WO2007017490A1 - Verfahren zum betrieb einer gasturbine sowie gasturbine zur durchführung des verfahrens - Google Patents

Verfahren zum betrieb einer gasturbine sowie gasturbine zur durchführung des verfahrens Download PDF

Info

Publication number
WO2007017490A1
WO2007017490A1 PCT/EP2006/065110 EP2006065110W WO2007017490A1 WO 2007017490 A1 WO2007017490 A1 WO 2007017490A1 EP 2006065110 W EP2006065110 W EP 2006065110W WO 2007017490 A1 WO2007017490 A1 WO 2007017490A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas turbine
plant
turbine
syngas
bar
Prior art date
Application number
PCT/EP2006/065110
Other languages
English (en)
French (fr)
Inventor
Eribert Benz
Manfred Wirsum
Original Assignee
Alstom Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology Ltd filed Critical Alstom Technology Ltd
Priority to JP2008525566A priority Critical patent/JP2009504967A/ja
Priority to CA2618030A priority patent/CA2618030C/en
Priority to CN2006800289706A priority patent/CN101238341B/zh
Priority to DE112006002028.5T priority patent/DE112006002028B4/de
Publication of WO2007017490A1 publication Critical patent/WO2007017490A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/003Gas-turbine plants with heaters between turbine stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/046Completely integrated air feed compression, i.e. common MAC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Definitions

  • the present invention relates to the field of power plant technology. It relates to a method for operating a (stationary) gas turbine according to the preamble of claim 1, as well as a gas turbine for carrying out the method.
  • a reheat gas turbine gas turbine is known (see eg US-A-5,577,378 or "State-of-the-art gas turbines - a letter update", ABB Review 02/1997, Fig. 15, turbine type GT26 ), which combines flexible operation with very low exhaust emissions.
  • the machine architecture of the gas turbine type GT26 is unique and is ideally suited to the realization of a concept, which is the subject of the present invention, because: - there is already a significant diversion of compressor air at medium compressor pressures,
  • the principle of the known gas turbine with reheat is shown in Fig. 1.
  • the gas turbine 11, which is part of a combined cycle power plant 10, comprises two compressors connected in series on a common shaft 15, namely a low-pressure compressor 13 and a high-pressure compressor 14, and two combustion chambers, namely a high-pressure combustion chamber 18 and a reheat combustion chamber 19, and associated turbines, namely one High pressure turbine 16 and a low pressure turbine 17.
  • the shaft 15 drives a generator 12 at.
  • the cooling air flowing through the cooling lines 25, 26 is injected at suitable locations of the combustion chambers 18, 19 and turbines 16, 17 to the
  • the exhaust gas coming from the low-pressure turbine 17 is passed through a heat recovery steam generator
  • the OTC coolers 23, 24 are part of the water-steam cycle; superheated steam is generated at their outputs.
  • Burns in the combustion chambers 18 and 19 is achieved a great flexibility in operation; the combustion chamber temperatures can be adjusted so that the maximum efficiency is achieved within the existing limits.
  • the low emissions of the sequential combustion system are due to the inherently low levels of emissions that can be achieved during reheat (under certain conditions, the second combustion even results in NOx consumption).
  • the present invention is based on the recognition that the use of gas turbines with reheating in an IGCC plant, the advantages of this type of gas turbine for the system can be made useful in a special way.
  • a gas turbine is used with reheat, comprising two combustion chambers and two turbines, burned in the first combustion chamber syngas using the compressed air and relaxes the resulting hot gases in the first turbine and in the second combustion chamber combusting syngas using the gases coming from the first turbine and depressurizing the resulting hot gases in the second turbine, and producing the syngas such that the generated syngas is supplied directly to the first combustion chamber can.
  • Embodiments of the inventive method are characterized in that the air separation is carried out at pressures> 40 bar, or the gasification of the coal at pressures> 40 bar is made, or that in the The gas produced by coal gasification is subjected to a purification process and the gas is purified at pressures> 40 bar, or CO 2 is removed from the gas produced during coal gasification, and the CO2 is removed at pressures> 40 bar.
  • Embodiments of the gas turbine according to the invention are characterized in that the plant for producing syngas comprises an air separation plant, and the air separation plant operates at pressures> 40 bar, or that the plant for producing syngas comprises a coal gasification plant, and the coal gasification plant operates at pressures> 40 bar or that the plant for producing syngas comprises a purification plant, and the purification plant operates at pressures> 40 bar, or that the plant for producing syngas comprises a CO 2 separator, and that the CO 2 separator operates at pressures> 40 bar ,
  • Fig. 1 shows the simplified diagram of a combined cycle power plant with a
  • FIG. 2 shows the simplified diagram of an IGCC plant with a gas turbine with reheat or sequential combustion according to an embodiment of the invention.
  • a gas turbine with reheat as represented by the type GT26 and is shown in Fig. 1, 14 air at medium pressures (11-20 bar) and at high pressures (> 30 bar) is taken on the compressor.
  • the first combustion chamber 18 requires syngas at a pressure corresponding to the end pressure of the compressor 13, 14 plus a pressure loss in the lines and in the combustion chamber.
  • Coal gasification plant about 30 bar.
  • a gas turbine with reheat the syngas from the coal gasification plant by means of one or more compressors from Enyak the coal gasification plant (about 30 bar) to the pressure level of the first combustion chamber of> 45 bar be compacted.
  • the idea of the present invention is, in an IGCC plant with a reheat gas turbine, the coal gasification branch of the plant, which is usually an air separation plant, a coal gasification plant
  • Gas cleaning system and a CO 2 separator comprises operating at a pressure level that is adapted to the pressure level of the first combustion chamber of the gas turbine and in the range between 40 and 65 bar, well above the pressure level in a gas turbine without reheat. In this way, the use of an additional compressor for the compression of the syngas is avoided.
  • FIG. 2 shows, in a greatly simplified schematic, an IGCC system with a gas turbine with reheat or sequential combustion according to an exemplary embodiment of the invention.
  • the combined cycle power plant 30 comprises a gas turbine 11 with a low-pressure compressor 13, a subsequent high-pressure compressor 14, a high-pressure combustion chamber 18 with a subsequent high-pressure turbine 16 and a reheat combustion chamber 19 with a subsequent low-pressure turbine 17.
  • the compressors 13, 14 and the turbines 16, 17 sit on a common Shaft 15, from which a generator 12 is driven.
  • the combustion chambers 18 and 19 are supplied via a Syngaszutechnisch 31 with syngas as fuel, which is produced by gasification of coal (coal feed 33) in a coal gasification plant 34.
  • the coal gasification plant 34 is a cooling apparatus 35 for the syngas, a cleaning plant 36, and a CO 2 - downstream separator 37 with a CO 2 output 38 for discharging the separated CO 2.
  • oxygen (O 2) is used, which is obtained in an air separation plant 32 and supplied via an oxygen line 32 a.
  • the air separation plant 32 receives compressed air from the compressor 13, 14.
  • the nitrogen (N 2 ) which is likewise formed during the decomposition is supplied to the low-pressure combustion chamber 19 via a nitrogen line 32 b, for example.
  • condensed cooling air is tapped at the outputs of the two compressors 13 and 14, cooled in a downstream OTC cooler 23 and 24, and then via corresponding cooling lines 25 and 26 fed to the bodies to be cooled.
  • a heat recovery steam generator 27 is arranged, which together with a connected steam turbine 29 part a water-steam cycle is.
  • the exiting from the heat recovery steam generator 27 exhaust gas is discharged via an exhaust pipe 28 to the outside.
  • Coal gasification plant 34, the cleaning system 36 and the CO 2 separator 37 includes, designed and operated so that the resulting syngas can be fed directly to the first combustion chamber 18.
  • either the air separation plant 32 or the coal gasification plant 34 or the cleaning plant 36 or the CO 2 separator 37 can operate at pressures> 40 bar.
  • an additional compressor 39 can be provided at a suitable location.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betrieb einer Gasturbine (11 ) in einem Kombikraftwerk (40), bei welchem Verfahren durch die Gasturbine (11 ) Luft angesaugt, verdichtet und die verdichtete Luft zur Verbrennung eines aus Kohle gewonnenen Syngases einer Brennkammer (18, 19) zugeführt wird, wobei ein Teil der verdichteten Luft in Sauerstoff und Stickstoff zerlegt wird. Ein verbesserter Wirkungsgrad wird dadurch erreicht, dass eine Gasturbine (11 ) mit Zwischenüberhitzung verwendet wird, welche zwei Brennkammern (18, 19) und zwei Turbinen (16, 17) umfasst, wobei in der ersten Brennkammer (18) Syngas mit der verdichteten Luft verbrannt und die entstehenden heissen Gase in der ersten Turbine (16) entspannt werden. In der zweiten Brennkammer werden Syngas mit den aus der ersten Turbine (16) kommenden Gasen verbrannt und die entstehenden heissen Gase in der zweiten Turbine (17) entspannt, und die Erzeugung des Syngases so durchgeführt, dass das erzeugte Syngas direkt der ersten Brennkammer (18) zugeführt werden kann.

Description

VERFAHREN ZUM BETRIEB EINER GASTURBINE SOWIE GASTURBINE ZUR
DURCHFÜHRUNG DES VERFAHRENS
TECHNISCHES GEBIET
Die vorliegende Erfindung bezieht sich auf das Gebiet der Kraftwerkstechnik. Sie betrifft ein Verfahren zum Betrieb einer (stationären) Gasturbine gemäss dem Oberbegriff des Anspruchs 1 , sowie eine Gasturbine zur Durchführung des Verfahrens.
STAND DER TECHNIK
Es ist eine Gasturbine mit Zwischenüberhitzung (reheat gas turbine) bekannt (siehe z.B. die US-A-5,577,378 oder „State-of-the-art gas turbines - a brief update", ABB Review 02/1997, Fig. 15, Turbinentyp GT26), die einen flexiblen Betrieb mit sehr niedrigen Abgasemissionswerten kombiniert.
Die Maschinenarchitektur der Gasturbine vom Typ GT26 ist einzigartig und eignet sich ausgezeichnet für die Realisierung eines Konzeptes, welches Gegenstand der vorliegenden Erfindung ist, weil: - es beim Verdichter bereits eine bedeutsame Abzweigung von Verdichterluft bei mittleren Verdichterdrücken gibt,
- das Konzept der sequentiellen Verbrennung eine erhöhte Stabilität der Verbrennung bei verringerten Werten des Sauerstoffüberschusses ermöglicht, und - ein Sekundärluftsystem vorhanden ist, welches es ermöglicht, Luft aus dem
Verdichter abzuzweigen, herunterzukühlen, und die heruntergekühlte Luft zur Kühlung der Brennkammer und der Turbine zu verwenden.
Das Prinzip der bekannten Gasturbine mit Zwischenüberhitzung ist in Fig. 1 dargestellt. Die Gasturbine 11 , die Teil eines Kombikraftwerkes 10 ist, umfasst auf einer gemeinsamen Welle 15 angeordnet zwei hintereinander geschaltete Verdichter, nämlich einen Niederdruckverdichter 13 und einen Hochdruckverdichter 14, sowie zwei Brennkammern, nämlich eine Hochdruckbrennkammer 18 und eine Zwischenüberhitzungsbrennkammer19, und zugehörige Turbinen, nämlich eine Hochdruckturbine 16 und eine Niederdruckturbine 17. Die Welle 15 treibt einen Generator 12 an.
Die Arbeitsweise der Anlage ist die folgende: Luft wird über einen Luftein lass 20 vom Niederdruckverdichter 13 angesaugt und zunächst auf ein Zwischendruckniveau (ca. 20 bar) verdichtet. Der Hochdruckverdichter 14 verdichtet die Luft dann weiter auf ein Hochdruckniveau (ca. 32 bar). Kühlluft wird sowohl auf dem Zwischendruckniveau als auch auf dem Hochdruckniveau abgezweigt und in zugehörigen OTC-Kühlem (OTC = Once Through Cooler) 23 und 24 abgekühlt und über Kühlleitungen 25 und 26 zur Kühlung an die Brennkammern 18, 19 und Turbinen 16, 17 weitergeleitet. Die verbleibende Luft aus dem Hochdruckverdichter 14 wird zur Hochdruckbrennkammer 18 geführt und dort durch Verbrennung eines über die Brennstoffzufuhr 21 zugeführten Brennstoffs aufgeheizt. Das entstehende Abgas wird dann in der nachfolgenden Hochdruckturbine 16 unter Arbeitsleistung auf ein mittleres Druckniveau entspannt. Nach der Entspannung wird das Abgas in der Zwischenüberhitzungsbrennkammer 19 durch Verbrennung eines über die Brennstoffzufuhr 22 zugeführten Brennstoffs wieder erhitzt, bevor es in der nachfolgenden Niederdruckturbine 17 unter weiterer Arbeitsleistung entspannt wird.
Die durch die Kühlleitungen 25, 26 strömende Kühlluft wird an geeigneten Stellen der Brennkammern 18, 19 und Turbinen 16, 17 eingedüst, um die
Materialtemperaturen auf ein vertretbares Mass zu begrenzen. Das aus der Niederdruckturbine 17 kommende Abgas wird durch einen Abhitzedampferzeuger
27 (HRSG = JHeat Recovery Steam Generator) geschickt, um Dampf zu erzeugen, der innerhalb eines Wasser-Dampf-Kreislaufs durch eine Dampfturbine 29 strömt und dort weitere Arbeit leistet. Nach dem Durchströmen des
Abhitzedampferzeugers 27 wird das Abgas schliesslich durch eine Abgasleitung
28 nach aussen abgegeben. Die OTC-Kühler 23, 24 sind Teil des Wasser-Dampf- Kreislaufs; an ihren Ausgängen wird überhitzter Dampf erzeugt.
Durch die beiden voneinander unabhängigen, aufeinanderfolgenden
Verbrennungen in den Brennkammern 18 und 19 wird eine grosse Flexibilität im Betrieb erreicht; die Brennkammertemperaturen können so eingestellt werden, dass innerhalb der bestehenden Grenzen der maximale Wirkungsrad erreicht wird. Die niedrigen Abgaswerte des sequentiellen Verbrennungssystems sind durch die inhärent niedrigen Emissionswerte gegeben, die bei der Zwischenüberhitzung erreichbar sind (unter bestimmten Bedingungen führt die zweite Verbrennung sogar zu einem Verbrauch an NOx).
Es sind andererseits Kombikraftwerke mit einstufiger Verbrennung in den Gasturbinen bekannt (siehe z.B. die US-A-4,785,622 oder US-B2-6,513,317), in denen eine Kohlevergasungsanlage integriert ist, um den für die Gasturbine benötigten Brennstoff in Form von aus Kohle gewonnenem Syngas bereitzustellen. Solche Kombikraftwerke werden als IGCC-Anlagen (IGCC = Integrated Gasification Combined Cycle) bezeichnet.
Die vorliegende Erfindung geht nun von der Erkenntnis aus, dass durch den Einsatz von Gasturbinen mit Zwischenüberhitzung in einer IGCC-Anlage die Vorteile dieses Gasturbinentyps für die Anlage in besonderer Weise nutzbar gemacht werden können.
DARSTELLUNG DER ERFINDUNG
Es ist Aufgabe der Erfindung, ein Verfahren zum Betrieb einer mit einer Kohlevergasungsanlage zusammenarbeitenden Gasturbine anzugeben, welches sich durch einen verbesserten Wirkungsgrad auszeichnet und sich mit vorhandenen Komponenten besonders günstig realisieren lässt, sowie eine Gasturbine zur Durchführung des Verfahrens zu schaffen.
Die Aufgabe wird durch die Gesamtheit der Merkmale der Ansprüche 1 und 6 gelöst. Wesentlich ist, dass in einer mit Syngas aus einer Kohlevergasungsanlage arbeitenden Gasturbinenanlage eine Gasturbine mit Zwischenüberhitzung verwendet wird, welche zwei Brennkammern und zwei Turbinen umfasst, wobei in der ersten Brennkammer Syngas unter Einsatz der verdichteten Luft verbrannt und die entstehenden heissen Gase in der ersten Turbine entspannt werden, und wobei in der zweiten Brennkammer Syngas unter Einsatz der aus der ersten Turbine kommenden Gase verbrannt und die entstehenden heissen Gase in der zweiten Turbine entspannt werden, und die Erzeugung des Syngases so durchgeführt wird, dass das erzeugte Syngas direkt der ersten Brennkammer zugeführt werden kann.
Ausgestaltungen des erfindungsgemässen Verfahrens zeichnen sich dadurch aus, dass die Luftzerlegung bei Drücken > 40 bar vorgenommen wird, oder die Vergasung der Kohle bei Drücken > 40 bar vorgenommen wird, oder dass bei der Kohlevergasung entstehende Gas einer Reinigung unterzogen wird, und die Reinigung des Gases bei Drücken > 40 bar vorgenommen wird, oder dem bei der Kohlevergasung entstehenden Gas CO2 entzogen wird, und die Entziehung des CO2 bei Drücken > 40 bar vorgenommen wird.
Ausgestaltungen der erfindungsgemässen Gasturbine sind dadurch gekennzeichnet, dass die Anlage zur Erzeugung von Syngas eine Luftzerlegungsanlage umfasst, und die Luftzerlegungsanlage bei Drücken > 40 bar arbeitet, oder dass die Anlage zur Erzeugung von Syngas eine Kohlevergasungsanlage umfasst, und die Kohlevergasungsanlage bei Drücken > 40 bar arbeitet, oder dass die Anlage zur Erzeugung von Syngas eine Reinigungsanlage umfasst, und die Reinigungsanlage bei Drücken > 40 bar arbeitet, oder dass die Anlage zur Erzeugung von Syngas einen Cθ2-Abscheider umfasst, und dass der Cθ2-Abscheider bei Drücken > 40 bar arbeitet.
KURZE ERLÄUTERUNG DER FIGUREN
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigen
Fig. 1 das vereinfachte Schema eines Kombikraftwerks mit einer
Gasturbine mit Zwischenüberhitzung bzw. sequentieller Verbrennung nach dem Stand der Technik; und
Fig. 2 das vereinfachte Schema einer IGCC-Anlage mit einer Gasturbine mit Zwischenüberhitzung bzw. sequentieller Verbrennung gemäss einem Ausführungsbeispiel der Erfindung. WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
Bei einer Gasturbine mit Zwischenüberhitzung, wie sie vom Typ GT26 repräsentiert wird und in Fig. 1 wiedergegeben ist, wird am Verdichter 13, 14 Luft bei mittleren Drücken (11-20 bar) und bei hohen Drücken (> 30 bar) entnommen.
Die erste Brennkammer 18 benötigt Syngas mit einem Druck, der dem Endruck des Verdichters 13, 14 plus einem Druckverlust in den Leitungen und in der Brennkammer entspricht. Bei einer herkömmlichen IGCC-Anlage mit einer Gasturbine mit nur einer Brennkammer beträgt der Druck in der
Kohlevergasungsanlage etwa 30 bar. Würde in einer solchen Anlage anstelle der Gasturbine mit nur einer Brennkammer eine Gasturbine mit Zwischenüberhitzung eingesetzt werden, müsste das Syngas aus der Kohlevergasungsanlage mittels eines oder mehrerer Verdichter vom Endruck der Kohlevergasungsanlage (ca. 30 bar) auf das Druckniveau der ersten Brennkammer von > 45 bar verdichtet werden.
Würde man andererseits den Druck in der Kohlevergasungsanlage für eine Gasturbine ohne Zwischenüberhitzung auf beispielsweise 60 bar erhöhen, müsste eine Expansionsmaschine eingesetzt werden, um das Syngas auf das Druckniveau der Brennkammer zu entspannen.
Die Idee der vorliegenden Erfindung besteht darin, in einer IGCC-Anlage mit einer Gasturbine mit Zwischenüberhitzung den Kohlevergasungszweig der Anlage, der üblicherweise eine Luftzerlegungsanlage, eine Kohlevergasungsanlage, eine
Gasreinigungsanlage und einen Cθ2-Abscheider umfasst, auf einem Druckniveau zu betreiben, das dem Druckniveau der ersten Brennkammer der Gasturbine angepasst ist und im Bereich zwischen 40 und 65 bar und damit deutlich über dem Druckniveau bei einer Gasturbine ohne Zwischenüberhitzung liegt. Auf diese Weise wird der Einsatz eines zusätzlichen Verdichters für die Verdichtung des Syngases vermieden. In der Fig. 2 ist in einem stark vereinfachten Schema eine IGCC-Anlage mit einer Gasturbine mit Zwischenüberhitzung bzw. sequentieller Verbrennung gemäss einem Ausführungsbeispiel der Erfindung gezeigt. Das Kombikraftwerk 30 umfasst eine Gasturbine 11 mit einem Niederdruckverdichter 13, einem nachfolgenden Hochdruckverdichter 14, einer Hochdruckbrennkammer 18 mit einer nachfolgenden Hochdruckturbine 16 und einer Zwischenüberhitzungsbrennkammer 19 mit einer nachfolgenden Niederdruckturbine 17. Die Verdichter 13, 14 und die Turbinen 16, 17 sitzen auf einer gemeinsamen Welle 15, von der ein Generator 12 angetrieben wird. Die Brennkammern 18 und 19 werden über eine Syngaszuleitung 31 mit Syngas als Brennstoff versorgt, welches durch Vergasung von Kohle (Kohlezufuhr 33) in einer Kohlevergasungsanlage 34 erzeugt wird. Der Kohlevergasungsanlage 34 ist eine Kühlvorrichtung 35 für das Syngas, eine Reinigungsanlage 36 und ein CO2- Abscheider 37 mit einem Cθ2-Ausgang 38 zur Abgabe des abgeschiedenen CO2 nachgeschaltet.
Zur Kohlevergasung in der Kohlevergasungsanlage 34 wird Sauerstoff (O2) verwendet, welcher in einer Luftzerlegungsanlage 32 gewonnen und über eine Sauerstoffleitung 32a zugeführt wird. Die Luftzerlegungsanlage 32 erhält verdichtete Luft vom Verdichter 13, 14. Der bei der Zerlegung ebenfalls entstehenden Stickstoff (N2) wird beispielsweise über eine Stickstoffleitung 32b der Niederdruckbrennkammer 19 zugeführt.
Zur Kühlung der vom Heissgas belasteten Komponenten der Brennkammern 18, 19 und Turbinen 16, 17 wird verdichtete Kühlluft an den Ausgängen der beiden Verdichter 13 und 14 abgezapft, in einem nachgeschalteten OTC-Kühler 23 bzw. 24 abgekühlt, und dann über entsprechende Kühlleitungen 25 und 26 den zu kühlenden Stellen zugeführt.
Am Ausgang der Niederdruckturbine 17 ist ein Abhitzedampferzeuger 27 angeordnet, der zusammen mit einer angeschlossenen Dampfturbine 29 Teil eines Wasser-Dampf-Kreislaufs ist. Das aus dem Abhitzedampferzeuger 27 austretende Abgas wird über eine Abgasleitung 28 nach aussen abgegeben.
In einer solchen Anlagenkonfiguration wird nun der Anlagenzweig für die Erzeugung des Syngases, der die Luftzerlegungsanlage 32, die
Kohlevergasungsanlage 34, die Reinigungsanlage 36 und den Cθ2-Abscheider 37 umfasst, so ausgelegt und betrieben, dass das entstehende Syngas direkt der ersten Brennkammer 18 zugeführt werden kann. Hierzu kann entweder die Luftzerlegungsanlage 32 oder die Kohlevergasungsanlage 34 oder die Reinigungsanlage 36 oder der Cθ2-Abscheider 37 bei Drücken > 40 bar arbeiten. Um die durch diesen Anlagenzweig strömenden Gase auf das dazu erforderliche Druckniveau zu bringen, kann an einer geeigneten Stelle ein zusätzlicher Verdichter 39 vorgesehen werden.
BEZUGSZEICHENLISTE
10,30 Kombikraftwerk
11 Gasturbine
12 Generator
13 Niederdruckverdichter
14 Hochdruckverdichter
15 Welle (Gasturbine)
16 Hochdruckturbine
17 Niederdruckturbine
18 Hochdruckbrennkammer
19 Zwischenüberhitzungsbrennkammer
20 Lufteinlass
21 ,22 Brennstoffzufuhr
23,24 OTC-Kühler
25,26 Kühlleitung
27 Abhitzedampferzeuger
28 Abgasleitung Dampfturbine (Dampfkreislauf)
Syngaszuleitung
Luftzerlegungsanlage a Sauerstoffleitung b Stickstoffleitung
Kohlezufuhr
Kohlevergasungsanlage
Kühlvorrichtung
Reinigungsanlage
CO2-Abscheider
CO2-Ausgang
Verdichter

Claims

PATENTANSPRÜCHE
1. Verfahren zum Betrieb einer Gasturbine (11 ), welche insbesondere in einem Kombikraftwerk (30) eingesetzt ist, bei welchem Verfahren durch die Gasturbine (11 ) Luft angesaugt und verdichtet wird, die verdichtete Luft zur Verbrennung eines aus Kohle gewonnenen Syngases einer Brennkammer (18, 19) zugeführt wird, und die bei der Verbrennung entstehenden heissen Gase in einer nachfolgenden Turbine (16, 17) unter Verrichtung von Arbeit entspannt werden, wobei ein Teil der verdichteten Luft in Sauerstoff und Stickstoff zerlegt wird, und der Sauerstoff in einer Kohlevergasungsanlage (34) zur Erzeugung des Syngases eingesetzt wird, und wobei ein Teil der verdichteten Luft zur Kühlung der von den heissen Gasen belasteten Teile der Gasturbine (11 ) verwendet wird, dadurch gekennzeichnet, dass
- eine Gasturbine (11 ) mit Zwischenüberhitzung verwendet wird, welche zwei Brennkammern (18, 19) und zwei Turbinen (16, 17) umfasst, wobei in der ersten Brennkammer (18) Syngas unter Einsatz der verdichteten Luft bei Drücken im Bereich von 40-65 bar verbrannt und die entstehenden heissen Gase in der ersten Turbine (16) entspannt werden, und wobei in der zweiten Brennkammer Syngas unter Einsatz der aus der ersten Turbine (16) kommenden Gase verbrannt und die entstehenden heissen Gase in der zweiten Turbine (17) entspannt werden, und
- die Erzeugung des Syngases so durchgeführt wird, dass das erzeugte Syngas direkt der ersten Brennkammer (18) zugeführt werden kann.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Luftzerlegung bei Drücken > 40 bar vorgenommen wird.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Vergasung der Kohle bei Drücken > 40 bar vorgenommen wird.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das bei der Kohlevergasung entstehende Gas einer Reinigung unterzogen wird, und dass die
Reinigung des Gases bei Drücken > 40 bar vorgenommen wird.
5. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass dem bei der Kohlevergasung entstehenden Gas CO2 entzogen wird, und dass die Entziehung des CO2 bei Drücken > 40 bar vorgenommen wird.
6. Gasturbine (11 ) zur Durchführung des Verfahrens nach Anspruch 1 , welche Gasturbine (11) als Gasturbine mit Zwischenüberhitzung ausgelegt ist und Verdichter (13, 14) zur Verdichtung von angesaugter Luft sowie zwei Brennkammern (18, 19) und zwei Turbinen (16, 17) umfasst, wobei in der ersten Brennkammer (18) ein Brennstoff unter Einsatz der verdichteten Luft bei Drücken im Bereich von 40-65 bar verbrannt und die entstehenden heissen Gase in der ersten Turbine (16) entspannt werden, und wobei in der zweiten Brennkammer der Brennstoff unter Einsatz der aus der ersten Turbine (16) kommenden Gase verbrannt und die entstehenden heissen Gase in der zweiten Turbine (17) entspannt werden, dadurch gekennzeichnet, dass eine Anlage (32, ..,39) zur Erzeugung von Syngas aus Kohle mittels Kohlevergasung vorgesehen ist, welche ausgangsseitig mit den Brennkammern (18, 19) in Verbindung steht und die Brennkammern (18, 19) mit dem Syngas als Brennstoff versorgt, und dass der Ausgang der Anlage (32,.., 39) zur Erzeugung von Syngas mit der ersten Brennkammer (18) direkt verbunden ist.
7. Gasturbine nach Anspruch 6, dadurch gekennzeichnet, dass die Anlage (32,.., 39) zur Erzeugung von Syngas eine Luftzerlegungsanlage (32) umfasst, und dass die Luftzerlegungsanlage (32) bei Drücken > 40 bar arbeitet.
8. Gasturbine nach Anspruch 6, dadurch gekennzeichnet, dass die Anlage (32,.., 39) zur Erzeugung von Syngas eine Kohlevergasungsanlage (34) umfasst, und dass die Kohlevergasungsanlage (34) bei Drücken > 40 bar arbeitet.
9. Gasturbine nach Anspruch 6, dadurch gekennzeichnet, dass die Anlage
(32,.., 39) zur Erzeugung von Syngas eine Reinigungsanlage (36) umfasst, und dass die Reinigungsanlage (36) bei Drücken > 40 bar arbeitet.
10. Gasturbine nach Anspruch 6, dadurch gekennzeichnet, dass die Anlage (32,.., 39) zur Erzeugung von Syngas einen CO2-Abscheider (37) umfasst, und dass der CO2-Abscheider (37) bei Drücken > 40 bar arbeitet.
PCT/EP2006/065110 2005-08-10 2006-08-07 Verfahren zum betrieb einer gasturbine sowie gasturbine zur durchführung des verfahrens WO2007017490A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008525566A JP2009504967A (ja) 2005-08-10 2006-08-07 ガスタービンの作動方法及びこの作動方法によるガスタービン
CA2618030A CA2618030C (en) 2005-08-10 2006-08-07 A method for operating a gas turbine and a gas turbine for implementing the method
CN2006800289706A CN101238341B (zh) 2005-08-10 2006-08-07 用于运行燃气透平的方法以及用于实施该方法的燃气透平
DE112006002028.5T DE112006002028B4 (de) 2005-08-10 2006-08-07 Verfahren zum Betrieb einer Gasturbine sowie Gasturbine zur Durchführung des Verfahrens

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US70677505P 2005-08-10 2005-08-10
US60/706,775 2005-08-10
CH2023/05 2005-12-20
CH20232005 2005-12-20

Publications (1)

Publication Number Publication Date
WO2007017490A1 true WO2007017490A1 (de) 2007-02-15

Family

ID=37137117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/065110 WO2007017490A1 (de) 2005-08-10 2006-08-07 Verfahren zum betrieb einer gasturbine sowie gasturbine zur durchführung des verfahrens

Country Status (5)

Country Link
JP (1) JP2009504967A (de)
CN (1) CN101238341B (de)
CA (1) CA2618030C (de)
DE (1) DE112006002028B4 (de)
WO (1) WO2007017490A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290202A1 (de) 2009-07-13 2011-03-02 Siemens Aktiengesellschaft Heizkraftwerk und Heizkraftverfahren
CN102305109B (zh) * 2011-09-13 2014-03-26 华北电力大学 一种富氧-煤气化烟气再热联合循环动力系统
CN102337936A (zh) * 2011-09-13 2012-02-01 华北电力大学 一种烟气再热联合循环动力系统
CN102337937B (zh) * 2011-09-13 2014-08-20 华北电力大学 一种煤整体气化烟气再热联合循环动力系统
CN104314704B (zh) * 2013-09-22 2016-04-27 摩尔动力(北京)技术股份有限公司 速度型热气机
CN109854382A (zh) * 2019-03-13 2019-06-07 上海发电设备成套设计研究院有限责任公司 一种零碳排放热力发电系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL63476C (de) *
DE947843C (de) * 1954-09-11 1956-08-23 Henschel & Sohn G M B H Verfahren zur Verwendung des bei Druckvergasern anfallenden Schleusengases im Gasturbinenbetrieb
US4785621A (en) * 1987-05-28 1988-11-22 General Electric Company Air bottoming cycle for coal gasification plant
US4785622A (en) * 1984-12-03 1988-11-22 General Electric Company Integrated coal gasification plant and combined cycle system with air bleed and steam injection
US4896499A (en) * 1978-10-26 1990-01-30 Rice Ivan G Compression intercooled gas turbine combined cycle
EP0773416A2 (de) * 1995-11-07 1997-05-14 Air Products And Chemicals, Inc. Betrieb-integrierter Vergasungs- und kombinierter Zykluskraftwerke in Teillast
GB2335953A (en) * 1998-03-30 1999-10-06 Magnox Electric Plc Air extraction from a power generation turbine
WO2000075499A1 (en) * 1999-06-03 2000-12-14 General Electric Company Modified fuel gas turbo-expander for oxygen blown gasifiers and related method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4118062A1 (de) 1991-06-01 1992-12-03 Asea Brown Boveri Kombinierte gas/dampf-kraftwerksanlage
CH687269A5 (de) 1993-04-08 1996-10-31 Abb Management Ag Gasturbogruppe.
US5388395A (en) * 1993-04-27 1995-02-14 Air Products And Chemicals, Inc. Use of nitrogen from an air separation unit as gas turbine air compressor feed refrigerant to improve power output
US5406786A (en) * 1993-07-16 1995-04-18 Air Products And Chemicals, Inc. Integrated air separation - gas turbine electrical generation process
DE19832294C1 (de) 1998-07-17 1999-12-30 Siemens Ag Gas- und Dampfturbinenanlage
US6148602A (en) 1998-08-12 2000-11-21 Norther Research & Engineering Corporation Solid-fueled power generation system with carbon dioxide sequestration and method therefor
DE10002084C2 (de) 2000-01-19 2001-11-08 Siemens Ag Gas- und Dampfturbinenanlage
US6513317B2 (en) 2001-01-11 2003-02-04 General Electric Company Apparatus for controlling nitrogen injection into gas turbine
CN100504053C (zh) * 2003-01-27 2009-06-24 中国科学院工程热物理研究所 内外燃煤一体化联合循环发电系统及发电方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL63476C (de) *
DE947843C (de) * 1954-09-11 1956-08-23 Henschel & Sohn G M B H Verfahren zur Verwendung des bei Druckvergasern anfallenden Schleusengases im Gasturbinenbetrieb
US4896499A (en) * 1978-10-26 1990-01-30 Rice Ivan G Compression intercooled gas turbine combined cycle
US4896499B1 (de) * 1978-10-26 1992-09-15 G Rice Ivan
US4785622A (en) * 1984-12-03 1988-11-22 General Electric Company Integrated coal gasification plant and combined cycle system with air bleed and steam injection
US4785621A (en) * 1987-05-28 1988-11-22 General Electric Company Air bottoming cycle for coal gasification plant
EP0773416A2 (de) * 1995-11-07 1997-05-14 Air Products And Chemicals, Inc. Betrieb-integrierter Vergasungs- und kombinierter Zykluskraftwerke in Teillast
GB2335953A (en) * 1998-03-30 1999-10-06 Magnox Electric Plc Air extraction from a power generation turbine
WO2000075499A1 (en) * 1999-06-03 2000-12-14 General Electric Company Modified fuel gas turbo-expander for oxygen blown gasifiers and related method

Also Published As

Publication number Publication date
JP2009504967A (ja) 2009-02-05
CA2618030C (en) 2014-07-08
DE112006002028A5 (de) 2008-06-19
CA2618030A1 (en) 2007-02-15
CN101238341A (zh) 2008-08-06
DE112006002028B4 (de) 2022-01-13
CN101238341B (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
WO2008065156A1 (de) Verfahren zum betrieb einer gasturbine
EP2382029B1 (de) Gasturbine mit strömungsteilung und rezirkulation
DE102007053192B4 (de) Kraftwerke mit Gasturbinen zur Erzeugung von Elektroenergie und Prozesse zu der Reduzierung von CO2-Emissionen
DE69918492T2 (de) Turbine à gaz à chauffage indirect integree à une unite de separation des gaz de l'air
DE19940763B4 (de) Im kombinierten Zyklus arbeitender Energieerzeuger mit integrierter Kohlevergasung
DE69400252T2 (de) Gebrauch von Stickstoff von einer Luftzerlegungsanlage um die Zufuhrluft zum Kompressor einer Gasturbine zu kühlen und dadurch der Wirkungsgrad zu erhöhen
DE60019019T2 (de) Verfahren und Vorrichtung zur Luftzerlegung mit Gasturbinen
DE102004039164A1 (de) Verfahren zur Erzeugung von Energie in einer eine Gasturbine umfassenden Energieerzeugungsanlage sowie Energieerzeugungsanlage zur Durchführung des Verfahrens
DE60036327T2 (de) Verfahren zur Luftzerlegung mit einer Brennkraftmaschine zur Herstellung von Luftgasen und elektrischer Energie
DE69533558T2 (de) Gaserzeuger für ein energie-erzeugungssystem mit geringer umweltbelastung
DE102007050781A1 (de) Systeme und Verfahren zur Energieerzeugung mit Kohlendioxydabsonderung
DE102007050783A1 (de) Systeme und Verfahren zur Energieerzeugung mit Kohlendioxydisolation
EP1219800A2 (de) Gasturbinenzyklus
DE102009003406A1 (de) Verfahren und System zur Unterstützung einer Modifikation eines Kombikreislauf-Arbeitsfluids und dessen Verbrennung
DE112006002028B4 (de) Verfahren zum Betrieb einer Gasturbine sowie Gasturbine zur Durchführung des Verfahrens
DE69807664T2 (de) Kohlebefeuerte gasturbinenanlage
CH698638B1 (de) Verfahren zum Betrieb einer Gasturbinenanordnung umfassend die Einspritzung eines Verdünnungsmittels in die Gasturbinenanordnung.
DE60034529T2 (de) Brenngasentspannungsturbine für einen sauerstoffaufblas-vergaser und zugehöriges verfahren
WO1990010785A1 (de) Verfahren zum betreiben eines kombinierten gasturbinen-/dampfturbinen-prozesses
EP2274505B1 (de) Verfahren zum betrieb einer kraftwerksanlage mit integrierter vergasung sowie kraftwerksanlage
DE102007060550A1 (de) System und Verfahren für emissionsarme Verbrennung
DE112006001991B4 (de) Verfahren zum Betrieb einer Gasturbine
EP1240414B1 (de) Verfahren zum betreiben einer dampfturbinenanlage sowie danach arbeitende dampfturbinenanlage
DE112006001974B4 (de) Verfahren zum Betrieb einer Gasturbine sowie Gasturbine zur Durchführung des Verfahrens
DE112006001975B4 (de) Verfahren zum Betrieb einer Gasturbine sowie Gasturbine zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120060020285

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 200680028970.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2618030

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008525566

Country of ref document: JP

REF Corresponds to

Ref document number: 112006002028

Country of ref document: DE

Date of ref document: 20080619

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06764308

Country of ref document: EP

Kind code of ref document: A1