WO2007014903A1 - Verfahren zum nachweis einer kraftstoffadditiv-komponente - Google Patents

Verfahren zum nachweis einer kraftstoffadditiv-komponente Download PDF

Info

Publication number
WO2007014903A1
WO2007014903A1 PCT/EP2006/064745 EP2006064745W WO2007014903A1 WO 2007014903 A1 WO2007014903 A1 WO 2007014903A1 EP 2006064745 W EP2006064745 W EP 2006064745W WO 2007014903 A1 WO2007014903 A1 WO 2007014903A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel additive
fuel
additive component
indicator
analyte
Prior art date
Application number
PCT/EP2006/064745
Other languages
English (en)
French (fr)
Inventor
Jörn KARL
Armin Bader
Benjamin Kaufman
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to JP2008524494A priority Critical patent/JP2009503526A/ja
Priority to EP06792588A priority patent/EP1913369A1/de
Priority to MX2008000952A priority patent/MX2008000952A/es
Priority to AU2006274842A priority patent/AU2006274842A1/en
Priority to US11/997,179 priority patent/US20080233656A1/en
Priority to CA002618234A priority patent/CA2618234A1/en
Publication of WO2007014903A1 publication Critical patent/WO2007014903A1/de
Priority to NO20080294A priority patent/NO20080294L/no

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/80Indicating pH value
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/145555Hetero-N

Definitions

  • the present invention relates to a method for the qualitative or quantitative detection of a fuel additive component, in particular in diesel fuel or gasoline. Furthermore, the subject of the present invention is the use of this method for the qualitative or quantitative detection of a fuel additive component in diesel fuel or gasoline.
  • Petrol consists of a hydrocarbon mixture, which may contain, for example, additives of oxygen-containing organic components and additives to improve the properties.
  • additives which are used in unleaded gasoline are e.g. Antioxidants, corrosion inhibitors, metal deactivators and detergents.
  • the additives are used inter alia to prevent corrosion, deposits in the inlet system, sludge formation and valve sticking in an internal combustion engine.
  • the additive concentrations are usually in gasoline in the range below 0.1 wt .-%.
  • the additives are usually already metered by the fuel manufacturer in the form of additive packages and added to the petrol when filling the tank trucks in the refinery.
  • diesel fuel Even with diesel fuel, the addition of additives for quality improvement has largely prevailed.
  • the diesel fuel is usually added additive packages with a total concentration below 0.1 wt .-%.
  • the most common additives for diesel fuel are flow improvers, lubricity improvers, ignition improvers, detergents, corrosion inhibitors and antifoams.
  • a method has been found for the qualitative or quantitative detection of a fuel additive component, which is part of an analyte containing fuel and / or other fuel additive components, which is characterized in that the analyte is brought into contact with an indicator and by the Interaction between fuel additive component and indicator determined change in the color properties of the indicator determined in the analyte.
  • the method according to the invention can be used qualitatively and quantitatively, i. It can hereby be proven whether a certain fuel additive component is present and in what quantity it is present.
  • the proof can be carried out in particular in the fuel itself, but also in the underlying additive packages.
  • the analyte, ie, the determination sample is thus the fuel or fuel additive package, which may be diluted with suitable inert solvents, if necessary, to carry out the determination.
  • all indicators are considered as indicators which change their color properties upon contact with and interaction with the fuel additive component, be they in the range of visible light or in the range of fluorescence or chemiluminescence behavior.
  • an acid-base indicator (also referred to as a pH indicator or neutralization indicator) is used.
  • the acids or bases on which these indicators are based show a color change which usually occurs in the visible range during their protolysis or deproteinization.
  • Typical examples of acid-base indicators are cresol red, metanil yellow, thymol blue, m-cresol purple, tropaeolin OO, 2,6-dinitrophenol, benzyl orange, 2,4-dinitrophenol, benzopurpurine 4 B, dimethyl yellow, Congo Red, Bromophenol blue, bromochlorophenol blue, methyl orange, ⁇ -naphthyl red, bromocresol green, 2,5-dinitrophenol, mixed indicator 5, methyl red, ethyl red, chlorophenol red, carminic acid, alizarin red S, 2-nitrophenol, litmus, bromocresol purple, bromophenol red, 4-nitrophenol, alizarin, Bromothymol blue, bromoxylenol blue,
  • bromocresol green As a particularly preferred acid-base indicator, bromocresol green, ⁇ -naphthyl red, 2,5-dinitrophenol, mixed indicator 5 or methyl red is used.
  • the acid-base indicator exploits basic functionalities in the fuel additive component to produce the color change.
  • adsorption indicators e.g. Fluorescein or eosin
  • fluorescence indicators e.g. Flucescein, eosin, benzoflavin, phloxine, chromotropic acid, methylumbelliferone, benzquinoline, morin, naphthols, naphthionic acid, quinine, coumarin or acridine
  • chemiluminescent indicators e.g. Lucigenin
  • redox indicators e.g. Neutral red, safranine or methylene blue
  • metal indicators metal indicators
  • a specific color change occurs when the indicator and the analyte come together, for example in the case of bromocresol green from yellow (acidic range below pH 3.8) to blue (alkaline range above pH 5, 4).
  • the occurrence of the color change is the evidence of the presence of the desired fuel additive component.
  • a blank test with an analyte to which a test quantity of the fuel additive component to be detected has been added and / or an analyte containing unadditized fuel is recommended.
  • the intensity of the coloration is determined after the change in the color properties in the analyte, ie after the color change has taken place.
  • the photometric determination is suitable in a preferred embodiment, usually using commercially available photometers.
  • the measurement is usually carried out by adding a certain amount of analyte to a set amount of the indicator, mixing (for example by shaking) and irradiating the sample in a sample vessel (cuvette) with light of a specific wavelength.
  • the measured absorbance correlated to a blank or to a calibration curve made with different amounts of the fuel additive component to be determined gives the amount of fuel additive component in the analyte.
  • the photometric determination of the extinction at a wavelength of 620 nm is recommended, for example.
  • the analyte used is diesel fuel or gasoline which, in addition to the fuel additive component to be detected, optionally contains further fuel additive components, ie the determination is carried out directly on the diesel or gasoline fuel supplied by the refineries and commercially available ,
  • petrol for operating internal combustion engines (gasoline engines) in motor vehicles are usually petroleum raffinates, which generally have a boiling range of 70 to 18O 0 C. They usually represent C5-C12 hydrocarbon mixtures of alkanes, alkenes, cycloalkanes, cycloalkenes and aromatics in varying composition. Petrol is preferably used unleaded.
  • the method according to the invention for detecting a fuel additive component can in principle also be carried out in kerosene as analyte.
  • Kerosene as a higher-boiling gasoline grade (boiling range about 180 to 27O 0 C) is used in particular in the aircraft sector.
  • diesel fuels whose major components are longer chain paraffins
  • those obtainable by coal gasification or gas liquefaction [GTL] fuels are also suitable.
  • mixtures of the abovementioned diesel fuels with regenerative fuels such as biodiesel or bioethanol.
  • regenerative fuels such as biodiesel or bioethanol.
  • Diesel fuels may also contain water, for example in an amount of up to 20% by weight, for example in the form of diesel-water microemulsions or as so-called "white diesel".
  • the process of the present invention is used to detect a polar detergent-additive component typically used as an additive in most types of fuel, particularly diesel fuel and gasoline, as well as in the underlying additive compositions (especially additive packages) for diesel or diesel fuel Petrol is located.
  • a polar detergent-additive component typically used as an additive in most types of fuel, particularly diesel fuel and gasoline, as well as in the underlying additive compositions (especially additive packages) for diesel or diesel fuel Petrol is located.
  • overall suitable polar detergent additives with in particular basic functionalities or polar functional groups, which interact with the indicators mostly in the sense of an acid-base interaction, are described below.
  • the above additive compositions and fuels may additionally contain various other fuel additive components such as demulsifiers, carrier oils, solvents and diluents, corrosion inhibitors, antioxidants, metal deactivators, antistatic agents, color markers, flow improvers, lubricity improvers, ignition improvers and antifoam agents.
  • Suitable other fuel additive components are also set forth below.
  • Detergent additives are commonly referred to as gasoline and diesel fuel scale inhibitors.
  • the detergent additives are amphiphilic substances having at least one hydrophobic hydrocarbon radical having a number average molecular weight (Mn) of from 85 to 20,000 and at least one polar moiety selected from:
  • the hydrophobic hydrocarbon radical in the above detergent additives which provides the sufficient solubility in the fuel, has a number average molecular weight (Mn) of 85 to 20,000, especially from 113 to 10,000, especially from 300 to 5000.
  • Mn number average molecular weight
  • polypropene or conventional (ie, with predominantly central double bonds) polybutene or polyisobutene with Mn 300 to 5000.
  • amines such as e.g.
  • Ammonia monoamines or polyamines, such as dimethylaminopropylamine, ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine.
  • Corresponding additives based on poly (iso) butene are in particular in EP-B 244 616, corresponding additives based on polypropene are described in particular in WO 94/24231.
  • monoamino groups (a) containing additives are the polyisobutene epoxides by reaction with amines and subsequent dehydration and reduction of the amino alcohols obtainable compounds, as described in particular in DE-A 196 20 262.
  • Carboxyl groups or their alkali metal or alkaline earth metal salts (d) containing additives are preferably copolymers of C2-C4o-olefins with maleic anhydride having a total molecular weight of 500 to 20,000, the carboxyl groups wholly or partially to the alkali metal or alkaline earth metal salts and a remainder of the Carboxyl groups are reacted with alcohols or amines.
  • additives are known in particular from EP-A 307 815.
  • Such additives are primarily used to prevent valve seat wear and, as described in WO 87/01126, can be advantageously used in combination with conventional fuel detergents such as poly (iso) butenamines or polyetheramines.
  • Sulfonic acid groups or their alkali metal or alkaline earth metal salts (e) containing additives are preferably alkali metal or alkaline earth metal salts of a Sulfobern- steinklaklalesters, as described in particular in EP-A 639 632.
  • Such additives are mainly used to prevent valve seat wear and can be used to advantage in combination with conventional fuel detergents such as poly (iso) buteneamines or polyetheramines.
  • Polyoxy-C 2 -C 4 -alkylene groups (f) containing additives are preferably polyether or polyetheramines, which by reaction of C 2 -C 6 o-alkanols, C 6 -C 30 -alkanediols, mono- or di-C 2 -C 3 o-alkylamines, Ci-C 3 o-alkylcyclohexanols or Ci-C 30 - alkylphenols with 1 to 30 moles of ethylene oxide and / or propylene oxide and / or butylene oxide per hydroxyl group or amino group and, in the case of polyetheramines, by subsequent reductive amination with ammonia, monoamines or polyamines are available.
  • Such products are disclosed in particular in EP-A 310 875,
  • EP-A 356 725, EP-A 700 985 and US-A 4,877,416 In the case of polyesters, such products also fulfill carrier oil properties. Typical examples thereof are tridecanol or isotridecanol butoxylates, isononylphenol butoxylates and also polyisobutenol butoxylates and propoxylates and the corresponding reaction products with ammonia.
  • Carboxyl ester groups (g) containing additives are preferably esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, especially those having a minimum viscosity of 2 mm 2 / s at 100 0 C, as described in particular in DE-A 38 38 918 are.
  • Aliphatic or aromatic acids can be used as the mono-, di- or tricarboxylic acids, especially suitable as ester alcohols or polyols are long-chain representatives with, for example, 6 to 24 C atoms.
  • esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of iso-octanol, iso-nonanol, iso-decanol and of isotridecanol. Such products also meet carrier oil properties.
  • derivatives with aliphatic polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine.
  • the groups having hydroxyl and / or amino and / or amido and / or imido groups are, for example, carboxylic acid groups, acid anhydrides, acid amides of diamines or polyamines which, in addition to the amide function, still have free amine groups, succinic acid derivatives with an acid - And an amide function, carboxylic imides with monoamines, carboxylic imides with di- or polyamines, which still have free amine groups in addition to the imide function, and diimides, which are formed by the reaction of di- or polyamines with two succinic acid derivatives.
  • Such fuel additives are described in particular in US Pat. No. 4,849,572.
  • Mannich reaction of substituted phenols with aldehydes and mono- or polyamines generated groupings (i) containing additives are preferably reaction products of polyisobutene-substituted phenols with formaldehyde and mono- or polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine or dimethylaminopropylamine.
  • Such "polyisobutene-Mannich bases" are described in particular in EP-A-831 141.
  • Detergent additives from group (h) are particularly preferred in the process according to the invention. These are, in particular, polyisobutenyl-substituted succinimides, especially the imides with aliphatic polyamines. Such polyisobutenyl-substituted succinimides are primarily used as a polar fuel additive component with detergent action in diesel fuel.
  • Demulsifiers are substances which cause the separation of an emulsion. These may be both ionogenic and non-ionic substances which are effective at the phase boundary. Accordingly, basically all surface-active substances are suitable as demulsifiers. Particularly suitable demulsifiers are selected from anion-active compounds such as the alkali or alkaline earth salts of alkyl-substituted phenol and naphthalenesulfonates and the alkali or alkaline earth salts of fatty acids, as well as neutral compounds such as alcohol alkoxylates, e.g. Alcohol ethoxylates, phenol alkoxylates, e.g.
  • tert-butylphenol ethoxylate or tert-pentylphenol ethoxylate fatty acids, alkylphenols, condensation products of ethylene oxide (EO) and propylene oxide (PO), e.g. also in the form of EO / PO block copolymers, polyethyleneimines or else polysiloxanes.
  • EO ethylene oxide
  • PO propylene oxide
  • the additive composition and the fuel can also be combined with other conventional components and additives.
  • carrier oils without pronounced detergent action to name, and these come in particular when used in petrol fuel to fruition. Occasionally, however, they are also used in middle distillates.
  • Carrier oils are usually used in combination with detergent additives and exercise with these a solvent or washing function.
  • Carrier oils are typically high boiling, viscous, thermostable liquids which coat a hot metal surface and thereby prevent the formation or deposition of contaminants on the metal surface.
  • Suitable mineral carrier oils are fractions obtained in petroleum processing, such as bright stock or base oils with viscosities such as from class SN 500-2000; but also aromatic hydrocarbons, paraffinic hydrocarbons and alkoxyalkanols. Useful is also a technique known as "hydrocrack oil” and obtained in the refining of mineral oil fraction (vacuum distillate cut having a boiling range of about 360-500 0 C, available natural out catalytic high pressure table hydrogenated and isomerized and also deparaffinized mineral oil). Also suitable are mixtures of the abovementioned mineral carrier oils.
  • Examples of synthetic carrier oils which can be used according to the invention are selected from polyolefins (polyalphaolefins or polyethylenemolefins), (poly) esters, (poly) acrylates, polyethers, aliphatic polyetheramines, alkylphenol-initiated polyethers, alkylphenol-initiated polyetheramines and carboxylic acid esters of long-chain alkanols.
  • suitable polyethers or polyetheramines are preferably compounds containing polyoxy-C 2 -C 4 -alkylene groups, which are prepared by reacting C 2 -C 6 -alkanols, C 6 -C 50 -alkanediols, mono- or di-C 2 -C 30 -alkylamines, C 1 -C 30 -alkyl - Cyclohexanolen or Ci-C3o-Alkylphenolen with 1 to 30 mol of ethylene oxide and / or propylene oxide and / or butylene oxide per hydroxyl group or amino group and, in the case of polyether amines, by subsequent reductive amination with ammonia, mono amines or polyamines are available.
  • Such products are described in particular in EP-A 310 875, EP-A 356 725, EP-A 700 985 and US-A 4,877,416.
  • polyetheramines poly-C 2 -C 6 -alkylene oxide amines or functional derivatives thereof can be used. Typical examples of these are tridecanol or Isotridecanolbutoxylate, Isononylphenolbutoxylate and Polyisobutenolbutoxylate and propoxylates and the corresponding reaction products with ammonia.
  • carboxylic acid esters of long-chain alkanols are in particular esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, as described in particular in DE-A 38 38 918.
  • mono-, di- or tricarboxylic acids it is possible to use aliphatic or aromatic acids, especially suitable ester alcohols or polyols are long-chain representatives having, for example, 6 to 24 carbon atoms.
  • suitable representatives of the esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of isooctanol, isononanol, isodecanol and isotridecanol, such as e.g. Di (n- or iso-tridecyl) phthalate.
  • suitable synthetic carrier oils are alcohol-started polyethers having about 5 to 35, such as about 5 to 30, C 3 -C 6 alkylene oxide units, for example selected from propylene oxide, n-butylene oxide and i-butylene oxide units, or mixtures from that.
  • suitable starter alcohols are long-chain alkanols or long-chain alkyl-substituted phenols, where the long-chain alkyl radical is in particular a straight-chain or branched C 6 -C 18 -alkyl radical.
  • Preferred examples are tridecanol and nonylphenol.
  • Further common additives are the cold properties of the fuel-improving additives, e.g. Nucleators, flow improvers, paraffin dispersants and mixtures thereof, e.g. Ethylene-vinyl acetate copolymers; Corrosion inhibitors, for example based on film-forming ammonium salts of organic carboxylic acids or of heterocyclic aromatics in the case of non-ferrous metal corrosion protection; dehazers; Anti-foaming agent, e.g.
  • siloxane compounds cetane number improvers (ignitability improvers); combustion improvers; Antioxidants or stabilizers, for example based on amines such as p-phenylenediamine, dicyclohexylamine or derivatives thereof or of phenols such as 2,4-di-tert-butylphenol or 3,5-di-tert-butyl-4-hydroxyphenylpropionic acid; Antistatic agents; Metallocenes such as ferrocene; Methylcyclopentadienyl manganese tricarbonyl; Lubricity improver, e.g.
  • fatty acids alkenyl succinic esters, bis (hydroxyalkyl) fatty amines, hydroxyacetamides or castor oil; as well as dyes (markers).
  • amines are added to lower the pH of the fuel.
  • Suitable diluents and solvents are, for example, aromatic and aliphatic hydrocarbons, for example Cs-Cio-alkanes, such as pentane, hexane, heptane, octane, nonane, decane, their constitution isomers and mixtures; Petroleum ethers, aromatics such as benzene, toluene, xylene and solvent naphtha; Alkanols of 3 to 8 carbon atoms, e.g. Propanol, isopropanol, n-butanol, sec-butanol, isobutanol and the like, in combination with hydrocarbon solvents; and alkoxyalkanoethylene.
  • aromatic and aliphatic hydrocarbons for example Cs-Cio-alkanes, such as pentane, hexane, heptane, octane, nonane, decane, their constitution isomers and mixtures
  • Suitable diluents are, for example, fractions obtained in petroleum processing, such as kerosene, naphtha or bright stock.
  • middle distillates especially in diesel fuels and heating oils preferred diluent used are naphtha, kerosene, diesel fuels, aromatic hydrocarbons such as Solvent Naphtha heavy, Solvesso ® or Shellsol ®, as well as mixtures of these solvents and diluents.
  • detergent additives e.g. those with the polar groupings (a) to (i), in the fuel, in particular in diesel fuel or gasoline, are used, they are the fuel usually in an amount of 10 to 5000 ppm by weight, especially 50 to 1000 parts by weight. ppm, added.
  • demulsifiers When demulsifiers are used, they are usually added to the fuel in an amount of 0.1 to 100 ppm by weight, especially 0.2 to 10 ppm by weight.
  • the subject of the present invention is the use of the described method for the qualitative or quantitative detection of a fuel additive component in a diesel fuel or gasoline containing the fuel additive component and optionally further fuel additive components as analytes lyte.
  • the method according to the invention is a simple detection method for a fuel additive component, in particular a basic detergent additive, in a fuel additive package or in the fuel itself and can also be carried out "on site", ie in the refinery or at the filling station, with simple measuring instruments
  • the detection method is largely independent of the origin of the respective fuel grade, ie the composition of the respective fuel has no influence on the interaction between the fuel additive component and the indicator caused change in the color properties of the indicator in the analyte.
  • Samples of commercially available unadditized diesel fuel from various refineries and refinery cuts were each mixed with the same amounts of a detergent additive based on the imide of polyisobutenylsuccinic anhydride (number average molecular weight of the polyisobutenyl radical: about 1000) and tetraethylene pentamine, which is in the form of a conventional Diesel performance package was added, additized in practical quantities. From the extinction values determined with the different dosing rates of the detergent additive in the individual diesel fuel samples (analytes) in a commercially available photometer, a corresponding calibration curve for the range from 0 to 170 ppm by weight of detergent additive (based on active substance) was prepared.
  • 1.0 ml of an ethanolic bromocresol green solution (13 mg bromocresol green in 100 ml ethanol, red-orange solution) was added to 10 ml of additized diesel fuel.
  • the measurements were carried out after a color change in the analyte from yellow to blue, which was initiated and completed by vigorously shaking the sample with the indicator solution in a volumetric flask, in a 1 ml cuvette at a wavelength of 620 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

Verfahren zum qualitativen oder quantitativen Nachweis einer Kraftstoffadditiv-Komponente, die Bestandteil eines Kraftstoff und/oder weitere Kraftstoffadditiv-Komponenten enthaltenden Analyten ist, indem man den Analyten mit einem Indikator in Kontakt bringt und die durch die Wechselwirkung zwischen Kraftstoffadditiv-Komponente und Indikator hervorgerufene Änderung der Farbeigenschaften des Indikators im Analyten bestimmt.

Description

Verfahren zum Nachweis einer Kraftstoffadditiv-Komponente
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zum qualitativen oder quantitativen Nachweis einer Kraftstoffadditiv-Komponente, insbesondere in Dieselkraftstoff oder Ottokraftstoff. Weiterhin ist Gegenstand der vorliegenden Erfindung die Verwendung dieses Verfahrens zum qualitativen oder quantitativen Nachweis einer Kraftstoffadditiv- Komponente in Dieselkraftstoff oder Ottokraftstoff.
Ottokraftstoff besteht aus einem Kohlenwasserstoff-Gemisch, welches beispielsweise Zusätze von sauerstoffhaltigen organischen Komponenten sowie Additive zur Verbesserung der Eigenschaften enthalten kann. Derartige Zusatzstoffe (Additive), die in unverbleitem Ottokraftstoff verwendet werden, sind z.B. Antioxidantien, Korrosionsinhibi- toren, Metalldeaktivatoren und Detergentien. Der Einsatz der Additive erfolgt unter anderem, um Korrosion, Ablagerungen im Einlasssystem, Schlammbildung und Ventil- verklebungen in einer Brennkraftmaschine zu vermeiden. Die Additivkonzentrationen liegen üblicherweise in Ottokraftstoff im Bereich unter 0,1 Gew.-%. Die Additive werden meist bereits vom Kraftstoffhersteller in Form von Additivpaketen dosiert und beim Be- füllen der Tankwagen in der Raffinerie dem Ottokraftstoff beigemischt.
Auch bei Dieselkraftstoff hat sich die Zugabe von Additiven zur Qualitätsverbesserung weitgehend durchgesetzt. Dabei werden dem Dieselkraftstoff meist Additivpakete mit einer Gesamtkonzentration unter 0,1 Gew.-% zugesetzt. Die gebräuchlichsten Additive für Dieselkraftstoff sind Fließverbesserer, Schmierfähigkeitsverbesserer, Zündverbesserer, Detergentien, Korrosionsinhibitoren und Antischaummittel.
Der analytische Nachweis von Kraftstoffadditiv-Komponenten in den Additivpaketen und insbesondere im Kraftstoff selbst war bisher problematisch. Aufgrund der geringen Dosiermenge der Pakete im Kraftstoff (typischerweise 150 bis 600 mg/kg) beträgt die Konzentration der einzelnen Additiv-Komponenten nur wenige ppm. Ferner erschwert der Kraftstoff als komplexe Matrix chemischer Verbindungen die Analytik. Bislang wird im Stand der Technik als zuverlässiger Nachweis für Kraftstoffadditiv-Komponenten nur das massenspektroskopische Analysenverfahren der Anmelderin gemäß der DE-A 10246 210 (1) beschrieben. Dieses Verfahren ist jedoch durchführungstechnisch und apparativ aufwendig.
Aufgabe der vorliegenden Erfindung war es daher, ein einfacher durchzuführendes Nachweisverfahren für eine Kraftstoffadditiv-Komponente bereitzustellen, welches in- besondere auch „vor Ort", d.h. in der Raffinerie oder an der Tankstelle, durchgeführt werden kann. Überraschenderweise wurde nun gefunden, dass die insbesondere photometrisch leicht bestimmbare Änderung der Farbeigenschaften eines Indikators, welcher mit der Kraftstoffadditiv-Komponente in einem Analyten in Kontakt gebracht wird und hiermit wechselwirkt, hierfür die geeignete Methode darstellt.
Demgemäß wurde ein Verfahren zum qualitativen oder quantitativen Nachweis einer Kraftstoffadditiv-Komponente, die Bestandteil eines Kraftstoff und/oder weitere Kraftstoffadditiv-Komponenten enthaltenden Analyten ist, gefunden, welches dadurch gekennzeichnet ist, dass man den Analyten mit einem Indikator in Kontakt bringt und die durch die Wechselwirkung zwischen Kraftstoffadditiv-Komponente und Indikator hervorgerufene Änderung der Farbeigenschaften des Indikators im Analyten bestimmt.
Das erfindungsgemäße Verfahren lässt sich qualitativ und quantitativ anwenden, d.h. es kann hiermit nachgewiesen werden, ob eine bestimmte Kraftstoffadditiv-Kompo- nente vorliegt und in welcher Menge sie vorliegt. Der Nachweis kann insbesondere im Kraftstoff selbst, aber auch in den zugrundeliegenden Additivpaketen durchgeführt werden. Der Analyt, also die Bestimmungsprobe, ist somit der Kraftstoff oder das Kraftstoffadditivpaket, welches erforderlichenfalls mit geeigneten inerten Lösungsmitteln zur Durchführung der Bestimmung verdünnt werden kann.
Als Indikatoren kommen im Prinzip alle Indikatoren in Betracht, die bei Inkontaktbrin- gung und Wechselwirkung mit der Kraftstoffadditiv-Komponente ihre Farbeigenschaften ändern, seien diese im Bereich des sichtbaren Lichtes oder im Bereich des Fluoreszenz- oder Chemilumineszenzverhaltens anzusiedeln.
In einer bevorzugten Ausführungsform setzt man einen Säure-Base-Indikator (auch als pH-Indikator oder Neutralisationsindikator bezeichnet) ein. Die diesen Indikatoren zugrundeliegenden Säuren oder Basen zeigen einen üblicherweise im sichtbaren Bereich auftretenden Farbumschlag bei ihrer Protolyse bzw. Deprotolyse. Typische Bei- spiele für Säure-Base-Indikatoren sind Kresolrot, Metanilgelb, Thymolblau, m-Kresol- purpur, Tropaeolin OO, 2,6-Dinitrophenol, Benzylorange, 2,4-Dinitrophenol, Benzopur- purin 4 B, Dimethylgelb, Kongorot, Bromphenolblau, Bromchlorphenolblau, Methylorange, α-Naphthylrot, Bromkresolgrün, 2,5-Dinitrophenol, Mischindikator 5, Methylrot, Ethylrot, Chlorphenolrot, Carminsäure, Alizarinrot S, 2-Nitrophenol, Lackmus, Brom- kresolpurpur, Bromphenolrot, 4-Nitrophenol, Alizarin, Bromthymolblau, Bromxylenol- blau, Brasilen, Nitrazingelb, Hämatoxylin, Phenolrot, 3-Nitrophenol, Neutralrot, Kresolrot, m-Kresolpurpur, Brilliantgelb, Orange I, α-Naphtholphthalein, Thymolblau, p-Xy- lenolblau, o-Kresolphthalein, Phenolphthalein, α-Naphtholbenzein,Thymolphthalein, Wasserblau, Alizaringelb 2 G, Alizaringelb R, Nilblau A, α-Naphtholviolett, Nitramin, Tropaeolin 0002, Tropaeolin O, Epsilonblau und Säurefuchsin. Der Farbumschlag bei Säure-Base-Indikatoren kann - was auch für andere Indikatoren gilt - einfarbig oder zweifarbig sein. Er sollte scharf und zu erkennen sein. Wenn dies nicht der Fall ist, mischt man geeignete einzelne Indikatoren zu Mischindikatoren.
Als besonders bevorzugten Säure-Base-Indikator setzt man Bromkresolgrün, α-Naph- thylrot, 2,5-Dinitrophenol, Mischindikator 5 oder Methylrot ein.
Der Säure-Base-Indikator nutzt insbesondere basische Funktionalitäten in der Kraftstoffadditiv-Komponente aus, um den Farbumschlag zu erzeugen.
Weitere für das erfindungsgemäße Verfahren prinzipiell einsetzbare Indikatoren sind Adsorptionsindikatoren, z.B. Fluorescein oder Eosin, Fluoreszenzindikatoren, z.B. FIu- orescein, Eosin, Benzoflavin, Phloxin, Chromotropsäure, Methylumbelliferon, Benzchi- nolin, Morin, Naphthole, Naphthionsäure, Chinin, Cumarin oder Acridin, Chemilumines- zenzindikatoren, z.B. Lucigenin, Redoxindikatoren, z.B. Neutralrot, Safranin oder Methylenblau, und Metallindikatoren (Metallochrom-Indikatoren).
Für einen qualitativen Nachweis einer Kraftstoffadditiv-Komponente wird beobachtet, ob ein spezifischer Farbumschlag bei Zusammenbringen von Indikator und Analyt auf- tritt, beispielsweise im Falle von Bromkresolgrün von gelb (saurer Bereich unterhalb pH 3,8) nach blau (alkalischer Bereich oberhalb pH 5,4). Das Auftreten des Farbumschlages ist der Nachweis für das Vorliegen der gesuchten Kraftstoffadditiv-Komponente. Zur Sicherstellung, dass der Farbumschlag nicht durch andere Einflüsse ausgelöst worden ist, empfiehlt sich ein Blindversuch mit einem Analyten, dem eine Test- menge der nachzuweisenden Kraftstoffadditiv-Komponente zugesetzt wurde, und/oder einem Analyten, der unadditivierten Kraftstoff enthält.
Für einen quantitativen Nachweis einer Kraftstoffadditiv-Komponente wird die Intensität der Färbung nach erfolgter Änderung der Farbeigenschaften im Analyten, also nach erfolgtem Farbumschlag, bestimmt. Hierzu eignet sich in einer bevorzugten Ausführungsform die photometrische Bestimmung, normalerweise unter Verwendung von handelsüblichen Photometern. Die Messung wird in der Regel so durchgeführt, dass man eine bestimmte Analyten-Menge mit einer festgesetzten Menge des Indikators versetzt, durchmischt (beispielsweise durch Schütteln) und die Probe in einem Pro- bengefäß (Küvette) mit Licht einer bestimmten Wellenlänge durchstrahlt. Die gemessene Extinktion in Korrelation zu einer Blindprobe oder zu einer mit unterschiedlichen Mengen der zu bestimmenden Kraftstoffadditiv-Komponente erstellten Eichkurve ergibt die Menge an Kraftstoffadditiv-Komponente im Analyten. Arbeitet man mit Bromkresolgrün als Säure-Base-Indikator, empfiehlt sich beispielsweise die photometrische Be- Stimmung der Extinktion bei einer Wellenlänge von 620 nm. In einer bevorzugten Ausführungsform setzt man als Analyten Dieselkraftstoff oder Ottokraftstoff ein, welcher neben der nachzuweisenden Kraftstoffadditiv-Komponente gegebenenfalls weitere Kraftstoffadditiv-Komponenten enthält, d.h. man führt die Bestimmung unmittelbar an dem von den Raffinerien gelieferten und im Handel erhältli- chen Diesel- oder Ottokraftstoff durch.
Bei Ottokraftstoff zum Betreiben von Verbrennungsmotoren (Ottomotoren) in Kraftfahrzeugen handelt es sich üblicherweise um Erdölraffinate, die in der Regel einen Siedebereich von 70 bis 18O0C aufweisen. Sie stellen üblicherweise C5-Ci2-Kohlenwasser- stoff-Gemische aus Alkanen, Alkenen, Cycloalkanen, Cycloalkenen und Aromaten in wechselnder Zusammensetzung dar. Ottokraftstoff wird vorzugsweise unverbleit eingesetzt.
Das erfindungsgemäße Verfahren zum Nachweis einer Kraftstoffadditiv-Komponente lässt sich prinzipiell auch in Kerosin als Analyten durchführen. Kerosin als höher siedende Benzin-Qualität (Siedebereich etwa 180 bis 27O0C) wird insbesondere im Flugzeugsektor verwendet.
Bei Dieselkraftstoff (Mitteldestillat-Kraftstoff) handelt es sich üblicherweise um Erdölraf- finate, die in der Regel einen Siedebereich von 100 bis 4000C haben. Dies sind meist Destillate mit einem 95%-Punkt bis zu 36O0C oder auch darüber hinaus. Dies können aber auch sogenannte "Ultra low sulfur diese!" oder "City diese!" sein, gekennzeichnet durch einen 95%-Punkt von beispielsweise maximal 3450C und einem Schwefelgehalt von maximal 0,005 Gew.-% oder durch einen 95%-Punkt von beispielsweise 2850C und einem Schwefelgehalt von maximal 0,001 Gew.-%. Neben den durch Raffination erhältlichen Dieselkraftstoffen, deren Hauptbestandteile längerkettige Paraffine darstellen, sind solche, die durch Kohlevergasung oder Gasverflüssigung ["gas to liquid" (GTL) Kraftstoffe] erhältlich sind, geeignet. Geeignet sind auch Mischungen der vorstehend genannten Dieselkraftstoffe mit regenerativen Kraftstoffen wie Biodiesel oder Bioethanol. Von besonderem Interesse sind gegenwärtig Dieselkraftstoffe mit niedrigem Schwefelgehalt, das heißt mit einem Schwefelgehalt von weniger als 0,05 Gew.-%, vorzugsweise von weniger als 0,02 Gew.-%, insbesondere von weniger als 0,005 Gew.-% und speziell von weniger als 0,001 Gew.-% Schwefel. Dieselkraftstoffe können auch Wasser, z.B. in einer Menge bis zu 20 Gew.-%, enthalten, bei- spielsweise in Form von Diesel-Wasser-Mikroemulsionen oder als sogenannter "White Diesel".
In einer bevorzugten Ausführungsform wendet man das erfindungsgemäße Verfahren zum Nachweis einer polaren Kraftstoffadditiv-Komponente mit Detergenswirkung an, die sich üblicherweise als Additiv in den meisten Kraftstoffsorten, inbesondere in Dieselkraftstoff und in Ottokraftstoff, sowie in den zugrundeliegenden Additivzusammensetzungen (Additivpaketen) für insbesondere Diesel- oder Ottokraftstoff befindet. Ge- eignete polare Detergensadditive mit insbesondere basischen Funktionalitäten oder polaren funktionellen Gruppen, die zumeist im Sinne einer Säure-Base-Wechsel- wirkung mit den Indikatoren wechselwirken, sind nachfolgend ausgeführt.
Die genannten Additivzusammensetzungen und Kraftstoffe können zusätzlich davon verschiedene weitere Kraftstoffadditiv-Komponenten wie Demulgatoren, Trägeröle, Lösungs- und Verdünnungsmittel, Korrosionsinhibitoren, Antioxidantien, Metalldeakti- vatoren, Antistatika, Farbmarker, Fließverbesserer, Schmierfähigkeitsverbesserer, Zündverbesserer und Antischaummittel enthalten. Geeignete weitere Kraftstoffadditiv- Komponenten sind ebenfalls nachfolgend ausgeführt.
A) Detergensadditive
Als Detergensadditive (Detergentien) werden üblicherweise Ablagerungsinhibitoren für Ottokraftstoff und Dieselkraftstoff bezeichnet. Vorzugsweise handelt es sich bei den Detergensadditiven um amphiphile Substanzen, die mindestens einen hydrophoben Kohlenwasserstoffrest mit einem zahlengemittelten Molekulargewicht (Mn) von 85 bis 20 000 und mindestens eine polare Gruppierung besitzen, die ausgewählt ist unter:
(a) Mono- oder Polyaminogruppen mit bis zu 6 Stickstoffatomen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat;
(b) Nitrogruppen, ggf. in Kombination mit Hydroxylgruppen;
(c) Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat;
(d) Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen;
(e) Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen;
(f) Polyoxy-C2- bis C4-alkylengruppierungen, die durch Hydroxylgruppen, Mono- oder Polyaminogruppen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat, oder durch Carbamatgruppen terminiert sind;
(g) Carbonsäureestergruppen;
(h) aus Bernsteinsäureanhydrid abgeleiteten Gruppierungen mit Hydroxy- und/oder
Amino- und/oder Am ido- und/oder Imidogruppen; und/oder
(i) durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mono- oder Polyaminen erzeugten Gruppierungen; Der hydrophobe Kohlenwasserstoffrest in den obigen Detergensadditiven, welcher für die ausreichende Löslichkeit im Kraftstoff sorgt, hat ein zahlengemitteltes Molekulargewicht (Mn) von 85 bis 20000, insbesondere von 113 bis 10000, vor allem von 300 bis 5000. Als typischer hydrophober Kohlenwasserstoffrest, insbesondere in Verbindung mit den polaren Gruppierungen (a), (c), (h) und (i), kommen der Polypropenyl-, Polybu- tenyl- und Polyisobutenylrest mit jeweils Mn = 300 bis 5000, insbesondere 500 bis 2500, vor allem 700 bis 2300, in Betracht.
Als Beispiele für obige Gruppen von Detergensadditiven seien die folgenden genannt:
Mono- oder Polyaminogruppen (a) enthaltende Additive sind vorzugsweise Polyalken- mono- oder Polyalkenpolyamine auf Basis von Polypropen oder konventionellem (d.h. mit überwiegend mittenständigen Doppelbindungen) Polybuten oder Polyisobuten mit Mn = 300 bis 5000. Geht man bei der Herstellung der Additive von Polybuten oder Po- lyisobuten mit überwiegend mittenständigen Doppelbindungen (meist in der ß-und γ- Position) aus, bietet sich der Herstellweg durch Chlorierung und anschließende Ami- nierung oder durch Oxidation der Doppelbindung mit Luft oder Ozon zur Carbonyl- oder Carboxylverbindung und anschließende Aminierung unter reduktiven (hydrierenden) Bedingungen an. Zur Aminierung können hier Amine, wie z.B. Ammoniak, Mono- amine oder Polyamine, wie Dimethylaminopropylamin, Ethylendiamin, Diethylentriamin, Triethylentetramin oder Tetraethylenpentamin, eingesetzt werden. Entsprechende Additive auf Basis von Poly(iso)buten sind insbesondere in der EP-B 244 616, entsprechende Additive auf Basis von Polypropen sind insbesondere in der WO 94/24231 beschrieben.
Weitere bevorzugte Monoaminogruppen (a) enthaltende Additive sind die Hydrierungsprodukte der Umsetzungsprodukte aus Polyisobutenen mit einem mittleren Polymerisationsgrad P = 5 bis 100 mit Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff, wie sie insbesondere in WO 97/03946 beschrieben sind.
Weitere bevorzugte Monoaminogruppen (a) enthaltende Additive sind die aus Polyiso- butenepoxiden durch Umsetzung mit Aminen und nachfolgender Dehydratisierung und Reduktion der Aminoalkohole erhältlichen Verbindungen, wie sie insbesondere in DE-A 196 20 262 beschrieben sind.
Nitrogruppen (b), ggf. in Kombination mit Hydroxylgruppen, enthaltende Additive sind vorzugsweise Umsetzungsprodukte aus Polyisobutenen des mittleren Polymerisationsgrades P = 5 bis 100 oder 10 bis 100 mit Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff, wie sie insbesondere in WO 96/03367 und WO 96/03479 be- schrieben sind. Diese Umsetzungsprodukte stellen in der Regel Mischungen aus reinen Nitropolyisobutenen (z.B. α,ß-Dinitropolyisobuten) und gemischten Hydroxynitropolyisobutenen (z.B. α-Nitro-ß-hydroxypolyisobuten) dar. Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen (c) enthaltende Additive sind insbesondere Umsetzungsprodukte von Polyisobutenepoxiden, erhältlich aus vorzugsweise überwiegend endständige Doppelbindungen aufweisendem Polyiso- buten mit Mn = 300 bis 5000, mit Ammoniak, Mono- oder Polyaminen, wie sie insbe- sondere in EP-A 476 485 beschrieben sind.
Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalze (d) enthaltende Additive sind vorzugsweise Copolymere von C2-C4o-Olefinen mit Maleinsäureanhydrid mit einer Gesamt-Molmasse von 500 bis 20 000, deren Carboxylgruppen ganz oder teilweise zu den Alkalimetall- oder Erdalkalimetallsalzen und ein verbleibender Rest der Carboxylgruppen mit Alkoholen oder Aminen umgesetzt sind. Solche Additive sind insbesondere aus der EP-A 307 815 bekannt. Derartige Additive dienen hauptsächlich zur Verhinderung von Ventilsitzverschleiß und können, wie in der WO 87/01126 beschrieben, mit Vorteil in Kombination mit üblichen Kraftstoffdetergenzien wie PoIy- (iso)butenaminen oder Polyetheraminen eingesetzt werden.
Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalze (e) enthaltende Additive sind vorzugsweise Alkalimetall- oder Erdalkalimetallsalze eines Sulfobern- steinsäurealkylesters, wie er insbesondere in der EP-A 639 632 beschrieben ist. Derar- tige Additive dienen hauptsächlich zur Verhinderung von Ventilsitzverschleiß und können mit Vorteil in Kombination mit üblichen Kraftstoffdetergenzien wie Poly(iso)buten- aminen oder Polyetheraminen eingesetzt werden.
Polyoxy-C2-C4-alkylengruppierungen (f) enthaltende Additive sind vorzugsweise PoIy- ether oder Polyetheramine, welche durch Umsetzung von C2-C6o-Alkanolen, C6-C30-Al- kandiolen, Mono- oder Di-C2-C3o-alkylaminen, Ci-C3o-Alkylcyclohexanolen oder Ci-C30- Alkylphenolen mit 1 bis 30 mol Ethylenoxid und/oder Propylenoxid und/oder Butylen- oxid pro Hydroxylgruppe oder Aminogruppe und, im Falle der Polyetheramine, durch anschließende reduktive Aminierung mit Ammoniak, Monoaminen oder Polyaminen erhältlich sind. Derartige Produkte werden insbesondere in EP-A 310 875,
EP-A 356 725, EP-A 700 985 und US-A 4 877 416 beschrieben. Im Falle von Polye- thern erfüllen solche Produkte auch Trägeröleigenschaften. Typische Beispiele hierfür sind Tridecanol- oder Isotridecanolbutoxylate, Isononylphenolbutoxylate sowie Polyiso- butenolbutoxylate und -propoxylate sowie die entsprechenden Umsetzungsprodukte mit Ammoniak.
Carbonsäureestergruppen (g) enthaltende Additive sind vorzugsweise Ester aus Mono-, Di- oder Tricarbonsäuren mit langkettigen Alkanolen oder Polyolen, insbesondere solche mit einer Mindestviskosität von 2 mm2/s bei 1000C, wie sie insbesondere in DE-A 38 38 918 beschrieben sind. Als Mono-, Di- oder Tricarbonsäuren können alipha- tische oder aromatische Säuren eingesetzt werden, als Esteralkohole bzw.- polyole eignen sich vor allem langkettige Vertreter mit beispielsweise 6 bis 24 C-Atomen. Typi- sehe Vertreter der Ester sind Adipate, Phthalate, iso-Phthalate, Terephthalate und Tri- mellitate des iso-Octanols, iso-Nonanols, iso-Decanols und des iso-Tridecanols. Derartige Produkte erfüllen auch Trägeröleigenschaften.
Aus Bernsteinsäureanhydrid abgeleitete Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder Imidogruppen (h) enthaltende Additive sind vorzugsweise entsprechende Derivate von Polyisobutenylbemsteinsäureanhydrid, welche durch Umsetzung von konventionellem oder hochreaktivem Polyisobuten mit Mn = 300 bis 5000 mit Maleinsäureanhydrid auf thermischem Weg oder über das chlorierte Polyisobuten erhältlich sind. Von besonderem Interesse sind hierbei Derivate mit aliphatischen PoIy- aminen wie Ethylendiamin, Diethylentriamin, Triethylentetramin oder Tetraethylenpen- tamin. Bei den Gruppierungen mit Hydroxy- und/oder Amino- und/oder Am ido- und/oder Imidogruppen handelt es sich beispielsweise um Carbonsäuregruppen, Säureannide, Säureamide von Di- oder Polyaminen, die neben der Amidfunktion noch freie Amingruppen aufweisen, Bernsteinsäurederivate mit einer Säure- und einer Amidfunktion, Carbonsäureimide mit Monoaminen, Carbonsäureimide mit Di- oder Polyaminen, die neben der Imidfunktion noch freie Amingruppen aufweisen, und Diimide, die durch die Umsetzung von Di- oder Polyaminen mit zwei Bernsteinsäurederivaten gebildet werden. Derartige Kraftstoffadditive sind insbesondere in US-A 4 849 572 beschrieben.
Durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mono- oder Polyaminen erzeugte Gruppierungen (i) enthaltende Additive sind vorzugsweise Umsetzungsprodukte von Polyisobuten-substituierten Phenolen mit Formaldehyd und Mono- oder Polyaminen wie Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetra- ethylenpentamin oder Dimethylaminopropylamin. Die polyisobutenylsubstituierten Phenole können aus konventionellem oder hochreaktivem Polyisobuten mit Mn = 300 bis 5000 stammen. Derartige "Polyisobuten-Mannichbasen" sind insbesondere in der EP-A-831 141 beschrieben.
Zur genaueren Definition der einzelnen aufgeführten Kraftstoffadditive wird hier auf die Offenbarungen der obengenannten Schriften des Standes der Technik ausdrücklich Bezug genommen.
Besonders bevorzugt werden beim erfindungsgemäßen Verfahren Detergensadditive aus der Gruppe (h). Hierbei handelt es sich insbesondere um Polyisobutenyl-substi- tuierte Bernsteinsäureimide, speziell um die Imide mit aliphatischen Polyaminen. Solche Polyisobutenyl-substituierten Bernsteinsäureimide werden vornehmlich als polare Kraftstoffadditiv-Komponente mit Detergenswirkung in Dieselkraftstoff eingesetzt. B) Demulgatoren
Demulgatoren sind Substanzen, welche die Entmischung einer Emulsion bewirken. Hierbei kann es sich sowohl um ionogene als auch um nicht-ionogene Subtanzen han- dein, die an der Phasengrenze wirksam sind. Dementsprechend sind grundsätzlich alle oberflächenaktiven Substanzen als Demulgatoren geeignet. Besonders geeignete Demulgatoren sind ausgewählt unter Anionen-aktiven Verbindungen, wie die Alkali- oder Erdalkalisalze von Alkyl-substituierten Phenol- und Naphthalinsulfonaten und die Alkalioder Erdalkalisalze von Fettsäuren, außerdem neutrale Verbindungen, wie Alkoholal- koxylate, z.B. Alkoholethoxylate, Phenolalkoxylate, z.B. tert-Butylphenolethoxylat oder tert-Pentylphenolethoxylat, Fettsäuren, Alkylphenole, Kondensationsprodunkte von Ethylenoxid (EO) und Propylenoxid (PO), z.B. auch in Form von EO/PO-Blockcopoly- meren, Polyethylenimine oder auch Polysiloxane.
Die Additivzusammensetzung und der Kraftstoff können darüber hinaus mit weiteren üblichen Komponenten und Additiven kombiniert werden. Hier sind beispielsweise Trägeröle ohne ausgeprägte Detergenswirkung zu nennen, wobei diese insbesondere beim Einsatz in Otto kraftstoff zum Tragen kommen. Gelegentlich kommen sie aber auch in Mitteldestillaten zum Einsatz.
C) Trägeröle
Trägeröle gelangen meist in Kombination mit Detergensadditiven zur Anwendung und üben mit diesen eine Lösungsmittel- oder Waschfunktion aus. Trägeröle sind in der Regel hochsiedende, viskose, thermostabile Flüssigkeiten, welche eine heiße Metalloberfläche überziehen und dadurch die Bildung oder Ablagerung von Verunreinigungen auf der Metalloberfläche verhindern.
Geeignete mineralische Trägeröle sind bei der Erdölverarbeitung anfallende Fraktio- nen, wie Brightstock oder Grundöle mit Viskositäten wie beispielsweise aus der Klasse SN 500 - 2000; aber auch aromatische Kohlenwasserstoffe, paraffinische Kohlenwasserstoffe und Alkoxyalkanole. Brauchbar ist ebenfalls eine als "hydrocrack oil" bekannte und bei der Raffination von Mineralöl anfallende Fraktion (Vakuumdestillatschnitt mit einem Siedebereich von etwa 360 bis 5000C, erhältlich aus unter Hochdruck kataly- tisch hydriertem und isomerisiertem sowie entparaffiniertem natürlichen Mineralöl). Ebenfalls geeignet sind Mischungen oben genannter mineralischer Trägeröle.
Beispiele für erfindungsgemäß verwendbare synthetische Trägeröle sind ausgewählt unter: Polyolefinen (Polyalphaolefine oder Polyintemalolefine), (Poly)estern, (Poly)alko- xylaten, Polyethem, aliphatischen Polyetheraminen, alkylphenolgestarteten Polyethem, alkylphenolgestarteten Polyetheraminen und Carbonsäureester langkettiger Alkanole. Beispiele für geeignete Polyolefine sind Olefinpolymerisate mit Mn = 400 bis 1800, vor allem auf Polybuten- oder Polyisobuten-Basis (hydriert oder nicht hydriert).
Beispiele für geeignete Polyether oder Polyetheramine sind vorzugsweise Polyoxy-C2- C4-alkylengruppierungen enthaltende Verbindungen, welche durch Umsetzung von C2- Cβo-Alkanolen, Cβ-Cso-Alkandiolen, Mono- oder Di-C2-C3o-alkylaminen, Ci-C3o-Alkyl- cyclohexanolen oder Ci-C3o-Alkylphenolen mit 1 bis 30 mol Ethylenoxid und/ oder Pro- pylenoxid und/oder Butylenoxid pro Hydroxylgruppe oder Aminogruppe und, im Falle der Polyetheramine, durch anschließende reduktive Aminierung mit Ammoniak, Mono- aminen oder Polyaminen erhältlich sind. Derartige Produkte werden insbesondere in EP-A 310 875, EP-A 356 725, EP-A 700 985 und US-A 4 877 416 beschrieben. Beispielsweise können als Polyetheramine Poly-C2-C6-Alkylenoxidamine oder funktionelle Derivate davon verwendet werden. Typische Beispiele hierfür sind Tridecanol- oder Isotridecanolbutoxylate, Isononylphenolbutoxylate sowie Polyisobutenolbutoxylate und -propoxylate sowie die entsprechenden Umsetzungsprodukte mit Ammoniak.
Beispiele für Carbonsäureester langkettiger Alkanole sind insbesondere Ester aus Mono-, Di- oder Tricarbonsäuren mit langkettigen Alkanolen oder Polyolen , wie sie insbesondere in der DE-A 38 38 918 beschrieben sind. Als Mono-, Di- oder Tricarbonsäuren können aliphatische oder aromatische Säuren eingesetzt werden, als Esteralkohole bzw. -polyole eignen sich vor allem langkettige Vertreter mit beispielsweise 6 bis 24 C- Atomen. Typische Vertreter der Ester sind Adipate, Phthalate, iso-Phthalate, Tereph- thalate und Trimellitate des Isooctanols, Isononanols, Isodecanols und des Isotrideca- nols, wie z.B. Di-(n- oder lso-tridecyl)-phthalat.
Weitere geeignete Trägerölsysteme sind beispielsweise beschrieben in
DE-A 38 26 608, DE-A 41 42 241 , DE-A 43 09 074, EP-A 452 328 und EP-A 548 617, worauf hiermit ausdrücklich Bezug genommen wird.
Beispiele für besonders geeignete synthetische Trägeröle sind alkoholgestartete Polyether mit etwa 5 bis 35, wie z.B. etwa 5 bis 30, C3-C6-Alkylenoxideinheiten, wie z.B. ausgewählt unter Propylenoxid-, n-Butylenoxid- und i-Butylenoxid-Einheiten, oder Gemischen davon. Nichtlimitierende Beispiele für geeignete Starteralkohole sind langkettige Alkanole oder mit langkettigem Alkyl substituierte Phenole, wobei der langkettige Alkylrest insbesondere für einen geradkettigen oder verzweigten C6-Ci8-Alkylrest steht. Als bevorzugte Beispiele sind zu nennen Tridecanol und Nonylphenol.
Weitere geeignete synthetische Trägeröle sind alkoxylierte Alkylphenole, wie sie in der DE-A 10 102 913 beschrieben sind. D) Weitere Additive
Weitere übliche Additive sind die Kälteeigenschaften des Kraftstoffs verbessernde Additive, z.B. Nukleatoren, Fließverbesserer, Paraffindispergatoren und deren Gemische, z.B. Ethylen-Vinylacetat-Copolymere; Korrosionsinhibitoren, beispielsweise auf Basis von zur Filmbildung neigenden Ammoniumsalzen organischer Carbonsäuren oder von heterocyclischen Aromaten im Falle von Buntmetallkorrosionsschutz; Dehazer; Anti- schaummittel, z.B. bestimmte Siloxanverbindungen; Cetanzahlverbesserer (Zündfähig- keitsverbesserer); Verbrennungsverbesserer; Antioxidantien oder Stabilisatoren, bei- spielsweise auf Basis von Aminen wie p-Phenylendiamin, Dicyclohexylamin oder Derivaten hiervon oder von Phenolen wie 2,4-Di-tert-butylphenol oder 3,5-Di-tert-butyl-4- hydroxyphenylpropionsäure; Antistatikmittel; Metallocene wie Ferrocen; Methylcyclo- pentadienylmangantricarbonyl; Schmierfähigkeitsverbesserer, z.B. bestimmte Fettsäuren, Alkenylbernsteinsäureester, Bis(hydroxyalkyl)fettamine, Hydroxyacetamide oder Ricinusöl; sowie Farbstoffe (Marker). Gegebenenfalls werden auch Amine zur Absenkung des pH-Wertes des Kraftstoffes zugesetzt.
Geeignete Verdünnungs- und Lösungsmittel sind beispielsweise aromatische und aliphatische Kohlenwasserstoffe, beispielsweise Cs-Cio-Alkane, wie Pentan, Hexan, Heptan, Octan, Nonan, Decan, deren Konstitutionsisomere und Gemische; Petrolether, Aromaten, wie Benzol, Toluol, XyIoIe und Solvent Naphtha; Alkanole mit 3 bis 8 Kohlenstoffatomen, z. B. Propanol, Isopropanol, n-Butanol, sec-Butanol, Isobutanol und dergleichen, in Kombination mit Kohlenwasserstoff-Lösungsmitteln; und Alkoxyalkano- Ie. Geeignete Verdünnungsmittel sind beispielsweise auch bei der Erdölverarbeitung anfallende Fraktionen, wie Kerosin, Naphtha oder Brightstock. Bei Mitteldestillaten, insbesondere bei Dieselkraftstoffen und Heizölen bevorzugt verwendete Verdünnungsmittel sind Naphtha, Kerosin, Dieselkraftstoffe, aromatische Kohlenwasserstoffe, wie Solvent Naphtha schwer, Solvesso® oder Shellsol® sowie Gemische dieser Lösungsund Verdünnungsmittel.
Wenn Detergensadditive, z.B. solche mit den polaren Gruppierungen (a) bis (i), im Kraftstoff, insbesondere in Dieselkraftstoff oder Ottokraftstoff, verwendet werden, so werden sie dem Kraftstoff üblicherweise in einer Menge von 10 bis 5000 Gew.-ppm, insbesondere 50 bis 1000 Gew.-ppm, zugegeben.
Wenn Demulgatoren verwendet werden, so werden sie dem Kraftstoff üblicherweise in einer Menge von 0,1 bis 100 Gew.-ppm, insbesondere 0,2 bis 10 Gew.-ppm, zugegeben.
Die sonstigen erwähnten Komponenten und Additive werden, wenn gewünscht, in hierfür üblichen Mengen zugesetzt. Weiterhin ist Gegenstand der vorliegenden Erfindung die Verwendung des beschriebenen Verfahrens zum qualitativen oder quantitativen Nachweis einer Kraftstoffadditiv- Komponente in einem die Kraftstoffadditiv-Komponente und gegebenenfalls weitere Kraftstoffadditiv-Komponenten enthaltenden Dieselkraftstoff oder Ottokraftstoff als Ana- lyten.
Das erfindungsgemäße Verfahren ist ein einfach durchzuführendes Nachweisverfahren für eine Kraftstoffadditiv-Komponenten, insbesondere ein basisches Detergensadditiv, in einem Kraftstoffadditiv-Paket oder im Kraftstoff selbst und kann auch „vor Ort", d.h. in der Raffinerie oder an der Tankstelle, mit einfachen messtechnischen Mitteln durchgeführt werden. Das Nachweisverfahren ist dabei weitgehend unabhängig von der Herkunft der jeweiligen Kraftstoffsorte, d.h. die Zusammensetzung des jeweiligen Kraftstoffes hat keinen Einfluß auf durch die Wechselwirkung zwischen Kraftstoffadditiv-Komponente und Indikator hervorgerufene Änderung der Farbeigenschaften des Indikators im Analyten.
Beispiel
Quantitativer Nachweis eines Polyisobutenyl-substituierten Bernsteinsäureimid- Detergensadditivs in Dieselkraftstoff
Proben von handelsüblichem unadditiviertem Dieselkraftstoff aus verschiedenen Raffinerien und Raffinerieschnitten wurden mit jeweils den gleichen Mengen eines Deter- gensadditives auf Basis des Imides aus Polyisobutenylbemsteinsäureanhydrid (zahlen- gemitteltes Molekulargewicht des Polyisobutenyl-Restes: ca. 1000) und Tetraethylen- pentamin, welches in Form eines üblichen Diesel-Performance-Paketes zugesetzt wurde, in praxisnahen Mengen additiviert. Aus den mit den unterschiedlichen Dosierraten des Detergensadditivs in den einzelnen Dieselkraftstoff-Proben (Analyten) in einem handelsüblichen Photometer bestimmten Extinktionswerten wurde eine entsprechende Eichkurve für den Bereich von 0 bis 170 Gew.-ppm Detergensadditiv (bezogen auf Wirksubstanz) erstellt. Als Indikator für die photometrische Bestimmung wurden 1,0 ml einer ethanolischen Bromkresolgrün-Lösung (13 mg Bromkresolgrün in 100 ml Ethanol, rotorange Lösung) auf 10 ml additivierten Dieselkraftstoff zugegeben. Die Messungen wurden nach erfolgtem Farbumschlag im Analyten von gelb nach blau, welcher durch intensives Schütteln der Proben mit der Indikatorlösung in einem Meßkolben ausgelöst und vervollständigt wurde, in einer 1 ml-Küvette bei einer Wellenlänge von 620 nm durchgeführt.
Aus der Korrelation zu der erstellten Eichkurve konnten nun mit der oben geschilderten Meßmethode Dieselkraftstoff-Proben, die das oben genannte Detergensadditiv in unbekannter Menge neben weiteren Kraftstoffaddtiven enthielten, die Mengen dieses Detergensadditivs quantitativ mit einer Genauigkeit von ±10 % bestimmt werden.

Claims

Patentansprüche
1. Verfahren zum qualitativen oder quantitativen Nachweis einer Kraftstoffadditiv- Komponente, die Bestandteil eines Kraftstoff und/oder weitere Kraftstoffadditiv- Komponenten enthaltenden Analyten ist, dadurch gekennzeichnet, dass man den
Analyten mit einem Indikator in Kontakt bringt und die durch die Wechselwirkung zwischen Kraftstoffadditiv-Komponente und Indikator hervorgerufene Änderung der Farbeigenschaften des Indikators im Analyten bestimmt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man als Indikator einen Säure-Base-Indikator einsetzt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass man als Säure-Base- Indikator Bromkresolgrün, α-Naphthylrot, 2,5-Dinitrophenyl, Mischindikator 5 oder Methylrot einsetzt.
4. Verfahren zum quantitativen Nachweis einer Kraftstoffadditiv-Komponente nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass man die Intensität der Färbung nach erfolgter Änderung der Farbeigenschaften im Analyten photomet- risch bestimmt.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass man als Analyten Dieselkraftstoff oder Ottokraftstoff einsetzt, welcher neben der nachzuweisenden Kraftstoffadditiv-Komponente gegebenenfalls weitere Kraftstoffadditiv- Komponenten enthält.
6. Verfahren nach den Ansprüchen 1 bis 5 zum Nachweis einer polaren Kraftstoffadditiv-Komponente mit Detergenswirkung.
7. Verfahren nach den Ansprüchen 1 bis 6 zum Nachweis einer polaren Kraftstoffadditiv-Komponente mit Detergenswirkung mit aus Bernsteinsäureanhydrid abgeleiteten Gruppierungen mit Hydroxy- und/oder Amino- und/oder Am ido- und/oder Imidogruppen.
8. Verfahren nach Anspruch 7 zum Nachweis von Polyisobutenyl-substituierten
Bemsteinsäureimiden als polare Kraftstoffadditiv-Komponente mit Detergenswirkung.
9. Verwendung des Verfahrens gemäß den Ansprüchen 1 bis 8 zum qualitativen oder quantitativen Nachweis einer Kraftstoffadditiv-Komponente in einem die
Kraftstoffadditiv-Komponente und gegebenenfalls weitere Kraftstoffadditiv- Komponenten enthaltenden Dieselkraftstoff oder Ottokraftstoff als Analyten.
PCT/EP2006/064745 2005-08-03 2006-07-27 Verfahren zum nachweis einer kraftstoffadditiv-komponente WO2007014903A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008524494A JP2009503526A (ja) 2005-08-03 2006-07-27 燃料添加剤成分を検出する方法
EP06792588A EP1913369A1 (de) 2005-08-03 2006-07-27 Verfahren zum nachweis einer kraftstoffadditiv-komponente
MX2008000952A MX2008000952A (es) 2005-08-03 2006-07-27 Metodo para detectar un componente de aditivo de combustible.
AU2006274842A AU2006274842A1 (en) 2005-08-03 2006-07-27 Method for detecting a fuel additive component
US11/997,179 US20080233656A1 (en) 2005-08-03 2006-07-27 Method For Detecting a Fuel Additive Component
CA002618234A CA2618234A1 (en) 2005-08-03 2006-07-27 Method for detecting a fuel additive component
NO20080294A NO20080294L (no) 2005-08-03 2008-01-16 Fremgangsmate for a pavise en drivstoffadditivkomponent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005037112.4 2005-08-03
DE102005037112A DE102005037112A1 (de) 2005-08-03 2005-08-03 Verfahren zum Nachweis einer Kraftstoffadditiv-Komponente

Publications (1)

Publication Number Publication Date
WO2007014903A1 true WO2007014903A1 (de) 2007-02-08

Family

ID=37052855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/064745 WO2007014903A1 (de) 2005-08-03 2006-07-27 Verfahren zum nachweis einer kraftstoffadditiv-komponente

Country Status (12)

Country Link
US (1) US20080233656A1 (de)
EP (1) EP1913369A1 (de)
JP (1) JP2009503526A (de)
KR (1) KR20080041213A (de)
CN (1) CN101228432A (de)
AU (1) AU2006274842A1 (de)
CA (1) CA2618234A1 (de)
DE (1) DE102005037112A1 (de)
MX (1) MX2008000952A (de)
NO (1) NO20080294L (de)
RU (1) RU2008107577A (de)
WO (1) WO2007014903A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009120563A1 (en) * 2008-03-25 2009-10-01 The Lubrizol Corporation Marker dyes for petroleum products

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008092809A1 (de) * 2007-01-29 2008-08-07 Basf Se Verzweigte decylnitrate und ihre verwendung als verbrennungsverbesserer und/oder cetanzahlverbesserer in kraftstoffen
DE102008044299A1 (de) * 2008-12-03 2010-06-10 Robert Bosch Gmbh Vorrichtung zur Überwachung eines Betriebsfluids für Kraftfahrzeuge und Verfahren zum Betrieb derselben
BR102012029230A2 (pt) * 2012-11-16 2014-12-23 Univ Fed Do Amazonas Processo para monitoramento da qualidade de combustível e óleos lubrificantes e kit para realizar o referido monitoramento
US9678002B2 (en) * 2014-10-29 2017-06-13 Chevron U.S.A. Inc. Method and system for NIR spectroscopy of mixtures to evaluate composition of components of the mixtures
JP6438508B2 (ja) 2017-02-28 2018-12-12 株式会社Subaru エンジン制御装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2292411A5 (fr) * 1971-03-15 1976-06-18 France Etat Procede et ensemble de compositions pour le dosage colorimetrique d'additif anti-glace a base de methoxy-2 ethanol dans les carburants
JPS5449198A (en) * 1977-09-27 1979-04-18 Zeneraru Sekiyu Kk Simple alkali value measuring method for lubricating oil
JPS54130193A (en) * 1978-03-31 1979-10-09 Nippon Oil Co Ltd Method of simply detecting strong acid mixed in lubricant for internal combustion engine
GB2261509A (en) * 1991-11-13 1993-05-19 Ethyl Petroleum Additives Inc Indicator systems for additives present in hydrocarbon fluid
DE10102913A1 (de) * 2001-01-23 2002-07-25 Basf Ag Alkoxylierte Alkyphenole und deren Verwendung in Kraft- und Schmierstoffen
RU2204831C1 (ru) * 2001-11-14 2003-05-20 25 Государственный научно-исследовательский институт МО РФ (по применению топлив, масел, смазок и специальных жидкостей - ГосНИИ по химмотологии) Колориметрический способ определения наличия депрессорных присадок в дизельных топливах
RU2212032C2 (ru) * 2001-10-29 2003-09-10 25 Государственный научно-исследовательский институт Министерства обороны Российской Федерации (по применению топлив, масел, смазок и специальных жидкостей - ГосНИИ по химмотологии) Способ определения кондиционности смазочных масел с щелочными присадками
EP1496357A1 (de) * 2003-07-08 2005-01-12 Ethyl Corporation Analytisches Verfahren und Vorrichtung zur Bestimmung der Metalkonzentration in flüssigen Kohlenwasserstoffen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608345A (en) * 1984-11-05 1986-08-26 Exxon Research And Engineering Co. Colorimetric detection of alcohols in gasoline
US4617278A (en) * 1985-10-01 1986-10-14 Bert Keenan Petroleum alcohol test kit and method of testing petroleum for alcohol content
US5279626A (en) * 1992-06-02 1994-01-18 Ethyl Petroleum Additives Inc. Enhanced fuel additive concentrate
RU2159269C2 (ru) * 1995-04-13 2000-11-20 Юнайтед Колор Мэньюфекчюринг, Инк. Композиция, включающая нефтепродукт и маркер, способ и раствор для маркирования нефтепродукта и способ идентификации нефтепродукта

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2292411A5 (fr) * 1971-03-15 1976-06-18 France Etat Procede et ensemble de compositions pour le dosage colorimetrique d'additif anti-glace a base de methoxy-2 ethanol dans les carburants
JPS5449198A (en) * 1977-09-27 1979-04-18 Zeneraru Sekiyu Kk Simple alkali value measuring method for lubricating oil
JPS54130193A (en) * 1978-03-31 1979-10-09 Nippon Oil Co Ltd Method of simply detecting strong acid mixed in lubricant for internal combustion engine
GB2261509A (en) * 1991-11-13 1993-05-19 Ethyl Petroleum Additives Inc Indicator systems for additives present in hydrocarbon fluid
DE10102913A1 (de) * 2001-01-23 2002-07-25 Basf Ag Alkoxylierte Alkyphenole und deren Verwendung in Kraft- und Schmierstoffen
RU2212032C2 (ru) * 2001-10-29 2003-09-10 25 Государственный научно-исследовательский институт Министерства обороны Российской Федерации (по применению топлив, масел, смазок и специальных жидкостей - ГосНИИ по химмотологии) Способ определения кондиционности смазочных масел с щелочными присадками
RU2204831C1 (ru) * 2001-11-14 2003-05-20 25 Государственный научно-исследовательский институт МО РФ (по применению топлив, масел, смазок и специальных жидкостей - ГосНИИ по химмотологии) Колориметрический способ определения наличия депрессорных присадок в дизельных топливах
EP1496357A1 (de) * 2003-07-08 2005-01-12 Ethyl Corporation Analytisches Verfahren und Vorrichtung zur Bestimmung der Metalkonzentration in flüssigen Kohlenwasserstoffen

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 197922, Derwent World Patents Index; AN 1979-41273B, XP002402293 *
DATABASE WPI Week 197946, Derwent World Patents Index; AN 1979-83420B, XP002402295 *
DATABASE WPI Week 200351, Derwent World Patents Index; AN 2003-538870, XP002402296 *
DATABASE WPI Week 200371, Derwent World Patents Index; AN 2003-754415, XP002402294 *
See also references of EP1913369A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009120563A1 (en) * 2008-03-25 2009-10-01 The Lubrizol Corporation Marker dyes for petroleum products
US8257975B2 (en) 2008-03-25 2012-09-04 The Lubrizol Corporation Marker dyes for petroleum products

Also Published As

Publication number Publication date
EP1913369A1 (de) 2008-04-23
CN101228432A (zh) 2008-07-23
AU2006274842A1 (en) 2007-02-08
NO20080294L (no) 2008-02-13
JP2009503526A (ja) 2009-01-29
KR20080041213A (ko) 2008-05-09
US20080233656A1 (en) 2008-09-25
MX2008000952A (es) 2008-03-27
CA2618234A1 (en) 2007-02-08
DE102005037112A1 (de) 2007-02-08
RU2008107577A (ru) 2009-09-10

Similar Documents

Publication Publication Date Title
US4209302A (en) Marker for petroleum fuels
WO2007014903A1 (de) Verfahren zum nachweis einer kraftstoffadditiv-komponente
US20080190354A1 (en) Detection system
DD254954A5 (de) Kraftstoffgemisch und verfahren zum betrieb eines fremdzeunduengsverbrennungsmotor
US4009008A (en) Colored water immiscible organic liquid
KR100854158B1 (ko) 마커를 함유하는 석유 제품의 조성물, 마커, 및 석유 제품의 확인 방법
DE19955651A1 (de) Verwendung von Festsäuresalzen von alkoxylierten Oligoaminen als Schmierfähigkeitsverbesserer für Mineralölprodukte
US4278444A (en) Liquid hydrocarbons containing a fluorescent compound
US4049393A (en) Colored petroleum-derived product
WO2011032857A2 (de) Verwendung von derivaten aromatischer verbindungen als markierstoffe für flüssigkeiten
RU2401861C1 (ru) Противоизносная присадка для малосернистого дизельного топлива
WO2006097434A2 (de) Verwendung von dibenzanthron- und isodibenzanthron-derivaten als markierungsstoffe für flüssigkeiten
EP1971575B1 (de) Anthrachinonderivate als markierstoffe für flüssigkeiten
US20050170976A1 (en) Oil composition and method of detecting a marker in an oil composition
DE10356436B4 (de) Verwendung Ethercarbonsäure-substituierter Alkylphenolharze
DE69822338T2 (de) Polyisobuten substituierte bernsteinsäureimide
Thompson et al. Estimation of Pyrrole Nitrogen in Petroleum Distillates
DE102008046106A1 (de) Mannich-Detergenzien für Kohlenwasserstoff-Kraftstoffe
US20240190812A1 (en) Organic ammonium salts with traceability and detergent dispersant properties to liquid fuels and processes for their synthesis
AU2020273616A1 (en) Compositions and methods and uses relating thereto
DE10109260A1 (de) Ottokraftstoffadditivzusammensetzung zur Erhöhung der Motoroktanzahl
CN101045824A (zh) 用于有机溶剂体系的分子标记物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/000952

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 200680026996.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11997179

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008524494

Country of ref document: JP

Ref document number: 2006274842

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2618234

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006792588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087004077

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006274842

Country of ref document: AU

Date of ref document: 20060727

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006274842

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2008107577

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006792588

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0614708

Country of ref document: BR

Free format text: COMPROVE QUE O SIGNATARIO EDUARDO COLONNA ROSMAN TEM PODERES PARA ATUAR EM NOME DO DEPOSITANTE, UMA VEZ ESTE NAO FOI CONSTITUIDO E NOMEADO NA PROCURACAO APRESENTADA E QUE BASEADO NO ARTIGO 216 DA LEI 9.279/1996 DE 14/05/1996 (LPI) OS ATOS PREVISTOS NESTA LEI SERAO PRATICADOS PELAS PARTES OU POR SEUS PROCURADORES, DEVIDAMENTE QUALIFICADOS .

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI0614708

Country of ref document: BR