WO2007015288A1 - Misalignment estimation method, and misalignment estimation device - Google Patents
Misalignment estimation method, and misalignment estimation device Download PDFInfo
- Publication number
- WO2007015288A1 WO2007015288A1 PCT/JP2005/014026 JP2005014026W WO2007015288A1 WO 2007015288 A1 WO2007015288 A1 WO 2007015288A1 JP 2005014026 W JP2005014026 W JP 2005014026W WO 2007015288 A1 WO2007015288 A1 WO 2007015288A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- straight line
- stationary object
- radar
- echo
- vehicle
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4004—Means for monitoring or calibrating of parts of a radar system
- G01S7/4026—Antenna boresight
- G01S7/403—Antenna boresight in azimuth, i.e. in the horizontal plane
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4004—Means for monitoring or calibrating of parts of a radar system
- G01S7/4026—Antenna boresight
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4052—Means for monitoring or calibrating by simulation of echoes
- G01S7/4082—Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder
- G01S7/4091—Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder during normal radar operation
Definitions
- the present invention relates to an apparatus for detecting a target using a radar, and more particularly to a technique for increasing the detection accuracy of a target by calculating an axis deviation amount of the radar.
- a particular problem here is the simplification and high accuracy of the radar axis adjustment work.
- the radar mounted on a car is required to detect the distance and speed of a target distant from about 200 meters with a resolution of about lm.
- the radar axis is shifted by only 0.5 degrees from the original forward direction.
- Patent Document 1 Japanese Patent Laid-Open No. 7-120555
- Non-specialized document 1 W. Kederer, J. Detlefsen, Sensor-based determination of angular misali gnment and lane configuration of a radar sensor for ACC—applications, Proceedings of 30th European Microwave Conference, pp.313-31b, 2000.
- the above-described conventional technology can estimate the radar axis deviation well when many stationary object echoes are distributed on a single straight line and the approximation accuracy of the straight line is high. It is well known that there are various shapes of obstacles observed on real roads, so that the echo distribution cannot be approximated by such a single straight line. Under such circumstances, it is difficult to estimate the radar axis deviation accurately even if the spatial distribution of a stationary object is approximated by a single straight line.
- the present invention has been made to solve the above-described problems, and has an object to make it possible to accurately estimate the amount of misalignment of the radar axis and to improve the measurement performance of the radar. To do.
- An axis misalignment estimation method for determining an axis misalignment amount of a radar that detects a target in front of a traveling vehicle
- a reference straight line calculating step for calculating a reference straight line parallel to the traveling track of the vehicle by approximating the distribution of reflection points of the stationary object echo selected in the echo selection step with a straight line;
- an axial deviation amount estimating step for obtaining an axial deviation amount of the radar based on the direction of the reference straight line calculated in the step
- the linear deviation approximation is not performed on the echoes of the stationary object existing in the entire radar coverage, and is present in a part of the coverage. Since the linear approximation is performed only for the echo of the stationary object, the approximation accuracy of the straight line is increased by rejecting the stationary object echo that degrades the approximation accuracy, and the radar axis deviation is calculated accurately. It becomes possible.
- FIG. 1 is a block diagram showing a configuration of a radar apparatus according to Embodiment 1 of the present invention.
- FIG. 2 is a block diagram showing a configuration of a radar apparatus according to Embodiment 1 of the present invention.
- FIG. 3 is a block diagram showing a configuration of a radar apparatus according to Embodiment 1 of the present invention.
- FIG. 4 is an explanatory diagram showing a configuration of an observation region according to the first embodiment of the present invention.
- FIG. 5 is a flowchart of an axial deviation amount estimation process according to the first embodiment of the present invention.
- FIG. 6 is an explanatory diagram showing the operation principle of the first embodiment of the present invention.
- FIG. 7 is a block diagram showing a configuration of the second embodiment of the present invention.
- the radar apparatus according to Embodiment 1 of the present invention is assumed to be mounted on, for example, an automobile, radiates a radar transmission wave in the traveling direction of the automobile (a direction perpendicular to the axle), and targets (many of which are It is an obstacle in driving).
- the radar apparatus according to the first embodiment of the present invention has a function of correcting a deviation between the reference azimuth in detecting the position of the target and the front direction of the automobile, that is, a radar axis deviation. Yes.
- FIG. 1 is a block diagram showing a configuration of a radar apparatus according to Embodiment 1 of the present invention.
- this radar apparatus radiates a radar wave from the antenna 1 in the direction of travel of the automobile and receives a radar wave reflected by a radar wave reflector such as a target or an obstacle. .
- the transmission / reception unit 2 supplies a transmission signal 11 that is a source of radar waves radiated from the antenna 1 to the outside.
- the transmitting / receiving unit 2 converts the received signal 12 in the RF (Radio Frequency) band output by the antenna 1 into an internal signal of an intermediate frequency. Down-converted to a received signal in the video band using the difference signal.
- RF Radio Frequency
- Down-conversion is realized by outputting the frequency difference between the received signal 12 and the transmission / reception unit 2 and the reference signal which is an internal signal.
- the received signal in the video band is referred to as a difference signal.
- the transceiver 2 Outputs the difference signal 13.
- the difference signal 13 is input to the signal processing unit 3 and used for detecting the position of the object.
- the echo detector 4 detects the reflected wave using the difference signal 13, and outputs the frequency 14 of the detected difference signal of the reflected echo.
- a method for detecting such reflected echoes a method is generally used in which there is a reflected wave when the power is larger than unwanted wave components such as receiver noise and clutter. For that purpose, a certain margin is added to the receiver noise or the power of the clutter, and the signal component having the power exceeding it is regarded as a reflected echo and detected.
- the position detection unit 5 obtains a reflection point (echo) position 15 for each predetermined period using the frequency 14 of the difference signal output from the echo detection unit 4. For this purpose, first, the relative distance between the reflection point and the radar device and the direction (angle) of the reflection point are obtained, and the position of the reflector is determined from the obtained relative distance and direction.
- a pulse radar method in which a transmission wave is pulse-modulated and distance measurement is performed by a transmission / reception time difference, a frequency-modulated continuous wave is transmitted, and a transmission signal and a reception signal are mixed.
- the FMCW (Frequency Modulation Continuous Wave) method or multi-frequency CW method which obtains the distance from the frequency of the difference signal obtained by this, is known.
- a method for obtaining the direction a method in which an antenna with a pencil beam is mechanically driven and observed, a plurality of element antennas are arranged, and phase control is performed on each element at the time of transmission or reception.
- a method of performing beam scanning is known. If these known methods are used, those skilled in the art can easily configure the position detector 5.
- the position detection unit 5 expresses and outputs the position 15 of the reflection point in a Cartesian coordinate system composed of an X coordinate and a y coordinate.
- the y-axis which is the coordinate axis of the y-coordinate, is set with the forward direction of the radar axis as the positive direction and the opposite direction as the negative direction.
- the X axis and the y axis which are the coordinate axes of the X coordinate, are assumed to be orthogonal to each other, and the X axis is set forward with the radar axis in the forward direction and the right direction as the positive direction and the left direction as the negative direction.
- the speed detector 6 calculates the relative speed of the reflection point using the frequency 14 of the difference signal.
- the relative velocity of the reflection point is calculated using Doppler modulation of the received wave frequency. Widely known.
- the position detection unit 5 uses the FMCW method or multi-frequency CW method, the distance and speed can be calculated simultaneously, so the position detection unit 5 and the speed detection unit 6 are composed of the same parts and elements. Even so,
- Axis deviation amount estimation unit 7 extracts and extracts reflection points that are estimated to be distributed on a straight line parallel to the traveling track of the automobile from the reflection points detected by echo detection unit 4. The amount of axis deviation is calculated based on the distribution of reflected points.
- FIG. 2 is a block diagram showing a detailed configuration of the axis deviation amount estimation unit 7. In the figure, when the axial deviation amount estimation unit 7 obtains the reflection point position 15 and the reflection point relative speed 16 from the outside, the reflection point position 15 and the reflection point relative speed 16 are input to the stationary object extraction unit 21. To do.
- the stationary object extraction unit 21 selects an echo of the reflection point on the stationary object (hereinafter referred to as a stationary object echo) based on the position 15 or the relative velocity 16 of the reflection point, and outputs it as a stationary object echo 31.
- the contents of the stationary object echo 31 include at least the position of the reflection point on the stationary object (Cartesian coordinates, or coordinates obtained by converting Cartesian coordinates to a polar coordinate system, etc., equivalent to Cartesian coordinates, etc.). It is.
- a method of determining whether the reflection point to which the stationary object extraction unit 21 is input is a reflection point on the stationary object, for example, there are several methods as shown in the following method 1 to method 3. .
- Method 1 This is a method for discriminating whether or not the reflection point is a reflection point on a stationary object based on the relative velocity of the reflection point.
- the vehicle speed data is acquired from the outside and collated with the relative speed of the reflection point to identify whether the reflection point is a reflection point on a stationary object (method) 1 1) can be considered. More specifically, for example, vehicle speed data is obtained by a vehicle speed sensor attached to the host vehicle, and a reflector having a Doppler speed that is approximately the same size as the vehicle speed and approaching the vehicle is regarded as a stationary object.
- Method 2 This is a method in which an object (reflection point) existing at a position off the lane is regarded as a stationary object. To determine whether a reflection point is out of lane force, a predetermined reference (reference X coordinate) is set for the X coordinate, and the difference between the X coordinate of each reflection point and the reference X coordinate is greater than a certain value. If this happens, consider that this reflection point is out of the lane.
- the reference X coordinate is calculated by statistically processing the X coordinate of the reflection point obtained so far. For example, the average of the X coordinates of a plurality of reflection points input immediately before is obtained, and this average value is used as the reference X coordinate. Furthermore, it goes without saying that the reference X coordinate can be determined based on the radar axis deviation amount finally obtained by the radar apparatus of the first embodiment of the present invention.
- the speed detector 6 can be connected to the radar device. It may be omitted from the component.
- Method 1 since it is necessary to acquire signals and information from an external speed sensor, the radar device and the speed sensor of the mobile platform (vehicle, etc.) are connected so that the speed data can be transmitted. There is a need to. However, it is possible to identify each reflection point independently for each reflection point whether or not each reflection point is a stationary object echo.
- both method 1 2 and method 2 do not require information from an external velocity sensor, and in method 2, it is necessary to calculate the velocity of the reflection point. And however, it is necessary to have a configuration in which the positional information of a plurality of reflection points can be accessed simultaneously. That is, it is necessary to store position information of a plurality of reflection points in a storage device (not shown).
- the stationary object echo may be narrowed down based on the X coordinate, and the stationary object echo may be narrowed down again using method 11 or method 12.
- the linear approximation unit 22 Find a straight line approximating the distribution of the coordinates.
- the approximate straight line slope and intercept are output as line 32. If a straight line approximating the distribution of stationary object echoes is expressed as in equation (1), the slope is given by P, and the intercept (X intercept: the X coordinate of the intersection of the straight line and the X axis) is given by q.
- FIG. 3 is a detailed block diagram of the straight line approximation unit 22.
- the stationary object echo 31 in the figure is input to the observation area dividing unit 221.
- observation areas divided based on a predetermined boundary line are set in advance, and an observation area to which a stationary object echo used for linear approximation belongs is determined. .
- FIG. 4 is a diagram showing the state of such an observation area (covering area of the radar device).
- This figure shows an example in which the boundary line is set so as to be parallel to the traveling track of the vehicle 41, and the left side of the boundary line is region A and the right side of the boundary line is region B in the direction of travel. is there.
- the X in the figure indicates the position of the stationary object echo. Area A stationary objects are distributed almost along the guardrail 42. In addition, stationary object echoes in region B are distributed almost along the central separation zone 43.
- the boundary line is parallel to the traveling track of the car 41
- the angle between the traveling track and the boundary line is "a child that is almost 0 °”. It does not require that the running trajectory and the boundary line do not intersect, that is, the running trajectory and the boundary line may exist on the same straight line, or may have an intersection.
- the observation area dividing unit 221 selects only the stationary object echo in one of the observation areas of the area A and the area B, and selects the stationary object echo 32 in the observation area (hereinafter simply referred to as the stationary object echo 32). ) And output the stationary object echo of the other observation area that has not been selected. For example, only the stationary object echo in region A is selected and output as stationary object echo 32, and the stationary object echo in region B is rejected. It goes without saying that certain! / May select the stationary object echo in region B, output it as stationary object echo 32, and reject the stationary object echo in region A.
- the data of the stationary object echo 32 includes the coordinates of the position of the reflection point (Cartesian coordinates or coordinates obtained by converting the Cartesian coordinates to a polar coordinate system or the like, which is equivalent to the Cartesian coordinates). For example).
- the boundary line be set parallel to the traveling track (traveling direction) of the automobile 41.
- the boundary line only needs to be a straight line that forms approximately 0 ° with the traveling direction of the car.
- the stationary object echo may be selected by calculating ave jj ave I and extracting only stationary objects whose absolute value is smaller than a preset value.
- the observation area is divided by the set value to be compared with the absolute value of the difference and the X coordinate of the boundary line.
- a reflective object such as a traffic sign may exist on the upper part of the road in front of the traveling direction.
- the X coordinate of a stationary object may be limited and extracted.
- a wall surface located in parallel with the vehicle trajectory exists above the road in the tunnel, so the observation area may be divided so as to select a stationary object echo on the upper wall surface.
- FIG. 5 is a flowchart of the process of the reference straight line calculation unit 222.
- the reference straight line calculation unit 222 is synchronized with the timing at which the echo detection unit 4 outputs the frequency 14 of the difference signal or the timing at which the position detection unit 5 outputs the reflection point echo every predetermined cycle. The indicated process is executed, and the amount of axis deviation is calculated individually for each timing.
- step ST 101 in FIG. 5 first, the number of repetitions is set to zero.
- the number of repetitions is a counter for measuring the number of straight line approximations.
- the reference straight line calculation unit 222 approximates the straight line (step ST102).
- N is a natural number
- the approximate straight line is given by equation (1).
- the slope ⁇ and the X-intercept q are calculated by equations (2) and (3) by the least square method.
- step ST104 stationary object echoes for which d calculated through equation (4) is greater than or equal to a predetermined value are rejected from the set of stationary object echoes 32 (step ST104). By doing so, it becomes possible to efficiently remove the stationary object echo that is a factor that degrades the accuracy of the linear approximation, and the stationary object echo force to be approximated.
- FIG. 6 is a diagram for explaining that the approximation accuracy of the straight line, and thus the estimation accuracy of the axis deviation is improved by step ST104.
- a set 51 of stationary object echoes exists along the straight line 52 at the left front of the automobile 41.
- a set 53 of stationary object echoes exists along a straight line 54 different from the straight line 52. If an attempt is made to approximate the stationary object echo sets 51 and 53 with the same straight line at step ST102, an approximate straight line such as a straight line 55 is obtained.
- step ST105 uses the estimated axis deviation as a missing value (step ST106).
- step ST105: No again finds a straight line that approximates the distribution of the remaining stationary object echoes (step ST107). The calculation performed here is the same as in step ST103.
- step ST108 add 1 to the number of repetitions (step ST108), and calculate the distance between the stationary object echo and the straight line
- step ST110 Calculate in (4) (step ST110).
- the reference straight line calculation unit 222 After calculating the distance, the reference straight line calculation unit 222 further calculates the average of the calculated distances and tests whether the average value exceeds a predetermined value (step ST110). With such a test, it is possible to evaluate whether the force has reached a sufficient level of approximation accuracy of the straight line.
- step ST110 Yes
- the average value exceeds the predetermined value (step ST110: Yes)
- the number of repetitions exceeds the predetermined value
- no further approximation processing is performed, and the estimated axis deviation with respect to the stationary object echo 32 is set as a missing value (step ST106).
- the response performance will be degraded if it takes too long to calculate the axis misalignment estimation.
- the radar device is applied to a collision avoidance / prevention system, it may cause a serious obstacle to safety during driving. Therefore, the response performance is prevented from deteriorating by controlling so that the number of linear approximation processes does not exceed a predetermined number.
- step ST104 a stationary object echo rejection process is performed based on the distance between the stationary object echo and the straight line calculated in step ST109 (step ST104). Thereafter, step ST105 to step S Repeat the linear approximation process of Tl 11.
- the radar apparatus determines whether or not the obtained straight line follows the distribution of each stationary object echo by simply obtaining a straight line that approximates the distribution of the stationary object echo. evaluate. In other words, the degree of coincidence and convergence of the stationary object echo distribution with respect to the approximate line is evaluated. If it is determined that the distribution of stationary object echoes is not sufficiently approximated, the stationary object echo distribution is again approximated after rejecting the stationary object echoes that cause the approximate accuracy degradation. Find a straight line. As a result, the accuracy is greatly improved compared to the estimation of the amount of axis deviation by simple linear approximation.
- step ST110 if the average value does not exceed the predetermined value! /, (Step ST11 0: No), it is already determined that the approximation accuracy of the straight line is sufficiently high.
- the approximate straight line is output as the axis deviation amount 17 (step ST111), and the process is terminated.
- the reference straight line calculation unit 222 may output the obtained inclination of the reference line and the X intercept as the axis deviation amount 17 as they are, or in accordance with the requirements of the system. You may make it convert into the amount 17 of axis deviations of the expression form. For example, if an angle expression (radian value, etc.) is appropriate as the amount of axis deviation, the angle ex between the straight line 32 and the radar axis is calculated as the axis deviation amount 17 of the radar axis according to Equation (5).
- an angle expression radian value, etc.
- the position correction unit 8 corrects the position 15 of the reflection point output from the position detection unit 5 by using the axis deviation amount 17 and outputs the corrected position 18 to the outside of the radar apparatus. .
- the force for obtaining a straight line that approximates the distribution of reflection points in order to estimate the radar axis deviation amount Since the observation area is divided based on the boundary line and only the reflection points included in some of the observation areas are used, the factor that degrades the accuracy of the linear approximation is removed, and the accuracy of the linear approximation is improved. Greatly improved.
- the radar apparatus obtains a straight line that approximates the distribution of stationary object echoes on the assumption that the vehicle, which is a mobile platform, moves linearly and the trajectory is also a straight line. It was to estimate the axis deviation of the radar using the tilt
- the radar apparatus may cause the loss of the axis deviation amount when the desired approximation accuracy cannot be obtained or when the number of approximation processes exceeds a predetermined number.
- the handling method for the deficit in the amount of misalignment has been clarified.
- Embodiment 2 of the present invention in the process of estimating the amount of axial deviation of the radar apparatus of Embodiment 1, a step of smoothing the amount of axial deviation is further provided, whereby the variation in the track shape of the vehicle is performed. It is explained that a method for estimating the amount of misalignment can be obtained that can cope with fluctuations in the steering angle of the vehicle and the lack of the amount of misalignment.
- the radar apparatus according to the second embodiment of the present invention is an improvement of the off-axis amount estimation unit 7 of the radar apparatus according to the first embodiment. Therefore, unless otherwise specified, the configuration of the radar apparatus according to the second embodiment is the same as that of the radar apparatus according to the first embodiment.
- FIG. 7 is a block diagram showing the configuration of the straight line approximation unit 22 that is a characteristic part of the radar apparatus according to Embodiment 2 of the present invention.
- the straight line approximation unit 22 that is a characteristic part of the radar apparatus according to Embodiment 2 of the present invention.
- the track curvature acquisition unit 24 is a part that acquires the curvature 34 of the track at the position where the vehicle is currently traveling.
- a specific method for obtaining the curvature 34 for example, a measurement value of a directional sensor that obtains the angular velocity of a running vehicle may be used, or the steering angle information from the vehicle steering device is used as the curvature. You may make it convert.
- the reference straight line storage unit 25 is a part that stores the amount of axis deviation 35 obtained for each observation period having a predetermined length for a plurality of periods.
- the track curvature storage unit 26 is the timing at which the reference straight line is calculated, and the track curvature of the vehicle acquired by the reference straight line calculation unit 222 from the track curvature acquisition unit 24. This is the part that stores the rate.
- a time zone in which one axis deviation amount 33 is calculated is referred to as a section, and each section is identified by a number such as section 1, section 2,. Sections with consecutive numbers assigned to sections shall be adjacent to each other. Also, in a certain section N (N is a natural number), the obtained axis deviation 33 is expressed as axis deviation 33 (N), and the curvature 34 is expressed as curvature 34 (N).
- the reference straight line calculation unit 222 acquires the curvature 34 (N) from the trajectory curvature acquisition unit 24. Further, the reference straight line calculation unit 222 acquires the curvature 36 from the orbital curvature storage unit 26. This curvature 36 is the curvature 34 (k) (k k N) that the reference straight line calculation unit 222 has previously acquired the orbital curvature acquisition unit 24 force. Thereafter, the reference straight line calculation unit 222 stores the curvature 34 (N) in the orbital curvature storage unit 26. As a result, the curvature stored in the orbital curvature storage unit 26 is replaced from the curvature 36 to the curvature 34 (N), and the curvature 34 (N) is used as the curvature 36 in the next processing.
- the reference straight line calculation unit 222 examines whether the curvature 36 (curvature 34 (k), k ⁇ N) and the curvature 34 (N) are both curvatures equal to or less than a predetermined value. As a result, when either the curvature 36 or the curvature 34 (N) exceeds a predetermined value, the reference straight line calculation unit 222 replaces the process of calculating the reference straight line from the current stationary object echo 32, and the reference straight line storage unit 25 Uses the reference straight line 35 stored by. For example, if the reference line storage unit 25 has stored the reference lines of the last few times, the average value of these reference lines (the average value of the slope and the average value of the X-intercept) is used to calculate the current reference line. calculate.
- both the curvature 36 and the curvature 34 (N) are less than or equal to a predetermined value, it is determined that the vehicle is in a straight traveling state. Then, as in the first embodiment, a reference straight line is obtained and the estimated axis deviation is calculated. When the estimated axis deviation is correctly calculated, the reference straight line is stored in the reference straight line storage unit 25, and the calculated axis deviation is output.
- the present invention is useful for improving the accuracy of radar technology, and can be applied particularly to a radar device mounted on an automobile.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
A radar is precisely estimated in its misalignment. Provided is a misalignment estimation device for estimating the misalignment of the radar to detect a target in front of a running vehicle. The misalignment estimation device comprises a stationary object extraction unit (21) for selecting the echo of a stationary object from the echo of a transmission wave on the basis of a distance and a velocity, and an observation area division unit (221) for dividing the coverage of the radar into a plurality of areas. Further comprised is a reference straight line calculation unit (222) for determining a reference straight line parallel to the running orbit of the vehicle, by linearly approximating the distribution of such a reflection point of the echo of the stationary object selected by the stationary object extraction unit (21) as belongs to the partial area divided by the observation area division unit (222), thereby to determine the misalignment of the radar on the basis of that reference straight line.
Description
明 細 書 Specification
軸ずれ量推定方法及び軸ずれ量推定装置 Axis deviation amount estimation method and axis deviation amount estimation device
技術分野 Technical field
[0001] この発明は、レーダを用いて目標物を検出する装置に係るものであり、特にレーダ の軸ずれ量を算出して目標物の検出精度を高める技術に関する。 TECHNICAL FIELD [0001] The present invention relates to an apparatus for detecting a target using a radar, and more particularly to a technique for increasing the detection accuracy of a target by calculating an axis deviation amount of the radar.
背景技術 Background art
[0002] 従来のレーダシステムは軍事 ·防衛、気象といった分野に多く適用されてきた力 こ れらの分野では量産コストや据え付けコストがあまり問題になることはな力つた。し力し 昨今では、レーダ装置を自動車に搭載し、自動車走行中に障害物を検出し、自動車 運行上の安全性を高める試みが行われるようになってきている。自動車搭載用レー ダでは、量産コストを低く抑えることが問題となるば力りではなぐ低廉に生産したレー ダを少な 、工数で精度よく自動車に取り付けることも要求される。 [0002] The power of conventional radar systems that have been widely applied in the fields of military / defense, weather, etc. In these fields, mass production costs and installation costs did not become much of a problem. Recently, however, attempts have been made to increase the safety of automobile operation by installing a radar device in an automobile, detecting obstacles while the automobile is running. For automobile-mounted radars, it is required to mount a low-priced radar that can be manufactured at low cost, with less effort, with high man-hours.
[0003] ここで特に問題になるのは、レーダ軸の調整作業の簡略化と高精度化である。自動 車搭載用レーダではおよそ 200メートル遠方の目標物の距離や速度を lm程度の分 解能で検出することが要求されるが、仮にレーダ軸が本来の前方方向とわずか 0. 5 度ずれただけでも、検出誤差は 200メートル X tanO. 5° = 1. 7メートルとなり、要求 分解能を達成できな 、ことになる。 [0003] A particular problem here is the simplification and high accuracy of the radar axis adjustment work. The radar mounted on a car is required to detect the distance and speed of a target distant from about 200 meters with a resolution of about lm. However, the radar axis is shifted by only 0.5 degrees from the original forward direction. Even just, the detection error is 200 meters X tanO. 5 ° = 1.7 meters, which means that the required resolution cannot be achieved.
[0004] さらに、工場出荷前においてレーダ装置を精度よく据え付けることができたとしても 、自動車の使用を通じてレーダ装置の据え付けが狂う場合がある。例えば、悪路の 走行による長期間の振動や軽微な事故による車体の変形等力 生じるレーダ軸の誤 差を防止することはほぼ不可能である。そこで、レーダ装置の使用中に軸ずれを自 動的に検出し、補正する処理を組み込む必要が生じる。 [0004] Further, even if the radar apparatus can be installed with high accuracy before shipment from the factory, the installation of the radar apparatus may go wrong through the use of the automobile. For example, it is almost impossible to prevent radar axis errors caused by long-term vibrations caused by running on rough roads and deformations of the car body due to minor accidents. Therefore, it is necessary to incorporate a process for automatically detecting and correcting the axis deviation while using the radar device.
[0005] 従来、この種の軸ずれ量推定方法としては、レーダを搭載する車両が直線路を走 行しているものと仮定し、レーダが検出するエコー中に路側に存在する看板やガード レールなどの静止物のエコーが多く分布するものとして、これら道路に平行に分布す るエコーを直線近似し、この直線の方向に基づ ヽてレーダ軸のずれを推定する方式 が知られて ヽる(例えば特許文献 1や非特許文献 1)。
[0006] 特許文献 1 :特開平 7— 120555号公報 [0005] Conventionally, as this kind of axis deviation estimation method, it is assumed that the vehicle on which the radar is mounted is running on a straight road, and the signboard or guardrail that exists on the roadside in the echo detected by the radar. There is a known method that estimates the radar axis deviation based on the direction of the straight line, by approximating the echoes distributed parallel to the road in a straight line. (For example, Patent Document 1 and Non-Patent Document 1). [0006] Patent Document 1: Japanese Patent Laid-Open No. 7-120555
[0007] 非特言午文献 1: W.Kederer, J.Detlefsen, Sensor-based determination of angular misali gnment and lane configuration of a radar sensor for ACC— applications, Proceedings of 30th European Microwave Conference, pp.313 - 31b, 2000. [0007] Non-specialized document 1: W. Kederer, J. Detlefsen, Sensor-based determination of angular misali gnment and lane configuration of a radar sensor for ACC—applications, Proceedings of 30th European Microwave Conference, pp.313-31b, 2000.
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0008] 上述の従来技術は、静止物エコーが単一直線上に数多く分布し、直線の近似精度 が高 ヽ場合にはレーダの軸ずれ量を良好に推定できる。し力 現実の路上で観測さ れる障害物にはさまざまな形状のものが存在するため、エコーの分布がこのような単 一の直線のみでは近似できないことはよく知られている。このような状況で、静止物ェ コ一の空間分布を単一直線で近似しょうとしても、精度よくレーダの軸ずれ量を推定 することは難し 、。 [0008] The above-described conventional technology can estimate the radar axis deviation well when many stationary object echoes are distributed on a single straight line and the approximation accuracy of the straight line is high. It is well known that there are various shapes of obstacles observed on real roads, so that the echo distribution cannot be approximated by such a single straight line. Under such circumstances, it is difficult to estimate the radar axis deviation accurately even if the spatial distribution of a stationary object is approximated by a single straight line.
[0009] この発明は上記のような問題点を解決するためになされたもので、レーダ軸の軸ず れ量を精度良く推定することを可能にし、レーダの計測性能を向上させることを目的 とする。 [0009] The present invention has been made to solve the above-described problems, and has an object to make it possible to accurately estimate the amount of misalignment of the radar axis and to improve the measurement performance of the radar. To do.
課題を解決するための手段 Means for solving the problem
[0010] 力かる課題を解決するために、この発明に係る軸ずれ量推定方法では、 [0010] In order to solve the problem, a method of estimating the amount of axis deviation according to the present invention,
走行する車両前方の目標物を検出するレーダの軸ずれ量を求める軸ずれ量推定 方法であって、 An axis misalignment estimation method for determining an axis misalignment amount of a radar that detects a target in front of a traveling vehicle,
前記レーダの送信波のエコーからこのレーダの覆域の所定の一部領域に反射点が 属する静止物エコーを選択するエコー選択ステップと、 An echo selection step of selecting a stationary object echo whose reflection point belongs to a predetermined partial region of the radar coverage from the echo of the transmission wave of the radar;
前記エコー選択ステップにおいて選択された静止物エコーの反射点の分布を直線 近似して前記車両の走行軌道に平行な基準直線を算出する基準直線算出ステップ と、 A reference straight line calculating step for calculating a reference straight line parallel to the traveling track of the vehicle by approximating the distribution of reflection points of the stationary object echo selected in the echo selection step with a straight line;
前記基準直線算出ステップにお 、て算出された基準直線の方向に基づ 、てレー ダの軸ずれ量を求める軸ずれ量推定ステップと、 In the reference straight line calculating step, an axial deviation amount estimating step for obtaining an axial deviation amount of the radar based on the direction of the reference straight line calculated in the step;
を有することとしたものである。
発明の効果 It is supposed to have. The invention's effect
[0011] このように、この発明に係る軸ずれ量推定方法では、レーダの覆域全体に存在する 静止物のエコーに対して直線近似を行うのではなぐ覆域のうちの一部領域に存在 する静止物のエコーに対してのみ直線近似を行うこととしたので、近似精度を劣化さ せる静止物エコーを棄却することで直線の近似精度が高まり、精度よくレーダの軸ず れ量を算出することが可能となる。 As described above, in the method of estimating the amount of axial deviation according to the present invention, the linear deviation approximation is not performed on the echoes of the stationary object existing in the entire radar coverage, and is present in a part of the coverage. Since the linear approximation is performed only for the echo of the stationary object, the approximation accuracy of the straight line is increased by rejecting the stationary object echo that degrades the approximation accuracy, and the radar axis deviation is calculated accurately. It becomes possible.
図面の簡単な説明 Brief Description of Drawings
[0012] [図 1]この発明の実施の形態 1によるレーダ装置の構成を示すブロック図。 FIG. 1 is a block diagram showing a configuration of a radar apparatus according to Embodiment 1 of the present invention.
[図 2]この発明の実施の形態 1によるレーダ装置の構成を示すブロック図。 FIG. 2 is a block diagram showing a configuration of a radar apparatus according to Embodiment 1 of the present invention.
[図 3]この発明の実施の形態 1によるレーダ装置の構成を示すブロック図。 FIG. 3 is a block diagram showing a configuration of a radar apparatus according to Embodiment 1 of the present invention.
[図 4]この発明の実施の形態 1の観測領域の構成を示す説明図。 FIG. 4 is an explanatory diagram showing a configuration of an observation region according to the first embodiment of the present invention.
[図 5]この発明の実施の形態 1の軸ずれ量推定処理のフローチャート。 FIG. 5 is a flowchart of an axial deviation amount estimation process according to the first embodiment of the present invention.
[図 6]この発明の実施の形態 1の動作原理を示す説明図。 FIG. 6 is an explanatory diagram showing the operation principle of the first embodiment of the present invention.
[図 7]この発明の実施の形態 2の構成を示すブロック図。 FIG. 7 is a block diagram showing a configuration of the second embodiment of the present invention.
符号の説明 Explanation of symbols
[0013] 4 エコー検出部、 [0013] 4 echo detector,
5 位置検出部、 5 Position detector,
6 速度検出部、 6 Speed detector,
7 軸ずれ量推定部、 7 Axis deviation estimation part,
8 位置補正部、 8 Position correction section,
21 静止物抽出部、 21 Stationary object extraction unit,
22 直線近似部、 22 Straight line approximation,
24 軌道曲率取得部、 24 orbital curvature acquisition unit,
25 基準直線記憶部、 25 Reference straight line storage section,
26 軌道曲率記憶部、 26 Orbital curvature storage unit,
221 観測域分割部、 221 Observation area division,
222 基準直線算出部。
発明を実施するための最良の形態 222 Reference straight line calculator. BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 実施の形態 1. [0014] Embodiment 1.
この発明の実施の形態 1によるレーダ装置は、例えば自動車に搭載されているもの とし、自動車の進行方向(車軸に垂直な方向)に向けてレーダ送信波を放射し、目標 物 (その多くは、走行上の障害物である)を検出するものとする。ここで、この発明の 実施の形態 1によるレーダ装置は、目標物の位置を検出する上での基準方位と自動 車の正面方向とのずれ、すなわちレーダの軸ずれを補正する機能を有している。 The radar apparatus according to Embodiment 1 of the present invention is assumed to be mounted on, for example, an automobile, radiates a radar transmission wave in the traveling direction of the automobile (a direction perpendicular to the axle), and targets (many of which are It is an obstacle in driving). Here, the radar apparatus according to the first embodiment of the present invention has a function of correcting a deviation between the reference azimuth in detecting the position of the target and the front direction of the automobile, that is, a radar axis deviation. Yes.
[0015] 初めに、この発明の実施の形態 1において利用するレーダの軸ずれ角を補正する 方法の原理を大まかに述べるならば、次のようになる。すなわち道路には、ガードレ ールゃ歩道、中央分離帯など、自動車の走行軌道に対して平行な面を有する物体 が多く見られる。そこで、自動車の走行軌道と平行をなす物体上の反射点、と推測さ れるレーダ波の反射点(エコーの反射点)を抽出して、これら反射点の分布に対して 直線を近似する。 [0015] First, the principle of the method for correcting the axis deviation angle of the radar used in Embodiment 1 of the present invention will be roughly described as follows. In other words, there are many objects on the road that have a plane parallel to the running track of the car, such as guardrails, sidewalks, and median strips. Therefore, the reflection points on the object parallel to the vehicle's running trajectory are extracted, and the reflection points of the radar wave (echo reflection points) are extracted, and a straight line is approximated to the distribution of these reflection points.
[0016] こうして得られた直線が自動車の走行軌道に平行であると仮定して、自動車の走行 軌道とレーダ自身の基準方向との差違を求めるのである。こうすることで、レーダの基 準方向(レーダ軸の方向)にずれ (未知量)が生じていても、ずれの量を適切に算出 する。軸ずれ量を考慮して反射体の位置や方位を算出することで、反射体の位置, 方位 ·速度等の精度が向上するということになる。 [0016] Assuming that the straight line thus obtained is parallel to the traveling track of the vehicle, the difference between the traveling track of the vehicle and the reference direction of the radar itself is obtained. In this way, even if a deviation (unknown amount) occurs in the reference direction of the radar (the direction of the radar axis), the amount of deviation is calculated appropriately. By calculating the position and azimuth of the reflector in consideration of the amount of axis deviation, the accuracy of the position, azimuth and speed of the reflector will be improved.
[0017] 図 1は、この発明の実施の形態 1によるレーダ装置の構成を表すブロック図である。 FIG. 1 is a block diagram showing a configuration of a radar apparatus according to Embodiment 1 of the present invention.
図に示すように、このレーダ装置は、アンテナ 1から自動車の走行方向に向けてレー ダ波を放射するとともに、目標物や障害物などレーダ波反射体によって反射されたレ 一ダ波を受信する。送受信部 2は、アンテナ 1が外部に放射するレーダ波の元となる 送信信号 11を供給する。それとともに送受信部 2は、アンテナ 1がレーダ波反射体に よって反射されたレーダ波を受信すると、それにともなってアンテナ 1が出力する RF( Radio Frequency)帯域の受信信号 12を中間周波数の内部信号との差信号を用いて ビデオ帯域の受信信号にダウンコンバートする。ダウンコンバートは、受信信号 12と 送受信部 2お内部信号である基準信号の周波数差を出力することにより実現される。 以後、ビデオ帯域の受信信号を差信号と呼ぶこととする。この結果として、送受信部 2
は、差信号 13を出力する。この差信号 13は、信号処理部 3に入力されて対象物の位 置の検出に供される。 As shown in the figure, this radar apparatus radiates a radar wave from the antenna 1 in the direction of travel of the automobile and receives a radar wave reflected by a radar wave reflector such as a target or an obstacle. . The transmission / reception unit 2 supplies a transmission signal 11 that is a source of radar waves radiated from the antenna 1 to the outside. At the same time, when the antenna 1 receives the radar wave reflected by the radar wave reflector, the transmitting / receiving unit 2 converts the received signal 12 in the RF (Radio Frequency) band output by the antenna 1 into an internal signal of an intermediate frequency. Down-converted to a received signal in the video band using the difference signal. Down-conversion is realized by outputting the frequency difference between the received signal 12 and the transmission / reception unit 2 and the reference signal which is an internal signal. Hereinafter, the received signal in the video band is referred to as a difference signal. As a result, the transceiver 2 Outputs the difference signal 13. The difference signal 13 is input to the signal processing unit 3 and used for detecting the position of the object.
[0018] エコー検出部 4は、差信号 13を用いて反射波の検出を行い、検出した反射エコー の差信号の周波数 14を出力する。このような反射エコーの一般的な検出方法として は、受信機雑音やクラッタなどの不要波成分よりも電力の大きい場合に、反射波があ ると見なす方法が通常用いられる。そのためには、受信機雑音あるいはクラッタの電 力にある一定のマージンを付加し、それを超える電力を持つ信号成分を反射エコー と見なして、これを検出すればよい。 [0018] The echo detector 4 detects the reflected wave using the difference signal 13, and outputs the frequency 14 of the detected difference signal of the reflected echo. As a general method for detecting such reflected echoes, a method is generally used in which there is a reflected wave when the power is larger than unwanted wave components such as receiver noise and clutter. For that purpose, a certain margin is added to the receiver noise or the power of the clutter, and the signal component having the power exceeding it is regarded as a reflected echo and detected.
[0019] 位置検出部 5は、エコー検出部 4が出力した差信号の周波数 14を用いて所定の周 期毎に反射点(エコー)の位置 15を求める。そのためには、まずこの反射点とレーダ 装置との相対距離、さらには反射点の方向(角度)を求め、求められた相対距離と方 向とから反射物の位置が定められる。 The position detection unit 5 obtains a reflection point (echo) position 15 for each predetermined period using the frequency 14 of the difference signal output from the echo detection unit 4. For this purpose, first, the relative distance between the reflection point and the radar device and the direction (angle) of the reflection point are obtained, and the position of the reflector is determined from the obtained relative distance and direction.
[0020] 距離を計測する方法としては、送信波をパルス変調し、送受信の時間差により距離 計測を行うパルスレーダ方式や、周波数変調した連続波を送信するとともに、送信信 号と受信信号を混合することにより得られる差信号の周波数から距離を得る FMCW( Frequency Modulation Continuous Wave)方式あるいは多周波 CW方式などが知ら れている。また、方向を求める方法としては、ペンシルビームを持つ空中線を機械的 に駆動して観測する方式や、複数の素子アンテナを配置し、送信または受信時に各 素子にて位相制御を行うことにより電子的にビーム走査を行う方式などが知られてい る。これら公知の方法を用いれば、当業者ならば容易に位置検出部 5を構成すること ができる。 [0020] As a method of measuring the distance, a pulse radar method in which a transmission wave is pulse-modulated and distance measurement is performed by a transmission / reception time difference, a frequency-modulated continuous wave is transmitted, and a transmission signal and a reception signal are mixed. The FMCW (Frequency Modulation Continuous Wave) method or multi-frequency CW method, which obtains the distance from the frequency of the difference signal obtained by this, is known. In addition, as a method for obtaining the direction, a method in which an antenna with a pencil beam is mechanically driven and observed, a plurality of element antennas are arranged, and phase control is performed on each element at the time of transmission or reception. In addition, a method of performing beam scanning is known. If these known methods are used, those skilled in the art can easily configure the position detector 5.
[0021] 以下の説明において、位置検出部 5は、反射点の位置 15を、 X座標と y座標とから なるデカルト座標系で表現して出力するものとする。ここで、 y座標の座標軸である y 軸は、レーダ軸方向前方を正の方向とし、その反対方向を負の方向として設定する。 また、 X座標の座標軸である X軸と y軸とは直交しているものとし、 X軸は、レーダ軸方 向前方に向力つて右方向を正の方向、左方向に負の方向として設定する。 In the following description, it is assumed that the position detection unit 5 expresses and outputs the position 15 of the reflection point in a Cartesian coordinate system composed of an X coordinate and a y coordinate. Here, the y-axis, which is the coordinate axis of the y-coordinate, is set with the forward direction of the radar axis as the positive direction and the opposite direction as the negative direction. Also, the X axis and the y axis, which are the coordinate axes of the X coordinate, are assumed to be orthogonal to each other, and the X axis is set forward with the radar axis in the forward direction and the right direction as the positive direction and the left direction as the negative direction. To do.
[0022] 一方、速度検出部 6は、差信号の周波数 14を用いて反射点の相対速度を算出す る。反射点の相対速度は受信波周波数のドップラー変調を用いて計算されることは
広く知られている。位置検出部 5で FMCW方式や多周波 CW方式を用いる場合には 、距離と速度とを同時に算出することができるので、位置検出部 5と速度検出部 6とを 同一の部位や素子で構成するようにしてもょ 、。 On the other hand, the speed detector 6 calculates the relative speed of the reflection point using the frequency 14 of the difference signal. The relative velocity of the reflection point is calculated using Doppler modulation of the received wave frequency. Widely known. When the position detection unit 5 uses the FMCW method or multi-frequency CW method, the distance and speed can be calculated simultaneously, so the position detection unit 5 and the speed detection unit 6 are composed of the same parts and elements. Even so,
[0023] 軸ずれ量推定部 7は、エコー検出部 4によって検出された反射点のうち、自動車の 走行軌道と平行をなす直線上に分布していると推測される反射点を抽出し、抽出さ れた反射点の分布に基づいて軸ずれ量を算出する。図 2は、軸ずれ量推定部 7の詳 細な構成を示すブロック図である。図において、軸ずれ量推定部 7は、外部から反射 点の位置 15及び反射点の相対速度 16を取得すると、静止物抽出部 21にこの反射 点の位置 15及び反射点の相対速度 16を入力する。 [0023] Axis deviation amount estimation unit 7 extracts and extracts reflection points that are estimated to be distributed on a straight line parallel to the traveling track of the automobile from the reflection points detected by echo detection unit 4. The amount of axis deviation is calculated based on the distribution of reflected points. FIG. 2 is a block diagram showing a detailed configuration of the axis deviation amount estimation unit 7. In the figure, when the axial deviation amount estimation unit 7 obtains the reflection point position 15 and the reflection point relative speed 16 from the outside, the reflection point position 15 and the reflection point relative speed 16 are input to the stationary object extraction unit 21. To do.
[0024] 静止物抽出部 21は、反射点の位置 15あるいは相対速度 16に基づいて、静止物 上の反射点のエコー(以下、静止物エコーという)を選択し、静止物エコー 31として出 力する。なお、静止物エコー 31の内容としては、少なくとも静止物上の反射点の位置 (デカルト座標、あるいはデカルト座標を極座標系などに変換した座標であって、デ カルト座標と等価なものなど)が含まれる。静止物抽出部 21が入力された反射点が 静止物上の反射点であるかどうかを判別する方法としては、例えば、次の方法 1〜方 法 3として示すようないくつかの方法が考えられる。 [0024] The stationary object extraction unit 21 selects an echo of the reflection point on the stationary object (hereinafter referred to as a stationary object echo) based on the position 15 or the relative velocity 16 of the reflection point, and outputs it as a stationary object echo 31. To do. Note that the contents of the stationary object echo 31 include at least the position of the reflection point on the stationary object (Cartesian coordinates, or coordinates obtained by converting Cartesian coordinates to a polar coordinate system, etc., equivalent to Cartesian coordinates, etc.). It is. As a method of determining whether the reflection point to which the stationary object extraction unit 21 is input is a reflection point on the stationary object, for example, there are several methods as shown in the following method 1 to method 3. .
[0025] (方法 1)反射点の相対速度に基づいて、その反射点が静止物上の反射点か否か を弁別する方法である。反射点の相対速度を用いる方法としては、まず外部から車 両の速度データを取得して反射点の相対速度と照合し、反射点が静止物上の反射 点か否かを識別する方法 (方法 1 1)が考えられよう。より具体的には、例えば自車 に取り付けられた車速センサにより車速データを得て、その車速とほぼ同じ大きさで、 かつ近づく方向のドップラー速度をもつ反射物を静止物と見なす方法である。 [Method 1] This is a method for discriminating whether or not the reflection point is a reflection point on a stationary object based on the relative velocity of the reflection point. As a method of using the relative speed of the reflection point, first, the vehicle speed data is acquired from the outside and collated with the relative speed of the reflection point to identify whether the reflection point is a reflection point on a stationary object (method) 1 1) can be considered. More specifically, for example, vehicle speed data is obtained by a vehicle speed sensor attached to the host vehicle, and a reflector having a Doppler speed that is approximately the same size as the vehicle speed and approaching the vehicle is regarded as a stationary object.
[0026] また同じく反射点の相対速度を用いる方法としては、車両速度などの情報や信号を 外部から取り込まずに、反射点の相対速度のみから反射点が静止物上の反射点か 否かを弁別する方法 (方法 1 2)もある。この方法は、レーダ観測領域内に静止物ェ コ一が多数存在し、かつ相対速度は複数の静止物エコーについてほぼ同一となる、 という事実に基づくものである。すなわち、複数の反射点を相対速度について分類し 、相対速度の分布が集中している反射点を静止物エコーとみなす方法である。
[0027] (方法 2)車線から外れた位置に存在する物体 (反射点)を静止物と見なす方法であ る。反射点が車線力 外れているかどうかを判断するには、 X座標について所定の基 準 (基準 X座標)を定めておき、各反射点の X座標と基準 X座標との差が一定以上とな つた場合に、この反射点が車線から外れたものとみなすこととすればょ 、。 [0026] Similarly, as a method of using the relative speed of the reflection point, whether or not the reflection point is a reflection point on a stationary object is obtained from only the relative speed of the reflection point without taking in information or signals such as vehicle speed from the outside. There is also a method of discrimination (Method 1 2). This method is based on the fact that there are many stationary objects in the radar observation area and the relative velocities are almost the same for multiple stationary object echoes. In other words, this is a method in which a plurality of reflection points are classified with respect to relative velocities, and reflection points where the distribution of relative velocities is concentrated are regarded as stationary object echoes. [0027] (Method 2) This is a method in which an object (reflection point) existing at a position off the lane is regarded as a stationary object. To determine whether a reflection point is out of lane force, a predetermined reference (reference X coordinate) is set for the X coordinate, and the difference between the X coordinate of each reflection point and the reference X coordinate is greater than a certain value. If this happens, consider that this reflection point is out of the lane.
[0028] この場合、基準 X座標は、これまで得られた反射点の X座標を統計的に処理して算 出する。例えば、直前に入力された複数の反射点の X座標の平均を求めて、この平 均値を基準 X座標とする。さらには、この発明の実施の形態 1のレーダ装置が最終的 に求めるレーダ軸ずれ量に基づ 、て基準 X座標を定めることができることは 、うまでも ないであろう。 [0028] In this case, the reference X coordinate is calculated by statistically processing the X coordinate of the reflection point obtained so far. For example, the average of the X coordinates of a plurality of reflection points input immediately before is obtained, and this average value is used as the reference X coordinate. Furthermore, it goes without saying that the reference X coordinate can be determined based on the radar axis deviation amount finally obtained by the radar apparatus of the first embodiment of the present invention.
[0029] なお、この方法 2によれば、反射点の X座標のみでその反射点が静止物上の点かど うかを判断することができるので、軸ずれ量推定部 7に対して反射点の速度 16を入 力する必要がなくなる。したがってレーダの軸ずれ量を求める、あるいは軸ずれ量を 補正して反射点の位置の算出精度を向上する、という目的だけを達成すれば十分と いうことならば、速度検出部 6をレーダ装置の構成要素から省略してもよい。 [0029] According to Method 2, since it is possible to determine whether the reflection point is a point on a stationary object only by the X coordinate of the reflection point, the reflection point of the reflection point is determined with respect to the axis deviation estimation unit 7. No need to enter speed 16. Therefore, if it is sufficient to obtain only the purpose of obtaining the radar axis misalignment amount or correcting the axis misalignment amount to improve the reflection point position calculation accuracy, the speed detector 6 can be connected to the radar device. It may be omitted from the component.
[0030] 方法 1 1では、外部の速度センサからの信号や情報を取得する必要があるので、 速度データを伝達できるようにレーダ装置と移動プラットフォーム(車両等)の速度セ ンサとの間を結線する必要がある。し力しながら、各反射点が静止物エコーであるか 否かを反射点ごとに独立に識別することが出来るという特徴がある。 [0030] In Method 1 1, since it is necessary to acquire signals and information from an external speed sensor, the radar device and the speed sensor of the mobile platform (vehicle, etc.) are connected so that the speed data can be transmitted. There is a need to. However, it is possible to identify each reflection point independently for each reflection point whether or not each reflection point is a stationary object echo.
[0031] これに対して、方法 1 2と方法 2はいずれも外部速度センサからの情報が不要で あり、方法 2に至っては反射点の速度の算出すら必要な 、と 、う特徴を有して 、る。 しかし、複数の反射点の位置情報に同時にアクセスできるような構成とする必要があ る。すなわち、複数の反射点の位置情報を図示せぬ記憶装置に記憶しておく必要が ある。 [0031] On the other hand, both method 1 2 and method 2 do not require information from an external velocity sensor, and in method 2, it is necessary to calculate the velocity of the reflection point. And However, it is necessary to have a configuration in which the positional information of a plurality of reflection points can be accessed simultaneously. That is, it is necessary to store position information of a plurality of reflection points in a storage device (not shown).
[0032] なお、これらの各方法は原理的に互いに矛盾するものではないので、組み合わせ て使用することは何ら問題がない。例えば方法 2のように、 X座標に基づいて静止物 エコーを絞り込んでおき、さらに方法 1 1や方法 1 2の方法を用いて静止物エコー を再度絞り込むようにしてもよ 、。 [0032] Since these methods do not contradict each other in principle, there is no problem in using them in combination. For example, as in method 2, the stationary object echo may be narrowed down based on the X coordinate, and the stationary object echo may be narrowed down again using method 11 or method 12.
[0033] このようにして算出された静止物エコー 31に基づいて、直線近似部 22は静止物ェ
コ一の分布を近似する直線を求める。そして近似した直線の傾きと切片とを直線 32と して出力する。静止物エコーの分布を近似する直線を式(1)のように表現するならば 、傾きは P、切片 (X切片:直線と X軸の交点の X座標)は qとして与えられる。 [0033] On the basis of the stationary object echo 31 calculated in this way, the linear approximation unit 22 Find a straight line approximating the distribution of the coordinates. The approximate straight line slope and intercept are output as line 32. If a straight line approximating the distribution of stationary object echoes is expressed as in equation (1), the slope is given by P, and the intercept (X intercept: the X coordinate of the intersection of the straight line and the X axis) is given by q.
[数 1] [Number 1]
[0034] 以下、直線近似部 22が静止物エコーの分布に対して直線を近似する方法を詳しく 説明する。図 3は、直線近似部 22の詳細なブロック図である。図の静止物エコー 31 は、観測域分割部 221に入力される。観測域分割部 221では、所定の境界線に基 づいて分割された観測域が予め設定されており、その中から直線近似に供される静 止物エコーが属する観測域が決められて 、る。 Hereinafter, a method in which the straight line approximation unit 22 approximates a straight line to the distribution of the stationary object echo will be described in detail. FIG. 3 is a detailed block diagram of the straight line approximation unit 22. The stationary object echo 31 in the figure is input to the observation area dividing unit 221. In the observation area dividing unit 221, observation areas divided based on a predetermined boundary line are set in advance, and an observation area to which a stationary object echo used for linear approximation belongs is determined. .
[0035] 図 4はこのような観測域 (レーダ装置の覆域)の様子を示す図である。この図は、自 動車 41の走行軌道に平行となるように境界線が設定されており、進行方向に向かつ て境界線の左側を領域 A、また境界線の右側を領域 Bとした例である。図の X (バッ 印、又はアルファベットの X)は静止物エコーの位置を示している。領域 Aの静止物ェ コ一はガードレール 42にほぼ沿って分布している。また領域 Bの静止物エコーは中 央分離帯 43にほぼ沿って分布している。 FIG. 4 is a diagram showing the state of such an observation area (covering area of the radar device). This figure shows an example in which the boundary line is set so as to be parallel to the traveling track of the vehicle 41, and the left side of the boundary line is region A and the right side of the boundary line is region B in the direction of travel. is there. The X in the figure (the symbol “X”) indicates the position of the stationary object echo. Area A stationary objects are distributed almost along the guardrail 42. In addition, stationary object echoes in region B are distributed almost along the central separation zone 43.
[0036] また、ここで用いる「境界線が自動車 41の走行軌道に平行である」という表現は、走 行軌道と境界線とのなす角が"ほぼ 0° であるこど'を意味しており、走行軌道と境界 線が交わらないことを要求するものではない。すなわち、走行軌道と境界線が同一直 線上に存在して 、てもよ 、し、交点を有して 、てもよ 、。 [0036] The expression "the boundary line is parallel to the traveling track of the car 41" used here means that the angle between the traveling track and the boundary line is "a child that is almost 0 °". It does not require that the running trajectory and the boundary line do not intersect, that is, the running trajectory and the boundary line may exist on the same straight line, or may have an intersection.
[0037] 観測域分割部 221は、領域 Aと領域 Bのうちのいずれか一方の観測域の静止物ェ コーだけを選択して、観測域内静止物エコー 32 (以後、単に静止物エコー 32という) として出力するとともに、選択されな力つた他方の観測域の静止物エコーを棄却する 。例えば領域 Aの静止物エコーだけを選択して、静止物エコー 32として出力し、領域 Bの静止物エコーを棄却する。ある!/、は領域 Bの静止物エコーを選択して静止物ェ コー 32として出力し、領域 Aの静止物エコーを棄却するようにしてもよいことはいうま でもない。
[0038] なお、静止物エコー 32のデータには、静止物エコー 31と同様に反射点の位置の 座標(デカルト座標、あるいはデカルト座標を極座標系などに変換した座標であって 、デカルト座標と等価なものなど)が含まれる。 [0037] The observation area dividing unit 221 selects only the stationary object echo in one of the observation areas of the area A and the area B, and selects the stationary object echo 32 in the observation area (hereinafter simply referred to as the stationary object echo 32). ) And output the stationary object echo of the other observation area that has not been selected. For example, only the stationary object echo in region A is selected and output as stationary object echo 32, and the stationary object echo in region B is rejected. It goes without saying that certain! / May select the stationary object echo in region B, output it as stationary object echo 32, and reject the stationary object echo in region A. [0038] As with the stationary object echo 31, the data of the stationary object echo 32 includes the coordinates of the position of the reflection point (Cartesian coordinates or coordinates obtained by converting the Cartesian coordinates to a polar coordinate system or the like, which is equivalent to the Cartesian coordinates). For example).
[0039] このようにすることで、領域 Aと領域 Bの 、ずれか一方の領域だけに属する静止物 エコーの分布を近似する直線を求めることが可能となる。一般に道路や車両軌道で は、車両軌道を挟むようにして両側に静止物が分布する。このような状況で静止物ェ コ一の抽出を行うと、静止物エコーが進行方向に向力つて左右に散乱することになる 。すなわち、ガードレール 42上の静止物エコーと中央分離帯 43上の静止物エコー の双方を同時に近似するような直線を求めざるを得ないこととなる。 [0039] By doing so, it is possible to obtain a straight line that approximates the distribution of stationary object echoes belonging to only one of the regions A and B. In general, on roads and vehicle tracks, stationary objects are distributed on both sides of the vehicle track. If the stationary object echo is extracted in such a situation, the stationary object echo is scattered in the right and left direction in the direction of travel. That is, a straight line that simultaneously approximates both the stationary object echo on the guardrail 42 and the stationary object echo on the central separation band 43 must be obtained.
[0040] その結果、近似直線として求めた直線は車両の軌道と大きくずれることとなって、レ 一ダの軸ずれ量を求める基準として利用することができなくなる。この問題に対して、 観測域分割部 221を用いて予め領域分割し、所定の領域に属する静止物エコーの みを採用して直線近似を行えば、直線近似の精度は大幅に向上することとなる。 As a result, the straight line obtained as the approximate straight line is greatly deviated from the track of the vehicle, and cannot be used as a reference for obtaining the amount of axial deviation of the radar. To solve this problem, segmentation in advance using the observation region segmentation unit 221 and linear approximation using only stationary object echoes belonging to a given region will greatly improve the accuracy of linear approximation. Become.
[0041] なお、静止物エコーが領域 Aと領域 Bのいずれに属するかを判断するには、静止物 エコーの X座標と境界線の X座標とを比較すれば足りる。また、境界線は自動車 41の 走行軌道 (進行方向)に平行に設定されることが望ましい。し力しながら、図 4の例の ような場合は、ガードレール 42の静止物エコーと中央分離帯 43上の静止物エコーの V、ずれかを棄却できれば十分である。したがって境界線は自動車の進行方向とほぼ 0° をなす直線であればよいのである。また、通常は移動プラットフォーム(車両)にレ ーダ装置を取り付ける際にある程度の方向調整を行っているはずであり、軸ずれを 補正する前の境界線の方向精度であっても十分に機能する。したがって境界線の設 定にそれほど厳密な精度は要求されな 、。 [0041] It should be noted that to determine whether the stationary object echo belongs to region A or region B, it is sufficient to compare the X coordinate of the stationary object echo with the X coordinate of the boundary line. In addition, it is desirable that the boundary line be set parallel to the traveling track (traveling direction) of the automobile 41. However, in the case of the example shown in FIG. 4, it is sufficient to reject the V or deviation between the stationary object echo on the guardrail 42 and the stationary object echo on the central separator 43. Therefore, the boundary line only needs to be a straight line that forms approximately 0 ° with the traveling direction of the car. In addition, normally, a certain degree of direction adjustment should have been performed when the radar device is attached to the moving platform (vehicle), and even if the direction accuracy of the boundary line before correcting the axis deviation functions sufficiently. . Therefore, the precision of the setting of the boundary line is not so required.
[0042] また、観測域を進行方向左右に分割する他に、静止物エコーの X座標 X (1= 1,… , N、Nは自然数)の平均値 X を算出し、この平均値 X を境界線の X座標としてもよ [0042] In addition to dividing the observation area into the left and right in the direction of travel, the average value X of the X coordinate X (1 = 1, ..., N, N is a natural number) of the stationary object echo is calculated. Or as the X coordinate of the border
ave ave ave ave
い。また境界線の X座標 X と静止物エコーの X座標 Xとの差の絶対値 |x— X Yes. The absolute value of the difference between the X coordinate X of the boundary line and the X coordinate X of the stationary object echo | x— X
ave j j ave Iを算出 しておき、この絶対値が予め設定した値より小さくなる静止物のみを抽出するというよ うにして、静止物エコーを選択してもよい。この場合は、差の絶対値と比較する設定 値及び境界線の X座標によって観測域を分割していることになる。
[0043] なお、路側の他、走行方向の正面の道路上部にも、交通標識などの反射物が存在 する可能性がある。路側のみのデータを抽出するために、静止物の X座標を限定して 抽出することを行ってもよい。一方、例えばトンネル内では道路上方にも車両軌道と 平行に位置する壁面が存在するので、上方壁面上の静止物エコーを選択するように 観測域を分割してもよい。 The stationary object echo may be selected by calculating ave jj ave I and extracting only stationary objects whose absolute value is smaller than a preset value. In this case, the observation area is divided by the set value to be compared with the absolute value of the difference and the X coordinate of the boundary line. [0043] In addition to the roadside, there is a possibility that a reflective object such as a traffic sign may exist on the upper part of the road in front of the traveling direction. In order to extract only roadside data, the X coordinate of a stationary object may be limited and extracted. On the other hand, for example, a wall surface located in parallel with the vehicle trajectory exists above the road in the tunnel, so the observation area may be divided so as to select a stationary object echo on the upper wall surface.
[0044] 次に、静止物エコー 32は図 3の基準直線算出部 222に入力され、基準直線算出 部 222において、静止物エコー 32の分布を近似する直線を求める。図 5は基準直線 算出部 222の処理のフローチャートである。基準直線算出部 222は所定の周期毎、 より詳しくはエコー検出部 4が差信号の周波数 14を出力するタイミング又は位置検出 部 5が反射点エコーを出力するタイミングに同期するように、このフローチャートに示 された処理を実行し、それぞれのタイミングに合わせて個々に軸ずれ量を算出するこ とになる。 Next, the stationary object echo 32 is input to the reference line calculation unit 222 in FIG. 3, and the reference line calculation unit 222 obtains a straight line that approximates the distribution of the stationary object echo 32. FIG. 5 is a flowchart of the process of the reference straight line calculation unit 222. The reference straight line calculation unit 222 is synchronized with the timing at which the echo detection unit 4 outputs the frequency 14 of the difference signal or the timing at which the position detection unit 5 outputs the reflection point echo every predetermined cycle. The indicated process is executed, and the amount of axis deviation is calculated individually for each timing.
[0045] 図 5のステップ ST101にお 、て、まず繰返し数を 0に設定する。この繰返し数は直 線の近似処理回数を計測するためのカウンタである。その後基準直線算出部 222は 、直線を近似する (ステップ ST102)。静止物エコー 32が N個(Nは自然数)存在す るとし、この N個の静止物エコーのうちの i番目の静止物エコーの位置を(x、 y ) (i= l , · ··, Ν)とする。これに対し、近似後の直線は式(1)で与えられる。ここで、その傾き ρ と X切片 qは、最小二乗法により、式(2)及び式(3)によって算出される。 In step ST 101 in FIG. 5, first, the number of repetitions is set to zero. The number of repetitions is a counter for measuring the number of straight line approximations. Thereafter, the reference straight line calculation unit 222 approximates the straight line (step ST102). Assume that there are N stationary object echoes 32 (N is a natural number), and the position of the i-th stationary object echo among these N stationary object echoes is (x, y) (i = l, ... Ν). On the other hand, the approximate straight line is given by equation (1). Here, the slope ρ and the X-intercept q are calculated by equations (2) and (3) by the least square method.
[数 2] [Equation 2]
」ν Λ' ν ”Ν Λ 'ν
[数 3]
N N N N [Equation 3] NNNN
-Σ Σ +Σ Σ -Σ Σ + Σ Σ
NN
[0046] 傾き pと x切片 qとを求めた後、基準直線算出部 222は近似直線として求めた直線 の近似精度を評価し、近似の精度が予め定められたものよりも劣る場合には、静止 物エコーのうちのいくつかを棄却して、再度近似直線を求める処理に移行する。具体 的にいえば、まず静止物エコーと近似直線との距離を算出する (ステップ ST103)。 静止物エコー , y )と直線 x = Py+qとの距離 dは式 (4)にて算出される。 [0046] After obtaining the slope p and the x-intercept q, the reference straight line calculation unit 222 evaluates the approximation accuracy of the straight line obtained as the approximate straight line, and if the approximation accuracy is inferior to that determined in advance, Some of the stationary object echoes are rejected, and the process moves to the process of obtaining an approximate line again. Specifically, first, the distance between the stationary object echo and the approximate line is calculated (step ST103). The distance d between the stationary object echo, y) and the straight line x = Py + q is calculated by equation (4).
画 - (pyt + q) Drawing-(py t + q)
αΊ = , —— , 、 α Ί =, —— ,,
[0047] 次に、式 (4)を通じて算出された dが所定値以上となる静止物エコーを静止物ェコ 一 32の集合の中から棄却する (ステップ ST104)。こうすることで、直線近似の精度 を劣化させる要因となっている静止物エコーを近似対象となる静止物エコー力 効率 的に除去することが可能となる。 [0047] Next, stationary object echoes for which d calculated through equation (4) is greater than or equal to a predetermined value are rejected from the set of stationary object echoes 32 (step ST104). By doing so, it becomes possible to efficiently remove the stationary object echo that is a factor that degrades the accuracy of the linear approximation, and the stationary object echo force to be approximated.
[0048] 図 6は、ステップ ST104によって直線の近似精度、ひ 、ては軸ずれ量推定精度が 向上することを説明する図である。図において、自動車 41の左前方に静止物エコー の集合 51が直線 52に沿うように存在している。また静止物エコーの集合 53が直線 5 2とは異なる直線 54に沿うように存在している。ここでステップ ST102によって静止物 エコーの集合 51と 53とを同一の直線で近似しょうとすると、例えば直線 55のような近 似直線が得られることになる。 FIG. 6 is a diagram for explaining that the approximation accuracy of the straight line, and thus the estimation accuracy of the axis deviation is improved by step ST104. In the figure, a set 51 of stationary object echoes exists along the straight line 52 at the left front of the automobile 41. A set 53 of stationary object echoes exists along a straight line 54 different from the straight line 52. If an attempt is made to approximate the stationary object echo sets 51 and 53 with the same straight line at step ST102, an approximate straight line such as a straight line 55 is obtained.
[0049] そこで、ステップ ST103によって、直線 55と静止物エコーの集合 51と 53に属する 各静止物エコーとの距離を算出し、ステップ ST104によって静止物エコーの集合 53 に属する静止物エコーを棄却すると、静止物エコーの集合 51が沿っている本来の直 線 52に近い直線に近似されるものと期待できる。
[0050] この結果、直線 55に基づいて軸ずれ量を求めようとすると、角度 56のようになるとこ ろ、直線 52を軸ずれ量算出のための基準直線とし、この基準直線に基づいて軸ず れ量を求めることができるので、角度 57が得られることとなって、軸ずれ量の推定精 度が向上することが分かる。 [0049] Therefore, when the distance between the straight line 55 and each stationary object echo belonging to the stationary object echo sets 51 and 53 is calculated in step ST103, and the stationary object echo belonging to the stationary object echo set 53 is rejected in step ST104, Therefore, it can be expected to approximate a straight line close to the original straight line 52 along which the set 51 of stationary object echoes. [0050] As a result, if the axis deviation amount is calculated based on the straight line 55, the straight line 52 is used as the reference straight line for calculating the axis deviation amount at the angle 56, and the axis is calculated based on the reference straight line. Since the shift amount can be obtained, the angle 57 is obtained, and it can be seen that the estimated accuracy of the axis deviation is improved.
[0051] ここで、棄却された静止物エコーの数が 0の場合、あるいは静止物エコー 32の集合 中に残存して 、る静止物エコーの数が所定数を下回った場合 (ステップ ST105: Y え s)は、推定軸ずれ量を欠損値とする (ステップ ST106)。逆に、ステップ ST104に おいて、いずれかの静止物エコーが棄却されるとともに、依然として静止物エコー 32 の集合中に残存して 、る静止物エコーの数が所定数以上の場合 (ステップ ST105: No)は、残存している静止物エコーの分布を近似する直線を再度求める (ステップ S T107)。ここで行われる演算はステップ ST103と同じである。 [0051] Here, when the number of rejected stationary object echoes is 0, or when the number of stationary object echoes remaining in the set of stationary object echoes 32 falls below a predetermined number (step ST105: Y S) uses the estimated axis deviation as a missing value (step ST106). Conversely, if any stationary object echo is rejected in step ST104 and still remains in the set of stationary object echoes 32 and the number of stationary object echoes is greater than or equal to a predetermined number (step ST105: No) again finds a straight line that approximates the distribution of the remaining stationary object echoes (step ST107). The calculation performed here is the same as in step ST103.
[0052] その後、繰返し数に 1加えて (ステップ ST108)、静止物エコーと直線との距離を式 [0052] Then, add 1 to the number of repetitions (step ST108), and calculate the distance between the stationary object echo and the straight line
(4)にて算出する (ステップ ST110)。距離を算出後、さらに基準直線算出部 222は 、算出した距離の平均を算出し、この平均値が所定値を超えているかどうか検定する (ステップ ST110)。このような検定によって、直線の近似精度が十分なレベルに達し た力どうかを評価することができるのである。 Calculate in (4) (step ST110). After calculating the distance, the reference straight line calculation unit 222 further calculates the average of the calculated distances and tests whether the average value exceeds a predetermined value (step ST110). With such a test, it is possible to evaluate whether the force has reached a sufficient level of approximation accuracy of the straight line.
[0053] ここで、平均値が所定値を超えてしまった場合 (ステップ ST110: Yes)は、まだ近 似精度が十分でないと判断されるので、再び近似処理を行う。ただし繰返し数が所 定値を超えている場合は、これ以上の近似処理を行わず、この静止物エコー 32に対 する推定軸ずれ量を欠損値とする (ステップ ST106)。レーダ装置が自動車に搭載さ れている場合などでは、軸ずれ量推定の演算にあまり長い時間をかけてしまうと応答 性能が劣化してしまう。そうするとレーダ装置が衝突回避 ·防止システムなどに適用さ れている場合に、走行中の安全に重大な支障を来す場合もありうる。そこで、直線近 似処理の回数が所定の回数以上とならないように制御することで、応答性能を劣化さ せないようにする。 [0053] Here, if the average value exceeds the predetermined value (step ST110: Yes), it is determined that the approximation accuracy is not yet sufficient, so the approximation process is performed again. However, if the number of repetitions exceeds the predetermined value, no further approximation processing is performed, and the estimated axis deviation with respect to the stationary object echo 32 is set as a missing value (step ST106). When the radar device is mounted on an automobile, the response performance will be degraded if it takes too long to calculate the axis misalignment estimation. Then, when the radar device is applied to a collision avoidance / prevention system, it may cause a serious obstacle to safety during driving. Therefore, the response performance is prevented from deteriorating by controlling so that the number of linear approximation processes does not exceed a predetermined number.
[0054] 一方、繰返し数が所定回数を超えて ヽな ヽ場合は、再び直線近似処理を行う。そ のためにまずステップ ST109で算出した静止物エコーと直線との距離に基づいて静 止物エコーの棄却処理を行う(ステップ ST104)。以後、ステップ ST105〜ステップ S
Tl 11の直線近似処理を順次繰り返す。 [0054] On the other hand, when the number of repetitions exceeds a predetermined number, the straight line approximation process is performed again. For this purpose, first, a stationary object echo rejection process is performed based on the distance between the stationary object echo and the straight line calculated in step ST109 (step ST104). Thereafter, step ST105 to step S Repeat the linear approximation process of Tl 11.
[0055] このように、この発明の実施の形態 1のレーダ装置は、静止物エコーの分布を近似 する直線を求めるだけでなぐ求めた直線が各静止物エコーの分布に沿うものかどう かを評価する。すなわち、近似直線に対する静止物エコーの分布の一致度、収束度 を評価する。そして、静止物エコーの分布を十分に近似していないと判断される場合 に、近似精度劣化の要因になっている静止物エコーを棄却した上で、再度静止物ェ コ一の分布を近似する直線を求める。この結果として、単純な直線近似による軸ずれ 量推定に比べて精度が大幅に向上することとなる。 As described above, the radar apparatus according to Embodiment 1 of the present invention determines whether or not the obtained straight line follows the distribution of each stationary object echo by simply obtaining a straight line that approximates the distribution of the stationary object echo. evaluate. In other words, the degree of coincidence and convergence of the stationary object echo distribution with respect to the approximate line is evaluated. If it is determined that the distribution of stationary object echoes is not sufficiently approximated, the stationary object echo distribution is again approximated after rejecting the stationary object echoes that cause the approximate accuracy degradation. Find a straight line. As a result, the accuracy is greatly improved compared to the estimation of the amount of axis deviation by simple linear approximation.
[0056] 一方、ステップ ST110にお 、て、平均値が所定値を超えな!/、場合 (ステップ ST11 0 : No)は、すでに直線の近似精度が十分に高いと判断されるので、求めた近似直 線を軸ずれ量 17として出力し (ステップ ST111)、処理を終了する。 [0056] On the other hand, in step ST110, if the average value does not exceed the predetermined value! /, (Step ST11 0: No), it is already determined that the approximation accuracy of the straight line is sufficiently high. The approximate straight line is output as the axis deviation amount 17 (step ST111), and the process is terminated.
[0057] なお、軸ずれ量 17を出力するにあたって、基準直線算出部 222は求めた基準直線 の傾きと X切片とをそのまま軸ずれ量 17として出力してもよいし、システムの要求に合 わせた表現形式の軸ずれ量 17に変換するようにしても構わない。例えば軸ずれ量と して角度表現 (ラジアン値など)が適しているのであれば、式(5)によって直線 32とレ ーダ軸のなす角度 exをレーダ軸の軸ずれ量 17として算出する。 [0057] When outputting the axis deviation amount 17, the reference straight line calculation unit 222 may output the obtained inclination of the reference line and the X intercept as the axis deviation amount 17 as they are, or in accordance with the requirements of the system. You may make it convert into the amount 17 of axis deviations of the expression form. For example, if an angle expression (radian value, etc.) is appropriate as the amount of axis deviation, the angle ex between the straight line 32 and the radar axis is calculated as the axis deviation amount 17 of the radar axis according to Equation (5).
[数 5] a = tan-1 p ( 5 ) [Equation 5] a = tan -1 p (5)
[0058] 最後に、位置補正部 8は位置検出部 5が出力した反射点の位置 15を、軸ずれ量 1 7を用 、て補正し、補正後の位置 18をレーダ装置の外部に出力する。 [0058] Finally, the position correction unit 8 corrects the position 15 of the reflection point output from the position detection unit 5 by using the axis deviation amount 17 and outputs the corrected position 18 to the outside of the radar apparatus. .
[0059] このようにして、この発明の実施の形態 1のレーダ装置によれば、レーダ軸ずれ量を 推定するために反射点の分布を近似する直線を求める力 この直線を求めるにあた つて、観測域を境界線に基づいて分割し、そのうちの一部の観測域に含まれる反射 点のみを用いることとしたので、直線近似の精度を劣化させる要因が取り除かれて、 直線近似の精度が大幅に向上する。 Thus, according to the radar apparatus of Embodiment 1 of the present invention, the force for obtaining a straight line that approximates the distribution of reflection points in order to estimate the radar axis deviation amount. Since the observation area is divided based on the boundary line and only the reflection points included in some of the observation areas are used, the factor that degrades the accuracy of the linear approximation is removed, and the accuracy of the linear approximation is improved. Greatly improved.
[0060] さらに直線近似にあたり、直線力 距離のある反射点を取り除くことで、さらに直線 近似の精度を劣化させる要因が取り除かれて、直線近似の精度が大幅に向上する。
[0061] 実施の形態 2. [0060] Further, by removing the reflection point having a linear force distance in the linear approximation, the factor that further deteriorates the accuracy of the linear approximation is removed, and the accuracy of the linear approximation is greatly improved. [0061] Embodiment 2.
実施の形態 1のレーダ装置は、移動プラットフォームである車両が直線運動を行つ ていて、かつ軌道も直線であることを前提として、静止物エコーの分布を近似する直 線を求め、この直線の傾きを用いてレーダの軸ずれ量を推定するというものであった The radar apparatus according to the first embodiment obtains a straight line that approximates the distribution of stationary object echoes on the assumption that the vehicle, which is a mobile platform, moves linearly and the trajectory is also a straight line. It was to estimate the axis deviation of the radar using the tilt
[0062] しかし、レーダ装置を自動車に搭載する場合、操舵角が 0でな ヽ時間が全運行時 間に占める割合を無視することはできな 、。また常に車両の軌道 (道路)が直線であ るとは限らない。このような場合に、単純に静止物エコーの分布を近似する直線を求 めても正し!/ヽ結果が得られな!/ヽ。 [0062] However, when the radar device is mounted on an automobile, the proportion of the dredging time when the steering angle is not 0 can be ignored. In addition, the track (road) of a vehicle is not always a straight line. In such a case, simply finding a straight line approximating the distribution of stationary object echoes will not give you a correct result! / ヽ!
[0063] さらに、実施の形態 1のレーダ装置は、所望の近似精度が得られない場合、あるい は近似処理の回数が所定回数以上となった場合に、軸ずれ量の欠損を発生させるこ ととして 、るが、軸ずれ量の欠損に対するハンドリング方法が明らかにされて 、な!/、。 [0063] Furthermore, the radar apparatus according to the first embodiment may cause the loss of the axis deviation amount when the desired approximation accuracy cannot be obtained or when the number of approximation processes exceeds a predetermined number. However, the handling method for the deficit in the amount of misalignment has been clarified.
[0064] そこで、この発明の実施の形態 2では、実施の形態 1のレーダ装置の軸ずれ量推定 処理にお 、て軸ずれ量を平滑するステップをさらに設けることで、車両の軌道形状の 変動や車両の操舵角の変動、そして軸ずれ量の欠損に対応しうる軸ずれ量の推定 方法が得られることを説明する。 [0064] Therefore, in Embodiment 2 of the present invention, in the process of estimating the amount of axial deviation of the radar apparatus of Embodiment 1, a step of smoothing the amount of axial deviation is further provided, whereby the variation in the track shape of the vehicle is performed. It is explained that a method for estimating the amount of misalignment can be obtained that can cope with fluctuations in the steering angle of the vehicle and the lack of the amount of misalignment.
[0065] この発明の実施の形態 2によるレーダ装置は、実施の形態 1のレーダ装置の軸ず れ量推定部 7を改良したものである。したがって、特に説明しない限り、実施の形態 2 のレーダ装置の構成は実施の形態 1のレーダ装置と同様の構成となっている。 The radar apparatus according to the second embodiment of the present invention is an improvement of the off-axis amount estimation unit 7 of the radar apparatus according to the first embodiment. Therefore, unless otherwise specified, the configuration of the radar apparatus according to the second embodiment is the same as that of the radar apparatus according to the first embodiment.
[0066] 図 7は、この発明の実施の形態 2のレーダ装置の特徴部分である直線近似部 22の 構成を示すブロック図である。図において、 FIG. 7 is a block diagram showing the configuration of the straight line approximation unit 22 that is a characteristic part of the radar apparatus according to Embodiment 2 of the present invention. In the figure,
[0067] 軌道曲率取得部 24は、車両が現在走行している位置での軌道の曲率 34を取得す る部位である。曲率 34を取得する具体的な方法としては、例えば走行中の車両の角 速度を取得するョーレートセンサの計測値を利用するようにしてもよいし、車両の操 舵装置からの操舵角情報を曲率に変換するようにしてもよい。 The track curvature acquisition unit 24 is a part that acquires the curvature 34 of the track at the position where the vehicle is currently traveling. As a specific method for obtaining the curvature 34, for example, a measurement value of a directional sensor that obtains the angular velocity of a running vehicle may be used, or the steering angle information from the vehicle steering device is used as the curvature. You may make it convert.
[0068] また基準直線記憶部 25は、所定の長さの観測期間毎に得られた軸ずれ量 35を複 数期間分記憶する部位である。また軌道曲率記憶部 26は基準直線が算出されるタ イミングで基準直線算出部 222が軌道曲率取得部 24から取得した車両の軌道の曲
率を記憶する部位である。 In addition, the reference straight line storage unit 25 is a part that stores the amount of axis deviation 35 obtained for each observation period having a predetermined length for a plurality of periods. The track curvature storage unit 26 is the timing at which the reference straight line is calculated, and the track curvature of the vehicle acquired by the reference straight line calculation unit 222 from the track curvature acquisition unit 24. This is the part that stores the rate.
[0069] 以後の説明では、 1つの軸ずれ量 33が算出される時間帯を区間と呼ぶこととし、各 区間は区間 1、区間 2、…のように番号で識別されるものとする。そして区間に付した 番号が連続する区間同士は前後に隣接するものとする。またある区間 N (Nは自然数 )にお 、て取得された軸ずれ量 33を軸ずれ量 33 (N)、曲率 34を曲率 34 (N)と表す In the following description, a time zone in which one axis deviation amount 33 is calculated is referred to as a section, and each section is identified by a number such as section 1, section 2,. Sections with consecutive numbers assigned to sections shall be adjacent to each other. Also, in a certain section N (N is a natural number), the obtained axis deviation 33 is expressed as axis deviation 33 (N), and the curvature 34 is expressed as curvature 34 (N).
[0070] 次に、基準直線算出部 222の処理について説明する。基準直線算出部 222は、軌 道曲率取得部 24より曲率 34 (N)を取得する。また基準直線算出部 222は、軌道曲 率記憶部 26から曲率 36を取得する。この曲率 36は、以前に基準直線算出部 222が 軌道曲率取得部 24力も取得した曲率 34 (k) (kく N)である。その後、基準直線算出 部 222は、曲率 34 (N)を軌道曲率記憶部 26に記憶させる。その結果、軌道曲率記 憶部 26が記憶する曲率は曲率 36から曲率 34 (N)に置き換えられ、次回の処理で曲 率 34 (N)が曲率 36として用いられることになる。 Next, the processing of the reference straight line calculation unit 222 will be described. The reference straight line calculation unit 222 acquires the curvature 34 (N) from the trajectory curvature acquisition unit 24. Further, the reference straight line calculation unit 222 acquires the curvature 36 from the orbital curvature storage unit 26. This curvature 36 is the curvature 34 (k) (k k N) that the reference straight line calculation unit 222 has previously acquired the orbital curvature acquisition unit 24 force. Thereafter, the reference straight line calculation unit 222 stores the curvature 34 (N) in the orbital curvature storage unit 26. As a result, the curvature stored in the orbital curvature storage unit 26 is replaced from the curvature 36 to the curvature 34 (N), and the curvature 34 (N) is used as the curvature 36 in the next processing.
[0071] 次に、基準直線算出部 222は、曲率 36 (曲率 34 (k)、k<N)と曲率 34 (N)がとも に所定値以下の曲率かどうかを検定する。その結果、曲率 36と曲率 34 (N)の何れ かが所定値を超えた場合、基準直線算出部 222は現在の静止物エコー 32から基準 直線を算出する処理に替えて、基準直線記憶部 25が記憶している基準直線 35を用 いる。例えば、基準直線記憶部 25が最近数回の基準直線を記憶している場合には 、これらの基準直線の平均値 (傾きの平均値および X切片の平均値)を用いて今回の 基準直線を算出する。 Next, the reference straight line calculation unit 222 examines whether the curvature 36 (curvature 34 (k), k <N) and the curvature 34 (N) are both curvatures equal to or less than a predetermined value. As a result, when either the curvature 36 or the curvature 34 (N) exceeds a predetermined value, the reference straight line calculation unit 222 replaces the process of calculating the reference straight line from the current stationary object echo 32, and the reference straight line storage unit 25 Uses the reference straight line 35 stored by. For example, if the reference line storage unit 25 has stored the reference lines of the last few times, the average value of these reference lines (the average value of the slope and the average value of the X-intercept) is used to calculate the current reference line. calculate.
[0072] また、曲率 36と曲率 34 (N)がともに所定値以下である場合に、自動車が直進状態 にあると判断する。そして実施の形態 1と同様に基準直線を求めて推定軸ずれ量を 計算する。推定軸ずれ量が正しく計算された場合は、基準直線を基準直線記憶部 2 5に記憶させ、算出した軸ずれ量を出力する。 [0072] Further, when both the curvature 36 and the curvature 34 (N) are less than or equal to a predetermined value, it is determined that the vehicle is in a straight traveling state. Then, as in the first embodiment, a reference straight line is obtained and the estimated axis deviation is calculated. When the estimated axis deviation is correctly calculated, the reference straight line is stored in the reference straight line storage unit 25, and the calculated axis deviation is output.
[0073] また、実施の形態 1の方法で軸ずれ量を算出した結果、推定された軸ずれ量が欠 損値となる場合は、曲率 36と曲率 34 (N)の何れかが所定値を超えた場合と同様に、 基準直線記憶部 25が記憶している基準直線 35を用いて今回の基準直線を算出す る。
[0074] 以上のように、この発明の実施の形態 2のレーダ装置によれば、軌道曲率取得部 2 4から軌道の曲率を取得して、算出する軸ずれ量が有効でないと判断される場合に、 過去の有効な軸ずれ量に基づいて代替値を算出して出力するとした。このため、曲 線軌道において算出された軸ずれ量に基づいて位置が補正されることを防ぐことが でき、軸ずれ量推定処理の信頼性を向上させることができる。 [0073] In addition, as a result of calculating the amount of axial deviation by the method of Embodiment 1, if the estimated amount of axial deviation is a loss value, either curvature 36 or curvature 34 (N) has a predetermined value. As in the case of exceeding, the current reference line is calculated using the reference line 35 stored in the reference line storage unit 25. As described above, according to the radar apparatus of the second embodiment of the present invention, when the curvature of the trajectory is acquired from the trajectory curvature acquisition unit 24 and it is determined that the calculated axis deviation amount is not effective. In addition, the substitute value is calculated and output based on the past effective axis deviation. For this reason, it is possible to prevent the position from being corrected based on the amount of axis deviation calculated in the curved trajectory, and to improve the reliability of the axis deviation amount estimation processing.
[0075] さらに、直線近似処理において十分な精度をもって直線近似が行えない、あるいは 所望の応答時間内に直線近似が行えない、などの理由で軸ずれ量の欠損が発生し ても、過去に蓄積した十分に信頼性の高い軸ずれ量を用いて回復処理を行うので、 軸ずれ量推定処理の堅牢性を高めることができ、さらにはこのようなレーダ装置の主 な用途である衝突予測 ·回避システムの安全性を高めることに寄与する。 [0075] In addition, even if a loss of axis deviation occurs due to the fact that linear approximation cannot be performed with sufficient accuracy in linear approximation processing, or linear approximation cannot be performed within the desired response time, it is accumulated in the past. The recovery process is performed using a sufficiently reliable misalignment amount, so that the robustness of the misalignment estimation process can be enhanced, and collision prediction / avoidance, which is the main use of such radar equipment, is also possible. Contributes to increasing system safety.
産業上の利用可能性 Industrial applicability
[0076] この発明は、レーダ技術の精度を向上させるために有用であり、特に自動車搭載 用レーダ装置に適用することができる。
The present invention is useful for improving the accuracy of radar technology, and can be applied particularly to a radar device mounted on an automobile.
Claims
[1] 走行する車両前方の目標物を検出するレーダの軸ずれ量を求める軸ずれ量推定方 法であって、 [1] An axis misalignment estimation method for obtaining an axis misalignment amount of a radar that detects a target in front of a traveling vehicle,
前記レーダの送信波のエコーからこのレーダの覆域の所定の一部領域に反射点が 属する静止物エコーを選択するエコー選択ステップと、 An echo selection step of selecting a stationary object echo whose reflection point belongs to a predetermined partial region of the radar coverage from the echo of the transmission wave of the radar;
前記エコー選択ステップにおいて選択された静止物エコーの反射点の分布を直線 近似して前記車両の走行軌道に平行な基準直線を算出する基準直線算出ステップ と、 A reference straight line calculating step for calculating a reference straight line parallel to the traveling track of the vehicle by approximating the distribution of reflection points of the stationary object echo selected in the echo selection step with a straight line;
前記基準直線算出ステップにお 、て算出された基準直線の方向に基づ 、てレー ダの軸ずれ量を求める軸ずれ量推定ステップと、 In the reference straight line calculating step, an axial deviation amount estimating step for obtaining an axial deviation amount of the radar based on the direction of the reference straight line calculated in the step;
を有することを特徴とする軸ずれ量推定方法。 A method of estimating an axis deviation amount, comprising:
[2] 請求の範囲第 1項に記載の軸ずれ量推定方法において、 [2] In the method for estimating an axis deviation amount according to claim 1,
エコー選択ステップは、車両の走行軌道とのなす角がほぼ 0° となる境界線に分割 されるレーダの覆域の所定の一部領域に反射点が属する静止物エコーを選択するこ とを特徴とする軸ずれ量推定方法。 The echo selection step is characterized by selecting a stationary object echo to which a reflection point belongs to a predetermined partial area of the radar coverage that is divided into a boundary line where the angle formed with the traveling track of the vehicle is approximately 0 °. A method for estimating an axis deviation amount.
[3] 請求の範囲第 2項に記載の軸ずれ量推定方法にお 、て、 [3] In the method of estimating an axis deviation amount according to claim 2,
エコー選択ステップは、車両の走行軌道とのなす角がほぼ 0° となる境界線によつ て左右に分割された覆域の何れかの領域に属する静止物エコーを選択することを特 徴とする軸ずれ量推定方法。 The echo selection step is characterized by selecting a stationary object echo belonging to any one of the covered areas divided into left and right by a boundary line where the angle formed with the traveling track of the vehicle is approximately 0 °. To estimate the amount of misalignment.
[4] 請求の範囲第 1項に記載の軸ずれ量推定方法において、 [4] In the method of estimating an axis deviation amount according to claim 1,
基準直線算出ステップは、
、て選択された静止物エコーの 反射点の分布を近似する第 1の直線を求め、この第 1の直線との距離が所定値以下 となる反射点の分布を近似する第 2の直線を基準直線として算出することを特徴とす る軸ずれ量推定方法。 The reference straight line calculation step The first straight line that approximates the distribution of the reflection points of the selected stationary object echo is obtained, and the second straight line that approximates the distribution of the reflection points whose distance from the first straight line is less than the predetermined value is used as a reference. A method for estimating the amount of axis deviation characterized by calculating as a straight line.
[5] 走行する車両前方の目標物を検出するレーダであって、送信波のエコーを受信し、 受信したエコーの反射点の距離と速度とを検出するレーダの軸ずれ量を推定する軸 ずれ量推定装置において、 [5] A radar that detects a target in front of a traveling vehicle, receives an echo of a transmitted wave, and detects the distance and speed of the reflection point of the received echo and estimates the amount of axis misalignment of the radar In the quantity estimation device,
前記送信波のエコーから、前記距離と速度とに基づいて静止物エコーを選択する
静止物抽出部と、 Select a stationary object echo from the echoes of the transmitted wave based on the distance and velocity A stationary object extraction unit;
前記レーダの覆域を複数の領域に分割する観測域分割部と、 An observation area dividing unit for dividing the radar coverage into a plurality of areas;
前記静止物抽出部によって選択された静止物のエコーの反射点であって、前記観 測域分割部によって分割された一部の領域に属する反射点の分布を直線近似して 前記車両の走行軌道に平行な基準直線を求め、この基準直線に基づいて前記レー ダの軸ずれ量を求める基準直線算出部と、 The vehicle traveling trajectory is obtained by linearly approximating the distribution of reflection points of the echoes of the stationary object selected by the stationary object extraction unit and belonging to a part of the region divided by the observation area dividing unit. A reference straight line calculating unit for obtaining a reference straight line parallel to the reference line, and obtaining an axis deviation amount of the radar based on the reference straight line;
を備えることを特徴とする軸ずれ量推定装置。 An axis deviation amount estimation device comprising:
[6] 請求の範囲第 5項に記載の軸ずれ量推定装置において、 [6] In the axial deviation estimation device according to claim 5,
観測域分割部は、レーダを搭載する車両の走行軌道とのなす角がほぼ 0° となる 境界線によってレーダの覆域を複数の領域に分割することを特徴とする軸ずれ量推 定装置。 The observation area dividing unit divides the radar coverage into a plurality of areas by a boundary line where the angle formed with the traveling trajectory of the vehicle on which the radar is mounted is approximately 0 °.
[7] 請求の範囲第 6項に記載の軸ずれ量推定装置において、 [7] In the axial deviation estimation device according to claim 6,
観測域分割部は、レーダの軸を境界線としてこのレーダの覆域を左右に分割する ことを特徴とする軸ずれ量推定装置。 The observation area dividing unit divides the radar coverage into left and right with the radar axis as a boundary line.
[8] 請求の範囲第 5項に記載の軸ずれ量推定装置において、 [8] In the axial deviation estimation device according to claim 5,
基準直線算出部は、静止物抽出部によって選択された静止物のエコーの反射点 であって、観測域分割部によって分割された一部の領域に属する反射点の分布を直 線近似して第 1の直線を求め、さらにこの第 1の直線との距離が所定値以内となる静 止物のエコーの反射点の分布を近似する第 2の直線を基準直線として算出すること 特徴とする軸ずれ量算出装置。 The reference straight line calculation unit performs straight line approximation of the reflection points of the echoes of the stationary object selected by the stationary object extraction unit and belongs to a part of the region divided by the observation area dividing unit. A straight line of 1 is obtained, and further, a second straight line that approximates the distribution of reflection points of echoes of a stationary object whose distance from the first straight line is within a predetermined value is calculated as a reference straight line Quantity calculation device.
[9] 請求の範囲第 5項に記載の軸ずれ量推定装置において、 [9] In the axial deviation estimation device according to claim 5,
基準直線を記憶する基準直線記憶部を備え、 A reference straight line storage unit for storing the reference straight line;
基準直線算出部は、静止物抽出部によって選択された静止物のエコーの反射点 であって、観測域分割部によって分割された一部の領域に属する反射点の分布を直 線近似して第 1の直線を求め、第 1の直線と前記反射点との距離に基づいて第 1の 直線を基準直線とするカゝ否かを決定し、第 1の直線を基準直線とする場合には、この 第 1の直線を前記基準直線記憶部に記憶させてかつ基準直線として出力し、第 1の 直線を基準直線としな ヽ場合は、前記基準直線記憶部が記憶する基準直線を用い
て基準直線を算出する、 The reference straight line calculation unit performs straight line approximation of the reflection points of the echoes of the stationary object selected by the stationary object extraction unit and belongs to a part of the region divided by the observation area dividing unit. If the first straight line is obtained, and whether or not the first straight line is the reference straight line is determined based on the distance between the first straight line and the reflection point, and the first straight line is the reference straight line, When the first straight line is stored in the reference straight line storage unit and output as the reference straight line, and the first straight line is not set as the reference straight line, the reference straight line stored in the reference straight line storage unit is used. To calculate the reference straight line,
ことを特徴とする軸ずれ量推定装置。 An apparatus for estimating an axis deviation amount.
[10] 請求の範囲第 5項に記載の軸ずれ量推定装置において、 [10] In the axial deviation amount estimation device according to claim 5,
車両の軌道の曲率を取得する軌道曲率取得部と、 A trajectory curvature acquisition unit for acquiring the curvature of the trajectory of the vehicle;
車両の軌道の曲率とを記憶する軌道曲率記憶部と、 A track curvature storage unit for storing the curvature of the track of the vehicle;
基準直線を記憶する基準直線記憶部を備え、 A reference straight line storage unit for storing the reference straight line;
基準直線算出部は、前記軌道曲率記憶部が記憶する車両の軌道の曲率を第 1の 車両の軌道の曲率として取得するとともに、前記軌道曲率取得部力 第 2の車両の 軌道の曲率を取得してこの第 2の車両の軌道の曲率を前記軌道曲率記憶部に車両 の軌道の曲率を記憶させ、さらに前記第 1の車両の軌道の曲率と前記第 2の車両の 軌道の曲率とがともに所定値以内である場合に、静止物抽出部によって選択された 静止物のエコーの反射点であって、観測域分割部によって分割された一部の領域に 属する反射点の分布を直線近似して基準直線を算出し、前記第 1の車両の軌道の 曲率と第 2の車両の軌道の曲率との何れかが所定値を超える場合に前記基準直線 記憶部が記憶する基準直線を用いて基準直線を算出する、 The reference straight line calculation unit acquires the curvature of the vehicle trajectory stored in the trajectory curvature storage unit as the curvature of the trajectory of the first vehicle, and acquires the curvature of the trajectory of the second vehicle. The curvature of the trajectory of the second vehicle is stored in the trajectory curvature storage unit, and the curvature of the trajectory of the first vehicle and the curvature of the trajectory of the second vehicle are both predetermined. If the value is within the range, the reflection point of the echo of the stationary object selected by the stationary object extraction unit and belonging to a part of the area divided by the observation area division unit is linearly approximated and used as a reference A straight line is calculated, and when either of the curvature of the track of the first vehicle and the curvature of the track of the second vehicle exceeds a predetermined value, the reference straight line is stored using the reference straight line stored in the reference straight line storage unit. calculate,
ことを特徴とする軸ずれ量推定装置。
An apparatus for estimating an axis deviation amount.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/014026 WO2007015288A1 (en) | 2005-08-01 | 2005-08-01 | Misalignment estimation method, and misalignment estimation device |
JP2007529145A JPWO2007015288A1 (en) | 2005-08-01 | 2005-08-01 | Axis deviation amount estimation method and axis deviation amount estimation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/014026 WO2007015288A1 (en) | 2005-08-01 | 2005-08-01 | Misalignment estimation method, and misalignment estimation device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007015288A1 true WO2007015288A1 (en) | 2007-02-08 |
Family
ID=37708570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/014026 WO2007015288A1 (en) | 2005-08-01 | 2005-08-01 | Misalignment estimation method, and misalignment estimation device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2007015288A1 (en) |
WO (1) | WO2007015288A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7768445B2 (en) * | 2004-08-02 | 2010-08-03 | Mitsubishi Electric Corporation | Frequency-modulated radar system with variable pulse interval capability |
JP2015506474A (en) * | 2012-01-05 | 2015-03-02 | ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method and apparatus for wheel independent speed measurement in a vehicle |
JP2015087352A (en) * | 2013-11-01 | 2015-05-07 | 株式会社東芝 | Traveling speed estimation device, still object classification device and traveling speed estimation method |
JP2015179061A (en) * | 2014-02-28 | 2015-10-08 | パナソニック株式会社 | Radar device |
JP2017173115A (en) * | 2016-03-23 | 2017-09-28 | 株式会社デンソー | Mounting angle learning device |
JP2018194391A (en) * | 2017-05-16 | 2018-12-06 | 株式会社デンソー | Bearing error detection method and device |
JP2020187022A (en) * | 2019-05-15 | 2020-11-19 | 株式会社Soken | Axis deviation estimation device |
US10908260B2 (en) | 2015-02-25 | 2021-02-02 | Denso Corporation | Mounting angle error detection method and apparatus for onboard radar apparatus, and onboard radar apparatus |
JPWO2021024289A1 (en) * | 2019-08-02 | 2021-02-11 | ||
CN113311422A (en) * | 2020-02-27 | 2021-08-27 | 富士通株式会社 | Coordinate conversion method and device and data processing equipment |
WO2021187040A1 (en) * | 2020-03-18 | 2021-09-23 | 株式会社デンソー | Radar device |
JP2022538676A (en) * | 2019-07-04 | 2022-09-05 | アライバー ソフトウェア エービー | Sensor calibration based on string of detected values |
JP2023506068A (en) * | 2019-12-16 | 2023-02-14 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | A method for estimating the correction angle in automotive radar sensors |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07168994A (en) * | 1993-12-16 | 1995-07-04 | Mazda Motor Corp | Vehicle controller |
JPH07192199A (en) * | 1993-12-27 | 1995-07-28 | Fuji Heavy Ind Ltd | Travel guide device for vehicle |
JPH08249598A (en) * | 1995-03-14 | 1996-09-27 | Mitsubishi Electric Corp | Vehicle front monitoring device |
JP2001166051A (en) * | 1999-12-10 | 2001-06-22 | Fujitsu Ten Ltd | Axis deviation detection device for vehicular radar device |
JP2001338398A (en) * | 2000-05-25 | 2001-12-07 | Denso Corp | Road shape recognizing device, preceding vehicle specifing device and recording medium |
JP2003207571A (en) * | 2002-01-16 | 2003-07-25 | Nissan Motor Co Ltd | Axial deviation detection device of radar device for vehicle |
-
2005
- 2005-08-01 JP JP2007529145A patent/JPWO2007015288A1/en active Pending
- 2005-08-01 WO PCT/JP2005/014026 patent/WO2007015288A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07168994A (en) * | 1993-12-16 | 1995-07-04 | Mazda Motor Corp | Vehicle controller |
JPH07192199A (en) * | 1993-12-27 | 1995-07-28 | Fuji Heavy Ind Ltd | Travel guide device for vehicle |
JPH08249598A (en) * | 1995-03-14 | 1996-09-27 | Mitsubishi Electric Corp | Vehicle front monitoring device |
JP2001166051A (en) * | 1999-12-10 | 2001-06-22 | Fujitsu Ten Ltd | Axis deviation detection device for vehicular radar device |
JP2001338398A (en) * | 2000-05-25 | 2001-12-07 | Denso Corp | Road shape recognizing device, preceding vehicle specifing device and recording medium |
JP2003207571A (en) * | 2002-01-16 | 2003-07-25 | Nissan Motor Co Ltd | Axial deviation detection device of radar device for vehicle |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7768445B2 (en) * | 2004-08-02 | 2010-08-03 | Mitsubishi Electric Corporation | Frequency-modulated radar system with variable pulse interval capability |
JP2015506474A (en) * | 2012-01-05 | 2015-03-02 | ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method and apparatus for wheel independent speed measurement in a vehicle |
US9610961B2 (en) | 2012-01-05 | 2017-04-04 | Robert Bosch Gmbh | Method and device for measuring speed in a vehicle independently of the wheels |
JP2015087352A (en) * | 2013-11-01 | 2015-05-07 | 株式会社東芝 | Traveling speed estimation device, still object classification device and traveling speed estimation method |
JP2015179061A (en) * | 2014-02-28 | 2015-10-08 | パナソニック株式会社 | Radar device |
US10908260B2 (en) | 2015-02-25 | 2021-02-02 | Denso Corporation | Mounting angle error detection method and apparatus for onboard radar apparatus, and onboard radar apparatus |
WO2017164337A1 (en) * | 2016-03-23 | 2017-09-28 | 株式会社デンソー | Installed angle learning device |
JP2017173115A (en) * | 2016-03-23 | 2017-09-28 | 株式会社デンソー | Mounting angle learning device |
JP2018194391A (en) * | 2017-05-16 | 2018-12-06 | 株式会社デンソー | Bearing error detection method and device |
JP7002860B2 (en) | 2017-05-16 | 2022-01-20 | 株式会社デンソー | Directional error detection method and equipment |
JP2020187022A (en) * | 2019-05-15 | 2020-11-19 | 株式会社Soken | Axis deviation estimation device |
WO2020230755A1 (en) * | 2019-05-15 | 2020-11-19 | 株式会社デンソー | Axis misalignment assessment device |
US12099139B2 (en) * | 2019-05-15 | 2024-09-24 | Denso Corporation | Axial misalignment estimation apparatus |
JP7193414B2 (en) | 2019-05-15 | 2022-12-20 | 株式会社Soken | Axial misalignment estimator |
US20220065987A1 (en) * | 2019-05-15 | 2022-03-03 | Denso Corporation | Axial misalignment estimation apparatus |
JP2022538676A (en) * | 2019-07-04 | 2022-09-05 | アライバー ソフトウェア エービー | Sensor calibration based on string of detected values |
JP7303365B2 (en) | 2019-07-04 | 2023-07-04 | アライバー ソフトウェア エービー | Sensor calibration based on string of detected values |
JP7134361B2 (en) | 2019-08-02 | 2022-09-09 | 三菱電機株式会社 | In-vehicle object detection device |
WO2021024289A1 (en) * | 2019-08-02 | 2021-02-11 | 三菱電機株式会社 | Vehicle-mounted object detection device |
JPWO2021024289A1 (en) * | 2019-08-02 | 2021-02-11 | ||
JP2023506068A (en) * | 2019-12-16 | 2023-02-14 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | A method for estimating the correction angle in automotive radar sensors |
JP7377979B2 (en) | 2019-12-16 | 2023-11-10 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Method for estimating correction angle in automotive radar sensor |
CN113311422A (en) * | 2020-02-27 | 2021-08-27 | 富士通株式会社 | Coordinate conversion method and device and data processing equipment |
JP2021148561A (en) * | 2020-03-18 | 2021-09-27 | 株式会社Soken | Radar device |
WO2021187040A1 (en) * | 2020-03-18 | 2021-09-23 | 株式会社デンソー | Radar device |
CN115298564A (en) * | 2020-03-18 | 2022-11-04 | 株式会社电装 | Radar apparatus |
JP7485526B2 (en) | 2020-03-18 | 2024-05-16 | 株式会社Soken | Axis offset estimation device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2007015288A1 (en) | 2009-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007015288A1 (en) | Misalignment estimation method, and misalignment estimation device | |
US11262442B2 (en) | Ghost removal method and radar device | |
JP4665903B2 (en) | Axis deviation angle estimation method and apparatus | |
US11768286B2 (en) | Method of determining the yaw rate of a target vehicle | |
US7071867B2 (en) | Method, apparatus, and computer program product for radar detection of moving target | |
JP6520203B2 (en) | Mounting angle error detection method and device, vehicle-mounted radar device | |
US7911374B2 (en) | Radar device and target detection method | |
JP4850898B2 (en) | Radar equipment | |
US6661370B2 (en) | Radar data processing apparatus and data processing method | |
US11536822B2 (en) | Radar device | |
US20220107197A1 (en) | Roadway information detection sensor device/system for autonomous vehicles | |
JP5184196B2 (en) | Radar apparatus, radar apparatus signal processing method, and vehicle control system | |
JP2019039686A (en) | Radar device and target detection method | |
US11249171B2 (en) | Method of determining an alignment error of an antenna and vehicle with an antenna and a detection device | |
US11435442B2 (en) | Method for capturing a surrounding region of a motor vehicle with object classification, control device, driver assistance system and motor vehicle | |
Polychronopoulos et al. | Integrated object and road border tracking using 77 GHz automotive radars | |
EP3401699A1 (en) | Vehicle environmental detection system for parking detection | |
US12031811B2 (en) | Object size estimation apparatus and method | |
KR20150134063A (en) | System and method for removing mirror track in tunnel for automotive radar Smart Cruise Control | |
JP2000111644A (en) | Vehicle detecting device | |
US20230124566A1 (en) | Radar control device and method | |
EP4382962A1 (en) | An ego velocity estimator for radar systems | |
JPH07280927A (en) | Radar apparatus | |
KR20070065427A (en) | Axial deviation angle estimating method and device | |
JP2020003351A (en) | Detection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007529145 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05767127 Country of ref document: EP Kind code of ref document: A1 |