、第 1導電型の第 1イオン交換膜、前記第 1イオン交換膜に積層された半 透膜及び前記半透膜に積層された第 2導電型の第 2イオン交換膜からなり、前記第 1 イオン交換膜、前記半透膜及び前記第 2イオン交換膜が一体に接合された前記複 合イオン交換膜とを有することを特徴とするイオントフォレーシス装置とすることも可能 である(請求項 6)。
[0046] 請求項 6のイオントフォレーシス装置では、請求項 5と同様の効果が達成されること に加え、第 1、第 2イオン交換膜の間に半透膜が配置されているために、通電の際に 第 1、第 2イオン交換膜の間で水の電気分解を生じることが防止される。
[0047] 本明細書にぉ 、て「薬剤」の語は、調製されて!、るか否かに関わらず、一定の薬効 又は薬理作用を有し、病気の治療、回復又は予防、健康の増進又は維持、或いは 美容の増進又は維持などの目的で生体に適用される物質の意味で用いている。
[0048] 本明細書における「薬剤イオン」は、薬剤がイオン解離することにより生じるイオンで あって、薬効又は薬理作用を担うイオンを意味し、「薬剤対イオン」は、薬剤イオンの 対イオンを意味する。薬剤の薬剤イオンへの解離は、薬剤を水、アルコール類、酸、 アルカリなどの溶媒に溶解させることにより生じるものであっても良ぐ更に電圧の印 加やイオン化剤の添加等を行うことにより生じるものであっても良い。
[0049] 本明細書における「薬剤液」は、薬剤を溶解させた液体状の溶液だけでなぐ溶媒 中において薬剤の少なくとも一部が薬剤イオンに解離する限り、薬剤を溶媒に懸濁 又は乳濁させたもの、軟膏状又はペースト状に調整されたものなど各種の状態のも のを含む。
[0050] 本明細書における「皮膚」は、イオントフォレーシスによる薬剤投与を行い得る生体 表面を意味しており、例えば口腔内の粘膜なども含まれる。「生体」は人又は動物を 意味する。
[0051] 本発明における「第 1導電型」は、プラス又はマイナスの電気極性を意味し、「第 2導 電型」は第 1導電型と反対の導電型 (マイナス又はプラス)を意味する。
[0052] 本発明における電解液保持部の電解液に含まれる第 1電解イオン、第 2電解イオン は必ずしもそれぞれ単一種類である必要はなぐいずれか一方又は双方が複数種類 であっても構わない。同様に、薬剤液保持部に含まれる薬剤イオン、或いは第 1ィォ ン交換膜にドープされる薬剤イオンは必ずしも単一種類である必要はなぐ複数種類 であっても構わない。
[0053] イオン交換膜には、イオン交換榭脂を膜状に形成したものの他、イオン交換榭脂を ノ インダーポリマー中に分散させ、これを加熱成型などにより製膜することで得られる 不均質イオン交換膜や、イオン交換基を導入可能な単量体、架橋性単量体、重合開 始剤などからなる組成物や、イオン交換基を導入可能な官能基を有する榭脂を溶媒 に溶解させたものを、布や網、或いは多孔質フィルムなどの基材に含浸充填させ、重 合又は溶媒除去を行った後にイオン交換基の導入処理を行うことにより得られる均質 イオン交換膜など各種のものが知られている。本発明のイオン交換膜には、これらの 任意のイオン交換膜が使用できるが、これらのうち、多孔質フィルムの孔中にイオン 交換榭脂を充填したタイプのイオン交換膜が特に好適に使用される。
[0054] より具体的には、カチオン交換膜としては、(株)トクャマ製ネオセプタ CM— 1、 CM
2、 CMX、 CMS, CMBなどの陽イオン交換基が導入されたイオン交換膜が使用 でき、ァ-オン交換膜としては、例えば、(株)トクャマ製ネオセプタ AM— 1、 AM- 3 、 AMX、 AHA、 ACH、 ACSなどの陰イオン交換基が導入されたイオン交換膜を使 用できる。
[0055] 本明細書における「第 1導電型のイオン交換膜」は、第 1導電型のイオンを選択的 に通過させる機能を有するイオン交換膜、即ち、第 1導電型のイオンが、第 2導電型 のイオンよりも通過し易いイオン交換膜を意味する。第 1導電型がプラスである場合 には「第 1導電型のイオン交換膜」はカチオン交換膜であり、第 1導電型がマイナスで ある場合には「第 1導電型のイオン交換膜」はァ-オン交換膜である。
[0056] 同様に、「第 2導電型のイオン交換膜」は、第 2導電型のイオンを選択的に通過させ る機能を有するイオン交換膜、即ち、第 2導電型のイオンが、第 1導電型のイオンより も通過し易!、イオン交換膜を意味する。第 2導電型がプラスである場合には「第 2導 電型のイオン交換膜」はカチオン交換膜であり、第 2導電型がマイナスである場合に は「第 2導電型のイオン交換膜」はァ-オン交換膜である。
[0057] カチオン交換膜に導入される陽イオン交換基としては、スルホン酸基、カルボン酸 基、ホスホン酸基等を挙げることができ、強酸性基であるスルホン酸基を使用すること により、輸率の高いカチオン交換膜を得ることができるなど、導入する陽イオン交換基 の種類によってイオン交換膜の輸率を制御することが可能である。
[0058] ァニオン交換膜に導入される陰イオン交換基としては、 1〜3級ァミノ基、 4級アンモ -ゥム基、ピリジル基、イミダゾール基、 4級ピリジ-ゥム基、 4級イミダゾリウム基等を 挙げることができ、強塩基性基である 4級アンモ-ゥム基ゃ 4級ピリジ-ゥム基を使用 することにより、輸率の高いァ-オン交換膜を得ることができるなど、導入する陰ィォ ン交換基の種類によってイオン交換膜の輸率を制御することが可能である。
[0059] 陽イオン交換基の導入処理としては、スルホン化、クロロスルホン化、ホスホ-ゥム ィ匕、加水分解などの種々の手法が、また陰イオン交換基の導入処理としては、ァミノ ィ匕、アルキルィ匕などの種々の手法が知られている力 このイオン交換基の導入処理 の条件を調整することにより、イオン交換膜の輸率を調整することが可能である。
[0060] また、イオン交換膜中のイオン交換榭脂量や膜のポアサイズなどによってもイオン 交換膜の輸率を調整することが可能である。例えば、多孔質フィルム中にイオン交換 榭脂が充填されたタイプのイオン交換膜の場合にあっては、 0. 005-5. O /z m、より 好ましく ίま 0. 01〜2. O ^ m,最も好ましく ίま 0. 02〜0. 2 mの平均孑し径(ノブノレポ イント法 (JIS K3832- 1990)に準拠して測定される平均流孔径)の多数の小孔力 20〜95%、より好ましくは 30〜90%、最も好ましくは 30〜60%の空隙率で形成さ れた 5〜140 μ m、より好ましく ίま 10〜120 μ m、最も好ましく ίま 15〜55 μ mの膜厚 を有する多孔質フィルムを使用し、 5〜95質量%、より好ましくは 10〜90質量%、特 に好ましくは 20〜60質量%の充填率でイオン交換榭脂を充填させたイオン交換膜 を使用することができるが、これらの多孔質フィルムが有する小孔の平均孔径、空隙 率、イオン交換樹脂の充填率によってもイオン交換膜の輸率を調整することが可能 である。
[0061] 本明細書において第 1導電型又は第 2導電型のイオン交換膜について述べる「ィ オンの通過の遮断」は、必ずしも一切のイオンを通過させないことを意味するのでは なぐ例えば、ある程度の速度をもってイオンの通過が生じる場合であっても、その程 度が小さいが故に実用上十分な期間に渡って装置を保存しても通電の際に薬剤の 電極近傍での変質が生じない程度に薬剤イオンの通過が抑制され、或いは薬剤の 投与効率を十分に高めることができる程度に生体対イオンの通過が抑制される場合 などが含まれる。
[0062] 同様に、本明細書において第 1導電型又は第 2導電型のイオン交換膜について述 ベる「イオンの通過の許容」は、イオンの通過に一切の制約が生じないことを意味す るのではなぐイオンの通過がある程度制限される場合であっても、反対導電型のィ オンに比較して十分に高い速度又は量をもって通過させる場合を含む。
[0063] 本明細書において半透膜や接着剤について述べる「イオン又は分子の通過の遮 断」、「イオン又は分子の通過の許容」も上記と同様であり、イオンや分子を一切通過 させな 、ことや、イオンや分子の通過に一切の制限を生じな!/、ことを意味するもので はない。
図面の簡単な説明
[0064] [図 1]本発明に係るイオントフォレーシス装置の構成を示す説明図である。
[図 2] (A)、 (B)は、本発明の一実施形態に係るイオントフォレーシス装置の作用側 電極構造体の構成を示す断面説明図。 [図 3] (A)〜 (F)は、本発明の一実施形態に係るイオントフォレーシス装置の作用側 電極構造体の構成を示す断面説明図。
[図 4] (A)〜 (D)は、本発明の一実施形態に係るイオントフォレーシス装置の非作用 側電極構造体の構成を示す断面説明図。
[図 5]従来のイオントフォレーシス装置の構成を示す説明図。
[図 6] (A)〜(C)は、本願出願人により出願された他の出願に記載されるイオントフォ レーシス装置の作用側電極構造体及び非作用側電極構造体の構成を示す説明図 である。
発明を実施するための最良の形態
[0065] 以下、図面に基づいて本発明の実施形態を説明する。
[0066] 図 1は、本発明に係るイオントフォレーシス装置 Xの概略構成を示す説明図である。
[0067] なお、以下では、説明の便宜上、薬効成分がプラスの薬剤イオンに解離する薬剤 ( 例えば、塩酸リドカインや塩酸モルヒネなど)を投与するためのイオントフォレーシス 装置を例として説明するが、薬効成分がマイナスの薬剤イオンに解離する薬剤 (例え ば、ァスコルビン酸など)を投与するためのイオントフォレーシス装置の場合は、以下 の説明における電源の極、各イオン交換膜の導電型、及びドーピング層ゃカチオン 交換膜にドープされるイオンの導電型を逆転させることで、以下の実施態様と実質的 に同一の効果を達成できるイオントフォレーシス装置を構成することができる。
[0068] 図示されるように、イオントフォレーシス装置 Xは、電源 30と、電源 30のプラス極と 給電線 31により接続された作用側電極構造体 10及び電源 30のマイナス極と給電線 32により接続された非作用側電極構造体 20から構成されている。
[0069] 作用側電極構造体 10及び非作用側電極構造体 20は、その内部に以下に述べる 各種の構造を収容できる空間が形成され、下面 16b、 26bが開放された容器 16、 26 を備えている。この容器 16、 26はプラスチックなどの任意の素材力も形成することが できるが、好ましくは内部からの水分の蒸発や外部力 の異物の侵入を防ぐことがで き、生体の動きや皮膚の凹凸に追随できる柔軟な素材力も形成される。また容器 16 、 26の下面 16b、 26bには、イオントフォレーシス装置 Xの保存中における水分の蒸 発や異物の混入を防ぐための適宜の材料力 なる取り外し可能なライナーを貼付す ることができ、容器 16、 26の下端縁 16e、 26eには、薬剤投与の際に皮膚との密着 性を高めるための粘着剤層を設けることが可能である。
[0070] 電源 30としては、電池、定電圧装置、定電流装置、定電圧 ·定電流装置などを使 用することができるが、 0. 01〜: L 0mAZcm2、好ましくは、 0. 01〜0. 5mA/cm 2の範囲で電流調整が可能であり、 50V以下、好ましくは、 30V以下の安全な電圧 条件で動作する定電流装置を使用することが好ましい。
[0071] 02 (A)、 (B)は、上記イオントフォレーシス装置 Xの作用側電極構造体 10として使 用することができる作用側電極構造体 10a、 10bの構成を示す断面説明図である。
[0072] 作用側電極構造体 10aは、電源 30の給電線 31に接続される電極 11と、電極 11に 接触する電解液を保持する電解液保持部 12と、電解液保持部 12の前面側に配置さ れた複合イオン交換膜 15aを有している。
[0073] 複合イオン交換膜 15aは、電解液保持部 12の電解液に接触して配置されるァ-ォ ン交換膜 15Aと、ァ-オン交換膜 15Aの前面側に配置され、プラスの薬剤イオンがド ープされたカチオン交換膜 15C力も構成されており、ァ-オン交換膜 15Aとカチオン 交換膜 15Cは接合されている。
[0074] ァ-オン交換膜 15Aとカチオン交換膜 15Cの接合方法は任意であるが、その例と しては、熱圧着により両者を接合する方法、ァ-オン交換膜 15A上においてカチォ ン交換榭脂を塗布、硬化させてカチオン交換膜 15Cを製膜し、或いはカチオン交換 膜 15C上においてァ-オン交換榭脂を塗布、硬化させてァ-オン交換膜 15Aを製 膜することで接合する方法、ァ-オン交換膜 15Aとカチオン交換膜 15Cの間に接着 剤を塗布し、この接着剤により接合する方法などを挙げることができる。
[0075] カチオン交換膜 15Cへの薬剤イオンのドープは、薬剤イオンを含む薬剤液にカチ オン交換膜 15Cを浸漬することにより行うことができる。カチオン交換膜 15Cへの薬 剤イオンのドープ量は、このときの薬剤液中の薬剤イオンの濃度や、浸漬時間、浸漬 回数などにより制御することができる。カチオン交換膜 15Cへの薬剤イオンのドープ は、ァ-オン交換膜 15Aとの接合の前後の 、ずれの段階にぉ 、て行っても構わな ヽ
[0076] 作用側電極構造体 10aでは、後述のように、電極 11にプラスの電圧を印加した際 に、電解液保持部 12のプラスイオンがァ-オン交換膜 15Aを通過できることが必要 であるめ、ァ-オン交換膜には、例えば 0. 7〜0. 98など、ある程度輸率の低いもの が使用される。
[0077] ここでのァ-オン交換膜 15Aの輸率は、電解液保持部 12の電解液と、適当な濃度 の薬剤イオンを含む薬剤液 (例えば、上記カチオン交換膜 15Cへの薬剤イオンのド ープに使用した薬剤液)の間にァ-オン交換膜 15Aを配置した状態で、電解液側に 第 1導電型の電圧を印加したときにァ-オン交換膜 15Aを介して運ばれる総電荷の うち、薬剤液中のマイナスイオンがァ-オン交換膜 15 Aを通過することにより運ばれ る電荷量の割合として定義される。
[0078] 同様の理由で、ァ-オン交換膜 15Aとカチオン交換膜 15Cの接合に接着剤を用い る場合には、その接着剤が、少なくとも電解液保持部 12の電解液中のプラスイオン を通過させる特性を有して 、ることが必要である。
[0079] 電解液保持部 12は、任意の電解質を溶解した電解液を保持することができるが、 水の電気分解よりも酸化電位の低い電解質を使用し、或いは複数種類の電解質を 溶解した緩衝電解液とすることで、通電の際に酸素ガスや水素イオンが発生すること を抑制し、或いは水素イオンの発生による pH変化を抑制することができる。
[0080] また電解液保持部 12のプラスイオンの移動度が、カチオン交換膜 15Cにドープさ れた薬剤イオンより大きい場合には、そのプラスイオンが薬剤イオンに優先して生体 に移行して薬剤イオンの投与効率を低下させる可能性があるため、電解液保持部 12 の電解液は、薬剤イオンよりも移動度の大き ヽプラスイオンを含まな ヽ組成とすること が好ましい。
[0081] 電解液保持部 12は、電解液を液体状体で保持することができ、ガーゼ、濾紙、水 性ゲルなどの適当な吸収性の担体に含浸させて保持することもできる。
[0082] 作用側電極構造体 10aを備えるイオントフォレーシス装置 Xでは、出願 1に開示さ れるイオントフォレーシス装置と同様のメカニズムにより薬剤イオンの投与が行われる
[0083] 即ち、カチオン交換膜 15Cを生体皮膚に当接させて電極 11にプラスの電圧を印加 することにより、カチオン交換膜 15Cにドープされた薬剤イオンが生体に移行する。ま た、電解液保持部 12のプラスイオンがァ-オン交換膜 15Aを介してカチオン交換膜 15Cに移行し、生体に移行した薬剤イオンを置換する。
[0084] 作用側電極構造体 10aを備えるイオントフォレーシス装置 Xは、出願 1に開示される イオントフォレーシス装置と同様、下記(1)〜 (4)の効果を達成することができる。
(1)保存中における薬剤イオンの電解液保持部 12への移行がァ-オン交換膜 15A により遮断されるため、通電時における薬剤イオンの電極 11近傍での分解を防止す ることができる。なお、上記のようにある程度輸率の低い(輸率が 0. 7〜0. 98の)ァ- オン交換膜 15Aを使用した場合でも、保存中の (無通電の状態での)薬剤イオンの 電解液保持部 12への移行は十分に抑制することができる。
(2)薬剤の投与に際して、カチオン交換膜 15Cは、マイナスに帯電した生体対イオン の侵入を遮断するため、薬剤の投与効率を上昇させることができる。
(3)薬剤イオンが生体皮膚に最も近接して配置される部材であるカチオン交換膜 15 Cにドープされているため、薬剤の投与効率を更に上昇させることができる。
(4)薬剤イオンは、カチオン交換膜 15C中のイオン交換基にイオン結合した状態で 保持されるために、変質などに対する安定性、保存性が向上する。従って、装置の保 存期間を延長でき、或いは安定化剤、抗菌剤、防腐剤などが不要となり、又はその使 用量を低減させることができる。
[0085] 作用側電極構造体 10aを備えるイオントフォレーシス装置 Xでは更に、ァ-オン交 換膜 15Aとカチオン交換膜 15Cが接合により一体化された複合イオン交換膜 15aが 使用されているため、作用側電極構造体 10aの組み立て作業を容易化でき、製造の 自動化、大量生産化が容易となり、製造コストを低減することが可能になるという追カロ 的な効果が達成される。
[0086] なお、作用側電極構造体 10aでは、通電の際にァ-オン交換膜 15Aとカチオン交 換膜 15Cの間において水の電気分解が生じる場合があり、その場合には、薬剤の投 与効率の低下や生体界面における pH変動を生じることになるため、上記水の電気 分解が生じな 、ように、或いはこれを許容範囲に納めることができるように通電条件、 或いはァ-オン交換膜 15A、カチオン交換膜 15Cの輸率などを調整することが望ま しい。 [0087] 作用側電極構造体 10bは、複合イオン交換膜 15aに代えて、複合イオン交換膜 15 bを備える点を除いて作用側電極構造体 10aと同一の構成を有している。
[0088] 複合イオン交換膜 15bは、ァ-オン交換膜 15Aと、ァ-オン交換膜 15Aの前面側 配置された半透膜 15Sと、半透膜 15Sの前面側に配置され、薬剤イオンがドープさ れたカチオン交換膜 15Cとからなり、ァ-オン交換膜 15A、半透膜 15S及びカチォ ン交換膜 15Cは一体に接合されている。
[0089] この接合は、複合イオン交換膜 15aについて上記したと同一の方法により行うことが できる。即ち、熱圧着による接合、半透膜 15S上におけるァ-オン交換膜 15A及び Z又はカチオン交換膜 15Cの製膜、或いは接着剤による接合などの方法を採ること ができる。
[0090] カチオン交換膜 15Cへの薬剤イオンのドープは、複合イオン交換膜 15aについて 上記したと同様の方法で行うことができる。
[0091] 半透膜 15Sには、電解液保持部 12の電解液中のプラスイオンの通過を許容できる 特性を有する任意の半透膜を使用することができ、例えば、アクリル系、ポリウレタン 系などの水性ゲルや、濾紙、分画分子量膜などの濾過膜を使用することができる。
[0092] 作用側電極構造体 10bは、作用側電極構造体 10aについて上記したと同様の効 果を達成できることに加え、ァ-オン交換膜 15Aとカチオン交換膜 15Cが半透膜 15 Sにより離間されているために、ァ-オン交換膜 15Aとカチオン交換膜 15Cの間での 水の気分解の発生を防止又は抑制できるという追加的な効果が達成される。
[0093] 図 3 (A)〜(F)は、上記イオントフォレーシス装置 Xの作用側電極構造体 10として 使用することができる他の態様の作用側電極構造体 10c〜: LOhの構成を示す断面 説明図である。
[0094] 作用側電極構造体 10cは、電源 30の給電線 31に接続される電極 11と、電極 11に 接触する電解液を保持する電解液保持部 12と、その前面側に配置された複合ィォ ン交換膜 13cと、その前面側に配置された薬剤液を保持する薬剤液保持部 14とを備 えている。
[0095] 複合イオン交換膜 13cは、電解液保持部 12の電解液に接触して配置されるァ-ォ ン交換膜 13Aと、薬剤液保持部 14の薬剤液に接触して配置されるカチオン交換膜 1 3C力も構成され、ァ-オン交換膜 13Aとカチオン交換膜 13Cは、複合イオン交換膜 15aと同様の態様で一体に接合されている。
[0096] 複合イオン交換膜 13cは、通電時に電解液保持部 12のプラスイオン及び/又は薬 剤液保持部 14のマイナスイオンの通過を許容する特性を有して ヽることが必要であ るため、ァ-オン交換膜 13A、カチオン交換膜 13Cの少なくとも一方には、例えば 0 . 7〜0. 98など、ある程度輸率の低いものが使用される。
[0097] ここでのァ-オン交換膜 13Aの輸率は、電解液保持部 12の電解液と、薬剤液保持 部 14の薬剤液の間にァ-オン交換膜 13Aを配置した状態で、電解液側にプラスの 電圧を印カロしたときにァ-オン交換膜 13Aを介して運ばれる総電荷のうち、薬剤液 中のマイナスイオンがァ-オン交換膜 13Aを通過することにより運ばれる電荷量の割 合として定義され、カチオン交換膜 13Cの輸率は、電解液保持部 12の電解液と、薬 剤液保持部 14の薬剤液の間にカチオン交換膜 13Cを配置した状態で、電解液側に プラスの電圧を印加したときにカチオン交換膜 13Cを介して運ばれる総電荷のうち、 電解液中のプラスイオンがカチオン交換膜 13Cを通過することにより運ばれる電荷量 の割合として定義される。
[0098] 電解液保持部 12は、任意の電解質を溶解した電解液を保持することができるが、 水の電気分解よりも酸化電位の低い電解質を使用し、或いは複数種類の電解質を 溶解した緩衝電解液とすることで、通電の際に酸素ガスや水素イオンが発生すること を抑制し、或いは水素イオンの発生による pH変化を抑制することができる。
[0099] 薬剤液保持部 14には、薬効成分がプラスの薬剤イオンに解離する薬剤の溶液が 薬剤液として保持される。薬剤液保持部 14は、薬剤液を液体状態で保持することが でき、或いはガーゼ、濾紙、水性ゲルなどの適当な吸収性の担体に含浸させて保持 することちでさる。
[0100] 作用側電極構造体 10cを備えるイオントフォレーシス装置 Xでは、出願 2に開示さ れるイオントフォレーシス装置と同様、薬剤液保持部 14を生体皮膚に当接させた状 態で電極 11にプラスの電圧を印加することで、薬剤イオンの生体への投与が行われ る。
[0101] 作用側電極構造体 10cを備えるイオントフォレーシス装置 Xは、出願 2に開示される イオントフォレーシス装置と同様の効果を達成することができる。
[0102] 即ち、電解液保持部 12と薬剤液保持部 14の間に反対導電型の 2つのイオン交換 膜 13A、 13Cが配置されているために、装置の保存中における薬剤液保持部 14の 薬剤イオンの電解液保持部 12への移行、及び電解液保持部 12のマイナスイオンの 薬剤液保持部 14への移行が遮断される。従って、通電の際の電極 11近傍における 薬剤の分解が防止され、装置の保存中における薬剤液保持部 14中での薬剤の変 質を防止できる。
[0103] なお、上記のような輸率の低い(輸率が 0. 7〜0. 98の)ァ-オン交換膜 13A又は カチオン交換膜 13Cを使用した場合でも、装置の保存中における薬剤イオン又は電 解液保持部 12のマイナスイオンの移行は十分に抑制することができる。
[0104] 更に、作用側電極構造体 10cを備えるイオントフォレーシス装置 Xでは、ァ-オン交 換膜 13Aとカチオン交換膜 13Cが接合により一体化された複合イオン交換膜 13cが 使用されているため、作用側電極構造体 10cの組み立て作業を容易化でき、製造の 自動化、大量生産化が容易となり、製造コストを低減することが可能になるという追カロ 的な効果が達成される。
[0105] なお、作用側電極構造体 10cでは、ァ-オン交換膜 13Aとカチオン交換膜 13Cの 間において水の電気分解が生じる場合があり、その場合には、薬剤の投与効率の低 下や生体界面における pH変動を生じることになるため、上記水の電気分解が生じな いように、或いはこれを許容範囲に納めることができるように通電条件、或いはァ-ォ ン交換膜 13A、カチオン交換膜 13Cの輸率などを調整することが望ましい。
[0106] 作用側電極構造体 10dは、複合イオン交換膜 13cに代えて、複合イオン交換膜 13 dを備える点を除いて作用側電極構造体 10cと同一の構成を有している。
[0107] 複合イオン交換膜 13dは、ァ-オン交換膜 13Aと、ァ-オン交換膜 13Aの前面側 に配置された半透膜 13Sと、半透膜 13Sの前面側に配置されたカチオン交換膜 13 Cとからなり、ァ-オン交換膜 13A、半透膜 13S及びカチオン交換膜 13Cは一体に 接合されている。
[0108] この接合は、複合イオン交換膜 15aについて上記したと同一の方法により行うことが できる。 [0109] ァ-オン交換膜 13A、カチオン交換膜 13Cには、複合イオン交換膜 13cと同様の ァ-オン交換膜 13A、カチオン交換膜 13Cを使用することができる。
[0110] 半透膜 13Sには、少なくとも電解液保持部 12の電解液中のプラスイオンを通過さ せる特性を有している限り任意の膜を使用することができ、例えば、アクリル系、ポリウ レタン系などの水性ゲルや、濾紙、分画分子量膜などの濾過膜を使用することができ る。
[0111] 作用側電極構造体 lOdは、作用側電極構造体 10cについて上記したと同様にして 使用され、同様の効果を達成できる。更に作用側電極構造体 10dでは、ァ-オン交 換膜 13Aとカチオン交換膜 13Cが半透膜 13Sにより離間されているために、ァ-ォ ン交換膜 13Aとカチオン交換膜 13Cの間での水の電気分解の発生を防止又は抑制 できるという追加的な効果が達成される。
[0112] 作用側電極構造体 10e、 10fは、複合イオン交換膜 13e、 13fの向きが作用側電極 構造体 10c、 10dの場合と逆になつている点を除いて、作用側電極構造体 10c、 10d と同様の構成を有している。
[0113] 即ち、作用側電極構造体 10e、 10fでは、カチオン交換膜 13Cが電解液保持部 12 の電解液に接触するように配置され、ァ-オン交換膜 13Aが薬剤液保持部 14の薬 剤液に接触するように配置されて 、る。
[0114] 作用側電極構造体 10e、 10fを備えるイオントフォレーシス装置 Xは、作用側電極 構造体 10c、 10dを備えるイオントフォレーシス装置 Xについて上記したと同様の効 果を達成する。
[0115] 加えて作用側電極構造体 10e、 10fでは、電極 11に印可される電圧 (プラス)と同 一導電型のイオン交換膜 (カチオン交換膜 13C)が電極 11に近い側に配置され、そ の反対導電型のイオン交換膜 (ァ-オン交換膜 13A)が電極 11に遠 、側に配置され ているために、作用側電極構造体 10c、 10dの場合よりもァ-オン交換膜 13Aとカチ オン交換膜 13Cの間での水の電気分解が生じ難くなるという追加的な効果が達成さ れる。
[0116] 作用側電極構造体 10g、 10hは、それぞれ作用側電極構造体 10e、 10fと同様の 構成を有することに加えて、薬剤液保持部 14の前面側にカチオン交換膜 15を有し ている。
[0117] 作用側電極構造体 10g、 10hを備えるイオントフォレーシス装置 Xでは、カチオン交 換膜 15を生体皮膚に当接させた状態で電極 11にプラスの電圧を印加することで、 薬剤イオンの生体への投与が行われる。
[0118] 作用側電極構造体 10g、 10hを備えるイオントフォレーシス装置 Xは、作用側電極 構造体 10e、 10fを備えるイオントフォレーシス装置 Xにつ ヽて上記した効果を達成 できることに加え、カチオン交換膜 15により生体対イオンの薬剤液保持部 14への移 行が遮断されるために、薬剤の投与効率が上昇するという追加的な効果を達成する ことができる。
[0119] なお、図示はしないが、作用側電極構造体 10c、 10dの薬剤液保持部 14の前面側 にカチオン交換膜を配置した作用側電極構造体 (この作用側電極構造体を、それぞ れ「作用側電極構造体 10i」、「作用側電極構造体 10j」という)も同様に、作用側電極 構造体 10c、 10dについて上記した効果に加え、薬剤の投与効率の上昇という追カロ 的な作用効果が達成される。
[0120] 作用側電極構造体 10c、 10e、 10gにおいては、ァ-オン交換膜 13A及びカチォ ン交換膜 13Cのいずれか一方が、電解液保持部 12中の電解質の分子及び Z又は 薬剤液保持部 14中の薬剤の分子の通過を遮断できる分子量分画特性を有するもの とすることが可能であり、これにより、装置の保存中に未解離の電解質分子及び Z又 は薬剤分子がそれぞれ薬剤液保持部 14又は電解液保持部 12に移行し、その結果 、薬剤液保持部 14における薬剤の変質や通電の際における電極 11近傍での薬剤 の分解を生じることを防止することができる。
[0121] 作用側電極構造体 10d、 10f、 10hにおいても、ァ-オン交換膜 13A、半透膜 13S 及びカチオン交換膜 13Cのいずれかが、電解液保持部 12中の電解質の分子及び ,又は薬剤液保持部 14中の薬剤の分子の通過を遮断できる分子量分画特性を有 するものとすることが可能であり、これにより上記と同様の効果を達成できる。
[0122] 図 4 (A)〜(D)は、イオントフォレーシス装置 Xの非作用側電極構造体 20として使 用することができる非作用側電極構造体 20a〜20dの構成を示す断面説明図である [0123] 非作用側電極構造体 20aは、電源 30の給電線 32に接続される電極 21と、電極 21 に接触する電解液を保持する電解液保持部 22と、その前面側に配置され、複合ィォ ン交換膜 13eと同様の構成を有する複合イオン交換膜 23aと、その前面側に配置さ れた電解液を保持する電解液保持部 24と、その前面側に配置されたァ-オン交換 膜 25を備えている。
[0124] 電解液保持部 22、 24には任意の組成の電解液を保持することが可能である力 電 解液保持部 22、 24にそれぞれ異なる組成の電解液を保持させることで、好ましい性 能を有するイオントフォレーシス装置を提供できる。例えば、電解液保持部 22には、 水の電気分解よりも酸化電位の低い電解質を使用し、或いは複数種類の電解質を 溶解した緩衝電解液を使用するなど、電極 21における電極反応の防止機能や pH 変動に対する抑制機能に優れる電解液を使用する一方、電解液保持部 24には、生 体への安全性に優れる電解液を使用することが可能である。
[0125] そして、そのような異なる組成の電解液を電解液保持部 22、 24が保持されている 場合においては、電解液保持部 22と電解液保持部 24の間に反対導電型の 2つのィ オン交換膜 23A及び 23Cを有する複合イオン交換膜 23aを配置することにより、装 置の保存中における両電解液保持部 22、 24中の電解液が混合してしまうことが防止 できるという効果が達成される。
[0126] 更に、非作用側電極構造体 20aを備えるイオントフォレーシス装置 Xでは、ァ-オン 交換膜 23Aとカチオン交換膜 23Cが接合により一体化された複合イオン交換膜 23a が使用されているため、非作用側電極構造体 20aの組み立て作業を容易化でき、製 造の自動化、大量生産化が容易となり、製造コストを低減することが可能になるという 追加的な効果が達成される。
[0127] 非作用側電極構造体 20bは、複合イオン交換膜 23aに代えて、複合イオン交換膜 23bを備える点を除いて非作用側電極構造体 20aと同一の構成を有している。この 複合イオン交換膜 23bは、複合イオン交換膜 13fと同様の構成である。
[0128] 非作用側電極構造体 20bは、非作用側電極構造体 20aについて上記したと同様 の効果を達成できることに加え、ァ-オン交換膜 13Aとカチオン交換膜 13Cが半透 膜 13Sにより離間されているために、ァ-オン交換膜 13Aとカチオン交換膜 13Cの 間での水の電気分解を生じ難くできるという追加的な効果が達成される。
[0129] 非作用側電極構造体 20c、 20dは、複合イオン交換膜 23c、 23dの向きが非作用 側電極構造体 20a、 20bの場合と逆になつている点を除いて、非作用側電極構造体 20a, 20bと同様の構成を有して! /、る。
[0130] 即ち、非作用側電極構造体 20c、 20dでは、ァ-オン交換膜 23Aが電解液保持部 22の電解液に接触するように配置され、カチオン交換膜 13Cが電解液保持部 24の 電解液に接触するように配置されて 、る。
[0131] 非作用側電極構造体 20c、 20dを備えるイオントフォレーシス装置 Xは、非作用側 電極構造体 20a、 20bを備えるイオントフォレーシス装置 Xにつ 、て上記したと同様 の効果を達成することに加え、作用側電極構造体 10e、 lOfについて上記したと同様 の理由により、ァ-オン交換膜 23Aとカチオン交換膜 23Cの間での水の電気分解が 生じ難くなるという追加的な効果が達成される。
[0132] 非作用側電極構造体 20a、 20cにおいては、ァ-オン交換膜 23A及びカチオン交 換膜 23Cのいずれか一方が、電解液保持部 22中の電解質の分子及び Z又は電解 液保持部 24中の電解質の分子の通過を遮断できる分子量分画特性を有するものと することが可能であり、これにより、装置の保存中に未解離の電解質分子が、 2つの 電解液保持部 22、 24間でに移行し、その結果、両電解液保持部 22、 24の組成が 混合してしまうことを防止することができる。
[0133] 非作用側電極構造体 20b、 20dにおいても、ァ-オン交換膜 23A、半透膜 23S及 びカチオン交換膜 23Cのいずれかが、電解液保持部 22中の電解質の分子及び Z 又は電解液保持部 24中の電解質の分子の通過を遮断できる分子量分画特性を有 するものとすることが可能であり、これにより上記と同様の効果を達成することができる
[0134] 上記から明らかなように、下記(1)、 (2)の組み合わせの作用側電極構造体及び非 作用側電極構造体を有するイオントフォレーシス装置 Xは、両電極構造体の複合ィ オン交換膜として同一構成の部材を使用することが可能である。このことは、イオント フォレーシス装置 Xの製造工程を簡略ィ匕し、製造の自動化、大量生産化を容易にし 、又は製造コストを低減させることに大きく寄与する。 [0135] 特に、 (3)〜(6)の組み合わせのイオントフォレーシス装置 Xでは、作用側電極構 造体であるか、非作用側電極構造体であるかに関わらず、複合イオン交換膜の向き を同一にできるため、製造工程の簡略化、製造の自動化、大量生産化、又は製造コ ストの低減に更に大きく寄与することができる。
[0136] 更に、(7)、(8)の組み合わせのイオントフォレーシス装置 Xにおいても、上記に準 じる効果が達成される。即ち、作用側電極構造体 10a、 10bに使用される複合イオン 交換膜 15a、 15bのカチオン交換膜 15Cには、薬剤イオンをドープすることが必要で はあるが、両電極構造体の複合イオン交換膜として同一の部材を使用することが可 能であり、このことは、イオントフォレーシス装置 Xの製造工程を簡略ィ匕し、製造の自 動化、大量生産化を容易にし、又は製造コストを低減させることに大きく寄与する。
[0137] (1)作用側電極構造体 10c、 10e、 10g又は 10iと、非作用側電極構造体 20a、 20c の組み合わせ
(2)作用側電極構造体 10d、 10f、 10h又は 10jと、非作用側電極構造体 20b、 20d の組み合わせ
(3)作用側電極構造体 10c又は 10iと、非作用側電極構造体 20cの組み合わせ
(4)作用側電極構造体 10e又は 10gと、非作用側電極構造体 20aの組み合わせ
(5)作用側電極構造体 10d又は 10jと、非作用側電極構造体 20dの組み合わせ
(6)作用側電極構造体 10f又は 10hと、非作用側電極構造体 20bの組み合わせ
(7)作用側電極構造体 10aと、非作用側電極構造体 20a又は 20cの組み合わせ
(8)作用側電極構造体 10bと、非作用側電極構造体 20b又は 20dの組み合わせ 以上、いくつかの実施形態に基づいて本発明を説明したが、本発明は、これらの実 施形態に限定されるものではなぐ特許請求の範囲の記載内において種々の改変が 可能である。
[0138] 例えば、上記実施形態では、生体に投与すべき薬剤を保持する作用側電極構造 体と、その対極としての役割を有する非作用側電極構造体とを備えるイオントフォレ 一シス装置を例として説明した力 電源の両極に接続される 2つの電極構造体の双 方に生体に投与すべき薬剤が保持されるイオントフォレーシス装置や、電源のそれ ぞれの極に複数の電極構造体が接続されるイオントフォレーシス装置にも同様にし て本発明を適用することができる。
[0139] そして上記のいずれの場合においても、 1又は複数の作用側電極構造体及び 1又 は複数の非作用側電極構造体のうちの少なくとも 1つの電極構造体が本願請求項 1 又は 2の構成を有するイオントフォレーシス装置は、本発明の範囲に含まれる。
[0140] 例えば、生体に投与すべき薬剤を保持する作用側電極構造体と、その対極として の役割を有する非作用側電極構造体とを備えるタイプのイオントフォレーシス装置に 関して言えば、本願請求項 1又は 2に従う作用側電極構造体を備える一方、非作用 側電極構造体としては、例えば図 5に示す非作用側電極構造体 120など、本願請求 項 1又は 2に従わない非作用側電極構造体を備えるイオントフォレーシス装置であつ ても、先願 1又は先願 2と同様の効果を発揮することに加えて、作用側電極構造体の 製造工程が簡略化され、製造の自動化、大量生産化が容易となり、或いは製造コスト が低減できるという本願発明の基本的な効果は達成されるのであり、そのようなイオン トフォレーシス装置も本発明の範囲に含まれる。
[0141] 或いは、本願請求項 1又は 2に従う作用側電極構造体を備える一方、イオントフォレ 一シス装置そのものには非作用側電極構造体を設けずに、例えば、生体皮膚に作 用側電極構造体を当接させ、アースとなる部材にその生体の一部を当接させた状態 で作用側電極構造体に電圧を印力 tlして薬剤の投与を行うようにすることも可能であり 、この場合も上記本願発明の基本的な効果は達成されるのであり、そのようなイオント フォレーシス装置も本発明の範囲に含まれる。
[0142] 同様に、本願請求項 1又は 2に従う非作用側電極構造体を備える一方、作用側電 極構造体としては、例えば、図 5に示す作用側電極構造体 110など、本願請求項 1 又は 2に従わない作用側電極構造体を備えるイオントフォレーシス装置であっても、 上記本願発明の基本的な効果は達成されるのであり、このようなイオントフォレーシス 装置も本発明の範囲に含まれる。
[0143] また、上記実施形態では、作用側電極構造体、非作用側電極構造体及び電源が それぞれ別体として構成されている場合について説明したが、これらの要素を単一 のケーシング中に糸且み込み、或いはこれらを^ aみ込んだ装置全体をシート状又はパ ツチ状に形成して、その取扱性を向上させることも可能であり、そのようなイオントフォ レーシス装置も本発明の範囲に含まれる。

Claims

請求の範囲
[1] 第 1導電型の第 1イオン交換膜及び前記第 1イオン交換膜に積層された第 2導電型 の第 2イオン交換膜からなり、前記第 1イオン交換膜及び前記第 2イオン交換膜が一 体に接合された複合イオン交換膜を有する電極構造体を備えることを特徴とするィォ ントフォレーシス装置。
[2] 第 1導電型の第 1イオン交換膜、前記第 1イオン交換膜に積層された半透膜及び前 記半透膜に積層された第 2導電型の第 2イオン交換膜からなり、前記第 1イオン交換 膜、前記半透膜及び前記第 2イオン交換膜が一体に接合された複合イオン交換膜を 有する電極構造体を備えることを特徴とするイオントフォレーシス装置。
[3] 前記電極構造体が、
第 1電極と、
前記第 1電極に接触する電解液を保持する第 1電解液保持部とを更に有し、 前記複合イオン交換膜が前記第 1電解液保持部の前面側に配置され、 前記第 1イオン交換膜が前記第 2イオン交換膜の前面側に配置され、
前記第 1イオン交換膜に第 1導電型の薬剤イオンがドープされていることを特徴と する請求項 1又は 2に記載のイオントフォレーシス装置。
[4] 前記電極構造体が、
第 1電極と、
前記第 1電極に接触する電解液を保持する第 1電解液保持部と、
前記第 1電解液保持部の前面側に配置され、第 1導電型の薬剤イオンを含む薬剤 液を保持する薬剤液保持部とを更に有し、
前記複合イオン交換膜が前記第 1電解液保持部と前記薬剤液保持部の間に配置 されていることを特徴とする請求項 1又は 2に記載のイオントフォレーシス装置。
[5] 第 1導電型の薬剤イオンを保持する作用側電極構造体と、
前記作用側電極構造体の対極としての非作用側電極構造体とを備えるイオントフ ォレーシス装置であって、
前記非作用側電極構造体が、
第 2電極と、 前記第 2電極に接触する電解液を保持する第 2電解液保持部と、
前記第 2電解液保持部の前面側に配置された電解液を保持する第 3電解液保持 部と、
前記第 2電解液保持部と前記第 3電解液保持部の間に配置された複合イオン交換 膜であって、第 1導電型の第 1イオン交換膜及び前記第 1イオン交換膜に積層された 第 2導電型の第 2イオン交換膜からなり、前記第 1イオン交換膜及び前記第 2イオン 交換膜が一体に接合された前記複合イオン交換膜とを有することを特徴とするイオン トフォレーシス装置。
[6] 第 1導電型の薬剤イオンを保持する作用側電極構造体と、
前記作用側電極構造体の対極としての非作用側電極構造体とを備えるイオントフ ォレーシス装置であって、
前記非作用側電極構造体が、
第 2電極と、
前記第 2電極に接触する電解液を保持する第 2電解液保持部と、
前記第 2電解液保持部の前面側に配置された電解液を保持する第 3電解液保持 部と、
前記第 2電解液保持部と前記第 3電解液保持部の間に配置された複合イオン交換 膜であって、第 1導電型の第 1イオン交換膜、前記第 1イオン交換膜に積層された半 透膜及び前記半透膜に積層された第 2導電型の第 2イオン交換膜からなり、前記第 1 イオン交換膜、前記半透膜及び前記第 2イオン交換膜が一体に接合された前記複 合イオン交換膜とを有することを特徴とするイオントフォレーシス装置。
[7] 第 1導電型の第 1イオン交換膜及び前記第 1イオン交換膜に積層された第 2導電型 の第 2イオン交換膜からなり、前記第 1イオン交換膜及び前記第 2イオン交換膜が一 体に接合されていることを特徴とするイオントフォレーシス用複合イオン交換膜。
[8] 第 1導電型の第 1イオン交換膜、前記第 1イオン交換膜に積層された半透膜及び前 記半透膜に積層された第 2導電型の第 2イオン交換膜からなり、前記第 1イオン交換 膜、前記半透膜及び前記第 2イオン交換膜が一体に接合されて 、ることを特徴とする イオントフォレーシス用複合イオン交換膜。
PCT/JP2006/316000 2005-08-18 2006-08-14 イオントフォレーシス装置 WO2007020911A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005238026A JP2007050136A (ja) 2005-08-18 2005-08-18 イオントフォレーシス装置
JP2005-238026 2005-08-18

Publications (2)

Publication Number Publication Date
WO2007020911A1 WO2007020911A1 (ja) 2007-02-22
WO2007020911A9 true WO2007020911A9 (ja) 2007-05-18

Family

ID=37757571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316000 WO2007020911A1 (ja) 2005-08-18 2006-08-14 イオントフォレーシス装置

Country Status (2)

Country Link
JP (1) JP2007050136A (ja)
WO (1) WO2007020911A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731931B2 (ja) 2005-02-03 2011-07-27 Tti・エルビュー株式会社 イオントフォレーシス装置
US8295922B2 (en) 2005-08-08 2012-10-23 Tti Ellebeau, Inc. Iontophoresis device
US8386030B2 (en) 2005-08-08 2013-02-26 Tti Ellebeau, Inc. Iontophoresis device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006130A (en) * 1994-06-17 1999-12-21 Hisamitsu Pharmaceutical Co. Iontophoresis electrode and iontophoresis device using the electrode
JP2000288098A (ja) * 1999-04-06 2000-10-17 R & R Ventures Kk イオントフォレーゼ装置
US6394994B1 (en) * 1999-08-27 2002-05-28 Vyteris, Inc. Method for testing the ability of an iontophoretic reservoir-electrode to deliver a medicament
JP2004202057A (ja) * 2002-12-26 2004-07-22 Tokuyama Corp イオン性薬剤封入袋状物
JP4312085B2 (ja) * 2003-03-10 2009-08-12 株式会社トクヤマ イオン性薬剤投与用の貼付材

Also Published As

Publication number Publication date
JP2007050136A (ja) 2007-03-01
WO2007020911A1 (ja) 2007-02-22

Similar Documents

Publication Publication Date Title
US8386030B2 (en) Iontophoresis device
US8295922B2 (en) Iontophoresis device
JP4728631B2 (ja) イオントフォレーシス装置
WO2006112254A1 (ja) 外用剤、外用剤の塗布方法、イオントフォレーシス装置及び経皮パッチ
CA2647055A1 (en) Iontophoresis device
WO2007037324A1 (ja) 乾燥型イオントフォレーシス用電極構造体
JP2006334164A (ja) イオントフォレーシス装置及びその制御方法
KR20070090166A (ko) 이온토포레시스 장치
WO2007020911A1 (ja) イオントフォレーシス装置
US20090301882A1 (en) Iontophoresis device
WO2007018197A1 (ja) イオントフォレーシス装置
WO2006062108A1 (ja) イオントフォレーシス装置
EP1932562A1 (en) Iontophoresis apparatus
WO2007018159A1 (ja) 経皮投与装置及びその制御方法
JP2007068969A (ja) イオントフォレーシス装置
JP4805693B2 (ja) イオントフォレーシス装置及びその製造方法
JP2007202835A (ja) イオントフォレーシス装置
JP2008086538A (ja) イオントフォレーシス装置、イオン交換膜積層体及び両極性イオン交換膜
JP2007195607A (ja) 薬物投与方法および薬物投与装置
WO2007037475A1 (ja) 形状記憶セパレータを有するイオントフォレーシス用電極構造体およびそれを用いたイオントフォレーシス装置
JP4833015B2 (ja) 液晶スイッチングセパレータを有するイオントフォレーシス用電極構造体およびそれを用いたイオントフォレーシス装置
JP2007135893A (ja) イオントフォレーシス装置および作用側電極ユニット
WO2007119593A1 (ja) イオントフォレーシス装置
JP2007244699A (ja) イオントフォレーシス装置
JP2008174462A (ja) 薬物イオンのドープ方法及び処理方法及びイオントフォレーシス装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796390

Country of ref document: EP

Kind code of ref document: A1