WO2007014983A1 - Cable de securite resistant au feu a une seule enveloppe isolante - Google Patents

Cable de securite resistant au feu a une seule enveloppe isolante Download PDF

Info

Publication number
WO2007014983A1
WO2007014983A1 PCT/FR2005/001987 FR2005001987W WO2007014983A1 WO 2007014983 A1 WO2007014983 A1 WO 2007014983A1 FR 2005001987 W FR2005001987 W FR 2005001987W WO 2007014983 A1 WO2007014983 A1 WO 2007014983A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
cable
cable according
conductors
fire
Prior art date
Application number
PCT/FR2005/001987
Other languages
English (en)
Inventor
Jean-Louis Pons
Thierry Jorand
Original Assignee
Prysmian Energie Cables Et Systemes France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prysmian Energie Cables Et Systemes France filed Critical Prysmian Energie Cables Et Systemes France
Priority to EP05793412A priority Critical patent/EP1911043A1/fr
Priority to PCT/FR2005/001987 priority patent/WO2007014983A1/fr
Priority to US11/989,302 priority patent/US7829792B2/en
Publication of WO2007014983A1 publication Critical patent/WO2007014983A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones

Definitions

  • the present invention relates to a fire-resistant security cable.
  • the present invention relates to a fire-resistant cable, which comprises at least two electrical conductors surrounded by a common insulating layer.
  • the present invention relates to a substantially flat fire-resistant cable, which comprises at least two electrical conductors which are adjacent to one another, and which are surrounded by a common insulating layer.
  • the safety cables are in particular power transmission or data transmission cables, such as for control or signaling applications.
  • the fire-resistant safety cables must, during a fire, maintain an electrical function. Preferably, said cables must also not spread the fire. Said security cables are used, for example, for emergency exit lighting and elevator installations.
  • the fire resistant cables must meet criteria set in particular by the French standard NF C 32-070. According to this standard, the cable is deposited horizontally in a tubular furnace which is mounted in temperature up to 920 0 C for 50 minutes. The cable must not present a short circuit during this rise in temperature and for 15 minutes at 920 0 C. During all this time, to simulate falling objects during a fire, the cable is subjected periodically to a shock by a metal bar to shake the cable.
  • the cables satisfying the test defined by NF C 32-070, paragraph 2-3 belong to category CRl.
  • Criteria similar to those defined in the French standard NF C 32-070 are also defined by international standards, such as IEC 60331, or European standards, such as EN 50200.
  • JP 01-1 17204 and JP 01-030106 disclose two flat fire-resistant cables, said cables comprising several conductors surrounded by an insulator and an outer sheath of polyethylene, the insulating layer of each electrical conductor being made of mica ribbons.
  • a fire-resistant cable which is provided with an insulating layer made of mica ribbons has several disadvantages.
  • such a cable may have a gap (or space revealing the conductor) at the level of the mica ribbon envelope, resulting in a defect in the protection of conductors leading to a short circuit.
  • Fire resistant cables having a substantially round cross section are also known.
  • Such cables may comprise more than two insulated conductors, at least one insulated conductor being superimposed on the others so as to ensure a round cross section of the cable.
  • the document EP 942 439 describes a security cable, round, fire-resistant and halogen-free, comprising at least one conductor, an insulator around each conductor and an outer sheath, empty spaces being provided between said sheath and said insulation of each electrical conductor.
  • the insulation of each conductor is made of a composition formed of a polymeric material containing at least one ceramic-forming filler and able to transform at least superficially in the ceramic state at high temperatures corresponding to fire conditions .
  • the outer sheath is made of a polyolefinic composition containing at least one charge of metal hydroxide.
  • the outer sheath is usually transformed, under the action of a fire, into ashes that can hinder the transformation of the polymeric material of the ceramic insulator, resulting in cracks in the conductor insulation.
  • the superposition of the insulated conductors can cause a significant increase in the size of the cracks, resulting from a crushing of (s) layer (s) insulating (s) contaminated (s) by said ash.
  • These disadvantages lead to a reduction of the insulating protection by the insulating layer (s) of the cable and to an increase in the risk of short-circuiting the conductors.
  • These risks concern, in particular, superposed isolated elements.
  • these ashes can lead to an increase in the volume and surface conductivity of the insulation, which affects the proper operation of the cable.
  • objects such as a beam or elements of a building structure may fall and strike the cable and thus damage the cable and alter the mechanical strength of the ceramic insulation. or in the process of ceramic transformation of each driver.
  • the fall of such an object can lead to an insulated conductor being compressed between said object and another conductor of the same cable, resulting in damage to the insulator transformed into ceramic or during ceramic transformation, and thus causing short circuit of the two conductors.
  • the present invention relates to a safety cable, fire resistant, said cable comprising: - at least two electrical conductors, said electrical conductors being separated from each other by at least one space;
  • insulating layer surrounding the electrical conductors and filling said space or spaces, said insulating layer being constituted from at least one polymeric material able to transform at least superficially into the ceramic state at high temperatures in fires, and
  • halogen-free cable is meant a cable of which all the components are not substantially halogenated. Even more preferentially, the constituents do not comprise any halogenated compound.
  • the cable comprises a common insulating layer which surrounds the conductors and fills the spaces, a space separating two adjacent conductors. Said common insulating layer thus forms a mechanically integral envelope inside which the electrical conductors are included.
  • the outer contour of the insulating layer of the cable substantially follows the shape of the envelope of the conductors, resulting in inclusion of the conductors in the insulating layer.
  • the insulating layer of the cable preferably has a thickness which is substantially constant on the extrados of the electrical conductors and which can be reduced to a minimum value sufficient to give the cable the typical protection of an insulating layer of cable .
  • a common insulating layer according to the invention has the advantage of avoiding, during a fire, any insertion of residual ash from the sheath between each insulated conductor during the ceramic transformation of the insulator, and reducing the appearance of cracks. It also allows a better mechanical cohesion of the conductors between them once the insulation transformed into ceramic. This thus reduces the risk of short circuit between electrical conductors while maintaining the integrity of the cable.
  • the material of the outer sheath preferably comprises an ethylene / vinyl alcohol copolymer (or EVA), a polysiloxane, a polyolefin such as polyethylene, polyvinyl chloride (or PVC), or a mixture thereof.
  • EVA ethylene / vinyl alcohol copolymer
  • the material of the outer sheath may further comprise mineral fillers capable of turning into residual ash under the effect of high temperatures of a fire, such as chalk, kaolin, metal oxides such as hydrated alumina, or metal hydroxides as magnesium hydroxide, the metal oxides or hydroxides may serve as flame retardant fillers.
  • the material of the outer sheath may optionally be expanded so as to improve in particular the impact resistance of the cable, shock to which it may be subjected following the fall of an object during the fire.
  • the outer sheath may be in the form of a single layer or of several layers of polymeric material (s), for example, 2, 3 or 4 layers.
  • polymeric material for example, 2, 3 or 4 layers.
  • the insulation is constituted in particular from at least one polymeric material able to be transformed at least superficially into the ceramic state at high temperatures in the fires, especially in the interval ranging from 400 0 C to 1200 0 C.
  • This transformation in the ceramic state of the polymeric material of the insulator ensures the maintenance of the physical integrity of the cable and its electrical operation in the conditions of the fire .
  • the polymeric material of the insulating layer is preferably a polysiloxane such as a cross-linked silicone rubber.
  • the insulating layer may further preferably comprise a ceramic-forming filler under the effect of high fire temperatures, such as silica or metal oxides.
  • the polymeric material of the insulating layer may be foamed.
  • the insulation may be in the form of a single layer or multiple layers of polymeric material (s), such as 2 or 3 or more layers.
  • the cable according to the invention comprising at least two conductors included in the same insulating layer, may further comprise a stuffing material between said insulating layer and the outer sheath.
  • the stuffing material is preferably selected from an ethylene / vinyl alcohol (or EVA) copolymer, a polysiloxane, a polyolefin such as polyethylene, polyvinyl chloride (or
  • the stuffing material may further comprise mineral fillers capable of being converted into residual ash under the effect of high temperatures of a fire, such as chalk, kaolin, metal oxides such as hydrated alumina, or metal hydroxides such as magnesium hydroxide, metal oxides or hydroxides that can be used as flame retardant fillers
  • the cable according to the invention may be, in cross section, round or substantially flat.
  • a substantially flat cable is a cable which has, in cross section, at least two substantially flat faces and substantially parallel to the plane comprising the axes of the conductors.
  • the flat cable has a substantially rectangular outer profile, and more preferably it comprises, in cross section, at least two substantially planar faces and substantially parallel to the plane comprising the axes of the conductors and two substantially rounded lateral portions which are connected to said two faces.
  • a substantially flat cable according to the present invention comprises at least two conductors surrounded by a common insulating layer, which are adjacent to each other and side by side, and their axes being in the same plane between said at least two faces.
  • the arrangement of the axes of the electrical conductors in the same plane also makes it possible to increase the electrical resistance of the conductors by reducing any short-circuiting of the conductors.
  • the spaces separating the adjacent conductors from each other in a flat cable are distributed transversely to the axis of the cable and have an identical dimension.
  • the substantially flat fire-resistant cable of the present invention comprises a cable jacket having an outer contour substantially conforming to the shape of the insulating layer.
  • the cable thus has in cross section a shape of "8".
  • the sheath of the cable in cross-section, has an outer contour (or outer profile) which substantially follows the shape of the envelope of insulated conductors located inside the sheath of the cable, their axes being lying in the same plane.
  • the sheath of the cable preferably has a thickness which is substantially constant on the extrados of the insulated conductors and which can be reduced to a minimum value sufficient to give the cable the typical protection of a cable sheath.
  • the cable of the present invention leads to a reduction in the amount of sheath material used for making the cable, especially for the two-conductor cable. On the one hand, this reduces the manufacturing cost of the cable, and on the other hand a reduction in the incandescent period, the heat energy released during a fire and the amount of ash resulting from the combustion. of the sheath.
  • these aspects are particularly advantageous because the risk of cracks being caused by the ashes during the transformation into Ceramic insulation at the high temperatures of a fire can be reduced significantly.
  • the outer surface of the sheath is larger in the present invention, which allows a better heat exchange and a better and faster combustion of the sheath which will disturb less the transformation. ceramic insulation during the fire.
  • Another object of the invention is a method of manufacturing the cables according to the invention comprising the extrusion of a polymeric material of the insulator - capable of transforming at least superficially in the ceramic state at high temperatures. in fires - on metallic conductors entering the same extrusion head so that the insulation material thus deposited makes each conductor thus isolated integral.
  • Fig. 1 shows a cross-sectional view of a round cable with three electrical conductors according to a first embodiment.
  • Fig. 2 is a cross-sectional view of a round cable with three electrical conductors according to a second embodiment.
  • Fig. 3 shows a cross-sectional view of a so-called flat cable with two electrical conductors, according to a third embodiment.
  • Fig. 4 shows a cross-sectional view of a so-called flat cable with three electrical conductors, according to a fourth embodiment.
  • FIG. 5 shows a cross-sectional view of a so-called flat cable with two electrical conductors, according to a fifth embodiment.
  • a round cable with three electrical conductors 2a, 2b and 2c, the latter extending longitudinally inside a common insulating layer 3.
  • the electrical conductor 2c is superimposed on the electrical conductors 2a and 2b.
  • the axes of the two conductors 2a and 2b are arranged parallel to one another in the same longitudinal median plane Pl, while the conductor 2c is placed above the conductors 2a and 2b its axis being parallel to those of the conductors 2a and 2b and being located in a longitudinal median plane P2 perpendicular to Pl.
  • the conductors 2a, 2b, 2c are separated from each other by a space 5.
  • the spaces 5 separating adjacent conductors have identical dimensions.
  • the conductors 2a and 2b are located equidistant from the plane P2, on either side of the plane P2.
  • the conductors 2a and 2b are separated by a gap 5 which preferably measures from about 0.1 mm to about 10 mm (transverse dimension).
  • the cable 10 comprises a common insulating layer 3 which surrounds the three conductors 2a, 2b and 2c. Consequently, the material of the insulating layer 3 fills the spaces 5 which separate the three conductors, so as to obtain a common insulating layer 3 in the form of a mechanically integral envelope.
  • the insulating layer 3 has an outer contour which substantially matches the shape of the conductor envelope, said insulating layer having a substantially constant thickness on the extrados of the conductors.
  • the material of the insulator 3 is preferably a polysiloxane comprising in particular a silica-type reinforcing filler.
  • the insulator 3 preferably comprises a single layer of polysiloxane.
  • the cable 10 shown in FIG. 1 further comprises an outer sheath 4 which surrounds the insulating layer 3 so that the cross section of the cable has a circular shape.
  • the outer sheath 4 preferably consists of an EVA optionally comprising fillers such as metal oxides or hydroxides.
  • the cable 20 of FIG. 2 differs from that of FIG. 1 in that an additional space 21 is present between the insulated conductors 2a,
  • the insulated conductors 2a, 2b, 2c are separated from each other by respective spaces 5 and the portion of the cable contained between the spaces 5 and the insulated conductors 2a, 2b, 2c defines said additional space 21.
  • the spaces 5 have the shape of three segments which respectively connect the insulated conductors 2a and 2b, 2b and 2c, and 2c and 2a, said segments being made of the insulating material of the insulating layer 3.
  • the insulation 3 of the cable 20 is the combination of three annular shapes, two forms being aligned and the third being above the other two and in a centered position relative to the other two. These annular shapes are connected in pairs by a segment made of insulating material, measuring, for example, from 0.1 mm to 20 mm. The insulation then has the shape of an equilateral triangle preferably with rounded vertices.
  • the cable 20 has an outer sheath 4 which surrounds the insulating layer 3 and gives a round profile in cross section to the cable.
  • the additional space 21 is made of the same material as that of the outer sheath 4.
  • the additional space 21 may be empty, that is to say it may contain no filler material, in order to increase the separation between the conductors.
  • Fig. 3 shows a flat cable 30 according to a third embodiment of the present invention.
  • This cable 30 comprises two electrical conductors 2a and 2b, a common insulating layer 3 surrounding the two electrical conductors 2a and 2b, and an outer sheath 4.
  • the cable has a substantially rectangular outer profile comprising two substantially plane faces 31 and 32 substantially parallel to the plane P comprising the axes of the conductors, and two substantially rounded lateral portions 33 and 34 which are connected to said two faces 31 and 32 .
  • the two electrical conductors 2a, 2b are arranged parallel to each other, adjacent to each other and side by side, in the longitudinal median plane P of the cable 30.
  • the electrical conductors 2a, 2b are separated by a gap 5 This gap is from about 0.1 mm to about 10 mm.
  • the insulator 3 surrounds the two conductors and fills the space 5, which leads to obtaining a common insulating layer 3 in the form of a mechanically secured envelope.
  • the insulating layer 3 has an outer contour which substantially matches the outer contour of the envelope of the conductors 2a and 2b, said insulating layer 3 having a thickness which is substantially constant on the extrados of the conductors.
  • the material of the insulator 3 is preferably a polysiloxane comprising in particular a silica-type reinforcing filler.
  • the insulator 3 comprises a single layer.
  • the outer sheath 4, deposited on the insulator 3, is preferably constituted by an EVA optionally comprising fillers such as metal oxides or hydroxides.
  • the cable 40 of FIG. 4 differs from that of FIG. 3 in that an additional conductor 2c is introduced inside the insulator 3, in the longitudinal median plane P of the cable 1, and in that the outer profile of the outer sheath 4 substantially matches the outer contour of the insulating layer 3, the outer sheath 4 having a thickness which is substantially constant on the upper surface of the insulating layer 3.
  • the cable 50 of FIG. 5 differs from that of FIG. 3 in that the space 5, which separates the adjacent conductors 2a, 2b, is elongated by so that the distance between said conductors is increased so as to reduce the risk of short circuit.
  • the space 5 measures, for example, from 0.1 mm to 20 mm.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulated Conductors (AREA)

Abstract

La présente invention concerne un câble de sécurité (10; 20; 30; 40; 50) résistant au feu comprenant : au moins deux conducteurs électriques (2a, 2b), lesdits conducteurs électriques étant séparés entre eux par au moins un espace (5); une couche isolante commune (3) entourant les conducteurs électriques (2a, 2b) et remplissant ledit ou lesdits espaces (5), ladite couche isolante étant constituée à partir d'au moins une matière polymérique apte à se transformer au moins superficiellement en l'état de céramique à des températures élevées dans les incendies, et une gaine extérieure (4) autour de ladite couche isolante (3).

Description

Câble de sécurité résistant au feu à une seule enveloppe isolante
La présente invention concerne un câble de sécurité résistant au feu. En particulier, la présente invention concerne un câble résistant au feu, qui comprend au moins deux conducteurs électriques entourés par une couche isolante commune.
Plus particulièrement, la présente invention concerne un câble sensiblement plat résistant au feu, qui comprend au moins deux conducteurs électriques qui sont adjacents les uns par rapport aux autres, et qui sont entourés par une couche isolante commune.
Les câbles de sécurité sont notamment des câbles de transport d'énergie ou de transmission de données, tels que pour des applications de contrôle ou de signalisation.
Les câbles de sécurité résistant au feu doivent, pendant un incendie, maintenir une fonction électrique. De préférence, lesdits câbles doivent en outre ne pas propager le feu. Lesdits câbles de sécurité sont utilisés, par exemple, pour les éclairages des sorties de secours et dans les installations d'ascenseurs.
Les câbles résistant au feu doivent répondre à des critères fixés notamment par la norme française NF C 32-070. Selon cette norme, le câble est déposé horizontalement dans un four tubulaire qui est monté en température jusqu' à 9200C pendant 50 minutes. Le câble ne doit pas présenter de court-circuit durant cette montée en température ainsi que pendant 15 minutes à 920 0C. Durant tout ce temps, pour simuler les chutes d' objet lors d'un incendie, le câble est soumis périodiquement à un choc par une barre métallique pour ébranler le câble.
Les câbles satisfaisant à l'essai défini par NF C 32-070, paragraphe 2-3 appartiennent à la catégorie CRl .
Des critères similaires à ceux qui sont définis dans la norme française NF C 32-070 sont également définis par des normes internationales, telles que IEC 60331 , ou des normes européennes, telles que EN 50200.
Les documents JP 01-1 17204 et JP 01-030106 divulguent deux câbles plats résistant au feu, lesdits câbles comprenant plusieurs conducteurs entourés d'un isolant et d'une gaine extérieure de polyéthylène, Ia couche isolante de chaque conducteur électrique étant constituée de rubans de mica.
Le demandeur a remarqué qu'un câble résistant au feu qui est doté d'une couche isolante constituée de rubans de mica présentait plusieurs inconvénients. En particulier, un tel câble peut présenter un déjoint (ou espace laissant apparaître le conducteur) au niveau de l'enveloppe en ruban de mica, ce qui entraîne un défaut dans la protection des conducteurs conduisant à un court-circuit. Les câbles résistant au feu présentant une section transversale sensiblement ronde sont également connus. De tels câbles peuvent comporter plus de deux conducteurs isolés, au moins un conducteur isolé étant superposé sur les autres de manière à assurer une section transversale ronde du câble. Par exemple, le document EP 942 439 décrit un câble de sécurité, rond, résistant au feu et sans halogène, comportant au moins un conducteur, un isolant autour de chaque conducteur et une gaine extérieure, des espaces vides étant prévus entre ladite gaine et ledit isolant de chaque conducteur électrique. L'isolant de chaque conducteur est réalisé en une composition formée d'une matière polymérique contenant au moins une charge formatrice de céramique et apte à se transformer au moins superficiellement en l'état de céramique à des hautes températures correspondant à des conditions d'incendie. La gaine extérieure est réalisée en une composition polyoléfinique contenant au moins une charge d'hydroxyde métallique. Néanmoins, les câbles résistant au feu tels que décrits ci- dessus, présentent plusieurs inconvénients. Par exemple, lors d'un incendie, ils présentent un risque élevé de pollution de la couche isolante par les cendres résultant de la combustion de la gaine extérieure.
En effet, la gaine extérieure se transforme généralement, sous l'action d'un feu, en cendres qui peuvent gêner la transformation de la matière polymérique de l'isolant en céramique, entraînant l'apparition de fissures dans l'isolation du conducteur.
En outre, la superposition des conducteurs isolés peut entraîner une augmentation notable de la taille des fissures, résultant d'un écrasement de(s) couche(s) isolante(s) contaminée(s) par lesdites cendres. Ces inconvénients conduisent à une réduction de la protection isolante par la ou les couche(s) isolante(s) du câble et à une augmentation du risque de mise en court-circuit des conducteurs. Ces risques concernent notamment les éléments isolés superposés. En outre, ces cendres peuvent conduire à une augmentation de la conductivité volumique et superficielle de l'isolation, ce qui nuit au bon fonctionnement du câble.
De plus, lors d'un incendie, des objets tels qu' une poutrelle ou des éléments d'une structure de bâtiment, peuvent tomber et venir heurter le câble et ainsi endommager ce dernier et altérer la tenue mécanique de l' isolant transformé en céramique ou en cours de transformation en céramique de chaque conducteur. La chute d' un tel objet peut conduire à ce qu'un conducteur isolé soit comprimé entre ledit objet et un autre conducteur du même câble, venant endommager l'isolant transformé en céramique ou en cours de transformation en céramique, et entraînant ainsi une mise en court-circuit des deux conducteurs.
Il existe donc un besoin pour un câble résistant au feu permettant de pallier les inconvénients présentés ci-dessus. Le demandeur a trouvé qu'un câble résistant au feu présentant une couche isolante commune qui entoure les conducteurs électriques, permet de surmonter les inconvénients mentionnés ci-dessus.
La présente invention a pour objet un câble de sécurité, résistant au feu, ledit câble comprenant : - au moins deux conducteurs électriques, lesdits conducteurs électriques étant séparés entre eux par au moins un espace ;
- une couche isolante commune entourant les conducteurs électriques et remplissant ledit ou lesdits espaces, ladite couche isolante étant constituée à partir d'au moins une matière polymérique apte à se transformer au moins superficiellement en l'état de céramique à des températures élevées dans les incendies, et
- une gaine extérieure autour de ladite couche isolante.
Ce câble est de préférence sans halogène et non-propagateur d'incendie. Par "câble sans halogène", on entend un câble dont tous les constituants ne sont sensiblement pas halogènes. Encore plus préférentiellement, les constituants ne comportent aucun composé halogène.
Selon l'invention, le câble comprend une couche isolante commune qui entoure les conducteurs et remplit les espaces, un espace séparant deux conducteurs adjacents. Ladite couche isolante commune forme ainsi une enveloppe mécaniquement solidaire à l'intérieur de laquelle les conducteurs électriques sont inclus.
De préférence, en section droite, le contour extérieur de la couche isolante du câble suit sensiblement la forme de l'enveloppe des conducteurs, ce qui entraîne une inclusion des conducteurs dans la couche isolante.
De manière plus détaillée, la couche isolante du câble a de préférence une épaisseur qui est sensiblement constante sur l'extrados des conducteurs électriques et qui peut être réduite à une valeur minimale suffisante pour conférer au câble la protection typique d'une couche isolante de câble.
Une couche isolante commune selon l'invention présente l'avantage d'éviter, lors d'un incendie, toute insertion des cendres résiduelles de la gaine entre chaque conducteur isolé lors de la transformation en céramique de l'isolant, et de réduire l'apparition de fissures. Il permet aussi une meilleure cohésion mécanique des conducteurs entre eux une fois l'isolant transformé en céramique. Cela permet ainsi de réduire les risques de court-circuit entre conducteurs électriques tout en conservant l' intégrité du câble.
Le matériau de la gaine extérieure comprend de préférence un copolymère éthylène/alcool vinylique (ou EVA), un polysil oxane, une polyoléfine telle qu' un polyéthylène, un ρoly(chlorure de vinyle) (ou PVC), ou un de leurs mélanges. Le matériau de la gaine extérieure peut comprendre en outre des charges minérales susceptibles de se transformer en cendres résiduelles sous l'effet de températures élevées d'un incendie, telles que de la craie, du kaolin, des oxydes métalliques comme l'alumine hydratée, ou des hydroxydes métalliques comme l'hydroxyde de magnésium, les oxydes ou hydroxydes métalliques pouvant servir de charges ignifugeantes.
Le matériau de la gaine extérieure peut éventuellement être expansé de manière à améliorer notamment la résistance au choc du câble, choc auquel elle peut être soumis suite à la chute d' un objet pendant l 'incendie.
La gaine extérieure peut se présenter sous la forme d'une seule couche ou de plusieurs couches de matière(s) polymérique(s), par exemple, 2, 3 ou 4 couches. Par exemple, il est possible de doter le câble d'une couche de gaine appropriée permettant de conférer une fonction technique particulière, par exemple, pour absorber des chocs accidentels sur le câble ou améliorer la résistance aux fluides du câble.
Dans les câbles de l'invention, l'isolant est constitué notamment à partir d'au moins une matière polymérique apte à se transformer au moins superficiellement en l'état de céramique à des températures élevées dans les incendies, notamment comprises dans l'intervalle allant de 4000C à 12000C. Cette transformation à l'état de céramique de la matière polymérique de l'isolant permet d'assurer le maintien de l'intégrité physique du câble et son fonctionnement électrique dans les conditions de l'incendie. La matière polymérique de la couche isolante est de préférence un polysiloxane tel qu'un caoutchouc de silicone réticulé. La couche isolante peut comprendre en outre, de préférence, une charge formatrice de céramique sous l'effet des températures élevées des incendies, telle que la silice ou des oxydes métalliques. Selon un autre mode de réalisation de la présente invention, Ia matière polymérique de la couche isolante peut être expansée. Cette expansion permet notamment d'améliorer la résistance au choc du conducteur isolé, choc auquel il peut être soumis lors d'un incendie suite à la chute d'un objet tel qu'une poutrelle. L'isolant peut se présenter sous la forme d'une seule couche ou de plusieurs couches de matière(s) polymérique(s), comme 2 ou 3 couches ou plus.
Le câble selon l'invention, comprenant au moins deux conducteurs inclus dans une même couche isolante, peut comprendre en outre une matière de bourrage entre ladite couche isolante et la gaine extérieure.
La matière du bourrage est de préférence choisie parmi un copolymère éthylène/alcool vinylique (ou EVA) , un polysiloxane, une polyoléfine telle qu'un polyéthylène, un poly(chlorure de vinyle) (ou
PVC), ou un de leurs mélanges. La matière du bourrage peut en outre comprendre des charges minérales susceptibles de se transformer en cendres résiduelles sous l'effet de températures élevées d'un incendie, telles que de la craie, du kaolin, des oxydes métalliques comme l'alumine hydratée, ou des hydroxydes métalliques comme l'hydroxyde de magnésium, les oxydes ou hydroxydes métalliques pouvant servir de charges ignifugeantes
Le câble selon l'invention peut être, en section droite, rond ou sensiblement plat. Un câble sensiblement plat est un câble qui présente, en section droite, au moins deux faces sensiblement planes et sensiblement parallèles au plan comprenant les axes des conducteurs. De préférence, Ie câble plat présente un profil extérieur sensiblement rectangulaire, et mieux encore il comporte, en section droite, au moins deux faces sensiblement planes et sensiblement parallèles au plan comprenant les axes des conducteurs et deux portions latérales sensiblement arrondies qui sont reliées auxdites deux faces.
Plus particulièrement, un câble sensiblement plat selon la présente invention comprend au moins deux conducteurs entourés par une couche isolante commune, qui sont adjacents entre eux et côte à côte, et leurs axes se trouvant dans un même plan compris entre lesdites au moins deux faces. La disposition des axes des conducteurs électriques dans un même plan permet en outre d'augmenter la tenue électrique des conducteurs en réduisant toute mise en court-circuit des conducteurs.
En effet, lors d'un incendie, cette disposition particulière des conducteurs électriques permettant de limiter le nombre de zones de contact entre les conducteurs isolés, en particulier pour un câble à partir de trois conducteurs, conduit également à une limitation des risques de mise en court-circuit lors de la transformation en céramique de l'isolant ou lorsque l'isolant est déjà sous forme de céramique. De préférence, les espaces séparant les conducteurs adjacents entre eux dans un câble plat sont répartis transversalement à l'axe du câble et présentent une dimension identique.
De préférence, le câble résistant au feu, sensiblement plat de la présente invention, comprend une gaine de câble ayant un contour extérieur qui épouse sensiblement la forme de la couche isolante. Par exemple, pour un câble à deux conducteurs, le câble présente ainsi en section droite une forme de "8".
De manière plus détaillée, la gaine du câble, en section droite, présente un contour extérieur (ou profil extérieur) qui suit sensiblement la forme de l'enveloppe des conducteurs isol és situés à l'intérieur de la gaine du câble, leurs axes se trouvant dans un même plan. En d'autres termes, la gaine du câble a de préférence une épaisseur qui est sensiblement constante sur l'extrados des conducteurs isolés et qui peut être réduite à une valeur minimale suffisante pour conférer au câble la protection typique d'une gaine de câble.
De cette manière, le câble de la présente invention conduit à une réduction de la quantité de matière de gaine utilisée pour la réalisation du câble, notamment pour le câble à deux conducteurs. Cela entraîne d'une part la réduction du coût de fabrication du câble, et d'autre part une diminution de la durée d'incandescence, de l'énergie calorifique dégagée lors d'un incendie et de la quantité de cendres résultant de la combustion de la gaine. Ces aspects sont particulièrement avantageux car le risque d'apparition de fissures pouvant être provoquées par les cendres lors de la transformation en céramique de l'isolant aux températures élevées d'un incendie peut être réduit de manière importante.
D' autre part, pour les câbles à partir de trois conducteurs, la surface extérieure de la gaine est plus grande dans la présente invention, ce qui permet un meilleur échange thermique et une meilleure et plus rapide combustion de la gaine qui perturbera moins la transformation en céramique de l'isolant lors de l'incendie.
Un autre objet de l'invention consiste en un procédé de fabrication des câbles selon l'invention comprenant l'extrusion d'une matière polymérique de l'isolant - apte à se transformer au moins superficiellement en l'état de céramique à des températures élevées dans les incendies - sur des conducteurs métalliques entrant dans une même tête d' extrusion de telle sorte que le matériau d'isolation ainsi déposé rende solidaire chaque conducteur ainsi isolé. L'invention et les avantages qu'elle apporte seront mieux compris grâce aux exemples de réalisation donnés ci-après à titre indicatif et non-limitatif, et qui sont illustrés par les dessins annexés sur lesquels :
La Fig. 1 représente une vue en coupe transversale d'un câble rond à trois conducteurs électriques selon un premier mode de réalisation.
La Fig. 2 représente une vue en coupe transversale d'un câble rond à trois conducteurs électriques selon un deuxième mode de réalisation. La Fig. 3 représente une vue en coupe transversale d'un câble dit plat à deux conducteurs électriques, selon un troisième mode de réalisation.
La Fig. 4 représente une vue en coupe transversale d'un câble dit plat à trois conducteurs électriques, selon un quatrième mode de réalisation.
La Fig. 5 représente une vue en coupe transversale d'un câble dit plat à deux conducteurs électriques, selon un cinquième mode de réalisation. Sur la Fig. 1 est représenté un câble 10 rond à trois conducteurs électriques 2a, 2b et 2c, ces derniers s'étendant longitudinalement à l'intérieur d'une couche isolante commune 3.
Selon ce mode de réalisation, le conducteur électri que 2c est superposé aux conducteurs électriques 2a et 2b. En d'autres termes, les axes des deux conducteurs 2a et 2b sont disposés parallèl ement l'un par rapport à l'autre dans un même plan médian longitudinal Pl , tandis que le conducteur 2c est placé au-dessus des conducteurs 2a et 2b, son axe étant parallèle à ceux des conducteurs 2a et 2b et étant situé dans un plan médian longitudinal P2 perpendiculaire à Pl .
Les conducteurs 2a, 2b, 2c sont séparés entre eux par un espace 5. De préférence, les espaces 5 qui séparent des conducteurs adjacents ont des dimensions identiques. De préférence, les conducteurs 2a et 2b sont situés à équidistance du plan P2, de part et d'autre du plan P2. En particulier, les conducteurs 2a et 2b sont séparés par un espace 5 qui mesure de préférence d'environ 0, 1 mm à environ 10 mm (dimension transversale).
Selon la présente invention, le câble 10 comprend une couche isolante commune 3 qui entoure les trois conducteurs 2a, 2b et 2c. Par conséquent, le matériau de la couche isolante 3 remplit les espaces 5 qui séparent les trois conducteurs, de manière à obtenir une couche isolante commune 3 sous la forme d'une enveloppe solidaire mécaniquement.
Sur la Fig. 1, la couche isolante 3 présente un contour extérieur qui épouse sensiblement la forme de l'enveloppe des conducteurs, ladite couche isolante présentant une épaisseur sensiblement constante sur l'extrados des conducteurs.
Le matériau de l'isolant 3 est de préférence un polysiloxane comprenant notamment une charge de renforcement de type silice. L'isolant 3 comporte de préférence une seule couche de polysiloxane.
Le câble 10 montré sur la Fig. 1 comprend en outre une gaine extérieure 4 qui entoure la couche isolante 3 de manière à ce que la section transversale du câble présente une forme circulaire. La gaine extérieure 4 est constituée de préférence par un EVA comprenant éventuellement des charges telles que des oxydes ou hydroxydes métalliques.
Le câble 20 de la Fig. 2 diffère de celui de la Fig. 1 en ce qu'un espace supplémentaire 21 est présent entre les conducteurs isolés 2a,
2b, 2c.
Les conducteurs isolés 2a, 2b, 2c sont séparés entre eux par des espaces respectifs 5 et la partie du câble contenue entre les espaces 5 et les conducteurs isolés 2a, 2b, 2c définit ledit espace supplémentaire 21.
Dans ce deuxième mode de réalisation, les espaces 5 ont la forme de trois segments qui relient respectivement les conducteurs isolés 2a et 2b, 2b et 2c, et 2c et 2a, lesdits segments étant constitués du matériau isolant de la couche isolante 3. En section droite, l'isolant 3 du câble 20 est l'association de trois formes annulaires, deux formes étant alignées et la troisième se trouvant au-dessus des deux autres et en position centrée par rapport aux deux autres. Ces formes annulaires sont reliées deux à deux par un segment constitué d'isolant, mesurant par exemple, de 0, 1 mm à 20 mm. L'isolant a alors la forme d'un triangle équilatéral préférentiellement aux sommets arrondis.
Le câble 20 présente une gaine extérieure 4 qui entoure la couche isolante 3 et confère un profil rond en section droite au câble.
De préférence, l'espace supplémentaire 21 est constitué du même matériau que celui de la gaine extérieure 4. Alternativement, l'espace supplémentaire 21 peut être vide, c'est-à-dire qu'il peut ne contenir aucun matériau de remplissage, afin d'augmenter la séparation entre les conducteurs.
La Fig. 3 représente un câble plat 30 selon un troisième mode de réalisation de la présente invention.
Ce câble 30 comprend deux conducteurs électriques 2a et 2b, une couche isolante commune 3 entourant les deux conducteurs électriques 2a et 2b, et une gaine extérieure 4. En section droite, le câble a un profil extérieur sensiblement rectangulaire comportant deux faces 31 et 32 sensiblement planes et sensiblement parallèles au plan P comprenant les axes des conducteurs, et deux portions latérales 33 et 34 sensiblement arrondies qui sont reliées auxdites deux faces 31 et 32.
Les deux conducteurs électriques 2a, 2b sont disposés parallèlement l'un par rapport à l'autre, adjacents entre eux et côte à côte, dans le plan médian longitudinal P du câble 30. Les conducteurs électriques 2a, 2b sont séparés par un espace 5. Cet espace 5 mesure d'environ 0, 1 mm à environ 10 mm.
Selon ce mode de réalisation, l'isolant 3 entoure les deux conducteurs et vient remplir l'espace 5, ce qui conduit à l'obtention d'une couche isolante commune 3 sous la forme d'une enveloppe solidaire mécaniquement. Selon le mode de réalisation représenté sur la Fig. 3, la couche isolante 3 présente un contour extérieur qui épouse sensiblement le contour extérieur de l'enveloppe des conducteurs 2a et 2b, ladite couche isolante 3 présentant une épaisseur qui est sensiblement constante sur l'extrados des conducteurs. Le matériau de l'isolant 3 est de préférence un polysiloxane comprenant notamment une charge de renforcement de type silice. De préférence, l'isolant 3 comporte une seule couche.
La gaine extérieure 4, déposée sur l'isolant 3, est constituée de préférence par un EVA comprenant éventuellement des charges telles que des oxydes ou hydroxydes métalliques.
Le câble 40 de la Fig. 4 diffère de celui de la Fig. 3 en ce qu'un conducteur 2c supplémentaire est introduit à l'intérieur de l'isolant 3, dans le plan médian longitudinal P du câble 1 , et en ce que le profil extérieur de la gaine extérieure 4 épouse sensiblement le contour extérieur de la couche isolante 3, la gaine extérieure 4 présentant une épaisseur qui est sensiblement constante sur l'extrados de la couche isolante 3.
Le câble 50 de la Fig. 5 diffère de celui de la Fig. 3 en ce que l'espace 5, qui sépare les conducteurs adjacents 2a, 2b, est allongé de sorte que la distance entre lesdits conducteurs est augmentée de manière à réduire Ie risque de court-circuit.
L'espace 5 mesure, par exemple, de 0, 1 mm à 20mm.

Claims

REVENDICATIONS
1. Câble de sécurité (10; 20; 30; 40; 50) résistant au feu, ledit câble comprenant : - au moins deux conducteurs électriques (2a, 2b), lesdits conducteurs électriques étant séparés entre eux par au moins un espace (5) ;- une couche isolante commune (3) entourant les conducteurs électriques (2a, 2b) et remplissant ledit ou lesdits espaces (5), ladite couche isolante étant constituée à partir d'au moins une matière polymérique apte à se transformer au moins superficiellement en l'état de céramique à des températures élevées dans les incendies, et une gaine extérieure (4) autour de ladite couche isolante (3).
2. Câble selon la revendication 1, caractérisé en ce que la couche isolante (3) forme une enveloppe solidaire mécaniquement dans laquelle lesdits conducteurs sont inclus.
3. Câble selon la revendication 1 ou 2, caractérisé en ce que la couche isolante (3) a, en section droite, un contour extérieur qui épouse sensiblement la forme de l'enveloppe des conducteurs (2a, 2b, 2c).
4. Câble selon la revendication 3, caractérisé en ce que la couche isolante (3) présente une épaisseur qui est sensiblement constante sur l'extrados des conducteurs (2a, 2b, 2c).
5. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la matière polymérique de la couche isolante (3) est un polysiloxane.
6. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la matière polymérique de la couche isolante (3) contient une charge formatrice de céramique sous l'effet des températures élevées des incendies.
7. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la matière polymérique de la couche isolante (3) est expansée.
8. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau de la gaine extérieure (4) comprend un copolymère éthylène/alcool vinylique, un polysiloxane, une polyoléfine, un poly(chlorure de vinyle) , ou un de leurs mélanges.
9. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau de la gaine extérieure (4) comprend des charges minérales susceptibles de se transformer en cendres résiduelles sous l'effet de températures élevées d'un incendie.
10. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau de la gaine (4) est expansé.
11. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la gaine extérieure (4) comprend plusieurs couches de matière(s) polymérique(s).
12. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que le profil extérieur en coupe dudit câble est rond.
13. Câble selon l'une quelconque des revendications 1 à 11 , caractérisé en ce qu'il présente en section droite, au moins deux faces (31 , 32) sensiblement planes et sensiblement parallèles au plan (P) comprenant les axes des conducteurs.
14. Câble selon la revendication 13 , caractérisé en ce qu'il présente un profil extérieur sensiblement rectangulaire.
15. Câble selon la revendication 13 , caractérisé en ce qu'il présente, en section droite, deux portions latérales (33, 34) sensiblement arrondies qui sont reliées auxdites au moins deux faces (31 , 32).
16. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la gaine extérieure (4) a un contour extérieur qui épouse sensiblement la couche isolante (3).
17. Procédé de fabrication d'un câble selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend l 'extrusion d'une matière polymérique de l'isolant sur des conducteurs métalliques entrant dans une même tête d' extrusion.
PCT/FR2005/001987 2005-07-29 2005-07-29 Cable de securite resistant au feu a une seule enveloppe isolante WO2007014983A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05793412A EP1911043A1 (fr) 2005-07-29 2005-07-29 Cable de securite resistant au feu a une seule enveloppe isolante
PCT/FR2005/001987 WO2007014983A1 (fr) 2005-07-29 2005-07-29 Cable de securite resistant au feu a une seule enveloppe isolante
US11/989,302 US7829792B2 (en) 2005-07-29 2005-07-29 Fire-resistant safety cable provided with a single insulating covering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2005/001987 WO2007014983A1 (fr) 2005-07-29 2005-07-29 Cable de securite resistant au feu a une seule enveloppe isolante

Publications (1)

Publication Number Publication Date
WO2007014983A1 true WO2007014983A1 (fr) 2007-02-08

Family

ID=35822210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/001987 WO2007014983A1 (fr) 2005-07-29 2005-07-29 Cable de securite resistant au feu a une seule enveloppe isolante

Country Status (3)

Country Link
US (1) US7829792B2 (fr)
EP (1) EP1911043A1 (fr)
WO (1) WO2007014983A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034459A2 (fr) 2007-09-12 2009-03-19 Nexans Câble électrique résistant au feu
CN104133275A (zh) * 2014-07-04 2014-11-05 浙江一舟电子科技股份有限公司 一种电梯线缆
CN105513685A (zh) * 2016-01-28 2016-04-20 亚洲电器电缆科技有限公司 一种建筑用耐温防火环保电缆

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0520479B1 (pt) 2005-07-29 2017-11-21 Prysmian Energie Cables Et Systemes France Fire-resistant security cable
DE102010014530A1 (de) 2010-04-10 2011-10-13 Woertz Ag Flachkabel-Umlenkvorrichtung und Installationssatz für eine elektrische Installation mit Funktionserhalt im Brandfall
DE102010014532A1 (de) 2010-04-10 2011-10-13 Woertz Ag Brand-Funktionserhaltkabel und Installationssatz für eine elektrische Installation mit Funktionserhalt im Brandfall
DE102010014531A1 (de) 2010-04-10 2011-10-13 Woertz Ag Anschlussvorrichtung und Installationssatz für eine elektrische Installation mit Funktionserhalt im Brandfall
EP2415823B1 (fr) * 2010-07-30 2012-10-03 Nexans Mélange polymère pouvant être mis en réseau pour enveloppes de câbles et de conduites
US8855653B2 (en) 2012-07-18 2014-10-07 Alcatel Lucent Method, apparatus and computer readable medium for traffic redistribution in wireless networks
US8900011B2 (en) * 2012-09-24 2014-12-02 Souriau Electrical connector with flame-resistant inserts
DE102014004678A1 (de) 2014-03-31 2015-10-15 Woertz Engineering Ag FLACHKABEL MIT KURZSCHLUSSVERMElDUNG IM BRANDFALL SOWIE VERWENDUNG UND HERSTELLUNG EINES SOLCHEN FLACHKABELS
JP6092282B2 (ja) * 2015-03-18 2017-03-08 冨士電線株式会社 耐火ケーブル
CN107424667B (zh) * 2017-07-27 2024-01-23 应急管理部四川消防研究所 一种无卤阻燃耐火电缆及其制备方法
CN114349393A (zh) * 2020-10-12 2022-04-15 中广核三角洲(江苏)塑化有限公司 非金属阻燃耐火光缆用陶瓷化聚烯烃护套材料
CN113035435A (zh) * 2021-03-29 2021-06-25 国家电网有限公司 一种涂覆有阻燃涂料的电缆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0017609A1 (fr) * 1979-04-10 1980-10-15 Siemens Aktiengesellschaft Câble électrique ou optique à isolation en matière synthétique, comprenant un manteau intérieur résistant à la flamme
FR2654867A1 (fr) * 1989-11-23 1991-05-24 Fressynet Eric Cable electrique apte a assurer un service electrique minimum pendant un incendie meme directement soumis a une flamme.
US5209987A (en) * 1983-07-08 1993-05-11 Raychem Limited Wire and cable
EP0942439A1 (fr) * 1998-03-12 1999-09-15 Alcatel Câble de sécurité, resistant au feu et sans halogène
US6392153B1 (en) * 1998-12-18 2002-05-21 Equistar Chemicals, Lp Electrical conductive assembly
US20040050578A1 (en) * 1999-12-24 2004-03-18 Plastic Insulated Cables Limited Communications cable

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3602888A1 (de) * 1986-01-31 1987-08-06 Bayer Ag Intumeszierende polysiloxan-formmassen
JPS6430106U (fr) 1987-08-19 1989-02-23
JPH0668929B2 (ja) 1987-10-30 1994-08-31 日立電線株式会社 積層布設平形ケーブル
US5173960A (en) * 1992-03-06 1992-12-22 At&T Bell Laboratories Cable having superior resistance to flame spread and smoke evolution
US5770820A (en) * 1995-03-15 1998-06-23 Belden Wire & Cable Co Plenum cable
DE60135095D1 (de) * 2000-02-21 2008-09-11 Prysmian Cavi Sistemi Energia Schlagfestes selbstlöschendes elektrisches kabel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0017609A1 (fr) * 1979-04-10 1980-10-15 Siemens Aktiengesellschaft Câble électrique ou optique à isolation en matière synthétique, comprenant un manteau intérieur résistant à la flamme
US5209987A (en) * 1983-07-08 1993-05-11 Raychem Limited Wire and cable
FR2654867A1 (fr) * 1989-11-23 1991-05-24 Fressynet Eric Cable electrique apte a assurer un service electrique minimum pendant un incendie meme directement soumis a une flamme.
EP0942439A1 (fr) * 1998-03-12 1999-09-15 Alcatel Câble de sécurité, resistant au feu et sans halogène
US6392153B1 (en) * 1998-12-18 2002-05-21 Equistar Chemicals, Lp Electrical conductive assembly
US20040050578A1 (en) * 1999-12-24 2004-03-18 Plastic Insulated Cables Limited Communications cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034459A2 (fr) 2007-09-12 2009-03-19 Nexans Câble électrique résistant au feu
CN104133275A (zh) * 2014-07-04 2014-11-05 浙江一舟电子科技股份有限公司 一种电梯线缆
CN105513685A (zh) * 2016-01-28 2016-04-20 亚洲电器电缆科技有限公司 一种建筑用耐温防火环保电缆

Also Published As

Publication number Publication date
US20090078446A1 (en) 2009-03-26
EP1911043A1 (fr) 2008-04-16
US7829792B2 (en) 2010-11-09

Similar Documents

Publication Publication Date Title
EP1911043A1 (fr) Cable de securite resistant au feu a une seule enveloppe isolante
EP1911044B1 (fr) Cable de securite resistant au feu, sensiblement plat
EP1504887B1 (fr) Cable électrique ignifugé par une gaine externe multicouche
EP2441076B1 (fr) Câble électrique apte à assurer la continuité de distribution électrique en cas d'incendie
CA2047346C (fr) Cable sous-marin de telecommunications a fibres optiques
CA2047345C (fr) Cable sous-marin de telecommunications a fibres optiques sous tube
EP2557572B1 (fr) Câble électrique résistant aux décharges partielles
EP3398194B1 (fr) Câble ayant une couche isolante résistante au feu
EP3358575B1 (fr) Câble electrique resistant aux decharges partielles
EP2319053B1 (fr) Composition ceramisable pour cable d'energie et/ou de telecommunication
EP3764372A1 (fr) Câble comprenant une couche résistante au feu
EP3404673B1 (fr) Cable resistant au feu
FR2811802A1 (fr) Cable electrique de securite
CN110853825A (zh) 一种防火高压电缆
EP2613326B1 (fr) Cable d'énergie et/ou de télécommunication apte à empecher la propagation d'un incendie
US20240106221A1 (en) Heat shrinkable tube, heat shrinkable coupling component, method of manufacturing heat shrinkable tube, and method of manufacturing heat shrinkable coupling component
EP1110225B1 (fr) Gaine de protection thermique pour un faisceau de cables electriques
EP3764373A1 (fr) Câble comprenant une couche céramique résistante au feu
FR2654867A1 (fr) Cable electrique apte a assurer un service electrique minimum pendant un incendie meme directement soumis a une flamme.
FR3029004A1 (fr) Cable electrique avec une emissivite amelioree

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2005793412

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005793412

Country of ref document: EP

Ref document number: 11989302

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005793412

Country of ref document: EP