WO2007015404A1 - PROCESS FOR PRODUCING AlN SEMICONDUCTOR AND APPARATUS FOR PRODUCING AlN SEMICONDUCTOR - Google Patents

PROCESS FOR PRODUCING AlN SEMICONDUCTOR AND APPARATUS FOR PRODUCING AlN SEMICONDUCTOR Download PDF

Info

Publication number
WO2007015404A1
WO2007015404A1 PCT/JP2006/314792 JP2006314792W WO2007015404A1 WO 2007015404 A1 WO2007015404 A1 WO 2007015404A1 JP 2006314792 W JP2006314792 W JP 2006314792W WO 2007015404 A1 WO2007015404 A1 WO 2007015404A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
aluminum
reaction tube
semiconductor
salt
Prior art date
Application number
PCT/JP2006/314792
Other languages
French (fr)
Japanese (ja)
Inventor
Akinori Koukitu
Yoshinao Kumagai
Shigeo Oohira
Hiroshi Sano
Shinji Imamura
Original Assignee
Nippon Light Metal Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Company, Ltd. filed Critical Nippon Light Metal Company, Ltd.
Publication of WO2007015404A1 publication Critical patent/WO2007015404A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to an A1N semiconductor manufacturing method for growing A1N crystals on a substrate using a hydride vapor phase growth method, and an A1N semiconductor manufacturing apparatus for manufacturing an A1N semiconductor.
  • Aluminum nitride (A1N) has the widest bandgap (up to 6.2eV) among the semiconductors that can be put to practical use, so it has a short wavelength, a semiconductor light emitting device and various semiconductors in the deep ultraviolet region.
  • Application as a device is expected.
  • excimer lasers and YAG lasers have been used as lasers in the deep ultraviolet region, but if a deep ultraviolet laser diode using A1N is realized, higher efficiency can be achieved compared to these lasers. It can be expected to be used in a wide range of applications such as semiconductor lithography, small-sized, low-cost general-purpose precision processing, and medical applications, as well as optical storage with high recording density and high thermal conductivity of A1N.
  • Various applications are also possible in the field of electronic devices such as power white LEDs, substrate materials for high-power, high-frequency electronic device fabrication.
  • an aluminum nitride raw material is placed in a growth vessel, and this growth vessel is heated by high frequency induction heating or the like to keep the raw material portion at a high temperature of about 1900 to 2250 ° C.
  • a sublimation method in which A1N single crystals are grown by recombination and recrystallization at a lower temperature than the raw material part, and a solution that precipitates A1N crystals while cooling a saturated solution containing A1 raw material.
  • HVPE ride vapor phase epitaxy
  • hydride vapor phase epitaxy produces crystals with a relatively large diameter and is suitable for obtaining thick A1N with a high growth rate, but it occurs when A1 and HC1 are reacted. Because A1C 1 gas and A1C1 gas corrode the quartz reaction tube (SiO 2) vigorously, Si is added to the A1N crystal.
  • the quartz reaction tube may be damaged.
  • Patent Document 1 and Non-Patent Document 1 the inventors of the present invention have used a raw material in a quartz reaction tube for crystal growth of A1N by a hydride vapor phase growth method.
  • the reaction between A1 and HC1 in the laboratory was analyzed thermodynamically, and the previous problems were solved. That is, as shown in Fig. 4, in the raw material part (raw material reaction part), the reaction temperature is controlled to 700 ° C or lower to preferentially generate A1C1 that does not corrode the quartz reaction tube.
  • A1C1 gas generated by the reaction of the above formula (1) is used.
  • the partial pressure P Q of the A1C1 gas at the response section is supplied to the raw material section as shown in the following equation (3).
  • P ° is uniquely determined by the HCl concentration in the HCl gas cylinder used.
  • control of the partial pressure P G of A1C1 gas in the reaction section is based on the supply amount of HCl gas FL
  • This flow control is usually called a mass flow controller.
  • controllable range is determined by the control range of the mass flow controller to be used, and usually it can be controlled below several percent of full scale. Absent. For this reason, the A1 source supply for crystal growth of A1N is limited to a limited range, and control of the A1N semiconductor is restricted. Furthermore, the reaction in Equation (1) requires the use of a low temperature of 700 ° C or lower for the selective production of A1C1. That
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-303,774
  • Non-Patent Document 1 Yoshinao Kumagai, Akiaki Tsuji, “High-speed growth of A1 nitrides by hydride vapor phase epitaxy”, IEICE Technical Report, ED2004-121, CPM2004-95, L QE2004 -59 (2004-10), p27 ⁇ 32.
  • Non-Patent Document 2 Yu- Huai LIU, Tomoaki TANABE, Hideo MIYAKE, Kazumasa HIRAM ATSU, Tomohiko SHIBATA, Mutsuhiro TANAKA and Yoshihiko MASA, Japanese Journal of Applied Physics, vol.44, No.17, 2005, pp.L505— L507.
  • the present inventors can manufacture an A1N semiconductor having a large diameter of 2 inches or more and use an A1N using a hydride vapor phase growth method suitable for obtaining a thick A1N semiconductor.
  • solid anhydrous salt-aluminum (A: i) is heated to sublimate or vaporize.
  • the present invention has been completed by finding that all the problems as described above can be solved.
  • an object of the present invention is to provide a method for manufacturing an A1N semiconductor using a hydride vapor phase growth method, which is relatively advantageous for the practical application of A1N semiconductor manufacturing, and is simpler than the conventional method.
  • A1N semiconductors can be manufactured and the growth rate of A1N can be controlled over a wider range.
  • the possibility of mixing impurities is eliminated as much as possible, and the crystallinity is excellent.
  • Another object of the present invention is to provide an A1N semiconductor manufacturing method capable of obtaining an A1N semiconductor.
  • Another object of the present invention is to easily manufacture an A1N semiconductor, to easily control the growth rate of A1 ⁇ , and to eliminate impurities as much as possible. It is to provide an A1N semiconductor manufacturing apparatus that can.
  • anhydrous sodium chloride aluminum is heated and sublimated or vaporized by reacting a salt solution medium gas and a soot gas by a nanoride vapor phase growth method, and A1N is formed on the substrate.
  • the present invention also relates to an A1N semiconductor manufacturing apparatus for growing A1N crystals on a substrate using a hydride vapor phase growth method, and heating and sublimating or vaporizing anhydrous aluminum chloride to form a salt solution.
  • This is an A1N semiconductor manufacturing device consisting of a vaporizer that discharges aluminum gas and a reaction tube device.
  • anhydrous salt ⁇ aluminum (1 in ⁇ ) is heated as a source of A1 for sublimation or
  • Crystals of A1N are grown on the substrate by a reaction by hydride vapor phase epitaxy as shown in equation (4).
  • the partial pressure P ° of the salt-aluminum gas in the reaction part where A1N crystal is grown on the substrate is the vapor pressure P °° of the salt-aluminum kept at the temperature T ( T) FLOW of carrier gas for transporting aluminum and aluminum in the
  • FIG. 1 shows a vapor pressure curve of salted aluminum.
  • the solid line is the steam of the dimer [(A: i)].
  • the gas is considered to be a dimer in a gas of 440 ° C or lower! /
  • salt-aluminum gas it shall include both monomer and dimer states.
  • the vapor pressure P QQ (T) of salt-aluminum can be changed by adjusting the heating temperature of anhydrous aluminum chloride.
  • a wide range of partial pressure P ° can be controlled by controlling P °° (T) as well as FLOW.
  • the growth rate of A1N can be controlled over a wide range by adjusting the heating temperature of anhydrous aluminum chloride.
  • the heating temperature of anhydrous aluminum chloride is adjusted in the range of 50 to 180 ° C, preferably 70 to 150 ° C, more preferably 85 to 135 ° C. If the heating temperature of anhydrous aluminum chloride is lower than 50 ° C, the partial pressure P Q of the salty aluminum gas will be too low.
  • A1C13 is 1 X 10— 6 depending on the carrier gas supply rate of aluminum chloride gas FLOW.
  • the anhydrous aluminum chloride (A: i) used in the present invention is the same as A1 III.
  • Anhydrous salt aluminum in which impurity components other than Group III elements are reduced as much as possible, is more preferable.
  • the total content of impurity components other than Group III elements is 0.001% by weight or less.
  • Forces that can include gallium (Ga), boron ( ⁇ ), indium (In), etc. as Group III elements. These elements are contained in anhydrous salt and aluminum, and when A1N is crystal-grown. Even if mixed, it is considered to form a mixed crystal with the A1N semiconductor. There is no need for positive exclusion.
  • impurity components other than Group III elements for example, sodium (Na), magnesium (Mg), silicon (Si), aluminum (Si) derived from aluminum raw materials used in the production of industrial anhydrous salty aluminum, Potassium (K), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), calcium (Ca) And impurities such as water (H 0) and oxygen (0).
  • K potassium
  • Ti titanium
  • Cr chromium
  • Mn manganese
  • Fe iron
  • Ni nickel
  • Cu copper
  • Zn zinc
  • impurities such as water (H 0) and oxygen (0).
  • the crystallinity (crystal quality) of A1N is considered to be adversely affected.
  • the band gap and transmission It may affect the optical characteristics such as the rate and the electrical characteristics such as the conductivity, carrier density, and mobility. Also in water 0) and oxygen (0)
  • anhydrous salt-aluminum in which the total of impurity components other than Group III elements is 0.001% by weight or less. More preferably, it is a high-purity anhydrous aluminum chloride in which the purity of anhydrous aluminum chloride is 99.999% by weight or more.
  • purity of anhydrous aluminum chloride refers to the purity of anhydrous salt-aluminum obtained by subtracting the total of impurity components including Group III elements, and is equivalent to the analysis method usually used. This means that everything except the detectable impurity concentration is regarded as pure.
  • a vaporizer when heating the salt-aluminum gas to sublimate or vaporize the salt-aluminum gas.
  • the vaporizer those generally used for metal organic chemical vapor deposition (MOVPE) or the like can be used.
  • MOVPE metal organic chemical vapor deposition
  • at least contained anhydrous salt-aluminum is sublimated or used.
  • Temperature-controllable heating means for vaporization, carrier gas supply pipe for supplying a carrier gas for transporting the salt aluminum gas, and a discharge pipe for discharging the salt aluminum gas together with the carrier gas to the outside of the vaporizer It is good to have.
  • Anhydrous aluminum chloride is a solid powder at room temperature, and it is prone to hydrolysis when it absorbs moisture from the air.
  • anhydrous aluminum chloride is in contact with the atmosphere. It is necessary to work in the globe box so that there is no such thing.
  • Aluminum chloride gas sublimated or vaporized by a vaporizer such as N, He, Ar, etc.
  • C1 carrier gas is used to discharge outside the vaporizer and NH gas and hydride supplied separately.
  • the Idoride vapor phase growth method is faster than other vapor phase growth methods such as metal organic vapor phase epitaxy (MOVPE), and the target crystal growth rate is high. There is a feature that crystals of purity can be obtained. Salt-aluminum gas and NH gas are formed by hydride vapor phase epitaxy.
  • the temperature on the substrate on which A1N grows is preferably 1000 to 1200 ° C.
  • reaction tube When reacting salty aluminum gas and NH gas, it is preferable to use a reaction tube.
  • reaction tube made of quartz. Salty aluminum gas and NH gas
  • the cold wall method can be used to heat the reaction tube itself to the specified temperature using the hot wall method. Only the substrate may be heated.
  • the above reaction tube is used to grow a crystal of A1N, a salt-aluminum gas supply pipe for supplying salt-aluminum gas, an NH gas supply port for supplying NH gas, and the like.
  • Temperature control is possible by providing a substrate holding means for holding the substrate and a discharge port for discharging the gas in the reaction tube, and especially covering the side of the reaction tube when the hot wall method is adopted. It is preferable to constitute the reaction tube device together with a suitable heating means.
  • the NH gas in the present invention is generally used in the semiconductor manufacturing field.
  • an inert gas such as N, He, Ar, or one selected from the group consisting of H
  • a substrate (initial substrate) for crystal growth of an A1N semiconductor is used for sapphire (A10), silicon carbide generally used in a vapor phase growth method. (SiC), Nitrogen
  • a gallium phosphide (GaN) substrate or the like can be used.
  • GaN gallium phosphide
  • (0001) can be used as a crystal growth surface for growing an A1N crystal.
  • Supply salty aluminum gas from NH gas supply port when reacting salty aluminum gas and NH gas in the reaction tube It is preferable to arrange so that the tip of the tube is closer to the substrate.
  • the distance L between the tip of the gas supply tube and the crystal growth surface of the substrate is 10 to: LOOmm Is good.
  • the crystal growth surface of the substrate should preferably be perpendicular to the flow of aluminum chloride gas and NH gas.
  • an A1N semiconductor can be produced by crystal-growing A1N on a substrate, but this A1N semiconductor is mixed with an element such as Ga, B, or In at an arbitrary ratio if necessary. Let them form mixed crystals.
  • a salt-aluminum gas and NH gas are directly reacted to form A1 on the substrate.
  • the conventional A1N semiconductor manufacturing method by hydride vapor phase epitaxy that is, high purity metal A1 is reacted with HC1 in the raw material part of the quartz reaction tube to produce A1
  • A1N is vapor-grown by forming a halide (gas) of A and transporting the A and rogens to the reaction part of the quartz reaction tube and reacting with NH gas.
  • the A1C1 gas and A1C1 gas which were subject to the problem, will fundamentally solve the problem of corroding the quartz reaction tube.
  • the partial pressure P ° of the salty aluminum gas can be set within the range, and the growth rate of A1N
  • Control can be selected more easily and in a wider range.
  • the A1N semiconductor obtained by the production method of the present invention sublimates high purity anhydrous salt-aluminum (A), in particular, to prevent Si contamination due to corrosion of the quartz reaction tube.
  • A anhydrous salt-aluminum
  • Impurities such as Mg, Na, K, Ca, Cr, Fe, Zn, C, 0, H 2 O, etc. are expected to have a particularly negative effect on device characteristics by using vaporized salty aluminum gas
  • FIG. 1 shows the vapor pressure curve of salted aluminum.
  • FIG. 2 is a cross-sectional explanatory view of the A1N semiconductor manufacturing apparatus of the present invention.
  • FIG. 3 shows the relationship between the heating temperature of anhydrous aluminum chloride and the growth rate of A1N.
  • FIG. 4 is a cross-sectional explanatory view of a conventional reaction tube apparatus for producing an A1N semiconductor by hydride vapor phase epitaxy.
  • FIG. 5 is an X-ray diffraction pattern of A1N grown on the sapphire substrate in Example 1.
  • FIG. 6 shows the ultraviolet absorption spectrum of A1N obtained in Example 1.
  • Fig. 7 is an expanded spectrum of positive ion detection near the mass of Si obtained by TOF-SIMS analysis.
  • the upper (A) is the result of analysis of A1N obtained in Comparative Example 1
  • the lower (B) is the result of analysis of A1N obtained in Example 5.
  • FIG. 8 is an expanded spectrum of positive ion detection around the mass of Mg obtained by TOF-SIMS analysis.
  • the upper (A) is the result of analysis of A1N obtained in Comparative Example 1
  • the lower (B) is the result of analysis of A1N obtained in Example 5.
  • Fig. 9 is an expanded spectrum of positive ion detection near the mass of Na obtained by TOF-SIMS analysis.
  • the upper (A) is the result of analysis of A1N obtained in Comparative Example 1
  • the lower (B) is the result of analysis of A1N obtained in Example 5.
  • FIG. 10 is an expanded spectrum of positive ion detection near the mass of Ca obtained by TOF-SIMS analysis.
  • the upper (A) is the result of analysis of A1N obtained in Comparative Example 1
  • the lower (B) is the result of analysis of A1N obtained in Example 5.
  • FIG. 11 is an expanded spectrum of positive ion detection around the mass of K obtained by TOF SIMS analysis.
  • the upper (A) is the result of analysis of A1N obtained in Comparative Example 1
  • the lower (B) is the result of analysis of A1N obtained in Example 5.
  • FIG. 12 shows the A-N D-SIMS profile obtained in Example 3.
  • FIG. 13 shows the A-N D-SIMS profile obtained in Comparative Example 2.
  • X A1N semiconductor manufacturing equipment
  • 1 Horizontal quartz reaction tube
  • 2 NH gas supply port
  • 3 Salty aluminum Um gas supply pipe
  • 4 discharge port
  • 5 sapphire substrate
  • 6 substrate holding means
  • 7 reaction tube heating means
  • 8 reaction tube device
  • 9 vaporizer
  • 10 vaporizer heating means
  • 11 anhydrous salt Aluminum (A1 Cl)
  • 12 Carrier gas supply pipe
  • 13 Discharge pipe
  • 14 Sorting device, 15a, 15b: Joint part
  • Gas supply port, 24 exhaust port
  • 25a first heating means
  • 25b second heating means
  • 26 substrate holding means
  • 27 sapphire substrate
  • 28 A1 boat
  • A, ⁇ , ⁇ , ⁇ , ⁇ Opening, ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ ,
  • FIG. 2 shows an A1N semiconductor manufacturing apparatus X used in the A1N semiconductor manufacturing method of the present invention.
  • This A1N semiconductor manufacturing equipment X is a reaction consisting of a horizontal quartz reaction tube 1 with an inner diameter of 60 mm and a length of 1000 mm, and a temperature-controllable reaction tube heating means 7 provided so as to surround the outer peripheral side surface of the quartz reaction tube 1.
  • a vaporizer 9 having a volume of 1500 cm 3 is connected to the pipe device 8 via a sorting device 14. This quartz reaction tube 1 is used to supply NH gas to one end.
  • the vaporizer 9 is a solid anhydrous salt film (A) in which a supply loca (not shown) is filled by a temperature-controllable heater heating means 10 provided so as to surround the outer periphery of the vaporizer 9. ) 11 can be heated, and the carrier gas inside
  • a carrier gas supply pipe 12 for supply and a discharge pipe 13 for discharging the sublimated salty aluminum gas to the outside of the vaporizer 9 are provided.
  • a valve X and a nozzle X capable of ON / OFF control of the gas are provided.
  • the sorting device 14 that connects the reaction tube device 8 and the vaporizer 9 includes openings A, A, B, B, and
  • a piping system force with 1 2 1 2 and B is also configured. Of these, the opening A is vaporized.
  • the carrier gas pipe 16 is provided so that the carrier gas which is also connected to the tip of the carrier gas supply pipe 12 of the vessel 9 through the joint portion 15a and also flows through the opening A force is supplied to the vaporizer 9.
  • the opening B is connected to the tip of the discharge pipe 13 of the vaporizer 9 via a joint 15b, and the salty-aluminum gas sublimated in the vaporizer 9 together with the carrier gas.
  • the opening B is the chloride in the reaction tube device 8.
  • Salt-aluminum gas is supplied into the quartz reaction tube 1 by being connected to one end of the lumi-um gas supply tube 3. Further, the carrier gas pipe 16 is branched in the middle of the opening A and bypassed to the salt / aluminum gas transport pipe 17, and a waste pipe 18 provided with the opening B is provided at the end of the carrier gas pipe 16. Is provided.
  • valve X force salty aluminum is provided in front of the opening A of the carrier gas pipe 16.
  • a nozzle x6 is provided, and a valve X force is provided in front of the opening B which is the end of the waste pipe 18. Both of these valves are gas.
  • the salt-aluminum aluminum gas transport pipe 17 of the sorting device 14 and the exposed portion of the discharge pipe 13 of the vaporizer 9 are provided with pipe heating means 19 capable of controlling the temperature.
  • the temperature inside these pipes is set to about 20 ° C. higher than the temperature of the salty aluminum gas sublimated by the vaporizer 8 by the pipe heating means 19.
  • An example of a method of using the thus configured A1N semiconductor manufacturing apparatus X is as follows. First, in the standby state where the reaction between the salty aluminum gas and the NH gas is not performed, the valve X,
  • valve X After sequentially closing X, X, and X, the valve X is opened and the carrier gas is supplied from the opening A1.
  • valve X While flowing, the valve X is opened and at the same time the valve X is closed, so that the carrier gas flows into the quartz reaction tube 1.
  • valves X, X, X, and X are sequentially opened from the standby state described above, and then valve X is closed to supply carrier gas to the air 9
  • valves X and X are closed and valve X is opened.
  • A1N crystal was grown.
  • This sapphire substrate 5 has its (0001) flow of NH gas and A1C1 gas.
  • A1N is grown with this (0001) as the crystal growth plane.
  • the temperature on the sapphire substrate 5 is set to 1200 ° C. by the reaction tube heating means 7.
  • the sapphire substrate 5 is etched for 5 minutes using an aqueous ammonia solution before being placed in the quartz reaction tube 1.
  • the vaporizer 9 is filled with 400 g of flaky anhydrous aluminum chloride having impurity components shown in Table 1 using a probe box (not shown) so as not to come into contact with the atmosphere.
  • anhydrous salt-aluminum 11 in the vaporizer 9 is heated to 120 ° C.
  • the anhydrous salt / aluminum was previously dehydrated by heating at 120 ° C. for 1 hour before filling into the vaporizer 9.
  • N is supplied as a carrier gas from the opening A1 of the sorting device 14, and this sorting device 14 and the vaporizer 9 are supplied.
  • Each of the valves X is set to a state where the A1N crystal can be grown in the standby state described above, and N carrier gas containing salty aluminum gas sublimated in the vaporizer 9 is used as the carrier gas.
  • ICP ICP mass spectrometry
  • GFAAS graphite furnace atomic absorption spectrophotometry
  • NH is used as a carrier gas.
  • the partial pressure P ° of NH gas in the reaction part for growing A1N crystals on the sapphire substrate 5 was set to 1 ⁇ 10 _1 atm. Under these circumstances, the horizontal quartz reaction tube 1
  • A1N semiconductor was manufactured by allowing A1N to grow on the crystal growth surface (0001) of the sapphire substrate 5 by reacting for 1 hour at a total pressure of 1. Oatm. P ° ZP ° in this reaction
  • NH3 A1C13 was 20
  • the film thickness of A1N grown on the crystal growth surface of sapphire substrate 5 was 82 ⁇ m
  • the growth rate of AIN was 82 ⁇ mZh.
  • Example 28 N in the reaction part H gas partial pressure P Q is 1 X 10 _1 atm.
  • the pressure P ° is controlled by adjusting the heating temperature of the anhydrous salt aluminum.
  • Vapor pressure P QQ (T) was changed to the values shown in Table 2 below. As a result, each example 2 to
  • the crystal growth of A1N in Fig. 8 is as shown in Table 2 and Fig. 3, and the growth rate of A1N can be increased by adjusting the heating temperature of anhydrous salt-aluminum, including the results in Example 1 above. It was confirmed that it can be controlled.
  • FIG. 4 shows a reaction tube apparatus 20 for producing an A1N semiconductor by a conventional hydride vapor phase growth method.
  • the conventional reaction tube apparatus 20 includes a horizontal quartz reaction tube 21 having an inner diameter of 60 mm and a length of 1500 mm, and a quartz crystal surrounded by surrounding the outer peripheral surface of about half of the length of the horizontal quartz reaction tube 21 in the length direction.
  • the first heating means 25a for controlling the temperature of the region in the reaction tube 21 to the following predetermined temperature to form a raw material portion in the quartz reaction tube 21 and the outer peripheral surface of the remaining half of the quartz reaction tube 21 are surrounded.
  • the second heating means 25b for controlling the region in the quartz reaction tube 21 surrounded in this way to form a reaction part by controlling the heating so as to have the following predetermined temperature, and one end force of the horizontal quartz reaction tube 21 are provided at the tip.
  • the NH gas supply pipe 22 that supplies NH gas at the position where the gas reaches the reaction part of the quartz reaction tube 21 and the quartz reaction tube
  • One end of the reaction tube 21 is also provided to supply the HC1 gas to the raw material part of the quartz reaction tube 21, and the other end of the horizontal quartz reaction tube 21 is used to evacuate the gas in the quartz reaction tube 21.
  • the same sapphire (0001) substrate 27 as in Example 1 is the same as in Example 1, and NH
  • the raw material part of the quartz reaction tube 21 is equipped with an A1 boat 28 made of alumina containing metal A1.
  • This A1 boat 28 contains 98 g of metal A1 (6NA1) with a purity of 99.9999 wt%. It has been done.
  • HC1 gas (purity 99.999 wt%) was flowed from the HC1 supply tube 13 at a flow rate of 150 sccm. (Flow rate cm 3 / min in the standard state of 0 ° C, latm).
  • This HC1 gas uses N as a carrier gas.
  • HC1 gas reacts with metal A1 to generate A1C1 gas.
  • the temperature of the crystal growth surface of the substrate 27 is set to 1180 ° C, and the flow rate from the A1C1 gas generated in the raw material section and the NH supply pipe 22 is lOOOsccm (flow in the standard state of 0 ° C, latm)
  • A1N having a film thickness of 60 m was grown on the sapphire substrate 27.
  • the reaction time from the supply of HC1 gas in the raw material section to the termination of A1N crystal growth on the sapphire substrate 27 was 1.5 hours, and the growth rate of A1N was 40 ⁇ mZh.
  • FIG. 5 shows the result of analyzing the crystal structure of the A1N film grown on the sapphire substrate in Example 1 by X-ray diffraction.
  • X'pertMRD manufactured by Spetatris was used, and the measurement conditions were 45 kV and 40 mA.
  • the obtained diffraction peak has a narrow FWHM (full width at half maximum) of A1N (0002) as narrow as 15 arcmin, and there is no diffraction peak other than (000 ⁇ ), so the A1N epitaxy film can be obtained by the production method of the present invention. It can be confirmed that it is growing.
  • Example 1 The ultraviolet absorption spectrum of A1N obtained in Example 1 is shown in FIG. JASCO for measurement
  • the A1N film obtained in Example 5 and the A1N film obtained in Comparative Example 1 were placed in each A1N film using a time of flight SIMS (TOF-SIMS). An analysis of the impurities present was performed. Since this TOF-SIMS can qualitatively analyze trace elements on the extreme surface (about 10 nm from the surface), the A1N obtained by the A1N semiconductor manufacturing method of the present invention and the conventional method (comparison) Suitable for comparing the degree of impurity contamination with A1N obtained in Example 1).
  • the equipment used was TRIFT III (manufactured by Physical Electronics), and the analysis conditions were as follows.
  • FIGS. 7 to 11 show the positive ion detection broad spectrum around the mass of each element of Si, Mg, Na, Ca, and K.
  • FIG. 7 to 11 the upper ( ⁇ ) shows the results for ⁇ 1 ⁇ obtained in Comparative Example 1, and the lower ( ⁇ ) shows the results for A1N obtained in Example 5.
  • Table 3 summarizes the results of analysis other than these elements. Table 3 shows the normalized peak intensities obtained by standardizing with the peak intensity of each element and the intensity of A1 in the matrix, with the peak intensity analyzed and analyzed with Ga ions. In the table, “MZZ” represents the mass number.
  • FIG. 12 shows a profile obtained from A1N in Example 3
  • FIG. 13 shows a profile obtained from A1N in Comparative Example 2.
  • the vertical axis indicates the secondary ion signal intensity
  • the horizontal axis indicates the depth of the surface force of the A1N film
  • the outermost surface of the A1N film is 0 / zm.
  • the depth of the sputter mark was measured with a surface roughness meter, and the surface force of the A1N film was converted to depth based on the time of sputtering with Cs ions up to the sapphire substrate in the depth direction.
  • normalization is performed with the (superscript: 18) 0 intensity in the sapphire substrate.
  • anhydrous salt ⁇ aluminum (A: i
  • the A1N semiconductor can be produced by directly reacting the aluminum chloride gas obtained by sublimation with soot gas.
  • the quartz reactor tube itself used for the reaction can be downsized and simplified, and the crystal growth of A1N can be controlled freely and easily.
  • a large-diameter A1N semiconductor can be obtained, which is an extremely effective invention for industrial application as a method for producing an A1N semiconductor.
  • the A1N semiconductor obtained by the present invention eliminates the contamination of impurities as much as possible, and in particular can prevent the mixing of elements that are adversely affected by device characteristics.
  • High-efficiency deep ultraviolet laser diodes that can be expected to be used in a wide range of applications, such as precision processing and medical fields, optical storage with high recording density, white power LEDs with high power of A1N, and high output 'Various applications such as substrate materials for high-frequency electronic device fabrication can be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

This invention provides a process for producing an AlN semiconductor that can simply produce an AlN semiconductor, can control the growth rate of AlN in a wider range, and can eliminate the inclusion of impurities as much as possible, and can produce an AlN semiconductor having excellent crystallinity, and an apparatus for producing an AlN semiconductor. The production process of an AlN semiconductor comprises heating anhydrous aluminum chloride to sublimate or vaporize aluminum chloride gas and reacting the aluminum chloride gas with NH3 gas by a hydride gas phase growth method to grow AlN crystal on a substrate. The apparatus for producing an AlN semiconductor comprises a vaporizer for heating anhydrous aluminum chloride to sublimate or vaporize and discharge aluminum chloride gas and a reaction tube for reacting the aluminum chloride gas with NH3 gas.

Description

A1N半導体の製造方法及び A1N半導体製造装置  A1N semiconductor manufacturing method and A1N semiconductor manufacturing apparatus
技術分野  Technical field
[0001] この発明は、ハイドライド気相成長法を用いて基板上に A1Nを結晶成長させる A1N 半導体の製造方法、及び A1N半導体を製造するための A1N半導体製造装置に関す る。  The present invention relates to an A1N semiconductor manufacturing method for growing A1N crystals on a substrate using a hydride vapor phase growth method, and an A1N semiconductor manufacturing apparatus for manufacturing an A1N semiconductor.
背景技術  Background art
[0002] 窒化アルミニウム (A1N)は、実用化が見込める半導体のなかで最も広 、バンドギヤ ップ (〜6.2eV)を有することから、波長の短!、深紫外域での半導体発光素子や各種 半導体デバイスとしての応用が期待されて ヽる。これまで深紫外域のレーザとしてェ キシマレーザや YAGレーザ等が利用されて ヽるが、 A1Nを利用した深紫外レーザダ ィオードが実現すれば、これらのレーザに比べて高効率ィ匕を図ることができ、半導体 リソグラフィとしての利用や小型 '低価格の汎用精密加工、あるいは医療分野での利 用といった広範な用途展開が期待できるほか、記録密度の高い光ストレージ、 A1Nの 高い熱伝導率を活力 たハイパワーの白色 LED、高出力 ·高周波電子デバイス作製 のための基板材料など電子デバイス分野でも様々な応用が可能となる。  [0002] Aluminum nitride (A1N) has the widest bandgap (up to 6.2eV) among the semiconductors that can be put to practical use, so it has a short wavelength, a semiconductor light emitting device and various semiconductors in the deep ultraviolet region. Application as a device is expected. Up to now, excimer lasers and YAG lasers have been used as lasers in the deep ultraviolet region, but if a deep ultraviolet laser diode using A1N is realized, higher efficiency can be achieved compared to these lasers. It can be expected to be used in a wide range of applications such as semiconductor lithography, small-sized, low-cost general-purpose precision processing, and medical applications, as well as optical storage with high recording density and high thermal conductivity of A1N. Various applications are also possible in the field of electronic devices such as power white LEDs, substrate materials for high-power, high-frequency electronic device fabrication.
[0003] A1N半導体を結晶成長させる技術としては、窒化アルミニウム原料を成長容器に入 れ、この成長容器を高周波誘導加熱等によって加熱して原料部を 1900〜2250°C 程度の高温に保ちつつ原料の昇華分解を進め、この原料部より低温な箇所に再結 合再結晶させて A1N単結晶を育成する昇華法、 A1原料を溶カゝした飽和溶液を冷却 しながら、 A1N結晶を析出させる溶液成長法 (フラックス法)、及びホットウォール (hot wall)方式の石英反応管を用い、この石英反応管の原料部で高純度の A1 (固体)と H C1 (ガス)を反応させて A1のハロゲン化物(ガス)を生成させ、この Aレ、ロゲン化物を 石英反応管の反応部に輸送して NHガスと反応させて A1Nを気相成長させるハイド  [0003] As a technique for crystal growth of an A1N semiconductor, an aluminum nitride raw material is placed in a growth vessel, and this growth vessel is heated by high frequency induction heating or the like to keep the raw material portion at a high temperature of about 1900 to 2250 ° C. A sublimation method in which A1N single crystals are grown by recombination and recrystallization at a lower temperature than the raw material part, and a solution that precipitates A1N crystals while cooling a saturated solution containing A1 raw material. Using a quartz reaction tube of the growth method (flux method) and hot wall method, a high purity A1 (solid) and H C1 (gas) are reacted in the raw material part of this quartz reaction tube, and the halogen of A1 Hydride that generates A1N and vaporizes A1N by transporting it to the reaction part of the quartz reaction tube and reacting with NH gas.
3  Three
ライド気相成長(Hydride Vapor Phase Epitaxy, HVPE)法が検討されている(HVPE法 については、例えば特許文献 1、非特許文献 1及び非特許文献 2を参照)。しかしな がら、昇華法及びフラックス法では口径の大きな結晶を得ることが難しぐ A1N半導体 を工業的な製品やデバイスに応用するには不向きである。 A ride vapor phase epitaxy (HVPE) method has been studied (see, for example, Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2 for the HVPE method). However, it is difficult to obtain crystals with large diameters by the sublimation method and flux method. It is not suitable for applying to industrial products and devices.
[0004] 一方で、ハイドライド気相成長法は比較的大口径の結晶が得られ、成長速度も高く 厚膜の A1Nを得るのに適しているものの、 A1と HC1とを反応させた際に発生する A1C 1ガスや A1C1ガスが石英反応管(SiO )を激しく腐食してしまうため、 A1N結晶に Siが  [0004] On the other hand, hydride vapor phase epitaxy produces crystals with a relatively large diameter and is suitable for obtaining thick A1N with a high growth rate, but it occurs when A1 and HC1 are reacted. Because A1C 1 gas and A1C1 gas corrode the quartz reaction tube (SiO 2) vigorously, Si is added to the A1N crystal.
2 2  twenty two
不純物として混入してしまうおそれがあり、場合によっては石英反応管を破損させて しまう等の問題を抱える。  There is a risk of contamination as an impurity, and in some cases, the quartz reaction tube may be damaged.
[0005] このような状況のもと、本発明者らは、上記特許文献 1及び非特許文献 1に記載す るように、ハイドライド気相成長法による A1Nの結晶成長について、石英反応管内の 原料部での A1と HC1との反応を熱力学的に解析してこれまでの問題を解決するに至 つた。すなわち、図 4に示すように、原料部 (原料反応部)において反応温度を 700°C 以下に制御して石英反応管を腐食するおそれのない A1C1を優先的に発生させ〔下 [0005] Under such circumstances, as described in Patent Document 1 and Non-Patent Document 1, the inventors of the present invention have used a raw material in a quartz reaction tube for crystal growth of A1N by a hydride vapor phase growth method. The reaction between A1 and HC1 in the laboratory was analyzed thermodynamically, and the previous problems were solved. That is, as shown in Fig. 4, in the raw material part (raw material reaction part), the reaction temperature is controlled to 700 ° C or lower to preferentially generate A1C1 that does not corrode the quartz reaction tube.
3  Three
記式(1)〕、このような塩ィ匕アルミニウムガスを反応部 (成長反応部)に輸送して NH  (Formula (1)), transporting such salt-aluminum gas to the reaction part (growth reaction part)
3 ガスと反応させて A1Nを気相成長させる〔下記式(2)〕ことに成功して 、る。  3 A1N is vapor-grown by reacting with gas [Formula (2) below].
原料部: Al(s) + 3HCl(g)=AK:i (g) + 3/2H (g) (1)  Raw material part: Al (s) + 3HCl (g) = AK: i (g) + 3 / 2H (g) (1)
3 2  3 2
反応部: A (g)+NH (g)=AlN(s) + 3HCl(g) (2)  Reaction part: A (g) + NH (g) = AlN (s) + 3HCl (g) (2)
3 3  3 3
[0006] このハイドライド気相成長法を用いた A1N半導体の製造方法については、更なる検 討課題を挙げることができる。 A1Nの成長速度を広範囲に制御するためには、反応 部における A1C1ガスの分圧 P° を広範囲に制御する必要がある。ハイドライド気相  [0006] With regard to a method for manufacturing an A1N semiconductor using this hydride vapor phase epitaxy method, a further examination subject can be given. In order to control the growth rate of A1N over a wide range, it is necessary to control the partial pressure P ° of A1C1 gas in the reaction section over a wide range. Hydride gas phase
3 A1C13  3 A1C13
成長法では上記の式(1)の反応により生成した A1C1ガスを用いる。このために、反  In the growth method, A1C1 gas generated by the reaction of the above formula (1) is used. For this, anti
3  Three
応部における A1C1ガスの分圧 PQ は、次の式(3)に示されるように、原料部に供給 The partial pressure P Q of the A1C1 gas at the response section is supplied to the raw material section as shown in the following equation (3).
3 A1C13  3 A1C13
する HC1ガスの分圧 PQ と HClガスの供給量 FLOW と反応部における全流量 FLO HC1 gas partial pressure P Q and HCl gas supply FLOW and total flow rate FLO
HCl HCl  HCl HCl
w とにより決定される。  determined by w.
Total  Total
Ρ° = 1/3 ·Ρ° -FLOW /FLOW (3)  Ρ ° = 1 / 3ΡΡ ° -FLOW / FLOW (3)
A1C13 HCl HCl Total  A1C13 HCl HCl Total
[0007] し力しながら、 P° は使用する HClガスボンベ中の HCl濃度により一義的に決まる  [0007] However, P ° is uniquely determined by the HCl concentration in the HCl gas cylinder used.
HC1  HC1
。このために、反応部における A1C1ガスの分圧 PG の制御は HClガスの供給量 FL . For this purpose, the control of the partial pressure P G of A1C1 gas in the reaction section is based on the supply amount of HCl gas FL
3 A1C13  3 A1C13
OW で行わなくてはならない。この流量の制御には通常マスフローコントローラと呼 Must be done in OW. This flow control is usually called a mass flow controller.
HC1 HC1
ばれる流量制御器が用いられるが、その制御可能な範囲は使用するマスフローコン トローラの制御範囲で決まってしま 、、通常はフルスケールの数%以下は制御ができ ない。そのため、 A1Nを結晶成長させる上での A1源の供給が限られた範囲でし力行 えないことになり、 A1N半導体の制御に制約が生じてしまう。さらには、式(1)での反 応は A1C1の選択的な生成のために 700°C以下の低温を用いる必要がある。そのた However, the controllable range is determined by the control range of the mass flow controller to be used, and usually it can be controlled below several percent of full scale. Absent. For this reason, the A1 source supply for crystal growth of A1N is limited to a limited range, and control of the A1N semiconductor is restricted. Furthermore, the reaction in Equation (1) requires the use of a low temperature of 700 ° C or lower for the selective production of A1C1. That
3  Three
めに、高濃度の HC1供給を行うと、式(1)で示される反応が不十分となり未反応の H C1ガスが式(2)の主反応部に供給されてしまう。この未反応の HC1ガスが反応部に 供給された場合は、式 (2)で予想されるように成長速度が遅くなる。  For this reason, if a high concentration of HC1 is supplied, the reaction shown in formula (1) becomes insufficient, and unreacted HC1 gas is supplied to the main reaction section of formula (2). When this unreacted HC1 gas is supplied to the reaction section, the growth rate is slowed as expected by Equation (2).
[0008] また、上記ハイドライド気相成長法では、反応管内に原料部 (原料反応部)と反応 部 (成長反応部)とを設ける必要があることから、反応装置自体が大規模になってしま う点も改良の余地がある。さらに、原料部に備えた金属 A1を定期的に補充する必要 があり、この際には反応装置を開放することになり、反応装置全体が水分や酸素等で 汚染される原因となる。 [0008] Further, in the hydride vapor phase growth method, it is necessary to provide a raw material part (raw material reaction part) and a reaction part (growth reaction part) in the reaction tube, so that the reaction apparatus itself becomes large-scale. There is room for improvement. Furthermore, it is necessary to periodically replenish the metal A1 provided in the raw material section. In this case, the reaction apparatus is opened, which causes the entire reaction apparatus to be contaminated with moisture, oxygen, and the like.
[0009] ところで、ハイドライド気相成長法を用いた A1N半導体の気相成長にぉ 、ては、 A1 C1を直接原料として用いることも考えられる力 これまで入手可能であった A1C1の [0009] By the way, for the vapor phase growth of A1N semiconductors using hydride vapor phase growth, it is possible to use A1 C1 directly as a raw material.
3 3 純度では、これに含まれる不純物金属によって石英反応管内の汚染を弓 Iき起こして しまって十分に反応が進まなくなる問題や、得られる A1N中にこの不純物金属が混 入してしまう問題があった。そのため、これまで、 A1C1を直接原料に用いて A1N半導 In 3 3 purity, there is a problem that impurities in the quartz reaction tube cause contamination in the quartz reaction tube and the reaction does not proceed sufficiently, and this impurity metal is mixed in the obtained A1N. there were. For this reason, A1N semiconductors have been used so far using A1C1 directly as raw materials.
3  Three
体を製造したとする報告はされて 、な 、。  It has been reported that the body was manufactured.
特許文献 1:特開 2003— 303,774号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-303,774
非特許文献 1 :熊谷義直、纈纈明伯, 「ハイドライド気相成長法による A1系窒化物の 高速成長」,社団法人電子情報通信学会信学技報, ED2004-121, CPM2004-95, L QE2004-59 (2004-10) , p27~32.  Non-Patent Document 1: Yoshinao Kumagai, Akiaki Tsuji, “High-speed growth of A1 nitrides by hydride vapor phase epitaxy”, IEICE Technical Report, ED2004-121, CPM2004-95, L QE2004 -59 (2004-10), p27 ~ 32.
非特許文献 2 :Yu- Huai LIU, Tomoaki TANABE, Hideo MIYAKE, Kazumasa HIRAM ATSU, Tomohiko SHIBATA, Mutsuhiro TANAKA and Yoshihiko MASA, Japanese J ournal of Applied Physics, vol.44, No.17, 2005, pp.L505— L507.  Non-Patent Document 2: Yu- Huai LIU, Tomoaki TANABE, Hideo MIYAKE, Kazumasa HIRAM ATSU, Tomohiko SHIBATA, Mutsuhiro TANAKA and Yoshihiko MASA, Japanese Journal of Applied Physics, vol.44, No.17, 2005, pp.L505— L507.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] そこで本発明者らは、 2インチ径以上の大口径の A1N半導体を製造することができ ると共に厚膜の A1N半導体を得るのに適した、ハイドライド気相成長法を用いた A1N 半導体の製造方法にお 、て、従来の方法が抱える種々の検討課題を解決するため に鋭意検討した結果、固体の無水塩ィ匕アルミニウム (A :i )を加熱して昇華又は気化 [0010] Therefore, the present inventors can manufacture an A1N semiconductor having a large diameter of 2 inches or more and use an A1N using a hydride vapor phase growth method suitable for obtaining a thick A1N semiconductor. As a result of diligent investigations in order to solve various problems of conventional methods in semiconductor manufacturing methods, solid anhydrous salt-aluminum (A: i) is heated to sublimate or vaporize.
3  Three
させて得た塩ィ匕アルミニウムガスを用いて ΝΗガスと直接反応させることによって、上  By reacting directly with soot gas using the salty aluminum gas obtained by
3  Three
述したような問題を全て解消することができることを見出し、本発明を完成した。  The present invention has been completed by finding that all the problems as described above can be solved.
[0011] 従って、本発明の目的は、 A1N半導体製造の実用化に向けて比較的有利とされる ハイドライド気相成長法を用いた A1N半導体の製造方法にぉ 、て、従来の方法より 簡便に A1N半導体を製造することができると共に、 A1Nの成長速度をより広い範囲で 制御することが可能であり、尚且つ、不純物の混入のおそれを可及的に排除して、結 晶性にも優れた A1N半導体を得ることができる A1N半導体の製造方法を提供するこ とにある。 Accordingly, an object of the present invention is to provide a method for manufacturing an A1N semiconductor using a hydride vapor phase growth method, which is relatively advantageous for the practical application of A1N semiconductor manufacturing, and is simpler than the conventional method. A1N semiconductors can be manufactured and the growth rate of A1N can be controlled over a wider range. In addition, the possibility of mixing impurities is eliminated as much as possible, and the crystallinity is excellent. Another object of the present invention is to provide an A1N semiconductor manufacturing method capable of obtaining an A1N semiconductor.
また、本発明の別の目的は、 A1N半導体を簡便に製造することができると共に、 A1 Νの成長速度の制御が容易に行うことができ、尚且つ、不純物の混入を可及的に排 除できる A1N半導体の製造装置を提供することにある。  Another object of the present invention is to easily manufacture an A1N semiconductor, to easily control the growth rate of A1Ν, and to eliminate impurities as much as possible. It is to provide an A1N semiconductor manufacturing apparatus that can.
課題を解決するための手段  Means for solving the problem
[0012] すなわち、本発明は、無水塩ィ匕アルミニウムを加熱して昇華又は気化させた塩ィ匕ァ ルミ-ゥムガスと ΝΗガスとをノヽイドライド気相成長法により反応させ、基板上に A1N [0012] That is, in the present invention, anhydrous sodium chloride aluminum is heated and sublimated or vaporized by reacting a salt solution medium gas and a soot gas by a nanoride vapor phase growth method, and A1N is formed on the substrate.
3  Three
を結晶成長させる A1N半導体の製造方法である。  Is a method of manufacturing an A1N semiconductor.
[0013] また、本発明は、ハイドライド気相成長法を用いて基板上に A1Nを結晶成長させる A1N半導体の製造装置であって、無水塩化アルミニウムを加熱して昇華又は気化さ せて塩ィ匕アルミニウムガスを排出する気化器と反応管装置とからなる A1N半導体製 造装置である。 [0013] The present invention also relates to an A1N semiconductor manufacturing apparatus for growing A1N crystals on a substrate using a hydride vapor phase growth method, and heating and sublimating or vaporizing anhydrous aluminum chloride to form a salt solution. This is an A1N semiconductor manufacturing device consisting of a vaporizer that discharges aluminum gas and a reaction tube device.
[0014] 本発明にお 、ては、 A1源として無水塩ィ匕アルミニウム (Αに 1 )を加熱して昇華又は  [0014] In the present invention, anhydrous salt 匕 aluminum (1 in 匕) is heated as a source of A1 for sublimation or
3  Three
気化させて得た塩ィ匕アルミニウムガスを用い、 Ν源としては ΝΗガスを用いて、下記  Using salty aluminum gas obtained by vaporization, using soot gas as the source,
3  Three
式 (4)に示すようなハイドライド気相成長法による反応により、基板上に A1Nを結晶成 長させる。  Crystals of A1N are grown on the substrate by a reaction by hydride vapor phase epitaxy as shown in equation (4).
A1C1 (g)+NH (g)=AlN(s) + 3HCl(g) (4)  A1C1 (g) + NH (g) = AlN (s) + 3HCl (g) (4)
3 3  3 3
[0015] このうち、基板上に A1Nを結晶成長させる反応部における塩ィ匕アルミニウムガスの 分圧 P° につ 、ては、温度 Tに保たれた塩ィ匕アルミニウムの蒸気圧 P°° (T)と、こ の塩ィ匕アルミニウムを輸送するキャリアガスの供給量 FLOW と、反応部におけ [0015] Of these, the partial pressure P ° of the salt-aluminum gas in the reaction part where A1N crystal is grown on the substrate is the vapor pressure P °° of the salt-aluminum kept at the temperature T ( T) FLOW of carrier gas for transporting aluminum and aluminum in the
Aic キャリア  Aic career
る全流量 FLOW とを用いて、以下の式(5)のように表すことができる。  Using the total flow rate FLOW, the following equation (5) can be expressed.
Total  Total
P° = P00 (T) - FLOW /FLOW (5) P ° = P 00 (T)-FLOW / FLOW (5)
A1C13 A1C13 Αΐα3キャリア Total  A1C13 A1C13 Αΐα3 carrier Total
[0016] ここで、図 1に塩ィ匕アルミニウムの蒸気圧曲線を示す。実線が二量体〔(A :i )〕の蒸  Here, FIG. 1 shows a vapor pressure curve of salted aluminum. The solid line is the steam of the dimer [(A: i)].
3 2 気圧曲線を表し、破線が単量体〔Α :ΐ〕の蒸気圧曲線を表す。通常、塩化アルミニゥ  3 2 represents the atmospheric pressure curve, and the dashed line represents the vapor pressure curve of the monomer [Α: Α]. Usually aluminum chloride
3  Three
ムは 440°C以下の気体では二量体となって 、ると考えられるため、本発明にお!/、て 塩ィ匕アルミニウムガスと言う場合には単量体と二量体とのいずれの状態をも含むもの とする。そして、本発明においては、無水塩化アルミニウムの加熱温度を調節するこ とにより塩ィ匕アルミニウムの蒸気圧 PQQ (T)を変えることができ、塩化アルミニウムガ In the present invention, the gas is considered to be a dimer in a gas of 440 ° C or lower! / In the case of salt-aluminum gas, it shall include both monomer and dimer states. In the present invention, the vapor pressure P QQ (T) of salt-aluminum can be changed by adjusting the heating temperature of anhydrous aluminum chloride.
A1C13  A1C13
スの分圧 P° を、 FLOW のみならず P°° (T)の制御によって幅広い範囲で  A wide range of partial pressure P ° can be controlled by controlling P °° (T) as well as FLOW.
A1C13 Αΐα3キャリア A1C13  A1C13 Αΐα3 carrier A1C13
制御することが可能となる。すなわち、無水塩化アルミニウムの加熱温度を調整する ことにより、 A1Nの成長速度を広範囲に制御することが可能となる。  It becomes possible to control. In other words, the growth rate of A1N can be controlled over a wide range by adjusting the heating temperature of anhydrous aluminum chloride.
[0017] 具体的には、無水塩化アルミニウムの加熱温度を 50〜180°C、好ましくは 70〜15 0°C、より好ましくは 85〜135°Cの範囲で調節するのがよい。無水塩化アルミニウム の加熱温度が 50°Cより低いと、塩ィ匕アルミニウムガスの分圧 PQ が低くなりすぎて十 [0017] Specifically, the heating temperature of anhydrous aluminum chloride is adjusted in the range of 50 to 180 ° C, preferably 70 to 150 ° C, more preferably 85 to 135 ° C. If the heating temperature of anhydrous aluminum chloride is lower than 50 ° C, the partial pressure P Q of the salty aluminum gas will be too low.
A1C13  A1C13
分な A1Nの成長速度を確保することができず、反対に 180°Cより高くなると図 1より明 らかなように、塩ィ匕アルミニウムの蒸気圧 P°° (T)が latmに達し、塩化アルミニウム  As shown in Fig. 1, when the temperature is higher than 180 ° C, the vapor pressure P °° (T) of salt-aluminum reaches latm, and Aluminum
A1C13  A1C13
ガスの分圧 pQ の制御が不可能となる。そして、このように無水塩ィ匕アルミニウムを Control of the partial pressure p Q of the gas becomes impossible. And like this, anhydrous salt 匕 aluminum
A1C13  A1C13
加熱する際の加熱温度を調節することによって、塩化アルミニウムガスの分圧 P°  By adjusting the heating temperature when heating, the partial pressure of aluminum chloride gas P °
A1C13 は、塩化アルミニウムガスのキャリアガス供給量 FLOW にもよるが、 1 X 10— 6 A1C13 is 1 X 10— 6 depending on the carrier gas supply rate of aluminum chloride gas FLOW.
Aic キャリア  Aic career
〜1 X 10_ 1atmの範囲で幅広く設定することが可能になり、 A1Nの結晶成長速度を 0 . 1- 1000 μ mZhの範囲で制御することが可能となる。 It becomes possible to set a wide range in the range of ~ 1 X 10 _ 1 atm, and the crystal growth rate of A1N can be controlled in the range of 0.1-1000 μmZh.
[0018] また、本発明において用いる無水塩化アルミニウム(A :i )については、 A1と同じ III  [0018] The anhydrous aluminum chloride (A: i) used in the present invention is the same as A1 III.
3  Three
族の元素以外の不純物成分を可及的に低減した無水塩ィ匕アルミニウムであるのがよ ぐ好ましくは III族元素以外の不純物成分の合計が 0. 001重量%以下であるのがよ い。 III族元素としてガリウム (Ga)、ホウ素(Β)及びインジウム (In)等を挙げることができ る力 これらの元素が無水塩ィ匕アルミニウム中に含まれていて、仮に A1Nを結晶成長 させる際に混入したとしても、 A1N半導体と混晶を形成すると考えられることから、特 に積極的な排除は要しない。一方、 III族元素以外の不純物成分としては、例えばェ 業的な無水塩ィ匕アルミニウムの製造に用いられるアルミニウム原料に由来するナトリ ゥム(Na)、マグネシウム(Mg)、ケィ素(Si)、カリウム(K)、チタン(Ti)、バナジウム(V) 、クロム (Cr)、マンガン (Mn)、鉄 (Fe)、ニッケル (Ni)、銅 (Cu)、亜鉛 (Zn)、カルシゥ ム(Ca)等の不純物金属や、水(H 0)や酸素(0)等の不純物を挙げることができる。 Anhydrous salt aluminum, in which impurity components other than Group III elements are reduced as much as possible, is more preferable. The total content of impurity components other than Group III elements is 0.001% by weight or less. Forces that can include gallium (Ga), boron (Β), indium (In), etc. as Group III elements. These elements are contained in anhydrous salt and aluminum, and when A1N is crystal-grown. Even if mixed, it is considered to form a mixed crystal with the A1N semiconductor. There is no need for positive exclusion. On the other hand, as impurity components other than Group III elements, for example, sodium (Na), magnesium (Mg), silicon (Si), aluminum (Si) derived from aluminum raw materials used in the production of industrial anhydrous salty aluminum, Potassium (K), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), calcium (Ca) And impurities such as water (H 0) and oxygen (0).
2  2
上記のようなアルミニウム原料由来の不純物金属が A1Nに混入すると、 A1Nの結晶 性 (結晶の品質)に悪影響を与えると考えられ、得られた A1N半導体を電子デバイス に用いた際にバンドギャップ、透過率等の光学的特性や、導電性、キャリア密度、移 動度等の電気的特性等に影響を及ぼすおそれがある。また、水 0)や酸素 (0)に When impurity metals derived from aluminum raw materials such as those mentioned above are mixed into A1N, the crystallinity (crystal quality) of A1N is considered to be adversely affected. When the obtained A1N semiconductor is used in electronic devices, the band gap and transmission It may affect the optical characteristics such as the rate and the electrical characteristics such as the conductivity, carrier density, and mobility. Also in water 0) and oxygen (0)
2  2
ついても同様に排除が必要である。そのため、 III族元素以外の不純物成分の合計が 0. 001重量%以下である無水塩ィ匕アルミニウムを用いるのが好ましい。更に好ましく は、無水塩化アルミニウムの純度が 99. 999重量%以上である高純度無水塩化アル ミニゥムであるのがよい。ここで、「無水塩化アルミニウムの純度」とは、 III族元素を含 めた不純物成分の合計を差し引 、て求められる無水塩ィ匕アルミニウムの純度であつ て、通常供される分析法にぉ 、て検出可能な不純物濃度以外は全て純分とみなす という意味である。 Similarly, it is necessary to eliminate it. Therefore, it is preferable to use anhydrous salt-aluminum in which the total of impurity components other than Group III elements is 0.001% by weight or less. More preferably, it is a high-purity anhydrous aluminum chloride in which the purity of anhydrous aluminum chloride is 99.999% by weight or more. Here, “purity of anhydrous aluminum chloride” refers to the purity of anhydrous salt-aluminum obtained by subtracting the total of impurity components including Group III elements, and is equivalent to the analysis method usually used. This means that everything except the detectable impurity concentration is regarded as pure.
本発明にお 、て、無水塩ィ匕アルミニウムを加熱して塩ィ匕アルミニウムガスを昇華さ せ又は気化させる際には気化器を用いるようにするのが好ま U、。気化器にっ 、て は有機金属気相成長法 (MOVPE)等にぉ 、て一般的に使用されるものを用いること ができ、具体的には、少なくとも収容した無水塩ィ匕アルミニウムを昇華又は気化させ る温度制御可能な加熱手段と、塩ィヒアルミニウムガスを輸送するキャリアガスを供給 するためのキャリアガス供給管と、キャリアガスと共に塩ィ匕アルミニウムガスを気化器 の外部に排出させる排出管とを備えたものであるのがよい。なお、無水塩化アルミ- ゥムは常温では固体の粉末であって、空気中の水分を吸って加水分解を起こし易い ことから、気化器に充填する際には無水塩ィ匕アルミニウムが大気と触れないようにグ ローブボックス内で作業する必要がある。尚、無水塩ィ匕アルミニウムを気化器に充填 する際には予め 120°C程度で 0. 5〜1時間加熱する脱水処理を行うようにするのが よい。 [0020] 気化器で昇華又は気化させた塩化アルミニウムガスにっ 、ては、 N、 He、 Ar等の In the present invention, it is preferable to use a vaporizer when heating the salt-aluminum gas to sublimate or vaporize the salt-aluminum gas. As the vaporizer, those generally used for metal organic chemical vapor deposition (MOVPE) or the like can be used. Specifically, at least contained anhydrous salt-aluminum is sublimated or used. Temperature-controllable heating means for vaporization, carrier gas supply pipe for supplying a carrier gas for transporting the salt aluminum gas, and a discharge pipe for discharging the salt aluminum gas together with the carrier gas to the outside of the vaporizer It is good to have. Anhydrous aluminum chloride is a solid powder at room temperature, and it is prone to hydrolysis when it absorbs moisture from the air. Therefore, when filling the vaporizer, anhydrous aluminum chloride is in contact with the atmosphere. It is necessary to work in the globe box so that there is no such thing. In addition, when filling the vaporizer with anhydrous salt and aluminum, it is preferable to perform a dehydration treatment by heating at about 120 ° C. for 0.5 to 1 hour in advance. [0020] Aluminum chloride gas sublimated or vaporized by a vaporizer, such as N, He, Ar, etc.
2  2
不活性ガス、及び H力もなる群より選ばれた 1種又はこれらの組み合わせ力もなる A1  One selected from the group consisting of inert gas and H force, or a combination force of these A1
2  2
C1キャリアガスを用いて気化器の外部に排出させ、別途供給される NHガスとハイド C1 carrier gas is used to discharge outside the vaporizer and NH gas and hydride supplied separately.
3 3 ライド気相成長法により反応させて基板上に A1Nを結晶成長させる。ノ、イドライド気相 成長法は有機金属気相成長 (MOVPE)法などの他の気相成長法に比べて目的とす る結晶の成長速度が速ぐ使用する原料に炭素を含まないことから高純度の結晶が 得られる特徴がある。ハイドライド気相成長法により塩ィ匕アルミニウムガスと NHガスと 3 3 A1N crystal is grown on the substrate by reaction by the vapor phase growth method. The Idoride vapor phase growth method is faster than other vapor phase growth methods such as metal organic vapor phase epitaxy (MOVPE), and the target crystal growth rate is high. There is a feature that crystals of purity can be obtained. Salt-aluminum gas and NH gas are formed by hydride vapor phase epitaxy.
3 を反応させる温度につ 、ては、 A1Nが結晶成長する基板上の温度が 1000〜 1200 °Cとなるようにするのがよい。  For the temperature at which 3 is reacted, the temperature on the substrate on which A1N grows is preferably 1000 to 1200 ° C.
[0021] 塩ィ匕アルミニウムガスと NHガスとを反応させる際には反応管を用いて行うのがよく [0021] When reacting salty aluminum gas and NH gas, it is preferable to use a reaction tube.
3  Three
、好ましくは石英製の反応管を用いるのがよい。塩ィ匕アルミニウムガスと NHガスとを  It is preferable to use a reaction tube made of quartz. Salty aluminum gas and NH gas
3 反応させるための温度に加熱する手段については特に制限はなぐホットウォール (h ot wall)方式で反応管自体を加熱しながら所定の温度になるようにしてもよぐコール ドウオール (cold wall)方式により基板のみを加熱するようにしてもよい。そして、例え ば上記反応管にっ 、ては、塩ィ匕アルミニウムガスを供給するための塩ィ匕アルミニウム ガス供給管と、 NHガスを供給するための NHガス供給口と、 A1Nを結晶成長させる  (3) There is no particular restriction on the means of heating to the temperature for the reaction. The cold wall method can be used to heat the reaction tube itself to the specified temperature using the hot wall method. Only the substrate may be heated. For example, the above reaction tube is used to grow a crystal of A1N, a salt-aluminum gas supply pipe for supplying salt-aluminum gas, an NH gas supply port for supplying NH gas, and the like.
3 3  3 3
基板を保持するための基板保持手段と、反応管内のガスを排出するための排出口と を設けるようにし、特にホットウォール方式を採用する場合には反応管の側面を覆うよ うにした温度制御可能な加熱手段と共に反応管装置を構成するのがよい。  Temperature control is possible by providing a substrate holding means for holding the substrate and a discharge port for discharging the gas in the reaction tube, and especially covering the side of the reaction tube when the hot wall method is adopted. It is preferable to constitute the reaction tube device together with a suitable heating means.
[0022] また、本発明における NHガスについては半導体製造分野において一般的に使 [0022] The NH gas in the present invention is generally used in the semiconductor manufacturing field.
3  Three
用される半導体グレードのものを使用するのがよい。この NHガスを反応管内に供給  It is better to use the semiconductor grade used. Supply this NH gas into the reaction tube
3  Three
する際には N、 He、 Ar等の不活性ガス、及び Hカゝらなる群より選ばれた 1種又はこ  In this case, an inert gas such as N, He, Ar, or one selected from the group consisting of H
2 2  twenty two
れらの組み合わせ力 なる NHキャリアガスを用いて導入するようにしてもよい。  You may make it introduce | transduce using NH carrier gas which becomes those combination power.
3  Three
[0023] また、本発明にお ヽて、 A1N半導体を結晶成長させる基板 (初期基板)につ!/ヽては 、気相成長法で一般的に使用されるサファイア (A1 0 )、シリコンカーバイド (SiC)、窒  [0023] In the present invention, a substrate (initial substrate) for crystal growth of an A1N semiconductor is used for sapphire (A10), silicon carbide generally used in a vapor phase growth method. (SiC), Nitrogen
2 3  twenty three
化ガリウム (GaN)基板等を用いることができ、例えばサファイアでは (0001)を、 A1N結 晶を成長させる結晶成長面として用いることができる。反応管内で塩ィ匕アルミニウム ガスと NHガスとを反応させる際には、 NHガス供給口より塩ィ匕アルミニウムガス供給 管の先端がより基板に近い位置になるように配置するのが好ましぐ塩ィ匕アルミニウム ガス供給管の先端と基板の結晶成長面との距離 Lが 10〜: LOOmmとなるようにする のがよい。また、得られる A1Nの成長膜厚の均一化の観点から、好ましくは塩化アル ミニゥムガス及び NHガスの流れに対して基板の結晶成長面を垂直にするのがよい A gallium phosphide (GaN) substrate or the like can be used. For example, in sapphire, (0001) can be used as a crystal growth surface for growing an A1N crystal. Supply salty aluminum gas from NH gas supply port when reacting salty aluminum gas and NH gas in the reaction tube It is preferable to arrange so that the tip of the tube is closer to the substrate. The distance L between the tip of the gas supply tube and the crystal growth surface of the substrate is 10 to: LOOmm Is good. Also, from the viewpoint of uniforming the growth thickness of the obtained A1N film, the crystal growth surface of the substrate should preferably be perpendicular to the flow of aluminum chloride gas and NH gas.
3  Three
[0024] 本発明によれば、基板上に A1Nを結晶成長させて A1N半導体を製造することがで きるが、この A1N半導体は、必要により Ga、 B、 In等の元素を任意の比率で混入させ て混晶を形成するようにしてもょ 、。 [0024] According to the present invention, an A1N semiconductor can be produced by crystal-growing A1N on a substrate, but this A1N semiconductor is mixed with an element such as Ga, B, or In at an arbitrary ratio if necessary. Let them form mixed crystals.
発明の効果  The invention's effect
[0025] 本発明によれば、塩ィ匕アルミニウムガスと NHガスとを直接反応させて基板上に A1  [0025] According to the present invention, a salt-aluminum gas and NH gas are directly reacted to form A1 on the substrate.
3  Three
N半導体を結晶成長させることができるため、これまでのハイドライド気相成長法によ る A1N半導体の製造方法、すなわち、高純度の金属 A1を石英反応管の原料部にて HC1と反応させて A1のハロゲン化物(ガス)を生成させ、この Aレ、ロゲン化物を石英 反応管の反応部に輸送して NHガスと反応させて A1Nを気相成長させる方法で課  Since N semiconductor can be crystal-grown, the conventional A1N semiconductor manufacturing method by hydride vapor phase epitaxy, that is, high purity metal A1 is reacted with HC1 in the raw material part of the quartz reaction tube to produce A1 This is done by a method in which A1N is vapor-grown by forming a halide (gas) of A and transporting the A and rogens to the reaction part of the quartz reaction tube and reacting with NH gas.
3  Three
題であった A1C1ガスや A1C1ガスが石英反応管を腐食させる問題を根本的に解決す  The A1C1 gas and A1C1 gas, which were subject to the problem, will fundamentally solve the problem of corroding the quartz reaction tube.
2  2
ることができる。また、従来の方法で A1C1を優先的に発生させるために行っていた石  Can. In addition, stones used to generate A1C1 preferentially by conventional methods
3  Three
英反応管の原料部での厳密な温度制御が不要となり、この原料部も設ける必要がな くなることから、石英反応管に係る装置自体もより簡易ィ匕 '小型化することができ、そ の設計の自由度も増す。更には、無水塩ィ匕アルミニウム ( CI )の加熱温度を調節す  Strict temperature control is not required in the raw material section of the British reaction tube, and it is no longer necessary to provide this raw material section. Therefore, the apparatus related to the quartz reaction tube itself can be made simpler and smaller. The degree of design freedom increases. In addition, the heating temperature of anhydrous salt-aluminum (CI) is adjusted.
3  Three
ることにより塩ィ匕アルミニウムガスの蒸気圧 PQQ (T)を変化させることができ、幅広い By changing the vapor pressure P QQ (T) of salty aluminum gas,
A1C13  A1C13
範囲で塩ィ匕アルミニウムガスの分圧 P° を設定することができ、 A1Nの成長速度の  The partial pressure P ° of the salty aluminum gas can be set within the range, and the growth rate of A1N
A1C13  A1C13
制御がこれまでより簡便に、かつ、幅広い範囲で選択することができるようになる。  Control can be selected more easily and in a wider range.
[0026] また、本発明の製造方法により得られる A1N半導体は、石英反応管の腐食に伴う S iの混入が防止されるほ力、特に、高純度の無水塩ィ匕アルミニウム (A )を昇華又は [0026] Further, the A1N semiconductor obtained by the production method of the present invention sublimates high purity anhydrous salt-aluminum (A), in particular, to prevent Si contamination due to corrosion of the quartz reaction tube. Or
3  Three
気化させて得た塩ィ匕アルミニウムガスを使用することにより、デバイス特性に特に悪 影響をおよぼすと考えられる Mg、 Na、 K、 Ca、 Cr、 Fe、 Zn、 C、 0、 H O等の不純  Impurities such as Mg, Na, K, Ca, Cr, Fe, Zn, C, 0, H 2 O, etc. are expected to have a particularly negative effect on device characteristics by using vaporized salty aluminum gas
2  2
物の混入を可及的に低減することができ、純度が高ぐ結晶性に優れた A1N半導体 である。 図面の簡単な説明 It is an A1N semiconductor that can reduce contamination of materials as much as possible, has high purity and excellent crystallinity. Brief Description of Drawings
[0027] [図 1]図 1は、塩ィ匕アルミニウムの蒸気圧曲線を示す。  [0027] FIG. 1 shows the vapor pressure curve of salted aluminum.
[図 2]図 2は、本発明の A1N半導体製造装置の断面説明図である。  FIG. 2 is a cross-sectional explanatory view of the A1N semiconductor manufacturing apparatus of the present invention.
[図 3]図 3は、無水塩化アルミニウムの加熱温度と A1Nの成長速度との関係を示す。  FIG. 3 shows the relationship between the heating temperature of anhydrous aluminum chloride and the growth rate of A1N.
[図 4]図 4は、ハイドライド気相成長法により A1N半導体を製造する従来法の反応管 装置の断面説明図である。  FIG. 4 is a cross-sectional explanatory view of a conventional reaction tube apparatus for producing an A1N semiconductor by hydride vapor phase epitaxy.
[図 5]図 5は、実施例 1においてサファイア基板上に成長させた A1Nの X線回折の回 折パターンである。  FIG. 5 is an X-ray diffraction pattern of A1N grown on the sapphire substrate in Example 1.
[図 6]図 6は、実施例 1で得られた A1Nの紫外線吸収スペクトルを示す。  FIG. 6 shows the ultraviolet absorption spectrum of A1N obtained in Example 1.
[図 7]図 7は、 TOF— SIMSによる分析によって得られた Siの質量付近の正イオン検 出拡大スペクトルである。上段 (A)は比較例 1で得た A1N、下段 (B)は実施例 5で得 た A1Nにつ 、て分析した結果である。  [Fig. 7] Fig. 7 is an expanded spectrum of positive ion detection near the mass of Si obtained by TOF-SIMS analysis. The upper (A) is the result of analysis of A1N obtained in Comparative Example 1, and the lower (B) is the result of analysis of A1N obtained in Example 5.
[図 8]図 8は、 TOF— SIMSによる分析によって得られた Mgの質量付近の正イオン 検出拡大スペクトルである。上段 (A)は比較例 1で得た A1N、下段 (B)は実施例 5で 得た A1Nにつ 、て分析した結果である。  [FIG. 8] FIG. 8 is an expanded spectrum of positive ion detection around the mass of Mg obtained by TOF-SIMS analysis. The upper (A) is the result of analysis of A1N obtained in Comparative Example 1, and the lower (B) is the result of analysis of A1N obtained in Example 5.
[図 9]図 9は、 TOF— SIMSによる分析によって得られた Naの質量付近の正イオン検 出拡大スペクトルである。上段 (A)は比較例 1で得た A1N、下段 (B)は実施例 5で得 た A1Nにつ 、て分析した結果である。  [Fig. 9] Fig. 9 is an expanded spectrum of positive ion detection near the mass of Na obtained by TOF-SIMS analysis. The upper (A) is the result of analysis of A1N obtained in Comparative Example 1, and the lower (B) is the result of analysis of A1N obtained in Example 5.
[図 10]図 10は、 TOF— SIMSによる分析によって得られた Caの質量付近の正イオン 検出拡大スペクトルである。上段 (A)は比較例 1で得た A1N、下段 (B)は実施例 5で 得た A1Nにつ 、て分析した結果である。  [FIG. 10] FIG. 10 is an expanded spectrum of positive ion detection near the mass of Ca obtained by TOF-SIMS analysis. The upper (A) is the result of analysis of A1N obtained in Comparative Example 1, and the lower (B) is the result of analysis of A1N obtained in Example 5.
[図 11]図 11は、 TOF SIMSによる分析によって得られた Kの質量付近の正イオン 検出拡大スペクトルである。上段 (A)は比較例 1で得た A1N、下段 (B)は実施例 5で 得た A1Nにつ 、て分析した結果である。  [FIG. 11] FIG. 11 is an expanded spectrum of positive ion detection around the mass of K obtained by TOF SIMS analysis. The upper (A) is the result of analysis of A1N obtained in Comparative Example 1, and the lower (B) is the result of analysis of A1N obtained in Example 5.
[図 12]図 12は、実施例 3で得た A1Nの D— SIMSのプロファイルである。  FIG. 12 shows the A-N D-SIMS profile obtained in Example 3.
[図 13]図 13は、比較例 2で得た A1Nの D— SIMSのプロファイルである。  FIG. 13 shows the A-N D-SIMS profile obtained in Comparative Example 2.
符号の説明  Explanation of symbols
[0028] X:A1N半導体製造装置、 1 :横型石英反応管、 2 :NHガス供給口、 3 :塩ィ匕アルミ- ゥムガス供給管、 4:排出口、 5:サファイア基板、 6:基板保持手段、 7:反応管加熱手 段、 8:反応管装置、 9:気化器、 10:気化器加熱手段、 11:無水塩ィ匕アルミニウム (A1 Cl)、 12:キャリアガス供給管、 13:排出管、 14:振り分け装置、 15a,15b:ジョイント部[0028] X: A1N semiconductor manufacturing equipment, 1: Horizontal quartz reaction tube, 2: NH gas supply port, 3: Salty aluminum Um gas supply pipe, 4: discharge port, 5: sapphire substrate, 6: substrate holding means, 7: reaction tube heating means, 8: reaction tube device, 9: vaporizer, 10: vaporizer heating means, 11: anhydrous salt Aluminum (A1 Cl), 12: Carrier gas supply pipe, 13: Discharge pipe, 14: Sorting device, 15a, 15b: Joint part
3 Three
、 16:キャリアガス配管、 17:塩ィ匕アルミニウムガス輸送管、 18:捨て配管、 19:配管 加熱手段、 20:反応管装置、 21:横型石英反応管、 22:NHガス供給管、 23:HC1  , 16: Carrier gas piping, 17: Salt-aluminum gas transport pipe, 18: Waste piping, 19: Piping heating means, 20: Reaction tube device, 21: Horizontal quartz reaction tube, 22: NH gas supply pipe, 23: HC1
3  Three
ガス供給口、 24:排出口、 25a:第一加熱手段、 25b:第二加熱手段、 26:基板保持手 段、 27:サファイア基板、 28:A1ボート、 A ,Α ,Β ,Β ,Β:開口部、 χ ,χ ,χ ,χ ,χ ,χ ,  Gas supply port, 24: exhaust port, 25a: first heating means, 25b: second heating means, 26: substrate holding means, 27: sapphire substrate, 28: A1 boat, A, Α, Β, Β, Β: Opening, χ, χ, χ, χ, χ, χ,
1 2 1 2 3 1 2 3 4 5 6 1 2 1 2 3 1 2 3 4 5 6
X:バルブ。 X: Valve.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、実施例及び比較例に基づいて、本発明をより具体的に説明する。  [0029] Hereinafter, the present invention will be described more specifically based on examples and comparative examples.
実施例 1  Example 1
[0030] 図 2は、本発明の A1N半導体の製造方法に用いる A1N半導体製造装置 Xを示す。  FIG. 2 shows an A1N semiconductor manufacturing apparatus X used in the A1N semiconductor manufacturing method of the present invention.
この A1N半導体製造装置 Xは、内径 60mm X長さ 1000mmの横型石英反応管 1と この石英反応管 1の外周側面を取り囲むように設けられた温度制御可能な反応管加 熱手段 7とからなる反応管装置 8に、振り分け装置 14を介して容積 1500cm3の気化 器 9が接続されてなる。この石英反応管 1は、その一端に NHガスを供給するための This A1N semiconductor manufacturing equipment X is a reaction consisting of a horizontal quartz reaction tube 1 with an inner diameter of 60 mm and a length of 1000 mm, and a temperature-controllable reaction tube heating means 7 provided so as to surround the outer peripheral side surface of the quartz reaction tube 1. A vaporizer 9 having a volume of 1500 cm 3 is connected to the pipe device 8 via a sorting device 14. This quartz reaction tube 1 is used to supply NH gas to one end.
3  Three
NHガス供給口 2と、その内部まで塩化アルミニウムガスを供給するための塩化アル NH gas supply port 2 and aluminum chloride for supplying aluminum chloride gas to the inside
3 Three
ミニゥムガス供給管 3と、他端側に反応管内部のガスを排出するための排出口 4と、 反応管内部で A1Nを結晶成長させる基板 (初期基板) 5を保持する基板保持手段 6と を備えてなる。気化器 9は、その外周を取り囲むように設けられた温度制御可能な気 ィ匕器加熱手段 10によって図示外の供給ロカも内部に充填された固体の無水塩ィ匕ァ ルミ-ゥム (A ) 11を加熱できるようにされており、また、その内部にキャリアガスを  A minimum gas supply pipe 3; a discharge port 4 for discharging the gas inside the reaction tube to the other end; and a substrate holding means 6 for holding a substrate (initial substrate) 5 for crystal growth of A1N inside the reaction tube. It becomes. The vaporizer 9 is a solid anhydrous salt film (A) in which a supply loca (not shown) is filled by a temperature-controllable heater heating means 10 provided so as to surround the outer periphery of the vaporizer 9. ) 11 can be heated, and the carrier gas inside
3  Three
供給するためのキャリアガス供給管 12と、昇華した塩ィ匕アルミニウムガスを気化器 9 の外部に排出するための排出管 13とを備えている。そして、これらキャリアガス供給 管 12及び排出管 13の外部に露出した側の一端には、ガスの ON— OFF制御が可 能なバルブ X、ノ レブ Xがそれぞれ設けられている。  A carrier gas supply pipe 12 for supply and a discharge pipe 13 for discharging the sublimated salty aluminum gas to the outside of the vaporizer 9 are provided. At one end of the carrier gas supply pipe 12 and the discharge pipe 13 on the side exposed to the outside, a valve X and a nozzle X capable of ON / OFF control of the gas are provided.
1 2  1 2
[0031] 反応管装置 8と気化器 9とをつなぐ振り分け装置 14は、開口部 A、 A、 B、 B、及  [0031] The sorting device 14 that connects the reaction tube device 8 and the vaporizer 9 includes openings A, A, B, B, and
1 2 1 2 び Bを有した配管システム力も構成されている。このうち開口部 Aについては気化 器 9のキャリアガス供給管 12の先端とジョイント部 15aを介して接続されており、開口 部 A力も流したキャリアガスが気化器 9に供給されるようにキャリアガス配管 16が設け られている。開口部 Bについては気化器 9の排出管 13の先端とジョイント部 15bを介 して接続されており、気化器 9で昇華した塩ィ匕アルミニウムガスをキャリアガスと共に 塩ィ匕アルミニウムガス輸送管 17を介して輸送し、開口部 Bが反応管装置 8の塩化ァ A piping system force with 1 2 1 2 and B is also configured. Of these, the opening A is vaporized. The carrier gas pipe 16 is provided so that the carrier gas which is also connected to the tip of the carrier gas supply pipe 12 of the vessel 9 through the joint portion 15a and also flows through the opening A force is supplied to the vaporizer 9. The opening B is connected to the tip of the discharge pipe 13 of the vaporizer 9 via a joint 15b, and the salty-aluminum gas sublimated in the vaporizer 9 together with the carrier gas. The opening B is the chloride in the reaction tube device 8.
2  2
ルミ-ゥムガス供給管 3の一端と接続されて石英反応管 1の内部に塩ィ匕アルミニウム ガスが供給される。また、上記キャリアガス配管 16は、開口部 Aを入って途中で枝分 かれして塩ィ匕アルミニウムガス輸送管 17にバイパスされると共にその終端には開口 部 Bが備えられた捨て配管 18が設けられている。  Salt-aluminum gas is supplied into the quartz reaction tube 1 by being connected to one end of the lumi-um gas supply tube 3. Further, the carrier gas pipe 16 is branched in the middle of the opening A and bypassed to the salt / aluminum gas transport pipe 17, and a waste pipe 18 provided with the opening B is provided at the end of the carrier gas pipe 16. Is provided.
3  Three
[0032] また、上記キャリアガス配管 16の開口部 Aの手前にはバルブ X力 塩ィ匕アルミ-ゥ  [0032] Further, in front of the opening A of the carrier gas pipe 16, the valve X force salty aluminum is provided.
2 3  twenty three
ムガス輸送管 17の開口部 Bの手前にはバルブ X力 塩ィ匕アルミニウムガス輸送管 1  In front of the opening B of the gas transport pipe 17 is a valve X force salty aluminum gas transport pipe 1
1 4  14
7の途中であって上記捨て配管 18との接続部分より石英反応管 1側の位置にはノ レ ブ X力 捨て配管 18の途中であってキャリアガス配管 16と塩ィ匕アルミニウムガス輸送 In the middle of 7 and at the position closer to the quartz reaction tube 1 than the connection with the above-mentioned waste pipe 18, it is in the middle of the Noble X force waste pipe 18 and the carrier gas pipe 16 and the salt-aluminum gas transport.
5 Five
管 17とをバイパスする途中にはノ レブ x6が、及び捨て配管 18の終端である開口部 Bの手前にはバルブ X力 それぞれ設けられており、これらのバルブはいずれもガス In the middle of bypassing the pipe 17, a nozzle x6 is provided, and a valve X force is provided in front of the opening B which is the end of the waste pipe 18. Both of these valves are gas.
3 7 3 7
の ON— OFF制御が可能である。  ON-OFF control is possible.
[0033] そして更に、上記振り分け装置 14の塩ィ匕アルミニウムガス輸送管 17と、気化器 9の 排出管 13の露出部分とには、温度制御可能な配管加熱手段 19が備えられており、 この配管加熱手段 19によってこれらの配管の内部の温度が、気化器 8によって昇華 した塩ィ匕アルミニウムガスの温度よりプラス 20°C程度となるように設定される。  [0033] Further, the salt-aluminum aluminum gas transport pipe 17 of the sorting device 14 and the exposed portion of the discharge pipe 13 of the vaporizer 9 are provided with pipe heating means 19 capable of controlling the temperature. The temperature inside these pipes is set to about 20 ° C. higher than the temperature of the salty aluminum gas sublimated by the vaporizer 8 by the pipe heating means 19.
[0034] このようにして構成した A1N半導体製造装置 Xの使用方法の一例を示すと、先ず、 塩ィ匕アルミニウムガスと NHガスとの反応を行わない待機状態では、上記バルブ X、  [0034] An example of a method of using the thus configured A1N semiconductor manufacturing apparatus X is as follows. First, in the standby state where the reaction between the salty aluminum gas and the NH gas is not performed, the valve X,
3 3 3 3
X、 X、及び Xを順次閉じた後、上記バルブ Xを開けて開口部 A1からキャリアガスをAfter sequentially closing X, X, and X, the valve X is opened and the carrier gas is supplied from the opening A1.
1 2 4 6 1 2 4 6
流しながら、バルブ Xを開くと同時にバルブ Xを閉じて石英反応管 1にキャリアガスが  While flowing, the valve X is opened and at the same time the valve X is closed, so that the carrier gas flows into the quartz reaction tube 1.
5 7  5 7
流れた状態としておく。実際に A1Nを結晶成長させる際には、上記の待機状態から バルブ X、 X、 X、及び Xを順次開いた後、バルブ Xを閉じてキャリアガスを気ィ匕器 9 Keep it flowing. In actual crystal growth of A1N, valves X, X, X, and X are sequentially opened from the standby state described above, and then valve X is closed to supply carrier gas to the air 9
4 2 3 1 6 4 2 3 1 6
側に供給するようにする。そして、 A1Nの結晶成長を終了する際には、バルブ Xを開  To supply to the side. When the A1N crystal growth is finished, open the valve X.
6 き、バルブ X、 X、 X、及び Xを順次閉じてキャリアガスを直接石英反応管 1に流し込 むようにして、再び待機状態に戻すようにする。ここで、気化器 9内に充填した無水塩 化アルミニウムの残量が所定の値以下であれば、ジョイント部 15a及び 15bで気ィ匕器 9 を取り外し、無水塩ィ匕アルミニウムを充填して別途用意された新たな気化器 9と交換 するようにする。新たな気化器 9が取り付けられた後には、上記バルブ Xを開き、バル ブ Xを閉じた後、ノ レブ X及びバルブ Xを開いて開口部 B力 キャリアガスを排気し6) Close the valves X, X, X, and X one after the other and flow the carrier gas directly into the quartz reaction tube 1. To return to the standby state again. Here, if the remaining amount of anhydrous aluminum chloride filled in the vaporizer 9 is not more than a predetermined value, the vaporizer 9 is removed at the joint portions 15a and 15b and filled with anhydrous salt aluminum. Replace with a new vaporizer 9 prepared. After the new carburetor 9 is installed, the valve X is opened, the valve X is closed, the valve X and the valve X are opened, and the opening B force carrier gas is exhausted.
5 3 4 3 5 3 4 3
ながら、気化器 9の交換の際に振り分け装置 14内に混入したおそれのある空気等を 全て取り除くようにする。そして、ノ レブ X及び Xを閉じてバルブ Xを開き、バルブ X  However, remove all air that may have entered the sorting device 14 when replacing the vaporizer 9. Then, the valves X and X are closed and valve X is opened.
3 4 5 7 を閉じて再び待機状態に戻すようにしておき、 A1Nの結晶成長を再開する場合には 上記と同じ手順を繰り返せばょ ヽ。  3 4 5 7 should be closed again to return to the standby state, and the same procedure as above should be repeated when resuming A1N crystal growth.
[0035] このような A1N半導体製造装置 Xを用いて A1Nを結晶成長させた。上記基板保持 手段 6の先端には、直径 2インチで厚さ 400 mのサファイア基板 (0001) 5が、塩ィ匕 アルミニウムガス供給管 3の先端力も距離 L= 80mmの位置になるように取り付けら れている。このサファイア基板 5は、その(0001)が NHガス及び A1C1ガスの流れに Using such an A1N semiconductor manufacturing apparatus X, A1N crystal was grown. A sapphire substrate (0001) 5 having a diameter of 2 inches and a thickness of 400 m is attached to the tip of the substrate holding means 6 so that the tip force of the salty aluminum gas supply pipe 3 is also at a distance L = 80 mm. It is. This sapphire substrate 5 has its (0001) flow of NH gas and A1C1 gas.
3 3  3 3
対して垂直になるように備え付けられており、この(0001)を結晶成長面として A1Nを 結晶成長させる。そして、反応管加熱手段 7によってこのサファイア基板 5上の温度 が 1200°Cとなるように設定されている。なお、このサファイア基板 5は、石英反応管 1 内に設置する前にアンモニア水溶液を用いて 5分間のエッチング処理を行っている。  A1N is grown with this (0001) as the crystal growth plane. The temperature on the sapphire substrate 5 is set to 1200 ° C. by the reaction tube heating means 7. The sapphire substrate 5 is etched for 5 minutes using an aqueous ammonia solution before being placed in the quartz reaction tube 1.
[0036] 一方、気化器 9には、表 1に示す不純物成分を有するフレーク状の無水塩化アルミ ニゥム 400gが大気に触れないように図示外のブローブボックスを用いて充填されて おり、気化器加熱手段 10によって気化器 9内の無水塩ィ匕アルミニウム 11が 120°Cに 加熱されている。なお、この無水塩ィ匕アルミニウムは、気化器 9に充填する前に予め 1 20°Cで 1時間加熱する脱水処理を行ったものである。また、振り分け装置 14の開口 部 A1からはキャリアガスとして Nが供給されており、この振り分け装置 14と気化器 9 On the other hand, the vaporizer 9 is filled with 400 g of flaky anhydrous aluminum chloride having impurity components shown in Table 1 using a probe box (not shown) so as not to come into contact with the atmosphere. By means 10, anhydrous salt-aluminum 11 in the vaporizer 9 is heated to 120 ° C. The anhydrous salt / aluminum was previously dehydrated by heating at 120 ° C. for 1 hour before filling into the vaporizer 9. Further, N is supplied as a carrier gas from the opening A1 of the sorting device 14, and this sorting device 14 and the vaporizer 9 are supplied.
2  2
の各バルブ X を上記で説明した待機状態カゝら A1Nの結晶成長を行える状態にし て、気化器 9内で昇華した塩ィ匕アルミニウムガスを含んだ Nキャリアガスをキャリアガ  Each of the valves X is set to a state where the A1N crystal can be grown in the standby state described above, and N carrier gas containing salty aluminum gas sublimated in the vaporizer 9 is used as the carrier gas.
2  2
ス供給量 FLOW = 38OOsccm (0°C, latmの標準状態における流量 cm3/min) FLOW = 38OOsccm (0 ° C, flow rate in standard condition of latm cm 3 / min)
Aic キャリア  Aic career
で石英反応管 1内に輸送し、サファイア基板 5に A1Nを結晶成長させる反応部での塩 化アルミニウムガスの分圧 p° 力 S5 X 10_3atmとなるようにした。 [0037] [表 1] Then, it was transported into the quartz reaction tube 1 and the partial pressure of aluminum chloride gas in the reaction part where A1N crystal was grown on the sapphire substrate 5 was set to p ° force S5 X 10 _3 atm. [0037] [Table 1]
Figure imgf000015_0001
Figure imgf000015_0001
(注) FA :炎光光度法  (Note) FA: Flame photometric method
ICP: ICP質量分析法  ICP: ICP mass spectrometry
ΑΜΑ:吸光光度法 (モリブド珪酸青)  ΑΜΑ: Spectrophotometric method (molybdosilicate blue)
GFAAS:黒鉛炉原子吸光光度法  GFAAS: graphite furnace atomic absorption spectrophotometry
[0038] また、石英反応管 1の NHガス供給口 2からは、キャリアガスとして Nを用いて NH [0038] From the NH gas supply port 2 of the quartz reaction tube 1, NH is used as a carrier gas.
3 2 3 ガス (太陽日酸株式会社製:ス アンモニア)を供給し、この NHガスを含んだ キャリアガス供給量 FLOW を 15OOsccm (0°C, latmの標準状態における流量 c  3 2 3 Gas (manufactured by Taiyo Nippon Sanso Co., Ltd .: ammonia), and the carrier gas supply rate FLOW containing NH gas is 15 OOsccm (flow rate in the standard state of 0 ° C, latm c
NH3キャリア  NH3 carrier
m3/min)として、サファイア基板 5に A1Nを結晶成長させる反応部での NHガスの分 圧 P° を 1 X 10_1atmとなるようにした。このような状況の下、横型石英反応管 1内のm 3 / min), the partial pressure P ° of NH gas in the reaction part for growing A1N crystals on the sapphire substrate 5 was set to 1 × 10 _1 atm. Under these circumstances, the horizontal quartz reaction tube 1
NH3 NH3
全圧を 1. Oatmとして、 1時間反応させてサファイア基板 5の結晶成長面(0001)に A1 Nを結晶成長させて A1N半導体を製造した。この反応における P° ZP°  A1N semiconductor was manufactured by allowing A1N to grow on the crystal growth surface (0001) of the sapphire substrate 5 by reacting for 1 hour at a total pressure of 1. Oatm. P ° ZP ° in this reaction
NH3 A1C13は 20で あって、サファイア基板 5の結晶成長面に結晶成長した A1Nの膜厚は 82 μ m、 AIN の成長速度は 82 μ mZhであった。  NH3 A1C13 was 20, the film thickness of A1N grown on the crystal growth surface of sapphire substrate 5 was 82 μm, and the growth rate of AIN was 82 μmZh.
[0039] [実施例 2 8] [0039] [Example 2 8]
実施例 1で使用した A1N半導体製造装置 Xを用いて、気化器 8に入れた無水塩ィ匕 アルミニウムのカロ熱温度をそれぞれ 50。C、 70。C、 80。C、 90。C、 100。C、 110。C、 12 0°C、及び 130°Cに設定した以外は、実施例 1と同様にしてサファイア基板 5上に Al Nを結晶成長させた (実施例 2 8)。すなわち、実施例 2 8では反応部における N Hガスの分圧 PQ は 1 X 10_1atmであり、塩化アルミニウムガスの反応部における分Using the A1N semiconductor manufacturing apparatus X used in Example 1, the calorific temperature of anhydrous salt-aluminum placed in the vaporizer 8 was 50, respectively. C, 70. C, 80. C, 90. C, 100. C, 110. AlN was crystal-grown on the sapphire substrate 5 in the same manner as in Example 1 except that the temperature was set at C, 120 ° C, and 130 ° C (Example 28). That is, in Example 28, N in the reaction part H gas partial pressure P Q is 1 X 10 _1 atm.
3 NH3 3 NH3
圧 P° は無水塩ィ匕アルミニウムの加熱温度を調節することにより塩ィ匕アルミニウムの The pressure P ° is controlled by adjusting the heating temperature of the anhydrous salt aluminum.
A1C13 A1C13
蒸気圧 PQQ (T)を変化させて、下記表 2に示した値にした。その結果、各実施例 2〜 Vapor pressure P QQ (T) was changed to the values shown in Table 2 below. As a result, each example 2 to
A1C13  A1C13
8における A1Nの結晶成長は表 2及び図 3に示したとおりであり、また、上記実施例 1 での結果を含め、無水塩ィ匕アルミニウムの加熱温度を調節することによって A1Nの成 長速度が制御できることが確認された。  The crystal growth of A1N in Fig. 8 is as shown in Table 2 and Fig. 3, and the growth rate of A1N can be increased by adjusting the heating temperature of anhydrous salt-aluminum, including the results in Example 1 above. It was confirmed that it can be controlled.
[0040] [表 2] [0040] [Table 2]
Figure imgf000016_0001
Figure imgf000016_0001
[0041] [比較例 1] [0041] [Comparative Example 1]
図 4は、従来法のハイドライド気相成長法で A1N半導体を製造するための反応管装 置 20を示す。この従来法に係る反応管装置 20は、内径 60mm X長さ 1500mmの 横型石英反応管 21と、この横型石英反応管 21の長さ方向のおよそ半分の外周面を 取り囲むようにしてこの取り囲んだ石英反応管 21内の領域を下記所定の温度となる ように温度制御して石英反応管 21内に原料部を形成せしめる第一加熱手段 25aと、 上記石英反応管 21の残り半分の外周面を取り囲むようにして取り囲んだ石英反応管 21内の領域を下記所定の温度となるように加熱制御して反応部を形成せしめる第二 加熱手段 25bと、横型石英反応管 21の一端力 設けられてその先端が石英反応管 2 1の反応部に達する位置で NHガスを供給する NHガス供給管 22と、同じく石英反  FIG. 4 shows a reaction tube apparatus 20 for producing an A1N semiconductor by a conventional hydride vapor phase growth method. The conventional reaction tube apparatus 20 includes a horizontal quartz reaction tube 21 having an inner diameter of 60 mm and a length of 1500 mm, and a quartz crystal surrounded by surrounding the outer peripheral surface of about half of the length of the horizontal quartz reaction tube 21 in the length direction. The first heating means 25a for controlling the temperature of the region in the reaction tube 21 to the following predetermined temperature to form a raw material portion in the quartz reaction tube 21 and the outer peripheral surface of the remaining half of the quartz reaction tube 21 are surrounded. The second heating means 25b for controlling the region in the quartz reaction tube 21 surrounded in this way to form a reaction part by controlling the heating so as to have the following predetermined temperature, and one end force of the horizontal quartz reaction tube 21 are provided at the tip. The NH gas supply pipe 22 that supplies NH gas at the position where the gas reaches the reaction part of the quartz reaction tube 21 and the quartz reaction tube
3 3  3 3
応管 21の一端力も設けられて石英反応管 21の原料部に HC1ガスを供給する HC1ガ ス供給口 23と、横型石英反応管 21の他端に設けられて石英反応管 21内のガスを排 出するための排出口 24と、石英反応管 21の反応部で A1Nを結晶成長させる基板( 初期基板) 27を保持するための基板保持手段 26とからなり、この基板保持手段 26の 先端には、実施例 1と同じサファイア (0001)基板 27が実施例 1と同様に、かつ、 NH One end of the reaction tube 21 is also provided to supply the HC1 gas to the raw material part of the quartz reaction tube 21, and the other end of the horizontal quartz reaction tube 21 is used to evacuate the gas in the quartz reaction tube 21. A discharge port 24 for discharging and a substrate holding means 26 for holding a substrate (initial substrate) 27 for crystal growth of A1N in the reaction part of the quartz reaction tube 21. At the tip, the same sapphire (0001) substrate 27 as in Example 1 is the same as in Example 1, and NH
3 ガス供給管 22からの距離力L = 60mmとなるように取り付けられている。また、石英 反応管 21の原料部には金属 A1を収容するアルミナ製の A1ボート 28が設置されてお り、この A1ボート 28には純度 99. 9999重量%の金属 A1(6NA1)が 98g収容されてい る。  3 It is installed so that the distance force L from the gas supply pipe 22 is 60 mm. The raw material part of the quartz reaction tube 21 is equipped with an A1 boat 28 made of alumina containing metal A1. This A1 boat 28 contains 98 g of metal A1 (6NA1) with a purity of 99.9999 wt%. It has been done.
[0042] そして、横型石英反応管 21内の全圧を 1. Oatmにして、原料部の温度を 550°Cに した状態で、 HC1供給管 13から HC1ガス(純度 99.999重量%)を流量 150sccm (0°C , latmの標準状態における流量 cm3/min)で供給した。この HC1ガスは Nをキャリアガ [0042] Then, with the total pressure in the horizontal quartz reaction tube 21 set to 1. Oatm and the temperature of the raw material section set to 550 ° C, HC1 gas (purity 99.999 wt%) was flowed from the HC1 supply tube 13 at a flow rate of 150 sccm. (Flow rate cm 3 / min in the standard state of 0 ° C, latm). This HC1 gas uses N as a carrier gas.
2 スとして導入した。原料部では HC1ガスが金属 A1と反応して A1C1ガスを発生し、この  Introduced as two services. In the raw material section, HC1 gas reacts with metal A1 to generate A1C1 gas.
3  Three
A1C1ガスは反応部側に輸送される。一方、石英反応管 21の反応部では、サフアイ A1C1 gas is transported to the reaction part side. On the other hand, in the reaction part of the quartz reaction tube 21,
3 Three
ァ基板 27の結晶成長面の温度が 1180°Cに設定されており、原料部で生成した上 記 A1C1ガスと NH供給管 22から流量 lOOOsccm (0°C, latmの標準状態における流 The temperature of the crystal growth surface of the substrate 27 is set to 1180 ° C, and the flow rate from the A1C1 gas generated in the raw material section and the NH supply pipe 22 is lOOOsccm (flow in the standard state of 0 ° C, latm)
3 3 3 3
量 cm3/min)で供給された NHガス (太陽日酸株式会社製:スーパーアンモニア)とが The amount cm 3 / min) at the supplied NH 3 gas (Taiyo Nippon Sanso Corp. Super ammonia), but
3  Three
反応して、サファイア基板 27上に膜厚 60 mの A1Nが結晶成長した。なお、原料部 における HC1ガスの供給から、サファイア基板 27上で A1Nの結晶成長を停止させる までの反応時間は 1. 5時間であり、 A1Nの成長速度は 40 μ mZhであった。  In response, A1N having a film thickness of 60 m was grown on the sapphire substrate 27. The reaction time from the supply of HC1 gas in the raw material section to the termination of A1N crystal growth on the sapphire substrate 27 was 1.5 hours, and the growth rate of A1N was 40 μmZh.
[0043] [比較例 2] [0043] [Comparative Example 2]
HC1ガスの流量を 10sccm (0°C, latmの標準状態における流量 cm3/min)にした以 外は比較例 1と同様にして膜厚 3. 7 mの A1Nを結晶成長させて A1N半導体を製造 した。 Except that the flow rate of HC1 gas was 10 sccm (flow rate cm 3 / min at 0 ° C, latm in the standard state), A1N with a thickness of 3.7 m was grown by crystal growth in the same way as in Comparative Example 1. Manufactured.
[0044] [A1Nの X線回折]  [0044] [X-ray diffraction of A1N]
上記実施例 1でサファイア基板上に成長させた A1N膜にっ ヽて、 X線回折で結晶 構造を分析した結果を図 5に示す。測定にはスぺタトリス社製 X' pertMRDを使用し 、測定条件は 45kV、 40mAとした。得られた回折ピークは、 A1N (0002)の FWHM ( 半値幅)もチルト角が 15arcminと狭く、また (000η)以外の回折ピークがな 、ことから、 本発明の製造方法により A1Nェピタキシャル膜が成長できていることが確認できる。  FIG. 5 shows the result of analyzing the crystal structure of the A1N film grown on the sapphire substrate in Example 1 by X-ray diffraction. For measurement, X'pertMRD manufactured by Spetatris was used, and the measurement conditions were 45 kV and 40 mA. The obtained diffraction peak has a narrow FWHM (full width at half maximum) of A1N (0002) as narrow as 15 arcmin, and there is no diffraction peak other than (000 η), so the A1N epitaxy film can be obtained by the production method of the present invention. It can be confirmed that it is growing.
[0045] [A1Nの紫外線吸収スペクトル] [0045] [A1N UV absorption spectrum]
実施例 1で得られた A1Nの紫外線吸収スペクトルを図 6に示す。測定には日本分光 社製 V-7300型紫外可視近赤外分光光度計を使用した。これより、 6. leV付近から 急峻な吸収が始まっており、 A1Nが成長していることが確認できる。 The ultraviolet absorption spectrum of A1N obtained in Example 1 is shown in FIG. JASCO for measurement A V-7300 type UV-Vis near-infrared spectrophotometer manufactured by the company was used. From this, it can be confirmed that the steep absorption started around 6. leV, and A1N is growing.
[0046] [TOF— SIMSによる A1Nの分析]  [0046] [TOF—A1N analysis by SIMS]
実施例 5で得た A1Nと比較例 1で得た A1N膜にっ 、て、飛行時間型二次イオン質 量分析計(Time of flight SIMS: TOF-SIMS)を用いてそれぞれの A1N膜中に存在す る不純物分析を行った。この TOF— SIMSは、極表面(表面から 10nm程度)に存在 する微量成分の元素を定性分析することができることから、本発明における A1N半導 体の製造方法で得た A1Nと従来の方法 (比較例 1)で得た A1Nとの不純物混入の程 度を比較するのに適している。使用した機器は TRIFT III (Physical Electronics社製) であり、分析条件は次の通りである。一次イオン: Ga+,Cs+、加速電圧: 15kV、電流 : 600pA (DCとして)、スパッタ面積: 300 m X 300 m、スパッタ時間: lmin、分 析面積: 200 m X 200 μ m、積算時間: 3min、及び検出イオン:正イオン、の各条 件であり、また、分析は A1Nの最表面力も Csイオンで 1分間スパッタして力も行った。  The A1N film obtained in Example 5 and the A1N film obtained in Comparative Example 1 were placed in each A1N film using a time of flight SIMS (TOF-SIMS). An analysis of the impurities present was performed. Since this TOF-SIMS can qualitatively analyze trace elements on the extreme surface (about 10 nm from the surface), the A1N obtained by the A1N semiconductor manufacturing method of the present invention and the conventional method (comparison) Suitable for comparing the degree of impurity contamination with A1N obtained in Example 1). The equipment used was TRIFT III (manufactured by Physical Electronics), and the analysis conditions were as follows. Primary ions: Ga +, Cs +, acceleration voltage: 15 kV, current: 600 pA (as DC), sputtering area: 300 m X 300 m, sputtering time: lmin, analysis area: 200 m X 200 μm, integration time: 3 min, And the detection ions were positive ions, and the analysis was performed by sputtering the surface force of A1N with Cs ions for 1 minute.
[0047] 図 7〜図 11は、 Si、 Mg、 Na、 Ca、及び Kの各元素の質量付近の正イオン検出拡 大スペクトルである。これら図 7〜図 11のうち、それぞれ上段の (Α)は比較例 1で得た Α1Ν、下段の(Β)は実施例 5で得た A1Nについての結果を示す。また、これらの元素 以外の分析結果を含めたものを表 3にまとめて示す。この表 3は、 Gaイオンでスパッ タ及び分析したピーク強度で、各元素のピーク強度とマトリックスの A1の強度で規格 化して求めた規格化ピーク強度を示す。尚、表中の「MZZ」は質量数を表す。  [0047] FIGS. 7 to 11 show the positive ion detection broad spectrum around the mass of each element of Si, Mg, Na, Ca, and K. FIG. 7 to 11, the upper (Α) shows the results for Α1Ν obtained in Comparative Example 1, and the lower (Β) shows the results for A1N obtained in Example 5. Table 3 summarizes the results of analysis other than these elements. Table 3 shows the normalized peak intensities obtained by standardizing with the peak intensity of each element and the intensity of A1 in the matrix, with the peak intensity analyzed and analyzed with Ga ions. In the table, “MZZ” represents the mass number.
[0048] 図 7〜図 11及び表 3から明らかなように、比較例 1で得た A1N膜からは Si、 Mg、 Na 、 Ca、及び Kが検出されたが、実施例 5で得た A1N膜からはこれらの元素はほとんど 検出されなかった。また、表 4は、 Csイオンでスパッタ及び分析した場合の A1及び Ga の分析結果を示す。この表 4から、実施例 5で得られた A1Nでは比較例 1の A1Nより G aの検出量が 1/4であることが分かる。  As is apparent from FIGS. 7 to 11 and Table 3, Si, Mg, Na, Ca, and K were detected from the A1N film obtained in Comparative Example 1, but A1N obtained in Example 5 was used. These elements were hardly detected in the film. Table 4 shows the analysis results of A1 and Ga when sputtered and analyzed with Cs ions. From Table 4, it can be seen that A1N obtained in Example 5 has a detected amount of Ga that is 1/4 that of A1N in Comparative Example 1.
[0049] [表 3] 各元素のピ一ク弓艘及び規 匕ピ一ク弓嫉 (Gaイオンによる分析結果) [0049] [Table 3] Peak bow and rule of each element 匕 Pick bow (analysis result by Ga ion)
Figure imgf000019_0001
Figure imgf000019_0001
[0050] [表 4]  [0050] [Table 4]
各元素のピーク ¾J¾び規樹匕ピーク ^it (Csイオンによる分析結果)
Figure imgf000019_0002
Peak of each element ¾J¾ and Kiju peak ^ it (analysis result by Cs ion)
Figure imgf000019_0002
[0051] [D— SIMSによる A1Nの分析] [0051] [D—A1N analysis by SIMS]
実施例 3で得た A1Nと比較例 2で得た A1Nについて、 D— SIMS (Dynamic-SIMS) によりそれぞれの A1N膜中に存在する不純物分析を行った。使用した装置は ATOMI CA社製 ATOMICA SIMS4100であり、測定条件は以下の通りとした。一次イオン種: C s (superscript: + )、一次加速電圧: 7kV、ビーム電流: 83nA、スキャン幅: 150·香 A 恢出ィ才ン: (superscript: 12)し (superscript: +) (superscript: 18)ui,superscnpt: +) (s uperscript:28)bii,superscnpt: +) i,superscnpt:55)AlN(subscnpt:2)(superscnpt: + )、 (superscript:81)Al(subscript:3)(superscript:+)、の各条件である。図 12に実施例 3の A1Nから得たプロファイルを示し、図 13に比較例 2の A1Nから得たプロファイルを示 す。図 12及び図 13ともに、縦軸は二次イオン信号強度を示し、横軸は A1N膜の表面 力 の深さを表し、 A1N膜の最表面を 0 /z mとした。この横軸については、スパッタ痕 の深さを表面粗さ計で計測し、 A1N膜の表面力 深さ方向にサファイア基板まで Cs イオンでスパッタした時間をもとに深さに換算したものである。また、分析元素の量比 較のため、サファイア基板中の (superscript:18)0強度で規格化を行なっている。両 者を比較すると 0、 C、 Siのいずれの強度も実施例 3で得た A1Nの方が少ないことが 分かり、本発明における製造方法の方が従来法よりも優れていることが確認された。 産業上の利用可能性 For A1N obtained in Example 3 and A1N obtained in Comparative Example 2, impurities present in each A1N film were analyzed by D-SIMS (Dynamic-SIMS). The equipment used was ATOMICA SIMS4100 manufactured by ATOMI CA, and the measurement conditions were as follows. Primary ion species: C s (superscript: +), primary accelerating voltage: 7 kV, beam current: 83 nA, scan width: 150 · incense A 恢 出 イ normal: (superscript: 12) (superscript: +) (superscript: 18) ui, superscnpt: +) (s uperscript: 28) bii, superscnpt: +) i, superscnpt: 55) AlN (subscnpt: 2) (superscnpt: +), (superscript: 81) Al (subscript: 3) ( Each condition of superscript: +). FIG. 12 shows a profile obtained from A1N in Example 3, and FIG. 13 shows a profile obtained from A1N in Comparative Example 2. In both FIG. 12 and FIG. 13, the vertical axis indicates the secondary ion signal intensity, the horizontal axis indicates the depth of the surface force of the A1N film, and the outermost surface of the A1N film is 0 / zm. For this horizontal axis, the depth of the sputter mark was measured with a surface roughness meter, and the surface force of the A1N film was converted to depth based on the time of sputtering with Cs ions up to the sapphire substrate in the depth direction. . Also, in order to compare the amounts of the analytical elements, normalization is performed with the (superscript: 18) 0 intensity in the sapphire substrate. Both As a result of comparison, it was found that the strengths of 0, C, and Si were less in A1N obtained in Example 3, and it was confirmed that the production method in the present invention was superior to the conventional method. Industrial applicability
[0052] 本発明によれば、無水塩ィ匕アルミニウム (A :i [0052] According to the present invention, anhydrous salt 匕 aluminum (A: i
3 )を昇華させて得た塩化アルミニウム ガスと ΝΗガスとを直接反応させて A1N半導体を製造することができることから、この  3) Since the A1N semiconductor can be produced by directly reacting the aluminum chloride gas obtained by sublimation with soot gas.
3  Three
反応に用いる石英反応管に係る装置自体を小型化'簡略ィ匕することができると共に、 A1Nの結晶成長の制御も自在にかつ容易に行うことができるため、ハイドライド気相 成長法による利点を活力して大口径の A1N半導体を得ることができ、 A1N半導体の 製造方法として工業上の応用に向けて極めて有効な発明である。  The quartz reactor tube itself used for the reaction can be downsized and simplified, and the crystal growth of A1N can be controlled freely and easily. Thus, a large-diameter A1N semiconductor can be obtained, which is an extremely effective invention for industrial application as a method for producing an A1N semiconductor.
[0053] また、本発明により得られる A1N半導体は、不純物の混入が可及的に排除され、特 に、デバイス特性に悪影響をおよぼすとされる元素の混入を防止することができるた め、汎用精密加工や医療分野等の広範な用途展開が期待できる高効率の深紫外レ 一ザダイオード、記録密度の高い光ストレージ、 A1Nの高い熱伝導率を活力ゝしたノヽィ パワーの白色 LED、高出力'高周波電子デバイス作製のための基板材料等の様々 な応用が期待できる。 [0053] In addition, the A1N semiconductor obtained by the present invention eliminates the contamination of impurities as much as possible, and in particular can prevent the mixing of elements that are adversely affected by device characteristics. High-efficiency deep ultraviolet laser diodes that can be expected to be used in a wide range of applications, such as precision processing and medical fields, optical storage with high recording density, white power LEDs with high power of A1N, and high output 'Various applications such as substrate materials for high-frequency electronic device fabrication can be expected.

Claims

請求の範囲 The scope of the claims
[1] 無水塩ィ匕アルミニウムを加熱して昇華又は気化させた塩ィ匕アルミニウムガスと NH  [1] Salt-aluminum gas and NH sublimated or vaporized by heating anhydrous salt-aluminum
3 ガスとをハイドライド気相成長法により反応させ、基板上に A1Nを結晶成長させること を特徴とする A1N半導体の製造方法。  3. A method of manufacturing an A1N semiconductor, characterized by reacting a gas with a hydride vapor phase growth method to grow A1N on a substrate.
[2] 無水塩化アルミニウムの加熱温度を 50〜180°Cの範囲で調節して A1Nの成長速 度を制御する請求項 1に記載の A1N半導体の製造方法。 [2] The method for producing an A1N semiconductor according to claim 1, wherein the growth rate of A1N is controlled by adjusting the heating temperature of anhydrous aluminum chloride in the range of 50 to 180 ° C.
[3] 無水塩ィ匕アルミニウムの純度が 99. 999重量%以上である請求項 1又は 2に記載 の A1N半導体の製造方法。 [3] The method for producing an A1N semiconductor according to claim 1 or 2, wherein the purity of the anhydrous salt-aluminum is 99.999% by weight or more.
[4] ハイドライド気相成長法を用いて基板上に A1Nを結晶成長させる A1N半導体の製 造装置であって、無水塩ィヒアルミニウムを加熱し昇華又は気化させて塩ィヒアルミ-ゥ ムガスを排出させる気化器と、この塩ィ匕アルミニウムガスと NHガスとを反応させる反 [4] A1N semiconductor manufacturing equipment for crystal growth of A1N on a substrate using a hydride vapor phase epitaxy method, where anhydrous aluminum chloride is heated to sublimate or vaporize to discharge salt aluminum gas. Reaction between the vaporizer and this salty aluminum gas reacting with NH gas
3  Three
応管とからなることを特徴とする A1N半導体製造装置。  A1N semiconductor manufacturing equipment characterized by comprising a response tube.
[5] 反応管が、塩ィ匕アルミニウムガスを供給するための塩ィ匕アルミニウムガス供給管と、 NHガスを供給するための NHガス供給口と、 A1Nを結晶成長させる基板を保持す[5] A reaction tube holds a salt / aluminum gas supply tube for supplying salt / aluminum gas, an NH gas supply port for supplying NH gas, and a substrate on which A1N crystal is grown.
3 3 3 3
るための基板保持手段と、反応管内のガスを排出するための排出口とを備え、この反 応管の側面を覆う温度制御可能な加熱手段と共に反応管装置を構成する請求項 4 に記載の A1N半導体製造装置。  5. The reaction tube apparatus according to claim 4, comprising a substrate holding means for discharging and a discharge port for discharging the gas in the reaction tube, and a temperature controllable heating means covering the side surface of the reaction tube. A1N semiconductor manufacturing equipment.
PCT/JP2006/314792 2005-08-03 2006-07-26 PROCESS FOR PRODUCING AlN SEMICONDUCTOR AND APPARATUS FOR PRODUCING AlN SEMICONDUCTOR WO2007015404A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-225054 2005-08-03
JP2005225054A JP5054902B2 (en) 2005-08-03 2005-08-03 Manufacturing method of AlN semiconductor

Publications (1)

Publication Number Publication Date
WO2007015404A1 true WO2007015404A1 (en) 2007-02-08

Family

ID=37708683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314792 WO2007015404A1 (en) 2005-08-03 2006-07-26 PROCESS FOR PRODUCING AlN SEMICONDUCTOR AND APPARATUS FOR PRODUCING AlN SEMICONDUCTOR

Country Status (3)

Country Link
JP (1) JP5054902B2 (en)
TW (1) TW200721268A (en)
WO (1) WO2007015404A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9728807B2 (en) 2010-05-17 2017-08-08 Continental Automotive Gmbh Electrochemical or electric layer system, method for the production and use thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5361467B2 (en) * 2009-03-13 2013-12-04 東京エレクトロン株式会社 Vaporizer
JP2016084517A (en) * 2014-10-28 2016-05-19 東京エレクトロン株式会社 Raw material gas supply device and film deposition device
CN110817815B (en) * 2019-12-13 2022-07-19 合肥中航纳米技术发展有限公司 Preparation method of high-purity aluminum nitride with controllable particle size distribution
CN114351255A (en) * 2021-12-21 2022-04-15 北京世纪金光半导体有限公司 Device and method for growing aluminum nitride crystal based on liquid phase

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452069A (en) * 1987-08-21 1989-02-28 Asahi Chemical Ind Method for synthesizing aluminum nitride film at high speed
JPH033233A (en) * 1989-05-30 1991-01-09 Nippon Telegr & Teleph Corp <Ntt> Growth method for compound semiconductor single crystal thin film
JPH05327398A (en) * 1991-07-17 1993-12-10 Asahi Chem Ind Co Ltd Piezoelectric thin film
JP2005179167A (en) * 2003-06-30 2005-07-07 Kenichiro Miyahara Substrate for forming thin film, thin film substrate and light emitting element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643004A (en) * 1987-03-18 1989-01-06 Nippon Soda Co Ltd Production of nitrogen-containing aluminum compound and production of aluminum nitride fine powder
JPH04175209A (en) * 1990-08-29 1992-06-23 Matsushita Electric Works Ltd Aluminum nitride and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452069A (en) * 1987-08-21 1989-02-28 Asahi Chemical Ind Method for synthesizing aluminum nitride film at high speed
JPH033233A (en) * 1989-05-30 1991-01-09 Nippon Telegr & Teleph Corp <Ntt> Growth method for compound semiconductor single crystal thin film
JPH05327398A (en) * 1991-07-17 1993-12-10 Asahi Chem Ind Co Ltd Piezoelectric thin film
JP2005179167A (en) * 2003-06-30 2005-07-07 Kenichiro Miyahara Substrate for forming thin film, thin film substrate and light emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9728807B2 (en) 2010-05-17 2017-08-08 Continental Automotive Gmbh Electrochemical or electric layer system, method for the production and use thereof

Also Published As

Publication number Publication date
JP5054902B2 (en) 2012-10-24
TW200721268A (en) 2007-06-01
JP2007042847A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
US6001748A (en) Single crystal of nitride and process for preparing the same
Seryogin et al. Catalytic hydride vapour phase epitaxy growth of GaN nanowires
CA2581626C (en) Method and apparatus for growing a group (iii) metal nitride film and a group (iii) metal nitride film
JP5656697B2 (en) Method for producing aluminum nitride crystal
US7776153B2 (en) Method and apparatus for producing large, single-crystals of aluminum nitride
US7621999B2 (en) Method and apparatus for AlGan vapor phase growth
WO2007013286A1 (en) AlN CRYSTAL AND METHOD FOR GROWING THE SAME, AND AlN CRYSTAL SUBSTRATE
WO2005103341A1 (en) Apparatus for production of crystal of group iii element nitride and process for producing crystal of group iii element nitride
Argoitia et al. Low pressure synthesis of bulk, polycrystalline gallium nitride
WO2007015404A1 (en) PROCESS FOR PRODUCING AlN SEMICONDUCTOR AND APPARATUS FOR PRODUCING AlN SEMICONDUCTOR
US20100136770A1 (en) Group-iii metal nitride and preparation thereof
Mochalov et al. Synthesis of gallium oxide via interaction of gallium with iodide pentoxide in plasma
JP4573713B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
US6676752B1 (en) Forming metal nitrides
US20130239878A1 (en) Apparatus and method for production of aluminum nitride single crystal
JP2011244009A (en) Method of manufacturing ain semiconductor
AU5105098A (en) Method for the synthesis of group iii nitride crystals
WO2012081670A1 (en) Process for production of aluminum-containing iii nitride single crystal
RU2391444C2 (en) Method and device of iii group metal nitride film cultivation and iii group metal nitride film
KR100474791B1 (en) Manufacturing method of compound semiconductor
JPH0474858A (en) Production of nitride film
Ramírez‐González et al. Fabrication of GaN (1− x) Asx, Zinc‐Blende, or Wurtzite GaN Depending on GaAs Nitridation Temperature in a CVD System
US9611545B2 (en) ZnO film production system and production method using ZnO film production system having heating units and control device
ソンイェリン Growth of GaN and AlN crystals by the flux film coating technique
Alvarado et al. Burkhalter, R., B. Trusch, AA Kaminskii, HJ Eichler and J. Hulliger, Melt growth and stimulated Raman scattering (SRS) of sodium chlorate: NaClO3 223 (2001) 195

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781704

Country of ref document: EP

Kind code of ref document: A1