WO2007019907A1 - Procede et systeme permettant de faire fonctionner un transducteur d'ultrasons - Google Patents

Procede et systeme permettant de faire fonctionner un transducteur d'ultrasons Download PDF

Info

Publication number
WO2007019907A1
WO2007019907A1 PCT/EP2006/005769 EP2006005769W WO2007019907A1 WO 2007019907 A1 WO2007019907 A1 WO 2007019907A1 EP 2006005769 W EP2006005769 W EP 2006005769W WO 2007019907 A1 WO2007019907 A1 WO 2007019907A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic transducer
frequency
test signal
operating
determined
Prior art date
Application number
PCT/EP2006/005769
Other languages
German (de)
English (en)
Inventor
Anton Lill
Heinrich Gotzig
Original Assignee
Valeo Schalter Und Sensoren Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Schalter Und Sensoren Gmbh filed Critical Valeo Schalter Und Sensoren Gmbh
Publication of WO2007019907A1 publication Critical patent/WO2007019907A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • B06B1/0246Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating

Definitions

  • the present invention relates to a method of operating an ultrasonic transducer that transmits and receives ultrasonic waves.
  • the present invention further relates to a system for operating an ultrasonic transducer, with at least one ultrasonic transducer and with a control device controlling the ultrasonic transducer.
  • Ultrasonic transducers and corresponding systems of the type mentioned above are used, for example, in distance measuring systems, such as those used in particular in the motor vehicle sector, in order to determine a distance between a motor vehicle and an obstacle.
  • the ultrasonic transducers are driven in the conventional systems or operating methods with control signals of a fixed predetermined frequency, the frequency being predetermined, for example, by an electronics of the control unit driving the ultrasonic transducer.
  • the predetermined frequency is also chosen in the known devices or methods so that it is in the range of a resonant frequency of the ultrasonic transducer to achieve a high electro-acoustic conversion efficiency and thus a high sensitivity.
  • the resonance frequency for example, about 4OkHz.
  • test signal Driving the ultrasonic transducer with a test signal for a predefinable excitation time, wherein the test signal preferably has a predeterminable frequency
  • the calibration process according to the invention makes it possible to determine the actual mechanical resonance frequency of the ultrasonic transducer, which is often of the ideal type Resonance frequency of the ultrasonic transducer deviates, for example, because the ultrasonic transducer is not acoustically decoupled in an optimal manner from surrounding components or components such as housing parts and the like.
  • An intrinsically undesirable coupling of this type loads the ultrasound transducer forming a vibratory system and accordingly has an effect on a frequency characteristic of the ultrasound transducer.
  • ultrasonic transducers which consists in that the ultrasonic transducer is a vibratory system with a non-vanishing mass inertia, so that even after a deactivation of a driving signal driving the ultrasonic transducer, the ultrasonic transducer swings into shape a damped oscillation takes place.
  • This swinging-out is extremely undesirable, for example, in distance measuring methods, since a signal to be received for distance measurement, which is reflected at an obstacle, is superposed by the swinging-out of the ultrasonic transducer and thus disturbed.
  • the otherwise unwanted decay is used to determine the actual resonant frequency of the ultrasonic transducer.
  • test signal provided according to the invention does not coincidentally have the same frequency as the actual resonant frequency of the ultrasonic transducer
  • the ultrasonic transducer during the excitation time i. during the control of the ultrasonic transducer according to the invention with the test signal, a forced oscillation, whose frequency is predetermined by the frequency of the test signal.
  • the ultrasonic transducer changes from the forced oscillation with the frequency of the test signal into a damped oscillation which, after a certain transitional time, assumes the actual mechanical resonance frequency of the ultrasonic transducer, which in the present case is also referred to as decay frequency.
  • the actual mechanical resonance frequency of the ultrasonic transducer or a vibratory system formed by the ultrasonic transducer and possibly existing parasitic, resonant elements is obtained.
  • the method according to the invention to examine individual ultrasonic transducers for their actual resonant frequency corresponding to the decay frequency, and ultrasound transducers already integrated, for example, in a bumper of a motor vehicle whose actual mechanical resonance frequency is sometimes considerably higher than that of the actual mechanical resonant frequency of the ultrasonic transducer in unobstructed Condition deviates.
  • an operating frequency to be used in particular for future activation of the ultrasonic transducer is selected as a function of the determined decay frequency.
  • the operating frequency is selected so that it corresponds as accurately as possible to the determined Ausschwingfrequenz. In this case results - regardless of the actual application of the ultrasonic transducer - a particularly low-noise operation of the ultrasonic transducer, since it is operated at its resonance frequency.
  • an electroacoustic conversion efficiency of the ultrasound transducer is also maximal, so that, for example when using the ultrasound transducer in distance measuring systems, a particularly large range can be achieved.
  • Another advantage of the operation of the ultrasonic transducer at the Ausschwingfrequenz is that a Frequency characteristic of the ultrasonic transducer at its maximum, that is at the Ausschwingfrequenz or at the resonant frequency having a vanishing slope. Accordingly, slight deviations of the operating frequency from the decay frequency in the region of the Ausschwarmfrequenz affect less unfavorable than in other areas of the frequency characteristic in which the slope of the frequency characteristic of zero has different values.
  • the test signal is generated by means of a control device associated with the ultrasonic transducer.
  • a control device which is also provided outside the calibration process for controlling the ultrasound transducer.
  • the control device controlling the ultrasonic transducer at such times when no distance measurement is required to carry out the method according to the invention or the calibration process according to the invention.
  • the method according to the invention is implemented particularly advantageously in the form of a program code which can run on a computing unit of a control unit, which is preferably designed as a microcontroller.
  • the decay frequency and / or the operating frequency is stored in a control device associated with the ultrasonic transducer, for example in an EEPROM memory.
  • a control device associated with the ultrasonic transducer for example in an EEPROM memory.
  • Such storage is particularly useful because a value determined in this way once for the Ausschwingfrequenz or the operating sequence can also be used for future control of the ultrasonic transducer.
  • the calibration process according to the invention is particularly advantageously carried out at predefinable time intervals, in particular periodically.
  • changes to the ultrasound transducer which in particular affect its resonant frequency, are taken into account for the determination of an optimal operating sequence.
  • the ultrasonic transducer or its membrane precipitating dirt which represents a corresponding parasitic mass coating of the oscillatory system formed by the ultrasonic transducer, affect the decay frequency or resonant frequency of the ultrasonic transducer.
  • a change in the decay frequency as a result of painting the membrane is possible in particular when using the ultrasonic transducer in motor vehicles.
  • the periodic execution of the calibration process according to the invention ensures that such changes and a correspondingly altered resonance frequency can be included in future actuations.
  • values of the decay frequency determined at different times are compared with one another, in particular in order to deduce therefrom a statement about a functional state of the ultrasound transducer. For example, it can be concluded from a detected between two successive calibration operations very large change in the decay frequency of the ultrasonic transducer on a defect of the ultrasonic transducer.
  • a sinusoidal test signal within the scope of the inventive calibration of the ultrasonic transducer because it allows a very precise determination of the decay frequency.
  • test signal can also be provided in the form of a square wave signal.
  • a rectangular signal can be generated particularly simply by a computing unit provided in a control unit, in particular without external oscillators or additional filter circuits.
  • a rectangular test signal can be derived directly from a processor clock of the arithmetic unit, e.g. by known methods of frequency division or by an interrupt-controlled timer of the arithmetic unit or the like.
  • a processor clock of the arithmetic unit e.g. by known methods of frequency division or by an interrupt-controlled timer of the arithmetic unit or the like.
  • the control with the square-wave signal which according to Fourier represents a weighted sum of different sinusoidal signals of different frequencies, does not adversely affect the determination of the decay frequency.
  • the decay frequency is determined by means of a spectral analysis, in particular by means of an FFT analysis, Fast Fourier Transformation analysis.
  • a further option according to the invention for determining the oscillation frequency consists in the detection of successive zero crossings of the output from the ultrasonic sensor during decay Ausschwingsignals, for example, by sampling the Ausschwingsignals by means of an analog / digital converter and by evaluating the zero crossings of the Ausschwingsignals.
  • the method according to the invention is particularly advantageously applicable to ultrasonic transducers which are used in a system for distance determination, in particular in a motor vehicle.
  • the system according to the invention for operating an ultrasound transducer has at least one ultrasound transducer and a control unit that drives the ultrasound transducer.
  • the system according to the invention is particularly advantageously suitable for carrying out the method according to the invention.
  • a signal generator for generating the test signal and / or a drive signal for controlling the ultrasonic transducer is provided outside the calibration process.
  • the signal generator can be provided as a separate component, for example in the form of a voltage-controlled oscillator or a preferably programmable frequency divider, or particularly advantageously integrated directly into a computation unit provided in the control unit, wherein it is also possible in particular to obtain a large part of the functionality of the signal generator a program code, which is executed by the arithmetic unit.
  • a further advantageous embodiment of the system according to the invention is characterized by Frequency determining means for determining the decay frequency, which - analogous to the signal generator - also formed discretely or as a separate component or can be integrated directly into the arithmetic unit.
  • a further advantageous embodiment of the system according to the invention is characterized by a memory for storing the Ausschwingfrequenz and / or the operating frequency.
  • the memory may be, in particular, a non-volatile memory such as memory. act an EEPROM memory.
  • FIG. 1 shows a flowchart of a first embodiment of the method according to the invention
  • Figure 2 is a simplified block diagram of a device according to the invention.
  • FIG. 3 shows a detailed view of a control device shown in FIG.
  • the inventive system 200 for operating an ultrasonic transducer 10 is shown in the simplified block diagram of Figure 2.
  • the ultrasound transducer 10 can be controlled by a control unit 20 assigned to it with a test signal P to be described in more detail, and the control unit 20 can receive signals read from the ultrasonic transducer 10, which is symbolized in Figure 2 by the arrow 30.
  • FIG. 3 shows a detailed view of the control unit 20, in which a signal generator 21 and frequency determining means 22 are shown.
  • the control unit 20 has a nonvolatile memory 26 and a computer unit 25 designed as a microcontroller, which is connected to the components 21, 22, 26 via a data bus 27.
  • the calibration process 100 for calibrating the operating frequency, the calibration process 100 according to the invention described below is carried out in the system 200 (FIG. 2), the essential steps of which emerge from the flowchart depicted in FIG.
  • the ultrasonic transducer 10 is driven in the step 110 for a predetermined excitation time with the test signal P, which is generated in the control unit 20 by the signal generator 21.
  • the test signal P may be a sinusoidal signal or a rectangular signal.
  • the test signal P is chosen in frequency and amplitude so that it excites the ultrasonic transducer 10 to vibrate, and that after the control with the test signal P takes place a measurable AusSchwingvorgang, so that towards the end of the decay process in step 120 ( Figure 1) a can be determined by the frequency determining means 22 at the decay adjusting decay frequency.
  • the ultrasound transducer 10 first exerts a forced oscillation at the frequency of the test signal P when the test signal P is applied during the excitation time, after the deactivation of the test signal P first waited for a predetermined waiting time before the decay frequency is determined in step 120.
  • the ultrasound transducer 10 changes from the forced oscillation with the frequency of the test signal P into a damped oscillation whose frequency corresponds to the resonant frequency of the ultrasound transducer 10 and, if appropriate, to elements coupled thereto such as e.g. corresponds to a membrane.
  • the ultrasonic transducer 10 oscillates at its resonant frequency, which according to the invention is determined in step 120 in the form of the oscillation frequency.
  • an operating frequency in particular for future activation of the ultrasound transducer 10, is determined as a function of the determined dying frequency.
  • the operating frequency is chosen so that it coincides with the Ausschwingfrequenz, whereby the ultrasonic transducer 10 is driven accordingly with its resonant frequency and has a correspondingly high electro-acoustic conversion efficiency and low susceptibility to interference.
  • the above-described calibration method 100 is preferably performed periodically to always keep the actual resonant frequency of the ultrasonic transducer 10 e.g. to use for driving in the context of a distance measuring method or the like.
  • a determined decay or resonance frequency or an operating frequency derived therefrom in accordance with step 130 is stored in the memory 26 of the controller 20.
  • components 21, 22, 26 are depicted as separate blocks in FIG. 3, they may be implemented entirely or at least partially directly in the computing unit 25, e.g. in the form of program code which provides the corresponding functionality or else in the form of components integrated into the processing unit, such as e.g. an integrated oscillator 21 for generating the test signal P or other signal used to drive the ultrasonic transducer 10.
  • the frequency determining means 22 may determine the decay frequency, for example according to the principle of Fourier analysis, e.g. in the form of an FFT, Fast Fourier Transformation. Alternatively, the frequency determining means 22 may be formed as a frequency counter or the like.
  • a test device (not shown) provided in the manufacturing process of the ultrasound transducer 10 determines the decay frequency using the method 100 according to the invention (FIG. 1) and provides a corresponding parameter for the control device which only reads the parameter in later operation and has a corresponding operating frequency for Control of the ultrasonic transducer 10 selects.
  • control unit itself does not require a signal generator 21 or frequency determining means 22 or the corresponding functionality.
  • the calibration process 100 according to the invention may be performed during routine maintenance, e.g. a motor vehicle containing the system (not shown) is performed, so that the instantaneous resonant frequency using the inventive method 100 e.g. is determined by a diagnostic tester and the corresponding value for the optimum operating frequency is passed to the respective control unit.
  • routine maintenance e.g. a motor vehicle containing the system (not shown) is performed, so that the instantaneous resonant frequency using the inventive method 100 e.g. is determined by a diagnostic tester and the corresponding value for the optimum operating frequency is passed to the respective control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

La présente invention concerne un procédé permettant de faire fonctionner un transducteur d'ultrasons (10) qui émet et reçoit des ondes ultrasonores. Selon l'invention, le procédé prévoit un processus de calibrage (100) comportant les étapes suivantes: commande (110) du transducteur d'ultrasons (10) par un signal d'essai pour un temps d'excitation déterminable, ce signal d'essai (P) ayant, de préférence, une fréquence prédéterminable, - détermination (120) d'une fréquence d'amortissement qui permet d'amortir le transducteur d'ultrasons (10) après l'excitation par le signal d'essai (P) ; détermination (130) d'une fréquence de fonctionnement, notamment pour une future commande du transducteur d'ultrasons (10) en fonction de la fréquence d'amortissement déterminée .
PCT/EP2006/005769 2005-08-16 2006-06-16 Procede et systeme permettant de faire fonctionner un transducteur d'ultrasons WO2007019907A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005038649.0A DE102005038649B4 (de) 2005-08-16 2005-08-16 Verfahren und System zum Betreiben eines Ultraschallwandlers
DE102005038649.0 2005-08-16

Publications (1)

Publication Number Publication Date
WO2007019907A1 true WO2007019907A1 (fr) 2007-02-22

Family

ID=37434133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/005769 WO2007019907A1 (fr) 2005-08-16 2006-06-16 Procede et systeme permettant de faire fonctionner un transducteur d'ultrasons

Country Status (2)

Country Link
DE (1) DE102005038649B4 (fr)
WO (1) WO2007019907A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8750071B2 (en) 2007-12-12 2014-06-10 Robert Bosch Gmbh Sensor function for controlling at a variable transmission frequency for the purpose of detecting contamination
JP2015531058A (ja) * 2012-07-24 2015-10-29 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー ラジエータグリル内に超音波センサを含む超音波センサ構成、自動車および対応する方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009017507B4 (de) * 2008-04-18 2011-12-08 Denso Corporation Ultraschallsensor
DE102009040992B4 (de) * 2009-09-10 2015-11-26 Valeo Schalter Und Sensoren Gmbh Verfahren zur Vereisungs- und Verschmutzungserkennung von Ultraschallsensoren
DE102010021960B4 (de) * 2010-05-28 2021-05-06 Valeo Schalter Und Sensoren Gmbh Verrfahren zum Erkennen eines blockierten Zustands eines Ultraschallsensors eines Kraftfahrzeugs, Fahrerassistenzeinrichtung und Kraftfahrzeug
DE102010064727B3 (de) 2010-05-28 2023-02-09 Valeo Schalter Und Sensoren Gmbh Verfahren zum Erkennen eines blockierten Zustands eines Ultraschallsensors eines Kraftfahrzeugs, Fahrerassistenzeinrichtung und Kraftfahrzeug
EP2394749A1 (fr) * 2010-06-07 2011-12-14 ELMOS Semiconductor AG Procédé de reconnaissance d'une impureté ou d'une autre perturbation de fonctionnement d'un capteur à ultrasons d'une aide au stationnement pour un véhicule automobile
DE102010039017B4 (de) * 2010-08-06 2017-09-21 Robert Bosch Gmbh Verfahren und Vorrichtung zur aktiven Dämpfung eines akustischen Wandlers
DE102011016287B4 (de) 2010-12-31 2021-11-25 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Regeln eines Ultraschallsensors eines Kraftfahrzeugs
DE102011016946A1 (de) * 2011-04-13 2012-10-18 Volkswagen Ag Verfahren zum Festlegen einer Frequenz für ein Anregungssignal eines Ultraschallsensors, Fahrerassistenzeinrichtung und Kraftfahrzeug
DE102013015410A1 (de) 2013-09-17 2015-03-19 Valeo Schalter Und Sensoren Gmbh Verfahren zum Erkennen eines blockierten Zustands eines Ultraschallsensors Ultraschallsensorvorrichtung und Kraftfahrzeug
DE102013021327A1 (de) * 2013-12-17 2015-06-18 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben einer Mehrzahl von Ultraschallsensoren eines Kraftfahrzeugs, Ultraschallsensoreinrichtung und Kraftfahrzeug
DE102014113601B4 (de) * 2014-09-19 2016-06-30 Valeo Schalter Und Sensoren Gmbh Verfahren zum Erkennen eines blockierten Zustands eines Ultraschallsensors, Ultraschallsensorvorrichtung sowie Kraftfahrzeug
DE102017108341B4 (de) * 2017-04-20 2018-11-22 Valeo Schalter Und Sensoren Gmbh Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit einer Sendeeinrichtung und separaten Empfangseinrichtungen, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102020120698A1 (de) 2020-08-05 2022-02-10 Valeo Schalter Und Sensoren Gmbh Kompensation eines Ultraschallwandlers mit veränderlicher Kompensationsinduktivität
DE102022127998A1 (de) * 2022-10-24 2024-04-25 Valeo Schalter Und Sensoren Gmbh Steuereinrichtung und betriebsverfahren für einen ultraschallsensor, ultraschallsensor, satz aus steuereinrichtung und ultraschallsensor und kraftfahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4275363A (en) * 1979-07-06 1981-06-23 Taga Electric Co., Ltd. Method of and apparatus for driving an ultrasonic transducer including a phase locked loop and a sweep circuit
EP0424685A2 (fr) * 1989-10-27 1991-05-02 Storz Instrument Company Procédé pour commander un transducteur ultrasonore
US5079751A (en) * 1990-03-14 1992-01-07 Federal Industries Industrial Group Inc. Acoustic ranging systems
DE4233257C1 (fr) * 1992-10-02 1993-06-24 Endress U. Hauser Gmbh U. Co, 7864 Maulburg, De

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3721213C2 (de) * 1987-06-26 1998-04-09 Grieshaber Vega Kg Füllstandsmeßgerät
US5335545A (en) * 1990-09-04 1994-08-09 Magnetrol International, Inc. Ultrasonic detector with frequency matching
US5991234A (en) * 1998-06-11 1999-11-23 Trw Inc. Ultrasonic sensor system and method having automatic excitation frequency adjustment
JP2001221848A (ja) * 2000-02-04 2001-08-17 Nippon Soken Inc 超音波ソナー及び超音波ソナーの超音波送信方法
DE10360800B4 (de) * 2003-12-23 2006-03-23 Bayerische Motoren Werke Ag Abstandssensor zur Verwendung bei Einparkhilfen in Kraftfahrzeugen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4275363A (en) * 1979-07-06 1981-06-23 Taga Electric Co., Ltd. Method of and apparatus for driving an ultrasonic transducer including a phase locked loop and a sweep circuit
EP0424685A2 (fr) * 1989-10-27 1991-05-02 Storz Instrument Company Procédé pour commander un transducteur ultrasonore
US5079751A (en) * 1990-03-14 1992-01-07 Federal Industries Industrial Group Inc. Acoustic ranging systems
DE4233257C1 (fr) * 1992-10-02 1993-06-24 Endress U. Hauser Gmbh U. Co, 7864 Maulburg, De

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AKASHEH F ET AL: "Development of piezoelectric micromachined ultrasonic transducers", SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 111, no. 2-3, 15 March 2004 (2004-03-15), pages 275 - 287, XP004492127, ISSN: 0924-4247 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8750071B2 (en) 2007-12-12 2014-06-10 Robert Bosch Gmbh Sensor function for controlling at a variable transmission frequency for the purpose of detecting contamination
JP2015531058A (ja) * 2012-07-24 2015-10-29 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー ラジエータグリル内に超音波センサを含む超音波センサ構成、自動車および対応する方法

Also Published As

Publication number Publication date
DE102005038649A1 (de) 2007-02-22
DE102005038649B4 (de) 2016-01-28

Similar Documents

Publication Publication Date Title
DE102005038649B4 (de) Verfahren und System zum Betreiben eines Ultraschallwandlers
EP2499513B1 (fr) Procédé pour faire fonctionner au moins un transducteur ultrasonore
EP3593165B1 (fr) Procédé de détermination d'un état fonctionnel d'un capteur à ultrasons au moyen d'une fonction de transfert du capteur à ultrasons, dispositif à capteur à ultrasons et véhicule automobile
DE102010021960B4 (de) Verrfahren zum Erkennen eines blockierten Zustands eines Ultraschallsensors eines Kraftfahrzeugs, Fahrerassistenzeinrichtung und Kraftfahrzeug
EP2223151A1 (fr) Fonction de capteur pour commande avec fréquence d'émission variable afin de déceler l'encrassement
DE102008027016B4 (de) Verfahren und Vorrichtung zur Analyse von Geräuschen eines Kraftfahrzeuges
WO2021047887A1 (fr) Procédé pour faire fonctionner un dispositif de mesure avec au moins un oscillateur et dispositif de mesure pour mettre en œuvre ledit procédé
EP2320225B1 (fr) Procédé d'égalisation de capteur à ultrasons
EP1480023B1 (fr) Appareil de mesure avec dispositif pour l'identification d'un capteur ultrasonore connecté
DE102011016946A1 (de) Verfahren zum Festlegen einer Frequenz für ein Anregungssignal eines Ultraschallsensors, Fahrerassistenzeinrichtung und Kraftfahrzeug
EP1314047A2 (fr) Systeme de detection et procede associe, en particulier pour la determination de distances
DE102011016287B4 (de) Verfahren und Vorrichtung zum Regeln eines Ultraschallsensors eines Kraftfahrzeugs
EP3685151B1 (fr) Procédé et dispositif pour traiter un signal d'écho reçu par un capteur acoustique
WO1998053282A1 (fr) Interrupteur de limite de niveau de remplissage a oscillations et procede pour constater et/ou surveiller un niveau d'une substance dans un contenant
EP4260089A1 (fr) Système de capteur ultrasonore pour un véhicule à moteur et procédé de fonctionnement du système de capteur ultrasonore
DE102004016196B4 (de) Vorrichtung und Verfahren zum intermittierenden Antrieb und Analyse eines elektromechanischen Systems
DE102014113601B4 (de) Verfahren zum Erkennen eines blockierten Zustands eines Ultraschallsensors, Ultraschallsensorvorrichtung sowie Kraftfahrzeug
DE102011016315A1 (de) Verfahren und Vorrichtung zur verbesserten Freiraumerkennung im Nahbereich eines Fahrzeugs
WO2020104195A1 (fr) Procédé et système d'analyse pour déterminer un état d'une membrane d'un capteur ultrasonore
EP3812713B1 (fr) Dispositif de mesure et procédé de fonctionnement d'un dispositif de mesure servant à déterminer une grandeur de fluide
DE102022110405B3 (de) Vibronischer Grenzstandsensor mit Schalldetektor
DE102018101095A1 (de) Vorrichtung zum Empfang von Eingangssignalen und Betriebsverfahren hierfür
DE102019120650A1 (de) Verfahren zum Erkennen eines blockierten Zustands einer Membran eines Ultraschallsensors eines Fahrzeugs durch Auswertung von statistischen Momenten einer Amplitudenverteilung, Recheneinrichtung sowie Ultraschallsensorvorrichtung
DE102016214571A1 (de) Verfahren zum Betrieb einer Ultraschall-Messeinrichtung
EP4341718A1 (fr) Procédé pour déterminer un état de fonctionnement d'un capteur à ultrasons pour un véhicule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06762056

Country of ref document: EP

Kind code of ref document: A1