WO2007015306A1 - Charged particle beam plotting device and method - Google Patents

Charged particle beam plotting device and method Download PDF

Info

Publication number
WO2007015306A1
WO2007015306A1 PCT/JP2005/014345 JP2005014345W WO2007015306A1 WO 2007015306 A1 WO2007015306 A1 WO 2007015306A1 JP 2005014345 W JP2005014345 W JP 2005014345W WO 2007015306 A1 WO2007015306 A1 WO 2007015306A1
Authority
WO
WIPO (PCT)
Prior art keywords
aperture
charged particle
particle beam
transmission image
mask
Prior art date
Application number
PCT/JP2005/014345
Other languages
French (fr)
Japanese (ja)
Inventor
Satoru Mabuchi
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2005/014345 priority Critical patent/WO2007015306A1/en
Publication of WO2007015306A1 publication Critical patent/WO2007015306A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31776Shaped beam

Definitions

  • the present invention relates to a charged particle beam drawing apparatus and method for drawing a desired pattern on a substrate using a charged particle beam, particularly an electron beam.
  • an electron beam drawing apparatus using a variable shaped beam such as a rectangle or a triangle has been used.
  • this electron beam drawing apparatus when a fine pattern is drawn, the number of figures per unit area increases, so the drawing time increases in proportion to this and the throughput is significantly reduced.
  • This block drawing apparatus uses a plurality of types of blocks having apertures corresponding to complex patterns that are repeatedly used to form a semiconductor chip or the like.
  • This block drawing apparatus uses a block mask which is a second aperture mask in which a plurality of types of blocks are arranged in a matrix, and a transmission image of the first aperture mask is formed on the aperture formed in a desired block. And the pattern of the block is drawn at once.
  • the focus of the lens for projecting the transmission image of the first aperture on the second aperture mask for example, slightly in the electron beam irradiation source, An ideal lens cannot be constructed due to an optical system manufacturing error or the like.
  • the transmission image of the first aperture mask becomes non-uniform due to the electron beam irradiation source, and the current density of the electron beam in the transmission image of the second aperture mask changes.
  • each aperture cannot be accurately projected, and the pattern cannot be drawn in a desired state. This problem is recognized as inevitable even in block drawing devices, and measures to deal with it are being considered.
  • FIG. 12 is a perspective view schematically showing a method for evaluating the uniformity of the transmitted image of the first aperture mask resulting from the electron beam irradiation source in the conventional block drawing apparatus.
  • the second mask mask 102 is used as the second aperture mask.
  • an evaluation pattern 11 la ⁇ : L 1 Id is formed on four sides of the block (the leftmost block 111 in the illustrated example)!
  • the first aperture mask 101 is transmitted through the block 111 of the block mask 102.
  • the images are superimposed, and the rectangular pattern apertures 11 la to 11 Id of the block 111 are drawn on the sample in a lump.
  • the first aperture caused by the electron beam irradiation source is estimated.
  • the uniformity of the transmission image of the mask 101 is evaluated.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-120126
  • Patent Document 1 discloses an electron beam transmission larger than the transmission image of the first aperture mask at the four corners of the second aperture mask in which a plurality of types of apertures corresponding to the repetitive pattern are formed.
  • a technique is disclosed in which holes are provided and correction is performed using a shaping deflection sensitivity coefficient obtained from dimensional calibration of an electron beam. This technique corrects the specimen surface so that a uniform electron beam is irradiated on any part of the second aperture mask, regardless of which part of the second aperture mask is deflected.
  • the forming deflection as described above The sensitivity coefficient is calculated, the transmission image of the first aperture mask is positioned, the collapsed transmission image is scanned in the vicinity, and the electron beam current that has passed through the second aperture mask is constant. It is necessary to go through a complicated process of obtaining the center coordinates, obtaining the shaping deflection coordinates for the design arrangement coordinates of each aperture on the second aperture mask, and obtaining the shaping deflection correction coefficient. In return for such a large increase in process, it is possible to irradiate a uniform electron beam on the surface of the sample.
  • the present invention has been made in view of the above problems, and it is possible to reliably transmit a transmission image of the first aperture mask caused by the charged particle irradiation source with a simple configuration without actually drawing on the sample surface. Evaluate uniformity, and based on the evaluation, improve pattern dimensional accuracy by suppressing pattern size variation in actual drawing without increasing the number of processes. It is an object of the present invention to provide a charged particle beam drawing apparatus and method capable of drawing.
  • the charged particle irradiation apparatus of the present invention includes a first aperture formed with a charged particle beam irradiation means and a first aperture for shaping the charged particle beam irradiated from the charged particle beam irradiation means.
  • the relative positional relationship between the mask, the second aperture mask formed with a plurality of second apertures corresponding to the repetitive pattern, and the transmission image of the first aperture and the second aperture is variable.
  • a current value measuring means for measuring a charged particle beam current value of a transmission image of the second aperture, wherein the second aperture mask includes at least one of the second apertures.
  • One is a transmission hole smaller than the transmission image of the first aperture, and the positional variable means changes the relative positional relationship of the transmission holes in the transmission image of the first aperture,
  • the serial current value measurement means for measuring a charged particle beam current value of the transmission image from the transmission hole at multiple sites in the transmission image of the first aperture, respectively.
  • One aspect of the charged particle irradiation apparatus of the present invention is that the charged particle beam current value in the transmission image of the first aperture is based on the charged particle beam current value measured by the current value measuring unit. Control means for evaluating the distribution uniformity is further included.
  • the control means Based on the evaluation result, a portion satisfying the distribution uniformity criterion in the transmission image of the first aperture is selected and used for charged particle beam drawing.
  • the charged particle irradiation method of the present invention includes a first aperture mask in which a first aperture for forming an irradiated charged particle beam is formed, and a plurality of second apertures corresponding to a repetitive pattern.
  • a charged particle beam is drawn by using a second aperture mask in which at least one of the second apertures is a transmission hole smaller than the transmission image of the first aperture.
  • the charged particle beam current value in the transmission image of the first aperture based on the charged particle beam current value measured by the current value measuring means.
  • the method further includes the step of evaluating the distribution uniformity.
  • the step of selecting a portion satisfying the distribution uniformity criterion in the transmission image of the first aperture Is further included.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an electron beam lithography apparatus according to a first embodiment.
  • FIG. 2 is a schematic perspective view for explaining main operations in the electron beam lithography apparatus according to the first embodiment.
  • FIG. 3 is a flowchart illustrating a method of evaluating the uniformity of a transmitted image of a first aperture in a first aperture mask in order of steps.
  • FIG. 4A is a schematic plan view showing a state where a transmission image of the first aperture is projected onto an evaluation block of the block mask.
  • FIG. 4B is a schematic plan view showing a state in which the transmission image of the first aperture is projected onto the evaluation block of the block mask.
  • FIG. 4C is a schematic plan view showing a state in which a transmission image of the first aperture is projected onto the evaluation block of the block mask.
  • FIG. 4D is a schematic plan view showing a state in which a transmission image of the first aperture is projected onto the evaluation block of the block mask.
  • FIG. 4E is a schematic plan view showing a state where a transmission image of the first aperture is projected onto the evaluation block of the block mask.
  • FIG. 5 is a flowchart showing a correction method for correcting electron beam irradiation using the evaluation results in FIG. 3 in order of steps.
  • FIG. 6A is a schematic diagram showing a variable rectangle as a wiring pattern.
  • FIG. 6B is a schematic diagram showing the aperture of the connection hole.
  • FIG. 7A is a schematic plan view showing an example of a transmission image of the first aperture mask.
  • FIG. 7B is a schematic plan view showing electron beam drawing when electron beam irradiation correction is not performed.
  • FIG. 7C is a schematic plan view showing a drawn contact pattern when electron beam irradiation is not corrected.
  • FIG. 7D is a schematic plan view showing electron beam drawing when correction of electron beam irradiation is performed.
  • FIG. 7E is a schematic plan view showing a drawn contact pattern when electron beam irradiation is corrected.
  • FIG. 8A is a schematic cross-sectional view showing an n-type MOS transistor manufacturing method using the electron beam lithography apparatus according to the first embodiment in the order of steps.
  • FIG. 8B is a schematic cross-sectional view showing, in the order of steps, a method for manufacturing the n-type MOS transistor using the electron beam lithography apparatus according to the first embodiment, following FIG. 8A.
  • FIG. 8C is a schematic cross-sectional view showing, in the order of steps, a method for manufacturing the n-type MOS transistor using the electron beam lithography apparatus according to the first embodiment, following FIG. 8B.
  • FIG. 8D is a schematic cross-sectional view showing, in the order of steps, a method for manufacturing the n-type MOS transistor using the electron beam lithography apparatus according to the first embodiment, following FIG. 8C.
  • FIG. 9A is a schematic diagram of n using the electron beam lithography apparatus according to the first embodiment, following FIG. It is a schematic sectional drawing which shows the manufacturing method of a type MOS transistor in process order.
  • FIG. 9B is a schematic cross-sectional view showing, in the order of steps, a method for manufacturing the n-type MOS transistor using the electron beam lithography apparatus according to the first embodiment, following FIG. 9A.
  • FIG. 9C is a schematic cross-sectional view showing, in the order of steps, a method for manufacturing the n-type MOS transistor using the electron beam lithography apparatus according to the first embodiment, following FIG. 9B.
  • FIG. 10 is a schematic diagram showing a schematic configuration of an electron beam lithography apparatus according to a second embodiment.
  • FIG. 11 is a schematic diagram showing an internal configuration of a personal user terminal device.
  • FIG. 12 is a perspective view schematically showing a method for evaluating the uniformity of a transmitted image of a first aperture mask caused by an electron beam irradiation source in a conventional block drawing apparatus.
  • the present inventor has intensively studied to evaluate the uniformity of the transmission image of the first aperture mask caused by the charged particle irradiation source without actually drawing a pattern for evaluation on a sample surface such as a semiconductor substrate.
  • a pattern in which the local decrease of the charged particle beam current value in the transmission image is actually drawn
  • the size of the pattern for example, a line width in the case of a rectangular pattern such as a wiring; a hole diameter in the case of an opening pattern such as a connection hole
  • a transmission hole that is smaller than the transmission image of the first aperture is provided as a second aperture in a predetermined block.
  • the transmission image of the first aperture and the second aperture are relatively moved to superimpose transmission holes at a plurality of locations in the transmission image, for example, at the four corners and the central portion, and from the transmission holes at these plurality of locations.
  • Each of the charged particle beam current values of the transmission image of is measured.
  • the control means evaluates the distribution uniformity of the charged particle beam current value in the transmission image of the first aperture based on these measurement results.
  • the non-uniform part where the charged particle beam current value is lower than the other part corresponds to the size variation part of the actually drawn image.
  • the control means selects a portion satisfying the distribution uniformity criterion in the transmission image of the first aperture.
  • the control means supplies only the selected portion, that is, the uniform portion of distribution excluding the nonuniform distribution portion of the charged particle beam current value corresponding to the line width variation portion of the actually drawn pattern, to the actual pattern drawing. .
  • FIG. 1 is a schematic diagram showing a schematic configuration of the electron beam lithography apparatus according to the first embodiment
  • FIG. 2 is a schematic perspective view for explaining main operations in the electron beam lithography apparatus according to the first embodiment. It is.
  • the electron beam drawing apparatus includes an electron beam optical system 10 for performing electron beam irradiation, an aperture mask group 20 for performing desired pattern drawing, and a sample chamber 30 in which a sample is installed. And a control system 40 for performing various controls.
  • the electron beam optical system 10 includes an electron gun 11 that is an electron beam irradiation source, various lenses 12a to 12e, a beam dimension control deflector 13 that controls a beam dimension of the electron beam, and an electron beam.
  • the aperture mask group 20 includes a first aperture mask 21 in which a first aperture for forming a charged particle beam irradiated from the electron gun 11 is formed, and a plurality of second apertures corresponding to a repetitive pattern. Are formed in each block, and these blocks are arranged side by side in the form of a matrix, the block mask 22 being a second aperture mask, and a beam limiting aperture mask for limiting the electron beam transmitted through the second aperture And is composed of 23.
  • the first aperture mask 21 and the block mask 22 will be described later.
  • the sample chamber 30 is a table 3 on which a sample 31 such as a semiconductor substrate or a glass mask is placed and fixed. 2, a sample 31, and a Faraday cup 33 that is selectively installed on a table 32 and is a current value measuring unit that measures an electron beam current value of a transmission image of the second aperture, for example.
  • the control system 40 includes a beam size control circuit 41 that drives and controls the deflector 13 for controlling the beam size, a beam position control circuit 42 that drives and controls the deflector 14 for beam position control, and a sample 31.
  • a deflection control circuit 43 that drives and controls the deflector 15 for controlling the deflection of the electron beam irradiated on the table, and a table drive circuit that drives and controls the table 32 in the X direction (left and right direction on the page) and the Y direction (front and back direction on the page) 44, a mask stage 45 for driving the block mask 22 in the X direction and the Y direction so as to align the desired block with the electron beam!
  • a beam dimension control circuit 41, beam position control circuit 42, deflection control circuit 43, table drive circuit 44, mask stage 45, and Faraday cup 33 are connected to each other. It is composed of a part 46.
  • the block mask 22 may be arranged in a matrix form with a force provided with four blocks for convenience of illustration and a larger number of blocks (each having a different aperture).
  • At least one block is the electron beam current value inspection block 1 in the block mask 22, and the first aperture projected onto the inspection block 22a is the second aperture.
  • a transmission hole 2 having a size smaller than the transmission image of the aperture is formed.
  • various apertures are formed for batch drawing in actual electron beam drawing.
  • this block is used as an inspection block. It may be used as (used for actual electron beam drawing).
  • FIG. 3 is a flowchart for explaining the method of evaluating the uniformity of the transmitted image of the first aperture in the first aperture mask in the order of steps.
  • 4A to 4E are schematic plan views showing a state in which the transmission image of the first aperture is projected onto the evaluation block of the block mask.
  • the Faraday cup 33 is set on the table 32, and an electron beam is emitted from the electron gun 11 (step Sl).
  • the overall control unit 46 drives the deflector 14 by the deflection control circuit 42 to deflect the electron beam, and projects the transmission image of the first aperture onto the evaluation block 1 of the block mask 22.
  • the overall control unit 46 relatively moves the transmission image of the first aperture in the first aperture 21 and the evaluation block 1 of the block mask 22 so that the inside of the transmission image of the first aperture
  • the relative positional relationship of the transmission hole 2 is changed with, the transmission hole 2 is aligned with a plurality of measurement points in the transmission image, and the electron beam sequentially transmitted through the transmission hole 2 by the Faraday cup 33 is obtained.
  • Measure the current value step S2.
  • the four points in the transmission image lower left part, lower right part, upper left part, upper right part
  • five points in the central part are taken as measurement points.
  • the position variable means for changing the relative positions of the transmission image of the first aperture and the evaluation block 1 of the block mask 22 is the mask stage 45.
  • the overall control unit 46 drives the mask stage 45 with the first aperture 21 fixed to change the relative positional relationship of the transmission holes 2 in the transmission image of the first aperture in the first aperture 21.
  • the transmission hole 2 is positioned at the lower left position in a predetermined position in the transmission image of the first aperture, here in the transmission image 21a of the first aperture.
  • the electron beam transmitted through the transmission hole 2 is incident on the Faraday cup 33 installed on the table 32.
  • the overall control unit 46 measures the current value I of the electron beam transmitted through the transmission hole 2 by the Faraday cup 33 and records the measurement result on a predetermined recording medium (not shown).
  • This recording medium may be incorporated in the overall control unit 46 or installed outside the overall control unit 46.
  • the overall control unit 46 drives the mask stage 45 to the first aperture 21.
  • the relative positional relationship of the transmission holes 2 is changed in the transmission image of the first aperture.
  • the transmission hole 2 is positioned at the lower right part in the predetermined position in the transmission image of the first aperture, here in the transmission image 21a of the first aperture.
  • the electron beam that has passed through the transmission hole 2 is incident on the Faraday cup 33 installed on the table 32.
  • the overall control unit 46 determines the current value I of the electron beam transmitted through the transmission hole 2 by the Faraday cup 33.
  • the overall control unit 46 drives the mask stage 45 to change the relative positional relationship of the transmission holes 2 in the transmission image of the first aperture in the first aperture 21.
  • the transmission hole 2 is positioned at a predetermined position in the transmission image of the first aperture, here in the transmission image 21a of the first aperture, as shown in FIG. 4C.
  • the electron beam that has passed through the transmission hole 2 is incident on the Faraday cup 33 installed on the table 32.
  • the overall control unit 46 determines the current value I of the electron beam transmitted through the transmission hole 2 by the Faraday cup 33.
  • the overall control unit 46 drives the mask stage 45 to change the relative positional relationship of the transmission holes 2 in the transmission image of the first aperture in the first aperture 21.
  • the transmission hole 2 is positioned at a predetermined position in the transmission image of the first aperture, here in the transmission image 21a of the first aperture, as shown in FIG. 4D.
  • the electron beam that has passed through the transmission hole 2 is incident on the Faraday cup 33 installed on the table 32.
  • the overall control unit 46 determines the current value I of the electron beam transmitted through the transmission hole 2 by the Faraday cup 33.
  • the overall control unit 46 drives the mask stage 45 to change the relative positional relationship of the transmission holes 2 in the transmission image of the first aperture 21 in the first aperture 21.
  • the transmission hole 2 is positioned at the central position in the predetermined position in the transmission image of the first aperture, here in the transmission image 21a of the first aperture.
  • the electron beam that has passed through the transmission hole 2 is incident on the Faraday cup 33 installed on the table 32.
  • the overall control unit 46 determines the current value I of the electron beam transmitted through the transmission hole 2 by the Faraday cup 33.
  • step S2 the overall control unit 46 in the transmission image 21a of the first aperture Based on the current value I ⁇ 1 of the electron beam transmitted through the transmission hole 2 at five locations, the transmission image 21a
  • the distribution of the electron beam current value is calculated, and the distribution uniformity of the electron beam current value is evaluated (step S3).
  • a large number of measurements are made in more detail in the force transmission image 21a exemplified for the case of measuring electron beam current values at five measurement points in the transmission image 21a of the first aperture.
  • a point may be taken to evaluate the distribution uniformity of the electron beam current value.
  • the more measurement points the more accurately the distribution uniformity can be evaluated.
  • FIG. 5 is a flowchart showing, in order of steps, a correction method for correcting electron beam irradiation using the evaluation results of FIG.
  • the overall control unit 46 has a uniform electron beam current value in the transmission image 21a of the first aperture based on the distribution uniformity of the electron beam current value evaluated in step S3.
  • the area is determined to be a part suitable for pattern drawing, and the position information of the area is recorded on a predetermined recording medium (step S4).
  • the overall control unit 46 sends the position information to the beam position control circuit 42 (step S5).
  • the beam position control circuit 42 feeds back the position information from the overall control unit 46 to the deflector 14 that positions the electron beam on the block mask 22 by deflecting the electron beam, and transmits it in the transmission image 21a of the first aperture 21.
  • step S6 the irradiation state of the electron beam is corrected so that only the region where the electron beam current value is uniform is used. The actual electron beam drawing is executed in such a corrected state.
  • the electron beam adjustment during drawing is performed only on the so-called variable rectangle 3 that becomes the wiring pattern in the superposition of the first aperture mask 21 and the block mask 22 as shown in FIG. 6A.
  • the electron dose is calculated from the current density measured in the variable rectangle 3
  • the electron dose in the block mask 22 is drawn with the electron dose determined by the variable rectangle on the assumption that the transmission image of the first aperture is uniform.
  • the electron dose is determined by a variable rectangle that is formed using the right end in the transmission image of the first aperture. Therefore, the second aperture of the block mask 22 using the left end having a lower current density is drawn, for example, the aperture 4 of the connection hole as shown in FIG. 6B (exemplifying a continuous hole and a single hole).
  • the size of the drawn hall pattern is smaller than the design value. If the hole pattern size is reduced, the contact resistance value increases, which may cause defects.
  • the uniform region of the electron beam current value is determined based on the distribution of the electron beam current value in the transmission image 21a of the first aperture.
  • FIG. 7A shows the state of the transmission image 21a determined in this way.
  • the lower left part of the transmission image 21a is a non-uniform region 52 (a region indicated by oblique lines in the figure), and the transmission image 21a includes a uniform region 51 and other non-uniform regions 52 is illustrated.
  • the entire transmission image 21a is subjected to electron beam drawing as shown in FIG. 7B.
  • the transmission image 21a of the first aperture and the block in which the second aperture of the block mask 22 is made into a plurality of micro holes 53 are overlapped, and the transmission image of the micro holes 53 is mounted on the table 32.
  • the contact pattern drawn at this time is shown in FIG. 7C.
  • each contact pattern 54 was formed in a uniform size, whereas the non-uniform region was formed.
  • each contact pattern 54 is formed smaller in size than the portion corresponding to the uniform region 51.
  • the non-uniform region 52 is excluded and only the uniform region 51 is used for pattern drawing.
  • the uniform area 51 in the transmission image 21a of the first aperture and the block in which the second aperture of the block mask 22 is made into a plurality of micro holes 53 are overlapped, and the transmission image of the micro holes 53 is displayed as a table.
  • the contact pattern drawn at this time is shown in Fig. 7E.
  • the uniformity of the transmission image 21a of the first aperture caused by the electron gun 11 is reliably evaluated with a simple configuration without actually drawing on the sample 31, Furthermore, based on the evaluation, the pattern size of the pattern to be drawn can be improved and the pattern of the expected design value can be drawn at once without increasing the number of processes and suppressing the pattern size variation in actual drawing. Is possible.
  • an n-type MOS transistor is exemplified as the semiconductor device, but the application target of the electron beam lithography apparatus according to the present embodiment is of course applied to other various semiconductor devices that are not limited to the n-type MOS transistor. Can do.
  • FIGS. 8A to 8D and FIGS. 9A to 9C are schematic cross-sectional views showing, in the order of steps, a method for manufacturing an n-type MOS transistor using the electron beam lithography apparatus according to the first embodiment.
  • the left side of each figure shows the device formation region, and the right side shows the mark formation region.
  • the element isolation trench 66 is formed by the Trench Isolation method, and the step mark trench 67 is formed in the mark formation region.
  • a silicon nitride film 62 is formed on the silicon semiconductor substrate 61 by, for example, a low pressure CVD method. Thereafter, a resist 63 is applied on the silicon nitride film 62, and the resist 63 is processed by lithography to form a groove pattern 64 in the device formation region and a groove pattern 65 in the mark formation region.
  • the silicon nitride film 62 is reinforced by reactive ion etching (RIE) using a fluorine-based gas as an etching gas.
  • RIE reactive ion etching
  • the etching gas is switched to a phosphorous gas, and the silicon semiconductor substrate 61 is processed to a depth of, for example, about 300 nm by RIE.
  • an element isolation groove 66 that follows the groove pattern 64 in the element isolation region of the silicon semiconductor substrate 61 is formed in the device formation region, and a step mark groove that follows the groove pattern 65 in the silicon semiconductor substrate 61 in the mark formation region.
  • a certain alignment mark 67 is formed.
  • an STI element isolation structure 68 is formed in the device formation region.
  • the resist 63 is removed by ashing or the like
  • the silicon nitride film 62 is removed by a hydrofluoric acid solution or the like
  • the silicon isolation film 66 and the step mark groove 67 are embedded on the entire surface by, eg, CVD method.
  • An acid film (not shown) is deposited.
  • the silicon oxide film is polished by CMP (Chemical Mechanical Polishing) using the surface of the silicon semiconductor substrate 61 as a stopper to form an STI element isolation structure 68 in which the element isolation groove 66 is filled with silicon oxide in the device formation region.
  • the alignment mark 67 is filled with silicon oxide in the mark formation region.
  • a transistor structure 70 is formed in the device formation region.
  • a p-type wall 71 is formed by ion-implanting a P-type impurity, for example, boron B, into the active region defined by the STI element isolation structure 68 of the silicon semiconductor substrate 61.
  • a P-type impurity for example, boron B
  • a gate insulating film 72 is deposited by CVD as a gate material.
  • the silicon film is processed into an electrode shape by lithography and dry etching, and the gate electrode 73 is patterned.
  • a silicon oxide film (not shown) is deposited on the entire surface so as to cover the gate electrode 73, and the entire surface of the silicon oxide film is anisotropically etched (etched back). Sidewall spacers 74 are formed by leaving the oxide film only on both sides of the gate electrode 73.
  • an n-type impurity such as phosphorus (P) is ion-implanted into the surface layer of the active region on both sides of the structure composed of these, and the source Z drain 75 is formed.
  • a silicon oxide film (not shown) is deposited on the entire surface, and the surface of the silicon oxide film is polished and flattened by a CMP method to form an interlayer insulating film 76.
  • the transistor structure 70 embedded in the interlayer insulating film 76 is completed in the device formation region.
  • a resist 77 having an opening 77a for digging up the alignment mark 67 in the mark formation region is formed.
  • a resist 77 is applied to the entire surface of the interlayer insulating film 76, and the resist 77 is processed by, for example, electron beam drawing, and the mark formation region is filled with silicon oxide.
  • An opening 77a that exposes a peripheral portion centering on the mark 67 is formed. Since the alignment at the time of electron beam drawing does not require high accuracy of about 0.5 m or less, for example, the so-called optical rough alignment mechanism attached to the electron beam drawing apparatus is used to perform the electron beam drawing by light exposure. Use the alignment mark to be used relatively roughly.
  • silicon oxide in the alignment mark 67 in the mark formation region is removed.
  • RIE is performed using the resist 77 as a mask and a fluorine-based gas as an etching gas, and the interlayer insulating film 76 is covered by following the opening 77a of the resist 77 to open the opening 76a in the interlayer insulating film 76.
  • the silicon oxide filler filling the groove pattern 65 in the mark forming region is removed, and the alignment mark 67 is exposed from the opening 76a.
  • a resist 78 having a contact pattern 78a for forming a contact hole in the transistor structure 70 is formed.
  • a resist 78 is applied to the entire surface of the interlayer insulating film 76, alignment is performed with high accuracy by an electron beam using the alignment mark 67, the resist 78 is processed by electron beam drawing, and a transistor in the resist 78 is obtained.
  • An opening 78a is formed at a position aligned with the upper part of the source / drain 75 of the structure 70.
  • the electron beam drawing apparatus disclosed in this embodiment is used. That is, as described above, a block in which only the region where the electron beam current value distribution is uniform in the transmission image 21a of the first aperture is used and the second aperture of the block mask 22 is an aperture corresponding to the contact pattern 78a. And draw an electron beam on resist 78.
  • a contact hole 79 is patterned in the transistor structure 70.
  • RIE is performed using the resist 78 as a mask and a fluorine-based gas as an etching gas, and the interlayer insulating film 76 is covered according to the contact hole pattern 78a of the resist 78, and the source is supplied to the interlayer insulating film 76.
  • a contact hole 79 exposing a part of the surface of the / drain 75 is formed.
  • the conductive plug formed by filling the contact hole 79 with a conductive material and the wiring or contour connected to the conductive plug and extending on the interlayer insulating film 76 The n-type MOS transistor is completed through a process of filling wiring holes 79 and forming wirings extending on the interlayer insulating film 76.
  • the electron beam drawing apparatus of the present embodiment is configured in substantially the same manner as in the first embodiment, but the transmission image of the first aperture in the first aperture 21 and the evaluation block 1 of the block mask 22 This is different in that the position variable means for relatively moving the position is different.
  • FIG. 10 is a schematic diagram showing a schematic configuration of the electron beam lithography apparatus according to the second embodiment.
  • This electron beam drawing apparatus is different from the electron beam drawing apparatus of the first embodiment in that the control system 40 does not have a mask stage 45.
  • the deflector 14 serves as a position variable means for changing the relative positions of the transmission image of the first aperture and the evaluation block 1 of the block mask 22.
  • the overall control unit 46 when projecting the transmission image of the first aperture 21 onto the evaluation block 1 of the block mask 22, the overall control unit 46 keeps the block mask 22 fixed and the beam position.
  • the deflector 14 is driven by the control circuit 42 to deflect the electron beam, and the relative positional relationship of the transmission holes 2 is changed in the transmission image of the first aperture in the first aperture 21.
  • the transmission image 21a of the first aperture due to the electron gun 11 can be surely uniform with a simple configuration without actually drawing on the sample 31.
  • the pattern size variation is improved by suppressing pattern size variation in actual drawing, and the pattern of the desired design value is batched. It becomes possible to draw.
  • Program codes for steps S4 to S6 can be realized by running programs stored in RAM or ROM of the computer. This program and a computer-readable storage medium storing the program are included in the embodiment of the present invention.
  • the program is recorded on a recording medium such as a CD-ROM, or provided to a computer via various transmission media.
  • a recording medium for recording the program besides a CD-ROM, a flexible disk, a hard disk, a magnetic tape, a magneto-optical disk, a nonvolatile memory card, or the like can be used.
  • the transmission medium of the program is a communication medium (wired line such as an optical fiber) in a computer network (LAN, Internet or other WAN, wireless communication network, etc.) system for propagating and supplying program information as a carrier wave. Or wireless lines).
  • the function of the above-described embodiment is realized not only by executing the program supplied by the computer, but there is an OS (operating system) in which the program is running on the computer.
  • OS operating system
  • the functions of the above-described embodiment are realized in cooperation with the above-mentioned embodiment, or all of the processing of the supplied program is partially performed by a function expansion board or a function expansion unit of the computer, the above-described embodiment
  • Such a program is also included in the embodiment of the present invention when the above function is realized.
  • FIG. 11 is a schematic diagram showing the internal configuration of a personal user terminal device.
  • 1200 is a computer PC.
  • PC1200 is equipped with CPU1201, and executes device control software stored in ROM1202 or hard disk (HD) 1211 or supplied from flexible disk drive (FD) 1212 to control each device connected to system node 1204 Control.
  • ROM1202 read-only memory
  • HD hard disk
  • FD flexible disk drive
  • Reference numeral 1203 denotes a RAM, which functions as a main memory, work area, and the like for the CPU 1201.
  • 1205 Is a keyboard controller (KBC) that controls the input of commands from the keyboard (KB) 1209 and devices not shown.
  • KBC keyboard controller
  • Reference numeral 1206 denotes a CRT controller (CRTC), which controls display on a CRT display (CRT) 1210.
  • 1207 is a disk controller (DKC) that stores boot programs (startup programs: programs that start running (operating) the hardware and software of the computer), multiple applications, editing files, user files, and network management programs. Controls access to the hard disk (HD) 1211 and flexible disk (FD) 1212.
  • boot programs startup programs: programs that start running (operating) the hardware and software of the computer
  • startup programs programs that start running (operating) the hardware and software of the computer
  • multiple applications editing files
  • user files and network management programs. Controls access to the hard disk (HD) 1211 and flexible disk (FD) 1212.
  • Reference numeral 1208 denotes a network interface card (NIC), which performs bidirectional data exchange with a network printer, another network device, or another PC via the LAN 1220.
  • NIC network interface card
  • the uniformity of the transmission image of the first aperture mask reliably caused by the charged particle irradiation source with a simple configuration without actually drawing on the sample surface.
  • the pattern size variation can be improved by suppressing pattern size variation in actual drawing, and patterns with the desired design values can be drawn at once. It becomes possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electron Beam Exposure (AREA)

Abstract

An integral control unit (46) relatively moves a transmitting image of a first aperture (21) in the first aperture and an evaluation block (1) of a block mask (22) so as to change relative positional relationship of a transmission hole (2) in the transmitting image of the first aperture and positions the transmission hole (2) at measurement points in the transmitting image so as to measure a current value of electron beams which have successively pass through the transmission hole (2) by a Faraday cup (33). According to this, electron beam current value distribution uniformity is evaluated. An electron beam plotting is actually performed by using only the region where the current value in the transmitting image of the first aperture (21) is uniform. With this configuration, it is possible to integrally plot a patter of a predetermined design value.

Description

明 細 書  Specification
荷電粒子線描画装置及び方法  Charged particle beam drawing apparatus and method
技術分野  Technical field
[0001] 本発明は、基板上に荷電粒子線、特に電子線を用いて所望のパターンを描画する 荷電粒子線描画装置及び方法に関する。  The present invention relates to a charged particle beam drawing apparatus and method for drawing a desired pattern on a substrate using a charged particle beam, particularly an electron beam.
背景技術  Background art
[0002] 従来より、半導体基板等の試料上に所望のパターンを描画するものとして、矩形' 三角形などの可変成形ビームを用いた電子線描画装置が使用されている。この電子 線描画装置では、微細なパターンを描画する場合、単位面積当たりの図形数が増大 するため、描画時間がこれに比例して増加し、スループットが著しく低下する。  Conventionally, as a device for drawing a desired pattern on a sample such as a semiconductor substrate, an electron beam drawing apparatus using a variable shaped beam such as a rectangle or a triangle has been used. In this electron beam drawing apparatus, when a fine pattern is drawn, the number of figures per unit area increases, so the drawing time increases in proportion to this and the throughput is significantly reduced.
[0003] そこで近時では、半導体チップ等を形成するために繰り返し使用する複雑なパター ンに相当するアパーチャを有する複数種類のブロックを用いた、いわゆるブロック描 画装置が提案されている。このブロック描画装置は、複数種類のブロックがマトリクス 状に並設されてなる第 2のアパーチャマスクであるブロックマスクを用い、所望のブロ ックに形成されたアパーチャに第 1のアパーチャマスクの透過像を重ね合わせ、当該 ブロックのパターンを一括して描画するものである。  Therefore, recently, a so-called block drawing apparatus has been proposed that uses a plurality of types of blocks having apertures corresponding to complex patterns that are repeatedly used to form a semiconductor chip or the like. This block drawing apparatus uses a block mask which is a second aperture mask in which a plurality of types of blocks are arranged in a matrix, and a transmission image of the first aperture mask is formed on the aperture formed in a desired block. And the pattern of the block is drawn at once.
[0004] ところで、電子線描画装置では、電子線照射源に内在する瑕疵、例えば第 1のアバ 一チヤの透過像を第 2のアパーチャマスクに投影するレンズの焦点が僅か〖こずれたり 、電子光学系の製作誤差等により理想的なレンズが構成できないこと等がある。この ような場合、電子線照射源に起因して第 1のアパーチャマスクの透過像が不均一とな つて、第 2のアパーチャマスクの透過像における電子線の電流密度が変化する。これ により、各アパーチャを正確に投影できず、パターンを所望の状態に描画することが できないという問題がある。この問題は、ブロック描画装置でも不可避のものとして認 識されており、その対処法が考察されている。  By the way, in the electron beam drawing apparatus, the focus of the lens for projecting the transmission image of the first aperture on the second aperture mask, for example, slightly in the electron beam irradiation source, An ideal lens cannot be constructed due to an optical system manufacturing error or the like. In such a case, the transmission image of the first aperture mask becomes non-uniform due to the electron beam irradiation source, and the current density of the electron beam in the transmission image of the second aperture mask changes. As a result, each aperture cannot be accurately projected, and the pattern cannot be drawn in a desired state. This problem is recognized as inevitable even in block drawing devices, and measures to deal with it are being considered.
[0005] 図 12は、従来のブロック描画装置における電子線照射源に起因する第 1のァパー チヤマスクの透過像の均一性の評価方法を模式的に示す斜視図である。  FIG. 12 is a perspective view schematically showing a method for evaluating the uniformity of the transmitted image of the first aperture mask resulting from the electron beam irradiation source in the conventional block drawing apparatus.
従来のブロック描画装置では、第 2のアパーチャマスクであるブロックマスク 102に おいて、そのうちのブロック(図示の例では左端のブロック 111)の 4辺に評価用の矩 形パターンのアパーチャ 11 la〜: L 1 Idが形成されて!、る。このブロックマスク 102を 用い、半導体基板等の試料上の電流値測定箇所で測定した試料電流値が最大とな るように調整し、ブロックマスク 102のブロック 111に第 1のアパーチャマスク 101の透 過像を重ね合わせ、当該ブロック 111の矩形パターンのアパーチャ 11 la〜 11 Idを 一括して試料上に描画する。そして、実際に描画された矩形パターン 112a〜112d の線幅寸法をそれぞれ測定し、各測定値を比較検討してパターン成形不良を見積も ることにより、電子線照射源に起因する第 1のアパーチャマスク 101の透過像の均一 性を評価する。 In the conventional block drawing apparatus, the second mask mask 102 is used as the second aperture mask. In this case, an evaluation pattern 11 la˜: L 1 Id is formed on four sides of the block (the leftmost block 111 in the illustrated example)! Using this block mask 102, adjustment is made so that the sample current value measured at the current value measurement point on the sample such as a semiconductor substrate is maximized, and the first aperture mask 101 is transmitted through the block 111 of the block mask 102. The images are superimposed, and the rectangular pattern apertures 11 la to 11 Id of the block 111 are drawn on the sample in a lump. Then, by measuring the line width dimensions of the actually drawn rectangular patterns 112a to 112d and comparing the measured values to estimate pattern forming defects, the first aperture caused by the electron beam irradiation source is estimated. The uniformity of the transmission image of the mask 101 is evaluated.
[0006] 特許文献 1 :特開平 6— 120126号公報 Patent Document 1: Japanese Patent Laid-Open No. 6-120126
発明の開示  Disclosure of the invention
[0007] し力しながら、上記した従来の評価方法では、試料面に評価用のパターンを描画し 、更にその線幅寸法を測定するという、評価のみのために実際に半導体素子の配線 等のパターンを形成する場合と同様の工程を踏襲しなければならず、迂遠で余計な 作業を要する t 、う問題がある。  However, in the above-described conventional evaluation method, an evaluation pattern is drawn on the sample surface, and the line width dimension is measured. The same process as when forming a pattern must be followed, and there is a problem that requires extra work by detour.
[0008] 更に、評価用の矩形パターン 112a〜 112dの線幅寸法を測定してパターン成形不 良を見積り、第 1のアパーチャマスク 101の透過像に不均一な部分が存在すると評価 された場合、当該パターン成形不良が電子線照射源に起因する言わば装置固有の ものであることから、第 1のアパーチャマスク 101の透過像内で常に同一の部分でパ ターン成形不良が発生する。従って、実際に半導体素子の配線等のノターンを形成 するときに常に同一の部分で線幅寸法の細い箇所が生じ、寸法ばらつきを著しく悪 化させるという問題がある。  [0008] Further, when the line width dimensions of the rectangular patterns 112a to 112d for evaluation are measured to estimate pattern formation defects, and it is evaluated that a non-uniform portion exists in the transmission image of the first aperture mask 101, Since the pattern forming defect is caused by the electron beam irradiation source and is inherent to the apparatus, the pattern forming defect always occurs in the same portion in the transmission image of the first aperture mask 101. Therefore, there is a problem that when a pattern such as a wiring of a semiconductor element is actually formed, a portion having a narrow line width always occurs in the same portion, and the dimensional variation is remarkably deteriorated.
[0009] この点、特許文献 1には、繰り返しパターンに相当する複数種類のアパーチャが形 成された第 2のアパーチャマスクの 4隅に第 1のアパーチャマスクの透過像よりも大き な電子線透過孔を設け、電子線の寸法校正から得られた成形偏向感度係数を用い て補正を行う技術が開示されている。この技術は、第 1のアパーチャマスクの透過像 を第 2のアパーチャマスクのどの部分に偏向させても、試料面上に均一な電子線が 照射されるように補正するものである。し力しながらこの場合、上記のように成形偏向 感度係数を算出し、第 1のアパーチャマスクの透過像を位置決めし、その近傍で倒 壊透過像を走査して、第 2のアパーチャマスクを通過した電子線電流が一定となる成 形偏向領域の中心座標を求め、第 2のアパーチャマスク上における各アパーチャの 設計配置座標に対する成形偏向座標を得て、成形偏向補正係数を求める、という煩 雑な作業を経ることを要する。このような多大な工程増の見返りとして試料面上に均 一な電子線を照射することができるのであり、極めて迂遠で手間が力かると言わざる を得ない。 [0009] In this regard, Patent Document 1 discloses an electron beam transmission larger than the transmission image of the first aperture mask at the four corners of the second aperture mask in which a plurality of types of apertures corresponding to the repetitive pattern are formed. A technique is disclosed in which holes are provided and correction is performed using a shaping deflection sensitivity coefficient obtained from dimensional calibration of an electron beam. This technique corrects the specimen surface so that a uniform electron beam is irradiated on any part of the second aperture mask, regardless of which part of the second aperture mask is deflected. In this case, the forming deflection as described above The sensitivity coefficient is calculated, the transmission image of the first aperture mask is positioned, the collapsed transmission image is scanned in the vicinity, and the electron beam current that has passed through the second aperture mask is constant. It is necessary to go through a complicated process of obtaining the center coordinates, obtaining the shaping deflection coordinates for the design arrangement coordinates of each aperture on the second aperture mask, and obtaining the shaping deflection correction coefficient. In return for such a large increase in process, it is possible to irradiate a uniform electron beam on the surface of the sample.
[0010] 本発明は、上記の課題に鑑みてなされたものであり、実際に試料面に描画すること なく簡易な構成で確実に荷電粒子照射源に起因する第 1のアパーチャマスクの透過 像の均一性を評価し、更には当該評価に基づいて工程増を招くことなく実際の描画 においてパターンのサイズばらつきを抑止して描画するパターンの寸法精度を向上 させ、所期の設計値のパターンを一括描画することを可能とする荷電粒子線描画装 置及び方法を提供することを目的とする。  [0010] The present invention has been made in view of the above problems, and it is possible to reliably transmit a transmission image of the first aperture mask caused by the charged particle irradiation source with a simple configuration without actually drawing on the sample surface. Evaluate uniformity, and based on the evaluation, improve pattern dimensional accuracy by suppressing pattern size variation in actual drawing without increasing the number of processes. It is an object of the present invention to provide a charged particle beam drawing apparatus and method capable of drawing.
[0011] 本発明の荷電粒子照射装置は、荷電粒子線照射手段と、前記荷電粒子線照射手 段から照射された荷電粒子線を成形するための第 1のアパーチャが形成された第 1 のアパーチャマスクと、繰り返しパターンに相当する複数の第 2のアパーチャが形成 された第 2のアパーチャマスクと、前記第 1のアパーチャの透過像と前記第 2のアバ 一チヤとの相対的な位置関係を可変とする位置可変手段と、前記第 2のアパーチャ の透過像の荷電粒子線電流値を測定する電流値測定手段とを含み、前記第 2のァ パーチヤマスクは、前記第 2のアパーチャのうちの少なくとも 1つが前記第 1のァパー チヤの透過像よりも小さい透過孔とされており、前記位置可変手段により前記第 1の アパーチャの透過像内における前記透過孔の相対的な位置関係を変化させ、前記 電流値測定手段により前記第 1のアパーチャの透過像内の複数部位における前記 透過孔からの透過像の荷電粒子線電流値をそれぞれ測定する。  [0011] The charged particle irradiation apparatus of the present invention includes a first aperture formed with a charged particle beam irradiation means and a first aperture for shaping the charged particle beam irradiated from the charged particle beam irradiation means. The relative positional relationship between the mask, the second aperture mask formed with a plurality of second apertures corresponding to the repetitive pattern, and the transmission image of the first aperture and the second aperture is variable. And a current value measuring means for measuring a charged particle beam current value of a transmission image of the second aperture, wherein the second aperture mask includes at least one of the second apertures. One is a transmission hole smaller than the transmission image of the first aperture, and the positional variable means changes the relative positional relationship of the transmission holes in the transmission image of the first aperture, The serial current value measurement means for measuring a charged particle beam current value of the transmission image from the transmission hole at multiple sites in the transmission image of the first aperture, respectively.
[0012] 本発明の荷電粒子照射装置の一態様は、前記電流値測定手段により測定された 前記荷電粒子線電流値に基づき、前記第 1のアパーチャの透過像内における前記 荷電粒子線電流値の分布均一性を評価する制御手段を更に含む。  [0012] One aspect of the charged particle irradiation apparatus of the present invention is that the charged particle beam current value in the transmission image of the first aperture is based on the charged particle beam current value measured by the current value measuring unit. Control means for evaluating the distribution uniformity is further included.
[0013] 本発明の荷電粒子照射装置の一態様では、前記制御手段は、前記分布均一性の 評価結果に基づき、前記第 1のアパーチャの透過像内のうち前記分布均一性の基準 を満たす部分を選択して荷電粒子線描画に供する。 In one aspect of the charged particle irradiation apparatus of the present invention, the control means Based on the evaluation result, a portion satisfying the distribution uniformity criterion in the transmission image of the first aperture is selected and used for charged particle beam drawing.
[0014] 本発明の荷電粒子照射方法は、照射された荷電粒子線を成形するための第 1のァ パーチヤが形成された第 1のアパーチャマスクと、繰り返しパターンに相当する複数 の第 2のアパーチャが形成されており、前記第 2のアパーチャのうちの少なくとも 1つ が前記第 1のアパーチャの透過像よりも小さい透過孔とされた第 2のアパーチャマス クとを用 、て荷電粒子線描画を行うに際して、前記第 1のアパーチャマスクに荷電粒 子線を照射して、前記第 1のアパーチャの透過像を前記第 2のアパーチャマスク上に 投影するステップと、前記第 1のアパーチャの透過像内における前記透過孔の相対 的な位置関係を変化させ、前記第 1のアパーチャの透過像内の複数部位における前 記透過孔からの透過像の荷電粒子線電流値をそれぞれ測定するステップとを含む。  [0014] The charged particle irradiation method of the present invention includes a first aperture mask in which a first aperture for forming an irradiated charged particle beam is formed, and a plurality of second apertures corresponding to a repetitive pattern. A charged particle beam is drawn by using a second aperture mask in which at least one of the second apertures is a transmission hole smaller than the transmission image of the first aperture. When performing, a step of irradiating the first aperture mask with charged particle beams and projecting a transmission image of the first aperture onto the second aperture mask; and in a transmission image of the first aperture Steps for measuring the charged particle beam current values of the transmission images from the transmission holes at a plurality of locations in the transmission image of the first aperture by changing the relative positional relationship of the transmission holes in the first aperture. Including
[0015] 本発明の荷電粒子照射方法の一態様では、前記電流値測定手段により測定され た前記荷電粒子線電流値に基づき、前記第 1のアパーチャの透過像内における前 記荷電粒子線電流値の分布均一性を評価するステップを更に含む。  In one aspect of the charged particle irradiation method of the present invention, the charged particle beam current value in the transmission image of the first aperture based on the charged particle beam current value measured by the current value measuring means. The method further includes the step of evaluating the distribution uniformity.
[0016] 本発明の荷電粒子照射方法の一態様では、前記分布均一性の評価結果に基づき 、前記第 1のアパーチャの透過像内のうち前記分布均一性の基準を満たす部分を選 択するステップを更に含む。  In one aspect of the charged particle irradiation method of the present invention, based on the evaluation result of the distribution uniformity, the step of selecting a portion satisfying the distribution uniformity criterion in the transmission image of the first aperture Is further included.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]図 1は、第 1の実施形態による電子線描画装置の概略構成を示す模式図である  FIG. 1 is a schematic diagram showing a schematic configuration of an electron beam lithography apparatus according to a first embodiment.
[図 2]図 2は、第 1の実施形態による電子線描画装置における主要動作を説明するた めの概略斜視図である。 FIG. 2 is a schematic perspective view for explaining main operations in the electron beam lithography apparatus according to the first embodiment.
[図 3]図 3は、第 1のアパーチャマスクにおける第 1のアパーチャの透過像の均一性の 評価方法をステップ順に説明するフロー図である。  [FIG. 3] FIG. 3 is a flowchart illustrating a method of evaluating the uniformity of a transmitted image of a first aperture in a first aperture mask in order of steps.
[図 4A]図 4Aは、第 1のアパーチャの透過像がブロックマスクの評価用ブロックに投影 された様子を示す概略平面図である。  FIG. 4A is a schematic plan view showing a state where a transmission image of the first aperture is projected onto an evaluation block of the block mask.
[図 4B]図 4Bは、第 1のアパーチャの透過像がブロックマスクの評価用ブロックに投影 された様子を示す概略平面図である。 [図 4C]図 4Cは、第 1のアパーチャの透過像がブロックマスクの評価用ブロックに投影 された様子を示す概略平面図である。 FIG. 4B is a schematic plan view showing a state in which the transmission image of the first aperture is projected onto the evaluation block of the block mask. FIG. 4C is a schematic plan view showing a state in which a transmission image of the first aperture is projected onto the evaluation block of the block mask.
[図 4D]図 4Dは、第 1のアパーチャの透過像がブロックマスクの評価用ブロックに投影 された様子を示す概略平面図である。  [FIG. 4D] FIG. 4D is a schematic plan view showing a state in which a transmission image of the first aperture is projected onto the evaluation block of the block mask.
[図 4E]図 4Eは、第 1のアパーチャの透過像がブロックマスクの評価用ブロックに投影 された様子を示す概略平面図である。  FIG. 4E is a schematic plan view showing a state where a transmission image of the first aperture is projected onto the evaluation block of the block mask.
[図 5]図 5は、図 3の評価結果を用いて、電子線照射の補正を行う補正方法をステツ プ順に示すフロー図である。  FIG. 5 is a flowchart showing a correction method for correcting electron beam irradiation using the evaluation results in FIG. 3 in order of steps.
圆 6A]図 6Aは、配線パターンとなる可変矩形を示す模式図である。 [6A] FIG. 6A is a schematic diagram showing a variable rectangle as a wiring pattern.
[図 6B]図 6Bは、接続孔のアパーチャを示す模式図である。 FIG. 6B is a schematic diagram showing the aperture of the connection hole.
[図 7A]図 7Aは、第 1のアパーチャマスクの透過像の一例を示す概略平面図である。  FIG. 7A is a schematic plan view showing an example of a transmission image of the first aperture mask.
[図 7B]図 7Bは、電子線照射の補正を行わない場合の電子線描画を示す概略平面 図である。 FIG. 7B is a schematic plan view showing electron beam drawing when electron beam irradiation correction is not performed.
[図 7C]図 7Cは、電子線照射の補正を行わない場合の描画されたコンタクトパターン を示す概略平面図である。  [FIG. 7C] FIG. 7C is a schematic plan view showing a drawn contact pattern when electron beam irradiation is not corrected.
[図 7D]図 7Dは、電子線照射の補正を行った場合の電子線描画を示す概略平面図 である。  FIG. 7D is a schematic plan view showing electron beam drawing when correction of electron beam irradiation is performed.
[図 7E]図 7Eは、電子線照射の補正を行った場合の描画されたコンタクトパターンを 示す概略平面図である。  FIG. 7E is a schematic plan view showing a drawn contact pattern when electron beam irradiation is corrected.
[図 8A]図 8Aは、第 1の実施形態による電子線描画装置を用いた n型 MOSトランジス タの製造方法を工程順に示す概略断面図である。  FIG. 8A is a schematic cross-sectional view showing an n-type MOS transistor manufacturing method using the electron beam lithography apparatus according to the first embodiment in the order of steps.
[図 8B]図 8Bは、図 8Aに引き続き、第 1の実施形態による電子線描画装置を用いた n 型 MOSトランジスタの製造方法を工程順に示す概略断面図である。  FIG. 8B is a schematic cross-sectional view showing, in the order of steps, a method for manufacturing the n-type MOS transistor using the electron beam lithography apparatus according to the first embodiment, following FIG. 8A.
[図 8C]図 8Cは、図 8Bに引き続き、第 1の実施形態による電子線描画装置を用いた n 型 MOSトランジスタの製造方法を工程順に示す概略断面図である。  FIG. 8C is a schematic cross-sectional view showing, in the order of steps, a method for manufacturing the n-type MOS transistor using the electron beam lithography apparatus according to the first embodiment, following FIG. 8B.
[図 8D]図 8Dは、図 8Cに引き続き、第 1の実施形態による電子線描画装置を用いた n 型 MOSトランジスタの製造方法を工程順に示す概略断面図である。  FIG. 8D is a schematic cross-sectional view showing, in the order of steps, a method for manufacturing the n-type MOS transistor using the electron beam lithography apparatus according to the first embodiment, following FIG. 8C.
[図 9A]図 9Aは、図 8Dに引き続き、第 1の実施形態による電子線描画装置を用いた n 型 MOSトランジスタの製造方法を工程順に示す概略断面図である。 [FIG. 9A] FIG. 9A is a schematic diagram of n using the electron beam lithography apparatus according to the first embodiment, following FIG. It is a schematic sectional drawing which shows the manufacturing method of a type MOS transistor in process order.
[図 9B]図 9Bは、図 9Aに引き続き、第 1の実施形態による電子線描画装置を用いた n 型 MOSトランジスタの製造方法を工程順に示す概略断面図である。  FIG. 9B is a schematic cross-sectional view showing, in the order of steps, a method for manufacturing the n-type MOS transistor using the electron beam lithography apparatus according to the first embodiment, following FIG. 9A.
[図 9C]図 9Cは、図 9Bに引き続き、第 1の実施形態による電子線描画装置を用いた n 型 MOSトランジスタの製造方法を工程順に示す概略断面図である。  FIG. 9C is a schematic cross-sectional view showing, in the order of steps, a method for manufacturing the n-type MOS transistor using the electron beam lithography apparatus according to the first embodiment, following FIG. 9B.
[図 10]図 10は、第 2の実施形態による電子線描画装置の概略構成を示す模式図で ある。  FIG. 10 is a schematic diagram showing a schematic configuration of an electron beam lithography apparatus according to a second embodiment.
[図 11]図 11は、パーソナルユーザ端末装置の内部構成を示す模式図である。  FIG. 11 is a schematic diagram showing an internal configuration of a personal user terminal device.
[図 12]図 12は、従来のブロック描画装置における電子線照射源に起因する第 1のァ パーチヤマスクの透過像の均一性の評価方法を模式的に示す斜視図である。  FIG. 12 is a perspective view schematically showing a method for evaluating the uniformity of a transmitted image of a first aperture mask caused by an electron beam irradiation source in a conventional block drawing apparatus.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 一本発明の基本骨子  [0018] Basic outline of the present invention
本発明者は、実際に半導体基板等の試料面に評価用のパターンを描画することな ぐ荷電粒子照射源に起因する第 1のアパーチャマスクの透過像の均一性を評価す ベく鋭意検討し、当該透過像の均一性が荷電粒子線電流値の均一性に対応するこ とを利用し、当該透過像内における局所的な荷電粒子線電流値の低下部位を、実 際に描画されるパターンのサイズ (例えば、配線等の矩形パターンであれば線幅;接 続孔等の開口パターンであれば孔径)変動部位であると評価することに想到した。  The present inventor has intensively studied to evaluate the uniformity of the transmission image of the first aperture mask caused by the charged particle irradiation source without actually drawing a pattern for evaluation on a sample surface such as a semiconductor substrate. By utilizing the fact that the uniformity of the transmission image corresponds to the uniformity of the charged particle beam current value, a pattern in which the local decrease of the charged particle beam current value in the transmission image is actually drawn It was conceived that the size of the pattern (for example, a line width in the case of a rectangular pattern such as a wiring; a hole diameter in the case of an opening pattern such as a connection hole) was evaluated as a variation part.
[0019] 具体的には、ブロックマスクを構成する各ブロックのうち、所定のブロックに第 2のァ パーチヤとして第 1のアパーチャの透過像よりも小さ 、透過孔を設ける。第 1のァパー チヤの透過像と前記第 2のアパーチャとを相対的に移動させて当該透過像内の複数 箇所、例えば 4隅及び中央部に透過孔を重ね合わせ、これら複数箇所における透過 孔からの透過像の荷電粒子線電流値をそれぞれ測定する。そして、制御手段により 、これらの測定結果に基づいて第 1のアパーチャの透過像内における荷電粒子線電 流値の分布均一性を評価する。当該透過像内において、荷電粒子線電流値が他の 部分に比して低下している不均一部分が実際に描画されるノ^ーンのサイズ変動部 位に対応する。  Specifically, among each block constituting the block mask, a transmission hole that is smaller than the transmission image of the first aperture is provided as a second aperture in a predetermined block. The transmission image of the first aperture and the second aperture are relatively moved to superimpose transmission holes at a plurality of locations in the transmission image, for example, at the four corners and the central portion, and from the transmission holes at these plurality of locations. Each of the charged particle beam current values of the transmission image of is measured. Then, the control means evaluates the distribution uniformity of the charged particle beam current value in the transmission image of the first aperture based on these measurement results. In the transmission image, the non-uniform part where the charged particle beam current value is lower than the other part corresponds to the size variation part of the actually drawn image.
[0020] 更に、上記のようにして評価された荷電粒子線電流値の分布均一性の評価結果に 基づき、制御手段により、前記第 1のアパーチャの透過像内のうち分布均一性の基 準を満たす部分を選択する。制御手段は、この選択部分、即ち実際に描画されるパ ターンの線幅変動部位に対応する荷電粒子線電流値の分布不均一部分を除ぐ分 布均一部分のみを、実際のパターン描画に供する。この構成により、徒に工程増を 招くことなぐ容易且つ確実にサイズ変動の極めて小さい所期のパターンを描画する ことが可能となる。 [0020] Further, in the evaluation result of the distribution uniformity of the charged particle beam current value evaluated as described above. Based on this, the control means selects a portion satisfying the distribution uniformity criterion in the transmission image of the first aperture. The control means supplies only the selected portion, that is, the uniform portion of distribution excluding the nonuniform distribution portion of the charged particle beam current value corresponding to the line width variation portion of the actually drawn pattern, to the actual pattern drawing. . With this configuration, it is possible to easily and reliably draw an expected pattern with extremely small size variation without incurring an additional process.
[0021] 一本発明を適用した具体的な緒実施形態  [0021] A specific embodiment to which the present invention is applied
以下、本発明を、荷電粒子線として電子線を用いた電子線描画装置及び方法に適 用した緒実施形態について、図面を参照しながら詳細に説明する。  Hereinafter, embodiments of the present invention applied to an electron beam drawing apparatus and method using an electron beam as a charged particle beam will be described in detail with reference to the drawings.
[0022] (第 1の実施形態) [0022] (First embodiment)
図 1は、第 1の実施形態による電子線描画装置の概略構成を示す模式図であり、図 2は、第 1の実施形態による電子線描画装置における主要動作を説明するための概 略斜視図である。  FIG. 1 is a schematic diagram showing a schematic configuration of the electron beam lithography apparatus according to the first embodiment, and FIG. 2 is a schematic perspective view for explaining main operations in the electron beam lithography apparatus according to the first embodiment. It is.
この電子線描画装置は、図 1に示すように、電子線照射を行うための電子線光学系 10と、所望のパターン描画を行うためのアパーチャマスク群 20と、試料が設置される 試料室 30と、各種の制御を行うための制御系 40とを備えて構成されている。  As shown in FIG. 1, the electron beam drawing apparatus includes an electron beam optical system 10 for performing electron beam irradiation, an aperture mask group 20 for performing desired pattern drawing, and a sample chamber 30 in which a sample is installed. And a control system 40 for performing various controls.
[0023] 電子線光学系 10は、電子線照射源である電子銃 11と、各種のレンズ 12a〜12eと 、電子線のビーム寸法等を制御するビーム寸法制御用の偏向器 13と、電子線を後 述するブロックマスク 22の所定のブロックに位置決めを行う電子線走査用のビーム位 置制御用の偏向器 14と、試料 31に照射される電子線の偏向制御用の偏向器 15と を備えて構成されている。  The electron beam optical system 10 includes an electron gun 11 that is an electron beam irradiation source, various lenses 12a to 12e, a beam dimension control deflector 13 that controls a beam dimension of the electron beam, and an electron beam. A beam position control deflector 14 for electron beam scanning for positioning in a predetermined block of the block mask 22 to be described later, and a deflector 15 for controlling the deflection of the electron beam irradiated on the sample 31. Configured.
[0024] アパーチャマスク群 20は、電子銃 11から照射された荷電粒子線を成形するための 第 1のアパーチャが形成された第 1のアパーチャマスク 21と、繰り返しパターンに相 当する複数の第 2のアパーチャが各ブロックに形成され、これらブロックがマトリクス状 に並設されてなる第 2のアパーチャマスクであるブロックマスク 22と、第 2のァパーチ ャを透過した電子線を制限するビーム制限用アパーチャマスク 23とを備えて構成さ れて 、る。第 1のアパーチャマスク 21及びブロックマスク 22につ!/、ては後述する。  The aperture mask group 20 includes a first aperture mask 21 in which a first aperture for forming a charged particle beam irradiated from the electron gun 11 is formed, and a plurality of second apertures corresponding to a repetitive pattern. Are formed in each block, and these blocks are arranged side by side in the form of a matrix, the block mask 22 being a second aperture mask, and a beam limiting aperture mask for limiting the electron beam transmitted through the second aperture And is composed of 23. The first aperture mask 21 and the block mask 22 will be described later.
[0025] 試料室 30は、半導体基板やガラスマスク等の試料 31が載置固定されるテーブル 3 2と、試料 31と例えば選択的にテーブル 32に設置され、第 2のアパーチャの透過像 の電子線電流値を測定する電流値測定手段であるファラデーカップ 33とを備えて構 成されている。 [0025] The sample chamber 30 is a table 3 on which a sample 31 such as a semiconductor substrate or a glass mask is placed and fixed. 2, a sample 31, and a Faraday cup 33 that is selectively installed on a table 32 and is a current value measuring unit that measures an electron beam current value of a transmission image of the second aperture, for example.
[0026] 制御系 40は、ビーム寸法等の制御用の偏向器 13を駆動制御するビーム寸法制御 回路 41と、ビーム位置制御用の偏向器 14を駆動制御するビーム位置制御回路 42と 、試料 31に照射される電子線の偏向制御用の偏向器 15を駆動制御する偏向制御 回路 43と、テーブル 32を X方向(紙面左右方向)及び Y方向(紙面表裏方向)に駆 動制御するテーブル駆動回路 44と、ブロックマスク 22にお!/、て所望のブロックを電 子線に対して位置合わせするように、ブロックマスク 22を X方向及び Y方向に駆動す るマスクステージ 45と、ビーム寸法制御回路 41、ビーム位置制御回路 42、偏向制御 回路 43、テーブル駆動回路 44、マスクステージ 45及びファラデーカップ 33とそれぞ れ接続されており、これらを統括制御すると共に各種の計算及び測定を行う統括制 御部 46とを備えて構成されて 、る。  The control system 40 includes a beam size control circuit 41 that drives and controls the deflector 13 for controlling the beam size, a beam position control circuit 42 that drives and controls the deflector 14 for beam position control, and a sample 31. A deflection control circuit 43 that drives and controls the deflector 15 for controlling the deflection of the electron beam irradiated on the table, and a table drive circuit that drives and controls the table 32 in the X direction (left and right direction on the page) and the Y direction (front and back direction on the page) 44, a mask stage 45 for driving the block mask 22 in the X direction and the Y direction so as to align the desired block with the electron beam! And a beam dimension control circuit. 41, beam position control circuit 42, deflection control circuit 43, table drive circuit 44, mask stage 45, and Faraday cup 33 are connected to each other. It is composed of a part 46.
[0027] 本実施形態における電子線描画装置の主要部を構成する第 1のアパーチャマスク 21、ブロックマスク 22及びファラデーカップ 33の配置関係は図 2のようになる。ここで 、ブロックマスク 22は、図示の便宜上 4つのブロックが設けられている力 更に多数の ブロック (各々、異なるアパーチャが形成されて 、る)をマトリクス状に配設するようにし ても良い。  [0027] The positional relationship of the first aperture mask 21, the block mask 22, and the Faraday cup 33 that constitute the main part of the electron beam lithography apparatus in the present embodiment is as shown in FIG. Here, the block mask 22 may be arranged in a matrix form with a force provided with four blocks for convenience of illustration and a larger number of blocks (each having a different aperture).
[0028] ブロックマスク 22は、少なくとも 1つのブロック、ここでは左端のブロックが電子線電 流値の検査用ブロック 1とされており、第 2のアパーチャとして、検査用ブロック 22aに 投影された第 1のアパーチャの透過像よりも小さいサイズの透過孔 2が形成されてい る。検査用ブロック 1以外の他のブロックには、実際の電子線描画において一括描画 するための各種アパーチャが形成されている。なおこの場合、ブロックマスク 22を構 成するブロックにお 、て、透過孔 2に相当するコンタクトパターン形成用の透過孔が 第 2のアパーチャとして形成されたものがあれば、このブロックを検査用ブロックとして 用いる(実際の電子線描画用と共用する)ようにしても良 、。  [0028] At least one block, here the leftmost block, is the electron beam current value inspection block 1 in the block mask 22, and the first aperture projected onto the inspection block 22a is the second aperture. A transmission hole 2 having a size smaller than the transmission image of the aperture is formed. In the blocks other than the inspection block 1, various apertures are formed for batch drawing in actual electron beam drawing. In this case, if a block constituting the block mask 22 has a transmission hole for forming a contact pattern corresponding to the transmission hole 2 as the second aperture, this block is used as an inspection block. It may be used as (used for actual electron beam drawing).
[0029] ここで、本実施形態の電子線描画装置による第 1のアパーチャマスクにおける第 1 のアパーチャの透過像の均一性の評価方法について、図 1〜図 4を参照して説明す る。ここで、図 3は、第 1のアパーチャマスクにおける第 1のアパーチャの透過像の均 一性の評価方法をステップ順に説明するフロー図である。図 4A〜図 4Eは、第 1のァ パーチヤの透過像がブロックマスクの評価用ブロックに投影された様子を示す概略平 面図である。 Here, a method for evaluating the uniformity of the transmitted image of the first aperture in the first aperture mask by the electron beam lithography apparatus of the present embodiment will be described with reference to FIGS. The Here, FIG. 3 is a flowchart for explaining the method of evaluating the uniformity of the transmitted image of the first aperture in the first aperture mask in the order of steps. 4A to 4E are schematic plan views showing a state in which the transmission image of the first aperture is projected onto the evaluation block of the block mask.
[0030] 先ず、テーブル 32にファラデーカップ 33を設置し、電子銃 11から電子線を出射す る (ステップ Sl)。統括制御部 46は、偏向制御回路 42により偏向器 14を駆動して電 子線を偏向させ、第 1のアパーチャの透過像をブロックマスク 22の評価用ブロック 1に 投影させる。  First, the Faraday cup 33 is set on the table 32, and an electron beam is emitted from the electron gun 11 (step Sl). The overall control unit 46 drives the deflector 14 by the deflection control circuit 42 to deflect the electron beam, and projects the transmission image of the first aperture onto the evaluation block 1 of the block mask 22.
[0031] 続いて、統括制御部 46は、第 1のアパーチャ 21における第 1のアパーチャの透過 像とブロックマスク 22の評価用ブロック 1とを相対的に移動させ、第 1のアパーチャの 透過像内で透過孔 2の相対的な位置関係を変化させて、当該透過像内における複 数箇所の測定点に透過孔 2を位置合わせして、ファラデーカップ 33により順次透過 孔 2を透過した電子線の電流値を測定してゆく(ステップ S2)。ここでは、当該透過像 内における 4隅 (左下部位、右下部位、左上部位、右上部位)及び中央部位の 5点を 測定点とする。  [0031] Subsequently, the overall control unit 46 relatively moves the transmission image of the first aperture in the first aperture 21 and the evaluation block 1 of the block mask 22 so that the inside of the transmission image of the first aperture The relative positional relationship of the transmission hole 2 is changed with, the transmission hole 2 is aligned with a plurality of measurement points in the transmission image, and the electron beam sequentially transmitted through the transmission hole 2 by the Faraday cup 33 is obtained. Measure the current value (step S2). Here, the four points in the transmission image (lower left part, lower right part, upper left part, upper right part) and five points in the central part are taken as measurement points.
[0032] 具体的に、本実施形態では、第 1のアパーチャの透過像とブロックマスク 22の評価 用ブロック 1とを相対的な位置を変化させる位置可変手段がマスクステージ 45とされ る。統括制御部 46は、第 1のアパーチャ 21を固定した状態でマスクステージ 45を駆 動して第 1のアパーチャ 21における第 1のアパーチャの透過像内で透過孔 2の相対 的な位置関係を変化させる。ここでは、第 1のアパーチャの透過像内における所定箇 所、ここでは図 4Aに示すように第 1のアパーチャの透過像 21a内で透過孔 2を左下 部位に位置させる。透過孔 2を透過した電子線は、テーブル 32に設置されたファラ デーカップ 33に入射する。  Specifically, in the present embodiment, the position variable means for changing the relative positions of the transmission image of the first aperture and the evaluation block 1 of the block mask 22 is the mask stage 45. The overall control unit 46 drives the mask stage 45 with the first aperture 21 fixed to change the relative positional relationship of the transmission holes 2 in the transmission image of the first aperture in the first aperture 21. Let Here, as shown in FIG. 4A, the transmission hole 2 is positioned at the lower left position in a predetermined position in the transmission image of the first aperture, here in the transmission image 21a of the first aperture. The electron beam transmitted through the transmission hole 2 is incident on the Faraday cup 33 installed on the table 32.
[0033] 次に、統括制御部 46は、ファラデーカップ 33により透過孔 2を透過した電子線の電 流値 Iを測定し、所定の記録媒体 (不図示)に測定結果を記録しておく。この記録媒 体は、統括制御部 46に内蔵したものでも良いし、統括制御部 46の外部に設置しても 良い。  Next, the overall control unit 46 measures the current value I of the electron beam transmitted through the transmission hole 2 by the Faraday cup 33 and records the measurement result on a predetermined recording medium (not shown). This recording medium may be incorporated in the overall control unit 46 or installed outside the overall control unit 46.
[0034] 続いて、統括制御部 46は、マスクステージ 45を駆動して第 1のアパーチャ 21にお ける第 1のアパーチャの透過像内で透過孔 2の相対的な位置関係を変化させる。ここ では、第 1のアパーチャの透過像内における所定箇所、ここでは図 4Bに示すように 第 1のアパーチャの透過像 21a内で透過孔 2を右下部位に位置させる。透過孔 2を 透過した電子線は、テーブル 32に設置されたファラデーカップ 33に入射する。 Subsequently, the overall control unit 46 drives the mask stage 45 to the first aperture 21. The relative positional relationship of the transmission holes 2 is changed in the transmission image of the first aperture. Here, as shown in FIG. 4B, the transmission hole 2 is positioned at the lower right part in the predetermined position in the transmission image of the first aperture, here in the transmission image 21a of the first aperture. The electron beam that has passed through the transmission hole 2 is incident on the Faraday cup 33 installed on the table 32.
[0035] 次に、統括制御部 46は、ファラデーカップ 33により透過孔 2を透過した電子線の電 流値 I [0035] Next, the overall control unit 46 determines the current value I of the electron beam transmitted through the transmission hole 2 by the Faraday cup 33.
2を測定し、上記の記録媒体に測定結果を記録しておく。  Measure 2 and record the measurement results on the above recording medium.
[0036] 続いて、統括制御部 46は、マスクステージ 45を駆動して第 1のアパーチャ 21にお ける第 1のアパーチャの透過像内で透過孔 2の相対的な位置関係を変化させる。ここ では、第 1のアパーチャの透過像内における所定箇所、ここでは図 4Cに示すように 第 1のアパーチャの透過像 21a内で透過孔 2を左上部位に位置させる。透過孔 2を 透過した電子線は、テーブル 32に設置されたファラデーカップ 33に入射する。  Subsequently, the overall control unit 46 drives the mask stage 45 to change the relative positional relationship of the transmission holes 2 in the transmission image of the first aperture in the first aperture 21. Here, the transmission hole 2 is positioned at a predetermined position in the transmission image of the first aperture, here in the transmission image 21a of the first aperture, as shown in FIG. 4C. The electron beam that has passed through the transmission hole 2 is incident on the Faraday cup 33 installed on the table 32.
[0037] 次に、統括制御部 46は、ファラデーカップ 33により透過孔 2を透過した電子線の電 流値 I  [0037] Next, the overall control unit 46 determines the current value I of the electron beam transmitted through the transmission hole 2 by the Faraday cup 33.
3を測定し、上記の記録媒体に測定結果を記録しておく。  Measure 3 and record the measurement results on the above recording medium.
[0038] 続いて、統括制御部 46は、マスクステージ 45を駆動して第 1のアパーチャ 21にお ける第 1のアパーチャの透過像内で透過孔 2の相対的な位置関係を変化させる。ここ では、第 1のアパーチャの透過像内における所定箇所、ここでは図 4Dに示すように 第 1のアパーチャの透過像 21a内で透過孔 2を右上部位に位置させる。透過孔 2を 透過した電子線は、テーブル 32に設置されたファラデーカップ 33に入射する。  Subsequently, the overall control unit 46 drives the mask stage 45 to change the relative positional relationship of the transmission holes 2 in the transmission image of the first aperture in the first aperture 21. Here, the transmission hole 2 is positioned at a predetermined position in the transmission image of the first aperture, here in the transmission image 21a of the first aperture, as shown in FIG. 4D. The electron beam that has passed through the transmission hole 2 is incident on the Faraday cup 33 installed on the table 32.
[0039] 次に、統括制御部 46は、ファラデーカップ 33により透過孔 2を透過した電子線の電 流値 I  [0039] Next, the overall control unit 46 determines the current value I of the electron beam transmitted through the transmission hole 2 by the Faraday cup 33.
4を測定し、上記の記録媒体に測定結果を記録しておく。  Measure 4 and record the measurement results on the above recording medium.
[0040] 続いて、統括制御部 46は、マスクステージ 45を駆動して第 1のアパーチャ 21にお ける第 1のアパーチャの透過像内で透過孔 2の相対的な位置関係を変化させる。ここ では、第 1のアパーチャの透過像内における所定箇所、ここでは図 4Eに示すように 第 1のアパーチャの透過像 21a内で透過孔 2を中央部位に位置させる。透過孔 2を 透過した電子線は、テーブル 32に設置されたファラデーカップ 33に入射する。  Subsequently, the overall control unit 46 drives the mask stage 45 to change the relative positional relationship of the transmission holes 2 in the transmission image of the first aperture 21 in the first aperture 21. Here, as shown in FIG. 4E, the transmission hole 2 is positioned at the central position in the predetermined position in the transmission image of the first aperture, here in the transmission image 21a of the first aperture. The electron beam that has passed through the transmission hole 2 is incident on the Faraday cup 33 installed on the table 32.
[0041] 次に、統括制御部 46は、ファラデーカップ 33により透過孔 2を透過した電子線の電 流値 I  [0041] Next, the overall control unit 46 determines the current value I of the electron beam transmitted through the transmission hole 2 by the Faraday cup 33.
5を測定し、上記の記録媒体に測定結果を記録しておく。  Measure 5 and record the measurement results on the recording medium.
[0042] そして、統括制御部 46は、ステップ S2により、第 1のアパーチャの透過像 21a内の 5箇所における透過孔 2を透過した電子線の電流値 I〜1に基づき、透過像 21a内に [0042] Then, in step S2, the overall control unit 46 in the transmission image 21a of the first aperture Based on the current value I ~ 1 of the electron beam transmitted through the transmission hole 2 at five locations, the transmission image 21a
1 5  1 5
おける電子線電流値の分布を算出して、電子線電流値の分布均一性を評価する (ス テツプ S3)。  The distribution of the electron beam current value is calculated, and the distribution uniformity of the electron beam current value is evaluated (step S3).
[0043] なお、本実施形態では、第 1のアパーチャの透過像 21a内の 5箇所の測定点おける 電子線電流値を測定する場合について例示した力 透過像 21a内で更に詳細に多 数の測定点をとり、電子線電流値の分布均一性を評価するようにしても良い。通常、 測定点が多いほど正確に分布均一性を評価することができる。  In the present embodiment, a large number of measurements are made in more detail in the force transmission image 21a exemplified for the case of measuring electron beam current values at five measurement points in the transmission image 21a of the first aperture. A point may be taken to evaluate the distribution uniformity of the electron beam current value. In general, the more measurement points, the more accurately the distribution uniformity can be evaluated.
[0044] 更に本実施形態では、電子線電流値の分布均一性の評価に基づき、第 1のァパー チヤの透過像 21a内で電子線電流値の分布が均一と判断された部分のみを用いて 、以後の実際のパターン描画に供する。  Furthermore, in the present embodiment, based on the evaluation of the distribution uniformity of the electron beam current value, only the portion where the distribution of the electron beam current value is determined to be uniform in the transmission image 21a of the first aperture is used. This is used for subsequent actual pattern drawing.
図 5は、図 3の評価結果を用いて、電子線照射の補正を行う補正方法をステップ順 に示すフロー図である。  FIG. 5 is a flowchart showing, in order of steps, a correction method for correcting electron beam irradiation using the evaluation results of FIG.
[0045] 先ず、統括制御部 46は、ステップ S3にお 、て評価された電子線電流値の分布均 一性に基づき、第 1のアパーチャの透過像 21a内において電子線電流値が均一であ る領域を決定してパターン描画に適した部分であると判断し、当該領域の位置情報 を所定の記録媒体に記録しておく(ステップ S4)。  First, the overall control unit 46 has a uniform electron beam current value in the transmission image 21a of the first aperture based on the distribution uniformity of the electron beam current value evaluated in step S3. The area is determined to be a part suitable for pattern drawing, and the position information of the area is recorded on a predetermined recording medium (step S4).
[0046] そして、統括制御部 46は、上記の位置情報をビーム位置制御回路 42に送る (ステ ップ S5)。ビーム位置制御回路 42は、統括制御部 46からの位置情報を、電子線を 偏向させてブロックマスク 22上で位置決めを行う偏向器 14に帰還して、第 1のァパー チヤ 21の透過像 21a内において電子線電流値が均一な領域のみを用いるように電 子線の照射状態を偏向補正する (ステップ S6)。このように補正した状態で、実際の 電子線描画を実行する。  [0046] Then, the overall control unit 46 sends the position information to the beam position control circuit 42 (step S5). The beam position control circuit 42 feeds back the position information from the overall control unit 46 to the deflector 14 that positions the electron beam on the block mask 22 by deflecting the electron beam, and transmits it in the transmission image 21a of the first aperture 21. In step S6, the irradiation state of the electron beam is corrected so that only the region where the electron beam current value is uniform is used. The actual electron beam drawing is executed in such a corrected state.
[0047] 上述の補正方法により電子線照射の補正を行!、、実際のパターンを描画した具体 例について、当該補正を行わない場合との比較に基づいて調べてみた。ここでは、 S RAMにおける接続孔の電子線描画を例示する。  [0047] The electron beam irradiation was corrected by the correction method described above! A specific example in which an actual pattern was drawn was examined based on a comparison with a case where the correction was not performed. Here, electron beam drawing of the connection hole in the SRAM is illustrated.
[0048] 通常、描画中における電子線の調整は、図 6Aに示すように、第 1のアパーチャマス ク 21とブロックマスク 22との重ね合わせにおいて、配線パターンとなるいわゆる可変 矩形 3のみで実行され、電子線量は可変矩形 3で測定された電流密度から算出され る。一方、ブロックマスク 22における電子線量は、第 1のアパーチャの透過像が均一 であることを前提として、可変矩形で求まった電子線量で描画される。第 1のァパー チヤの透過像が均一性に劣る場合、第 1のアパーチャの透過像内の右端を用いて ヽ る可変矩形で電子線量が決定される。従って、それよりも電流密度の低い左端を用 いているブロックマスク 22の第 2のアパーチャ、例えば図 6Bに示すような接続孔のァ パーチヤ 4 (連続ホール及び単一ホールを例示する)を描画する場合、描画されるホ ールパターンはそのサイズが設計値よりも小さくなる。ホールパターンのサイズが小さ くなるとコンタクト抵抗値が増加し、不良発生の原因となる。 [0048] Normally, the electron beam adjustment during drawing is performed only on the so-called variable rectangle 3 that becomes the wiring pattern in the superposition of the first aperture mask 21 and the block mask 22 as shown in FIG. 6A. The electron dose is calculated from the current density measured in the variable rectangle 3 The On the other hand, the electron dose in the block mask 22 is drawn with the electron dose determined by the variable rectangle on the assumption that the transmission image of the first aperture is uniform. When the transmission image of the first aperture is inferior in uniformity, the electron dose is determined by a variable rectangle that is formed using the right end in the transmission image of the first aperture. Therefore, the second aperture of the block mask 22 using the left end having a lower current density is drawn, for example, the aperture 4 of the connection hole as shown in FIG. 6B (exemplifying a continuous hole and a single hole). In this case, the size of the drawn hall pattern is smaller than the design value. If the hole pattern size is reduced, the contact resistance value increases, which may cause defects.
[0049] 上述したように、本実施形態では、第 1のアパーチャの透過像 21a内における電子 線電流値の分布に基づいて、電子線電流値の均一領域を決定する。図 7Aに、この ようにして決定された透過像 21aの様子を示す。ここでは、透過像 21aの左下部位が 不均一領域 52 (図中、斜線で示す領域)とされており、透過像 21aが均一領域 51と その他の不均一領域 52とからなる場合を例示する。  As described above, in the present embodiment, the uniform region of the electron beam current value is determined based on the distribution of the electron beam current value in the transmission image 21a of the first aperture. FIG. 7A shows the state of the transmission image 21a determined in this way. Here, a case where the lower left part of the transmission image 21a is a non-uniform region 52 (a region indicated by oblique lines in the figure), and the transmission image 21a includes a uniform region 51 and other non-uniform regions 52 is illustrated.
[0050] 電子線照射の補正を行わない場合、図 7Bに示すように、透過像 21aの全体が電子 線描画に供される。図示のように、第 1のアパーチャの透過像 21aと、ブロックマスク 2 2の第 2のアパーチャが複数の微細孔 53とされたブロックとを重ね合わせ、微細孔 53 の透過像をテーブル 32に載置固定された半導体基板上のレジスト(不図示)に描画 する。このとき描画されたコンタクトパターンを図 7Cに示す。図示のように、透過像 21 aの全体を描画に供したことから、均一領域 51に対応する部分では各コンタクトパタ ーン 54は均一なサイズに形成されているのに対して、不均一領域 52に対応する部 分では各コンタクトパターン 54は均一領域 51に対応する部分に比べてサイズが小さ く形成されてしまっている。  [0050] When correction of electron beam irradiation is not performed, the entire transmission image 21a is subjected to electron beam drawing as shown in FIG. 7B. As shown in the figure, the transmission image 21a of the first aperture and the block in which the second aperture of the block mask 22 is made into a plurality of micro holes 53 are overlapped, and the transmission image of the micro holes 53 is mounted on the table 32. Draw on the resist (not shown) on the fixed semiconductor substrate. The contact pattern drawn at this time is shown in FIG. 7C. As shown in the figure, since the entire transmission image 21a was used for drawing, in the portion corresponding to the uniform region 51, each contact pattern 54 was formed in a uniform size, whereas the non-uniform region was formed. In the portion corresponding to 52, each contact pattern 54 is formed smaller in size than the portion corresponding to the uniform region 51.
[0051] これに対して、本実施形態では、図 7Dに示すように、不均一領域 52を除外し、均 一領域 51のみがパターン描画に供される。図示のように、第 1のアパーチャの透過 像 21aにおける均一領域 51と、ブロックマスク 22の第 2のアパーチャが複数の微細 孔 53とされたブロックとを重ね合わせ、微細孔 53の透過像をテーブル 32に載置固 定された半導体基板上のレジスト (不図示)に描画する。このとき描画されたコンタクト パターンを図 7Eに示す。図示のように、透過像 21aにおける均一領域 51を選択して 描画に供したことから、コンタクトパターン 54は全て均一なサイズに形成されて 、る。 In contrast, in the present embodiment, as shown in FIG. 7D, the non-uniform region 52 is excluded and only the uniform region 51 is used for pattern drawing. As shown in the figure, the uniform area 51 in the transmission image 21a of the first aperture and the block in which the second aperture of the block mask 22 is made into a plurality of micro holes 53 are overlapped, and the transmission image of the micro holes 53 is displayed as a table. Draw on the resist (not shown) on the semiconductor substrate placed and fixed on 32. The contact pattern drawn at this time is shown in Fig. 7E. Select the uniform area 51 in the transmission image 21a as shown in the figure. Since it was used for drawing, all the contact patterns 54 are formed in a uniform size.
[0052] このように、本実施形態によれば、実際に試料 31に描画することなく簡易な構成で 確実に電子銃 11に起因する第 1のアパーチャの透過像 21aの均一性を評価し、更 には当該評価に基づいて工程増を招くことなく実際の描画においてパターンのサイ ズばらつきを抑止して描画するパターンの寸法精度を向上させ、所期の設計値のパ ターンを一括描画することが可能となる。 Thus, according to the present embodiment, the uniformity of the transmission image 21a of the first aperture caused by the electron gun 11 is reliably evaluated with a simple configuration without actually drawing on the sample 31, Furthermore, based on the evaluation, the pattern size of the pattern to be drawn can be improved and the pattern of the expected design value can be drawn at once without increasing the number of processes and suppressing the pattern size variation in actual drawing. Is possible.
[0053] 次に、本実施形態の電子線描画装置を利用した半導体装置の製造方法について 説明する。ここでは、半導体装置として n型 MOSトランジスタを例示するが、本実施 形態の電子線描画装置の適用対象は勿論 n型 MOSトランジスタに限定されるもので はなぐ他の様々な半導体装置に適用することができる。 Next, a method for manufacturing a semiconductor device using the electron beam lithography apparatus of this embodiment will be described. Here, an n-type MOS transistor is exemplified as the semiconductor device, but the application target of the electron beam lithography apparatus according to the present embodiment is of course applied to other various semiconductor devices that are not limited to the n-type MOS transistor. Can do.
図 8 A〜図 8D及び図 9 A〜図 9Cは、第 1の実施形態による電子線描画装置を用 Vヽ た n型 MOSトランジスタの製造方法を工程順に示す概略断面図である。ここで、各図 の左側がデバイス形成領域を、右側がマーク形成領域をそれぞれ示す。  FIGS. 8A to 8D and FIGS. 9A to 9C are schematic cross-sectional views showing, in the order of steps, a method for manufacturing an n-type MOS transistor using the electron beam lithography apparatus according to the first embodiment. Here, the left side of each figure shows the device formation region, and the right side shows the mark formation region.
[0054] 初めに、図 8Aに示すように、デバイス形成領域にはいわゆる STI (Shallow [0054] First, as shown in FIG. 8A, a so-called STI (Shallow
Trench Isolation)法により素子分離溝 66を、マーク形成領域には段差マーク溝 67を それぞれ形成する。  The element isolation trench 66 is formed by the Trench Isolation method, and the step mark trench 67 is formed in the mark formation region.
詳細には、先ず、シリコン半導体基板 61上にシリコン窒化膜 62を例えば減圧 CVD 法により形成する。その後、シリコン窒化膜 62上にレジスト 63を塗布し、リソグラフィー によりレジスト 63を加工して、デバイス形成領域には溝パターン 64を、マーク形成領 域には溝パターン 65をそれぞれ形成する。  Specifically, first, a silicon nitride film 62 is formed on the silicon semiconductor substrate 61 by, for example, a low pressure CVD method. Thereafter, a resist 63 is applied on the silicon nitride film 62, and the resist 63 is processed by lithography to form a groove pattern 64 in the device formation region and a groove pattern 65 in the mark formation region.
[0055] 次に、レジスト 63をマスクとして、エッチングガスとしてフッ素系ガスを用いた反応性 イオンエッチング(Reactive Ion Etching :RIE)によりシリコン窒化膜 62を力卩ェする。引 き続き、レジスト 63及びシリコン窒化膜 62をマスクとして、エッチングガスをリン系ガス に切り換えて RIEによりシリコン半導体基板 61を例えば深さ 300nm程度に加工する 。このとき、デバイス形成領域にシリコン半導体基板 61の素子分離領域に溝パター ン 64に倣った素子分離溝 66が、マーク形成領域にはシリコン半導体基板 61に溝パ ターン 65に倣った段差マーク溝であるァライメントマーク 67がそれぞれ形成される。  Next, using the resist 63 as a mask, the silicon nitride film 62 is reinforced by reactive ion etching (RIE) using a fluorine-based gas as an etching gas. Subsequently, using the resist 63 and the silicon nitride film 62 as a mask, the etching gas is switched to a phosphorous gas, and the silicon semiconductor substrate 61 is processed to a depth of, for example, about 300 nm by RIE. At this time, an element isolation groove 66 that follows the groove pattern 64 in the element isolation region of the silicon semiconductor substrate 61 is formed in the device formation region, and a step mark groove that follows the groove pattern 65 in the silicon semiconductor substrate 61 in the mark formation region. A certain alignment mark 67 is formed.
[0056] 続 ヽて、図 8Bに示すように、デバイス形成領域に STI素子分離構造 68を形成する 詳細には、灰化処理等によりレジスト 63を除去し、フッ酸溶液等によりシリコン窒化 膜 62を除去した後、素子分離溝 66及び段差マーク溝 67を埋め込むように例えば C VD法により全面にシリコン酸ィ匕膜 (不図示)を堆積する。そして、シリコン半導体基板 61の表面をストッパーとしてシリコン酸化膜を CMP (Chemical Mechanical Polishing) 法により研磨し、デバイス形成領域に素子分離溝 66をシリコン酸化物で充填してなる STI素子分離構造 68を形成する。このとき同時に、マーク形成領域ではァライメント マーク 67がシリコン酸化物で充填される。 [0056] Subsequently, as shown in FIG. 8B, an STI element isolation structure 68 is formed in the device formation region. Specifically, the resist 63 is removed by ashing or the like, the silicon nitride film 62 is removed by a hydrofluoric acid solution or the like, and then the silicon isolation film 66 and the step mark groove 67 are embedded on the entire surface by, eg, CVD method. An acid film (not shown) is deposited. Then, the silicon oxide film is polished by CMP (Chemical Mechanical Polishing) using the surface of the silicon semiconductor substrate 61 as a stopper to form an STI element isolation structure 68 in which the element isolation groove 66 is filled with silicon oxide in the device formation region. To do. At the same time, the alignment mark 67 is filled with silicon oxide in the mark formation region.
[0057] 続、て、図 8Cに示すように、デバイス形成領域にトランジスタ構造 70を形成する。  Next, as shown in FIG. 8C, a transistor structure 70 is formed in the device formation region.
詳細には、先ず、シリコン半導体基板 61の STI素子分離構造 68により画定された 活性領域に P型不純物、例えばホウ素 Bをイオン注入し、 p型ゥヱル 71を形成する。  Specifically, first, a p-type wall 71 is formed by ion-implanting a P-type impurity, for example, boron B, into the active region defined by the STI element isolation structure 68 of the silicon semiconductor substrate 61.
[0058] 次に、例えば熱酸ィ匕法により活性領域の表面にゲート絶縁膜 72を形成した後、ゲ ート材料として CVD法により多結晶シリコン膜 (不図示)を堆積し、この多結晶シリコ ン膜をリソグラフィー及びドライエッチングにより電極形状に加工し、ゲート電極 73を パターン形成する。  Next, after forming a gate insulating film 72 on the surface of the active region by, for example, a thermal oxidation method, a polycrystalline silicon film (not shown) is deposited by CVD as a gate material. The silicon film is processed into an electrode shape by lithography and dry etching, and the gate electrode 73 is patterned.
[0059] 次に、ゲート電極 73を覆うように全面にシリコン酸ィ匕膜 (不図示)を堆積し、このシリ コン酸ィ匕膜の全面を異方性エッチング (エッチバック)して、シリコン酸化膜をゲート電 極 73の両側面のみに残し、サイドウォールスぺーサ 74を形成する。  [0059] Next, a silicon oxide film (not shown) is deposited on the entire surface so as to cover the gate electrode 73, and the entire surface of the silicon oxide film is anisotropically etched (etched back). Sidewall spacers 74 are formed by leaving the oxide film only on both sides of the gate electrode 73.
[0060] 次に、ゲート電極 73及びサイドウォールスぺーサ 74をマスクとして、これらからなる 構造物の両側における活性領域の表層に n型不純物、例えばリン (P)をイオン注入 し、ソース Zドレイン 75を形成する。  [0060] Next, using the gate electrode 73 and the sidewall spacer 74 as a mask, an n-type impurity such as phosphorus (P) is ion-implanted into the surface layer of the active region on both sides of the structure composed of these, and the source Z drain 75 is formed.
[0061] 次に、全面にシリコン酸ィ匕膜 (不図示)を堆積し、このシリコン酸ィ匕膜の表面を CMP 法により研磨して平坦ィ匕して、層間絶縁膜 76を形成する。このとき、デバイス形成領 域には、層間絶縁膜 76内に埋設されてなるトランジスタ構造 70が完成する。  Next, a silicon oxide film (not shown) is deposited on the entire surface, and the surface of the silicon oxide film is polished and flattened by a CMP method to form an interlayer insulating film 76. At this time, the transistor structure 70 embedded in the interlayer insulating film 76 is completed in the device formation region.
[0062] 続いて、図 8Dに示すように、マーク形成領域にァライメントマーク 67を掘り起こすた めの開口 77aを有するレジスト 77を形成する。  Subsequently, as shown in FIG. 8D, a resist 77 having an opening 77a for digging up the alignment mark 67 in the mark formation region is formed.
詳細には、層間絶縁膜 76上の全面にレジスト 77を塗布し、例えば電子線描画によ りレジスト 77を加工して、マーク形成領域にシリコン酸ィ匕物で充填されたァライメント マーク 67を中心とした周辺部位を露出させる開口 77aを形成する。この電子線描画 の際のァライメントは例えば 0. 5 m以下程度と高精度を必要としないため、例えば 電子線描画装置に付属するいわゆる光学式粗ァライメント機構を用い、当該電子線 描画を光露光で使用するァライメントマークを流用して比較的ラフに行う。 Specifically, a resist 77 is applied to the entire surface of the interlayer insulating film 76, and the resist 77 is processed by, for example, electron beam drawing, and the mark formation region is filled with silicon oxide. An opening 77a that exposes a peripheral portion centering on the mark 67 is formed. Since the alignment at the time of electron beam drawing does not require high accuracy of about 0.5 m or less, for example, the so-called optical rough alignment mechanism attached to the electron beam drawing apparatus is used to perform the electron beam drawing by light exposure. Use the alignment mark to be used relatively roughly.
[0063] 続いて、図 9Aに示すように、マーク形成領域のァライメントマーク 67内のシリコン酸 化物を除去する。 Subsequently, as shown in FIG. 9A, silicon oxide in the alignment mark 67 in the mark formation region is removed.
詳細には、レジスト 77をマスクとし、エッチングガスとしてフッ素系ガスを用いて RIE を行い、レジスト 77の開口 77aに倣って層間絶縁膜 76をカ卩ェして当該層間絶縁膜 7 6に開口 76aを形成すると共に、マーク形成領域の溝パターン 65内を充填するシリコ ン酸ィ匕物を除去し、開口 76aからァライメントマーク 67を露出させる。  Specifically, RIE is performed using the resist 77 as a mask and a fluorine-based gas as an etching gas, and the interlayer insulating film 76 is covered by following the opening 77a of the resist 77 to open the opening 76a in the interlayer insulating film 76. At the same time, the silicon oxide filler filling the groove pattern 65 in the mark forming region is removed, and the alignment mark 67 is exposed from the opening 76a.
[0064] 続いて、図 9Bに示すように、トランジスタ構造 70にコンタクト孔を形成するためのコ ンタクトパターン 78aを有するレジスト 78を形成する。 Subsequently, as shown in FIG. 9B, a resist 78 having a contact pattern 78a for forming a contact hole in the transistor structure 70 is formed.
詳細には、層間絶縁膜 76の全面にレジスト 78を塗布し、ァライメントマーク 67を用 いた電子線による高精度の位置合わせを行い、電子線描画によりレジスト 78を加工 して、レジスト 78におけるトランジスタ構造 70のソース/ドレイン 75の上部に整合した 部位に開口 78aを形成する。ここでは、本実施形態で開示した電子線描画装置を用 いる。即ち上述したように、第 1のアパーチャの透過像 21a内における電子線電流値 の分布が均一な領域のみを用い、ブロックマスク 22の第 2のアパーチャがコンタクト パターン 78aに対応するアパーチャとされたブロックとを重ね合わせ、レジスト 78に電 子線描画する。  Specifically, a resist 78 is applied to the entire surface of the interlayer insulating film 76, alignment is performed with high accuracy by an electron beam using the alignment mark 67, the resist 78 is processed by electron beam drawing, and a transistor in the resist 78 is obtained. An opening 78a is formed at a position aligned with the upper part of the source / drain 75 of the structure 70. Here, the electron beam drawing apparatus disclosed in this embodiment is used. That is, as described above, a block in which only the region where the electron beam current value distribution is uniform in the transmission image 21a of the first aperture is used and the second aperture of the block mask 22 is an aperture corresponding to the contact pattern 78a. And draw an electron beam on resist 78.
[0065] 続いて、図 9Cに示すように、トランジスタ構造 70にコンタクト孔 79をパターン形成す る。  Subsequently, as shown in FIG. 9C, a contact hole 79 is patterned in the transistor structure 70.
詳細には、レジスト 78をマスクとし、エッチングガスとしてフッ素系ガスを用いて RIE を行い、レジスト 78のコンタクト孔パターン 78aに倣って層間絶縁膜 76をカ卩ェして、 層間絶縁膜 76にソース/ドレイン 75の表面の一部を露出させるコンタクト孔 79をパ ターン形成する。  Specifically, RIE is performed using the resist 78 as a mask and a fluorine-based gas as an etching gas, and the interlayer insulating film 76 is covered according to the contact hole pattern 78a of the resist 78, and the source is supplied to the interlayer insulating film 76. A contact hole 79 exposing a part of the surface of the / drain 75 is formed.
[0066] し力る後、図示は省略するが、コンタクト孔 79を導電材料で充填してなる導電ブラ グ及び当該導電プラグと接続されて層間絶縁膜 76上で延在する配線、またはコンタ クト孔 79を充填するとともに層間絶縁膜 76上で延在する配線等の形成工程を経て、 n型 MOSトランジスタを完成させる。 Although not shown in the figure after the squeezing force, the conductive plug formed by filling the contact hole 79 with a conductive material and the wiring or contour connected to the conductive plug and extending on the interlayer insulating film 76 The n-type MOS transistor is completed through a process of filling wiring holes 79 and forming wirings extending on the interlayer insulating film 76.
[0067] 以上説明したように、本実施形態の電子線描画装置を用いて n型 MOSトランジスタ のコンタクト孔 79を形成するための電子線描画を行うことにより、所期の設計通りの均 一なサイズに微細なコンタクト孔 79が形成され、歩留まり良く信頼性の高い n型 MOS トランジスタを製造することができる。  [0067] As described above, by performing electron beam drawing for forming the contact hole 79 of the n-type MOS transistor using the electron beam drawing apparatus of the present embodiment, uniform as intended. A contact hole 79 that is fine in size is formed, and a highly reliable n-type MOS transistor can be manufactured with a high yield.
[0068] (第 2の実施形態)  [0068] (Second Embodiment)
本実施形態の電子線描画装置は、第 1の実施形態とほぼ同様に構成されたもので あるが、第 1のアパーチャ 21における第 1のアパーチャの透過像とブロックマスク 22 の評価用ブロック 1とを相対的に移動させる位置可変手段が異なる点で相違する。  The electron beam drawing apparatus of the present embodiment is configured in substantially the same manner as in the first embodiment, but the transmission image of the first aperture in the first aperture 21 and the evaluation block 1 of the block mask 22 This is different in that the position variable means for relatively moving the position is different.
[0069] 図 10は、第 2の実施形態による電子線描画装置の概略構成を示す模式図である。  FIG. 10 is a schematic diagram showing a schematic configuration of the electron beam lithography apparatus according to the second embodiment.
この電子線描画装置において、第 1の実施形態の電子線描画装置と異なる点は、 制御系 40がマスクステージ 45を有さないことである。本実施形態では、第 1のァパー チヤの透過像とブロックマスク 22の評価用ブロック 1とを相対的な位置を変化させる 位置可変手段を偏向器 14が担っている。  This electron beam drawing apparatus is different from the electron beam drawing apparatus of the first embodiment in that the control system 40 does not have a mask stage 45. In the present embodiment, the deflector 14 serves as a position variable means for changing the relative positions of the transmission image of the first aperture and the evaluation block 1 of the block mask 22.
[0070] 即ち本実施形態では、第 1のアパーチャ 21の透過像をブロックマスク 22の評価用 ブロック 1に投影する際に、統括制御部 46は、ブロックマスク 22を固定した状態でビ ーム位置制御回路 42により偏向器 14を駆動して電子線を偏向させ、第 1のァパーチ ャ 21における第 1のアパーチャの透過像内で透過孔 2の相対的な位置関係を変化さ せる。  That is, in this embodiment, when projecting the transmission image of the first aperture 21 onto the evaluation block 1 of the block mask 22, the overall control unit 46 keeps the block mask 22 fixed and the beam position. The deflector 14 is driven by the control circuit 42 to deflect the electron beam, and the relative positional relationship of the transmission holes 2 is changed in the transmission image of the first aperture in the first aperture 21.
[0071] 本実施形態によれば、第 1の実施形態と同様に、実際に試料 31に描画することなく 簡易な構成で確実に電子銃 11に起因する第 1のアパーチャの透過像 21aの均一性 を評価し、更には当該評価に基づいて工程増を招くことなく実際の描画においてパ ターンのサイズばらつきを抑止して描画するパターンの寸法精度を向上させ、所期の 設計値のパターンを一括描画することが可能となる。  According to the present embodiment, as in the first embodiment, the transmission image 21a of the first aperture due to the electron gun 11 can be surely uniform with a simple configuration without actually drawing on the sample 31. In addition, based on the evaluation, without increasing the number of processes, the pattern size variation is improved by suppressing pattern size variation in actual drawing, and the pattern of the desired design value is batched. It becomes possible to draw.
[0072] 更に、マスクステージ 45が不要であるため、その分だけ装置構成が簡素化され、装 置の汎用性が向上する。  [0072] Further, since the mask stage 45 is unnecessary, the apparatus configuration is simplified correspondingly, and the versatility of the apparatus is improved.
[0073] なお、図 3に示した評価方法のステップ S1〜S3、及び図 5に示した補正方法のス テツプ S4〜S6についてのプログラムコードは、コンピュータの RAMや ROMなどに 記憶されたプログラムが動作することによって実現できる。このプログラム及び当該プ ログラムを記録したコンピュータ読み取り可能な記憶媒体は本発明の実施形態に含 まれる。 Note that steps S1 to S3 of the evaluation method shown in FIG. 3 and the steps of the correction method shown in FIG. Program codes for steps S4 to S6 can be realized by running programs stored in RAM or ROM of the computer. This program and a computer-readable storage medium storing the program are included in the embodiment of the present invention.
[0074] 具体的に、前記プログラムは、例えば CD— ROMのような記録媒体に記録し、或 、 は各種伝送媒体を介し、コンピュータに提供される。前記プログラムを記録する記録 媒体としては、 CD— ROM以外に、フレキシブルディスク、ハードディスク、磁気テー プ、光磁気ディスク、不揮発性メモリカード等を用いることができる。他方、上記プログ ラムの伝送媒体としては、プログラム情報を搬送波として伝搬させて供給するための コンピュータネットワーク(LAN、インターネットの等の WAN、無線通信ネットワーク 等)システムにおける通信媒体 (光ファイバ等の有線回線や無線回線等)を用いるこ とがでさる。  Specifically, the program is recorded on a recording medium such as a CD-ROM, or provided to a computer via various transmission media. As a recording medium for recording the program, besides a CD-ROM, a flexible disk, a hard disk, a magnetic tape, a magneto-optical disk, a nonvolatile memory card, or the like can be used. On the other hand, the transmission medium of the program is a communication medium (wired line such as an optical fiber) in a computer network (LAN, Internet or other WAN, wireless communication network, etc.) system for propagating and supplying program information as a carrier wave. Or wireless lines).
[0075] また、コンピュータが供給されたプログラムを実行することにより上述の実施形態の 機能が実現されるだけでなぐそのプログラムがコンピュータにおいて稼働している O S (オペレーティングシステム)ある 、は他のアプリケーションソフト等と共同して上述 の実施形態の機能が実現される場合や、供給されたプログラムの処理の全てある 、 は一部がコンピュータの機能拡張ボードや機能拡張ユニットにより行われて上述の実 施形態の機能が実現される場合も、かかるプログラムは本発明の実施形態に含まれ る。  [0075] Further, the function of the above-described embodiment is realized not only by executing the program supplied by the computer, but there is an OS (operating system) in which the program is running on the computer. When the functions of the above-described embodiment are realized in cooperation with the above-mentioned embodiment, or all of the processing of the supplied program is partially performed by a function expansion board or a function expansion unit of the computer, the above-described embodiment Such a program is also included in the embodiment of the present invention when the above function is realized.
[0076] 例えば、図 11は、パーソナルユーザ端末装置の内部構成を示す模式図である。こ の図 11において、 1200はコンピュータ PCである。 PC1200は、 CPU1201を備え、 ROM1202またはハードディスク(HD) 1211に記憶された、あるいはフレキシブル ディスクドライブ (FD) 1212より供給されるデバイス制御ソフトウェアを実行し、システ ムノ ス 1204に接続される各デバイスを総括的に制御する。  For example, FIG. 11 is a schematic diagram showing the internal configuration of a personal user terminal device. In FIG. 11, 1200 is a computer PC. PC1200 is equipped with CPU1201, and executes device control software stored in ROM1202 or hard disk (HD) 1211 or supplied from flexible disk drive (FD) 1212 to control each device connected to system node 1204 Control.
[0077] PC 1200の CPU 1201、 ROM 1202またはハードディスク(HD) 1211に記 '慮され たプログラムにより、本実施形態の図 3におけるステップ S1〜S3、及び図 5における ステップ S4〜S6の手順等が実現される。  [0077] According to the program stored in the CPU 1201, the ROM 1202 or the hard disk (HD) 1211 of the PC 1200, steps S1 to S3 in FIG. 3 and steps S4 to S6 in FIG. Realized.
[0078] 1203は RAMであり、 CPU1201の主メモリ、ワークエリア等として機能する。 1205 はキーボードコントローラ(KBC)で、キーボード(KB) 1209や不図示のデバイス等 力 の指示入力を制御する。 Reference numeral 1203 denotes a RAM, which functions as a main memory, work area, and the like for the CPU 1201. 1205 Is a keyboard controller (KBC) that controls the input of commands from the keyboard (KB) 1209 and devices not shown.
[0079] 1206は CRTコントローラ(CRTC)であり、 CRTディスプレイ(CRT) 1210の表示を 制御する。 1207はディスクコントローラ(DKC)で、ブートプログラム(起動プログラム: ノ ソコンのハードやソフトの実行 (動作)を開始するプログラム)、複数のアプリケーシ ヨン、編集ファイル、ユーザファイルそしてネットワーク管理プログラム等を記憶するハ ードディスク(HD) 1211、及びフレキシブルディスク(FD) 1212とのアクセスを制御 する。 [0079] Reference numeral 1206 denotes a CRT controller (CRTC), which controls display on a CRT display (CRT) 1210. 1207 is a disk controller (DKC) that stores boot programs (startup programs: programs that start running (operating) the hardware and software of the computer), multiple applications, editing files, user files, and network management programs. Controls access to the hard disk (HD) 1211 and flexible disk (FD) 1212.
[0080] 1208は、ネットワークインタフェースカード(NIC)であり、 LAN1220を介して、ネッ トワークプリンタ、他のネットワーク機器、あるいは他の PCと双方向のデータのやり取 りを行う。  Reference numeral 1208 denotes a network interface card (NIC), which performs bidirectional data exchange with a network printer, another network device, or another PC via the LAN 1220.
産業上の利用可能性  Industrial applicability
[0081] 本発明の荷電粒子線描画装置及び方法によれば、実際に試料面に描画すること なく簡易な構成で確実に荷電粒子照射源に起因する第 1のアパーチャマスクの透過 像の均一性を評価し、更には当該評価に基づいて工程増を招くことなく実際の描画 においてパターンのサイズばらつきを抑止して描画するパターンの寸法精度を向上 させ、所期の設計値のパターンを一括描画することが可能となる。 [0081] According to the charged particle beam drawing apparatus and method of the present invention, the uniformity of the transmission image of the first aperture mask reliably caused by the charged particle irradiation source with a simple configuration without actually drawing on the sample surface. In addition, based on the evaluation, without increasing the number of processes, the pattern size variation can be improved by suppressing pattern size variation in actual drawing, and patterns with the desired design values can be drawn at once. It becomes possible.

Claims

請求の範囲 The scope of the claims
[1] 荷電粒子線照射手段と、  [1] charged particle beam irradiation means;
前記荷電粒子線照射手段力 照射された荷電粒子線を成形するための第 1のアバ 一チヤが形成された第 1のアパーチャマスクと、  A first aperture mask on which a first aperture for forming the charged particle beam irradiated with the charged particle beam irradiation means is formed; and
繰り返しパターンに相当する複数の第 2のアパーチャが形成された第 2のァパーチ ャマスクと、  A second aperture mask formed with a plurality of second apertures corresponding to the repetitive pattern;
前記第 1のアパーチャの透過像と前記第 2のアパーチャとの相対的な位置関係を 可変とする位置可変手段と、  Position varying means for varying the relative positional relationship between the transmission image of the first aperture and the second aperture;
前記第 2のアパーチャの透過像の荷電粒子線電流値を測定する電流値測定手段 と  Current value measuring means for measuring a charged particle beam current value of a transmission image of the second aperture; and
を含み、  Including
前記第 2のアパーチャマスクは、前記第 2のアパーチャのうちの少なくとも 1つが前 記第 1のアパーチャの透過像よりも小さい透過孔とされており、  In the second aperture mask, at least one of the second apertures is a transmission hole smaller than the transmission image of the first aperture,
前記位置可変手段により前記第 1のアパーチャの透過像内における前記透過孔の 相対的な位置関係を変化させ、前記電流値測定手段により前記第 1のアパーチャの 透過像内の複数部位における前記透過孔カ の透過像の荷電粒子線電流値をそ れぞれ測定することを特徴とする荷電粒子線描画装置。  The position variable means changes the relative positional relationship of the transmission holes in the transmission image of the first aperture, and the current value measurement means changes the transmission holes in a plurality of locations in the transmission image of the first aperture. A charged particle beam drawing apparatus for measuring a charged particle beam current value of a transmission image of a mosquito.
[2] 前記電流値測定手段により測定された前記荷電粒子線電流値に基づき、前記第 1 のアパーチャの透過像内における前記荷電粒子線電流値の分布均一性を評価する 制御手段を更に含むことを特徴とする請求項 1に記載の荷電粒子線描画装置。  [2] The apparatus further includes control means for evaluating the distribution uniformity of the charged particle beam current value in the transmission image of the first aperture based on the charged particle beam current value measured by the current value measuring means. The charged particle beam drawing apparatus according to claim 1, wherein:
[3] 前記制御手段は、前記分布均一性の評価結果に基づき、前記第 1のアパーチャの 透過像内のうち前記分布均一性の基準を満たす部分を選択して荷電粒子線描画に 供することを特徴とする請求項 2に記載の荷電粒子線描画装置。  [3] The control means may select a portion satisfying the distribution uniformity criterion in the transmission image of the first aperture based on the distribution uniformity evaluation result, and use the selected portion for charged particle beam drawing. 3. The charged particle beam drawing apparatus according to claim 2, wherein
[4] 前記第 1のアパーチャの透過像は矩形状であり、  [4] The transmission image of the first aperture is rectangular,
前記電流値測定手段により、前記第 1のアパーチャの前記透過像内の 4隅及び中 央部における前記透過孔からの透過像の荷電粒子線電流値をそれぞれ測定するこ とを特徴とする請求項 1に記載の荷電粒子線描画装置。  The charged particle beam current value of the transmission image from the transmission hole at each of the four corners and the center of the transmission image of the first aperture is measured by the current value measuring unit, respectively. The charged particle beam drawing apparatus according to 1.
[5] 前記位置可変手段は、前記第 2のアパーチャマスクを移動自在に載置固定するマ スクステージであり、当該マスクステージ上で前記第 2のアパーチャマスクを前記第 1 のアパーチャの透過像に対して移動させることを特徴とする請求項 1に記載の荷電 粒子線描画装置。 [5] The position varying means is a mask for mounting and fixing the second aperture mask so as to be movable. 2. The charged particle beam drawing apparatus according to claim 1, wherein the second aperture mask is a stage, and the second aperture mask is moved relative to the transmission image of the first aperture on the mask stage.
[6] 前記位置可変手段は、前記荷電粒子線照射手段から照射された荷電粒子線を偏 向させる磁場偏向器であり、前記第 1のアパーチャの透過像を前記第 2のアパーチャ マスクに対して移動させることを特徴とする請求項 1に記載の荷電粒子線描画装置。  [6] The position variable means is a magnetic field deflector for deflecting the charged particle beam irradiated from the charged particle beam irradiation means, and transmits a transmission image of the first aperture with respect to the second aperture mask. The charged particle beam drawing apparatus according to claim 1, wherein the charged particle beam drawing apparatus is moved.
[7] 照射された荷電粒子線を成形するための第 1のアパーチャが形成された第 1のァ ノ ーチヤマスクと、  [7] a first annotator mask having a first aperture for shaping the irradiated charged particle beam;
繰り返しパターンに相当する複数の第 2のアパーチャが形成されており、前記第 2 のアパーチャのうちの少なくとも 1つが前記第 1のアパーチャの透過像よりも小さい透 過孔とされた第 2のアパーチャマスクと  A plurality of second apertures corresponding to a repetitive pattern are formed, and at least one of the second apertures is a second aperture mask having a smaller transmission hole than the transmission image of the first aperture When
を用いて荷電粒子線描画を行うに際して、  When performing charged particle beam drawing using
前記第 1のアパーチャマスクに荷電粒子線を照射して、前記第 1のアパーチャの透 過像を前記第 2のアパーチャマスク上に投影するステップと、  Irradiating a charged particle beam to the first aperture mask and projecting a transmission image of the first aperture onto the second aperture mask; and
前記第 1のアパーチャの透過像内における前記透過孔の相対的な位置関係を変 化させ、前記第 1のアパーチャの透過像内の複数部位における前記透過孔カ の透 過像の荷電粒子線電流値をそれぞれ測定するステップと  The charged particle beam current of the transmission image of the transmission hole is changed at a plurality of locations in the transmission image of the first aperture by changing the relative positional relationship of the transmission holes in the transmission image of the first aperture. Measuring each value and
を含むことを特徴とする荷電粒子線描画方法。  A charged particle beam drawing method comprising:
[8] 前記電流値測定手段により測定された前記荷電粒子線電流値に基づき、前記第 1 のアパーチャの透過像内における前記荷電粒子線電流値の分布均一性を評価する ステップを更に含むことを特徴とする請求項 7に記載の荷電粒子線描画方法。 [8] The method further includes a step of evaluating distribution uniformity of the charged particle beam current value in a transmission image of the first aperture based on the charged particle beam current value measured by the current value measuring means. 8. The charged particle beam drawing method according to claim 7,
[9] 前記分布均一性の評価結果に基づき、前記第 1のアパーチャの透過像内のうち前 記分布均一性の基準を満たす部分を選択するステップを更に含むことを特徴とする 請求項 8に記載の荷電粒子線描画方法。 9. The method according to claim 8, further comprising a step of selecting a portion satisfying the distribution uniformity criterion in the transmission image of the first aperture based on the evaluation result of the distribution uniformity. The charged particle beam drawing method as described.
[10] 前記第 1のアパーチャの透過像は矩形状であり、 [10] The transmission image of the first aperture is rectangular,
前記荷電粒子線電流値を測定するステップにお 、て、前記第 1のアパーチャの前 記透過像内の 4隅及び中央の部位における前記透過孔からの透過像の前記荷電粒 子線電流値をそれぞれ測定することを特徴とする請求項 7に記載の荷電粒子線描画 方法。 In the step of measuring the charged particle beam current value, the charged particle beam current value of the transmission image from the transmission hole at the four corners and the central portion in the transmission image of the first aperture is calculated. The charged particle beam drawing according to claim 7, wherein each is measured. Method.
[11] 前記荷電粒子線電流値を測定するステップにおいて、前記第 2のアパーチャマスク がマスクステージ上に移動自在に載置固定されており、前記マスクステージ上で前 記第 2のアパーチャマスクを前記第 1のアパーチャの透過像に対して移動させること を特徴とする請求項 7に記載の荷電粒子線描画方法。  [11] In the step of measuring the charged particle beam current value, the second aperture mask is movably mounted and fixed on a mask stage, and the second aperture mask is placed on the mask stage. The charged particle beam drawing method according to claim 7, wherein the charged particle beam is moved with respect to the transmission image of the first aperture.
[12] 前記荷電粒子線電流値を測定するステップにおいて、照射された荷電粒子線を偏 向させることにより、前記第 1のアパーチャの透過像を前記第 2のアパーチャマスクに 対して移動させることを特徴とする請求項 7に記載の荷電粒子線描画方法。  [12] In the step of measuring the charged particle beam current value, the transmitted image of the first aperture is moved with respect to the second aperture mask by deflecting the irradiated charged particle beam. 8. The charged particle beam drawing method according to claim 7,
[13] 照射された荷電粒子線を成形するための第 1のアパーチャが形成された第 1のァ ノ ーチヤマスクと、  [13] a first annotator mask having a first aperture for shaping the irradiated charged particle beam;
繰り返しパターンに相当する複数の第 2のアパーチャが形成されており、前記第 2 のアパーチャのうちの少なくとも 1つが前記第 1のアパーチャの透過像よりも小さい透 過孔とされた第 2のアパーチャマスクと  A plurality of second apertures corresponding to a repetitive pattern are formed, and at least one of the second apertures is a second aperture mask having a transmission hole smaller than a transmission image of the first aperture When
を用いて荷電粒子線描画を行うに際して、  When performing charged particle beam drawing using
コンピュータに、  On the computer,
前記第 1のアパーチャマスクに荷電粒子線を照射して、前記第 1のアパーチャの透 過像を前記第 2のアパーチャマスク上に投影するステップと、  Irradiating a charged particle beam to the first aperture mask and projecting a transmission image of the first aperture onto the second aperture mask; and
前記第 1のアパーチャの透過像内における前記透過孔の相対的な位置関係を変 化させ、前記第 1のアパーチャの透過像内の複数部位における前記透過孔カ の透 過像の荷電粒子線電流値をそれぞれ測定するステップと  The charged particle beam current of the transmission image of the transmission hole is changed at a plurality of locations in the transmission image of the first aperture by changing the relative positional relationship of the transmission holes in the transmission image of the first aperture. Measuring each value and
を実行させるためのプログラム。  A program for running
[14] コンピュータに、前記電流値測定手段により測定された前記荷電粒子線電流値に 基づき、前記第 1のアパーチャの透過像内における前記荷電粒子線電流値の分布 均一性を評価するステップを更に実行させるための請求項 13に記載のプログラム。 [14] The step of further evaluating the distribution uniformity of the charged particle beam current value in the transmission image of the first aperture based on the charged particle beam current value measured by the current value measuring means in a computer The program according to claim 13 for execution.
[15] コンピュータに、前記分布均一性の評価結果に基づき、前記第 1のアパーチャの透 過像内のうち前記分布均一性の基準を満たす部分を選択するステップを更に実行さ せるための請求項 14に記載のプログラム。 [15] The computer program further comprising: causing the computer to select a portion satisfying the distribution uniformity criterion in the transmission image of the first aperture based on the evaluation result of the distribution uniformity. 14. The program described in 14.
PCT/JP2005/014345 2005-08-04 2005-08-04 Charged particle beam plotting device and method WO2007015306A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/014345 WO2007015306A1 (en) 2005-08-04 2005-08-04 Charged particle beam plotting device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/014345 WO2007015306A1 (en) 2005-08-04 2005-08-04 Charged particle beam plotting device and method

Publications (1)

Publication Number Publication Date
WO2007015306A1 true WO2007015306A1 (en) 2007-02-08

Family

ID=37708589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014345 WO2007015306A1 (en) 2005-08-04 2005-08-04 Charged particle beam plotting device and method

Country Status (1)

Country Link
WO (1) WO2007015306A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140310A (en) * 1992-10-27 1994-05-20 Jeol Ltd Method for charged particle beam lithography
JPH07161605A (en) * 1993-12-03 1995-06-23 Fujitsu Ltd Charged particle beam exposure and unit and transmission mask plate
JPH10261566A (en) * 1997-03-18 1998-09-29 Toshiba Corp Method for manufacturing through hole for measuring beam current
JP2001189257A (en) * 1999-12-28 2001-07-10 Nikon Corp Adjustment method for charged particle illumination optical system
JP2003115430A (en) * 2001-10-02 2003-04-18 Nikon Corp Charged particle beam exposure system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140310A (en) * 1992-10-27 1994-05-20 Jeol Ltd Method for charged particle beam lithography
JPH07161605A (en) * 1993-12-03 1995-06-23 Fujitsu Ltd Charged particle beam exposure and unit and transmission mask plate
JPH10261566A (en) * 1997-03-18 1998-09-29 Toshiba Corp Method for manufacturing through hole for measuring beam current
JP2001189257A (en) * 1999-12-28 2001-07-10 Nikon Corp Adjustment method for charged particle illumination optical system
JP2003115430A (en) * 2001-10-02 2003-04-18 Nikon Corp Charged particle beam exposure system

Similar Documents

Publication Publication Date Title
JP3892565B2 (en) Pattern formation method
JP4794882B2 (en) Scanning exposure apparatus and scanning exposure method
KR102410666B1 (en) A method of inspecing a semiconductor device, and a method of a semiconductor device using the same
KR100380546B1 (en) Semiconductor ic device fabricating method
TWI434026B (en) Method and apparatus for implementing a universal coordinate system for metrology data
US7760931B2 (en) Apparatus and method for measuring at least one of arrangement and shape of shots on substrate, exposure apparatus, and device manufacturing method
US7720632B2 (en) Dimension measuring apparatus and dimension measuring method for semiconductor device
KR101130489B1 (en) Method and System for controlling an Implanation process
JP2006147667A (en) Semiconductor wafer, semiconductor device, and method of manufacturing the same
JP2006318955A (en) Method and apparatus for measuring pattern dimension
KR20050004830A (en) Mask pattern correction method, semiconductor device manufacturing method, mask manufacturing method, and mask
JPH11176749A (en) Exposure method and manufacture of device
JP3913151B2 (en) Method and system for optimizing parameter values of exposure apparatus, exposure apparatus and exposure method
JPS587055B2 (en) Gap setting device in proximity aligner
WO2007015306A1 (en) Charged particle beam plotting device and method
US5780852A (en) Dimension measurement of a semiconductor device
US7436489B2 (en) Device for testing an exposure apparatus
US20090206255A1 (en) Substrate inspection device and substrate inspection method
US20240060916A1 (en) Overlay measuring method
US6455332B1 (en) Methodology to mitigate electron beam induced charge dissipation on polysilicon fine patterning
JPH10209010A (en) Method and apparatus for charge beam exposure, and pallet
WO2024068426A1 (en) Scanning electron microscopy (sem) back-scattering electron (bse) focused target and method
JPH07235477A (en) Fabrication of semiconductor integrated circuit device
JP3433847B2 (en) Method for manufacturing semiconductor integrated circuit device
TW202422240A (en) Layer based image detection and processing for multi layer structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05768899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP