WO2007020767A1 - Acoustic sensor device, acoustic analysis diagnosis device, and acoustic analysis diagnosis device manufacturing method - Google Patents

Acoustic sensor device, acoustic analysis diagnosis device, and acoustic analysis diagnosis device manufacturing method Download PDF

Info

Publication number
WO2007020767A1
WO2007020767A1 PCT/JP2006/314411 JP2006314411W WO2007020767A1 WO 2007020767 A1 WO2007020767 A1 WO 2007020767A1 JP 2006314411 W JP2006314411 W JP 2006314411W WO 2007020767 A1 WO2007020767 A1 WO 2007020767A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic
sound
band
analysis
measurement target
Prior art date
Application number
PCT/JP2006/314411
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Matsumoto
Naoki Ikeuchi
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2007020767A1 publication Critical patent/WO2007020767A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • G01H3/04Frequency
    • G01H3/08Analysing frequencies present in complex vibrations, e.g. comparing harmonics present

Definitions

  • Acoustic sensor device acoustic analysis diagnostic device, and method of manufacturing acoustic analysis diagnostic device
  • the present invention relates to an acoustic sensor device, an acoustic analysis diagnostic device, and a method for manufacturing an acoustic analysis diagnostic device. More specifically, the present invention relates to an acoustic sensor device, an acoustic analysis diagnostic device, and a method for manufacturing the acoustic analysis diagnostic device using a resonator that vibrates in response to sound vibration, for example.
  • Japanese Patent Application Laid-Open No. 2004-20484 describes an abnormality monitoring device and an abnormality monitoring program. That is, a signal indicating a physical quantity reflecting the state of a diagnosis target is obtained by a sensor, and the signal is divided into band signals for a plurality of frequency bands. Based on each determination criterion set for each of the obtained plurality of band signals, the presence / absence of abnormality of the diagnosis target is determined for each frequency band.
  • a programmable band pass filter is used to divide the output signal of the sensor into band signals for a plurality of frequency bands.
  • the program bandpass filter first extracts the first frequency band, where n is the number of band divisions.
  • This process is a software process based on a program, and there is a problem that the processing time is increased in order to perform complicated calculations.
  • an object of the present invention is to provide an acoustic sensor device, an acoustic analysis diagnostic device, and a manufacturing method of the acoustic analysis diagnostic device for analyzing the sound of the force to be measured in real time with a relatively simple configuration. is there.
  • the present invention is an acoustic sensor device that detects at least a predetermined band of a wide band of sound emitted from a measurement target, and includes a plurality of first vibrators that resonate according to different sounds.
  • a first acoustic sensing element that detects the first band sound within a wide band and extracts the first characteristic sound to be measured, and a plurality of second transducers that resonate in response to different sounds Including a first acoustic sensing element that detects sounds in a second band different from the first band within a wide band and extracts the second characteristic sound to be measured. And a second acoustic sensing element.
  • the first acoustic sensing element and the second acoustic sensing element are provided separately and independently. Since the sound of a predetermined band from the measurement object is detected, the difficulty in manufacturing the element can be solved. Since the first and second acoustic sensing elements are provided separately and independently, the sensing elements can be combined according to the diagnostic purpose. For diagnostic purposes, it is possible to diagnose whether the measurement target is normal, whether it is abnormal, or failure prediction.
  • the first acoustic detection element detects a sound in a predetermined band out of a wide band of sound that also has a measurement target force
  • the second acoustic detection element has a wide full band of the measurement target force.
  • the sound of the remaining band is detected.
  • the first acoustic detection element detects a sound of a predetermined band out of a wide band of sound that also produces a measurement target force
  • the second acoustic detection element detects a wide full band of the measurement target force. The sound of a part of the predetermined band of the sound of the sound and the sound of the remaining band are detected.
  • the first characteristic sound indicates that the measurement target is normal
  • the second characteristic sound indicates that the measurement target is abnormal. This makes it possible to diagnose whether the measurement target is normal or abnormal.
  • Another aspect of the present invention is an acoustic diagnostic analysis apparatus that detects, analyzes, and diagnoses at least a predetermined band of a wide band of sound emitted from a measurement target, each of which has a different sound.
  • a plurality of acoustic detection elements that are included in a wide range and that detect only sounds in different frequency bands, each independently provided, and a plurality of acoustic detectors. It includes an analysis and diagnosis unit that analyzes sound signals output from the sensing elements in different frequency bands, diagnoses the sound distribution, and analyzes the characteristics of the measurement target.
  • each failure mode can be diagnosed when the measurement object is a factory provided with a plurality of apparatus facilities having a plurality of failure modes.
  • the analysis / diagnostic unit analyzes the characteristics of normality and abnormality of the measurement target.
  • the analysis / diagnostic unit determines whether or not the maintenance inspection of the measurement target is necessary according to the analysis of the abnormality detection. Depending on the analysis result, the necessity of maintenance can be accurately determined.
  • the failure diagnosis unit stores in advance comparison data according to the purpose of diagnosis. Diagnosis is facilitated by comparing the analysis results with the comparison data.
  • Still another aspect of the present invention is a method of manufacturing an acoustic analysis diagnostic apparatus used for acoustic analysis of a measurement target, including vibrators that resonate according to different sounds, each of which is provided separately.
  • Preparing a plurality of acoustic detection elements installing a plurality of acoustic detection elements in the vicinity of the measurement target, collecting the measurement target data according to the purpose, and a plurality of acoustic detection elements based on the collected data. Determining a combination of acoustic detection elements that resonate with sound of a predetermined band among the detection elements. This combination enables monitoring and diagnosis according to the condition of the measurement target.
  • the first acoustic detection element that extracts the first characteristic sound to be measured and the measurement
  • the sound of the measurement target force can be analyzed in real time with a relatively simple configuration according to the characteristic sound of the measurement target it can.
  • a plurality of acoustic detection elements that resonate with different sounds are prepared, a plurality of acoustic detection elements are installed in the vicinity of the measurement target, and the measurement target data is collected according to the purpose.
  • FIG. 1 is a plan view of an example of an acoustic sensor device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing frequency response characteristics of a plurality of resonance beams in the acoustic sensor device shown in FIG.
  • FIG. 3 is a diagram showing input / output characteristics of the acoustic sensor device.
  • FIG. 4 is a diagram showing environmental noise tolerance in an acoustic sensor device.
  • FIG. 5A is a block diagram showing a data collection / transmission circuit of the acoustic analysis / diagnosis apparatus according to one embodiment of the present invention.
  • FIG. 5B is a block diagram showing a data reception / analysis diagnostic circuit of the acoustic analysis diagnostic device according to one embodiment of the present invention.
  • FIG. 6A is a flowchart for explaining the operation of the data collection and transmission circuit of the acoustic analysis diagnostic device according to one embodiment of the present invention.
  • FIG. 6B is a flowchart for explaining the operation of the data reception / analysis diagnosis circuit of the acoustic analysis / diagnosis apparatus according to the embodiment of the present invention.
  • FIG. 7A is a diagram showing an example of analyzing and diagnosing a measurement target sound in all bands using an acoustic analysis / diagnosis apparatus according to another embodiment of the present invention, and showing a data collection / transmission circuit.
  • FIG. 7B is a diagram showing an example of analyzing and diagnosing a measurement target sound in all bands using an acoustic analysis diagnostic apparatus according to another embodiment of the present invention, and showing a data reception / analysis diagnostic circuit.
  • FIG. 8A is a diagram showing a data collection / transmission circuit in which only the optimal acoustic sensor is arranged in the acoustic analysis diagnostic apparatus of the example shown in FIGS. 7A and 7B.
  • FIG. 8B is a diagram showing a data reception / analysis diagnostic circuit in which only the optimal acoustic sensor is arranged in the acoustic analysis diagnostic apparatus of the example shown in FIGS. 7A and 7B.
  • FIG. 9A is a conceptual diagram showing an example of an acoustic analysis / diagnosis apparatus according to another embodiment of the present invention, in which an acoustic sensor is arranged in a factory.
  • FIG. 9B shows an acoustic analysis diagnostic apparatus according to another embodiment of the present invention, and is a diagram showing a data reception / analysis diagnostic circuit.
  • FIG. 10A shows an acoustic analysis / diagnosis apparatus according to still another embodiment of the present invention, and shows an example in which an acoustic sensor is arranged in a unique apparatus.
  • FIG. 10B is a diagram showing an acoustic analysis / diagnosis device according to still another embodiment of the present invention and a data reception / analysis diagnosis circuit.
  • FIG. 1 is a plan view of an example of an acoustic sensor device according to an embodiment of the present invention.
  • an acoustic sensor device 1 as an acoustic sensing element is formed on a semiconductor silicon substrate 10, and operates as a diaphragm 2, a transverse beam 3, a stop plate 4, a plurality of resonant beams 5 Including.
  • Diaphragm 2 is formed in a thin plate shape so as to vibrate in response to input sound!
  • Transverse beam 3 is formed so as to connect between diaphragm 2 and end plate 4, and the force on which diaphragm 2 side widens gradually becomes narrower toward end plate 4 side. It is the narrowest at the four ends.
  • each of the plurality of resonance beams 5 is adjusted so as to resonate at a specific frequency, and is cantilevered so as to extend from the transverse beam 3 to both sides.
  • This acoustic sensor device 1 has a fishbone structure having a pair of resonant beams 5 and 5 having the same resonant frequency.
  • the end plate 4 is provided to absorb the vibration caused by the input sound propagating from the diaphragm 2 via the transverse beam 3 so as not to return to the diaphragm 2 side.
  • the diaphragm 2, the crossing beam 3, the end plate 4, and the lower portions of the plurality of resonance beams 5 are spaces, and the periphery of the plurality of resonance beams 5 is opened.
  • Diaphragm 2 vibrates vertically by vibration due to input sound, and the vibration propagates in transverse beam 3 in the horizontal direction, and a corresponding vibrator among a plurality of resonance beams 5 vibrates vertically.
  • the respective resonant frequency can be set to a desired value.
  • Each resonant beam 5 is provided with a piezoresistor (not shown) on the transverse beam 3 side, and a change in the resistance value of the piezoresistor can be taken out as an output of a Wheatstone bridge, for example.
  • FIG. 2 is a diagram showing frequency response characteristics of a plurality of resonant beams 5 in the acoustic sensor device 1 shown in FIG. 1
  • FIG. 3 is a diagram showing input / output characteristics
  • FIG. 4 is environmental noise resistance.
  • the plurality of resonant beams 5 of the acoustic sensor device 1 shown in FIG. 1 are adjusted in length so as to resonate at a resonant frequency of 1.2 kHz to 2.5 kHz, for example. It is possible to selectively respond to each resonance frequency. Then, due to the interaction between the resonant beams 5, the frequency between the resonant frequencies can be made to respond.
  • the diaphragm 2 When the diaphragm 2 is amplified with the value shown on the horizontal axis shown in FIG. 3, the plurality of resonant beams 5 are amplified with the value shown on the vertical axis in FIG. For example, if the amplitude of diaphragm 2 is 0, the amplitude of resonant beam 5 is 4.2 m, so the output can be amplified by about 14 times.
  • the acoustic sensor device 1 shown in FIG. 1 can detect a signal of a target sound even when a disturbing sound is input in addition to the target sound.
  • Waveform a shown in Fig. 4 shows the output waveform when the target sound (2 900 Hz, 0. lPa) is input, and waveform b shows the output waveform when the interference sound (500 Hz, lOPa) is input.
  • waveform b shows the waveform a with the vertical axis compressed to 1Z100.
  • Waveform c shows the output waveform when the target sound and interference sound are input simultaneously. From FIG. 4, even if a disturbance sound, which is a noise, is input, it becomes possible to detect a target sound having a sound pressure of 1Z100, which is the interference sound.
  • FIG. 5A is a block diagram showing a data collection and transmission circuit of the acoustic analysis diagnostic device according to one embodiment of the present invention
  • FIG. 5B shows an acoustic analysis diagnostic according to one embodiment of the present invention. It is a block diagram which shows the data reception 'analysis diagnostic circuit of a cutting device.
  • the data collection / transmission circuit 30 includes acoustic sensors 11 to 15, data conversion circuits 21 to 25, a control unit 31, and a data transmission circuit 32, which are independently provided separately. And antenna 33.
  • the acoustic sensors 11 to 15 detect the entire band of a wide band of sound emitted from the measurement target, and the acoustic sensor device 1 shown in FIG. 1 is used.
  • the acoustic sensor 11 is, for example, 500 Hz to: LkHz, the acoustic sensor 12 is 900 Hz to l.8 kHz, the acoustic sensor 13 is 1.7 kHz to 3.4 kHz, the acoustic sensor 14 is 3.3 kHz to 6.8 kHz, and the acoustic sensor.
  • the resonance beam 15 is configured to be included in each of the acoustic sensors 11 to 15 so that a part of the adjacent bands overlaps so that 15 resonates with sound of 6.7 kHz to 10 kHz. Thereby, the acoustic sensors 11 to 15 can detect, for example, sounds in a continuous band from 600 Hz to LOkHz.
  • a single acoustic sensor device 1 tries to detect a wide band of sound, the transverse beam becomes long and it is difficult to manufacture the resonant beam 5.
  • each of the five acoustic sensors 11 to 15 By detecting the band separately, the resonant beam 5 can be manufactured relatively easily, and the vibrator in the unnecessary band can be omitted.
  • the detection elements can be combined according to the purpose of diagnosis.
  • the band can be arbitrarily set according to the measurement target, and the number of acoustic sensors is increased so that the sound output from the measurement target, for example, 600 Hz to: LOOkHz can be detected.
  • the measurement target for example, 600 Hz to: LOOkHz
  • one acoustic sensor may detect a certain band of the entire band, and the other acoustic sensor may detect the remaining band.
  • Outputs of the acoustic sensors 11 to 15 are given to data conversion circuits 21 to 25, respectively.
  • the data conversion circuits 21 to 25 perform AZD conversion on the frequency band sound signals output from the acoustic sensors 11 to 15 and output them to the control unit 31 as sound pressure intensity distribution data.
  • the control unit 31 sequentially outputs the data given from the data conversion circuits 21 to 25 to the data transmission circuit 32 in a time division manner, and the data transmission circuit 32 transmits each data from the antenna 33 by radio or light.
  • the data reception / analysis diagnosis circuit 40 as an analysis diagnosis unit shown in FIG. 5B includes an antenna 41, a data reception circuit 42, an analysis diagnosis circuit 43, and a display unit 44.
  • the data receiving circuit 42 receives each data of each acoustic sensor 11 to 15 transmitted from the data collecting / transmitting circuit 30 via the antenna 41 and gives it to the analysis / diagnosis circuit 43.
  • the analysis / diagnosis circuit 43 stores the sound pressure intensity distribution as comparison data in advance according to the purpose of diagnosis, and compares the sound pressure intensity distribution with the sound pressure intensity given as data for diagnosis. Perform target feature extraction.
  • the purpose of diagnosis is to detect whether the measurement target is in a normal state or to detect an abnormal state, the sound pressure distribution of the sound when the measurement target is operating normally or abnormally is stored as a characteristic sound. Keep it.
  • the measurement target is abnormal, a sound pressure distribution different from that in the normal state appears, so the sound pressure intensity corresponding to each sound pressure is stored in advance as a characteristic sound.
  • the abnormal state includes a state in which the measurement target has failed! /, And a state in which a failure of the measurement target is predicted.
  • the analysis / diagnosis circuit 43 compares the sound pressure strength of each with the sound pressure strength stored in advance, and the acoustic sensors 11 to 15 are compared. Choose the best combination of.
  • the display unit 44 displays the selected combination of acoustic sensors.
  • FIG. 6A is a flowchart for explaining the operation of the data collection and transmission circuit 30 of the acoustic analysis and diagnosis apparatus in one embodiment of the present invention
  • FIG. 6B shows the acoustic analysis and diagnosis in one embodiment of the present invention
  • 4 is a flowchart for explaining the operation of the data reception / analysis / diagnosis circuit 40 of the apparatus.
  • the acoustic sensors 11 to 15 are arranged in the vicinity of a measurement target (not shown), and when the measurement target is operated, the acoustic sensors 11 to 15 perform the diaphragm shown in FIG. 1 according to the sound emitted from the measurement target. 2 vibrates, and this vibration is propagated to the plurality of resonant beams 5 via the transverse beam 3. Among the multiple resonant beams 5, the transducer corresponding to the sound to be measured vibrates vertically. Due to this vibration, the resistance value of the piezoresistive element changes and is taken out as a change in voltage.
  • Each acoustic sensor 11-15 outputs a signal corresponding to the vibration of the corresponding sound.
  • the data conversion circuits 21 to 25 are supplied to the control unit 31 as data indicating the sound pressure intensity after AZD conversion.
  • the control unit 31 determines whether or not the data indicating the sound pressure intensity from the acoustic sensors 11 to 15 is input in the step shown in FIG. 6A (abbreviated as SP in the drawing) SP1. For example, in step SP2, each data is sequentially transmitted from the data transmission circuit 32 via the antenna 33.
  • the data reception circuit 42 of the data reception / analysis diagnostic circuit 40 shown in FIG. 5B determines whether or not all the data of the acoustic sensors 11 to 15 have been received at step SP11 shown in FIG. 6B! Is discriminated. If received, the analysis / diagnostic circuit 43 extracts a characteristic signal for diagnosis from the sound pressure intensity of each sound based on the data of each acoustic sensor 11-15 in step SP12, and in step SP13 An acoustic sensor based on a combination of at least one or more for detecting feature signals is determined as a signal detection device for the facility to be diagnosed. In step SP14, the corresponding one of the acoustic sensors 11 to 15 as the device is displayed.
  • the combination of the plurality of acoustic sensors 11 to 15 determined as the signal detection device is selected according to the purpose of diagnosis.
  • the purpose of diagnosis is determined by whether the object to be measured is in a normal state, detection of failure prediction as an abnormal state, or force that is detection of failure. Since the distribution of the sound output from the measurement target force differs depending on whether it is in the normal state, failure prediction, or failure state, the combination of acoustic sensors is determined so that each sound distribution can be detected.
  • a combination of acoustic sensors 12, 13, and 15 is selected to detect a normal state
  • a combination of acoustic sensors 11, 12, and 13 is selected to detect a failure prediction
  • an acoustic sensor 13 is selected to detect a failure.
  • 14, 15 combination is selected.
  • each of the plurality of acoustic sensors 11 to 15 resonates with a different sound, thereby detecting only sounds in different frequency bands within the entire band. Then, by analyzing the acoustic signals of the different frequency bands output from the plurality of acoustic sensors 11 to 15 and diagnosing the sound distribution, by selecting a combination of acoustic sensors according to each feature, although it has a relatively simple configuration, it can analyze and diagnose sound from the measurement object in real time.
  • the fish force is also provided as a pair of resonant beams 5, 5 as acoustic sensors 11-15. Because it uses a sensor with a sensor structure, frequency decomposition can be performed in real time without the need for frequency decomposition by software processing. Furthermore, the processing time can be shortened because the calculation time required for decomposition into each frequency band can be reduced.
  • FIG. 7A and FIG. 7B are diagrams showing an example of analyzing and diagnosing the measurement target sound in the entire band using the acoustic analysis and diagnosis apparatus according to another embodiment of the present invention.
  • FIG. Fig. 7B shows the data reception and analysis diagnostic circuit.
  • FIG. 8A and FIG. 8B are diagrams showing an example in which only the optimal acoustic sensor is arranged in the acoustic analysis diagnostic apparatus of the example shown in FIG. 7A and FIG. 7B, and FIG. 8A shows a data collection and transmission circuit FIG. 8B shows a data reception / analysis diagnostic circuit.
  • the acoustic sensors 11 to 15 are separately arranged in the vicinity of the measurement object 50, respectively.
  • the data collection / transmission circuit 30a is configured by removing the acoustic sensors 11 to 15 from the data collection / transmission circuit 30 shown in FIG. 5A.
  • the acoustic sensors 11 to 15 are distributed around the measurement object 50.
  • the data reception / analysis / diagnostic circuit 40 analyzes and diagnoses the sound from the measurement object 50 in the entire band based on the flowchart shown in FIG. 6B. For example, in order to detect a normal state, a combination of acoustic sensors 12, 13, and 15 is selected.
  • FIG. 8A shows the arrangement of the selected acoustic sensors 12, 13, and 15.
  • the data reception / analysis diagnostic circuit 40 shown in FIG. 8B collects sound data from the measurement target 50, analyzes and diagnoses whether the measurement target is in a normal state or an abnormal state, and measures the measurement target. Monitors the status of 50 maintenance requirements.
  • the acoustic sensors 11, 12, and 13 may be arranged for failure prediction, and the acoustic sensors 13, 14, and 15 may be arranged for failure detection.
  • FIG. 9A shows an acoustic analysis / diagnosis apparatus according to another embodiment of the present invention, and is a conceptual diagram showing an example in which an acoustic sensor is arranged in a factory.
  • FIG. 9B shows another embodiment of the present invention.
  • 1 shows an acoustic analysis diagnostic device and a data reception / analysis diagnostic circuit.
  • FIG. 9A in the factory 60, although not shown, a plurality of apparatus facilities having a plurality of failure modes are installed. For this reason, multiple abnormal noises are generated in the factory. Therefore, in this embodiment, a plurality of acoustic sensors 11 to 15 are arranged in order to detect individual abnormal sounds in the factory 60.
  • the output of each of the acoustic sensors 11 to 15 is given to the data collection / transmission circuit 30a shown in FIG. 7A.
  • Data reception / analysis shown in Figure 9B The diagnostic circuit 40 is located outside the factory 60.
  • the acoustic sensors 11 to 15 detect individual sounds, whether or not the equipment is normal is abnormal based on the data of the acoustic sensors 11 to 15. Status monitoring, such as determining whether maintenance is necessary.
  • FIG. 10A shows an acoustic analysis and diagnosis apparatus according to still another embodiment of the present invention, and is a diagram showing an example in which an acoustic sensor is arranged in a unique apparatus.
  • FIG. 10B is still another embodiment of the present invention. It is a figure which shows the data reception 'analysis diagnostic circuit of the acoustic analysis diagnostic apparatus in embodiment.
  • unique devices 71 to 74 are arranged in a factory or the like, and each of the devices 71 to 74 generates noise.
  • the acoustic sensors 11 to 14 are arranged close to the devices 71 to 74.
  • the data reception / analysis / diagnostic circuit 40 detects the unique sound of each of the devices 71-74 based on the data collection / transmission circuit force (not shown) corresponding to the acoustic sensors 11-14, Diagnosis such as normal / abnormal judgment and feature extraction can be performed.
  • the acoustic sensor device, acoustic analysis / diagnosis device, and acoustic sensor manufacturing method according to the present invention are used to determine whether there is an abnormality in equipment or equipment in a factory.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Since each of acoustic sensors (11-15) resonates with a different sound, a data collection/transmission circuit (30) detects only a sound in a different frequency band in the entire band and data conversion circuits (21-25) convert it into data. A control unit (31) transmits the data from a data transmission circuit (32) via an antenna (33). A data reception/analysis diagnosis circuit (40) receives data corresponding to the acoustic sensors (11-15) and compares a sound pressure stored in advance to a sound pressure obtained by the received data so as to determine whether the measurement object is normal.

Description

明 細 書  Specification
音響センサ装置,音響解析診断装置および音響解析診断装置の製造方 法  Acoustic sensor device, acoustic analysis diagnostic device, and method of manufacturing acoustic analysis diagnostic device
技術分野  Technical field
[0001] この発明は、音響センサ装置,音響解析診断装置および音響解析診断装置の製 造方法に関する。より特定的には、この発明は、例えば、音の振動に応じて振動する 共振子を用いた音響センサ装置,音響解析診断装置および音響解析診断装置の製 造方法に関する。  The present invention relates to an acoustic sensor device, an acoustic analysis diagnostic device, and a method for manufacturing an acoustic analysis diagnostic device. More specifically, the present invention relates to an acoustic sensor device, an acoustic analysis diagnostic device, and a method for manufacturing the acoustic analysis diagnostic device using a resonator that vibrates in response to sound vibration, for example.
背景技術  Background art
[0002] 従来より、機器や設備の異常の有無を判断するために、種々の設備診断方法が提 案されている。このような設備診断方法においては、重大事故に至る前の、例えば回 転機械におけるベアリングに傷が入ったり、あるいは可動部分の磨耗が進んできたと いった程度の、未だ十分に稼動を続けることができるが、そのままにしておくと将来重 大故障につながるおそれがある異常を検出対象とする。  Conventionally, various facility diagnosis methods have been proposed in order to determine whether there is an abnormality in equipment or facilities. In such equipment diagnosis methods, it is still possible to continue to operate sufficiently before a serious accident, such as when the bearings in a rotating machine are damaged or the wear of moving parts has progressed. Although it is possible, if it is left as it is, abnormalities that may lead to serious failures in the future are detected.
[0003] 例えば、「音 ·診断による診断工学」日本音響学界編'コロナ社には、エンジンの異 打音を診断して解析するために、指向性マイクロホンを用いて音を採取し、その信号 音の診断を行うことが記載されて 、る。  [0003] For example, “Diagnosis engineering by sound and diagnosis”, edited by the Japanese Acoustical Society 'Corona Corporation, collects sound using a directional microphone and analyzes the signal to diagnose and analyze engine beating sound. The sound diagnosis is described.
[0004] 特開 2004— 20484号公報には、異常監視装置および異常監視プログラムについ て記載されている。すなわち、診断対象の状態を反映した物理量を示す信号をセン サで得て、その信号を複数の周波数帯域ごとの帯域信号に分割する。得られた複数 の帯域信号のそれぞれについて設定された各判定基準に基づいて、診断対象の異 常の有無を各周波数帯域ごとに判定する。  [0004] Japanese Patent Application Laid-Open No. 2004-20484 describes an abnormality monitoring device and an abnormality monitoring program. That is, a signal indicating a physical quantity reflecting the state of a diagnosis target is obtained by a sensor, and the signal is divided into band signals for a plurality of frequency bands. Based on each determination criterion set for each of the obtained plurality of band signals, the presence / absence of abnormality of the diagnosis target is determined for each frequency band.
[0005] 文献「音'診断による診断工学」に記載されているマイクロホンを用いた診断方法で は、測定環境下で、目的とする音以外に騒音がある場合、騒音の音圧が大きいとそ の騒音によってマイクロホンの出力が飽和状態になる。このため、目的とする音を捉 えることができない。マイクロホンは、検出可能な帯域のすべてで同じ感度を有するよ うに設計されて 、るからである。 [0006] 特開 2004— 20484号公報に記載されている装置では、センサの出力信号を複数 の周波数帯域ごとの帯域信号に分割するために、プログラマブル帯域通過フィルタ を用いている。プログラム帯域通過フィルタは、帯域の分割数を nとすると、まず第 1の 周波数帯域についての抽出を行う。抽出した第 1の帯域信号についての異常判定処 理が終了した後、第 2番目の周波数帯域についての抽出処理を行う。このため、 n回 の抽出および異常判定処理を行う必要がある。この処理はプログラムに基づくソフト 処理であり、複雑な演算を行うために処理時間が力かるという問題がある。 [0005] In the diagnostic method using a microphone described in the document "diagnostic engineering by sound diagnosis", if there is noise other than the target sound in the measurement environment, if the sound pressure of the noise is high The microphone output becomes saturated due to noise. For this reason, the target sound cannot be captured. This is because the microphone is designed to have the same sensitivity in all detectable bands. [0006] In the device described in Japanese Patent Application Laid-Open No. 2004-20484, a programmable band pass filter is used to divide the output signal of the sensor into band signals for a plurality of frequency bands. The program bandpass filter first extracts the first frequency band, where n is the number of band divisions. After the abnormality determination process for the extracted first band signal is completed, the extraction process for the second frequency band is performed. For this reason, it is necessary to perform extraction and abnormality determination processing n times. This process is a software process based on a program, and there is a problem that the processing time is increased in order to perform complicated calculations.
発明の開示  Disclosure of the invention
[0007] そこで、この発明の目的は、比較的簡単な構成でリアルタイムで測定対象力 の音 を解析するための音響センサ装置、音響解析診断装置および音響解析診断装置の 製造方法を提供することである。  Accordingly, an object of the present invention is to provide an acoustic sensor device, an acoustic analysis diagnostic device, and a manufacturing method of the acoustic analysis diagnostic device for analyzing the sound of the force to be measured in real time with a relatively simple configuration. is there.
[0008] この発明は、測定対象から出る幅広い帯域の音のうちの少なくとも所定の帯域の音 を検出する音響センサ装置であって、異なる音に応じて共振する複数の第 1の振動 子を含み、幅広い帯域内の第 1の帯域の音を検出し、測定対象の第 1の特徴音を抽 出する第 1の音響検知素子と、異なる音に応じて共振する複数の第 2の振動子を含 み、幅広い帯域内の第 1の帯域とは異なる第 2の帯域の音を検出し、測定対象の第 2 の特徴音を抽出する、第 1の音響検知素子とは別個独立して設けられた第 2の音響 検知素子とを備える。  [0008] The present invention is an acoustic sensor device that detects at least a predetermined band of a wide band of sound emitted from a measurement target, and includes a plurality of first vibrators that resonate according to different sounds. A first acoustic sensing element that detects the first band sound within a wide band and extracts the first characteristic sound to be measured, and a plurality of second transducers that resonate in response to different sounds Including a first acoustic sensing element that detects sounds in a second band different from the first band within a wide band and extracts the second characteristic sound to be measured. And a second acoustic sensing element.
[0009] 広い帯域の音を 1つの素子で検出するのに必要な素子は製造に困難を伴うが、第 1の音響検知素子と、第 2の音響検知素子とを別個独立して設けて、測定対象から出 る所定の帯域の音を検出するようにしたので、素子を製造する上の困難性を解消で きる。第 1および第 2の音響検知素子を別個独立して設けたので、診断目的に応じて 検知素子の組合せが可能になる。また、診断目的として、測定対象が正常であるか の診断、異常であるかの診断および故障予知の診断が可能になる。  [0009] Although an element necessary for detecting a wide band sound with one element is difficult to manufacture, the first acoustic sensing element and the second acoustic sensing element are provided separately and independently. Since the sound of a predetermined band from the measurement object is detected, the difficulty in manufacturing the element can be solved. Since the first and second acoustic sensing elements are provided separately and independently, the sensing elements can be combined according to the diagnostic purpose. For diagnostic purposes, it is possible to diagnose whether the measurement target is normal, whether it is abnormal, or failure prediction.
[0010] 好ましくは、第 1の音響検知素子は、測定対象力も出る幅広い全帯域の音のうちの 所定の帯域の音を検出し、第 2の音響検知素子は、測定対象力 出る幅広い全帯域 の音のうちの残りの帯域の音を検出する。これにより全帯域の音を検出して、測定対 象の状態を解析することができる。 [0011] 好ましくは、第 1の音響検知素子は、測定対象力も出る幅広い全帯域の音のうちの 所定の帯域の音を検出し、第 2の音響検知素子は、測定対象力 出る幅広い全帯域 の音のうちの所定の帯域の内の一部の帯域の音と、残りの帯域の音とを検出する。 [0010] Preferably, the first acoustic detection element detects a sound in a predetermined band out of a wide band of sound that also has a measurement target force, and the second acoustic detection element has a wide full band of the measurement target force. The sound of the remaining band is detected. As a result, the sound of the entire band can be detected and the state of the measurement target can be analyzed. [0011] Preferably, the first acoustic detection element detects a sound of a predetermined band out of a wide band of sound that also produces a measurement target force, and the second acoustic detection element detects a wide full band of the measurement target force. The sound of a part of the predetermined band of the sound of the sound and the sound of the remaining band are detected.
[0012] 好ましくは、第 1の特徴音は、測定対象が正常であることを示し、第 2の特徴音は、 測定対象が異常であることを示している。これにより測定対象の正常,異常を診断で きる。  [0012] Preferably, the first characteristic sound indicates that the measurement target is normal, and the second characteristic sound indicates that the measurement target is abnormal. This makes it possible to diagnose whether the measurement target is normal or abnormal.
[0013] この発明の他の局面は、測定対象から出る幅広い帯域の音のうちの少なくとも所定 の帯域の音を検出し、解析して診断する音響診断解析装置であって、それぞれが異 なる音に応じて共振する振動子を含み、幅広い帯域内に含まれ、かつ異なる周波数 帯域ごとの音のみを検出する、それぞれが独立して別個に設けられた複数の音響検 知素子と、複数の音響検知素子から出力されるそれぞれが異なる周波数帯域の音 響信号を解析して音の分布を診断し、測定対象の特徴を解析する解析診断部とを備 える。  [0013] Another aspect of the present invention is an acoustic diagnostic analysis apparatus that detects, analyzes, and diagnoses at least a predetermined band of a wide band of sound emitted from a measurement target, each of which has a different sound. A plurality of acoustic detection elements that are included in a wide range and that detect only sounds in different frequency bands, each independently provided, and a plurality of acoustic detectors. It includes an analysis and diagnosis unit that analyzes sound signals output from the sensing elements in different frequency bands, diagnoses the sound distribution, and analyzes the characteristics of the measurement target.
[0014] この発明では、測定対象が複数の故障モードを持つ装置設備が複数台設けられて いる工場である場合に、各故障モードを診断できる。  [0014] In the present invention, each failure mode can be diagnosed when the measurement object is a factory provided with a plurality of apparatus facilities having a plurality of failure modes.
[0015] 好ましくは、解析診断部は、測定対象の正常,異常を特徴として解析する。  [0015] Preferably, the analysis / diagnostic unit analyzes the characteristics of normality and abnormality of the measurement target.
[0016] 好ましくは、解析診断部は、異常検知を解析したことに応じて、測定対象の保守点 検の要否を判断する。この解析結果に応じて、保守の要否を的確に判断できる。  [0016] Preferably, the analysis / diagnostic unit determines whether or not the maintenance inspection of the measurement target is necessary according to the analysis of the abnormality detection. Depending on the analysis result, the necessity of maintenance can be accurately determined.
[0017] 故障診断部は、診断目的に応じた比較データを予め記憶している。解析結果と比 較データと比較することで、診断が容易になる。  The failure diagnosis unit stores in advance comparison data according to the purpose of diagnosis. Diagnosis is facilitated by comparing the analysis results with the comparison data.
[0018] この発明のさらに他の局面は、測定対象の音響解析に使用する音響解析診断装 置の製造方法であって、異なる音に応じて共振する振動子を含み、それぞれが別個 に設けられた複数の音響検知素子を準備する工程と、複数の音響検知素子を測定 対象の近辺に設置し、目的に応じて測定対象のデータを収集する工程と、収集した データに基づいて、複数の音響検知素子のうちの所定の帯域の音に共振する音響 検知素子の組合せを決定する工程とを備える。この組合せにより、測定対象の状態 に応じた監視と診断を行うことができる。  [0018] Still another aspect of the present invention is a method of manufacturing an acoustic analysis diagnostic apparatus used for acoustic analysis of a measurement target, including vibrators that resonate according to different sounds, each of which is provided separately. Preparing a plurality of acoustic detection elements, installing a plurality of acoustic detection elements in the vicinity of the measurement target, collecting the measurement target data according to the purpose, and a plurality of acoustic detection elements based on the collected data. Determining a combination of acoustic detection elements that resonate with sound of a predetermined band among the detection elements. This combination enables monitoring and diagnosis according to the condition of the measurement target.
[0019] この発明によれば、測定対象の第 1の特徴音を抽出する第 1の音響検知素子と、測 定対象の第 2の特徴音を抽出する第 2の音響検知素子とを別個に備えることで、測 定対象の特徴音に応じて、比較的簡単な構成でリアルタイムで測定対象力もの音を 解析できる。 According to the present invention, the first acoustic detection element that extracts the first characteristic sound to be measured, and the measurement By separately providing a second acoustic detection element that extracts the second characteristic sound of the measurement target, the sound of the measurement target force can be analyzed in real time with a relatively simple configuration according to the characteristic sound of the measurement target it can.
[0020] また、それぞれが異なる音に共振することにより、幅広い帯域内に含まれ、かつ異 なる周波数帯域ごとの音のみを検出し、複数の音響検知素子から出力されるそれぞ れが異なる周波数帯域の音響信号を解析して音の分布を診断し、測定対象の特徴 を解析することにより、リアルタイムで測定対象力ゝらの音を解析できる。  [0020] In addition, by resonating with different sounds, only sounds in different frequency bands that are included in a wide band are detected, and each of the outputs from the plurality of acoustic sensing elements has different frequencies. By analyzing the acoustic signal in the band to diagnose the sound distribution and analyzing the characteristics of the measurement target, it is possible to analyze the sound of the measurement target force in real time.
[0021] さらに、それぞれが異なる音に共振する複数の音響検知素子を準備し、複数の音 響検知素子を測定対象の近辺に設置し、目的に応じて測定対象のデータを収集し、 収集したデータに基づいて、複数の音響検知素子のうちの所定の帯域の音に共振 する音響検知素子の組合せを決定することにより、リアルタイムで測定対象力ゝらの音 を解析する音響解析診断装置を製造できる。  [0021] Furthermore, a plurality of acoustic detection elements that resonate with different sounds are prepared, a plurality of acoustic detection elements are installed in the vicinity of the measurement target, and the measurement target data is collected according to the purpose. Manufactures an acoustic analysis and diagnosis device that analyzes the sound of the force to be measured in real time by determining the combination of acoustic detection elements that resonate with sound in a predetermined band among multiple acoustic detection elements based on the data it can.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]この発明の一実施形態における音響センサ装置の一例の平面図である。 FIG. 1 is a plan view of an example of an acoustic sensor device according to an embodiment of the present invention.
[図 2]図 1に示した音響センサ装置における複数の共振ビームの周波数応答特性を 示す図である。  2 is a diagram showing frequency response characteristics of a plurality of resonance beams in the acoustic sensor device shown in FIG.
[図 3]音響センサ装置における入出力特性を示す図である。  FIG. 3 is a diagram showing input / output characteristics of the acoustic sensor device.
[図 4]音響センサ装置における環境ノイズ耐性を示す図である。  FIG. 4 is a diagram showing environmental noise tolerance in an acoustic sensor device.
[図 5A]この発明の一実施形態における音響解析診断装置のデータ収集'送信回路 を示すブロック図である。  FIG. 5A is a block diagram showing a data collection / transmission circuit of the acoustic analysis / diagnosis apparatus according to one embodiment of the present invention.
[図 5B]この発明の一実施形態における音響解析診断装置のデータ受信'解析診断 回路を示すブロック図である。  FIG. 5B is a block diagram showing a data reception / analysis diagnostic circuit of the acoustic analysis diagnostic device according to one embodiment of the present invention.
[図 6A]この発明の一実施形態における音響解析診断装置のデータ収集'送信回路 の動作を説明するためのフローチャートである。  FIG. 6A is a flowchart for explaining the operation of the data collection and transmission circuit of the acoustic analysis diagnostic device according to one embodiment of the present invention.
[図 6B]この発明の一実施形態における音響解析診断装置のデータ受信'解析診断 回路の動作を説明するためのフローチャートである。  FIG. 6B is a flowchart for explaining the operation of the data reception / analysis diagnosis circuit of the acoustic analysis / diagnosis apparatus according to the embodiment of the present invention.
[図 7A]この発明の他の実施形態における音響解析診断装置を用いて、全帯域で測 定対象音を解析診断する例を示し、データ収集 ·送信回路を示す図である。 [図 7B]この発明の他の実施形態における音響解析診断装置を用いて、全帯域で測 定対象音を解析診断する例を示し、データ受信 ·解析診断回路を示す図である。 FIG. 7A is a diagram showing an example of analyzing and diagnosing a measurement target sound in all bands using an acoustic analysis / diagnosis apparatus according to another embodiment of the present invention, and showing a data collection / transmission circuit. FIG. 7B is a diagram showing an example of analyzing and diagnosing a measurement target sound in all bands using an acoustic analysis diagnostic apparatus according to another embodiment of the present invention, and showing a data reception / analysis diagnostic circuit.
[図 8A]図 7Aおよび図 7Bに示した例の音響解析診断装置で最適な音響センサのみ を配置したデータ収集 ·送信回路を示す図である。  FIG. 8A is a diagram showing a data collection / transmission circuit in which only the optimal acoustic sensor is arranged in the acoustic analysis diagnostic apparatus of the example shown in FIGS. 7A and 7B.
[図 8B]図 7Aおよび図 7Bに示した例の音響解析診断装置で最適な音響センサのみ を配置したデータ受信 ·解析診断回路を示す図である。  FIG. 8B is a diagram showing a data reception / analysis diagnostic circuit in which only the optimal acoustic sensor is arranged in the acoustic analysis diagnostic apparatus of the example shown in FIGS. 7A and 7B.
[図 9A]この発明の他の実施形態における音響解析診断装置を示し、工場内に音響 センサを配置した例を示す概念図である。  FIG. 9A is a conceptual diagram showing an example of an acoustic analysis / diagnosis apparatus according to another embodiment of the present invention, in which an acoustic sensor is arranged in a factory.
[図 9B]この発明の他の実施形態における音響解析診断装置を示し、データ受信 '解 析診断回路を示す図である。  FIG. 9B shows an acoustic analysis diagnostic apparatus according to another embodiment of the present invention, and is a diagram showing a data reception / analysis diagnostic circuit.
[図 10A]この発明のさらに他の実施形態における音響解析診断装置を示し、固有の 装置に音響センサを配置した例を示す図である。  FIG. 10A shows an acoustic analysis / diagnosis apparatus according to still another embodiment of the present invention, and shows an example in which an acoustic sensor is arranged in a unique apparatus.
[図 10B]この発明のさらに他の実施形態における音響解析診断装置を示し、データ 受信 ·解析診断回路を示す図である。  FIG. 10B is a diagram showing an acoustic analysis / diagnosis device according to still another embodiment of the present invention and a data reception / analysis diagnosis circuit.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 図 1は、この発明の一実施形態における音響センサ装置の一例の平面図である。 FIG. 1 is a plan view of an example of an acoustic sensor device according to an embodiment of the present invention.
図 1において、音響検知素子としての音響センサ装置 1は、半導体シリコン基板 10上 に形成されていて、振動子として作動するダイヤフラム 2と、横断ビーム 3と、終止板 4 と、複数の共振ビーム 5とを含む。  In FIG. 1, an acoustic sensor device 1 as an acoustic sensing element is formed on a semiconductor silicon substrate 10, and operates as a diaphragm 2, a transverse beam 3, a stop plate 4, a plurality of resonant beams 5 Including.
[0024] ダイヤフラム 2は入力音を受けて振動するように薄 、板状に形成されて!、る。横断ビ ーム 3はダイヤフラム 2と終止板 4との間を結合するように形成されており、ダイヤフラ ム 2側の幅が広ぐそこ力 終止板 4側に向うに従って徐々に細くなり、終止板 4端で 最も細くなつている。 Diaphragm 2 is formed in a thin plate shape so as to vibrate in response to input sound! Transverse beam 3 is formed so as to connect between diaphragm 2 and end plate 4, and the force on which diaphragm 2 side widens gradually becomes narrower toward end plate 4 side. It is the narrowest at the four ends.
[0025] 複数の共振ビーム 5は、それぞれ特定の周波数に共振するように長さが調整されて おり、横断ビーム 3から両側に延びるように片持ち支持されている。この音響センサ装 置 1は、同じ共振周波数を有する共振ビーム 5, 5を 1対ずつ備えたフィッシュボーン 構造になって 、る。終止板 4はダイヤフラム 2から横断ビーム 3を介して伝搬してきた 入力音による振動がダイヤフラム 2側に戻らな 、ように吸収するために設けられて ヽ る。なお、ダイヤフラム 2と、横断ビーム 3と、終止板 4と、複数の共振ビーム 5の下部 は空間になっており、複数の共振ビーム 5の周囲は開口されている。 [0025] The length of each of the plurality of resonance beams 5 is adjusted so as to resonate at a specific frequency, and is cantilevered so as to extend from the transverse beam 3 to both sides. This acoustic sensor device 1 has a fishbone structure having a pair of resonant beams 5 and 5 having the same resonant frequency. The end plate 4 is provided to absorb the vibration caused by the input sound propagating from the diaphragm 2 via the transverse beam 3 so as not to return to the diaphragm 2 side. The The diaphragm 2, the crossing beam 3, the end plate 4, and the lower portions of the plurality of resonance beams 5 are spaces, and the periphery of the plurality of resonance beams 5 is opened.
[0026] 入力音による振動によりダイヤフラム 2が垂直に振動し、その振動が横断ビーム 3を 水平方向に伝搬し、複数の共振ビーム 5のうち対応する振動子が垂直に振動する。 共振ビーム 5の長さまたは厚さを変えることにより、それぞれの共振周波数を所望の 値に設定することができる。各共振ビーム 5には、横断ビーム 3側に図示しないピエゾ 抵抗が配置されており、ピエゾ抵抗の抵抗値の変化を例えばホイートストンブリッジの 出力として取出すことができる。  [0026] Diaphragm 2 vibrates vertically by vibration due to input sound, and the vibration propagates in transverse beam 3 in the horizontal direction, and a corresponding vibrator among a plurality of resonance beams 5 vibrates vertically. By changing the length or thickness of the resonant beam 5, the respective resonant frequency can be set to a desired value. Each resonant beam 5 is provided with a piezoresistor (not shown) on the transverse beam 3 side, and a change in the resistance value of the piezoresistor can be taken out as an output of a Wheatstone bridge, for example.
[0027] 図 2は図 1に示した音響センサ装置 1における複数の共振ビーム 5の周波数応答特 性を示す図であり、図 3は入出力特性を示す図であり、図 4は環境ノイズ耐性を示す 図である。  FIG. 2 is a diagram showing frequency response characteristics of a plurality of resonant beams 5 in the acoustic sensor device 1 shown in FIG. 1, FIG. 3 is a diagram showing input / output characteristics, and FIG. 4 is environmental noise resistance. FIG.
[0028] 図 1に示した音響センサ装置 1の複数の共振ビーム 5は、図 2に示すように、例えば 1. 2kHz〜2. 5kHzの共振周波数で共振するように長さを調整することで、それぞ れの共振周波数に選択的に応答させることができる。そして、共振ビーム 5間の相互 作用により、共振周波数間の周波数にも応答させることができる。  [0028] As shown in FIG. 2, the plurality of resonant beams 5 of the acoustic sensor device 1 shown in FIG. 1 are adjusted in length so as to resonate at a resonant frequency of 1.2 kHz to 2.5 kHz, for example. It is possible to selectively respond to each resonance frequency. Then, due to the interaction between the resonant beams 5, the frequency between the resonant frequencies can be made to respond.
[0029] また、ダイヤフラム 2が図 3に示す横軸に示す値で振幅したとき、複数の共振ビーム 5は図 3の縦軸に示す値で振幅する。例えば、ダイヤフラム 2の振幅が 0. であ れば共振ビーム 5の振幅は 4. 2 mになるので、出力を約 14倍に増幅することがで きる。  [0029] When the diaphragm 2 is amplified with the value shown on the horizontal axis shown in FIG. 3, the plurality of resonant beams 5 are amplified with the value shown on the vertical axis in FIG. For example, if the amplitude of diaphragm 2 is 0, the amplitude of resonant beam 5 is 4.2 m, so the output can be amplified by about 14 times.
[0030] さらに、図 1に示した音響センサ装置 1は、目的とする音以外に妨害音が入力され ても、目的とする音の信号を検出するのが可能になる。図 4に示す波形 aは目的音(2 900Hz, 0. lPa)入力時の出力波形を示しており、波形 bは妨害音(500Hz, lOPa )入力時の出力波形を示している。なお、図 4において、波形 bは、波形 aに対して縦 軸を 1Z100に圧縮して示している。波形 cは目的音と妨害音を同時に入力時の出 力波形を示している。この図 4から騒音である妨害音が入力されても、妨害音の 1Z1 00の音圧の目的音を検出するのが可能になる。  Furthermore, the acoustic sensor device 1 shown in FIG. 1 can detect a signal of a target sound even when a disturbing sound is input in addition to the target sound. Waveform a shown in Fig. 4 shows the output waveform when the target sound (2 900 Hz, 0. lPa) is input, and waveform b shows the output waveform when the interference sound (500 Hz, lOPa) is input. In FIG. 4, waveform b shows the waveform a with the vertical axis compressed to 1Z100. Waveform c shows the output waveform when the target sound and interference sound are input simultaneously. From FIG. 4, even if a disturbance sound, which is a noise, is input, it becomes possible to detect a target sound having a sound pressure of 1Z100, which is the interference sound.
[0031] 図 5Aは、この発明の一実施形態における音響解析診断装置のデータ収集'送信 回路を示すブロック図であり、図 5Bは、この発明の一実施形態における音響解析診 断装置のデータ受信'解析診断回路を示すブロック図である。 FIG. 5A is a block diagram showing a data collection and transmission circuit of the acoustic analysis diagnostic device according to one embodiment of the present invention, and FIG. 5B shows an acoustic analysis diagnostic according to one embodiment of the present invention. It is a block diagram which shows the data reception 'analysis diagnostic circuit of a cutting device.
[0032] 図 5Aにおいて、データ収集 ·送信回路 30は、それぞれが独立して別個に設けられ た音響センサ 11〜15と、データ変換回路 21〜25と、制御部 31と、データ送信回路 32と、アンテナ 33とを含む。音響センサ 11〜15は、測定対象から出る幅広い帯域 の音の全帯域を検出するものであり、図 1に示した音響センサ装置 1が用いられる。  In FIG. 5A, the data collection / transmission circuit 30 includes acoustic sensors 11 to 15, data conversion circuits 21 to 25, a control unit 31, and a data transmission circuit 32, which are independently provided separately. And antenna 33. The acoustic sensors 11 to 15 detect the entire band of a wide band of sound emitted from the measurement target, and the acoustic sensor device 1 shown in FIG. 1 is used.
[0033] 音響センサ 11は、例えば 500Hz〜: LkHz、音響センサ 12は 900Hz〜l . 8kHz, 音響センサ 13は 1. 7kHz〜3. 4kHz,音響センサ 14は 3. 3kHz〜6. 8kHz,音響 センサ 15は 6. 7kHz〜10kHzの音に共振するように、隣接する帯域の一部が重な るように音響センサ 11〜 15のそれぞれに含まれて 、る共振ビームが構成されて!、る 。これにより、音響センサ 11〜15によって、例えば、 600Hz〜: LOkHzの連続する帯 域の音を検出することができる。  [0033] The acoustic sensor 11 is, for example, 500 Hz to: LkHz, the acoustic sensor 12 is 900 Hz to l.8 kHz, the acoustic sensor 13 is 1.7 kHz to 3.4 kHz, the acoustic sensor 14 is 3.3 kHz to 6.8 kHz, and the acoustic sensor. The resonance beam 15 is configured to be included in each of the acoustic sensors 11 to 15 so that a part of the adjacent bands overlaps so that 15 resonates with sound of 6.7 kHz to 10 kHz. Thereby, the acoustic sensors 11 to 15 can detect, for example, sounds in a continuous band from 600 Hz to LOkHz.
[0034] 1つの音響センサ装置 1で、広い帯域の音を検出しょうとすると、横断ビームが長く なり、共振ビーム 5の製造に困難を伴うが、例えば、 5個の音響センサ 11〜15で各帯 域を分けて検出することで、共振ビーム 5を比較的容易に製造でき、不要な帯域の振 動子を省略できる。また、音響センサ 11〜15をそれぞれ独立して別個に設けたので 、診断目的に応じて検知素子の組合せが可能になる。  [0034] If a single acoustic sensor device 1 tries to detect a wide band of sound, the transverse beam becomes long and it is difficult to manufacture the resonant beam 5. For example, each of the five acoustic sensors 11 to 15 By detecting the band separately, the resonant beam 5 can be manufactured relatively easily, and the vibrator in the unnecessary band can be omitted. In addition, since the acoustic sensors 11 to 15 are provided independently and separately, the detection elements can be combined according to the purpose of diagnosis.
[0035] なお、測定対象に応じて、帯域を任意に設定することができ、測定対象から出力さ れる、例えば 600Hz〜: LOOkHzの全帯域の音を検出できるように音響センサの数を 増やしてもよぐあるいは測定対象力も出力される全帯域の音のうち、部分的にある 周波数帯域のみを検出できるようにしてもよい。さらに、 1つの音響センサで全帯域の うちのある帯域の音を検出し、他の音響センサで残りの帯域の音を検出するようにし てもよい。  [0035] It should be noted that the band can be arbitrarily set according to the measurement target, and the number of acoustic sensors is increased so that the sound output from the measurement target, for example, 600 Hz to: LOOkHz can be detected. Alternatively, it may be possible to detect only a certain frequency band from the sound of the entire band in which the measurement target force is also output. Furthermore, one acoustic sensor may detect a certain band of the entire band, and the other acoustic sensor may detect the remaining band.
[0036] 各音響センサ 11〜15の出力は、データ変換回路 21〜25に与えられる。データ変 換回路 21〜25は、音響センサ 11〜15から出力される周波数帯域の音の信号を A ZD変換して、音圧強度分布のデータとして制御部 31に出力する。制御部 31はデ ータ変換回路 21〜25から与えられるデータを時分割的に順次データ送信回路 32 に出力し、データ送信回路 32はアンテナ 33から各データを無線あるいは光などで送 信する。 [0037] 図 5Bに示す解析診断部としてのデータ受信 ·解析診断回路 40は、アンテナ 41と、 データ受信回路 42と、解析診断回路 43と、表示部 44とを含む。データ受信回路 42 は、データ収集'送信回路 30から送信されてきた各音響センサ 11〜15の各データ を、アンテナ 41を介して受信し、解析診断回路 43に与える。 [0036] Outputs of the acoustic sensors 11 to 15 are given to data conversion circuits 21 to 25, respectively. The data conversion circuits 21 to 25 perform AZD conversion on the frequency band sound signals output from the acoustic sensors 11 to 15 and output them to the control unit 31 as sound pressure intensity distribution data. The control unit 31 sequentially outputs the data given from the data conversion circuits 21 to 25 to the data transmission circuit 32 in a time division manner, and the data transmission circuit 32 transmits each data from the antenna 33 by radio or light. The data reception / analysis diagnosis circuit 40 as an analysis diagnosis unit shown in FIG. 5B includes an antenna 41, a data reception circuit 42, an analysis diagnosis circuit 43, and a display unit 44. The data receiving circuit 42 receives each data of each acoustic sensor 11 to 15 transmitted from the data collecting / transmitting circuit 30 via the antenna 41 and gives it to the analysis / diagnosis circuit 43.
[0038] 解析診断回路 43は、診断の目的に応じて予め音圧強度分布を比較データとして 記憶しており、その音圧強度分布と、データとして与えられた音圧強度とを比較して 診断目的の特徴抽出を行う。すなわち、診断の目的が、測定対象が正常状態の検 出あるいは異常状態の検出であれば、測定対象が正常に動作しているときあるいは 異常であるときの音の音圧分布を特徴音として記憶しておく。測定対象が異常である ときは、正常状態のときとは異なる音の音圧分布が現れているので、それぞれに応じ た音の音圧強度を特徴音として予め記憶している。なお、異常状態は、測定対象が 故障して!/、る状態と、測定対象の故障を予知する状態を含むものとする。  [0038] The analysis / diagnosis circuit 43 stores the sound pressure intensity distribution as comparison data in advance according to the purpose of diagnosis, and compares the sound pressure intensity distribution with the sound pressure intensity given as data for diagnosis. Perform target feature extraction. In other words, if the purpose of diagnosis is to detect whether the measurement target is in a normal state or to detect an abnormal state, the sound pressure distribution of the sound when the measurement target is operating normally or abnormally is stored as a characteristic sound. Keep it. When the measurement target is abnormal, a sound pressure distribution different from that in the normal state appears, so the sound pressure intensity corresponding to each sound pressure is stored in advance as a characteristic sound. The abnormal state includes a state in which the measurement target has failed! /, And a state in which a failure of the measurement target is predicted.
[0039] 解析診断回路 43は、各音響センサ 11〜15に対応したデータが与えられると、それ ぞれの音圧強度と予め記憶している音圧強度とを比較し、音響センサ 11〜15のうち の最適な組合せを選択する。表示部 44は選択された音響センサの組合せを表示す る。  [0039] When data corresponding to each of the acoustic sensors 11 to 15 is given, the analysis / diagnosis circuit 43 compares the sound pressure strength of each with the sound pressure strength stored in advance, and the acoustic sensors 11 to 15 are compared. Choose the best combination of. The display unit 44 displays the selected combination of acoustic sensors.
[0040] 図 6Aは、この発明の一実施形態における音響解析診断装置のデータ収集'送信 回路 30の動作を説明するためのフローチャートであり、図 6Bは、この発明の一実施 形態における音響解析診断装置のデータ受信'解析診断回路 40の動作を説明する ためのフローチャートである。  FIG. 6A is a flowchart for explaining the operation of the data collection and transmission circuit 30 of the acoustic analysis and diagnosis apparatus in one embodiment of the present invention, and FIG. 6B shows the acoustic analysis and diagnosis in one embodiment of the present invention. 4 is a flowchart for explaining the operation of the data reception / analysis / diagnosis circuit 40 of the apparatus.
[0041] 次に、図 6Aおよび図 6Bを参照して、この発明の一実施形態の音響解析診断装置 で測定対象の正常または異常を診断する動作について説明する。音響センサ 11〜 15は、図示しない測定対象の近辺に配置されており、測定対象を動作させると、音 響センサ 11〜 15では、測定対象から発せられる音に応じて図 1に示したダイヤフラ ム 2が振動し、この振動が横断ビーム 3を介して複数の共振ビーム 5に伝搬される。複 数の共振ビーム 5のうち測定対象の音に対応する振動子が垂直に振動する。この振 動によりピエゾ抵抗素子の抵抗値が変化し、電圧の変化として取出される。  Next, with reference to FIG. 6A and FIG. 6B, an operation for diagnosing normality or abnormality of the measurement object with the acoustic analysis diagnostic apparatus of one embodiment of the present invention will be described. The acoustic sensors 11 to 15 are arranged in the vicinity of a measurement target (not shown), and when the measurement target is operated, the acoustic sensors 11 to 15 perform the diaphragm shown in FIG. 1 according to the sound emitted from the measurement target. 2 vibrates, and this vibration is propagated to the plurality of resonant beams 5 via the transverse beam 3. Among the multiple resonant beams 5, the transducer corresponding to the sound to be measured vibrates vertically. Due to this vibration, the resistance value of the piezoresistive element changes and is taken out as a change in voltage.
[0042] 各音響センサ 11〜15からそれぞれに対応する音の振動に応じた信号が出力され 、データ変換回路 21〜25に与えられて、 AZD変換され音圧強度を示すデータとし て、制御部 31に与えられる。制御部 31は、図 6Aに示すステップ(図示では SPと略 称する) SP1において、音響センサ 11〜15からの音圧強度を示すデータが入力さ れているか否かを判別し、入力されていれば、ステップ SP2において、データ送信回 路 32からアンテナ 33を介して、各データを順次送信させる。 [0042] Each acoustic sensor 11-15 outputs a signal corresponding to the vibration of the corresponding sound. The data conversion circuits 21 to 25 are supplied to the control unit 31 as data indicating the sound pressure intensity after AZD conversion. The control unit 31 determines whether or not the data indicating the sound pressure intensity from the acoustic sensors 11 to 15 is input in the step shown in FIG. 6A (abbreviated as SP in the drawing) SP1. For example, in step SP2, each data is sequentially transmitted from the data transmission circuit 32 via the antenna 33.
[0043] 図 5Bに示すデータ受信 ·解析診断回路 40のデータ受信回路 42は、図 6Bに示す ステップ SP 11にお!/、て、音響センサ 11〜 15の全てのデータを受信したか否かを判 別する。受信していれば、解析診断回路 43は、ステップ SP12において、各音響セン サ 11〜15のデータに基づいて、各音の音圧強度から診断目的の特徴信号を抽出し 、ステップ SP13において、その特徴信号を検出するための少なくとも 1個以上の複 数個の組合せによる音響センサを診断対象設備の信号検出デバイスとして決定する 。そして、ステップ SP14において、そのデバイスである音響センサ 11〜15のうちの 該当するものを表示する。  [0043] The data reception circuit 42 of the data reception / analysis diagnostic circuit 40 shown in FIG. 5B determines whether or not all the data of the acoustic sensors 11 to 15 have been received at step SP11 shown in FIG. 6B! Is discriminated. If received, the analysis / diagnostic circuit 43 extracts a characteristic signal for diagnosis from the sound pressure intensity of each sound based on the data of each acoustic sensor 11-15 in step SP12, and in step SP13 An acoustic sensor based on a combination of at least one or more for detecting feature signals is determined as a signal detection device for the facility to be diagnosed. In step SP14, the corresponding one of the acoustic sensors 11 to 15 as the device is displayed.
[0044] 信号検出デバイスとして決定される複数の音響センサ 11〜15の組合せは、診断の 目的によって選択される。例えば、診断の目的が、測定対象が正常状態であるか、 異常状態として故障予知の検出であるか、故障の検出である力などによって決めら れる。正常状態であるか、故障予知であるか、故障状態であるかに応じて測定対象 力 出る音の分布が異なっているので、それぞれの音の分布を検出できるように音響 センサの組合せが決定される。例えば、正常状態を検知するために音響センサ 12, 13, 15の組合せを選択したり、故障予知の検出では音響センサ 11, 12, 13の組合 せを選択したり、故障の検出では音響センサ 13, 14, 15の組合せを選択する。  [0044] The combination of the plurality of acoustic sensors 11 to 15 determined as the signal detection device is selected according to the purpose of diagnosis. For example, the purpose of diagnosis is determined by whether the object to be measured is in a normal state, detection of failure prediction as an abnormal state, or force that is detection of failure. Since the distribution of the sound output from the measurement target force differs depending on whether it is in the normal state, failure prediction, or failure state, the combination of acoustic sensors is determined so that each sound distribution can be detected. The For example, a combination of acoustic sensors 12, 13, and 15 is selected to detect a normal state, a combination of acoustic sensors 11, 12, and 13 is selected to detect a failure prediction, and an acoustic sensor 13 is selected to detect a failure. , 14, 15 combination is selected.
[0045] 上述のごとぐこの実施形態によれば、複数の音響センサ 11〜 15のそれぞれが異 なる音に共振することにより、全帯域内の異なる周波数帯域ごとの音のみを検出する 。そして、複数の音響センサ 11〜15から出力されるそれぞれが異なる周波数帯域の 音響信号を解析して音の分布を診断することにより、それぞれの特徴に応じた音響 センサの組合せを選択することで、比較的簡単な構成でありながら、リアルタイムで測 定対象からの音を解析診断できる。  [0045] As described above, according to this embodiment, each of the plurality of acoustic sensors 11 to 15 resonates with a different sound, thereby detecting only sounds in different frequency bands within the entire band. Then, by analyzing the acoustic signals of the different frequency bands output from the plurality of acoustic sensors 11 to 15 and diagnosing the sound distribution, by selecting a combination of acoustic sensors according to each feature, Although it has a relatively simple configuration, it can analyze and diagnose sound from the measurement object in real time.
[0046] し力も、音響センサ 11〜15として、共振ビーム 5, 5を 1対ずつ備えたフィッシュボー ン構造のセンサを用いているので、ソフト処理などで周波数分解をする必要がなぐリ アルタイムに周波数分解を行うことができる。さらに、各周波数帯域への分解に要す る計算時間を削減できるので処理時間を短縮できる。 [0046] The fish force is also provided as a pair of resonant beams 5, 5 as acoustic sensors 11-15. Because it uses a sensor with a sensor structure, frequency decomposition can be performed in real time without the need for frequency decomposition by software processing. Furthermore, the processing time can be shortened because the calculation time required for decomposition into each frequency band can be reduced.
[0047] 図 7Aおよび図 7Bは、この発明の他の実施形態における音響解析診断装置を用い て、全帯域で測定対象音を解析診断する例を示す図であり、特に、図 7Aは、データ 収集 ·送信回路を示し、図 7Bは、データ受信'解析診断回路を示す。  FIG. 7A and FIG. 7B are diagrams showing an example of analyzing and diagnosing the measurement target sound in the entire band using the acoustic analysis and diagnosis apparatus according to another embodiment of the present invention. In particular, FIG. Fig. 7B shows the data reception and analysis diagnostic circuit.
[0048] 図 8Aおよび図 8Bは、図 7Aおよび図 7Bに示した例の音響解析診断装置で最適な 音響センサのみを配置した例を示す図であり、図 8Aはデータ収集'送信回路を示し 、図 8Bはデータ受信'解析診断回路を示す。  FIG. 8A and FIG. 8B are diagrams showing an example in which only the optimal acoustic sensor is arranged in the acoustic analysis diagnostic apparatus of the example shown in FIG. 7A and FIG. 7B, and FIG. 8A shows a data collection and transmission circuit FIG. 8B shows a data reception / analysis diagnostic circuit.
[0049] 図 7Aに示すように測定対象 50の近辺に音響センサ 11〜15がそれぞれ別個に独 立して配置される。データ収集'送信回路 30aは、図 5Aに示したデータ収集'送信回 路 30から音響センサ 11〜15を除いて構成されている。音響センサ 11〜15は、測定 対象 50の周辺に分布して配置されている。データ受信'解析診断回路 40は、図 6B に示したフローチャートに基づいて、全帯域で測定対象 50からの音を解析診断する 。そして、例えば、正常状態を検知するために、音響センサ 12, 13, 15の組合せを 選択する。選択された音響センサ 12, 13, 15を配置したのが図 8Aである。  [0049] As shown in FIG. 7A, the acoustic sensors 11 to 15 are separately arranged in the vicinity of the measurement object 50, respectively. The data collection / transmission circuit 30a is configured by removing the acoustic sensors 11 to 15 from the data collection / transmission circuit 30 shown in FIG. 5A. The acoustic sensors 11 to 15 are distributed around the measurement object 50. The data reception / analysis / diagnostic circuit 40 analyzes and diagnoses the sound from the measurement object 50 in the entire band based on the flowchart shown in FIG. 6B. For example, in order to detect a normal state, a combination of acoustic sensors 12, 13, and 15 is selected. FIG. 8A shows the arrangement of the selected acoustic sensors 12, 13, and 15.
[0050] 図 8Bに示したデータ受信 ·解析診断回路 40により、測定対象 50からの音のデータ を収集して測定対象の正常状態である力あるいは異常状態であるかを解析診断し、 測定対象 50の保守要否判断などの状態監視を行う。なお、図 5Aで説明したように、 故障予知を行う場合は、音響センサ 11, 12, 13を配置し、故障検知を行う場合は、 音響センサ 13, 14, 15を配置すればよい。  [0050] The data reception / analysis diagnostic circuit 40 shown in FIG. 8B collects sound data from the measurement target 50, analyzes and diagnoses whether the measurement target is in a normal state or an abnormal state, and measures the measurement target. Monitors the status of 50 maintenance requirements. As described with reference to FIG. 5A, the acoustic sensors 11, 12, and 13 may be arranged for failure prediction, and the acoustic sensors 13, 14, and 15 may be arranged for failure detection.
[0051] 図 9Aは、この発明の他の実施形態における音響解析診断装置を示し、工場内に 音響センサを配置した例を示す概念図であり、図 9Bは、この発明の他の実施形態に おける音響解析診断装置を示し、データ受信'解析診断回路を示す。  FIG. 9A shows an acoustic analysis / diagnosis apparatus according to another embodiment of the present invention, and is a conceptual diagram showing an example in which an acoustic sensor is arranged in a factory. FIG. 9B shows another embodiment of the present invention. 1 shows an acoustic analysis diagnostic device and a data reception / analysis diagnostic circuit.
[0052] 図 9Aにおいて工場 60内には、図示しないが、複数の故障モードを有する装置設 備が複数台設置されて 、る。このために工場内では複数の異常音である騒音が発生 している。そこで、この実施形態では、工場 60内で個々の異常音を検出するために 複数の音響センサ 11〜15が配置される。 [0053] なお、図 9Aでは、図示を省略している力 図 7Aに示したデータ収集 ·送信回路 30 aに各音響センサ 11〜 15の出力が与えられて 、る。図 9Bに示すデータ受信 ·解析 診断回路 40は、工場 60の外に配置されている。データ受信'解析診断回路 40は、 音響センサ 11〜15が個々の音を検出するので、各音響センサ 11〜15のデータに 基づ 、て、装置設備が正常であるかある 、は異常であって保守が必要であるかの判 断などの状態監視を行う。 In FIG. 9A, in the factory 60, although not shown, a plurality of apparatus facilities having a plurality of failure modes are installed. For this reason, multiple abnormal noises are generated in the factory. Therefore, in this embodiment, a plurality of acoustic sensors 11 to 15 are arranged in order to detect individual abnormal sounds in the factory 60. In FIG. 9A, the output of each of the acoustic sensors 11 to 15 is given to the data collection / transmission circuit 30a shown in FIG. 7A. Data reception / analysis shown in Figure 9B The diagnostic circuit 40 is located outside the factory 60. In the data reception / analysis / diagnostic circuit 40, since the acoustic sensors 11 to 15 detect individual sounds, whether or not the equipment is normal is abnormal based on the data of the acoustic sensors 11 to 15. Status monitoring, such as determining whether maintenance is necessary.
[0054] 図 10Aは、この発明のさらに他の実施形態における音響解析診断装置を示し、固 有の装置に音響センサを配置した例を示す図であり、図 10Bは、この発明のさらに他 の実施形態における音響解析診断装置のデータ受信'解析診断回路を示す図であ る。  [0054] FIG. 10A shows an acoustic analysis and diagnosis apparatus according to still another embodiment of the present invention, and is a diagram showing an example in which an acoustic sensor is arranged in a unique apparatus. FIG. 10B is still another embodiment of the present invention. It is a figure which shows the data reception 'analysis diagnostic circuit of the acoustic analysis diagnostic apparatus in embodiment.
[0055] 図 10Aに示すように、工場などにおいて固有の装置 71〜74が配置されており、そ れぞれの装置 71〜74が騒音を発して 、る。各装置 71〜74に近接して音響センサ 1 1〜14が配置されている。データ受信'解析診断回路 40は、図示しないデータ収集 · 送信回路力も各音響センサ 11〜14に対応して与えられるデータに基づいて、各装 置 71〜74の固有の音を検出することで、正常,異常の判断や特徴抽出などの診断 を行うことができる。  [0055] As shown in FIG. 10A, unique devices 71 to 74 are arranged in a factory or the like, and each of the devices 71 to 74 generates noise. The acoustic sensors 11 to 14 are arranged close to the devices 71 to 74. The data reception / analysis / diagnostic circuit 40 detects the unique sound of each of the devices 71-74 based on the data collection / transmission circuit force (not shown) corresponding to the acoustic sensors 11-14, Diagnosis such as normal / abnormal judgment and feature extraction can be performed.
[0056] 以上、図面を参照してこの発明の実施形態を説明した力 この発明は、図示した実 施形態のものに限定されない。図示された実施形態に対して、この発明と同一の範 囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが 可能である。  [0056] The power of the embodiment of the present invention described above with reference to the drawings. The present invention is not limited to that of the illustrated embodiment. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.
産業上の利用可能性  Industrial applicability
[0057] この発明の音響センサ装置,音響解析診断装置および音響センサの製造方法は、 工場内の機器や装置設備の異常の有無を判断するのに利用される。 The acoustic sensor device, acoustic analysis / diagnosis device, and acoustic sensor manufacturing method according to the present invention are used to determine whether there is an abnormality in equipment or equipment in a factory.

Claims

請求の範囲 The scope of the claims
[1] 測定対象力 出る幅広い帯域の音のうちの少なくとも所定の帯域の音を検出する 音響センサ装置であって、  [1] Power to be measured An acoustic sensor device that detects at least a predetermined band of a wide band of sounds,
異なる音に応じて共振する複数の第 1の振動子を含み、前記帯域内の第 1の帯域 の音を検出し、前記測定対象の第 1の特徴音を抽出する第 1の音響検知素子と、 異なる音に応じて共振する複数の第 2の振動子を含み、前記帯域内の前記第 1の 帯域とは異なる第 2の帯域の音を検出し、前記測定対象の第 2の特徴音を抽出する 、前記第 1の音響検知素子とは別個独立して設けられた第 2の音響検知素子とを備 える、音響センサ装置。  A first acoustic sensing element that includes a plurality of first vibrators that resonate according to different sounds, detects a first band sound within the band, and extracts a first characteristic sound of the measurement target; Including a plurality of second vibrators that resonate in response to different sounds, detecting a second band sound different from the first band within the band, and detecting a second characteristic sound to be measured An acoustic sensor device comprising: a second acoustic sensing element that is provided separately from the first acoustic sensing element to be extracted.
[2] 前記第 1の音響検知素子は、前記測定対象から出る幅広い全帯域の音のうちの所 定の帯域の音を検出し、前記第 2の音響検知素子は、前記測定対象から出る幅広い 全帯域の音のうちの残りの帯域の音を検出する、請求項 1に記載の音響センサ装置  [2] The first acoustic detection element detects a sound in a predetermined band out of a wide range of sounds emitted from the measurement target, and the second acoustic detection element is a wide range output from the measurement target. The acoustic sensor device according to claim 1, wherein the sound of the remaining band among the sounds of the entire band is detected.
[3] 前記第 1の音響検知素子は、前記測定対象から出る幅広い全帯域の音のうちの所 定の帯域の音を検出し、前記第 2の音響検知素子は、前記測定対象から出る幅広い 全帯域の音のうちの前記所定の帯域の内の一部の帯域の音と、残りの帯域の音とを 検出する、請求項 1に記載の音響センサ装置。 [3] The first acoustic detection element detects a sound in a predetermined band out of a wide range of sounds emitted from the measurement target, and the second acoustic detection element is a wide range output from the measurement target. 2. The acoustic sensor device according to claim 1, wherein a sound in a part of the predetermined band among sounds in all bands and a sound in the remaining band are detected.
[4] 前記第 1の特徴音は、前記測定対象が正常であることを示し、前記第 2の特徴音は 、前記測定対象が異常であることを示している、請求項 1に記載の音響センサ装置。  [4] The sound according to claim 1, wherein the first characteristic sound indicates that the measurement target is normal, and the second characteristic sound indicates that the measurement target is abnormal. Sensor device.
[5] 測定対象力 出る幅広い帯域の音のうちの少なくとも所定の帯域の音を検出し、解 祈して診断する音響診断解析装置であって、  [5] Power to be measured An acoustic diagnostic analysis device that detects at least a predetermined band of a wide band of sounds and prays for diagnosis.
異なる音に応じて共振する振動子を含み、前記幅広い帯域内に含まれ、かつ異な る周波数帯域ごとの音のみを検出する、それぞれが別個独立して設けられた複数の 音響検知素子と、  A plurality of acoustic sensing elements each including a vibrator that resonates in response to different sounds and that detects only sounds in different frequency bands that are included in the wide band;
前記複数の音響検知素子力 出力されるそれぞれが異なる周波数帯域の音響信 号を解析して音の分布を診断し、前記測定対象の特徴を解析する解析診断部とを備 える、音響解析診断装置。  An acoustic analysis diagnostic device comprising: an analysis diagnostic unit that analyzes acoustic signals of different frequency bands, each of which is output by the plurality of acoustic detection element forces, diagnoses a sound distribution, and analyzes characteristics of the measurement target .
[6] 前記解析診断部は、前記測定対象の正常,異常および故障予知診断を前記特徴 として解析する、請求項 5に記載の音響解析診断装置。 [6] The analysis / diagnosis unit performs normality / abnormality / failure prediction diagnosis of the measurement target. The acoustic analysis diagnostic device according to claim 5, wherein
[7] 前記解析診断部は、前記異常検知を解析したことに応じて、前記測定対象の保守 点検の要否を判断する、請求項 5に記載の音響解析診断装置。 7. The acoustic analysis / diagnosis device according to claim 5, wherein the analysis / diagnosis unit determines whether or not maintenance / inspection of the measurement target is necessary according to the analysis of the abnormality detection.
[8] 前記故障診断部は、診断目的に応じた比較データを予め記憶している、請求項 5 に記載の音響解析診断装置。 8. The acoustic analysis diagnostic apparatus according to claim 5, wherein the failure diagnosis unit stores in advance comparison data corresponding to a diagnosis purpose.
[9] 測定対象の音響解析に使用する音響解析診断装置の製造方法であって、 [9] A method of manufacturing an acoustic analysis diagnostic device used for acoustic analysis of a measurement object,
異なる音に応じて共振する振動子を含む、それぞれが別個独立して設けられた複 数の音響検知素子を準備する工程と、  Preparing a plurality of acoustic detection elements, each including a vibrator that resonates in response to different sounds, each independently provided;
前記複数の音響検知素子を測定対象の近辺に設置し、目的に応じて前記測定対 象のデータを収集する工程と、  Installing the plurality of acoustic detection elements in the vicinity of the measurement target, and collecting the data to be measured according to the purpose;
前記収集したデータに基づいて、前記複数の音響検知素子のうちの所定の帯域の 音に共振する音響検知素子の組合せを決定する工程とを備える、音響解析診断装 置の製造方法。  And a step of determining a combination of acoustic detection elements that resonate with sound in a predetermined band among the plurality of acoustic detection elements based on the collected data.
PCT/JP2006/314411 2005-08-18 2006-07-20 Acoustic sensor device, acoustic analysis diagnosis device, and acoustic analysis diagnosis device manufacturing method WO2007020767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005237884A JP2007051952A (en) 2005-08-18 2005-08-18 Acoustic sensor device, acoustic analysis diagnosis device, and method of manufacturing acoustic sensor
JP2005-237884 2005-08-18

Publications (1)

Publication Number Publication Date
WO2007020767A1 true WO2007020767A1 (en) 2007-02-22

Family

ID=37757433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314411 WO2007020767A1 (en) 2005-08-18 2006-07-20 Acoustic sensor device, acoustic analysis diagnosis device, and acoustic analysis diagnosis device manufacturing method

Country Status (3)

Country Link
JP (1) JP2007051952A (en)
TW (1) TW200718927A (en)
WO (1) WO2007020767A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10594874B2 (en) 2016-01-15 2020-03-17 Ricoh Company, Ltd. Malfunction determining apparatus, malfunction determining system, malfunction determining method, and recording medium
JP6798265B2 (en) * 2016-01-15 2020-12-09 株式会社リコー Abnormality judgment device, abnormality judgment system and abnormality judgment method
JP2018179626A (en) * 2017-04-07 2018-11-15 新日本無線株式会社 Ultrasonic receiver
JP7467317B2 (en) 2020-11-12 2024-04-15 株式会社東芝 Acoustic inspection device and acoustic inspection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10325753A (en) * 1997-05-26 1998-12-08 Sumitomo Metal Ind Ltd Acoustic sensor
JP2003075284A (en) * 2001-08-31 2003-03-12 Daikin Ind Ltd Method for inspecting leakage
JP2004020484A (en) * 2002-06-19 2004-01-22 Yamatake Corp Abnormality monitoring device and program for monitoring abnormality
JP2004251751A (en) * 2003-02-20 2004-09-09 Mitsui Eng & Shipbuild Co Ltd Acoustic sensor array, acoustic diagnostic device and acoustic diagnostic method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10157257A (en) * 1996-11-22 1998-06-16 Xerox Corp Trouble detecting oscillation sensor and printer system equipped with the same
JP3374775B2 (en) * 1999-01-12 2003-02-10 住友金属工業株式会社 Vibration wave sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10325753A (en) * 1997-05-26 1998-12-08 Sumitomo Metal Ind Ltd Acoustic sensor
JP2003075284A (en) * 2001-08-31 2003-03-12 Daikin Ind Ltd Method for inspecting leakage
JP2004020484A (en) * 2002-06-19 2004-01-22 Yamatake Corp Abnormality monitoring device and program for monitoring abnormality
JP2004251751A (en) * 2003-02-20 2004-09-09 Mitsui Eng & Shipbuild Co Ltd Acoustic sensor array, acoustic diagnostic device and acoustic diagnostic method

Also Published As

Publication number Publication date
TWI294514B (en) 2008-03-11
TW200718927A (en) 2007-05-16
JP2007051952A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
CN107438758B (en) Method and system for structural health monitoring with frequency synchronization
US4956999A (en) Methods and apparatus for monitoring structural members subject to transient loads
US4901575A (en) Methods and apparatus for monitoring structural members subject to transient loads
CN100480648C (en) Method and apparatus for vibration sensing and analysis
JPH11118592A (en) Equipment abnormality diagnosis device and plant device mounting the same
US20080255781A1 (en) Transducer array self-diagnostics and self-healing
JP5224547B2 (en) Method and apparatus for diagnosing structural damage
Misra et al. An IoT based building health monitoring system supported by cloud
WO2017064855A1 (en) Structural abnormality detecting system, structural abnormality detecting method, and recording medium recording same
EP3788339B1 (en) Monitoring bolt tightness using percussion and machine learning
WO2007020767A1 (en) Acoustic sensor device, acoustic analysis diagnosis device, and acoustic analysis diagnosis device manufacturing method
US8483977B1 (en) Method of laser vibration defect analysis
JP2011191181A (en) Abnormality diagnostic system of rotary apparatus, abnormality diagnostic device of the same, and abnormality diagnosis method of the same
KR102392951B1 (en) Equipment failure prediction system having multi-channel sensors for receiving acoustic signals in the ultrasonic band
JP2003029818A (en) Failure diagnostic system and failure diagnostic program
JP2017134047A (en) Acceleration sensor device, monitoring system, and diagnosis method
JP3867057B2 (en) Acoustic sensor array, acoustic diagnostic apparatus, and acoustic diagnostic method
JP3014201B2 (en) Bearing abnormality prediction device
TW202045899A (en) Analysis apparatus, analysis method, and non-transitory computer readable storage medium
EP0705422B1 (en) Continuous monitoring of reinforcements in structures
JP2005083752A (en) Breaking sound sensor
KR101159233B1 (en) System and method for stability diagnosis of machine using vibration
US7503219B2 (en) Monitoring and diagnosing a technical installation using purely mechanically activated signaling means
JPH11258381A (en) Detector abnormality diagnostic method
WO2022163261A1 (en) Device diagnosis system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781366

Country of ref document: EP

Kind code of ref document: A1