JP3014201B2 - Bearing abnormality prediction device - Google Patents

Bearing abnormality prediction device

Info

Publication number
JP3014201B2
JP3014201B2 JP4040580A JP4058092A JP3014201B2 JP 3014201 B2 JP3014201 B2 JP 3014201B2 JP 4040580 A JP4040580 A JP 4040580A JP 4058092 A JP4058092 A JP 4058092A JP 3014201 B2 JP3014201 B2 JP 3014201B2
Authority
JP
Japan
Prior art keywords
bearing
frequency
sound
microphone
magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4040580A
Other languages
Japanese (ja)
Other versions
JPH05209782A (en
Inventor
惇 高橋
克彦 柴田
雄偉 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP4040580A priority Critical patent/JP3014201B2/en
Publication of JPH05209782A publication Critical patent/JPH05209782A/en
Application granted granted Critical
Publication of JP3014201B2 publication Critical patent/JP3014201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,複数個の軸受けをもつ
装置に対し,各軸受けの回転音を計測することによって
軸受けの異常および余寿命を予知する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus having a plurality of bearings, and for predicting abnormality and remaining life of the bearings by measuring the rotation noise of each bearing.

【0002】[0002]

【従来の技術】 本願と発明者を共通にする特公平2-59
420号公報(特開昭59-81531号公報) は,複数個のベア
リングの破壊予知を行なう方法を開示する。この方法
は,各ベアリングに圧電素子型の振動加速度センサーを
取り付けておき,これら多数のセンサーからの信号出力
をスキャンニング装置で時間分割して一台の周波数分析
計に送って各々の振動加速度強度を周波数分析し,ベア
リングを構成する部位ごとに演算された高周波帯域 (20
〜75 KHz)の振動加速度強度と該帯域での正常であった
初期の振動加速度強度との比から振動加速度倍率を算出
し,この振動加速度倍率が予め設定した域値を超えたと
きに各ベアリングの破壊予知信号を発し,この信号に基
づいて各回転機器のベアリング破壊予知表示を行なうも
のであり,併せて, 低周波数帯域(1Hzから1KHz)の振
動加速度強度と該帯域での正常であった初期の振動加速
度強度との比から振動加速度倍率を算出すると共に,こ
の振動加速度倍率が予め設定された域値を超えたときに
ベアリング以外の機械由来の異常報知信号を発すること
もできる。
2. Description of the Related Art 2-59
Japanese Patent Publication No. 420 (JP-A-59-81531) discloses a method for predicting the failure of a plurality of bearings. In this method, a piezoelectric element type vibration acceleration sensor is attached to each bearing, and the signal output from these many sensors is time-divided by a scanning device and sent to a single frequency analyzer, and each vibration acceleration intensity is measured. Frequency analysis of the high-frequency band (20
The vibration acceleration magnification is calculated from the ratio of the vibration acceleration intensity of about 75 KHz) to the initial vibration acceleration intensity that was normal in the band, and when this vibration acceleration magnification exceeds a preset threshold value, each bearing is calculated. The failure prediction signal is issued, and the bearing failure prediction display of each rotating device is performed based on this signal. In addition, the vibration acceleration intensity in the low frequency band (1 Hz to 1 KHz) and the normal value in this band were obtained. The vibration acceleration magnification can be calculated from the ratio with the initial vibration acceleration intensity, and when the vibration acceleration magnification exceeds a preset threshold value, an abnormality notification signal derived from a machine other than the bearing can be issued.

【0003】また,この破壊予知方法を一層改善したベ
アリング余寿命推定方法が本願と同一発明者による特開
平3-12533号公報に記載されている。これによれば,前
記の振動加速度倍率の経時変化は, 破壊に至るまでの途
中において,該倍率がいったん低下する所謂「呼吸域」
が存在することに着目し,この呼吸域を考慮に入れてベ
アリングの余寿命を推定するものである。
A method of estimating the remaining life of a bearing, which further improves the method of predicting the failure, is disclosed in Japanese Patent Application Laid-Open No. HEI 3-12533 by the same inventor as the present invention. According to this, the time-dependent change of the vibration acceleration magnification is a so-called “respiratory range” in which the magnification temporarily decreases before the fracture occurs.
The remaining life of the bearing is estimated by taking into account the existence of the respiratory range and taking this respiratory range into consideration.

【0004】[0004]

【発明が解決しようとする課題】特公平2-59420号公報
および特開平3-12533号公報に記載の方法によれば,20
〜75KHz の初期正常状態に対する振動加速度倍率を指標
として軸受けの余寿命の推定ができ,また異常予知がで
きるが,振動速度や振動加速度を検出するのに圧電素子
型の振動加速度センサーを使用するものであるから,こ
のセンサーを軸受けに直接接触させるかまたは固定する
ことが必要である。
According to the method described in Japanese Patent Publication No. 2-59420 and Japanese Patent Laid-Open Publication No. 3-12533,
It is possible to estimate the remaining life of the bearing by using the vibration acceleration magnification with respect to the initial normal state of up to 75 KHz as an index, and to predict abnormalities, but using a piezoelectric element type vibration acceleration sensor to detect vibration speed and vibration acceleration Therefore, it is necessary to directly contact or fix the sensor to the bearing.

【0005】 しかし,装置によっては軸受部が隠蔽さ
いるものもあり,この場合にはセンサーの取り付け
が困難となる。また,数多くの軸受けをもつ装置ではそ
の軸受けの数だけセンサーを設置することが必要とな
り,センサー数が多くなって配線が複雑になったり, 取
り付けに困難をもたらすこともある。本発明はこの問題
の解決を目的としたものである。
However, some of them bearing portion is concealed by the device, the mounting of the sensor is difficult in this case. Further, in a device having a large number of bearings, it is necessary to install sensors as many as the number of the bearings, and the number of sensors is increased, which may complicate wiring and may cause difficulty in mounting. The present invention is directed to solving this problem.

【0006】[0006]

【問題を解決するための手段】 本発明によれば,複数
個の軸受けに対し所定の距離だけ離れた位置に位置決め
可能に設置され且つ超音波領域の音を計測するマイクロ
フォンと,このマイクロフォンで計測される各軸受けか
らの音を収録・解析して各軸受けの異常予知信号を出力
する監視ステーションとからなり,該監視ステーション
において,マイクロフォンからの各軸受けに対応する測
定音を包絡線処理装置で包絡線処理したうえ,周波数分
析計周波数の成分強度を分析し,管理用パソコンにお
いて当該軸受けの初期正常時の登録された監視周波数の
成分強度に対する今回計測された監視周波数の成分強度
の倍率を計算し,この倍率から当該軸受けの異常および
余寿命を推定する軸受け異常予知装置を提供する。
According to the means for solving the problems] The present invention, a microphone that measures the sound positionable so installed and ultrasonic region positioned at a predetermined distance against the only plurality of bearings, in the microphone A monitoring station that records and analyzes the measured sound from each bearing and outputs an abnormality prediction signal for each bearing. At the monitoring station, the measured sound corresponding to each bearing from the microphone is processed by an envelope processing device. After performing the envelope processing , the frequency component intensity is analyzed by the frequency analyzer , and the management personal computer calculates the magnification of the component intensity of the monitoring frequency measured this time with respect to the component intensity of the registered monitoring frequency at the time of initial normal operation of the bearing. The present invention provides a bearing abnormality prediction device that calculates and estimates the abnormality and the remaining life of the bearing from the magnification.

【0007】[0007]

【実施例】図1に本発明装置の機器構成を示した。1は
超音波マイクロフォンであり,すなわち10Hzから50KHz
までの音を計測できるものである。このマイクロフォン
1はコンデンサーマイクロフォンの1種であり,音源
(回転する軸受け)2の音を指向性をもって採録するた
めにノズル3が取り付けてある。マイクロフォン1は軸
受けに可能な限り接近させることが望ましい。マイクロ
フォン1で採取された音はアンプ4で増幅したうえ,監
視ステーション5に送信される。
FIG. 1 shows the equipment configuration of the apparatus of the present invention. 1 is an ultrasonic microphone, that is, 10Hz to 50KHz
It can measure the sound up to. The microphone 1 is one type of a condenser microphone, and has a nozzle 3 attached for recording the sound of a sound source (rotating bearing) 2 with directivity. It is desirable that the microphone 1 be as close as possible to the bearing. The sound collected by the microphone 1 is amplified by the amplifier 4 and transmitted to the monitoring station 5.

【0008】監視ステーション5は,騒音計6,包絡線
処理装置7,周波数分析器8,管理用パソコン9,CR
T10, プリンタ11からなっている。マイクロフォン1の
計測信号はアンプ4で増幅された後に騒音計6に入る
が,この騒音計6では該信号に物理単位を付与し,暗騒
音を除去するために5KHzまでの音を,騒音計6に内蔵
するフイルタでカットする。
The monitoring station 5 includes a sound level meter 6, an envelope processing device 7, a frequency analyzer 8, a management personal computer 9, a CR
It consists of T10 and printer 11. After the measurement signal of the microphone 1 is amplified by the amplifier 4, it enters the sound level meter 6. The sound level meter 6 assigns a physical unit to the signal and outputs a sound up to 5 KHz to remove background noise. Cut with the built-in filter.

【0009】次に包絡線処理装置7に入り,ここで,5
KHzから50KHzまでの音を低周波数域に変調した信号と,
包絡線処理しない生の(変調しない)信号に分ける。こ
の二つの信号は周波数分析器8に入り, ここで両信号と
も,1Hzから50KHzまでの各周波数の成分強度が分析さ
れる。そして,二つの信号のオールパス値をそれぞれ計
測し,管理用パソコン9に送信される。なお,機器によ
っては周波数分析器自体が包絡線処理装置を内蔵してい
るものもある。
[0009] Next, an envelope processing device 7 is entered.
A signal obtained by modulating the sound from KHz to 50KHz to the low frequency range,
Divide into raw (non-modulated) signals that are not envelope processed. These two signals enter a frequency analyzer 8 where both signals are analyzed for the component strength of each frequency from 1 Hz to 50 KHz. Then, the all-pass values of the two signals are measured and transmitted to the management personal computer 9. In some devices, the frequency analyzer itself has a built-in envelope processing device.

【0010】管理用パソコン9は,騒音計6,包絡線処
理装置7更には周波数分析器8の機能処理を行なうと共
に,当該軸受けの初期正常時の登録された監視周波数の
成分強度に対する今回計測された監視周波数の成分強度
の倍率を計算し,この倍率を評価基準として軸受けの異
常を診断しまた余寿命を推定し,これらの情報をCRT
10やプリンタ11に送信し,場合によってはアナンシエー
タ12にその警報ランプ13を点灯するための信号を送信す
る。
The management personal computer 9 performs the function processing of the sound level meter 6, the envelope processing device 7, and the frequency analyzer 8, and also measures the component intensity of the registered monitoring frequency at the time of initial normal operation of the bearing. The magnification of the component intensity of the monitored frequency is calculated, the abnormality of the bearing is diagnosed and the remaining life is estimated by using the magnification as an evaluation criterion.
A signal for turning on the alarm lamp 13 is transmitted to the annunciator 12 in some cases.

【0011】管理用パソコン9における演算処理の手順
は次のとおりである。 (1) 計測する軸受け部の決定とアドレスを確認する。 (2) 音の強さに応じて計測レンジを決定し,計測レンジ
変更を行う。 (3) 包絡線処理の切り替えおよび信号の流れを管理す
る。 (4) 各軸受けについての正常時 (稼働始期) における1
Hzから50KHzまでの音の周波数成分の各強度の登録をす
る。 (5) 監視周波数を計算する。図2に示すように,軸受け
の異常の原因となる架台のガタ,軸受けのアッバラン
ス,ミスアライメント,シヤフトの曲がり,ギヤの欠損
等と,周波数との間に一定の相関があり,これらの異常
原因の因子ごとの監視周波数を図2の式に基づいて計算
する。これらの相関については特公平2-59420号公報に
記載のものと実質的に変わりはない。 (6) 各軸受けについての正常時 (稼働始期) の包絡線処
理した音の監視周波数における強度を登録する。
The procedure of the arithmetic processing in the management personal computer 9 is as follows. (1) Determine the bearing to be measured and confirm the address. (2) Determine the measurement range according to the sound intensity and change the measurement range. (3) Switching the envelope processing and managing the signal flow. (4) 1 at normal time (start of operation) for each bearing
The strength of each frequency component of the sound from Hz to 50 KHz is registered. (5) Calculate the monitoring frequency. As shown in Fig. 2, there is a certain correlation between the frequency of the backlash of the gantry, the imbalance of the bearing, the misalignment of the bearing, the bending of the shaft, the loss of the gear, etc., which cause the bearing to be abnormal. The monitoring frequency for each cause factor is calculated based on the equation in FIG. These correlations are not substantially different from those described in Japanese Patent Publication No. 2-59420. (6) For each bearing, register the intensity at the monitoring frequency of the envelope-processed sound in the normal state (start of operation).

【0012】(7) 周波数分析器から送信された各軸受け
についてのオールパス値が,正常時の登録されたオール
パス値の何倍になっているかの倍率を計算する。 (8) 監視周波数ごとに登録されている成分強度に対す
る, 計測され包絡線処理された音の監視周波数における
成分強度の倍率を計算する。 (9) 計測された音を, 例えば5KHzから20KHz未満, 20KH
zから35KHz未満, 35KHzから50KHz未満, の各周波数帯に
分けて, 各々の強度の平均値を計算する。 (10)正常時の音の各周波数帯の平均強度に対する, (9)
で求められた計測された各周波数帯の平均強度の倍率を
計算する。 (11)以上のようにして得られた監視周波数における成分
強度の倍率, 各周波数帯の平均強度の倍率, オールパス
値の相対評価基準によって,軸受けの異常を診断する。
図3はこれらの倍率と異常域との関係例を示している。 (12)また,該倍率から各軸受けの余寿命の時間を推定す
る。これは倍率の近似曲線から求まる。図4は或る周波
数帯での平均強度倍率の経時変化を示したものであり,
倍率の近似曲線と倍率の実測値との間で整合性があるこ
とを示している。また図5は予測した余寿命と実際の余
寿命との関係を示す。このように推定した余寿命時間
を,計測時刻,軸受け部の名称または番号,診断の結
果,計測値などと共にCRT10やプリンタ11に送信し,
また異常の判断を行ったときはアナンシエータ12の警報
ランプ13を点灯するための信号を送信する。
(7) Calculate the magnification of how many times the all-pass value of each bearing transmitted from the frequency analyzer is higher than the registered all-pass value in the normal state. (8) Calculate the magnification of the component intensity at the monitoring frequency of the measured and envelope-processed sound with respect to the component intensity registered for each monitoring frequency. (9) Measured sound, for example, 5KHz to less than 20KHz, 20KH
For each frequency band from z to less than 35KHz and from 35KHz to less than 50KHz, calculate the average value of each intensity. (10) For the average intensity of each frequency band of normal sound, (9)
Calculate the magnification of the average intensity of each frequency band measured in the above. (11) Diagnosis of bearing abnormality is performed based on the magnification of the component intensity at the monitoring frequency obtained as described above, the magnification of the average intensity of each frequency band, and the relative evaluation standard of the all-pass value.
FIG. 3 shows an example of the relationship between these magnifications and the abnormal region. (12) The remaining life time of each bearing is estimated from the magnification. This is obtained from the approximate curve of the magnification. FIG. 4 shows the change over time of the average intensity magnification in a certain frequency band.
This shows that there is consistency between the approximate curve of the magnification and the actually measured value of the magnification. FIG. 5 shows the relationship between the predicted remaining life and the actual remaining life. The estimated remaining life time is transmitted to the CRT 10 or the printer 11 together with the measurement time, the name or number of the bearing unit, the result of the diagnosis, the measured value, and the like.
When an abnormality is determined, a signal for turning on the alarm lamp 13 of the annunciator 12 is transmitted.

【0013】CRT10やプリンタ11は管理用パソコン9
から送信された情報を表示し,特にプリンタは異常発生
時に任意印字を行い,決められた時刻に日報を印字す
る。
The CRT 10 and the printer 11 are the management personal computer 9
In particular, the printer performs arbitrary printing when an error occurs and prints a daily report at a predetermined time.

【0014】回転音を計測するマイクロフォン1は,多
数の軸受けから発生する音を一台の監視ステーション5
に計測音を送信するものであるが,マイクロフォン一台
をもって多数の軸受けの音を計測するべく,計測対象の
軸受け部に対し所定の距離だけ離れた位置に位置決めす
る2次元トラバーサまたは3次元トラバーサで支持され
る。管理用パソコンはこのトラバーサの移動,停止更に
は計測周期時間の管理を行なう。
The microphone 1 for measuring the rotation sound is provided with a single monitoring station 5 for the sound generated from a large number of bearings.
The two-dimensional traverser or three-dimensional traverser is positioned at a predetermined distance from the bearing part to be measured in order to measure the sound of many bearings with one microphone. Supported. The management personal computer moves and stops the traverser and manages the measurement cycle time.

【0015】図6および図7に,前記した監視ステーシ
ョンでの計測並びに管理手順をフロー図で図解して示し
た。
FIG. 6 and FIG. 7 are flow charts showing the measurement and management procedures at the monitoring station.

【0016】[0016]

【発明の効果】以上のようにして本発明によると,一台
のマイクロフォンの使用によって,多数の軸受けをもつ
装置に対し,軸受けから離れた位置での計測が可能とな
る。したがって,隠蔽された軸受けをもつ装置や多数の
軸受けをもつ装置でも,非接触で軸受けの異常と余寿命
を知ることができ,先に提案した特公平2-59420号公報
および特開平3-12533号公報に記載の振動計による場合
よりも,一層,利用範囲を拡大することができる。
As described above, according to the present invention, the use of one microphone makes it possible to measure a device having many bearings at a position away from the bearings. Therefore, even in a device having a concealed bearing or a device having a large number of bearings, it is possible to know the bearing abnormality and the remaining life without contact. The range of use can be further expanded as compared with the case of using the vibrometer described in Japanese Patent Application Laid-Open Publication No. H10-260, 1993.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明装置の機器配置図である。FIG. 1 is a device layout of the apparatus of the present invention.

【図2】本発明で使用する監視周波数の計算例を示す図
である。
FIG. 2 is a diagram illustrating a calculation example of a monitoring frequency used in the present invention.

【図3】監視周波数の正常時に対する倍率と軸受け(ベ
アリング)の破壊に至る関係を示す図である。
FIG. 3 is a diagram showing the relationship between the magnification of a monitoring frequency with respect to a normal state and the destruction of a bearing.

【図4】周波数帯での平均強度の倍率の経時変化を示す
図である。
FIG. 4 is a diagram showing a change over time of a magnification of an average intensity in a frequency band.

【図5】本発明装置で推定される軸受けの余寿命時間と
実際の余寿命時間との関係を示す図である。
FIG. 5 is a diagram showing a relationship between a remaining life time of a bearing estimated by the device of the present invention and an actual remaining life time.

【図6】監視ステーションの計測並びに管理手順のフロ
ー図である。
FIG. 6 is a flowchart of a measurement and management procedure of a monitoring station.

【図7】図6に関連する監視ステーションの計測並びに
管理手順のフロー図である。
FIG. 7 is a flowchart of a measurement and management procedure of a monitoring station related to FIG. 6;

【符号の説明】[Explanation of symbols]

1 超音波マイクロフォン 2 音源(測定対象の軸受け) 3 集音用ノズル 4 アンプ 5 監視ステーシヨン 6 騒音計 7 包絡線処理装置 8 周波数分析器 9 管理用パソコン 10 CRT 11 プリンタ 12 アナンシエータ 13 警報ランプ DESCRIPTION OF SYMBOLS 1 Ultrasonic microphone 2 Sound source (bearing to be measured) 3 Sound collecting nozzle 4 Amplifier 5 Monitoring station 6 Sound level meter 7 Envelope processing device 8 Frequency analyzer 9 Management personal computer 10 CRT 11 Printer 12 Annunciator 13 Alarm lamp

フロントページの続き (56)参考文献 特開 平3−160326(JP,A) 特開 昭59−81531(JP,A) 特開 昭57−45428(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01H 17/00 G01M 13/04 Continuation of the front page (56) References JP-A-3-160326 (JP, A) JP-A-59-81531 (JP, A) JP-A-57-45428 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) G01H 17/00 G01M 13/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数個の軸受けに対し所定の距離だけ離
れた位置に位置決め可能に設置され且つ超音波領域の音
を計測するマイクロフォンと,このマイクロフォンで計
測される各軸受けからの音を収録・解析して各軸受けの
異常予知信号を出力する監視ステーションとからなり,
該監視ステーションにおいて,マイクロフォンからの各
軸受けに対応する測定音を包絡線処理装置で包絡線処理
したうえ,周波数分析計周波数の成分強度を分析し,
管理用パソコンにおいて当該軸受けの初期正常時の登録
された監視周波数の成分強度に対する今回計測された監
視周波数の成分強度の倍率を計算し,この倍率から当該
軸受けの異常および余寿命を推定する軸受け異常予知装
置。
And 1. A microphone that measures the sound positionable so installed and ultrasonic region to a position a predetermined distance away against the only plurality of bearings, recorded sound from the bearing is measured by the microphone・ Consists of a monitoring station that analyzes and outputs an abnormality prediction signal for each bearing,
At the monitoring station, the measured sound corresponding to each bearing from the microphone is envelope-processed by an envelope processing device, and the frequency component intensity is analyzed by a frequency analyzer.
The management personal computer calculates the magnification of the component intensity of the monitoring frequency measured this time with respect to the component intensity of the registered monitoring frequency at the time of initial normal operation of the bearing, and from this magnification the abnormality of the bearing and the estimation of the remaining life of the bearing. Forecasting device.
【請求項2】 監視ステーションは,騒音計,包絡線処
理装置,周波数分析器,管理用パソコン,プリンタから
なる請求項1に記載の軸受け異常予知装置。
2. The bearing abnormality prediction device according to claim 1, wherein the monitoring station comprises a sound level meter, an envelope processing device, a frequency analyzer, a management personal computer, and a printer.
【請求項3】 マイクロフォンは,2次元または3次元
トラバーサによって,複数個の軸受けから所定の距離だ
け離れた位置に各々の軸受けごとに位置決めされる請
求項1または2に記載の軸受け異常予知装置。
3. A microphone, by the two-dimensional or three-dimensional traverser, a position away from a plurality of bearing by a predetermined distance, bearing Anomaly device according to claim 1 or 2 is positioned in each respective bearing .
JP4040580A 1992-01-31 1992-01-31 Bearing abnormality prediction device Expired - Fee Related JP3014201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4040580A JP3014201B2 (en) 1992-01-31 1992-01-31 Bearing abnormality prediction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4040580A JP3014201B2 (en) 1992-01-31 1992-01-31 Bearing abnormality prediction device

Publications (2)

Publication Number Publication Date
JPH05209782A JPH05209782A (en) 1993-08-20
JP3014201B2 true JP3014201B2 (en) 2000-02-28

Family

ID=12584432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4040580A Expired - Fee Related JP3014201B2 (en) 1992-01-31 1992-01-31 Bearing abnormality prediction device

Country Status (1)

Country Link
JP (1) JP3014201B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3544251B2 (en) * 1995-08-03 2004-07-21 高砂熱学工業株式会社 Method of diagnosing bearing of rotating device, method of estimating remaining life of bearing of rotating device, and diagnostic system of bearing of rotating device
JPH10290810A (en) * 1997-04-21 1998-11-04 Osada Res Inst Ltd Hand piece for odontotherapy
JPH11271021A (en) * 1998-03-20 1999-10-05 Acute Kk Waveform analyzer and displacement measuring apparatus using the analyzer
JP3959873B2 (en) * 1998-11-06 2007-08-15 日本精工株式会社 Anomaly diagnosis device for rolling bearing, anomaly diagnosis method for rolling bearing
JP5455298B2 (en) * 2007-11-06 2014-03-26 オークマ株式会社 Bearing condition diagnosis device
JP5409878B2 (en) * 2012-11-02 2014-02-05 オークマ株式会社 Bearing condition diagnosis device
JP7444556B2 (en) * 2019-07-23 2024-03-06 株式会社神戸製鋼所 Misalignment determination device, misalignment determination method, and rotating machine system
JP6805314B1 (en) * 2019-10-15 2020-12-23 株式会社川本製作所 Bearing abnormality detector
JP6918893B2 (en) * 2019-10-29 2021-08-11 株式会社川本製作所 Anomaly detection device
JP6942836B1 (en) * 2020-04-08 2021-09-29 株式会社川本製作所 Anomaly detection device

Also Published As

Publication number Publication date
JPH05209782A (en) 1993-08-20

Similar Documents

Publication Publication Date Title
US20090146599A1 (en) System and method for motor fault detection using stator current noise cancellation
US20080309366A1 (en) System and method for bearing fault detection using stator current noise cancellation
JPH11118592A (en) Equipment abnormality diagnosis device and plant device mounting the same
JP3014201B2 (en) Bearing abnormality prediction device
GB2104658A (en) Detecting rubbing in rotary machines
JP2005233789A (en) Abnormality diagnosis method of rotary machine, abnormality diagnosis apparatus, and abnormality diagnosis system
JP2913552B1 (en) Method for identifying abnormal equipment of air conditioning fan and pump by acoustic method
JPH03269221A (en) Abnormal-sound diagnostic apparatus for rotary equipment
JP2695366B2 (en) Abnormality diagnosis method for low-speed rotating machinery
JP3544251B2 (en) Method of diagnosing bearing of rotating device, method of estimating remaining life of bearing of rotating device, and diagnostic system of bearing of rotating device
JP3568939B2 (en) Method and apparatus for diagnosing state of rotating machine by analyzing shaft vibration
JP3390087B2 (en) Bearing diagnosis system
JP3571949B2 (en) Diagnostic device for diagnosing abnormalities of equipment provided on a moving body
JP2000158044A (en) Method for detecting chattering in cold rolling mill and device therefor
JP7402500B2 (en) State change detection system and state change detection program
JP2981480B2 (en) Piping blockage diagnosis method and diagnosis device
JP2003065839A (en) Method and device for monitoring vibration
JPH08122142A (en) Device and method for discrimination
JPH1169583A (en) Device for diagnosing abnormality of equipment
JPH11258381A (en) Detector abnormality diagnostic method
JP2550066B2 (en) Method for diagnosing machine abnormality using acoustic signals
JPH02212722A (en) Handy diagnostic apparatus for construction
JP2624789B2 (en) Equipment abnormality diagnosis device
JPH07333349A (en) Radioactivity measuring apparatus
JPH05172625A (en) Failure detection method in plant

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees