WO2007016854A1 - Procede de modulation de signaux d'apres multiplexage par repartition orthogonale de la frequence et appareil associe - Google Patents

Procede de modulation de signaux d'apres multiplexage par repartition orthogonale de la frequence et appareil associe Download PDF

Info

Publication number
WO2007016854A1
WO2007016854A1 PCT/CN2006/001835 CN2006001835W WO2007016854A1 WO 2007016854 A1 WO2007016854 A1 WO 2007016854A1 CN 2006001835 W CN2006001835 W CN 2006001835W WO 2007016854 A1 WO2007016854 A1 WO 2007016854A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency range
subset
frequency
baseband
frequency ranges
Prior art date
Application number
PCT/CN2006/001835
Other languages
English (en)
French (fr)
Inventor
Xuezhi Yang
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP06761565.8A priority Critical patent/EP1914917B1/en
Publication of WO2007016854A1 publication Critical patent/WO2007016854A1/zh
Priority to US12/027,775 priority patent/US20080130485A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • the present invention relates to Orthogonal Frequency Division Multiplex (OFDM) technology, and more particularly to a signal modulation method based on orthogonal frequency division multiplexing and a modulation apparatus thereof.
  • OFDM Orthogonal Frequency Division Multiplex
  • Next-generation mobile communication technologies need to support a wide range of services such as voice, data, audio, video, and images.
  • next-generation mobile communication systems are required to support higher data transmission rates and higher spectral efficiency. And require a complete QOS guarantee mechanism, as well as better mobility support and seamless coverage of the network, in order to achieve the goal of providing communication services for users anytime, anywhere.
  • the second generation mobile communication uses TDMA (GSM) and narrowband CDMA (IS-95) systems as the main access technologies
  • the third generation mobile communication uses broadband CDMA (UMTS, WCDMA) as the main access technology.
  • GSM TDMA
  • IS-95 narrowband CDMA
  • UMTS, WCDMA broadband CDMA
  • CDMA technology one user data symbol will occupy all carrier frequency widths, and different user or user data will be distinguished by spreading codes. Since the multipath channel destroys the orthogonality between the spreading codes, making the CDMA technology a self-interference system, the capacity and spectral efficiency of the CDMA system simply cannot meet the requirements of broadband wireless
  • multi-carrier technology has become a hotspot technology for broadband wireless communication.
  • the basic idea is to divide a wideband carrier into multiple subcarriers and simultaneously transmit data on multiple subcarriers.
  • the width of the subcarriers is smaller than the coherence bandwidth of the channel, such that the fading on each subcarrier is flat fading on the frequency selective channel, thus reducing crosstalk between user data symbols, and It does not require complex channel equalization and is suitable for the transmission of high-rate data.
  • Existing multi-carrier technologies come in many forms, such as Orthogonal Frequency Division Multiple Access (OFDMA) and Multi-Carrier CDMA (MC-CDMA).
  • OFDMA Orthogonal Frequency Division Multiple Access
  • MC-CDMA Multi-Carrier CDMA
  • OFDM Orthogonal Frequency Division Multiplex
  • OFDM technology requires that each subcarrier be orthogonal to each other. Although it is theoretically found that Fast Fourier Transformation (FFT) can achieve this mutually orthogonal modulation, in reality, it is so complicated. The implementation of the fast Fourier transform was simply impossible at the time;
  • DSP chip technology OFDM technology has begun to transform from theory to practical application. OFDM technology has become the focus of research with its inherent strong resistance to delay spread and high spectral efficiency. It has been adopted by many international standards, such as Digital Audio Broadcasting (DAB). Standard, European Digital Video Broadcasting (DVB) standard, HIPERLAN and IEEE 802.11 wireless LAN standards, and IEEE 802.16 wireless metropolitan area network standards.
  • DAB Digital Audio Broadcasting
  • DVD European Digital Video Broadcasting
  • HIPERLAN and IEEE 802.11 wireless LAN standards HIPERLAN and IEEE 802.11 wireless LAN standards
  • IEEE 802.16 wireless metropolitan area network standards.
  • the OFDMA technology is a representative one of the multi-carrier technologies.
  • user data is first subjected to channel coding and interleaving, and a modulation method (such as BPSK, QPSK) is adopted. :, QAM and other modulation methods) modulation to form user data symbols, and then modulated by the OFDM system to the radio frequency.
  • a modulation method such as BPSK, QPSK
  • QAM and other modulation methods modulation to form user data symbols, and then modulated by the OFDM system to the radio frequency.
  • the user data symbols are first serial/parallel converted to form a plurality of low-speed sub-data streams, each of which occupies one sub-carrier.
  • mapping of sub-data streams to sub-carriers can be performed by an inverse discrete Fourier transform (IDFT, Inverse Discrete Fourier Transformation) or inverse fast Fourier transform Leaf transform (IFFT, Inverse Fast Fourier Transformation) processing is implemented.
  • IDFT Inverse Discrete Fourier Transformation
  • IFFT inverse fast Fourier transform Leaf transform
  • CP Cyclic Prefix
  • Supporting the scalable bandwidth function as a requirement in the 3GPP LTE project requires the communication system to support different bandwidth requirements of 1.25MHz, 2.5MHz, 5MHz, 10MHz, 15MHz, 20MHz.
  • a set of parameters is designed for each supported bandwidth in the 3GPP TR 25.814 specification.
  • the parameter set includes sampling rate and FFT points, and supports different transmission bandwidths, corresponding to each transmission bandwidth.
  • the parameter set is shown in Table 1 below:
  • FFT points FFT 128 256 512 1024 1536 2048 size
  • the sub-carriers are visible.
  • 15 kHz is used as the sub-carrier width for different transmission bandwidths.
  • the same subcarrier width is maintained by changing the corresponding sampling rate and FFT points.
  • OFDM technology supports different transmission bandwidths by maintaining the above parameter sets, but has the following drawbacks:
  • the FFT points used between different transmission bandwidths can be implemented by the base 2 FFT algorithm, because the base 2 FFT algorithm has a low computational complexity and is quite convenient to implement.
  • the base 2 FFT algorithm has a low computational complexity and is quite convenient to implement.
  • the transmission bandwidth is not twice as large as other transmission bandwidths, it is required to implement a non-base 2 FFT algorithm for a transmission bandwidth of 15 MHz, which makes the operation complexity. increase.
  • the terminal and the base station only support one sampling rate and FFT point in the above table, then the terminal and the base station can only communicate based on the same transmission bandwidth.
  • both the terminal and the base station are required to support the six sampling rates and FFT points in the above table, that is, the terminal and the base station need to support simultaneously.
  • the multiple sets of parameters in the above table will inevitably increase the input cost of the terminal and the base station. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a signal modulation method based on orthogonal frequency division multiplexing and a modulation apparatus thereof, so that the terminal and the base station can also perform different transmission bandwidths while supporting only one set of parameters. Communication.
  • a signal modulation method based on orthogonal frequency division multiplexing comprising the steps of:
  • step A the maximum range of the baseband frequency is determined according to the baseband chip rate.
  • step B further comprises the step of modifying the frequency range of the determined subset of the frequency range.
  • the subsets of the respective frequency ranges in the step B do not overlap each other.
  • step B in determining the subset of the respective frequency ranges, it is ensured that a predetermined frequency range interval is left between each of the two adjacent frequency range subsets.
  • the method further comprises the steps of:
  • the selected m frequency range sub-sets are combined into a frequency range subset.
  • the subset of the m frequency ranges selected in the step B1 are continuous.
  • the frequency range of the merged frequency range subset in the step B2 includes: a frequency range corresponding to the selected m frequency range subsets;
  • the frequency range between each of the two frequency range subsets In a subset of m consecutive frequency ranges, the frequency range between each of the two frequency range subsets.
  • the baseband signal whose frequency range is limited to the subset of n frequency ranges is realized by setting the subcarrier power corresponding to the frequency range other than the selected subset of the n frequency ranges to zero.
  • step C a reverse fast Fourier transform is used to generate a baseband signal.
  • the baseband chip rate in the step A is 7.68 HMZ; in the step B, the three frequency range subsets having the widths of 1.25 MHz, 2.5 MHz, and 5 MHz are respectively determined.
  • the baseband chip rate in the step A is 30.72 HMz; in the step B, three frequency range subsets having widths of 10 MHz, 15 MHz, and 20 MHz are respectively determined.
  • the method is applied to: Orthogonal frequency division multiplexing multiple access system; or
  • Multi-carrier code division multiplexing multiple access system Multi-carrier code division multiplexing multiple access system.
  • the present invention also provides a signal modulation apparatus based on orthogonal frequency division multiplexing, comprising: a baseband frequency range determining unit for determining a baseband frequency range according to a baseband chip rate; and for using the baseband frequency range Determining a frequency range subset determining unit of the N frequency range subsets, wherein the N is a natural number;
  • a baseband signal generating unit for selecting a subset of the frequency ranges in the subset of the N frequency ranges and generating a baseband signal having a frequency range defined in a subset of the n frequency ranges, wherein the l ⁇ n ⁇ N;
  • a modulation unit for modulating the generated baseband signal onto a carrier for modulating the generated baseband signal onto a carrier.
  • the device further includes:
  • a selection unit for selecting a subset of the m frequency ranges in the determined subset of the N frequency ranges; and a merge unit for combining the selected m frequency range subsets into a subset of the frequency range.
  • the baseband signal generating unit specifically includes:
  • a selected subunit for selecting a subset of n frequency ranges in the subset of the N frequency ranges; a nulling device for zeroing subcarrier power corresponding to a frequency range other than the selected subset of the frequency ranges Unit;
  • the baseband signal generating unit generates a baseband signal by using an inverse fast Fourier transform.
  • the invention determines a subset of N frequency ranges by using a baseband frequency range determined by a baseband chip rate, and selects a subset of the frequency ranges (l ⁇ n ⁇ N) in the subset of the N frequency ranges, and generates
  • the frequency range is limited to the baseband signals in the subset of the n frequency ranges; and the generated baseband signals are modulated onto the carrier, thereby achieving the following beneficial effects:
  • a set of transmission parameters can support multiple transmission bandwidths, reducing the number of base stations and terminal equipment, etc. Development input cost;
  • FIG. 1 is a block diagram showing the working principle of the existing OFDM
  • FIG. 2 is a block diagram showing the working principle of the existing DFT-S-OFDM
  • FIG. 3 is a flowchart of a main implementation principle of an OFDM-based signal modulation method according to the present invention
  • FIG. 4 is a schematic diagram of an embodiment of implementing a transmission bandwidth using a set of parameters according to the method of the present invention
  • FIG. 5 is a schematic diagram showing the main components of an OFDM-based signal modulation apparatus according to the present invention
  • FIG. 6 is a schematic structural diagram of an embodiment of the apparatus according to the present invention after adding a frequency range sub-set and function;
  • FIG. 7 is a schematic diagram showing the specific structure of a baseband signal generating unit in the device of the present invention. detailed description
  • the present invention is directed to a set of parameters (including a sampling rate and FFT points) in the existing OFDM technology, which can only support one transmission bandwidth defect, and proposes a technical solution for implementing scalable bandwidth in a wireless communication system to implement the terminal and the network side.
  • a set of parameters including a sampling rate and FFT points
  • FFT points a sampling rate and FFT points
  • communication can also be performed based on different transmission bandwidths; at the same time, forward compatibility and backward compatibility of the wireless communication system on multiple access technologies are realized.
  • FIG. 3 is a main implementation principle of the OFDM-based signal modulation method of the present invention.
  • the main implementation process of the flow chart is as follows:
  • Step S10 first selecting a chip rate f chip of a baseband signal, and determining a corresponding baseband frequency range according to the selected baseband chip rate f chip ; wherein the optimal mode is determining the corresponding baseband according to the selected baseband chip rate f chi p The maximum range of frequencies [-f chip /2, f chip /2];
  • Step S20 determining a subset of N frequency ranges in the determined baseband frequency range, where N is a natural number; wherein each subset of the determined frequency ranges corresponds to an equivalent carrier frequency and a transmission bandwidth, and the determined The frequency range of each subset of frequency ranges is [f -, f + ];
  • the frequency range of each frequency range subset determined herein may be modified separately, that is, by modifying the frequency range [£, ] of each frequency range subset to change each frequency range.
  • the specified frequency range interval is left as the guard bandwidth between each two adjacent frequency range subsets.
  • the selected subsets of the m frequency ranges are preferably continuous, such that the frequency range of the merged new frequency range subset includes: a frequency range corresponding to the selected m frequency range subsets and a corresponding frequency range A frequency range interval between a subset of m consecutive frequency ranges, between each of the two frequency range subsets.
  • Step S30 selecting n frequency range subsets in the determined N frequency range subsets, wherein l ⁇ n ⁇ N, and generating a baseband signal whose frequency range is limited to the selected n frequency range subsets;
  • the processing of the frequency range of the baseband signal in a subset of the selected n frequency ranges can be as follows:
  • the transmit power of the OFDM subcarrier corresponding to the frequency range other than the selected subset of the frequency ranges is set to zero, that is, among the input sequences of the IFFT, the selected subset of the frequency ranges will be selected.
  • the value corresponding to the outer frequency range is set to zero.
  • the generated baseband signal is modulated onto a carrier.
  • the modulated carrier frequency is f c
  • the equivalent modulation carrier frequencies corresponding to each subset of the frequency ranges modulated onto the carrier are: f c +(f + +f.)/2, as can be seen,
  • the equivalent modulation carrier frequency can be changed.
  • the baseband chip rate of 7.68HMZ can be selected in the above step S10, and three widths of 1.25MHz, 2.5MHz and 5MHz can be determined in the maximum range of the baseband frequency determined by the baseband chip rate of 7.68HMZ in step S20.
  • a subset of three frequency ranges having widths of 10 MHz, 15 MHz, and 20 MHz may be determined in a maximum range of baseband frequencies determined by a baseband chip rate of 7.68 HMZ, thereby correspondingly obtaining a chip rate based on one chip.
  • a baseband chip rate of 7.68 HMZ 7.68 HMZ
  • it can support three different transmission bandwidths of 10MHz, 15MHz and 20MHz.
  • the transmission bandwidth of the baseband signal is fixed because the chip rate determines the transmission bandwidth of the baseband signal; however, in the OFDM system, at the same chip rate/sampling rate state, However, the transmission bandwidth of the actual baseband signal can be controlled by using a subcarrier method.
  • the maximum range of baseband frequency is [-fchip/2, fchip 2];
  • the true baseband signal frequency range is limited to [f_, f + ] c [-f chip /2, f chip /2];
  • the transmission bandwidth of the signal is [-(f + - £)/2, (f+ - £)/2], and the carrier center frequency becomes f c +(f++£)/2, thus achieving control of the baseband signal.
  • the frequency range is used to achieve the purpose of transforming the transmission bandwidth and the carrier center frequency.
  • the figure is a schematic diagram of an embodiment of using a set to support two transmission bandwidths according to the method of the present invention.
  • the figure illustrates the use of a set of parameters (at the same chip rate/sampling rate of 7.68 MHz).
  • one set of parameters can also support three or more different transmission bandwidths.
  • the present invention defines three subcarriers:
  • Virtual subcarrier refers to the subcarrier used to specify the transmission bandwidth. Since the chip rate may be higher than the transmission bandwidth, the frequency of some subcarriers is outside the transmission bandwidth, and the transmission of these subcarriers can be performed. The power is set to zero, making it the virtual subcarrier defined here.
  • Protection subcarrier refers to the subcarriers used to specify the transmission bandwidth. By setting the transmit power of these subcarriers to zero, it protects the transmission bandwidth to meet the requirements of the power template.
  • the protection subcarrier can flexibly set the width of the protection subcarrier according to the performance requirements of the filter, so that the transmission bandwidth can be utilized to the maximum extent when the power template is met.
  • Effective subcarrier refers to the subcarrier used to actually carry signaling or data.
  • the chip rate/sampling rate of 7.68 MHz can be used to support a 5 MHz transmission bandwidth or support two 2.5 MHz transmissions by setting the virtual subcarrier and the protection subcarrier as shown in FIG. bandwidth. By analogy, it can support four 1.25MHz transmission bandwidths or support three 1.6MHz transmission bandwidths.
  • the parameter sets corresponding to different transmission bandwidths in the 3GPP LTE system can be modified as shown in Table 2 below:
  • Sub-carriers can be seen from Table 2 above.
  • the highest chip rate/sampling rate and FFT points can be used to support.
  • 7.68MHz chip rate / 512 point FFT is used to support 1.25MHz, 2.5MHz and 5MHz three transmission bandwidths, in addition to 30.72MHz chip rate / 2048 point FFT Used to support three transmission bandwidths of 10MHz, 15MHz and 20MHz.
  • the method of the present invention can be, but is not limited to, applied to a wireless communication system as follows:
  • Orthogonal Frequency Division Multiple Access OFDMA
  • DFT-S-OFDMA0 Discrete Fourier Transform Extended Orthogonal Frequency Division Multiple Access
  • MC-CDMA Multi-Carrier Code Division Multiple Access
  • the communication network is getting larger and larger, and operators often invest tens of billions of dollars for a communication network. And often have a larger number of user terminals at the same time, when the existing wireless network rises When it comes to a new wireless network, if it can maintain backward compatibility (that is, the new network system can support the original terminal equipment), it can protect the operator's huge investment in the existing wireless network system;
  • the ability to achieve forward compatibility that is, the old network system can support new terminal devices
  • the technical solution provided by the present invention can simultaneously realize backward compatibility and forward compatibility of the physical layer of the wireless communication system, and how the scheme of the present invention achieves bidirectional compatibility will be described below.
  • the new wireless communication system's emission parameter set is shown in Table 4 below:
  • Subcarrier width Sub-carrier spacing 15 kHz Chip rate Chip Rate / sampling frequency 7.68 MHz
  • the number of effective subcarriers is 151 301 Number of effective sub-carriers. It can be seen in this scenario that if the technical solution proposed by the present invention is utilized, the baseband signal of the original wireless communication network and terminal equipment with a transmission bandwidth of 2.5 MHz is already supported by 5 MHz. The ability to transmit bandwidth (because its chip rate/sampling rate is 7.68MHz and the number of FFT points is 512), therefore, after the upgrade of the existing wireless communication network, the original wireless communication network and terminal equipment transmit bandwidth from baseband to RF transmission. The bandwidth does not need to be changed by any hardware or parameters, and even the software does not need to be modified. Only certain parameter modifications need to be made on the resource allocation of the network side to achieve forward compatibility and backward compatibility.
  • the existing wireless communication network with a transmission bandwidth of 5 MHz is further upgraded to a transmission bandwidth of 10 MHz, the original 7.68 MHz chip rate/sampling rate and 512-point FFT length cannot be supported by the technical solution proposed by the present invention.
  • the transmission parameters of the upgraded wireless communication network need to be modified to a 30.72 MHz chip rate or a sampling rate/2048 point FFT length; the modified transmission parameter set is as shown in Table 5 below:
  • Subcarrier width Sub-carrier spacing 15 kHz
  • FFT points FFT size 512 2048 Number of subcarriers in the same bandwidth 333 666
  • the bandwidth resource allocation of the base station side is within the 5 MHz transmission bandwidth of the original network system, and adopts a new chip rate and FFT point number, and the baseband signal after D/A conversion, and The analog signal of the original network system is no different from the analog signal, so the terminal can receive normally without any modification.
  • terminal transmission, base station reception The baseband transmission parameter of the terminal adopts a 7.68MHz chip rate/512 point FFT length, and the base station receives a baseband transmission parameter of 30.72MHz chip rate/2048 point FFT length, due to the transmission of the original terminal.
  • the signal is a part of the new network system, so the base station can correctly receive the transmitted signal of the original terminal.
  • base station baseband transmission parameters use 7.68MHz chip rate / 512 point FFT length
  • terminal reception uses baseband transmission parameters 30.72MHz chip rate / 2048 point FFT length, due to the original base station transmission signal It is a part of the new terminal capability, so the terminal can correctly receive the transmitted signal of the original base station.
  • the bandwidth resources allocated by the system to the terminal are limited to 5 MHz within the original communication system, and only a subset of the new terminal capabilities are utilized, that is, the terminal uses the new chip rate and the FFT point number.
  • Baseband signal processing, after the D/A conversion, the baseband signal is no different from the analog signal of the original communication system, so the original base station can receive correctly without any modification.
  • FIG. 5 is a schematic diagram of a main component structure of an OFDM-based signal modulation apparatus according to the present invention, which mainly includes a baseband frequency range determining unit 10, a frequency range subset determining unit 20, a baseband signal generating unit 30, and a modulating unit 40, each component
  • the roles and their interconnections are as follows:
  • the baseband frequency range determining unit 10 is configured to determine a baseband frequency range according to the baseband chip rate; the frequency range subset determining unit 20 has a logical connection with the baseband frequency range determining unit 10, and is used for the baseband determined by the baseband frequency range determining unit 10 Determining a subset of N frequency ranges in the frequency range, where N is a natural number;
  • the baseband signal generating unit 30 is connected to the frequency range subset determining unit 20 for selecting a subset of the frequency ranges in the N frequency range subsets determined by the frequency range subset determining unit 20, and the generated frequency range is limited to The baseband signal in the subset of the n frequency ranges, wherein l ⁇ n ⁇ N; the modulation unit 40 is in logical connection with the baseband signal generating unit 30 for modulating the baseband signal generated by the baseband signal generating unit 30 onto the carrier.
  • FIG. 6 is a schematic structural diagram of an embodiment of the apparatus of the present invention after adding a subset of the frequency range and function.
  • the schematic structure of FIG. 5 further includes a selecting unit 50 and a merging unit 60.
  • the specific functions of the unit are as follows:
  • the selecting unit 50 has a logical connection with the frequency range subset determining unit 20, and is configured to select m frequency range subsets in the N frequency range subsets determined by the frequency range subset determining unit 20, wherein 2 ⁇ m ⁇ N;
  • the merging unit 60 has a logical connection with the selecting unit 50, and is used to make the m frequency range sub-sets selected by the selecting unit 50 into a new frequency range subset.
  • FIG. 7 is a schematic diagram showing a specific structure of a baseband signal generating unit in the apparatus of the present invention.
  • the baseband signal generating unit 30 mainly includes a selecting subunit 301, a zeroing subunit 302, and a baseband signal generating subunit 303, each component.
  • the role of the unit and its interconnection are as follows:
  • the selecting subunit 301 has a logical connection with the frequency range subset determining unit 20, and is configured to select n frequency range subsets in the N frequency range subsets determined by the frequency range subset determining unit 20;
  • the selected subunit 301 has a logical connection, and is used to set the subcarrier transmit power corresponding to the frequency range other than the subset of the n frequency ranges selected by the selected subunit 301 to zero;
  • the baseband signal generating sub-unit 303 has a logical connection with the selecting sub-unit 301 for generating a baseband signal whose frequency range is limited to the n frequency range subsets selected by the selecting sub-unit 301.
  • the baseband signal generating unit 30 may, but is not limited to, use an inverse fast Fourier transform (IFFT) method to generate a baseband signal.
  • IFFT inverse fast Fourier transform

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

基于正交频分复用的信号调制方法及其调制装置 技术领域
本发明涉及正交频分复用 ( OFDM, Orthogonal Frequency Division Multiplex )技术, 尤其涉及到一种基于正交频分复用的信号调制方法及其调 制装置。 背景技术
下一代移动通信技术需要支持话音, 数据, 音频, 视频, 图像等广泛的 业务类型, 为了支持多种类型的业务, 要求下一代移动通信系统支持更高的 数据传输速率, 以及更高的频谱效率, 并要求提供完善的 QOS保障机制, 以 及更好的移动性支持和网络无缝覆盖, 以实现为用户随时随地的提供通信服 务的目标。 第二代移动通信以 TDMA ( GSM )和窄带 CDMA ( IS-95 )系统为 主要接入技术 , 笫三代移动通信以宽带 CDMA ( UMTS ,WCDMA )为主要接 入技术。 在 CDMA技术当中, 一个用户数据符号将占用所有的载频宽度, 不 同的用户或者用户数据通过扩频码来进行区分。 由于多径信道破坏了扩频码 之间的正交性, 使得 CDMA技术成为一个自干扰的系统, 因此 CDMA系统 容量和频谱效率根本无法满足宽带无线通信的要求。
20世纪 90年代以来, 多载波技术成为了宽带无线通信的热点技术,其基 本思想是将一个宽带载波划分成多个子载波, 并在划分出的多个子载波上同 时传输数据。 在多数的系统应用当中, 子载波的宽度要小于信道的相干带宽, 这样使得在频率选择性信道上, 每个子载波上的衰落为平坦衰落, 这样就减 少了用户数据符号之间的串扰, 并且不需要复杂的信道均衡, 适合于高速率 数据的传输。 现有多载波技术有多种形式, 如正交频分复用接入(OFDMA, Orthogonal Frequency Division Multiplex Access ) 和多 载波 CDMA ( MC-CDMA, Multiplex Carrier CDMA )等。
其中, 正交频分复用 (OFDM, Orthogonal Frequency Division Multiplex ) 技术在 20世纪 60年代中期被首次提出 ,但在之后相当长的一段时间, OFDM 技术一直没有形成较大规模的应用。 当时 OFDM技术的发展遇到了很多似乎 难于解决的问题:
首先, OFDM技术要求各个子载波之间要相互正交, 尽管理论上发现采 用快速傅立叶变换 ( FFT, Fast Fourier Transformation )可以很好地实现这种 相互正交的调制方式, 但实际上, 如此复杂的实施快速傅立叶变换在当时是 根本无法完成的;
此外, 发射机和接收机振荡器的稳定性以及射频功率放大器的线性要求 等因素也都是 OFDM技术实现的制约条件。
20世纪 80年代以来, 随着大规模集成电路技术的发展解决了 FFT的实 现问题,随着 DSP芯片技术的发展, OFDM技术开始从理论向实际应用转化。 OFDM技术凭借其固有的对时延扩展较强的抵抗力和较高的频谱效率两大优 势迅速成为研究的焦点并被多个国际规范所采用, 如欧洲数字音频广播 ( DAB, Digital Audio Broadcasting )标准、 欧洲数字视频广播(DVB, Digital Video Broadcasting )标准、 HIPERLAN和 IEEE802.11无线局域网标准以及 IEEE 802.16无线城域网标准等。
在 2004年 11月举行的 3GPP RAN 26会议上 , 由多家运营商和设备提供 商共同发起设立了 UMTS的长期演进(LTE )项目, 多载波技术成为主要讨 论的接入技术。在 3GPP LTE项目当中,下行 OFDMA,上行 DFT-spread-OFDM、 SC-FDMA以及 IFDMA已经作为一种主流的多址解决方案参加了讨论。
其中, OFDMA技术是多载波技术当中比较有代表性的一种技术, 如图 1 所示, 在 OFDM系统当中, 用户数据首先经过信道编码和交织处理, 并采用 某种调制方式(如 BPSK、 QPSK:,、 QAM等调制方式)调制形成用户数据符 号,再经过 OFDM系统操作后调制到射频上去。 在 OFDM系统操作当中, 首 先要将用户数据符号进行串行 /并行转换, 形成多个低速的子数据流, 每个子 数据流占用一个子载波。 子数据流到子载波的映射可以通过一个逆向离散傅 立叶变换(IDFT, Inverse Discrete Fourier Transformation )或者逆向快速傅立 叶变换(IFFT, Inverse Fast Fourier Transformation )处理来实现。 同时它使用 循环前缀( CP, Cyclic Prefix )作为各个子数据流之间的保护间隔, 大大减少 甚至消除了码间干扰现象, 并且保证了各信道之间的正交性, 从而大大减少 了信道间干扰问题。
但是, OFDMA技术在实际应用当中的一个困难就是高的峰均比问题。高 的峰均比将降低功率放大器的效率并降低网络覆盖范围, 特别是对于上行应 用而言, 由于终端的发射功率比较小, 高的峰均比问题将对通信系统非常不 利。 因此, 在 3GPP LTE项目当中又提出, 上行采用 DFT-S-OFDM技术作为 多载波方案的一种候选技术,该技术具有比较低的峰均比。其中 DFT-S-OFDM 技术的工作原理框图如图 2所示。
在 3GPP LTE项目当中把支持可扩展带宽功能作为一项需求,要求通信系 统需要支持 1.25MHz, 2.5MHz, 5MHz, 10MHz, 15MHz, 20MHz等不同带 宽要求。 为了支持可扩展带宽, 目前在 3GPP TR 25.814规范当中为每一种支 持的带宽分別设计了一套参数集, 参数集中包括采样速率和 FFT点数, 以来 支持不同的传输带宽, 对应每一传输带宽的参数集如下表 1所示:
传 输 带 宽 1.25 MHz 2.5 MHz 5 MHz 10 MHz 15 MHz 20 MHz
Transmission BW
子帧持续时间 0.5 ms
Sub-frame
duration
子载波宽度 15 kHz
Sub-carrier
spacing
码片速率 Chip 3.84 7.68 15.36 23.04 MHz 30.72 MHz
Rate/采样频 MHz MHz MHz (6 x 3.84 (8 x 3.84 Sampling (2 x (4 x 3.84 MHz) MHz) frequency 3.84 MHz)
MHz)
FFT点数 FFT 128 256 512 1024 1536 2048 size
有效子载波数目 76 151 301 601 901 1201 Number of
Figure imgf000006_0001
sub-carriers 由 可见, 在该参数集表当中, 考虑到 OFDM系统对移动性的支持以及 相干带宽的折中考虑, 在不同的传输带宽下都采用 15kHz作为子载波宽度。 在各个不同的传输带宽系统当中, 是通过改变对应的采样速率和 FFT点数来 维持相同的子载波宽度的。
但是, OFDM技术通过维护上述参数集的方式来实现支持不同的传输带 宽, 却存在如下缺陷:
1、理想状态, 不同的传输带宽之间采用的 FFT点数都能采取基 2的 FFT 算法来实现, 因为基 2的 FFT算法运算量较低, 实现也相当方便。 但是由上 表可见, 对于 15MHz的传输带宽而言, 由于该传输带宽与其他传输带宽之间 不是 2倍的关系,所以导致需要对 15MHz的传输带宽实施非基 2的 FFT算法, 使得运算复杂度增加。
2、如果终端和基站都分别只支持上表中的一种采样速率和 FFT点数,那 么终端和基站之间只有基于同一传输带宽才能实现通信。
3、 目前, 为了支持终端和基站之间能够基于不同的传输带宽进行通信, 就需要终端和基站都分别能够支持上表中的六种采样速率和 FFT点数,即需要 终端和基站能够分别同时支持上表中的多套参数, 这样势必会增加终端和基 站的投入成本。 发明内容
本发明要解决的技术问题在于提出一种基于正交频分复用的信号调制方 法及其调制装置, 以使终端和基站在只支持一套参数的情况下, 也能基于不 同的传输带宽进行通信。
为解决上述问题, 本发明提出的技术方案如下:
一种基于正交频分复用的信号调制方法, 包括步骤:
A.根据基带码片速率确定基带频率范围; B.在所述基带频率范围内确定 N个频率范围子集, 所述 N为自然数;
C.在所述 N个频率范围子集中选取 n个频率范围子集, 所述 l≤n≤N, 产 生频率范围限定在 n个频率范围子集中的基带信号;
D.将产生的基带信号调制到载波上。
较佳地, 所述步骤 A中根据基带码片速率确定基带频率的最大范围。 较佳地, 所述步骤 B中还包括对确定的频率范围子集进行频率范围修改 的步驟。
较佳地, 所述步驟 B中的各个频率范围子集之间互不重叠。
较佳地, 所述步骤 B中在确定各个频率范围子集过程中, 保证每两个相 邻的频率范围子集之间留有规定的频率范围间隔。
较佳地, 若所述步骤 B N≥2时, 还包括步骤:
B1.在确定的 N个频率范围子集中选取 m个频率范围子集; 并
B2.将选取的 m个频率范围子集合并成为一个频率范围子集。
较佳地, 所述步骤 B1中选取的 m个频率范围子集是连续的。
较佳地, 所述步驟 B2中合并后的频率范围子集的频率范围包括: 选取的 m个频率范围子集分别对应的频率范围; 和
在 m个连续的频率范围子集中, 每两个频率范围子集之间的频率范围间 隔。
较佳地, 所述步骤 C中通过将选取的 n个频率范围子集之外的频率范围 对应的子载波功率置零, 实现产生频率范围限定在 n个频率范围子集中的基 带信号。
较佳地, 所述步骤 C中采用逆向快速傅立叶变换方式产生基带信号。 较佳地, 所述步骤 A中的基带码片速率为 7.68HMZ; 所述步骤 B中确定 宽度分别为 1.25MHz、 2.5MHz, 5MHz的三个频率范围子集。
较佳地, 所述步骤 A中的基带码片速率为 30.72HMz; 所述步驟 B中确 定宽度分别为 10MHz、 15MHz、 20MHz的三个频率范围子集。
较佳地, 所述方法应用在: 正交频分复用多址系统; 或
离散傅立叶变换扩展正交频分复用多址系统; 或
多载波码分复用多址系统。
相应的, 本发明还提出了一种基于正交频分复用的信号调制装置, 包括: 用于根据基带码片速率确定基带频率范围的基带频率范围确定单元; 用于在所述基带频率范围内确定 N个频率范围子集的频率范围子集确定 单元, 所述 N为自然数;
用于在所述 N个频率范围子集中选取 n个频率范围子集, 并产生频率范 围限定在 n个频率范围子集中的基带信号的基带信号产生单元, 所述 l≤n≤N;
用于将产生的基带信号调制到载波上的调制单元。
较佳地, 所述装置还包括:
用于在确定的 N个频率范围子集中选取 m个频率范围子集的选取单元; 用于将选取的 m个频率范围子集合并成为一个频率范围子集的合并单 元。
较佳地, 所述基带信号产生单元具体包括:
用于在所述 N个频率范围子集中选取 n个频率范围子集的选取子单元; 用于将选取的 n个频率范围子集之外的频率范围对应的子载波功率置零 的置零子单元; 和
用于产生频率范围限定在选取的 n个频率范围子集中的基带信号的基带 信号产生子单元。
较佳地, 所述基带信号产生单元采用逆向快速傅立叶变换方式产生基带 信号。
本发明通过在基带码片速率确定的基带频率范围内确定出 N个频率范围 子集, 并通过在这 N个频率范围子集中选取 n个频率范围子集(l≤n≤N ), 并 产生频率范围限定在这 n个频率范围子集中的基带信号; 再将产生的基带信 号调制到载波上, 从而能够达到如下的有益效果:
1 )一套发射参数可以支持多种传输带宽, 降低了如基站和终端设备等的 开发投入成本;
2 )避免了现有不同传输带宽之间的非基 2的 FFT运算, 降低了实现不同 传输带宽的复杂度;
3 )实现了基于不同传输带宽的发射机和接收机之间的物理层上的互联互 通, 并且进一步实现了在无线通信系统 理层的前向 /后向兼容性, 真正实现 了无线通信系统的平滑无缝演进。 附图说明
图 1为现有 OFDM的工作原理框图;
图 2为现有 DFT-S-OFDM的工作原理框图;
图 3为本发明基于 OFDM的信号调制方法的主要实现原理流程图; 图 4为基于本发明方法实现使用一套参数来支持两种传输带宽的实施例 示意图;
图 5为本发明基于 OFDM的信号调制装置的主要组成结构示意图; 图 6为本发明装置增加频率范围子集合并功能后的实施例组成结构示意 图;
图 7为本发明装置中基带信号产生单元的具体组成结构示意图。 具体实施方式
本发明针对现有 OFDM技术中一套参数(包括一种采样速率和 FFT点数) 只能支持一个传输带宽的缺陷, 提出在无线通信系统中实现可扩展带宽的技 术方案, 以实现终端和网络侧之间在分别只支持一套参数的情况下, 也能够 基于不同的传输带宽进行通信; 同时实现无线通信系统在多址技术上的前向 兼容性和后向兼容性。
下面将结合各个附图对本发明基于 OFDM的信号调制方法及其调制装置 的实现原理及其具体实现方式进行详细的阐述。
请参照图 3, 该图是本发明基于 OFDM的信号调制方法的主要实现原理 流程图, 其主要实现过程如下:
步骤 S10, 首先选择一个基带信号的码片速率 fchip, 根据选择的基带码片 速率 fchip确定对应的基带频率范围;其中最优方式是根据选择的基带码片速率 fchip确定对应的基带频率的最大范围 [-fchip/2, fchip/2];
步骤 S20,在上述确定的基带频率范围内确定 N个频率范围子集,其中 N 为自然数; 其中确定的每个频率范围子集就相应对应一个等效载波频率和传 输带宽, 这里可以假设确定的每个频率范围子集的频率范围是 [f -, f+];
其中, 根据具体需要, 后续还可以对这里确定的每个频率范围子集的频 率范围分别进行修改, 即通过修改每个频率范围子集的频率范围 [£, ] , 来 达到更改每个频率范围子集对应的传输带宽的目的。
较优地, 在上述确定各个频率范围子集的过程中, 要保证确定的各个频 率范围子集的频率范围是互不重叠的, 同时还要保证每两个相邻的频率范围 子集之间留有规定的频率范围间隔, 以作为每两个相邻的频率范围子集之间 的保护带宽。
与此同时, 这里还可以在确定的 N个频率范围子集中 (N>1 ), 选取其中 的 m个频率范围子集(2≤m≤N ), 并将选取的 m个频率范围子集合并成为一 个新的频率范围子集。其中较优地,选取的 m个频率范围子集最好是连续的, 这样合并后的新频率范围子集的频率范围就包括: 选取的 m个频率范围子集 分别对应的频率范围和在这 m个连续的频率范围子集中, 每两个频率范围子 集之间的频率范围间隔。
步驟 S30, 在上述确定的 N个频率范围子集中选取 n个频率范围子集, 其中 l≤n≤N, 并产生频率范围限定在选取的 n个频率范围子集中的基带信号; 其中将产生的基带信号的频率范围限定在选取的 n个频率范围子集中的处理 方式可以如下:
利用 OFDM/IFFT操作,将选取的 n个频率范围子集之外的频率范围对应 的 OFDM子载波的发射功率置零, 也就是将 IFFT的输入序列当中, 将选取 的 n个频率范围子集之外的频率范围对应的数值置零。 步骤 S40,将上述产生的基带信号调制到载波上。其中若调制载波频率为 fc, 则被调制到载波上的每个频率范围子集对应的等效调制载波频率分别为: fc+(f++f.)/2, 由此可见, 通过改变基带信号的频率范围子集的中心位置, 就可 以改变等效调制载波频率。
其中上述步驟 S10中可以选取 7.68HMZ的基带码片速率, 步骤 S20中可 以在 7.68HMZ的基带码片速率确定的基带频率的最大范围中确定出宽度分别 为 1.25MHz、 2.5MHz和 5MHz的三个频率范围子集, 从而相应就可以得到在 基于一个码片速率为 7.68HMZ的情况下, 就能够支持 1.25MHz, 2.5MHz和 5MHz三个不同的传输带宽; 还可以选取 30.72HMZ 的基带码片速率, 步骤 S20中可以在 7.68HMZ的基带码片速率确定的基带频率的最大范围中确定出 宽度分别为 10MHz、 15MHz和 20MHz的三个频率范围子集, 从而相应就可 以得到在基于一个码片速率为 30.72HMZ的情况下, 就能够支持 10MHz、 15MHz和 20MHz三个不同的传输带宽。
其中在 TDMA系统或者是 CDMA系统中, 基带信号的传输带宽是固定 的, 因为码片速率就确定了基带信号的传输带宽; 然而在 OFDM系统当中, 在同样的码片速率 /采样速率状态下, 却可以通过使用子载波方式来控制实际 的基带信号的传输带宽。
例如: 对于一个码片速率为 fchip的 OFDM系统, 其基带频率的最大范围 是 [-fchip/2, fchip 2];
如果通过一个载波中心频率为 fc的频率将基带频率的最大范围调制到射 频上去, 则对应的射频传输带宽为 [fe - fdlip/2, fc + fchip/2];
由此, 如果根据需要, 通过将基带信号的某些子载波置零, 将真正的基 带信号频率范围限定在 [f_, f+] c [-fchip/2, fchip/2]之内;
然后再将基带信号的频率范围 [f., f+]同样通过该载波中心频率 fc调制到 射频上去, 则对应得到射频传输带宽为 [fe + f_, f0 + f+ ] = [fc+(f++f.)/2 - (f+ - f.)/2, fc+(f++f.)/2+(f+ -f.)/2] , 即等效于基带信号的传输带宽为 [-(f+ - £)/2, (f+ - £)/2], 而载波中心频率变为 fc+(f++£)/2,这样就实现了通过控制基带信号的 频率范围来实现变换传输带宽和载波中心频率的目的。
如图 4所示, 该图为基于本发明方法实现使用一套 来支持两种传输 带宽的实施例示意图, 图中解释了使用一套参数(在码片速率 /采样速率同为 7.68MHz的情况下)来支持两种不同的传输带宽的原理, 当然推广一下, 一 套参数还可以支持 3种及 3种以上的不同传输带宽。 图中所示, 本发明这里 定义了三种子载波:
1. 虚子载波: 指用于规定传输带宽之外的子载波, 由于码片速率可能高 于传输带宽, 因此会有一部分子载波的频率处在传输带宽之外, 可以通过将 这些子载波的发射功率置零, 使之成为这里定义的虚子载波。
2. 保护子载波: 指用于规定传输带宽之内的子载波, 通过将这些子载波 的发射功率置零, 起到保护传输带宽的作用, 以满足功率模板的要求。 其中 保护子载波可以根据滤波器的性能要求来灵活设定保护子载波的宽度, 从而 在满足功率模板的要求下能够最大限度的利用传输带宽。
3. 有效子载波: 指用于实际承载信令或者数据的子载波。
由此可见, 采用 7.68MHz的码片速率 /采样速率, 通过如图 4所示的虚子 载波和保护子载波的设置情况, 可以用来支持一个 5MHz的传输带宽, 或支 持 2个 2.5MHz的传输带宽。 以此类推, 还可以支持 4个 1.25MHz的传输带 宽, 或者支持 3个 1.6MHz的传输带宽。
根据上述原则,就可以将 3GPP LTE系统中对应不同传输带宽的参数集修 改为如下表 2所示:
表 2: 传输带宽 1.25 MHz 2.5 MHz 5 MHz 10 MHz 15 MHz 20 MHz
Transmission BW
子帧持续时间 0.5 ms
Sub-frame duration
子载波宽度 15 kHz
Sub-carrier spacing
码片速率 Chip Rate/ 7.68 MHz 30.72 MHz
(2x3.84 MHz) (8x3.84 MHz) 采样频率 Sampling
frequency
FFT点数 FFT size 512 2048
同一带宽中子载波数 83 166 333 666 1000 1333 H Number of
sub-carriers within BW
保护子载波数 目 7 15 32 65 99 132 Number of Guard
sub-carriers
有效子载波数 目 76 151 301 601 901 1201 Number of effective
sub-carriers 由上表 2可见,对于从 1.25MHz到 20MHz之间的 6种传输带宽,可以使 用最高的码片速率 /采样速率和 FFT点数来支持, 这里考虑到器件发展的阶段 性,可以但不限于选择采用 2套参数集去对应不同的传输带宽:其中 7.68MHz 码片速率 /512点 FFT用来支持 1.25MHz, 2.5MHz和 5MHz三种传输带宽, 此外 30.72MHz码片速率 /2048点 FFT用来支持 10MHz、 15MHz和 20MHz三 种传输带宽。
其中本发明方法可以但不限于应用在如下的无线通信系统中:
正交频分复用多址系统 ( OFDMA ); 或离散傅立叶变换扩展正交频分复 用多址系统(DFT-S-OFDMA0 ); 或多载波码分复用多址系统(MC-CDMA )。
由于一个无线通信系统的协议设计需求需要满足两个方面的设计约束: 一是满足社会发展的需求; 二是受到当时技术发展水平的制约。 随着通信技 术水平的发展, 人们对通信系统的需求将向更高数据传输速率, 更快的移动 性, 及更广的信号覆盖范围方向发展; 另一方面, 又会受到此时技术发展水 平以及投资成本的限制, 无线通信系统的各项技术指标不可能超出社会技术 发展水平太多, 只能才艮据当时可实现的技术指标来制定相应的通信协议。 移 动通信技术经历了第一代, 第二代和第三代的发展, 目前已经发展到一个非 常高的水平, 通信网络越来越庞大, 运营商往往为一个通信网络投资达数百 亿美元, 而且往往同时拥有数量更加庞大的用户终端, 当现有的无线网络升 级到新的无线网络的时候, 如果能够保持后向兼容性(即为新的网络系统能 够支持原有的终端设备), 则能够保护运营商对现有无线网络系统的庞大投 资; 同时, 如果能够实现前向兼容性(即为旧的网络系统能够支持新的终端 设备), 则能够实现现有网络系统的平滑无缝升级, 运营商可以不必建设完成 一个全覆盖的庞大新网络系统就可以投入运营, 有效地降低了运营商的投资 风险。
本发明这里提供的技术方案就可以同时实现无线通信系统物理层的后向 兼容性和前向兼容性, 以下将说明本发明方案是如何实现双向兼容性的。
为了说明釆用本发明方案后, 能够实现无线通信系统物理层的双向兼容 性问题, 这里假设原有的无线通信系统的基本发射参数集如下表 3所示:
Figure imgf000014_0001
基于上述表 3 , 在下述场景一中-.
新的无线通信系统升级到 5MHz的传输带宽后, 从而支持更高的峰值速 率, 则新的无线通信系统的发射参数集如下表 4所示:
表 4: 传输带宽 Transmission BW 2.5 MHz 5 MHz 子帧持续时间 Sub-frame duration 0.5 ms
子载波宽度 Sub-carrier spacing 15 kHz 码片速率 Chip Rate/采样频率 7.68 MHz
Sampling frequency (2 x 3.84 MHz)
FFT点数 FFT size 512
同一带宽中子载波数目 166 333
Number of sub-carriers within BW
保护子载波数目 15 32 Number of Guard sub-carriers
有效子载波数目 151 301 Number of effective sub-carriers 在该场景一当中可见, 如果利用本发明提出的技术方案, 原有传输带宽 为 2.5MHz的无线通信网络和终端设备的基带信号,已经具备支持 5MHz传输 带宽的能力(因为其码片速率 /采样速率为 7.68MHz, FFT点数为 512 ), 因此, 在现有无线通信网络升级之后, 原有的无线通信网络和终端设备从基带传输 带宽到射频传输带宽不需要做任何的硬件改动和参数改动, 甚至软件也不需 要修改, 只需要在网络侧的资源分配上作一定的参数修改, 就可以实现前向 兼容性和后向兼容性。
基于上述表 3 , 在下述场景二中:
如果将现有传输带宽为 5MHz的无线通信网络进一步升级到 10MHz的传 输带宽, 利用本发明提出的技术方案后, 由于原有的 7.68MHz码片速率 /采样 速率及 512点的 FFT长度已经无法支持 10MHz的传输带宽,需要将升级后的 无线通信网络的发射参数修改为 30.72 MHz码片速率或采样速率 /2048点 FFT 长度; 修改后的发射参数集如下表 5所示:
表 5: 传输带宽 Transmission BW 5 MHz 10 MHz 子桢持续时间 Sub- frame duration 0.5 ms
子载波宽度 Sub-carrier spacing 15 kHz
码片速率 hip Rate/采样频率 7.68 MHz 30.72 MHz
Sampling frequency (2 x 3.84 MHz) (8 x 3.84 MHz)
FFT点数 FFT size 512 2048 同一带宽中子载波数目 333 666
Number of sub-carriers within BW
保护子载波数目 32 65 Number of Guard sub-carriers
有效子载波数目 301 601 Number of effective sub-carriers 基于上述, 下面首先论述后向兼容性的支持原理(即新的网络系统支持 旧的终端设备 ):
A 1、基站发射,终端接收:基站侧的带宽资源分配在原有网络系统的 5MHz 传输带宽之内, 并采用新的码片速率和 FFT点数, 其基带信号在经过了 D/A 转换之后, 和原有网络系统的模拟信号相比并没有什么不同, 因此终端在不 做任何改动的情况下可以正常接收。
A2、 终端发射, 基站接收: 终端的基带发射参数采用 7.68MHz码片速率 /512点 FFT长度, 而基站接收采用基带发射参数为 30.72MHz码片速率 /2048 点 FFT长度, 由于原有终端的发射信号是新的网络系统中的一个部分, 因此 基站能够正确的接收原有终端的发射信号。
再论述前向兼容性的支持原理(即旧的网络系统支持新的终端):
Bl、 基站发射, 终端接收: 基站的基带发射参数采用 7.68MHz码片速率 /512点 FFT长度, 而终端接收采用基带发射参数 30.72MHz码片速率 /2048点 FFT长度, 由于原有基站的发射信号是新的终端能力的一个部分, 因此终端 能够正确接收到原有基站的发射信号。
B2、 终端发射, 基站接收: 系统给终端分配的带宽资源局限在原有通信 系统的 5MHz之内, 只利用了新的终端能力中的一个子集, 即终端采用新的 码片速率和 FFT点数进行基带信号处理, 基带信号在经过了 D/A转换之后, 和原有通信系统的模拟信号相比并没有什么不同, 因此原有基站在不做任何 改动的情况下可以正确接收。
相应的, 本发明还提出了一种基于 OFDM的信号调制装置,请参照图 5, 06 001835 该图是本发明基于 OFDM的信号调制装置的主要组成结构示意图, 其主要包 括基带频率范围确定单元 10、 频率范围子集确定单元 20、 基带信号产生单元 30和调制单元 40, 各个组成部分的作用及其相互连接关系如下:
基带频率范围确定单元 10, 用于根据基带码片速率确定基带频率范围; 频率范围子集确定单元 20, 与基带频率范围确定单元 10存在逻辑连接, 用于在基带频率范围确定单元 10确定的基带频率范围内确定 N个频率范围子 集, 其中 N为自然数;
基带信号产生单元 30, 与频率范围子集确定单元 20存在 辑连接, 用于 在频率范围子集确定单元 20确定的 N个频率范围子集中选取 n个频率范围子 集, 并产生频率范围限定在 n个频率范围子集中的基带信号, 其中 l≤n≤N; 调制单元 40, 与基带信号产生单元 30存在逻辑连接,用于将基带信号产 生单元 30产生的基带信号调制到载波上。
请参照图 6,该图是本发明装置增加频率范围子集合并功能后的实施例组 成结构示意图, 其在图 5组成结构的基础上, 还包括选取单元 50和合并单元 60, 这两个组成单元的具体功能如下:
选取单元 50, 与频率范围子集确定单元 20存在逻辑连接, 用于在频率范 围子集确定单元 20确定的 N个频率范围子集中选取 m个频率范围子集, 其 中 2≤m≤N;
合并单元 60, 与选取单元 50存在逻辑连接, 用于将选取单元 50选取的 m个频率范围子集合并成为一个新的频率范围子集。
请参照图 7,该图是本发明装置中基带信号产生单元的具体組成结构示意 图, 基带信号产生单元 30主要包括选取子单元 301、 置零子单元 302和基带 信号产生子单元 303 , 各个组成子单元的作用及其相互连接关系如下:
选取子单元 301 , 与频率范围子集确定单元 20存在逻辑连接, 用于在频 率范围子集确定单元 20确定的 N个频率范围子集中选取 n个频率范围子集; 置零子单元 302, 与选取子单元 301存在逻辑连接, 用于将选取子单元 301选取的 n个频率范围子集之外的频率范围对应的子载波发射功率置零; 基带信号产生子单元 303, 与选取子单元 301存在逻辑连接, 用于产生频 率范围限定在选取子单元 301选取的 n个频率范围子集中的基带信号。
其中基带信号产生单元 30可以但不限于采用逆向快速傅立叶变换( IFFT ) 方式来产生基带信号。
其中本发明装置的各个组成部分的具体实现过程原理在上迷方法原理的 详细阐述过程中已经描述, 这里不再过多赘述。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种基于正交频分复用的信号调制方法, 其特征在于, 包括步骤:
A.根据基带码片速率确定基带频率范围;
B.在所述基带频率范围内确定 N个频率范围子集, 所述 N为自然数;
C.在所述 N个频率范围子集中选取 n个频率范围子集, 所述 l≤n≤N, 产 生频率范围限定在 n个频率范围子集中的基带信号;
D.将产生的基带信号调制到载波上。
2、 如权利要求 1所述的方法, 其特征在于, 所述步骤 A中根据基带码片 速率确定基带频率的最大范围。
3、 如权利要求 1所述的方法, 其特征在于, 所述步骤 B中还包括对确定 的频率范围子集进行频率范围修改的步骤。
4、 如权利要求 1所述的方法, 其特征在于, 所述步骤 B中的各个频率范 围子集之间互不重叠。
5、 如权利要求 1或 4所述的方法, 其特征在于, 所述步骤 B中在确定各 个频率范围子集过程中, 保证每两个相邻的频率范围子集之间留有规定的频 率范围间隔。
6、 如权利要求 1所述的方法, 其特征在于, 若所述步骤 B中 N≥2时, 还包括步骤:
B1.在确定的 N个频率范围子集中选取 m个频率范围子集; 并
B2.将选取的 m个频率范围子集合并成为一个频率范围子集。
7、 如权利要求 6所述的方法, 其特征在于, 所述步骤 B1中选取的 m个 频率范围子集是连续的。
8、 如权利要求 7所述的方法, 其特征在于, 所述步骤 B2中合并后的频 率范围子集的频率范围包括:
选取的 m个频率范围子集分别对应的频率范围; 和
在 m个连续的频率范围子集中, 每两个频率范围子集之间的频率范围间 隔。
9、 如权利要求 1所迷的方法, 其特征在于, 所迷步骤 C中通过将选取的 n个频率范围子集之外的频率范围对应的子载波功率置零,实现产生频率范围 限定在 n个频率范围子集中的基带信号。
10、 如权利要求 1或 9所述的方法, 其特征在于, 所述步骤 C中采用逆 向快速傅立叶变换方式产生基带信号。
11、 如权利要求 1或 2所述的方法, 其特征在于, 所述步骤 A中的基带 码片速率为 7.68HMZ;所迷步骤 B中确定宽度分別为 1.25MHz、2.5MHz、5MHz 的三个频率范围子集。
12、 如权利要求 1或 2所述的方法, 其特征在于, 所述步骤 A中的基带 码片速率为 30.72HMZ;所述步骤 B中确定宽度分别为 10MHz、 15MHz、20MHz 的三个频率范围子集。
13、 如权利要求 1、 2、 3、 4、 6、 7、 8或 9所述的方法, 其特征在于, 所述方法应用在:
正交频分复用多址系统; 或
离散傅立叶变换扩展正交频分复用多址系统; 或
多载波码分复用多址系统。
14、 一种基于正交频分复用的信号调制装置, 其特征在于, 包括: 用于根据基带码片速率确定基带频率范围的基带频率范围确定单元; 用于在所述基带频率范围内确定 N个频率范围子集的频率范围子集确定 单元, 所述 N为自然数;
用于在所述 N个频率范围子集中选取 n个频率范围子集, 并产生频率范 围限定在 n个频率范围子集中的基带信号的基带信号产生单元,所述 l≤n≤N; 用于将产生的基带信号调制到载波上的调制单元。
15、 如权利要求 14所述的装置, 其特征在于, 还包括:
用于在确定的 N个频率范围子集中选取 m个频率范围子集的选取单元; 用于将选取的 m 个频率范围子集合并成为一个频率范围子集的合并单 元。
16、 如权利要求 14所述的装置, 其特征在于, 所述基带信号产生单元具 体包括:
用于在所述 N个频率范围子集中选取 n个频率范围子集的选取子单元; 用于将选取的 η个频率范围子集之外的频率范围对应的子载波功率置零 的置零子单元; 和
用于产生频率范围限定在选取的 η个频率范围子集中的基带信号的基带 信号产生子单元。
17、 如权利要求 14或 16所述的装置, 其特征在于, 所述基带信号产生单 元采用逆向快速傅立叶变换方式产生基带信号。
PCT/CN2006/001835 2005-08-08 2006-07-25 Procede de modulation de signaux d'apres multiplexage par repartition orthogonale de la frequence et appareil associe WO2007016854A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06761565.8A EP1914917B1 (en) 2005-08-08 2006-07-25 A signal modulation method based on orthogonal frequency division multiple and the apparatus thereof
US12/027,775 US20080130485A1 (en) 2005-08-08 2008-02-07 Signal modulation method based on orthogonal frequency division multiplex and a modulation device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510089837A CN1913508B (zh) 2005-08-08 2005-08-08 基于正交频分复用的信号调制方法及其调制装置
CN200510089837.9 2005-08-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/027,775 Continuation US20080130485A1 (en) 2005-08-08 2008-02-07 Signal modulation method based on orthogonal frequency division multiplex and a modulation device thereof

Publications (1)

Publication Number Publication Date
WO2007016854A1 true WO2007016854A1 (fr) 2007-02-15

Family

ID=37722279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/001835 WO2007016854A1 (fr) 2005-08-08 2006-07-25 Procede de modulation de signaux d'apres multiplexage par repartition orthogonale de la frequence et appareil associe

Country Status (4)

Country Link
US (1) US20080130485A1 (zh)
EP (1) EP1914917B1 (zh)
CN (1) CN1913508B (zh)
WO (1) WO2007016854A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7532562B2 (en) * 2007-02-26 2009-05-12 Provigent Ltd. High-data-rate communication link using multiple lower rate modems

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2321940A4 (en) * 2008-08-04 2012-07-18 Nxp Bv ADAPTIVE SCHEME FOR DETERMINING THE SPACING OF SUBCARRIERS IN MULTI-CARRIER SYSTEMS
US8848606B2 (en) * 2008-08-06 2014-09-30 Sharp Kabushiki Kaisha Communication system, mobile station device, and communication method
US20120263141A1 (en) * 2011-04-15 2012-10-18 Qualcomm Incorporated Systems and methods for range extension of wireless communication in sub gigahertz bands
CN104734826B (zh) 2013-12-20 2020-08-11 中兴通讯股份有限公司 超大带宽数据发送控制方法及超大带宽数据发送设备
US9438459B2 (en) 2014-08-07 2016-09-06 Coherent Logix, Incorporated Multi-partition radio frames
BR122023024931A2 (pt) * 2014-08-07 2024-01-23 ONE Media, LLC Aparelho e método para transmitir um fluxo de transporte de taxa variável
CN107371249B (zh) * 2016-05-13 2023-04-11 中兴通讯股份有限公司 传输参数的配置方法及基站、信息传输方法及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1221270A (zh) * 1997-12-25 1999-06-30 日本胜利株式会社 正交频分多路复用信号调制解调装置及方法
JP2001024617A (ja) * 1999-07-02 2001-01-26 Ntt Docomo Inc 信号処理方法、並びに変調器、復調器、及び通信装置
US20030123383A1 (en) 2001-06-11 2003-07-03 Dmitri Korobkov OFDM multiple sub-channel communication system
EP1538802A2 (en) * 2003-12-03 2005-06-08 Samsung Electronics Co., Ltd. Apparatus and method for controlling adaptive modulation and coding in an orthogonal frequency division multiplexing communication system

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981692A (en) * 1983-03-24 1991-01-01 The Liposome Company, Inc. Therapeutic treatment by intramammary infusion
US5041581A (en) * 1985-10-18 1991-08-20 The University Of Texas System Board Of Regents Hydrophobic cis-platinum complexes efficiently incorporated into liposomes
ATE77051T1 (de) * 1988-03-04 1992-06-15 Takeda Chemical Industries Ltd Liposom-zusammensetzung.
US5141751A (en) * 1988-06-29 1992-08-25 Daiichi Pharmaceutical Co., Ltd. Lipid membrane structures
US5815488A (en) * 1995-09-28 1998-09-29 Cable Television Laboratories, Inc. Multiple user access method using OFDM
CA2247270A1 (en) * 1996-02-26 1997-08-28 Daiichi Pharmaceutical Co., Ltd. Liposome and liposome dispersion
JP2001501173A (ja) * 1996-08-23 2001-01-30 アルザ コーポレイション シスプラチン化合物を含有するリポソーム
US5997899A (en) * 1996-10-01 1999-12-07 Skyepharma Inc. Method for producing liposomes with increased percent of compound encapsulated
KR100365789B1 (ko) * 1998-01-20 2003-05-09 삼성전자 주식회사 병렬도약직접시퀀스/느린주파수도약복합코드분할다중접속시스템
JP3515690B2 (ja) * 1998-06-02 2004-04-05 松下電器産業株式会社 Ofdma信号伝送装置及び方法
JP3127918B1 (ja) * 1999-07-14 2001-01-29 住友電気工業株式会社 路車間通信システム並びに路上通信局及び車載移動局
US20020154705A1 (en) * 2000-03-22 2002-10-24 Walton Jay R. High efficiency high performance communications system employing multi-carrier modulation
US6473467B1 (en) * 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
US7394792B1 (en) * 2002-10-08 2008-07-01 Urbain A. von der Embse Multi-scale CDMA
JP3637965B2 (ja) * 2001-11-22 2005-04-13 日本電気株式会社 無線通信システム
KR100754721B1 (ko) * 2002-04-26 2007-09-03 삼성전자주식회사 직교주파수분할다중화 통신시스템에서 다중화 데이터 송수신 장치 및 방법
US7260054B2 (en) * 2002-05-30 2007-08-21 Denso Corporation SINR measurement method for OFDM communications systems
US7263365B2 (en) * 2003-04-14 2007-08-28 Motorola, Inc. Reception method and apparatus
EP1641158A4 (en) * 2003-06-30 2008-08-20 Fujitsu Ltd MULTI-CARRIER WIRELESS RADIO TRANSMISSION SYSTEM, TRANSMITTER DEVICE AND RECEIVER DEVICE
US7639728B2 (en) * 2003-07-08 2009-12-29 Qualcomm Incorporated Methods for generating and transmitting frequency hopped signals
ES2904814T3 (es) * 2003-08-20 2022-04-06 Panasonic Corp Aparato de comunicación inalámbrica y procedimiento de asignación de subportadoras
EP1538803A1 (en) * 2003-12-04 2005-06-08 Alcatel Host for coupling to an IP Network
KR100922950B1 (ko) * 2004-03-05 2009-10-22 삼성전자주식회사 직교주파수분할다중접속 방식을 기반으로 하는 이동통신시스템에서 데이터 프레임 처리 결과 송/수신장치 및 방법
JP4181093B2 (ja) * 2004-07-16 2008-11-12 株式会社東芝 無線通信システム
US7826343B2 (en) * 2004-09-07 2010-11-02 Qualcomm Incorporated Position location signaling method apparatus and system utilizing orthogonal frequency division multiplexing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1221270A (zh) * 1997-12-25 1999-06-30 日本胜利株式会社 正交频分多路复用信号调制解调装置及方法
JP2001024617A (ja) * 1999-07-02 2001-01-26 Ntt Docomo Inc 信号処理方法、並びに変調器、復調器、及び通信装置
US20030123383A1 (en) 2001-06-11 2003-07-03 Dmitri Korobkov OFDM multiple sub-channel communication system
EP1538802A2 (en) * 2003-12-03 2005-06-08 Samsung Electronics Co., Ltd. Apparatus and method for controlling adaptive modulation and coding in an orthogonal frequency division multiplexing communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7532562B2 (en) * 2007-02-26 2009-05-12 Provigent Ltd. High-data-rate communication link using multiple lower rate modems

Also Published As

Publication number Publication date
US20080130485A1 (en) 2008-06-05
EP1914917A4 (en) 2008-12-24
EP1914917B1 (en) 2014-09-17
EP1914917A1 (en) 2008-04-23
CN1913508B (zh) 2010-05-05
CN1913508A (zh) 2007-02-14

Similar Documents

Publication Publication Date Title
US8670298B2 (en) Method, system and apparatus for signal generation and message transmission in broadband wireless communications
JP3712522B2 (ja) 動的に増減調節が可能な動作パラメータを有する周波数分割多重化システムとその方法
US7729433B2 (en) Method and apparatus for hybrid CDM OFDMA wireless transmission
CN101375531B (zh) 移动通信系统中的混合多址接入设备和方法
WO2006058491A1 (fr) Procede permettant de reutiliser une frequence douce dans un dispositif de communication sans fil et son dispositif
WO2007016854A1 (fr) Procede de modulation de signaux d'apres multiplexage par repartition orthogonale de la frequence et appareil associe
USRE48629E1 (en) Backward-compatible long training sequences for wireless communication networks
CA2724736A1 (en) Method and apparatus for achieving flexible bandwidth using variable guard bands
WO2007102896A2 (en) Frequency division multiple access schemes for wireless communication
WO2008141498A1 (fr) Procédé de modulation de signal
WO2006059891A1 (en) Apparatus and method for transmitting/receiving packet data symbol in a mobile communication system
Nagul A review on 5G modulation schemes and their comparisons for future wireless communications
Di Stasio et al. Multirate 5G downlink performance comparison for f-OFDM and w-OFDM schemes with different numerologies
CN1953364B (zh) 一种多载波系统小区内的信道实现方法
JP2016531527A (ja) 送信端、受信端、並びに、シングルキャリアシステム及びマルチキャリアシステムの共存方法
JP2001237803A (ja) マルチキャリアcdma無線伝送方法及び装置
WO2008041160A2 (en) Method and apparatus for generating data packets for transmission in an ofdm communication system
JP2013507819A (ja) 無線通信システムにおいて非正規システム帯域幅を支援するためのプリアンブルシーケンスサブブロック割り当て方法及びそのための装置
WO2006116909A1 (fr) Systeme et procede de realisation d'un multiplexage logiciel dans le temps dans un systeme de communication sans fil
WO2005109709A1 (ja) マルチキャリア送信装置、マルチキャリア受信装置、マルチキャリア送信方法およびマルチキャリア受信方法
CN1972267A (zh) 一种离散傅立叶变换扩频正交频分复用方法和设备
US7362790B2 (en) Apparatus and method for generating pseudo-replica signals in a CDMA communication system
WO2008000180A1 (fr) Procédés et systèmes d'harmonisation de ressources de services de diffusion multimédia/multidiffusion dans des cellules avoisinantes
CN101056292A (zh) 时频资源分配方法、装置及应用其的基站与无线通信系统
EP0944197A1 (en) Transmitter, receiver, transmitting method, and receiving method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006761565

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006761565

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 12027775

Country of ref document: US