JP4573713B2 - Single crystal manufacturing method and single crystal manufacturing apparatus - Google Patents

Single crystal manufacturing method and single crystal manufacturing apparatus Download PDF

Info

Publication number
JP4573713B2
JP4573713B2 JP2005193493A JP2005193493A JP4573713B2 JP 4573713 B2 JP4573713 B2 JP 4573713B2 JP 2005193493 A JP2005193493 A JP 2005193493A JP 2005193493 A JP2005193493 A JP 2005193493A JP 4573713 B2 JP4573713 B2 JP 4573713B2
Authority
JP
Japan
Prior art keywords
gas
group
metal
single crystal
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005193493A
Other languages
Japanese (ja)
Other versions
JP2007008779A (en
Inventor
弘之 鎌田
利明 馬淵
邦浩 直江
彰治 味村
和夫 真田
昇 一ノ瀬
信太郎 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Waseda University
Original Assignee
Fujikura Ltd
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Waseda University filed Critical Fujikura Ltd
Priority to JP2005193493A priority Critical patent/JP4573713B2/en
Publication of JP2007008779A publication Critical patent/JP2007008779A/en
Application granted granted Critical
Publication of JP4573713B2 publication Critical patent/JP4573713B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、3族金属元素を含む窒化金属単結晶の製造方法及びその際使用する単結晶の製造装置に関し、特に、発光ダイオード及びレーザダイオード用成長基板並びにパワーデバイス用基板として使用される単結晶の製造方法及び単結晶の製造装置に関する。   The present invention relates to a method for producing a metal nitride single crystal containing a Group 3 metal element and a single crystal production apparatus used therefor, and in particular, a single crystal used as a light emitting diode and laser diode growth substrate and a power device substrate. The present invention relates to a manufacturing method and a single crystal manufacturing apparatus.

近時、アルミニウム(Al)、ガリウム(Ga)及びインジウム(In)等の3族の元素を含む窒化物半導体材料に関する研究開発の発展が著しく、窒化物半導体材料を使用した青色発光ダイオード及び紫外発光ダイオードを搭載した発光デバイスが市販され始めている。一般に、これらの発光ダイオードは基板上に形成されており、例えば、窒化ガリウム(GaN)系青色発光ダイオードは、基板上に有機金属気相成長法(Metal-Organic Vapor Phase Epitaxy:MOVPE)又はハロゲン系気相成長法(Halide Vapor Phase Epitaxy:HVPE)等の方法により形成されている。現在、その成長基板としては、主にサファイヤ基板が使用されているが、サファイヤはGaN系発光材料との格子不整合が13.8%と大きく、ミスフィット転位の発生数が多いという問題点がある。   Recently, research and development on nitride semiconductor materials containing Group 3 elements such as aluminum (Al), gallium (Ga), and indium (In) has been remarkable, and blue light emitting diodes and ultraviolet light emission using nitride semiconductor materials have been developed. Light emitting devices equipped with diodes are beginning to be marketed. In general, these light emitting diodes are formed on a substrate. For example, a gallium nitride (GaN) blue light emitting diode is formed on a substrate by a metal-organic vapor phase epitaxy (MOVPE) or a halogen system. It is formed by a method such as vapor phase growth (Halide Vapor Phase Epitaxy: HVPE). Currently, a sapphire substrate is mainly used as the growth substrate, but sapphire has a large lattice mismatch with the GaN-based light emitting material of 13.8% and has a large number of misfit dislocations. is there.

このため、GaN系発光ダイオードの更なる高輝度化及び長寿命化を実現するために、サファイヤよりも格子不整合が小さい基板材料が求められており、GaN系発光材料との格子不整合が2.4%と小さく、サファイヤよりも熱伝導率が一桁以上高い窒化アルミニウム(AlN)単結晶を基板として利用するための検討がなされている。   For this reason, in order to achieve higher brightness and longer life of the GaN-based light emitting diode, a substrate material having a smaller lattice mismatch than sapphire is required, and the lattice mismatch with the GaN-based light emitting material is 2 Studies have been made to use an aluminum nitride (AlN) single crystal as a substrate that is as small as .4% and has a thermal conductivity that is one digit higher than that of sapphire.

このAlN単結晶の製造方法としては、例えば、多結晶AlN粉末を昇華させた後、昇華温度よりも低い温度で析出させる昇華法(特許文献1参照)、金属Alを気化させ、Alガスと窒素ガスとを混合したものを析出させる気化法(非特許文献1参照)等が利用されている。図6は気化法を利用した従来の単結晶製造装置を模式的に示す断面図である。図6に示すように、従来の単結晶製造装置50は、上部に排気孔56が設けられた反応槽51内に、金属Al53が充填された収納容器52が配置されており、この収納容器52の上方に基板55が配置されている。また、反応槽51の側壁における収納容器52と基板55との間の部分には窒素ガス導入口54が設けられている。そして、AlN単結晶を作製する際は、加熱コイル57及び58により気化部61及び析出部62を夫々加熱すると共に、窒素ガス導入口54から反応槽51内に窒素ガスを導入する。これにより、金属Al53が溶融し、このAl融液が気化温度に応じて気化してAlガスが生成する。そして、このAlガスと窒素ガスとの混合ガスが析出部62に移送され、基板55表面で反応してAlNが析出する。   As a method for producing this AlN single crystal, for example, a sublimation method in which polycrystalline AlN powder is sublimated and then precipitated at a temperature lower than the sublimation temperature (see Patent Document 1), metal Al is vaporized, and Al gas and nitrogen are deposited. The vaporization method (refer nonpatent literature 1) etc. which precipitates what mixed gas is used. FIG. 6 is a cross-sectional view schematically showing a conventional single crystal manufacturing apparatus using a vaporization method. As shown in FIG. 6, the conventional single crystal manufacturing apparatus 50 has a storage container 52 filled with metal Al 53 disposed in a reaction tank 51 provided with an exhaust hole 56 in the upper part. A substrate 55 is disposed above the substrate. Further, a nitrogen gas inlet 54 is provided in a portion between the storage container 52 and the substrate 55 on the side wall of the reaction tank 51. When the AlN single crystal is produced, the vaporization part 61 and the precipitation part 62 are heated by the heating coils 57 and 58, respectively, and nitrogen gas is introduced into the reaction tank 51 from the nitrogen gas inlet 54. As a result, the metal Al 53 is melted, and the Al melt is vaporized according to the vaporization temperature to generate Al gas. Then, the mixed gas of Al gas and nitrogen gas is transferred to the precipitation portion 62 and reacts on the surface of the substrate 55 to precipitate AlN.

特表2003−519064号公報Special table 2003-519064 gazette R. Schlesser、外1名,「Growth of bulk AlN crystals by vaporization of aluminum in a nitrogen atmosphere」,2002年,Journal of Crystal Growth,No.234,p.349−353R. Schlesser, 1 other, “Growth of bulk AlN crystals by vaporization of aluminum in a nitrogen atmosphere”, 2002, Journal of Crystal Growth, No. 234, p. 349-353

しかしながら、前述の従来の技術には以下に示す問題点がある。即ち、昇華法によりAlN単結晶を製造する場合、AlN原料粉体が焼結してその表面積が変化するため、昇華速度を一定にすることが難しいという問題点がある。また、気化法によりAlN単結晶を製造する場合、Al融液上に直接窒素ガスを流すため、Al融液表面にAlN膜が生成し、時間と共にAlの気化量が低下するという問題点がある。このため、従来の気化法では、Alの気化速度を制御することは困難である。   However, the conventional techniques described above have the following problems. That is, when an AlN single crystal is produced by a sublimation method, the AlN raw material powder is sintered and its surface area changes, so that there is a problem that it is difficult to make the sublimation rate constant. Further, when an AlN single crystal is produced by a vaporization method, since nitrogen gas is allowed to flow directly on the Al melt, an AlN film is generated on the surface of the Al melt, and the amount of Al vaporization decreases with time. . For this reason, it is difficult to control the vaporization rate of Al with the conventional vaporization method.

本発明はかかる問題点に鑑みてなされたものであって、原料の融液表面に窒化膜が形成されず、原料の気化速度を安定化することができる単結晶の製造方法及び単結晶の製造装置を提供することを目的とする。   The present invention has been made in view of such a problem, and a nitride film is not formed on the surface of the raw material melt, and the single crystal manufacturing method and the single crystal manufacturing method can stabilize the vaporization rate of the raw material. An object is to provide an apparatus.

本願第1発明に係る単結晶の製造方法は、周期律表の3族金属材料を気化させて3族金属ガスを生成する工程と、窒素ガスを前記3族金属ガスとの混合部に送給する工程と、前記3族金属ガスをその周囲がシールドガスで囲まれた状態でノズルから前記混合部に導入する工程と、前記3族金属ガスと前記窒素ガスとの反応により生じた窒化金属を析出させる工程と、を有することを特徴とする。   The method for producing a single crystal according to the first invention of the present application includes a step of vaporizing a Group 3 metal material of the periodic table to generate a Group 3 metal gas, and feeding nitrogen gas to a mixing part of the Group 3 metal gas. A step of introducing the Group 3 metal gas into the mixing portion from a nozzle in a state surrounded by a shield gas, and a metal nitride generated by a reaction between the Group 3 metal gas and the nitrogen gas. And a step of precipitating.

本発明においては、3族金属ガスをシールドガスで囲まれた状態で混合部に導入することにより、窒素ガスと3族金属材料とが接触することを防止しているため、3族金属材料の表面における窒化膜の生成を防止することができる。また、このシールドガスにより、ノズル先端部において3族金属ガスと窒素ガスとが混合することを防止できるため、ノズル先端部に窒化金属が析出しにくくなる。その結果、3族金属材料の気化速度を安定化することができる。   In the present invention, the introduction of the Group 3 metal gas into the mixing portion in a state surrounded by the shield gas prevents the nitrogen gas and the Group 3 metal material from coming into contact with each other. Formation of a nitride film on the surface can be prevented. In addition, the shielding gas can prevent the group 3 metal gas and the nitrogen gas from mixing at the nozzle tip, so that it is difficult for metal nitride to precipitate at the nozzle tip. As a result, the vaporization rate of the Group 3 metal material can be stabilized.

本願第発明に係る単結晶の製造方法は、周期律表の3族金属材料を気化させて3族金属ガスを生成する工程と、窒素ガスを前記3族金属ガスとの混合部に送給する工程と、前記金属ガスをキャリアガスにキャリアさせて前記3族金属材料から移送する工程と、前記キャリアガスにキャリアされた前記3族金属ガスをその周囲がシールドガスで囲まれた状態でノズルから前記混合部に導入する工程と、前記3族金属ガスと前記窒素ガスとの反応により生じた窒化金属を析出させる工程と、を有することを特徴とする。 The method for producing a single crystal according to the second invention of the present application includes a step of generating a Group 3 metal gas by vaporizing a Group 3 metal material of the periodic table, and feeding nitrogen gas to a mixing part of the Group 3 metal gas. A step of transporting the metal gas from the group 3 metal material by carrying the metal gas into a carrier gas, and a nozzle in a state where the group 3 metal gas carried by the carrier gas is surrounded by a shielding gas. To the mixing part, and a step of precipitating metal nitride generated by the reaction of the Group 3 metal gas and the nitrogen gas.

本発明においては、3族金属ガスをキャリアガスにキャリアさせ、更にこのキャリアガスにキャリアされた前記3族金属ガスをシールドガスで囲まれた状態で混合部に導入しているため、窒素ガスと3族金属材料とが直接接触せず、3族金属材料の表面における窒化膜の生成を防止することができる。また、シールドガスにより、ノズル先端部近傍で3族金属ガスと窒素ガスとが混合することを防止することができるため、ノズル先端部に窒化金属が析出しにくくなる。その結果、3族金属材料の気化速度を安定化することができる。   In the present invention, the Group 3 metal gas is carried by a carrier gas, and the Group 3 metal gas carried by the carrier gas is introduced into the mixing portion in a state surrounded by a shield gas. The group 3 metal material is not in direct contact, and the formation of a nitride film on the surface of the group 3 metal material can be prevented. Further, since the shielding gas can prevent the Group 3 metal gas and the nitrogen gas from being mixed in the vicinity of the nozzle tip, the metal nitride is less likely to be deposited at the nozzle tip. As a result, the vaporization rate of the Group 3 metal material can be stabilized.

前記シールドガス及び/又は前記キャリアガスとしては、例えばアルゴンガス等のように、前記3族金属材料及び前記窒素ガスに対して不活性なガスを使用することができる。   As the shielding gas and / or the carrier gas, a gas inert to the Group 3 metal material and the nitrogen gas, such as argon gas, can be used.

また、前記析出工程よりも高い温度条件下で前記3族金属ガスと前記窒素ガスとを混合してもよい。これにより、混合部における窒化金属の析出を防止することができる。   Moreover, you may mix the said group 3 metal gas and the said nitrogen gas on temperature conditions higher than the said precipitation process. Thereby, precipitation of the metal nitride in a mixing part can be prevented.

本願第発明に係る単結晶の製造装置は、周期律表の3族金属材料を気化させて3族金属ガスを生成する気化部と、前記3族金属ガスと窒素ガスとを混合する混合部と、前記3族金属ガスをその周囲がシールドガスで囲まれた状態で前記混合部に導入するノズルと、前記3族金属ガスと前記窒素ガスとの反応により生じた窒化金属を析出させる析出部と、前記気化部、前記混合部及び前記析出部を加熱する加熱部と、を有することを特徴とする。 The apparatus for producing a single crystal according to the third invention of the present application includes a vaporization unit that vaporizes a group 3 metal material of the periodic table to generate a group 3 metal gas, and a mixing unit that mixes the group 3 metal gas and nitrogen gas A nozzle that introduces the Group 3 metal gas into the mixing unit in a state surrounded by a shield gas, and a precipitation unit that deposits a metal nitride generated by the reaction of the Group 3 metal gas and the nitrogen gas And a heating section that heats the vaporizing section, the mixing section, and the precipitation section.

本発明においては、3族金属ガスをその周囲がシールドガスで囲まれた状態で混合部に導入するノズルを設けて、窒素ガスと3族金属材料との接触を防止しているため、3族金属材料の表面における窒化膜の生成を防止することができる。また、シールドガスにより、ノズル先端部近傍で3族金属ガスと窒素ガスとが混合することを防止しているため、ノズル先端部における窒化金属の析出を抑制することができる。その結果、3族金属材料の気化速度を安定化することができる。   In the present invention, a nozzle that introduces the Group 3 metal gas into the mixing portion in the state surrounded by the shield gas is provided to prevent contact between the nitrogen gas and the Group 3 metal material. Formation of a nitride film on the surface of the metal material can be prevented. Moreover, since the group 3 metal gas and the nitrogen gas are prevented from being mixed in the vicinity of the nozzle tip by the shielding gas, the deposition of metal nitride at the nozzle tip can be suppressed. As a result, the vaporization rate of the Group 3 metal material can be stabilized.

前記ノズルを、例えば、内管とこの内管よりも大径の外管とが同軸的に配置された二重管とし、前記内管内に前記3族金属ガスを通流させ、前記内管と前記外管との間に前記シールドガスを通流させてもよい。これにより、3族金属材料表面における窒化膜の生成及びノズル先端部における窒化金属の析出を防止する効果が向上し、3族金属材料の気化速度がより安定化する。   The nozzle is, for example, a double pipe in which an inner pipe and an outer pipe having a larger diameter than the inner pipe are arranged coaxially, and the Group 3 metal gas is passed through the inner pipe, The shield gas may flow between the outer pipe and the outer pipe. Thereby, the effect of preventing the formation of a nitride film on the surface of the group 3 metal material and the precipitation of the metal nitride at the nozzle tip is improved, and the vaporization rate of the group 3 metal material is further stabilized.

本願第発明に係る単結晶の製造装置は、周期律表の3族金属材料を気化させて3族金属ガスを生成する気化部と、前記3族金属材料上にキャリアガスを導入し、前記3族金属ガスを前記キャリアガスにキャリアさせて前記3族金属材料から移送するキャリアガス導入部と、前記3族金属ガスと窒素ガスとを混合する混合部と、前記キャリアガスにキャリアされた前記3族金属ガスをその周囲がシールドガスで囲まれた状態で前記混合部に導入するノズルと、前記3族金属ガスと前記窒素ガスとの反応により生じた窒化金属を析出させる析出部と、前記気化部、前記混合部及び前記析出部を加熱する加熱部と、を有することを特徴とする。 The apparatus for producing a single crystal according to the fourth invention of the present application introduces a carrier gas on the group 3 metal material, a vaporization section for generating a group 3 metal gas by vaporizing the group 3 metal material of the periodic table, A carrier gas introduction part for transporting the Group 3 metal gas to the carrier gas and transferring it from the Group 3 metal material, a mixing part for mixing the Group 3 metal gas and nitrogen gas, and the carrier gas carried by the carrier gas A nozzle for introducing the Group 3 metal gas into the mixing portion in a state surrounded by a shielding gas; a deposition portion for depositing a metal nitride generated by the reaction of the Group 3 metal gas and the nitrogen gas; And a heating section for heating the vaporizing section, the mixing section, and the precipitation section.

本発明においては、3族金属材料上にキャリアガスを導入する導入部と、キャリアガスにキャリアされた3族金属ガスをその周囲がシールドガスで囲まれた状態で混合部に導入するノズルとを設け、窒素ガスと3族金属材料とが直接接触することを防止しているため、3族金属材料の表面における窒化膜の生成を防止することができる。また、シールドガスにより、ノズル先端部近傍で3族金属ガスと窒素ガスとが混合することを防止しているため、ノズル先端部における窒化金属の析出を抑制することができる。その結果、3族金属材料の気化速度を安定化することができる。   In the present invention, an introduction part for introducing a carrier gas onto the Group 3 metal material, and a nozzle for introducing the Group 3 metal gas carried by the carrier gas into the mixing part in a state surrounded by a shield gas. Providing and preventing direct contact between the nitrogen gas and the Group 3 metal material can prevent the formation of a nitride film on the surface of the Group 3 metal material. Moreover, since the group 3 metal gas and the nitrogen gas are prevented from being mixed in the vicinity of the nozzle tip by the shielding gas, the deposition of metal nitride at the nozzle tip can be suppressed. As a result, the vaporization rate of the Group 3 metal material can be stabilized.

前記ノズルは、例えば、内管とこの内管よりも大径の外管とが同軸的に配置された二重管であり、前記内管内を前記キャリアガスにキャリアされた前記3族金属ガスが通流し、前記内管と前記外管との間を前記シールドガスが通流する。これにより、3族金属材料表面における窒化膜の生成防止及びノズル先端部における窒化金属の析出防止の効果が向上し、3族金属材料の気化速度がより安定化する。   The nozzle is, for example, a double pipe in which an inner pipe and an outer pipe having a larger diameter than the inner pipe are coaxially arranged, and the Group 3 metal gas carried by the carrier gas in the inner pipe The shield gas flows between the inner pipe and the outer pipe. This improves the effect of preventing the formation of a nitride film on the surface of the Group 3 metal material and preventing the precipitation of metal nitride at the nozzle tip, and further stabilizes the vaporization rate of the Group 3 metal material.

本発明によれば、周囲がシールドガスで囲まれた状態で3族金属ガスを混合部に導入すること及び/又は3族金属ガスをキャリアガスにキャリアさせて混合部まで移送することにより、原料である3族金属材料と窒素ガスとが直接接触することを防止しているため、3族金属材料表面における窒化膜の形成が抑制され、3族金属材料の気化速度を安定化することができる。   According to the present invention, the raw material is obtained by introducing the group 3 metal gas into the mixing section and / or transporting the group 3 metal gas to the mixing section with the carrier gas being transported to the mixing section while being surrounded by the shielding gas. Since the direct contact between the Group 3 metal material and the nitrogen gas is prevented, formation of a nitride film on the surface of the Group 3 metal material is suppressed, and the vaporization rate of the Group 3 metal material can be stabilized. .

以下、本発明の実施の形態に係る単結晶の製造方法について、添付の図面を参照して具体的に説明する。本実施形態の単結晶の製造方法は、Al、Ga及びIn等の3族金属のガスと窒素ガスとを反応させて析出させる気化法を利用した3族金属元素を含む窒化物(以下、窒化金属という)単結晶を製造する方法である。本発明者等は、前述の問題点を解決するため、鋭意実験研究を行った結果、窒素ガスと原料の融液とが直接接触しないようにするためには、原料融液と窒素ガスとの間に、アルゴン(Ar)、ヘリウム(He)、ネオン(Ne)及び水素(H)等のように原料融液及び窒素ガスに対して不活性なガス(以下、不活性ガスという)を流すことが有効であり、特に、不活性ガスとしてArガスを使用すると原料の気化速度が安定化し、製造条件の変動が抑制されることを見出した。 Hereinafter, a method for producing a single crystal according to an embodiment of the present invention will be specifically described with reference to the accompanying drawings. A method for producing a single crystal according to the present embodiment includes a nitride containing a Group 3 metal element using a vaporization method in which a Group 3 metal gas such as Al, Ga, In, or the like reacts with a nitrogen gas (hereinafter referred to as nitridation). It is a method for producing a single crystal (referred to as a metal). In order to prevent the nitrogen gas and the raw material melt from coming into direct contact with each other, the present inventors have conducted extensive experimental research to solve the above-described problems. A gas inert to the raw material melt and nitrogen gas (hereinafter referred to as an inert gas) such as argon (Ar), helium (He), neon (Ne), and hydrogen (H 2 ) is flowed between them. In particular, the present inventors have found that when Ar gas is used as an inert gas, the vaporization rate of the raw material is stabilized and fluctuations in production conditions are suppressed.

先ず、本発明の第1の実施形態に係る単結晶の製造方法について説明する。本実施形態の単結晶の製造方法においては、3族金属材料を気化させる気化部、気化部において発生した3族金属ガスと窒素ガスとを混合する混合部、及びこれらの混合ガスから生じる窒化金属を析出させる析出部がこの順に設けられた単結晶製造装置を使用する。そして、気化部に不活性ガスからなるキャリアガスを供給し、このキャリアガスにキャリアされた3族金属ガスをその周囲がシールドガスで囲まれた状態で混合部に導入して、析出部に窒化金属の単結晶を成長させる。   First, a method for producing a single crystal according to the first embodiment of the present invention will be described. In the method for producing a single crystal of the present embodiment, a vaporizing section for vaporizing a Group 3 metal material, a mixing section for mixing a Group 3 metal gas generated in the vaporizing section and nitrogen gas, and a metal nitride generated from these mixed gases The single crystal manufacturing apparatus in which the precipitation part which precipitates is provided in this order is used. Then, a carrier gas composed of an inert gas is supplied to the vaporizing portion, and a Group 3 metal gas that is carriered by the carrier gas is introduced into the mixing portion in a state surrounded by a shielding gas, and then nitrided in the precipitation portion. A single crystal of metal is grown.

図1は本実施形態の単結晶の製造方法で使用する単結晶製造装置を模式的に示す断面図である。図1に示すように、本実施形態において使用する単結晶製造装置10は、例えば円筒状の反応槽1を備えており、この反応槽1には、下方から上方に向かって、3族金属材料を気化させる気化部21、気化部21において発生した3族金属ガスと窒素ガスとを混合する混合部22、及びこれらの混合ガスから窒化金属を析出させる析出部23がこの順に一列に設けられている。   FIG. 1 is a cross-sectional view schematically showing a single crystal manufacturing apparatus used in the method for manufacturing a single crystal of the present embodiment. As shown in FIG. 1, a single crystal manufacturing apparatus 10 used in the present embodiment includes, for example, a cylindrical reaction tank 1, and the reaction tank 1 has a Group 3 metal material from below to above. The vaporizing section 21 for vaporizing, the mixing section 22 for mixing the group 3 metal gas generated in the vaporizing section 21 and nitrogen gas, and the precipitation section 23 for depositing metal nitride from these mixed gases are provided in a line in this order. Yes.

反応槽1内部の気化部21には、上部が開口した円筒状の収納容器2が設けられており、この収納容器2内には、例えば金属Al等の3族金属材料3が収納される。また、気化部21における収納容器2よりも上方の反応槽1の側壁には、Ar等の不活性ガスからなるキャリアガスを導入するためのキャリアガス導入口4が設けられている。このキャリアガスは、3族金属ガスを混合部22に移送すると共に、3族金属材料3の融液表面に窒化物の膜が形成されることを防止する効果もある。このため、単結晶製造装置10においては、キャリアガスが3族金属材料の融液の表面付近に導入されるように、キャリアガス導入口4の位置を設定することが好ましい。   The vaporization section 21 inside the reaction tank 1 is provided with a cylindrical storage container 2 having an open top, and a group 3 metal material 3 such as metal Al is stored in the storage container 2. A carrier gas inlet 4 for introducing a carrier gas made of an inert gas such as Ar is provided on the side wall of the reaction tank 1 above the storage container 2 in the vaporization section 21. This carrier gas has the effect of transferring the group 3 metal gas to the mixing unit 22 and preventing the formation of a nitride film on the melt surface of the group 3 metal material 3. For this reason, in the single crystal manufacturing apparatus 10, it is preferable to set the position of the carrier gas inlet 4 so that the carrier gas is introduced near the surface of the melt of the Group 3 metal material.

また、反応槽1内部の気化部21と混合部22との間には、反応槽1と同軸的に二重管が設けられている。この二重管は、内管5よりも外管6の方が上方に配置されており、これらの下端部には夫々外径が反応槽1の内径と等しく、内径が内管5及び外管6の内径と夫々等しい円環状部材が接合されている。そして、内管5及び外管6に夫々接合された円環状部材の外縁部は、反応槽1の側壁に接合されており、反応槽1の側壁における内管5に接合された円環状部材と外管6に接合された円環状部材との間の部分には、Ar等の不活性ガスからなるシールドガスを導入するシールドガス導入口7が設けられており、外管6に接合された円環状部材よりも上方の部分には、窒素ガスを導入する窒素ガス導入口8が設けられている。このため、キャリアガスにキャリアされた3族金属ガスは内管5内を通流し、内管5と外管6との間にはシールドガスが通流し、外管6と反応槽1の内壁との間を窒素ガスが通流する。これにより、キャリアガスにキャリアされた3族金属ガスは、その周囲がシールドガスで囲まれた状態で混合部22に導入される。   Further, a double pipe is provided coaxially with the reaction tank 1 between the vaporization section 21 and the mixing section 22 inside the reaction tank 1. In this double tube, the outer tube 6 is arranged above the inner tube 5, and the outer diameters of these double tubes are equal to the inner diameter of the reaction tank 1 at the lower end portions, and the inner diameters are the inner tube 5 and the outer tube. An annular member equal to the inner diameter of 6 is joined. And the outer edge part of the annular member joined to the inner tube 5 and the outer tube 6 is joined to the side wall of the reaction tank 1, and the annular member joined to the inner pipe 5 on the side wall of the reaction tank 1 A shield gas inlet 7 for introducing a shield gas made of an inert gas such as Ar is provided at a portion between the annular member joined to the outer tube 6, and a circle joined to the outer tube 6. A nitrogen gas inlet 8 for introducing nitrogen gas is provided in a portion above the annular member. For this reason, the Group 3 metal gas carried by the carrier gas flows through the inner tube 5, and the shielding gas flows between the inner tube 5 and the outer tube 6, and the outer tube 6 and the inner wall of the reaction tank 1 Nitrogen gas flows between them. Thereby, the Group 3 metal gas carried by the carrier gas is introduced into the mixing unit 22 in a state where the periphery thereof is surrounded by the shield gas.

単結晶製造装置10においては、内管5と外管6との間にシールドガスを流し、3族金属ガスの周囲をシールドガスで囲んでいるため、窒素ガスの気化部21への流入を防止すると共に、内管5の上端部に窒化金属が析出することを防止できる。内管5の上端部に窒化金属が析出すると、3族金属ガスと窒素ガスとの反応条件が変化してしまうため、析出部23で生成する窒化金属単結晶の品質が劣化する。   In the single crystal manufacturing apparatus 10, since a shielding gas is allowed to flow between the inner tube 5 and the outer tube 6 and the periphery of the group 3 metal gas is surrounded by the shielding gas, inflow of nitrogen gas into the vaporizing section 21 is prevented. In addition, it is possible to prevent metal nitride from being deposited on the upper end portion of the inner tube 5. When metal nitride is deposited on the upper end portion of the inner tube 5, the reaction condition between the group 3 metal gas and the nitrogen gas changes, so that the quality of the metal nitride single crystal produced in the precipitation portion 23 is deteriorated.

更に、反応槽1の内部の析出部23には、収納容器2の開口部と対向するように、AlN及び炭化珪素(SiC)等からなる基板9が配置される。また、反応槽1の上部には、反応槽1内部のガスを排気するための排気孔11が設けられている。この排気孔11は、反応槽1内の圧力を安定化するためのものであり、例えば、排気孔11を設けず、反応槽1を密封構造にすると、反応槽1内のガス圧が変動し、3族金属材料の気化速度に影響を及ぼす。なお、この排気孔11は、反応槽1の側壁に設けられていてもよい。   Furthermore, a substrate 9 made of AlN, silicon carbide (SiC) or the like is disposed in the precipitation portion 23 inside the reaction tank 1 so as to face the opening of the storage container 2. An exhaust hole 11 for exhausting the gas inside the reaction tank 1 is provided in the upper part of the reaction tank 1. This exhaust hole 11 is for stabilizing the pressure in the reaction tank 1. For example, if the reaction tank 1 is not sealed and the reaction tank 1 has a sealed structure, the gas pressure in the reaction tank 1 fluctuates. Affects the vaporization rate of Group 3 metal materials. The exhaust hole 11 may be provided on the side wall of the reaction tank 1.

更にまた、反応槽1の周囲には、加熱コイル12乃至14が配置されており、これらの加熱コイル12乃至14は夫々、気化部21、混合部22及び析出部23を個別に加熱する。このように、単結晶製造装置10においては、気化部21、混合部22及び析出部23の温度を個別に制御することができるため、高品質な単結晶を効率的に製造することができる。   Furthermore, heating coils 12 to 14 are disposed around the reaction tank 1, and these heating coils 12 to 14 individually heat the vaporizing section 21, the mixing section 22, and the precipitation section 23, respectively. Thus, in the single crystal manufacturing apparatus 10, since the temperature of the vaporization part 21, the mixing part 22, and the precipitation part 23 can be controlled separately, a high quality single crystal can be manufactured efficiently.

次に、上述の如く構成された単結晶製造装置10の動作、即ち、単結晶製造装置10を使用した単結晶の製造方法について説明する。先ず、反応槽1内に配置された収納容器2内に、例えば金属Al等の3族金属材料3を充填する。そして、加熱コイル12を動作させることにより気化部21を加熱し、加熱コイル13を動作させることにより混合部22を加熱し、加熱コイル14を動作させることにより析出部23を加熱する。その際の温度は、AlN単結晶を製造する場合であれば、気化部22が例えば2000℃、混合部22が例えば2200℃、析出部23が例えば2100℃である。また、このとき、キャリアガス導入口4から気化部21へAr等の不活性ガスを供給し、シールドガス導入口7からはAr等の不活性ガスを、窒素ガス導入口8からは窒素ガスを夫々混合部22へ供給する。   Next, the operation of the single crystal manufacturing apparatus 10 configured as described above, that is, a single crystal manufacturing method using the single crystal manufacturing apparatus 10 will be described. First, a storage container 2 disposed in the reaction tank 1 is filled with a Group 3 metal material 3 such as metal Al. Then, the vaporizing section 21 is heated by operating the heating coil 12, the mixing section 22 is heated by operating the heating coil 13, and the precipitation section 23 is heated by operating the heating coil 14. In this case, when the AlN single crystal is manufactured, the vaporization section 22 is, for example, 2000 ° C., the mixing section 22 is, for example, 2200 ° C., and the precipitation section 23 is, for example, 2100 ° C. At this time, an inert gas such as Ar is supplied from the carrier gas inlet 4 to the vaporizing section 21, an inert gas such as Ar is supplied from the shield gas inlet 7, and nitrogen gas is supplied from the nitrogen gas inlet 8. Each is supplied to the mixing unit 22.

これにより、収納容器2内の3族金属材料3が溶融して融液となり、更に気化して3族金属ガスが発生する。この3族金属ガスは、Ar等の不活性ガスからなるキャリアガスと混合し、内管5内を通流して混合部22へ移送される。そして、混合部22において、窒素ガスと混合し、析出部23に配置された基板9上に窒化金属の単結晶が析出する。   Thereby, the group 3 metal material 3 in the storage container 2 is melted to form a melt, and further vaporized to generate a group 3 metal gas. This Group 3 metal gas is mixed with a carrier gas made of an inert gas such as Ar, flows through the inner pipe 5 and is transferred to the mixing unit 22. Then, in the mixing unit 22, a single crystal of metal nitride is deposited on the substrate 9 disposed in the deposition unit 23 by being mixed with nitrogen gas.

本実施形態の単結晶の製造方法は、気化部21において、原料である3族金属材料3の融液の表面に不活性ガスからなるキャリアガスを流し、更に、混合部22において、3族金属ガスと窒素ガスとの間にシールドガスを流しているため、窒素ガスと原料の融液とが接触することを防止できる。その結果、融液表面への窒化膜の生成、内管5及び外管6の先端部への窒化金属の析出が抑制されるため、3族金属材料の気化速度を安定化することができる。   In the method for producing a single crystal according to the present embodiment, a carrier gas made of an inert gas is caused to flow on the surface of the melt of the Group 3 metal material 3 as a raw material in the vaporization unit 21, and further, Since the shielding gas flows between the gas and the nitrogen gas, it is possible to prevent the nitrogen gas and the raw material melt from coming into contact with each other. As a result, the formation of a nitride film on the melt surface and the deposition of metal nitride on the tip portions of the inner tube 5 and the outer tube 6 are suppressed, so that the vaporization rate of the Group 3 metal material can be stabilized.

また、3族金属ガスと窒素ガスとの間にシールドガスを流すと共に、混合部22の温度を析出部23よりも高温にしているため、混合部22において窒化金属が析出することを防止できる。これにより、基板9の手前まで3族金属と窒素とが反応せずに、夫々3族金属ガス及び窒素ガスとして存在し、核生成に有利である基板9の表面において両者が結合するため、高品質な単結晶が得られる。   Further, since the shielding gas is allowed to flow between the group 3 metal gas and the nitrogen gas, and the temperature of the mixing portion 22 is set higher than that of the precipitation portion 23, it is possible to prevent the metal nitride from being precipitated in the mixing portion 22. As a result, the Group 3 metal and nitrogen do not react up to the front of the substrate 9 and exist as a Group 3 metal gas and a nitrogen gas, respectively, and bind to each other on the surface of the substrate 9 which is advantageous for nucleation. A quality single crystal is obtained.

なお、本実施形態の単結晶の製造方法においては、気化部21の温度を2000℃、析出部23の温度を2100℃にしているが、本発明はこれに限定するものではなく、気化部21及び析出部23の温度は、原料の蒸気圧に応じて適宜設定することができる。なお、上述したように、混合部22における窒化金属の析出を防止するためには、混合部22の温度は析出部23の温度よりも高くすることが望ましい。   In the method for producing a single crystal according to the present embodiment, the temperature of the vaporization part 21 is 2000 ° C. and the temperature of the precipitation part 23 is 2100 ° C. However, the present invention is not limited to this, and the vaporization part 21 And the temperature of the precipitation part 23 can be suitably set according to the vapor pressure of a raw material. As described above, in order to prevent the metal nitride from being precipitated in the mixing unit 22, the temperature of the mixing unit 22 is desirably higher than the temperature of the precipitation unit 23.

また、本実施形態の単結晶の製造方法においては、基板9上に単結晶を成長させているが、本発明はこれに限定されず、例えば、反応槽の内壁が炭素(C)、タングステン(W)及びタンタルカーバイド(TaC)等により形成されている場合は、反応槽上に直接単結晶を成長させることもできる。但し、単結晶をエピタキシャル成長させる場合は、AlN及びSiC等からなる基板上に形成することが好ましい。   In the method for producing a single crystal according to the present embodiment, the single crystal is grown on the substrate 9, but the present invention is not limited to this. For example, the inner wall of the reaction vessel is made of carbon (C), tungsten ( When formed of W), tantalum carbide (TaC), or the like, a single crystal can be directly grown on the reaction vessel. However, when epitaxially growing a single crystal, it is preferably formed on a substrate made of AlN, SiC, or the like.

次に、本発明の第2の実施形態に係る単結晶の製造方法について説明する。前述の第1の実施形態の単結晶の製造方法においては、シールドガス及びキャリアガスの両方を反応槽内に導入しているが、本発明はこれに限定されるものではなく、シールドガス及びキャリアガスのうちの少なくとも一方を導入することにより、3族金属材料の気化速度を安定させる効果が得られる。   Next, a method for manufacturing a single crystal according to the second embodiment of the present invention will be described. In the method for producing a single crystal of the first embodiment described above, both the shielding gas and the carrier gas are introduced into the reaction vessel, but the present invention is not limited to this, and the shielding gas and the carrier are used. By introducing at least one of the gases, the effect of stabilizing the vaporization rate of the Group 3 metal material can be obtained.

そこで、本実施形態の単結晶の製造方法においては、シールドガスのみを導入して、窒化金属の単結晶を作製する。図2は本実施形態の単結晶の製造方法で使用する単結晶製造装置を模式的に示す断面図である。なお、図2においては、図1に示す単結晶製造装置の構成要素と同じものには同じ符号を付し、詳細な説明は省略する。図2に示すように、本実施形態において使用する単結晶製造装置30は、例えば円筒状の反応槽1を備えており、この反応槽1には、下方から上方に向かって、3族金属材料を気化させる気化部21、気化部21において発生した3族金属ガスと窒素ガスとを混合する混合部22、及びこれらの混合ガスから窒化金属を析出させる析出部23がこの順に一列に設けられている。   Therefore, in the method for producing a single crystal of the present embodiment, a single crystal of metal nitride is produced by introducing only a shielding gas. FIG. 2 is a cross-sectional view schematically showing a single crystal manufacturing apparatus used in the method for manufacturing a single crystal of the present embodiment. In FIG. 2, the same components as those of the single crystal manufacturing apparatus shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. As shown in FIG. 2, the single crystal manufacturing apparatus 30 used in this embodiment includes, for example, a cylindrical reaction tank 1, and the reaction tank 1 has a Group 3 metal material from below to above. The vaporizing section 21 for vaporizing, the mixing section 22 for mixing the group 3 metal gas generated in the vaporizing section 21 and nitrogen gas, and the precipitation section 23 for depositing metal nitride from these mixed gases are provided in a line in this order. Yes.

反応槽1内部の気化部21には、上部が開口した円筒状の収納容器2が設けられており、この収納容器2内には、例えば金属Al等の3族金属材料3が収納される。また、反応槽1内部の気化部21と混合部22との間には、反応槽1と同軸的に二重管が設けられており、反応槽1の側壁における内管5に接合された円環状部材と外管6に接合された円環状部材との間の部分には、Ar等の不活性ガスからなるシールドガスを導入するシールドガス導入口7が設けられており、外管6に接合された円環状部材よりも上方の部分には、窒素ガスを導入する窒素ガス導入口8が設けられている。そして、気化部21で発生した3族金属ガスは内管5内を通流し、内管5と外管6との間にはシールドガスが通流し、外管6と反応槽1の内壁との間を窒素ガスが通流する。これにより、3族金属ガスは、その周囲がシールドガスで囲まれた状態で混合部22に導入される。   The vaporization section 21 inside the reaction tank 1 is provided with a cylindrical storage container 2 having an open top, and a group 3 metal material 3 such as metal Al is stored in the storage container 2. Further, a double pipe is provided coaxially with the reaction tank 1 between the vaporization section 21 and the mixing section 22 inside the reaction tank 1, and a circle joined to the inner pipe 5 on the side wall of the reaction tank 1. A shield gas inlet 7 for introducing a shield gas made of an inert gas such as Ar is provided at a portion between the annular member and the annular member joined to the outer tube 6. A nitrogen gas inlet 8 for introducing nitrogen gas is provided in a portion above the annular member. Then, the Group 3 metal gas generated in the vaporization section 21 flows through the inner pipe 5, and the shielding gas flows between the inner pipe 5 and the outer pipe 6, and the outer pipe 6 and the inner wall of the reaction tank 1 are connected. Nitrogen gas flows between them. As a result, the Group 3 metal gas is introduced into the mixing unit 22 in a state in which the periphery thereof is surrounded by the shield gas.

更に、反応槽1の上部には、反応槽1内部のガスを排気するための排気孔11が設けられており、反応槽1の周囲には、気化部21、混合部22及び析出部23を個別に加熱する加熱コイル12乃至14が夫々配置されている。なお、反応槽1の内部の析出部23には、収納容器2の開口部と対向するように、AlN及びSiC等からなる基板9が配置される。   Further, an exhaust hole 11 for exhausting the gas inside the reaction tank 1 is provided in the upper part of the reaction tank 1, and a vaporization part 21, a mixing part 22 and a precipitation part 23 are provided around the reaction tank 1. Heating coils 12 to 14 for individually heating are arranged. A substrate 9 made of AlN, SiC, or the like is disposed in the precipitation portion 23 inside the reaction tank 1 so as to face the opening of the storage container 2.

次に、上述の如く構成された単結晶製造装置30の動作、即ち、単結晶製造装置30を使用した単結晶の製造方法について説明する。先ず、反応槽1内に配置された収納容器2内に、例えば金属Al等の3族金属材料3を充填する。そして、加熱コイル12を動作させることにより気化部21を加熱し、加熱コイル13を動作させることにより混合部22を加熱し、加熱コイル14を動作させることにより析出部23を加熱する。その際の温度は、AlN単結晶を製造する場合であれば、気化部22が例えば2000℃、混合部22が例えば2200℃、析出部23が例えば2100℃である。また、このとき、シールドガス導入口7からはAr等の不活性ガスを、窒素ガス導入口8からは窒素ガスを夫々混合部22へ供給する。   Next, the operation of the single crystal manufacturing apparatus 30 configured as described above, that is, a single crystal manufacturing method using the single crystal manufacturing apparatus 30 will be described. First, a storage container 2 disposed in the reaction tank 1 is filled with a Group 3 metal material 3 such as metal Al. Then, the vaporizing section 21 is heated by operating the heating coil 12, the mixing section 22 is heated by operating the heating coil 13, and the precipitation section 23 is heated by operating the heating coil 14. In this case, when the AlN single crystal is manufactured, the vaporization section 22 is, for example, 2000 ° C., the mixing section 22 is, for example, 2200 ° C., and the precipitation section 23 is, for example, 2100 ° C. At this time, an inert gas such as Ar is supplied from the shield gas introduction port 7, and nitrogen gas is supplied from the nitrogen gas introduction port 8 to the mixing unit 22.

これにより、収納容器2内の3族金属材料3が溶融して融液となり、更に気化して3族金属ガスが発生する。この3族金属ガスは、内管5内を通流して混合部22へ移送される。そして、混合部22において、窒素ガスと混合し、析出部23に配置された基板9上に窒化金属の単結晶が析出する。   Thereby, the group 3 metal material 3 in the storage container 2 is melted to form a melt, and further vaporized to generate a group 3 metal gas. The Group 3 metal gas flows through the inner pipe 5 and is transferred to the mixing unit 22. Then, in the mixing unit 22, a single crystal of metal nitride is deposited on the substrate 9 disposed in the deposition unit 23 by being mixed with nitrogen gas.

本実施形態の単結晶の製造方法は、3族金属ガスをシールドガスで囲んだ状態で混合部に導入しているため、窒素ガスの気化部21への流入を防止すると共に、内管5の上端部に窒化金属が析出することを防止できる。その結果、3族金属材料表面における窒化膜の生成、内管5及び外管6の先端部への窒化金属の析出が抑制されるため、3族金属材料の気化速度を安定化することができる。   In the method for producing a single crystal of the present embodiment, since the group 3 metal gas is introduced into the mixing portion in a state surrounded by the shield gas, the inflow of the nitrogen gas into the vaporizing portion 21 is prevented, and the inner tube 5 It is possible to prevent metal nitride from being deposited on the upper end. As a result, the formation of a nitride film on the surface of the group 3 metal material and the deposition of metal nitride on the tip portions of the inner tube 5 and the outer tube 6 are suppressed, so that the vaporization rate of the group 3 metal material can be stabilized. .

また、混合部22の温度を析出部23よりも高温にしているため、混合部22において窒化金属が析出することを防止できる。これにより、基板9の手前まで3族金属と窒素とが反応せずに、基板9の表面において両者が結合するため、高品質な単結晶が得られる。但し、本実施形態の単結晶の製造方法においては、キャリアガスを導入していないため、前述の第1の実施形態の単結晶の製造方法よりも、3族金属材料の気化量が少なくなり、窒化金属の生産性が低下する。   Moreover, since the temperature of the mixing unit 22 is set higher than that of the precipitation unit 23, it is possible to prevent metal nitride from being precipitated in the mixing unit 22. Thereby, since the group 3 metal and nitrogen do not react up to the front of the substrate 9 and both are bonded on the surface of the substrate 9, a high-quality single crystal can be obtained. However, in the manufacturing method of the single crystal of this embodiment, since no carrier gas is introduced, the amount of vaporization of the Group 3 metal material is smaller than that of the manufacturing method of the single crystal of the first embodiment described above, Productivity of metal nitride is reduced.

次に、本発明の参考例に係る単結晶の製造方法について説明する。本参考例の単結晶の製造方法においては、キャリアガスのみを導入して、窒化金属の単結晶を作製する。図3は本参考例の単結晶の製造方法で使用する単結晶製造装置を模式的に示す断面図である。なお、図3においては、図1に示す単結晶製造装置の構成要素と同じものには同じ符号を付し、詳細な説明は省略する。図3に示すように、本参考例において使用する単結晶製造装置40は、例えば円筒状の反応槽1を備えており、この反応槽1には、下方から上方に向かって、3族金属材料を気化させる気化部21、気化部21において発生した3族金属ガスと窒素ガスとを混合する混合部22、及びこれらの混合ガスから窒化金属を析出させる析出部23がこの順に一列に設けられている。 Next, a method for producing a single crystal according to a reference example of the present invention will be described. In the method for producing a single crystal of the present reference example , only a carrier gas is introduced to produce a metal nitride single crystal. FIG. 3 is a cross-sectional view schematically showing a single crystal production apparatus used in the method for producing a single crystal of this reference example . In FIG. 3, the same components as those of the single crystal manufacturing apparatus shown in FIG. As shown in FIG. 3, the single crystal manufacturing apparatus 40 used in this reference example includes a cylindrical reaction tank 1, for example. The reaction tank 1 has a group 3 metal material from below to above. The vaporizing section 21 for vaporizing, the mixing section 22 for mixing the group 3 metal gas generated in the vaporizing section 21 and the nitrogen gas, and the precipitation section 23 for depositing metal nitride from these mixed gases are provided in a line in this order. Yes.

反応槽1内部の気化部21には、上部が開口した円筒状の収納容器2が設けられており、この収納容器2内には、例えば金属Al等の3族金属材料3が収納される。また、気化部21における収納容器2よりも上方の反応槽1の側壁には、Ar等の不活性ガスからなるキャリアガスを導入するためのキャリアガス導入口4が設けられている。   The vaporization section 21 inside the reaction tank 1 is provided with a cylindrical storage container 2 having an open top, and a group 3 metal material 3 such as metal Al is stored in the storage container 2. A carrier gas inlet 4 for introducing a carrier gas made of an inert gas such as Ar is provided on the side wall of the reaction tank 1 above the storage container 2 in the vaporization section 21.

また、気化部21と混合部22との間には、管41が設けられている。この管41の下端部には外径が反応槽1の内径と等しく、内径が管41の内径と等しい円環状部材が接合されており、この円環状部材の外縁部は反応槽1の側壁に接合されている。そして、反応槽1の側壁における管41に接合された円環状部材よりも上方の部分には、窒素ガスを導入する窒素ガス導入口8が設けられている。このため、キャリアガスにキャリアされた3族金属ガスは管41内を通流し、管41と反応槽1の内壁との間を窒素ガスが通流する。   A tube 41 is provided between the vaporizing unit 21 and the mixing unit 22. An annular member having an outer diameter equal to the inner diameter of the reaction vessel 1 and an inner diameter equal to the inner diameter of the tube 41 is joined to the lower end portion of the tube 41, and the outer edge portion of the annular member is attached to the side wall of the reaction vessel 1. It is joined. A nitrogen gas inlet 8 for introducing nitrogen gas is provided in a portion of the side wall of the reaction tank 1 above the annular member joined to the pipe 41. For this reason, the group 3 metal gas carried by the carrier gas flows through the pipe 41, and the nitrogen gas flows between the pipe 41 and the inner wall of the reaction tank 1.

更に、反応槽1の上部には、反応槽1内部のガスを排気するための排気孔11が設けられている。更にまた、反応槽1の周囲には、気化部21、混合部22及び析出部23を個別に加熱する加熱コイル12乃至14が配置されている。なお、反応槽1の内部の析出部23には、収納容器2の開口部と対向するように、AlN及びSiC等からなる基板9が配置される。   Furthermore, an exhaust hole 11 for exhausting the gas inside the reaction tank 1 is provided in the upper part of the reaction tank 1. Furthermore, heating coils 12 to 14 for individually heating the vaporization unit 21, the mixing unit 22, and the precipitation unit 23 are disposed around the reaction tank 1. A substrate 9 made of AlN, SiC, or the like is disposed in the precipitation portion 23 inside the reaction tank 1 so as to face the opening of the storage container 2.

次に、上述の如く構成された単結晶製造装置40の動作、即ち、単結晶製造装置40を使用した単結晶の製造方法について説明する。先ず、反応槽1内に配置された収納容器2内に、例えば金属Al等の3族金属材料3を充填する。そして、加熱コイル12を動作させることにより気化部21を加熱し、加熱コイル13を動作させることにより混合部22を加熱し、加熱コイル14を動作させることにより析出部23を加熱する。その際の温度は、AlN単結晶を製造する場合であれば、気化部22が例えば2000℃、混合部22が例えば2200℃、析出部23が例えば2100℃である。また、このとき、キャリアガス導入口4から気化部21へAr等の不活性ガスを供給し、窒素ガス導入口8からは窒素ガスを夫々混合部22へ供給する。   Next, the operation of the single crystal manufacturing apparatus 40 configured as described above, that is, a single crystal manufacturing method using the single crystal manufacturing apparatus 40 will be described. First, a storage container 2 disposed in the reaction tank 1 is filled with a Group 3 metal material 3 such as metal Al. Then, the vaporizing section 21 is heated by operating the heating coil 12, the mixing section 22 is heated by operating the heating coil 13, and the precipitation section 23 is heated by operating the heating coil 14. In this case, when the AlN single crystal is manufactured, the vaporization section 22 is, for example, 2000 ° C., the mixing section 22 is, for example, 2200 ° C., and the precipitation section 23 is, for example, 2100 ° C. At this time, an inert gas such as Ar is supplied from the carrier gas inlet 4 to the vaporizer 21, and nitrogen gas is supplied from the nitrogen gas inlet 8 to the mixer 22.

これにより、収納容器2内の3族金属材料3が溶融して融液となり、更に気化して3族金属ガスが発生する。この3族金属ガスは、Ar等の不活性ガスからなるキャリアガスと混合し、管41内を通流して混合部22へ移送される。そして、混合部22において、窒素ガスと混合し、析出部23に配置された基板9上に窒化金属の単結晶が析出する。   Thereby, the group 3 metal material 3 in the storage container 2 is melted to form a melt, and further vaporized to generate a group 3 metal gas. This Group 3 metal gas is mixed with a carrier gas made of an inert gas such as Ar, flows through the pipe 41 and is transferred to the mixing unit 22. Then, in the mixing unit 22, a single crystal of metal nitride is deposited on the substrate 9 disposed in the deposition unit 23 by being mixed with nitrogen gas.

参考例の単結晶の製造方法は、気化部21において、原料である3族金属材料3の融液の表面に不活性ガスからなるキャリアガスを流しているため、窒素ガスと原料の融液とが接触することを防止できる。その結果、融液表面における窒化膜の生成が抑制されるため、3族金属材料の気化速度を安定化することができる。また、混合部22の温度を析出部23よりも高温にしているため、管41の先端部に窒化金属が析出することを防止できる。 In the method for producing a single crystal of the present reference example , since a carrier gas made of an inert gas is allowed to flow on the surface of the melt of the Group 3 metal material 3 as a raw material in the vaporization section 21, a melt of nitrogen gas and the raw material is used. Can be prevented from contacting. As a result, since the formation of a nitride film on the melt surface is suppressed, the vaporization rate of the Group 3 metal material can be stabilized. In addition, since the temperature of the mixing unit 22 is higher than that of the precipitation unit 23, it is possible to prevent metal nitride from being deposited on the tip of the tube 41.

以下、本発明の効果について、本発明の範囲から外れる比較例と比較して説明する。先ず、本発明の実施例として、図1に示す装置を使用してAlN単結晶を作製した。その際の製造条件を下記表1に示す。下記表1に示すように、原料には金属Al(500g)を使用し、窒素ガスの流量は500標準cm/分(sccm)とした。また、キャリアガス及びシールドガスにはArガスを使用し、その流量共に50標準cm/分(sccm)とした。更に、抵抗加熱又は高周波加熱により、気化部を2000℃、混合部を2200℃、析出部を2100℃にした。なお、下記表1に示す混合部の温度は、内管及び外管の温度である。 Hereinafter, the effect of the present invention will be described in comparison with a comparative example that is out of the scope of the present invention. First, as an example of the present invention, an AlN single crystal was produced using the apparatus shown in FIG. The manufacturing conditions at that time are shown in Table 1 below. As shown in Table 1 below, metal Al (500 g) was used as a raw material, and the flow rate of nitrogen gas was 500 standard cm 3 / min (sccm). Further, Ar gas was used as the carrier gas and the shield gas, and the flow rates thereof were 50 standard cm 3 / min (sccm). Furthermore, the vaporization part was set to 2000 ° C., the mixing part was set to 2200 ° C., and the precipitation part was set to 2100 ° C. by resistance heating or high-frequency heating. In addition, the temperature of the mixing part shown in following Table 1 is the temperature of an inner tube | pipe and an outer tube | pipe.

Figure 0004573713
Figure 0004573713

そして、合成開始から2時間後、4時間後、6時間後及び8時間後に金属Alの減少量を測定した。その結果を下記表2に示す。また、図4は横軸に合成時間をとり、縦軸に金属Al減少量をとって、本実施例の単結晶の製造方法における合成時間とAl減少量との関係を示すグラフ図である。   And the reduction | decrease amount of metal Al was measured after 2 hours, 4 hours, 6 hours, and 8 hours after the synthesis | combination start. The results are shown in Table 2 below. FIG. 4 is a graph showing the relationship between the synthesis time and the Al decrease amount in the method for producing a single crystal of this example, with the horizontal axis representing the synthesis time and the vertical axis representing the metal Al decrease amount.

Figure 0004573713
Figure 0004573713

上記表2及び図4に示すように、本実施例においては、合成時間と金属Al減少量とが比例関係にあり、Al気化速度は殆ど変動していなかった。   As shown in Table 2 and FIG. 4, in this example, the synthesis time and the amount of metal Al decrease were in a proportional relationship, and the Al vaporization rate hardly changed.

また、本発明の比較例として、図6に示す従来の単結晶製造装置を使用して、下記表3に示す条件で、AlN単結晶を作製した。   Further, as a comparative example of the present invention, an AlN single crystal was produced under the conditions shown in Table 3 below using a conventional single crystal manufacturing apparatus shown in FIG.

Figure 0004573713
Figure 0004573713

そして、合成開始から2時間後、4時間後及び6時間後に金属Alの減少量を測定した。その結果を下記表4に示す。また、図5は横軸に合成時間をとり、縦軸に金属Al減少量をとって、本比較例の単結晶の製造方法における合成時間とAl減少量との関係を示すグラフ図である。   And the reduction | decrease amount of metal Al was measured 2 hours later, 4 hours later, and 6 hours after the synthesis start. The results are shown in Table 4 below. FIG. 5 is a graph showing the relationship between the synthesis time and the Al reduction amount in the method for producing a single crystal of this comparative example, with the synthesis time on the horizontal axis and the metal Al reduction amount on the vertical axis.

Figure 0004573713
Figure 0004573713

上記表4及び図5に示すように、本比較例においては、合成時間と金属Al減少量とが比例関係になく、合成時間が長くなるに従いAl気化速度が低下した。そこで、実験終了後に、原料である金属Alの表面をX線回折により分析したところ、全ての試料の表面にAlNが形成されていた。よって、本比較例においては、Al融液の表面に、Alよりも蒸気圧が低いAlNが生成したため、Al気化速度が低下したと考えられる。   As shown in Table 4 and FIG. 5, in this comparative example, the synthesis time and the amount of metal Al decrease were not proportional, and the Al vaporization rate decreased as the synthesis time increased. Therefore, when the surface of the metal Al as a raw material was analyzed by X-ray diffraction after the experiment was completed, AlN was formed on the surfaces of all the samples. Therefore, in this comparative example, AlN having a vapor pressure lower than that of Al was generated on the surface of the Al melt, so that it is considered that the Al vaporization rate was reduced.

本発明の単結晶の製造方法及び単結晶の製造装置は、青色発光ダイオード及び紫外発光ダイオード等の発光ダイオード用成長基板、レーザダイオード用成長基板、並びにパワーデバイス用基板として好適な窒化金属の単結晶を作製する際に使用することができる。   A single crystal manufacturing method and a single crystal manufacturing apparatus according to the present invention include a metal nitride single crystal suitable as a growth substrate for light emitting diodes such as blue light emitting diodes and ultraviolet light emitting diodes, a growth substrate for laser diodes, and a substrate for power devices. Can be used when producing.

本発明の第1の実施形態に係る単結晶の製造方法で使用する単結晶製造装置を模式的に示す断面図である。It is sectional drawing which shows typically the single crystal manufacturing apparatus used with the manufacturing method of the single crystal which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る単結晶の製造方法で使用する単結晶製造装置を模式的に示す断面図である。It is sectional drawing which shows typically the single crystal manufacturing apparatus used with the manufacturing method of the single crystal which concerns on the 2nd Embodiment of this invention. 本発明の参考例に係る単結晶の製造方法で使用する単結晶製造装置を模式的に示す断面図である。It is sectional drawing which shows typically the single crystal manufacturing apparatus used with the manufacturing method of the single crystal which concerns on the reference example of this invention. 横軸に合成時間をとり、縦軸に金属Al減少量をとって、本発明の実施例の単結晶の製造方法における合成時間とAl減少量との関係を示すグラフ図である。It is a graph which shows the relationship between the synthesis time in the manufacturing method of the single crystal of the Example of this invention, and Al reduction amount, taking a synthesis time on a horizontal axis and taking a metal Al reduction amount on a vertical axis | shaft. 横軸に合成時間をとり、縦軸に金属Al減少量をとって、本発明の比較例の単結晶の製造方法における合成時間とAl減少量との関係を示すグラフ図である。It is a graph which shows the relationship between the synthesis time in the manufacturing method of the single crystal of the comparative example of this invention, and Al reduction amount, taking a synthesis time on a horizontal axis and taking a metal Al reduction amount on a vertical axis | shaft. 気化法を利用した従来の単結晶製造装置を模式的に示す断面図である。It is sectional drawing which shows typically the conventional single crystal manufacturing apparatus using the vaporization method.

符号の説明Explanation of symbols

1、51;反応槽
2、52;収納容器
3;3族金属材料
4;キャリアガス導入口
5、6、41;管
7;シールドガス導入口
8、54;窒素ガス導入口
9、55;基板
10、30、40、50;単結晶製造装置
11、56;排気孔
12〜14、57、58;加熱コイル
21、61;気化部
22;混合部
23、62;析出部
53;金属Al
DESCRIPTION OF SYMBOLS 1, 51; Reaction tank 2, 52; Storage container 3; Group 3 metal material 4; Carrier gas inlet 5, 6, 41; Pipe 7; Shield gas inlet 8, 54; Nitrogen gas inlet 9, 55; 10, 30, 40, 50; Single crystal production apparatus 11, 56; Exhaust holes 12-14, 57, 58; Heating coil 21, 61; Vaporization section 22; Mixing section 23, 62; Precipitation section 53; Metal Al

Claims (11)

周期律表の3族金属材料を気化させて3族金属ガスを生成する工程と、窒素ガスを前記3族金属ガスとの混合部に送給する工程と、前記3族金属ガスをその周囲がシールドガスで囲まれた状態でノズルから前記混合部に導入する工程と、前記3族金属ガスと前記窒素ガスとの反応により生じた窒化金属を析出させる工程と、を有することを特徴とする単結晶の製造方法。 A step of evaporating a group 3 metal material of the periodic table to generate a group 3 metal gas, a step of feeding nitrogen gas to a mixing portion with the group 3 metal gas, and a surrounding of the group 3 metal gas A step of introducing into the mixing portion from the nozzle in a state surrounded by a shielding gas, and a step of precipitating metal nitride generated by the reaction between the Group 3 metal gas and the nitrogen gas. Crystal production method. 周期律表の3族金属材料を気化させて3族金属ガスを生成する工程と、窒素ガスを前記3族金属ガスとの混合部に送給する工程と、前記3族金属ガスをキャリアガスにキャリアさせて前記3族金属材料から移送する工程と、前記キャリアガスにキャリアされた前記3族金属ガスをその周囲がシールドガスで囲まれた状態でノズルから前記混合部に導入する工程と、前記3族金属ガスと前記窒素ガスとの反応により生じた窒化金属を析出させる工程と、を有することを特徴とする単結晶の製造方法。 A step of evaporating a group 3 metal material of the periodic table to generate a group 3 metal gas; a step of supplying nitrogen gas to a mixing part of the group 3 metal gas; and the group 3 metal gas as a carrier gas. Carrying the carrier and transferring from the Group 3 metal material, introducing the Group 3 metal gas carried by the carrier gas from the nozzle into the mixing unit in a state surrounded by a shielding gas, and And a step of precipitating metal nitride produced by the reaction between the Group 3 metal gas and the nitrogen gas. 前記シールドガスとして、前記3族金属材料及び前記窒素ガスに対して不活性なガスを使用することを特徴とする請求項1又はに記載の単結晶の製造方法。 The method for producing a single crystal according to claim 1 or 2 , wherein a gas inert to the Group 3 metal material and the nitrogen gas is used as the shielding gas. 前記シールドガスは、アルゴンガスであることを特徴とする請求項に記載の単結晶の製造方法。 The method for producing a single crystal according to claim 3 , wherein the shielding gas is an argon gas. 前記キャリアガスとして、前記3族金属材料及び前記窒素ガスに対して不活性なガスを使用することを特徴とする請求項に記載の単結晶の製造方法。 The method for producing a single crystal according to claim 2 , wherein a gas inert to the Group 3 metal material and the nitrogen gas is used as the carrier gas. 前記キャリアガスは、アルゴンガスであることを特徴とする請求項に記載の単結晶の製造方法。 The method for producing a single crystal according to claim 5 , wherein the carrier gas is an argon gas. 前記析出工程よりも高い温度条件下で前記3族金属ガスと前記窒素ガスとを混合することを特徴とする請求項1乃至のいずれか1項に記載の単結晶の製造方法。 The method for producing a single crystal according to any one of claims 1 to 6 , wherein the Group 3 metal gas and the nitrogen gas are mixed under a temperature condition higher than that of the precipitation step. 周期律表の3族金属材料を気化させて3族金属ガスを生成する気化部と、前記3族金属ガスと窒素ガスとを混合する混合部と、前記3族金属ガスをその周囲がシールドガスで囲まれた状態で前記混合部に導入するノズルと、前記3族金属ガスと前記窒素ガスとの反応により生じた窒化金属を析出させる析出部と、前記気化部、前記混合部及び前記析出部を加熱する加熱部と、を有することを特徴とする単結晶の製造装置。 A vaporizing section that vaporizes a Group 3 metal material of the periodic table to generate a Group 3 metal gas, a mixing section that mixes the Group 3 metal gas and nitrogen gas, and a shield gas around the Group 3 metal gas A nozzle to be introduced into the mixing part in a state surrounded by a metal, a precipitation part for precipitating metal nitride generated by the reaction between the group 3 metal gas and the nitrogen gas, the vaporization part, the mixing part and the precipitation part And a heating unit that heats the substrate. 前記ノズルは、内管とこの内管よりも大径の外管とが同軸的に配置された二重管であり、前記内管内を前記3族金属ガスが通流し、前記内管と前記外管との間を前記シールドガスが通流することを特徴とする請求項に記載の単結晶の製造装置。 The nozzle is a double pipe in which an inner pipe and an outer pipe having a larger diameter than the inner pipe are arranged coaxially, and the Group 3 metal gas flows through the inner pipe, and the inner pipe and the outer pipe 9. The apparatus for producing a single crystal according to claim 8 , wherein the shielding gas flows between the tubes. 周期律表の3族金属材料を気化させて3族金属ガスを生成する気化部と、前記3族金属材料上にキャリアガスを導入し、前記3族金属ガスを前記キャリアガスにキャリアさせて前記3族金属材料から移送するキャリアガス導入部と、前記3族金属ガスと窒素ガスとを混合する混合部と、前記キャリアガスにキャリアされた前記3族金属ガスをその周囲がシールドガスで囲まれた状態で前記混合部に導入するノズルと、前記3族金属ガスと前記窒素ガスとの反応により生じた窒化金属を析出させる析出部と、前記気化部、前記混合部及び前記析出部を加熱する加熱部と、を有することを特徴とする単結晶の製造装置。 A vaporizing section that vaporizes a Group 3 metal material of the periodic table to generate a Group 3 metal gas; a carrier gas is introduced onto the Group 3 metal material; A carrier gas introduction part for transferring from the Group 3 metal material, a mixing part for mixing the Group 3 metal gas and nitrogen gas, and the Group 3 metal gas carried by the carrier gas are surrounded by a shielding gas. A nozzle that is introduced into the mixing portion in a heated state, a precipitation portion that precipitates metal nitride generated by the reaction of the Group 3 metal gas and the nitrogen gas, and the vaporization portion, the mixing portion, and the precipitation portion are heated. And an apparatus for producing a single crystal. 前記ノズルは、内管とこの内管よりも大径の外管とが同軸的に配置された二重管であり、前記内管内を前記キャリアガスにキャリアされた前記3族金属ガスが通流し、前記内管と前記外管との間を前記シールドガスが通流することを特徴とする請求項10に記載の単結晶の製造装置。 The nozzle is a double pipe in which an inner pipe and an outer pipe having a larger diameter than the inner pipe are arranged coaxially, and the Group 3 metal gas carried by the carrier gas flows through the inner pipe. The apparatus for producing a single crystal according to claim 10 , wherein the shield gas flows between the inner tube and the outer tube.
JP2005193493A 2005-07-01 2005-07-01 Single crystal manufacturing method and single crystal manufacturing apparatus Expired - Fee Related JP4573713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005193493A JP4573713B2 (en) 2005-07-01 2005-07-01 Single crystal manufacturing method and single crystal manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005193493A JP4573713B2 (en) 2005-07-01 2005-07-01 Single crystal manufacturing method and single crystal manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2007008779A JP2007008779A (en) 2007-01-18
JP4573713B2 true JP4573713B2 (en) 2010-11-04

Family

ID=37747747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005193493A Expired - Fee Related JP4573713B2 (en) 2005-07-01 2005-07-01 Single crystal manufacturing method and single crystal manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4573713B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4992703B2 (en) * 2007-12-25 2012-08-08 住友電気工業株式会社 Group III nitride semiconductor crystal growth method
JP2009249199A (en) * 2008-04-02 2009-10-29 Fujikura Ltd Apparatus for producing aluminum nitride single crystal
JP5317117B2 (en) * 2009-07-23 2013-10-16 株式会社フジクラ Nitride single crystal manufacturing equipment
JP5765033B2 (en) * 2011-04-15 2015-08-19 三菱化学株式会社 Group 13 nitride crystal manufacturing method
JP6026188B2 (en) * 2011-09-12 2016-11-16 住友化学株式会社 Method for manufacturing nitride semiconductor crystal
WO2013151045A1 (en) * 2012-04-03 2013-10-10 独立行政法人物質・材料研究機構 Crystal growth method and crystal growth apparatus
JP6187503B2 (en) * 2015-02-26 2017-08-30 株式会社豊田中央研究所 Metal vapor supply apparatus, metal / metal compound production apparatus, GaN single crystal production method, and nanoparticle production method
JP7209569B2 (en) * 2019-03-28 2023-01-20 信越化学工業株式会社 Group III nitride substrate manufacturing apparatus and manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516877A (en) * 2004-10-16 2008-05-22 アズッロ セミコンダクターズ アクチエンゲゼルシャフト Method for producing GaN crystal or AlGaN crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516877A (en) * 2004-10-16 2008-05-22 アズッロ セミコンダクターズ アクチエンゲゼルシャフト Method for producing GaN crystal or AlGaN crystal

Also Published As

Publication number Publication date
JP2007008779A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP4573713B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP4765025B2 (en) AlN epitaxial layer growth method and vapor phase growth apparatus
JP5009367B2 (en) High volume delivery system of gallium trichloride
EP1796150B1 (en) Method for algan vapor-phase growth
JP5186733B2 (en) AlN crystal growth method
JP5762900B2 (en) Hydride vapor phase epitaxy apparatus and method for producing aluminum group III nitride single crystal
JP2008516877A (en) Method for producing GaN crystal or AlGaN crystal
JP7117732B2 (en) Group III nitride substrate and method for producing group III nitride crystal
JPWO2008035632A1 (en) GaN thin film template substrate manufacturing method, GaN thin film template substrate, and GaN thick film single crystal
JP4900966B2 (en) Method for producing gallium hydride gas and method for producing gallium nitride crystal
Siche et al. Growth of bulk gan from gas phase
JP5045033B2 (en) Vapor phase growth apparatus and compound semiconductor film growth method
JP4747350B2 (en) Epitaxial layer vapor phase growth system
JP2002293697A (en) METHOD OF GROWING GaN EPITAXIAL LAYER
JP5182758B2 (en) Method and apparatus for producing nitride single crystal
CN111519247A (en) Method for producing group III nitride crystal
JP5252495B2 (en) Method for producing aluminum nitride single crystal
JP2009249201A (en) Apparatus for producing aluminum nitride single crystal
JP2008115045A (en) SINGLE CRYSTAL SiC AND ITS PRODUCING METHOD
JP2007317949A (en) Apparatus and method for creating group iii nitride crystal
JP5629870B2 (en) AlGaN vapor deposition method and AlGaN crystal thick film substrate manufactured by AlGaN vapor deposition method
JP4544923B2 (en) Vapor growth equipment
JP2023124333A (en) Manufacturing method of aluminum nitride single crystal and manufacturing apparatus of aluminum nitride single crystal
JP2020001972A (en) Device and method for producing group iii nitride crystal
JP4961888B2 (en) Vapor phase growth apparatus and compound semiconductor film growth method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees