WO2007012682A2 - Método para mantener operativos los componentes de una turbina eólica y una turbina con componentes que permitan el mantenimiento operativo - Google Patents

Método para mantener operativos los componentes de una turbina eólica y una turbina con componentes que permitan el mantenimiento operativo Download PDF

Info

Publication number
WO2007012682A2
WO2007012682A2 PCT/ES2006/000407 ES2006000407W WO2007012682A2 WO 2007012682 A2 WO2007012682 A2 WO 2007012682A2 ES 2006000407 W ES2006000407 W ES 2006000407W WO 2007012682 A2 WO2007012682 A2 WO 2007012682A2
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
supply network
energy
generator
electrical energy
Prior art date
Application number
PCT/ES2006/000407
Other languages
English (en)
French (fr)
Other versions
WO2007012682A3 (es
Inventor
José Ignacio LLORENTE GONZÁLEZ
Original Assignee
Gamesa Innovation And Technology, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gamesa Innovation And Technology, S.L. filed Critical Gamesa Innovation And Technology, S.L.
Priority to US11/921,612 priority Critical patent/US8084874B2/en
Priority to EP06807857.5A priority patent/EP1961957B1/en
Priority to CN2006800265928A priority patent/CN101228351B/zh
Priority to ES06807857.5T priority patent/ES2554552T3/es
Priority to PL06807857T priority patent/PL1961957T3/pl
Publication of WO2007012682A2 publication Critical patent/WO2007012682A2/es
Publication of WO2007012682A3 publication Critical patent/WO2007012682A3/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7068Application in combination with an electrical generator equipped with permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/75Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism not using auxiliary power sources, e.g. servos
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/107Purpose of the control system to cope with emergencies
    • F05B2270/1071Purpose of the control system to cope with emergencies in particular sudden load loss
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/304Spool rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • This invention relates to the field of electric power generation of a wind turbine connected to an electricity supply network and specifically to wind power generators capable of keeping the wind turbine systems operational after an interruption of the electricity supply network. .
  • a first aspect of wind turbines refers to the requirement of being able to brake the rotor blades in the event of an emergency, for example an interruption in the power supply network. Therefore, wind turbines are usually equipped with aerodynamic braking systems.
  • the aerodynamic braking system works by rotating the rotor blades, normally placing them in the flag position, so that the rotor blades cannot take energy from the wind, thus achieving a deceleration of the rotor speed.
  • the braking is usually also combined with a mechanical braking system.
  • the wind turbine After braking the rotor, the wind turbine is not able to supply electric power unless batteries, capacitors or generators powered by diesel engines are used.- The generator itself will not be able to generate electric power again until the power has been solved. grid interruption and the connection to the power supply network has been restored and the wind turbine becomes operational again. This means that the essential functions of the various wind turbine systems, such as lubrication, cooling, heating, defrosting, etc., will be stopped. or that they will work only while the batteries, capacitors or diesel engines are operational during the period of interruption of the electricity supply network, implying that the wind turbine might not be able to generate electricity at the time of recovery of the interruption of the power supply network, if this interruption lasts a certain period of time.
  • a second aspect of wind turbines refers to the fact that the wind turbine needs time for critical components to be operational again before the new connection to the power supply network is possible.
  • the duration of the preparation period can vary from seconds to hours, or even days, depending on factors such as the duration of the interruption of the power supply network and the outside temperature, humidity and wind. All these factors influence the essential functions of the wind turbine. For example, it may be necessary to heat the multiplier to an operating temperature, a process that may take hours to complete.
  • auxiliary power supplies can be used to keep at least some of the critical components of the wind turbine during the interruption period and, in this way, to ensure that the period of time necessary to reestablish the connection does not depend on the duration of the interruption of the power supply network, thereby reducing to a minimum the period necessary to reestablish the connection.
  • the period of time in which critical components can be kept operational is usually limited, due to the limited power storage capacity of the auxiliary power supply, unless generation sources are used as motor driven generators. diesel.
  • a third aspect of wind turbines refers to rotor braking during the interruption of the power supply network.
  • the aerodynamic braking must be very fast so that the rotation speed of the rotor does not accelerate to such an extent that it is difficult to brake the rotor or that the mechanical loads on the main shaft and the bearings are excessive. Therefore, the structural stability and strength of the vital parts of the wind turbine should be sized in relation to the powerful forces and high turning moments that may arise during the braking process.
  • EP 1 128 064 shows an electric step change device for a wind turbine consisting of a backup power unit with at least one auxiliary permanent magnet generator assigned to the rotor shaft.
  • the auxiliary permanent magnet generator will provide electric power to the motors, which will be used to rotate the rotor blades in the flag position in case of emergency, for example during an interruption of the power supply network.
  • the generators will be connected to the electric motors through a contact so that, when the contact is activated, the rotor blades will be placed in the flag position and in this way the rotor will be stopped.
  • the angular position of the rotor blades will not change. Therefore, EP 1 128 064 describes a method of safely braking the rotor in an efficient manner, but does not provide a method for restoring the connection to the power supply network.
  • WO 02/44561 describes a wind turbine that has an auxiliary generator for supplying electrical energy from the kinetic energy of the rotor shaft.
  • a switching device is incorporated to switch between the conduction of electrical energy from the main generator during normal operation and the conduction of electrical energy from the auxiliary generator during a disconnection of the power supply network.
  • the electric power supplied during the disconnection of the power supply network is used to place the rotor blades in the flag position and thus brake the rotor and the main generator.
  • WO 02/44561 describes the braking of the rotor by means of an auxiliary generator when the wind turbine is disconnected from the power supply network, but does not provide a method to quickly restore the connection to the power supply network.
  • DK 174 411 published in English, describes a method for controlling the pitch angle of the blades while the power supply network is disconnected. A control is established that guarantees a rotation speed of the rotor and generator within the usual range of speeds
  • DK 174 411 does not mention any method for wind turbine operating systems, such as the blade pitch control system, during disconnection of the power supply network.
  • US 5,907,192 describes a wind turbine in which the rotational energy present in the rotor and the rotor shaft is used to generate power for the step control system during emergency braking after disconnection of the wind turbine from the grid
  • Power supply US 5,907,192 describes the braking of the rotor using the kinetic energy present in the rotating parts of the wind turbine when it is disconnected from the power supply network, but does not provide a method to quickly restore the connection to the power supply network.
  • An objective of this invention may be to provide a method to ensure that the period of time necessary to reestablish the connection of a wind turbine to a power supply network is independent of the duration of the interruption of the network and, thus, to minimize the period of time necessary to restore the connection after the interruption of the power supply network. It may also be the object of this invention to provide a wind turbine which, after braking (ie during disconnection of the power supply network), does not suffer or aggravate any mechanical or thermal damage during the interruption. Finally, another objective of this invention is to facilitate a turbine wind that during a braking produced as a result of a disconnection of the power supply network does not suffer or aggravate any mechanical or thermal damage during the interruption of the grid.
  • One or more of the objectives of the invention can be achieved by a first aspect of the invention that relates to the application of a method for maintaining at least one critical component of a wind turbine, in which at least one of the critical components mentioned comprises an electric power consumption and in which the mentioned wind turbine is connected to the power supply network and comprises at least one control of the rotor blade pitch.
  • This method implies:
  • said method includes the use of the magnet generator as the only electric power generating element when the Wind turbine reconnects to the power supply network, so that the magnet generator will be used to generate active energy and reactive energy.
  • a generator is connected to the power supply network, either initially or after a disconnection from the grid, it is necessary to provide reactive power if asynchronous generators are used. This must be applied from the power supply network and, if one or more magnet generators are connected to the power supply network, these generators can help supply reactive energy to other generators such as asynchronous generators that are also connected to the network. Power supply
  • said method includes a positioning of at least one control of the pitch of the rotor blade adjusted by means of a step motor with electric drive with a stochastic, time-dependent electric energy consumption, in equilibrium with the generated electrical energy
  • a magnet generator of the wind turbine that activates an actuator of the blade pitch to position at least one blade with pitch regulation
  • the controlled blade pitch compared to the emergency blade pitch, reduces the forces and turning moments that are applied to the various components of the wind turbine.
  • Various parameters can be used for controlled blade pitch.
  • the pitch angle is adjusted in relation to at least one of the selected parameters of a group that includes the wind speed, the rotation speed of the rotor shaft, the moment of rotation of the rotor, the rotation speed of the generator and electric power consumption.
  • the parameter used to defining the pitch of the blade depends on the structural integrity of the wind turbine in question and the environmental conditions, such as the time of the place where the wind turbine is located.
  • a preferred type of magnet generator is a permanent magnet generator with the ability to generate energy independently of the external power supply.
  • Other types of magnet generators that could also be used are those that include magnetized magnets while the wind turbine is connected to the power supply network, generators that include magnets created from superconducting coils and generators with magnets structurally integrated with a generator of synchronous or asynchronous induction.
  • operation means that all the critical components of the wind turbine are in such a state that the wind turbine is capable of generating electricity at the same time when the connection of the wind turbine is restored.
  • the critical components of the wind turbine consist of at least one component of the following non-exhaustive list: guidance system, blade pitch system, lubrication system, cooling system and heating system.
  • Keeping critical components operational refers to keeping critical components operational or active to avoid problems of adhesion, freezing, heating, cooling and humidity.
  • Activation may include rotation, mechanical displacement, etc. of a critical component, or may include heating, cooling, defrosting or dehumidification of a critical component.
  • An advantage of the present invention is that the turbine Wind power can generate electricity during a breakdown in the power grid or during a power failure in the power supply network.
  • the generated electrical energy can be used to supply consumers of wind turbine electric power and can even be used to supply consumers connected to a local electricity supply network, such as island consumers or other consumers within a limited section of the global network.
  • the wind turbine can be used as an energy source for wind farms in desert or remote areas and, thus, dispense with generators powered by diesel engines during the interruption of the electricity supply network.
  • the ability of the invention to generate electricity during an interruption of the power supply network can be used in place of auxiliary power generation devices, such as generators powered by diesel engines, during the start-up of other wind turbines or power plants in A starting situation from scratch.
  • auxiliary power generation devices such as generators powered by diesel engines
  • An advantage of this invention is that the wind turbine does not need a preparation time to put the critical components into operation before restoring the connection to the power supply network. In this way, inconveniences such as loss of energy production and reduction of usable energy are avoided.
  • Another advantage lies in the fact that no additional power source is needed apart from the magnet generator to keep critical components operational and to assist in restoring the connection to the power supply network.
  • An additional advantage is that the wind turbine can remain operational during the entire interruption period of the power supply network, even if it is prolonged, provided the wind speed is above 0.5 meters per second. It is also positive that mechanical and thermal damage is avoided during the interruption of the power supply network. In addition, the resistance requirements of the exposed components, such as the rotor blades and the tower, can be relaxed in comparison to the previous wind turbines, since it is possible to use the guidance system even during power grid interruptions.
  • At least one control of the rotor blade pitch will be adjusted so that the specified amount of generated electrical energy is in equilibrium with said time-dependent stochastic electrical energy consumption.
  • the control of the rotor blade pitch will include the motor to position the rotor blade and, therefore, the control of the rotor blade pitch becomes a critical component and a consumer of electrical energy.
  • the angle of step would be adjusted based on wind speed. It is advantageous to take wind speed into account in determining a change in the angle of passage, as this allows a more accurate prediction of the resulting rotor speed and, therefore, of the production of electrical energy.
  • the angle of passage is adjusted alternatively or additionally according to other parameters selected from a group which include: the rotor speed, the moment of rotation of the rotor, the voltage of the stator and the electric power consumption It is interesting to know that parameters other than wind speed can be used alternatively or additionally to the measurement of wind speed when a change in the pitch angle is determined. Hence, the use of devices such as anemometers for wind speed measurement can be avoided as these measurable alternative parameters can provide ways to obtain redundancy in the control loop of the angle of passage.
  • the electrical energy generated is maintained in equilibrium with the electrical energy consumed by measuring the frequency of signal voltage produced by the generator and using this measurement to adjust the pitch of the blade. It is beneficial that the method for maintaining the electric energy generated in equilibrium with the electric energy consumed is based on the measurement of the frequency of the signal voltage produced by the generator, since it is a simple and reliable method.
  • the generated electrical energy is maintained in equilibrium with the consumed electrical energy by measuring alternatively or additionally, at least, a selected parameter of a group consisting of: the electrical energy consumed, the speed of rotation of the rotor shaft and the moment of rotation of the rotor, and using this measurement to adjust the pitch angle. It is useful to be able to use parameters other than the frequency of the voltage produced by the generator and could be used as an alternative to or in addition to the frequency, since the measurable alternative parameters provide means to achieve redundancy in the control loop of the pitch angle.
  • the electrical energy generated is maintained in equilibrium with the electrical energy consumed by alternatively or additionally measuring the energy transferred to the electricity supply network so that the indicated energy remains approximately equal to zero.
  • the energy measurement is used to adjust the pitch angle and / or the parameters of the controller. Using this method it is possible to control the electrical energy generated by the wind turbine so that energy is not transferred to the electricity supply network even without disconnecting the wind turbine from the electricity supply network.
  • a possible embodiment of the invention uses an electrical converter to adjust the frequency of the electrical voltage signal generated by the magnet generator. In this way it is possible to maintain the frequency of the signal of the output voltage of the electric converter at a constant number independent of the frequency of the signal of the generator voltage and independent of the rotational speed of the rotor.
  • An ideal embodiment of the invention includes an electric converter to adjust the peak voltage of the voltage signal generated by the permanent magnet generator. In this way, the peak voltage of the signal of the output voltage of the electric converter can be maintained at a constant level independent of the peak voltage of the voltage signal from the generator and regardless of the speed of rotation of the rotor.
  • a possible embodiment of the invention would include a way of filtering the signal of the electrical voltage generated by the magnet generator for harmonic reduction in the voltage signal.
  • a possible embodiment of the invention includes ways of transforming the electrical voltage signal produced by the magnet generator to achieve galvanic separation and voltage adaptation of said voltage signal.
  • At least one of the following critical components is maintained operational during a power outage: orientation system, blade passage system, lubrication system, cooling system, heating system and bearings of the orientation system, of the blades or of the multiplier.
  • the energy is dissipated during the transition from one state of power generation to another state of power generation.
  • the result is that during the time interval between the moment in which the interruption of the electricity supply network occurs and the moment in which a balance is established between the production of electricity and energy consumption, a quantity of residual energy Therefore, the wind turbine can move from a state of electric power production to another state of electric power production without risk of electrical and mechanical damage.
  • the wind speed will be estimated from measurements of at least one parameter selected from a group that includes the electrical energy produced, the speed of rotation of the rotor shaft and the moment of rotation of the rotor, thus avoiding the use of wind speed measurement means as anemometers.
  • only operational standby consumption is connected during the periods of time in which the wind turbine is connected to the power supply network to consume a constant amount of electricity greater than zero during the period of interruption of the electricity supply network.
  • the relative variation in the consumption of electric energy caused by the consumers of electric power that connect and disconnect in an unexpected way is reduced, since the amount of electricity consumed never drops below the constant amount of energy consumed by standby consumption.
  • the advantage is that the relative variations of the pitch angle are also correspondingly reduced.
  • One or more of the objectives of the invention is achieved by means of a wind turbine designed to be connected to a power supply network,
  • said wind turbine consists of at least one control of the rotor blade pitch and a magnet generator to produce electrical energy during the periods of time when the wind turbine is disconnected from the power supply network and
  • said wind turbine is equipped with means that allow adjust an amount of the electrical energy produced so that the electrical energy produced is in equilibrium with a necessary stochastic, time-dependent consumption of a load - of which at least one load is an electric energy consumer of the wind turbine and said wind turbine comprises an energy generating element capable of producing electrical energy during periods of time when the wind turbine is disconnected from the power supply network
  • said energy generating element being said magnet generator.
  • a derived advantage is that mechanical and thermal damage is avoided during an interruption of the power supply network, compared to an operational state in which the wind turbine is It really connects to the network.
  • another advantage is that the resistance requirements of the exposed components, such as the rotor blades and the tower, can be relaxed in comparison to the previous wind turbines, since it is possible to use the orientation system even during the interruption of the power grid. supply.
  • the wind turbine is capable of producing electrical energy during an interruption of the electricity supply network.
  • the generated electrical energy can be used to supply consumers of wind turbine electrical energy and can even be used to supply consumers connected to a local electricity supply network, such as island consumers or other consumers within a Limited section of the entire network.
  • the ability of the invention to produce electricity during a power grid interruption can be used in place of auxiliary power generation devices, such as generators powered by diesel engines, during the start-up of other wind turbines or power plants in a boot situation from scratch.
  • an advantage of the current invention is that the wind turbine does not need a preparation time for the critical components to be operational again before restoring the connection to the electricity supply network and avoiding Disadvantages such as loss of energy production and reduction of usable energy.
  • magnet generators can be used, whether generators that include fully magnetized permanent magnets, generators with magnetized magnets during the period in which the wind turbine is connected to the power supply network, generators with magnets created from of superconducting coils and generators with structurally integrated magnets with a synchronous or asynchronous induction generator.
  • Each type of generator has advantages over the rest, for example economic, efficiency and reliability advantages.
  • a concrete advantage of the permanent magnet generator is that the energy production capacity of the permanent magnet generator is independent of an external power supply.
  • An ideal embodiment of the invention will include a static converter capable of modifying the frequency of the voltage signal generated by said magnet generator, thereby adapting the frequency properties of the voltage produced by the generator to satisfy the frequency properties required by the power supply network at the time of connection reestablishment.
  • An ideal embodiment of the invention will include a static converter capable of modifying the peak voltage of the voltage signal generated by said magnet generator, thereby adapting the peak voltage of the voltage signal produced by the generator to the peak voltage of the power supply network, at the time of connection reestablishment.
  • the wind turbine preferably consists of, at a minimum, an actuator driven by an electric motor to adjust the pitch of the blade so that it is possible to adjust the generator's electrical energy production to meet the energy consumption of electrical energy consumers.
  • an electric motor to adjust the pitch of the blade so that it is possible to adjust the generator's electrical energy production to meet the energy consumption of electrical energy consumers.
  • hydraulic or pneumatic motors can be used to drive the actuators of the blade pitch.
  • a possible embodiment of the invention would include a filter for filtering the signal of the electrical voltage generated by the permanent magnet generator.
  • the result of using a filter is the reduction of harmonic distortion of the output voltage from the filter.
  • a possible embodiment of the invention would include a transformer for galvanic separation and adaptation of the peak voltage.
  • the transformer first adapts the peak voltage of the signal produced by the generator to the peak voltage of the power supply network.
  • the transformer provides a galvanic separation between the generator and the power supply network.
  • the wind turbine includes only one operating system selected from a group that includes: the heating system, the cooling system, the lubrication system, the dehumidification system and the defrosting system, the objective of the said operating system being the maintenance in operation of the so-called critical components. For example, it may be necessary to cool some components such as electronic components that would otherwise overheat during operation and it may be necessary to heat components such as gearboxes to minimize wear.
  • a possible embodiment of the invention includes at least one DC switch.
  • the DC switch is capable of dissipating residual energy during the time interval between the moment in which the interruption of the electricity supply network occurs, when the magnet generator produces a large amount of electrical energy and the moment in which a power supply is established. balance between reduced electrical energy production and reduced energy consumption, facilitating a way to change the state of the wind turbine from a state of electrical energy production to another state of electrical energy production without danger of electrical damage and mechanics
  • An ideal embodiment of the invention includes ways to estimate wind speed. These are selected from a group of means for measuring wind speed, such as anemometers, means for measuring the Rotation speed of the rotor shaft, such as tachometers, means for measuring the moment of rotation of the rotor, such as strain gauges and energy measurement means such as power meters.
  • Anemometers provide direct and reliable wind speed measurements. However, the wind speed can be estimated alternatively or additionally from other measurements such as the rotation speed of the rotor shaft to provide redundancy in the wind measurement system.
  • Figure 1 schematically illustrates the interconnections of the components of a wind turbine and the connection of the wind turbine to an electricity supply network.
  • Figure 2 shows a diagram of the change in pitch angle value as a function of time when an interruption of the power supply network occurs.
  • Figure 3 shows the changes in the state of a wind turbine in relation to the interruption of the electricity supply network.
  • Figure 1 shows a wind turbine connected to a power supply network 23 by means of a switch 22.
  • the wind turbine 1 includes a rotor 2 having at least one rotor blade 3, a multiplier 4 and a rotor shaft 5 that drives a permanent magnet generator 6.
  • the permanent magnet generator ⁇ produces electrical energy that is transferred to a converter 7.
  • the converter 7 converts the peak voltage, frequency and phase of the electrical signal before transferring it to a transformer 8 and to a filter 9 through a switch 10.
  • a first operational state is the normal situation in which the power supply network is not exposed to interruptions;
  • the wind turbine is connected to the electricity supply network and the wind turbine is in a normal situation of electricity production.
  • a second operational state is one in which the power supply network is exposed to an interruption;
  • the wind turbine is disconnected from the power supply network and the wind turbine is in a situation of reduced electricity production.
  • the wind turbine produces electrical energy only for its own consumption of electrical energy and possibly also for other turbines and perhaps for non-critical external consumption.
  • the transformer 8 transforms the electrical voltage signal to adjust to the peak voltage of the power supply network and the filter 9 eliminates harmonic distortion of the electrical signal. If switch 10 and switch 22 are closed, a connection to the power supply network is established, while if there is an interruption of the supply network the wind turbine is disconnected from the grid by opening switch 10, switch 22 or both . By closing switch 10 and opening switch 22, the Wind turbine may supply electrical energy to external critical consumption 24 and non-critical external consumption 25 while the remaining supply network 23 is disconnected.
  • Both the critical external consumption group 24, and the noncritical external consumption group 25 may include switches for disconnection or connection of either of them, or both, to the transformer 8.
  • the critical external consumption group 24 may include consumptions that depend on Uninterruptible Power Systems (UPS) and the noncritical external consumption group may include other wind turbines, household electrical consumption or factory electrical consumption.
  • UPS Uninterruptible Power Systems
  • the electrical signal of the converter 7 is transferred to a transformer 18 and to a filter 19.
  • the transformer 18 will transform the peak voltage according to the peak voltage required by consumers of electrical energy from the turbine itself, which includes the non-critical consumption 12 of electrical energy and the critical consumption 13 of electrical energy.
  • Filter 19 is responsible for eliminating harmonic distortion.
  • the non-critical consumption 12 and the critical consumption 13 can be disconnected from the electrical branch 11, independently of one another, by a switch 20 and a switch 21.
  • the electrical energy consumption of the wind turbine can be designed so that the transformer 18 is superfluous and can be omitted from the embodiment shown in Figure 1.
  • Filters 9 and 19 can be placed in locations other than those shown in the Figure 1, for example in front of transformers 8 and 18.
  • filters 9 and 10 can be omitted and replaced by a single filter placed directly behind the converter 7.
  • a control system 14 of the wind turbine is responsible for adjusting the pitch of the rotor blades 3 and adjusting the rotation speed of the rotor 2. This control system is responsible for the amount of electrical energy produced from the magnet generator 6.
  • the control system 14 controls at least one electric actuator of the blade pitch (not shown in the image) by controlling a signal 15 in order to position the rotor blades 3 until the desired location is achieved .
  • a network measuring device 16 provides the control system 14 with information on the energy consumption of the wind turbine itself (non-critical consumption 12 and critical consumption 13), as well as on the energy consumption of the consumers of the electricity supply network 23 , other turbines 24 and possible non-critical external consumption 25.
  • the control system also obtains information through another control signal 17 with data on the wind speed and the rotational speed of the rotor shaft 5.
  • the system of control 14 is also responsible for the control of converter 7.
  • the magnet generator 6 can be a permanent magnet generator, a permanent magnet synchronous generator or another type of permanent magnet generator.
  • the magnet generator 6 can have magnetized magnets during the so-called first operational state in which the network is not exposed to any interruption. During the second operational state in which the power supply network is exposed to an interruption and the wind turbine is disconnected from the grid, the magnetized magnets allow to produce electrical energy. However, due to the properties of the magnetized magnets, the magnetic field of the magnets will gradually lose strength until the connection to the power supply network is restored after the interruption is resolved. In addition, the magnets of the Magnet generator can be manufactured from superconducting coils.
  • the magnets could be integrated with a synchronous or asynchronous induction generator so that when the wind turbine is disconnected from the network and there is no external power supply available for the magnetization of the windings of the synchronous or asynchronous generator, the magnets They will continue to allow the production of electrical energy.
  • Any of the types of generator described above is used both for the production of electric power during a normal situation when there is no interruption of the power supply network and for the production of electric power during a power outage.
  • the magnet generator has the ability to produce electrical energy without the need for auxiliary energy sources as required by asynchronous induction generators. Therefore, the wind turbine will be able to produce electric power even in a situation of grid interruption in which the wind turbine is disconnected from external energy supplies.
  • the rotor 2 which includes at least one rotor blade 3, transforms wind energy into rotations of the rotor shaft 5.
  • the rotational speed of the rotor shaft 5 can be reduced or increased with the help of a multiplier to obtain an energy output permanent magnet generator maximum 6.
  • the multiplier is not necessary in wind turbines with permanent magnet generators characterized by a high number of poles.
  • the rotation speed of the magnet generators may vary depending on the wind speed. In that case, the frequency of the generator signal voltage will vary accordingly. Since the signal frequency If the voltage of the power supply network is constant, the variable frequency of the generator signal voltage must be transformed to meet the frequency requirements of the power supply network. For this a converter is used. The converter rectifies the electrical signal of the magnet generator into a DC signal (direct current signal), which can be filtered and amplified. Subsequently, the DC signal is converted into an AC (alternating current) signal with the required frequency, preferably a frequency that is constant and equal to the frequency of the signal voltage of the power supply network. A filter can also be placed behind the inverter to reduce harmonic distortion of the signal voltage.
  • the network measuring device 16 will detect the interruption and then the controller 14 will open at least one of the switches 10 and 22 and thus disconnect the turbine wind power 'of the power supply network 23 and possibly of the other turbines 24 and of the non-critical consumption 25. Due to the ability of the magnet generator to produce electricity without any external power supply, the generator will be able to continue producing energy while the turbine wind power is disconnected from the supply network. Therefore, the wind turbine can produce electricity for its own energy consumers (non-critical consumption 12 and critical consumption 13).
  • the critical power consumption (s) 13 includes the components of the wind turbine that must be kept in operation during an interruption of the electricity supply network or that it is convenient to keep in operation during an interruption of the electricity supply network.
  • a non-exhaustive list of critical consumptions includes: at least one actuator of the passage of the shovel, a controller, a converter, an orientation system, a lubrication system, a cooling system, a heating system, a defrosting system and a dehumidification system.
  • Non-critical power consumption includes those components of the wind turbine that should not be kept operational during a power outage, such as auxiliary computers, facilities with limited power consumption and maintenance equipment.
  • the critical consumption 13 of the wind turbine's electrical energy is part of a group of critical components that must also be kept operational during a power outage.
  • a non-exhaustive list of critical components includes: the multiplier, one or more bearings, a rotor blade at least, an orientation system and a blade positioning system.
  • Maintaining critical operational components should be understood as keeping them operational or operational to avoid problems of adhesion, frost, heating, cooling and humidity. Keeping them in operation may involve the mechanical displacement or rotation of mechanical parts (such as a blade positioning system, a multiplier, an orientation system and bearings) to avoid problems such as adhesion and frost.
  • keeping in operation may also involve the action of heating or cooling, for example in cold atmospheric conditions, heating a lubricant of the multiplier 4 and heating the lubrication systems as such or in hot atmospheric conditions, for example, cooling the lubricant of the multiplier 4 and the electrical components such as the converter 7.
  • Keeping in operation can also include the action of heating, cooling, defrosting or dehumidifying the critical components or the entire gondola to maintain a wind turbine in controlled temperature conditions even under severe weather conditions.
  • An advantage of keeping the critical components of the wind turbine operational during a supply network failure is that the period of time necessary to restore the connection of a wind turbine to an electricity supply network after a network failure will be independent of the duration of the interruption of the supply network and, therefore, the period of time required to restore the connection is minimized. This allows you to restore the network connection quickly after recovery. Similarly, the wind turbine does not require a preparation time for critical components to start operating before restoring the connection to the power supply network. In this way, inconveniences such as the loss of electrical energy production and the reduction of the usable energy of the wind turbine are avoided. Thanks to the properties of the magnet generator, no additional power source is needed in addition to the magnet generator to keep critical components operational. Therefore, the wind turbine can remain operational even during prolonged interruptions of the power supply network, provided that the wind speed is above 0.5 meters per second.
  • the resistance requirements of the exposed components can be relaxed compared to the previous wind turbines, since there is the possibility of using the guidance system, even during interruptions of the power supply network . In this way it is possible to adjust the position of the rotor ideally, for example so that the rotor looks in the wind direction.
  • the electrical energy produced by the wind turbine in addition to supplying the energy consumers of the wind turbine itself, can also supply other turbines, such as other wind turbines equipped with asynchronous generators.
  • Non-critical external consumption such as those of islands and others with a limited section of the complete electricity supply network can also be supplied during a period of interruption of the electricity supply network.
  • the power generation capacity of the magnet generator can also be used to supply the generators of a power plant in case of a start-up from a power supply network.
  • the amount of electrical energy produced can be adjusted to match the amount of electrical energy consumed to control the speed of rotation of the rotor.
  • the amount of electric power produced is greater than the amount of electric power consumed, a leakage situation will occur. Otherwise, if the The amount of electricity produced is less than the amount of electricity consumed, the rotor speed will drop and it may stop.
  • the electrical energy consumed varies according to the energy consumption of electrical energy consumers (consumers can connect or disconnect unexpectedly). Therefore, it is necessary to adjust the electrical energy produced according to the stochastic energy consumption, time-dependent, of the loads of the consumers of the wind turbine itself and of the external consumers of energy, such as other wind turbines and possible non-critical consumption.
  • the amount of electrical energy produced is adjusted by increasing or reducing the pitch angle of the rotor blade 3.
  • the controller 14 generates a signal of the blade pitch 15 in the form of an electrical signal voltage, used to drive or impact on the blade pitch actuator (not shown in the diagram) as an electric motor or hydraulic actuator, which by its part will increase or reduce the pitch angle ⁇ of the rotor blade 3. If the consumption of energy falls unexpectedly, this will cause an acceleration of the rotor 2 and an increase in the speed of rotation of the rotor shaft and, as a consequence, of the frequency of the voltage signal generated by the magnet generator 6.
  • the controller 14 can use the rotational speed measurements of the rotor shaft to determine the pitch signal of the blade 15, so that the amount of energy produced is equal to the amount of energy consumed.
  • measurements of the frequency of the generator signal voltage can be made instead of or in addition to measuring the rotational speed of the rotor shaft and the controller 14 can use these measurements to determine the signal of the blade pitch 15 so that the amount of energy produced is equal to the amount of energy consumed.
  • the controller can also use individually or in combination other actions, such as wind speed measurement 17, measurement of electrical energy consumed, measurement of rotor rotation moment and determination of the actual pitch angle. The controller can use these actions alternatively or additionally to determine the signal of the pitch of the blade 15.
  • the electrical energy produced can be kept in equilibrium with the electrical energy consumed by alternatively or additionally measuring the energy transferred to the electricity supply network, so that said energy is approximately equal to zero.
  • the energy transferred to the power supply network could be measured at a position between the switch 10 and the network 23. If the measured energy is non-zero, the angle of passage and / or the parameters of the controller 14, such as the phase between the current and voltage signals, adjust until the Active energy transferred to the power supply network is approximately equal to zero.
  • the angle of passage is adjusted according to other parameters that reflect the conditions to produce the greatest possible amount of electrical energy, the requirements to maintain the rotational speed of the rotor within a specified interval and / or the requirements to avoid damaging the components of the wind turbine.
  • the control system consisting of a controller 14 and the blade pitch actuator (not shown in the diagram) described above in relation to the method for adjusting the pitch angle during the period of interruption of the power supply network can adapt for use as a step control during a normal power production situation by modifying certain control parameters, for example by changing the control algorithms and changing the influence of the input measurements on the controller 14.
  • the above-mentioned input that reaches the controller 14 can be measured with at least one of the following devices: devices for measuring the rotational speed of the rotor shaft (tachometers or encoders), devices for measuring the frequency of the signal voltage (frequency counters), devices for measuring wind speed (anemometers), devices for measuring the electrical energy consumed (power meters) or devices to measure the rotor turning moment (turning moment meters).
  • Measurements of different quantities can be complemented so that, for example, the controller 14 can tolerate the failure of a measuring device .
  • the controller 14 can tolerate the failure of a measuring device .
  • the frequency counter measurements can be used instead; If the anemometer fails and wind speed measurements are not available, the wind speed can be estimated from other measurements such as the measurement of the electrical energy produced and the rotor speed.
  • Figure 1 shows a converter 7 used to adapt the frequency of the signal voltage provided by the magnet generator ⁇ . This frequency varies according to the variations of the rotor speed. However, since electrical energy consumers require a constant frequency, the converter must be able to transform the input signal voltage with a variable frequency to an output signal voltage with a predetermined constant frequency. The peak voltage of the signal voltage supplied by the magnet generator 6 may also vary according to the variations of the rotor speed. However, since consumers of electrical energy require a constant peak voltage, the converter must also be able to adjust the peak voltage of the signal voltage so that the output signal voltage has a constant peak voltage. In addition, the converter must be able to change the phase between the current and voltage signals to adjust the production of active and reactive energy. The converter can also include filters for reduction of harmonic distortion. Converters with the properties mentioned above are known as static converters, frequency converters, matrix converters, AC / DC-DC / AC converters, and electrical converters.
  • the transformer 8 is used to further adapt the peak voltage of the signal voltage transmitted from the converter 7 to adjust to the peak voltage of the power supply network. Before or after the transformer 8 a filter 9 can be placed to eliminate harmonic distortion of the signal voltage.
  • the transformer 8 also provides a galvanic separation between the wind turbine and the power supply network.
  • the duration of the transition from one state of energy production to another normally lasts between 0.1 seconds and 10 seconds.
  • a device that is usually used to dissipate electrical energy during these brief periods of time is a DC switch.
  • the duration of an interruption of the power supply network is between 0.1 seconds and 10 seconds and, in that case, the DC switch must be able to control in itself the interruption of the power supply network.
  • the electrical energy could also dissipate allowing the acceleration of the rotor 2, using a motor to accelerate a heavy flywheel or simply using a resistor.
  • Figure 2 shows a graph indicating the relationship between the angle of passage ⁇ along the ordinate axis and the time along the abscissa axis.
  • the pitch angle has a value corresponding to a normal energy production situation, in which the pitch angle of the rotor blades is usually in the range between -5 and 20 degrees or in the range between 10 and 20 degrees.
  • the network measuring device detects that there is no connection to the power supply network, indicative of a possible network interruption.
  • a time interval 32 it is verified whether the interruption of the supply network persists and if, at the same time, a DC switch or other device for dissipating electrical energy dissipates the residual energy provided by magnet generators.
  • the duration of the time interval 32 is usually between 3 and 5 seconds.
  • switch 10 and / or switch 22 (see Fig. 1) is opened to intentionally disconnect wind turbine 1 from the power supply network 23
  • the pitch angle of the rotor blades is changed to a predefined value during a transition period 33.
  • the change of the pitch angle to a predefined value may be combined with or replaced by a procedure in which the pitch angle it is adjusted in a feedback control loop during the transition period 33 until the amount of energy produced by the magnet generator equals the amount of energy consumed so that the rotor rotates at a constant speed.
  • a typical procedure of action in case of an interruption of the electricity supply network, according to the previous method, is to change the angle of passage for example to
  • the wind turbine is in a state 35 in which it operates in a self-supply mode in which the magnet generator of the wind turbine produces energy for its own consumers of electrical energy (non-critical consumption 12 and / or critical consumption 13 (see Fig. 1)) and possibly for other turbines 24 (see Fig. 1) and external non-critical consumption 25 (see Fig. 1).
  • the pitch angle is constantly adjusted so that the amount of energy produced equals the amount of energy consumed and, as a consequence, the rotor speed is kept within of an optimal range in relation to the self-supply mode.
  • the duration of state 35 may be seconds, minutes, hours or days if the wind speed remains above, for example, 0.5 meters per second, this being a possible lower limit for the operation of the rotor.
  • Figure 3 illustrates the transitions involved in a change from the normal state of energy production to the state in which the wind turbine produces energy for its own consumers of electric power and possibly other external non-critical turbines and consumptions (i.e. the mode of self catering).
  • the wind turbine In the first state 41 when the wind turbine is in the normal situation of energy production, the wind turbine remains in state 41, indicated by loop 42, provided that the network measuring device 16 (see Fig. 1) do not detect interruptions in the supply network electric. If the network measuring device detects that the power supply network is not present, that is, it indicates an interruption of the network, the wind turbine goes to state 43, which is subsequently replaced by state 44 in which it is activated the DC switch or other device to dissipate electrical energy in order to dissipate residual energy.
  • state 44 it is verified if the interruption of the power supply network persists.
  • the wind turbine remains in state 44 for a period of time, indicated by loop 45, for normally between
  • the wind turbine can return to the normal power production state 41. Otherwise, if the power supply network is not restored within a period 5 seconds, the wind turbine passes state 47 by opening the circuit breakers in the network, ie the switch 10 and / or the '22. This task switch takes place in the state 45 via a state 46, in which verifies the condition of the power supply network, and in state 47, in which the automatic supply mode is started.
  • state 47 the pitch angle of the rotor blades is changed to a predefined value.
  • the change of the pitch angle to a predefined value in state 47 can be combined with or replaced by a procedure in which the pitch angle is adjusted in a feedback control loop when the amount of power produced equals the amount of energy consumed so that the rotor rotates at a constant speed.
  • the state of the wind turbine is passed to state 48.
  • the wind turbine remains in state 48 during the interruption of the supply network, as indicated loop 49. Loop 49 ends if the device mains measurement 16 (See Fig. 1) detects the restoration of the electricity supply network, which, in turn, will cause a change in the normal state of energy production of state 41.
  • Loop 49 also ends if the situation requires stopping the wind turbine. Such a situation may be due to extreme weather conditions, the need to repair the wind turbine or any safety precaution.
  • the wind turbine Due to the wind turbine's ability to produce energy without the need for external power supplies, the wind turbine can be used to supply power to asynchronous induction generators of other wind turbines, gas turbines or diesel generators during a grid interruption Power supply Therefore, in a limited section of an electricity supply network consisting of at least one wind turbine with a magnet generator and other wind turbines with asynchronous induction generators or other electricity generating machines with asynchronous induction generator, the turbine The wind generator equipped with the magnet generator will be able to produce the electrical energy necessary for the magnetization of, for example, wind turbines with asynchronous induction generators so that they can be kept operational.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

Turbina eólica 1 conectada a una red de suministro eléctrico 23 que utiliza un generador de imanes 6 como único elemento generador de energía eléctrica tanto en su normal funcionamiento como durante periodos de desconexión de la red de suministro eléctrico. Siendo dicha turbina capaz de realizar las acciones de mantener operativos los sistemas de la turbina eólica, seguir generando energía eléctrica, y ajustar una cantidad de la energía eléctrica producida al consumo energético, durante los periodos de desconexión de la red de suministro eléctrico.

Description

Titulo de la invención
Método para mantener operativos los componentes de una turbina eólica y una turbina con componentes que permitan el mantenimiento operativo.
Campo de la invención
Esta invención se refiere al campo de la generación de energía eléctrica de una turbina eólica conectada a una red de suministro eléctrico y específicamente a los generadores de energía eólica capaces de mantener operativos los sistemas de la turbina eólica tras una interrupción de la red de suministro eléctrico.
Antecedentes de la invención Un primer aspecto de las turbinas eólicas se refiere al requisito de poder frenar las palas del rotor en caso de producirse una emergencia, por ejemplo una interrupción en la red de suministro eléctrico. Por ello las turbinas eólicas suelen estar equipadas con sistemas de frenado aerodinámicos. El sistema de frenado aerodinámico funciona rotando las palas del rotor, normalmente colocándolas en posición de bandera, de forma que las palas del rotor no pueden tomar energía del viento consiguiendo asi una desaceleración de la velocidad del rotor. El frenado suele combinarse también con un sistema de frenado mecánico.
Tras frenar el rotor, la turbina eólica no es capaz de suministrar energía eléctrica a menos que se utilicen baterías, condensadores o generadores impulsados por motores diesel.- El propio generador no podrá volver a generar energía eléctrica hasta que se haya solucionado la interrupción de la red y se haya restablecido la conexión a la red de suministro eléctrico y la turbina eólica vuelva a estar operativa. Esto significa que se detendrán las funciones esenciales de los diversos sistemas de la turbina eólica, como los sistemas de lubricación, refrigeración, calefacción, descongelación, etc. o bien que funcionarán sólo mientras las baterías, condensadores o motores diesel estén operativos durante el periodo de interrupción de la red de suministro eléctrico, dando a entender que la turbina eólica podría no ser capaz de generar energía eléctrica en el momento de la recuperación de la interrupción de la red de suministro eléctrico, si esta interrupción dura un determinado periodo de tiempo.
Un segundo aspecto de las turbinas eólicas se refiere al hecho de que la turbina eólica necesita tiempo para que los componentes críticos vuelvan a estar operativos antes de que sea posible la nueva conexión a la red de suministro eléctrico. La duración del periodo de preparación puede variar de segundos a horas, o incluso dias, según factores como la duración de la interrupción de la red de suministro eléctrico y la temperatura exterior, la humedad y el viento. Todos estos factores influyen en las funciones esenciales de la turbina eólica. Por ejemplo, podría ser necesario calentar la multiplicadora a una temperatura operativa, un proceso que puede tardar horas en completarse.
Durante la interrupción de la red de suministro pueden utilizarse fuentes de alimentación auxiliares para mantener operativos como minimo algunos de los componentes críticos de la turbina eólica durante el periodo de interrupción y, de esta forma, lograr que el periodo de tiempo necesario para restablecer la conexión no dependa de la duración de la interrupción de la red de suministro eléctrico, reduciendo de este modo a un mínimo el periodo necesario para restablecer la conexión. Sin embargo, el periodo de tiempo en el que los componentes críticos pueden mantenerse operativos suele ser limitado, debido a la capacidad limitada de almacenamiento de energía de la fuente de alimentación auxiliar, a no ser que se utilicen fuentes de generación como generadores impulsados por motores diesel.
Un tercer aspecto de las turbinas eólicas se refiere al frenado del rotor durante la interrupción de la red de suministro eléctrico. Según el primer aspecto, es decir el requisito de poder frenar las palas del rotor en caso de emergencia (como una interrupción de la red de suministro eléctrico) mediante sistemas de frenado aerodinámicos, el frenado aerodinámico debe ser muy rápido para que la velocidad de rotación del rotor no se acelere hasta tal punto que resulte difícil frenar el rotor o que las cargas mecánicas sobre el eje principal y los cojinetes sean excesivas. Por lo tanto, deberán dimensionarse la estabilidad estructural y la fuerza de las partes vitales de la turbina eólica en relación con las potentes fuerzas y elevados momentos de giro que puedan surgir durante el proceso de frenado.
EP 1 128 064 muestra un dispositivo de cambio de paso eléctrico para una turbina eólica que conste de una unidad de alimentación de reserva con, como minimo, un generador de imanes permanentes auxiliar asignado al eje del rotor. El generador de imanes permanentes auxiliar proporcionará energía eléctrica a los motores, que se utilizará para hacer girar las palas del rotor en posición de bandera en caso de emergencia, por ejemplo durante una interrupción de la red de suministro eléctrico. Los generadores estarán conectados a los motores eléctricos mediante un contacto de forma que, cuando se active el contacto, las palas del rotor se colocarán en posición de bandera y de esta forma se frenará el rotor. Además, cuando el rotor deje de girar, la posición angular de las palas del rotor no cambiará. Por lo tanto, EP 1 128 064 describe un método de frenar con seguridad el rotor de una forma eficaz, pero no proporciona un método para restablecer la conexión a la red de suministro eléctrico.
WO 02/44561 describe una turbina eólica que posee un generador auxiliar para suministrar energía eléctrica a partir de la energía cinética del eje del rotor. Se incorpora un dispositivo de conmutación para conmutar entre la conducción de energía eléctrica desde el generador principal durante el funcionamiento normal y la conducción de energía eléctrica desde el generador auxiliar durante una desconexión de la red de suministro eléctrico. La energía eléctrica suministrada durante la desconexión de la red de suministro eléctrico se utiliza para colocar las palas del rotor en posición de bandera y, de este modo, frenar el rotor y el generador principal. WO 02/44561 describe el frenado del rotor mediante un generador auxiliar cuando la turbina eólica está desconectada de la red de suministro eléctrico, pero no proporciona un método para restablecer rápidamente la conexión a la red de suministro eléctrico.
DK 174 411, publicado en inglés, describe un método para controlar el ángulo de paso de las palas mientras la red de suministro eléctrico está desconectada. Se establece un control que garantiza una velocidad de giro del rotor y del generador dentro del abanico habitual de velocidades
(también durante la desconexión de la red de suministro eléctrico) y en el que la velocidad de giro del rotor y del generador ya se encuentra en el rango normal de velocidades cuando la turbina eólica vuelve a conectarse a la red de suministro eléctrico. De esta forma es posible conseguir restablecer rápidamente la conexión. Sin embargo, DK 174 411 no menciona ningún método para los sistemas operativos de la turbina eólica, como el sistema de control de paso de la pala, durante la desconexión de la red de suministro eléctrico.
US 5,907,192 describe una turbina eólica en la que la energía de rotación presente en el rotor y el eje del rotor se utiliza para generar energía para el sistema de control de paso durante el frenado de emergencia posterior a la desconexión de la turbina eólica de la red de suministro eléctrico. US 5,907,192 describe el frenado del rotor utilizando la energía cinética presente en las partes en rotación de la turbina eólica cuando ésta se desconecta de la red de suministro eléctrico, pero no proporciona un método para restablecer rápidamente la conexión a la red de suministro eléctrico.
Sumario de la invención
Un objetivo de esta invención puede ser facilitar un método para conseguir que el período de tiempo necesario para restablecer la conexión de una turbina eólica a una red de suministro eléctrico sea independiente de la duración de la interrupción de la red y, de este modo, minimizar el período de tiempo necesario para restablecer la conexión después de la interrupción de la red de suministro eléctrico. También puede ser objeto de esta invención proporcionar una turbina eólica que, después del frenado (es decir durante la desconexión de la red de suministro eléctrico) , no sufra ni agrave ningún daño mecánico o térmico durante la interrupción. Finalmente, otro objetivo de esta invención es facilitar una turbina eólica que durante un frenado producido como consecuencia de una desconexión de la red de suministro eléctrico no sufra ni agrave ningún daño mecánico o térmico durante la interrupción de la red.
Uno o varios de los objetivos de la invención pueden alcanzarse mediante un primer aspecto de la invención que se refiere a la aplicación de un método para mantener operativo como minimo un componente critico de una turbina eólica, en la que como minimo uno de los componentes críticos mencionados comprende un consumo de energía eléctrica y en la que la turbina eólica mencionada está conectada a la red de suministro eléctrico y comprende como minimo un control del paso de la pala del rotor. Dicho método implica:
- mantener operativo el mencionado componente critico durante un periodo de tiempo durante el cual la turbina eólica está desconectada de la red de suministro eléctrico, - utilizar un generador de imanes como único elemento generador de energía eléctrica durante los periodos de tiempo en los que la turbina eólica está conectada a la red de suministro eléctrico, asi como durante los periodos de tiempo en los que la turbina eólica está desconectada de dicha red,
- seguir generando energía eléctrica del viento durante una desconexión de la red de suministro eléctrico,
- ajustar una cantidad de la energía eléctrica producida para mantener la energía eléctrica producida en equilibrio con un consumo energético estocástico requerido, dependiente del tiempo, de como minimo una carga que es consumidora de energía eléctrica de la turbina eólica.
Según un segundo aspecto de la invención, dicho método incluye la utilización del generador de imanes como el único elemento generador de energía eléctrica cuando la turbina eólica vuelva a conectarse a la red de suministro eléctrico, con lo cual el generador de imanes se utilizarla para generar energía activa y energía reactiva. Cuando se conecta un generador a la red de suministro eléctrico, ya sea inicialmente o tras una desconexión de la red, es necesario proporcionar energía eléctrica reactiva si se utilizan generadores asincronos. Ésta deberá aplicarse desde la red de suministro eléctrico y, si uno o varios generadores de imanes se conectan a la red de suministro eléctrico, estos generadores pueden ayudar a suministrar la energía reactiva para otros generadores como los generadores asincronos que están también conectados a la red de suministro eléctrico.
Según el tercer aspecto de la invención, dicho método incluye un posicionamiento de como mínimo un control del paso de la pala del rotor ajustado mediante un motor de paso con accionamiento eléctrico con un consumo de energía eléctrica estocástico, dependiente del tiempo, en equilibrio con la energía eléctrica generada. Utilizando un generador de imanes de la turbina eólica que activa un actuador del paso de la pala para posicionar al menos una pala con regulación de paso podrá definir el paso de la pala de una forma controlada, pues dispondrá de energía eléctrica para un periodo prolongado de tiempo tras la desconexión de la red de suministro eléctrico. El paso de pala controlado, en comparación con el paso de pala de emergencia, reduce las fuerzas y momentos de giro que se aplican a los diversos componentes de la turbina eólica.
Para el paso de pala controlado pueden utilizarse diversos parámetros. De esta forma el ángulo de paso se ajusta en relación con como mínimo uno de los parámetros seleccionados de un grupo que incluye la velocidad del viento, la velocidad de giro del eje del rotor, el momento de giro del rotor, la velocidad de giro del generador y el consumo de energía eléctrica. El parámetro utilizado al definir el paso de pala depende de la integridad estructural de la turbina eólica en cuestión y de las condiciones medioambientales, como el tiempo del lugar en el que se encuentra la turbina eólica.
Un tipo preferente de generador de imanes es un generador de imanes permanentes con la capacidad de generar energía independientemente del suministro externo de energía eléctrica. Otros tipos de generadores de imán que también podrían utilizarse son aquellos que incluyen imanes magnetizados mientras la turbina eólica está conectada a la red de suministro eléctrico, los generadores que incluyen imanes creados a partir de bobinas superconductoras y los generadores con imanes integrados estructuralmente con un generador de inducción síncrono o asincrono.
En lo que se refiere a esta invención, "operativo" significa que todos los componentes críticos de la turbina eólica están en un estado tal que la turbina eólica es capaz de generar energía eléctrica en el mismo momento en el que se restablece la conexión de la red de suministro eléctrico.
Los componentes críticos de la turbina eólica constan de como minimo un componente de la siguiente lista no exhaustiva: sistema de orientación, sistema del paso de la pala, sistema de lubricación, sistema de refrigeración y sistema de calefacción. Mantener operativos los componentes críticos se refiere a mantener operativos o activos los componentes críticos para evitar problemas de adherencia, congelación, calentamiento, enfriamiento y humedad. La activación puede incluir la rotación, desplazamiento mecánico, etc. de un componente critico, o puede incluir el calentamiento, enfriamiento, descongelación o deshumidificación de un componente critico.
Una ventaja de la presente invención es que la turbina eólica puede generar energía eléctrica durante una averia en la red eléctrica o durante un apagón en la red de suministro eléctrico. La energía eléctrica generada puede utilizarse para abastecer a los consumidores de energía eléctrica de la turbina eólica e incluso puede utilizarse para abastecer a los consumidores conectados a una red de suministro eléctrico local, como los consumidores de una isla u otros consumidores dentro de una sección limitada de la red global. Además, la turbina eólica puede utilizarse como fuente de energía para los parques eólicos de zonas desérticas o remotas y, de esta forma, prescindir de los generadores impulsados por motores diesel durante la interrupción de la red de suministro eléctrico.
Además, la capacidad de la invención de generar energía eléctrica durante una interrupción de la red de suministro eléctrico puede utilizarse en sustitución de dispositivos auxiliares de generación de energía, como generadores impulsados por motores diesel, durante el arranque de otras turbinas eólicas o centrales eléctricas en una situación de arranque desde cero.
Una ventaja de esta invención es que la turbina eólica no necesita un tiempo de preparación para poner en funcionamiento los componentes críticos antes de restablecer la conexión a la red de suministro eléctrico. De este modo se evitan inconvenientes como la pérdida de producción de energía y la reducción de la energía utilizable. Otra ventaja radica en el hecho de que no se necesita ninguna fuente de energía adicional aparte del generador de imanes para mantener operativos componentes críticos y para ayudar en el restablecimiento de la conexión a la red de suministro eléctrico.
Una ventaja adicional es que la turbina eólica puede mantenerse operativa durante todo el periodo de interrupción de la red de suministro eléctrico, aunque sea prolongado, siempre que la velocidad del viento esté por encima de 0,5 metros por segundo. También es positivo que se eviten los daños mecánicos y térmicos durante la interrupción de la red de suministro eléctrico. Además, pueden relajarse los requisitos de resistencia de los componentes expuestos, como las palas del rotor y la torre, en comparación con las anteriores turbinas eólicas, pues es posible utilizar el sistema de orientación incluso durante interrupciones de la red de suministro eléctrico.
En una realización ideal de la invención, se ajustará como minimo un control del paso de la pala del rotor de forma que la cantidad especificada de energía eléctrica generada esté en equilibrio con el mencionado consumo de energía eléctrica estocástico, dependiente del tiempo. El control del paso de la pala del rotor incluirá el motor para posicionar la pala del rotor y, por lo tanto, el control del paso de la pala del rotor se convierte en un componente crítico y en un consumidor de energía eléctrica. Una ventaja de esta realización radica en el hecho de que la energía eléctrica generada puede ajustarse según el consumo actual de energía eléctrica y que es posible controlar la velocidad de giro del rotor para mantener la velocidad de rotación dentro de un intervalo predeterminado.
Si se mantiene la velocidad de giro del rotor dentro de un intervalo predeterminado, se evitan los daños mecánicos y térmicos durante una interrupción de la red de suministro eléctrico. Además, otra ventaja es que pueden relajarse los requisitos de resistencia de los componentes expuestos, como las palas del rotor y la torre, en comparación con las anteriores turbinas eólicas, pues es posible utilizar el sistema de orientación incluso durante la interrupción de la red de suministro eléctrico.
En una realización ideal de la invención, el ángulo de paso se ajustaría en función de la velocidad del viento. Resulta ventajoso tener en cuenta la velocidad del viento en la determinación de un cambio en el ángulo de paso, pues ello permite una predicción más precisa de la velocidad resultante del rotor y, por lo tanto, de la producción de energía eléctrica.
En otra posible realización de la invención, el ángulo de paso se ajusta alternativamente o adicionalmente en función de otros parámetros seleccionados de un grupo en el que se incluyen: la velocidad del rotor, el momento de giro del rotor, la tensión del estator y el consumo de energía eléctrica. Resulta interesante saber que pueden utilizarse parámetros distintos a la velocidad del viento alternativamente o adicionalmente a la medición de la velocidad del viento cuando se determina un cambio en el ángulo de paso. De ahí que pueda evitarse el uso de dispositivos como anemómetros para la medición de la velocidad del viento pues estos parámetros alternativos mensurables pueden proporcionar formas de obtener redundancia en el bucle de control del ángulo de paso.
En una realización ideal de la invención, la energía eléctrica generada se mantiene en equilibrio con la energía eléctrica consumida midiendo la frecuencia de tensión de señal producida por el generador y utilizando esta medición para ajustar el paso de la pala. Resulta beneficioso que el método para mantener la energía eléctrica generada en equilibrio con la energía eléctrica consumida esté basado en la medición de la frecuencia de la tensión de señal producida por el generador, pues se trata de un método sencillo y fiable.
En otra posible realización de la invención, la energía eléctrica generada se mantiene en equilibrio con la energía eléctrica consumida midiendo alternativa o adicionalmente, como mínimo, un parámetro seleccionado de un grupo que consta de: la energía eléctrica consumida, la velocidad de giro del eje del rotor y el momento de giro del rotor, y utilizando esta medición para ajustar el ángulo de paso. Resulta útil poder utilizar parámetros distintos a la frecuencia de la tensión producida por el generador y podria utilizarse como alternativa a o de forma adicional a la frecuencia, pues los parámetros alternativos mensurables proporcionan medios para conseguir redundancia en el bucle de control del ángulo de paso.
En otra realización de la invención, la energía eléctrica generada se mantiene en equilibrio con la energía eléctrica consumida midiendo alternativa o adicionalmente la energía transferida a la red de suministro eléctrico de forma que la energía indicada permanezca aproximadamente igual a cero. En esta realización, la medición de la energía se utiliza para ajustar el ángulo de paso y/o los parámetros del controlador. Utilizando este método es posible controlar la energía eléctrica generada por la turbina eólica de forma que no se transfiera energía a la red de suministro eléctrico incluso sin desconectar la turbina eólica de la red de suministro eléctrico.
Una posible realización de la invención utiliza un convertidor eléctrico para ajustar la frecuencia de la señal de la tensión eléctrica generada por el generador de imanes . De esta forma es posible mantener la frecuencia de la señal de la tensión de salida del convertidor eléctrico en un número constante independiente de la frecuencia de la señal de la tensión del generador e independiente de la velocidad de giro del rotor.
Una realización ideal de la invención incluye un convertidor eléctrico para ajustar la tensión de pico de la señal de la tensión generada por el generador de imanes permanentes. De esta forma, la tensión de pico de la señal de la tensión de salida del convertidor eléctrico puede mantenerse a un nivel constante independiente de la tensión de pico de la señal de la tensión procedente del generador e independientemente de la velocidad de giro del rotor.
Una posible realización de la invención incluiria una forma de filtrar la señal de la tensión eléctrica generada por el generador de imanes para la reducción de armónicos en la señal de la tensión.
Una posible realización de la invención incluye formas de transformar señal de la tensión eléctrica producida por el generador de imanes para conseguir la separación galvánica y la adaptación de la tensión de la mencionada señal de la tensión.
En una realización de la invención, se mantiene operativo durante una interrupción de la red de suministro eléctrico como mínimo uno de los siguientes componentes criticos : sistema de orientación, sistema del paso de la pala, sistema de lubricación, sistema de refrigeración, sistema de calefacción y cojinetes del sistema de orientación, de las palas o de la multiplicadora. La ventaja es que la turbina eólica no requiere ningún tiempo de preparación para que los componentes criticos vuelvan a estar operativos antes de restablecer la conexión a la red de suministro eléctrico. De este modo se evitan inconvenientes como la pérdida de producción de energía y la reducción de la energía utilizable.
En una posible realización de la invención, se disiparla la energía durante la transición de un estado de generación de energía a otro estado de generación de energía. El resultado es que durante el intervalo de tiempo entre el momento en que se produce la interrupción de la red de suministro eléctrico y el momento en que se establece un equilibrio entre producción de energía eléctrica y consumo energético, se disipará una cantidad de energía residual. Por lo tanto, la turbina eólica puede pasar de un estado de producción de energía eléctrica a otro estado de producción de energía eléctrica sin riesgos de daños eléctricos y mecánicos.
En una posible realización de la invención, la velocidad del viento se estimarla a partir de mediciones de como mínimo un parámetro seleccionado de un grupo que incluye la energía eléctrica producida, la velocidad de giro del eje del rotor y el momento de giro del rotor, evitando de este modo el uso de medios de medición de la velocidad del viento como anemómetros.
En otra posible realización de la invención, se conecta un consumo en espera sólo operativo durante los periodos de tiempo en que la turbina eólica está conectada a la red de suministro eléctrico para consumir una cantidad de energía eléctrica constante y superior a cero durante el periodo de interrupción de la red de suministro eléctrico. La variación relativa del consumo de energía eléctrica provocada por los consumidores de energía eléctrica que se conectan y desconectan de forma imprevista se reduce, pues la cantidad consumida de energía eléctrica nunca desciende por debajo de la cantidad constante de energía consumida por el consumo en espera. La ventaja es que las variaciones relativas del ángulo de paso también se reducen correspondientemente.
Uno o varios de los objetivos de la invención se consigue mediante una turbina eólica diseñada para ser conectada a una red de suministro eléctrico,
- dicha turbina eólica consta de como mínimo un control del paso de la pala del rotor y un generador de imanes para producir energía eléctrica durante los periodos de tiempo en que la turbina eólica se desconecta de la red de suministro eléctrico y
- dicha turbina eólica se dota con medios que permiten ajustar una cantidad de la energía eléctrica producida de forma que la energía eléctrica producida esté en equilibrio con un consumo estocástico necesario, dependiente del tiempo, de una carga - de la cual como mínimo una carga es un consumidor de energía eléctrica de la turbina eólica y dicha turbina eólica comprende un elemento generador de energía capaz de producir energía eléctrica durante los periodos de tiempo en que la turbina eólica está desconectada de la red de suministro eléctrico
- siendo dicho elemento generador de energía el mencionado generador de imanes.
Resulta ventajoso poder ajustar la energía eléctrica producida según el consumo de energía eléctrica del momento y que pueda controlarse la velocidad de giro del rotor para mantenerla dentro de un intervalo predeterminado. Cuando se mantiene la velocidad de giro del rotor dentro de un rango predeterminado, una ventaja derivada es que se evitan los daños mecánicos y térmicos durante una interrupción de la red de suministro eléctrico, en comparación con un estado operativo en el que la turbina eólica se conecta realmente a la red. Además, otra ventaja es que pueden relajarse los requisitos de resistencia de los componentes expuestos, como las palas del rotor y la torre, en comparación con las anteriores turbinas eólicas, pues es posible utilizar el sistema de orientación incluso durante la interrupción de la red de suministro.
Otra ventaja es que la turbina eólica es capaz de producir energía eléctrica durante una interrupción de la red de suministro eléctrico. La energía eléctrica generada puede utilizarse para abastecer a los consumidores de energía eléctrica de la turbina eólica e incluso puede utilizarse para abastecer a los consumidores conectados a una red de suministro eléctrico local, como los consumidores de una isla u otros consumidores dentro de una sección limitada de la red completa. Además, la capacidad de la invención de producir energía eléctrica durante una interrupción de red de suministro eléctrico puede utilizarse en sustitución de dispositivos auxiliares de generación de energía, como generadores impulsados por motores diesel, durante el arranque de otras turbinas eólicas o centrales eléctricas en una situación de arranque desde cero.
En relación con los aspectos positivos mencionados más arriba, una ventaja del invento actual es que la turbina eólica no necesita un tiempo de preparación para que los componentes críticos vuelvan a ser operativos antes de restablecer la conexión a la red de suministro eléctrico y que se evitan desventajas como la pérdida de producción de energía y la reducción de la energía utilizable.
Pueden utilizarse varios tipos de generadores de imanes, ya sea generadores que incluyan imanes permanentes magnetizados totalmente de forma preliminar, generadores con imanes magnetizados durante el periodo en el que la turbina eólica se conecta a la red de suministro eléctrico, generadores con imanes creados a partir de bobinas superconductoras y generadores con imanes estructuralmente integrados con un generador de inducción síncrono o asincrono. Cada tipo de generador tiene ventajas sobre el resto, por ejemplo ventajas económicas, de eficacia y fiabilidad. Una ventaja concreta del generador de imanes permanentes es que la capacidad de producción de energía del generador de imanes permanentes es independiente de un suministro externo de energía eléctrica.
Una realización ideal de la invención incluirá un convertidor estatórico capaz de modificar la frecuencia de la señal de la tensión generada por el mencionado generador de imanes, adaptando de este modo las propiedades de frecuencia de la tensión producida por el generador para satisfacer las propiedades de frecuencia requeridas por la red de suministro eléctrico en el momento de restablecimiento de la conexión.
Una realización ideal de la invención incluirá un convertidor estatórico capaz de modificar la tensión de pico de la señal de la tensión generada por el mencionado generador de imanes, adaptando de este modo la tensión de pico de la señal de la tensión producida por el generador a la tensión de pico de la red de suministro eléctrico, en el momento de restablecimiento de la conexión.
La turbina eólica consta preferentemente de, como minimo, un actuador impulsado por un motor eléctrico para ajustar el paso de la pala de forma que sea posible ajustar la producción de energía eléctrica del generador para satisfacer el consumo energético de los consumidores de energía eléctrica. Alternativamente pueden utilizarse motores hidráulicos o neumáticos para accionar los actuadores del paso de la pala.
Una posible realización de la invención incluirla un filtro para el filtrado de la señal de la tensión eléctrica generada por el generador de imanes permanentes. El resultado de utilizar un filtro es la reducción de la distorsión de armónicos de la tensión de salida procedente del filtro.
Una posible realización de la invención incluirla un transformador para la separación galvánica y la adaptación de la tensión de pico. En ese caso, en primer lugar el transformador adapta la tensión de pico de la señal producida por el generador a la tensión de pico de la red de suministro eléctrico. En segundo lugar, el transformador proporciona una separación galvánica entre el generador y la red de suministro eléctrico. Puede ser que la turbina eólica incluya sólo un sistema operativo seleccionado de un grupo que incluye: el sistema de calefacción, el sistema de refrigeración, el sistema de lubricación, el sistema de deshumidificación y el sistema de descongelación, siendo el objetivo del mencionado sistema operativo el mantenimiento en funcionamiento de los llamados componentes críticos . Por ejemplo, puede ser necesario refrigerar algunos componentes como los componentes electrónicos que de lo contrario se calentarían excesivamente durante el funcionamiento y podria ser necesario calentar componentes como las cajas de engranajes para minimizar el desgaste. Por otra parte, los componentes mecánicos como las cajas de engranajes necesitan lubricación para evitar fallos y minimizar el desgaste. En condiciones temporales adversas, podria ser necesario utilizar sistemas para la deshumidificación y la descongelación de componentes críticos como componentes electrónicos o las palas del rotor, respectivamente.
Una realización posible de la invención incluye como mínimo un interruptor CC. El interruptor CC es capaz de disipar energía residual durante el intervalo de tiempo entre el momento en que se produce la interrupción de la red de suministro eléctrico, cuando el generador de imanes produce una gran cantidad de energía eléctrica y el momento en que se establece un equilibrio entre una producción de energía eléctrica reducida y el consumo energético reducido, facilitando un modo de cambiar el estado de la turbina eólica de un estado de producción de energía eléctrica a otro estado de producción de energía eléctrica sin peligro de que se produzcan daños eléctricos y mecánicos .
Una realización ideal de la invención incluye formas de estimar la velocidad del viento. Éstas se seleccionan a partir de un grupo de medios de medición de la velocidad del viento, como anemómetros, medios para medir la velocidad de giro del eje del rotor, como tacómetros, medios para medir el momento de giro del rotor, como extensimetros y medios de medición de la energía como medidores de potencia. Los anemómetros proporcionan mediciones directas y fiables de la velocidad del viento. Sin embargo, la velocidad del viento puede estimarse alternativa o adicionalmente a partir de otras mediciones como la velocidad de giro del eje del rotor para proporcionar redundancia en el sistema de medición del viento.
Estos y otros aspectos de la invención se describirán de una forma más detallada con ayuda de los dibujos y realizaciones que se describen a continuación.
Breve descripción de los dibujos
A continuación se describirá la invención en relación con los dibujos.
La Figura 1 ilustra esquemáticamente las interconexiones de los componentes de una turbina eólica y la conexión de la turbina eólica a una red de suministro eléctrico.
La Figura 2 muestra un diagrama del cambio de valor de ángulo de paso en función del tiempo cuando se produce una interrupción de la red de suministro eléctrico.
La Figura 3 muestra los cambios de estado de una turbina eólica en relación con la interrupción de la red de suministro eléctrico.
Descripción detallada de la invención
La Figura 1 muestra una turbina eólica conectada a una red de suministro eléctrico 23 mediante un interruptor 22. La • turbina eólica 1 incluye un rotor 2 que tiene como minimo una pala del rotor 3, una multiplicadora 4 y un eje del rotor 5 que impulsa un generador de imanes permanentes 6. El generador de imanes permanentes β produce energia eléctrica que se transfiere a un convertidor 7. El convertidor 7 convierte la tensión de pico, la frecuencia y la fase de la señal eléctrica antes de transferirla a un transformador 8 y a un filtro 9 a través de un interruptor 10.
Hay que distinguir entre dos estados operativos de la turbina eólica: un primer estado operativo es la situación normal en que la red de suministro eléctrico no está expuesta a interrupciones; la turbina eólica está conectada a la red de suministro eléctrico y la turbina eólica se encuentra en una situación normal de producción de energia eléctrica. Un segundo estado operativo es aquel en el que la red de suministro eléctrico está expuesta a una interrupción; la turbina eólica se desconecta de la red de suministro eléctrico y la turbina eólica se encuentra en una situación de producción de energia eléctrica reducida. En el segundo estado operativo, la turbina eólica produce energia eléctrica sólo para sus propios consumos de energia eléctrica y posiblemente también para otras turbinas y quizás para consumos externos no críticos.
En la situación de producción normal de energia eléctrica, el transformador 8 transforma la señal de la tensión eléctrica para ajustaría a la tensión de pico de la red de suministro eléctrico y el filtro 9 elimina la distorsión de armónicos de la señal eléctrica. Si el interruptor 10 y el interruptor 22 están cerrados se establece una conexión con la red de suministro eléctrico, mientras que si se produce una interrupción de la red de suministro la turbina eólica se desconecta de la red abriendo el interruptor 10, interruptor 22 o ambos. Cerrando el interruptor 10 y abriendo el interruptor 22, la turbina eólica podrá abastecer energía eléctrica a consumos críticos externos 24 y consumos externos no críticos 25 mientras la red de suministro restante 23 esté desconectada.
Tanto el grupo de consumo externo critico 24, como el grupo de consumo externo no critico 25 pueden incluir interruptores para la desconexión o conexión de cualquiera de ellos, o de ambos, al transformador 8. El grupo de consumo externo critico 24 puede incluir consumos que dependan de Sistemas de Alimentación Ininterrumpida (SAI) y el grupo de consumo externo no critico puede incluir otras turbinas eólicas, los consumos eléctricos domésticos o los consumos eléctricos de fábricas.
En otra ramificación 11 del circuito eléctrico de la Figura 1, se transfiere la señal eléctrica del convertidor 7 a un transformador 18 y a un filtro 19. El transformador 18 transformará la tensión de pico según la tensión de pico requerida por los consumidores de energía eléctrica de la propia turbina, entre los que se incluye al consumo no critico 12 de energía eléctrica y al consumo critico 13 de energía eléctrica. El filtro 19 es el encargado de eliminar la distorsión de armónicos. El consumo no critico 12 y el consumo critico 13 pueden desconectarse de la derivación eléctrica 11, independientemente entre si, mediante un interruptor 20 y un interruptor 21.
Los consumos de energía eléctrica de la turbina eólica pueden estar diseñados de forma que el transformador 18 sea superfluo y pueda omitirse de la realización que se muestra en la Figura 1. Los filtros 9 y 19 pueden colocarse en otras ubicaciones distintas a las mostradas en la Figura 1, por ejemplo frente a los transformadores 8 y 18. Además, los filtros 9 y 10 pueden omitirse y sustituirse por un único filtro colocado directamente tras el convertidor 7.
Este filtro también podria integrarse con el convertidor 7. Un sistema de control 14 de la turbina eólica se encarga de ajustar el ángulo de paso de las palas del rotor 3 y de ajustar la velocidad de giro del rotor 2. Este sistema de control es el responsable de la cantidad de energía eléctrica producida desde el generador de imanes 6. El sistema de control 14 controla como mínimo un actuador eléctrico del paso de la pala (no aparece en la imagen) mediante el control de una señal 15 con el objetivo de posicionar las palas del rotor 3 hasta conseguir la ubicación deseada. Un dispositivo de medición de red 16 proporciona al sistema de control 14 información sobre el consumo energético de la propia turbina eólica (consumo no critico 12 y consumo critico 13) , asi como sobre el consumo energético de los consumidores de la red de suministro eléctrico 23, otras turbinas 24 y posibles consumos externos no críticos 25. Además, el sistema de control también obtiene información a través de otra señal de control 17 con datos sobre la velocidad del viento y la velocidad de giro del eje del rotor 5. El sistema de control 14 también se encarga del control del convertidor 7.
El generador de imanes 6 puede ser un generador de imanes permanentes, un generador síncrono de imanes permanentes u otro tipo de generador de imanes permanentes .
El generador de imanes 6 puede tener imanes magnetizados durante el llamado primer estado operativo en el que la red no está expuesta a ninguna interrupción. Durante el segundo estado operativo en el que la red de suministro eléctrico está expuesta a una interrupción y la turbina eólica está desconectada de la red, los imanes magnetizados permiten producir energía eléctrica. Sin embargo, debido a las propiedades de los imanes magnetizados, el campo magnético de los imanes perderá gradualmente fuerza hasta que se restablezca la conexión a la red de suministro eléctrico tras solucionar la interrupción. Además, los imanes del generador de imanes pueden estar fabricados a partir de bobinas superconductoras . En otra realización, los imanes podrían integrarse con un generador de inducción síncrono o asincrono de forma que cuando se desconecte la turbina eólica de la red y no exista ningún suministro eléctrico externo disponible para la magnetización de los bobinados del generador síncrono o asincrono, los imanes seguirán permitiendo la producción de energía eléctrica.
Cualquiera de los tipos de generador que se describen anteriormente se utiliza tanto para la producción de energía eléctrica durante una situación normal cuando no existe ninguna interrupción de la red de suministro eléctrico y para la producción de energía eléctrica durante una interrupción de la red.
El generador de imanes tiene la capacidad de producir energía eléctrica sin necesidad de fuentes de energía auxiliares como requieren los generadores de inducción asincronos. Por lo tanto, la turbina eólica podrá producir energía eléctrica incluso en una situación de interrupción de la red en la que la turbina eólica se desconecta de suministros energéticos externos.
El rotor 2, que incluye como minimo una pala del rotor 3, transforma la energía eólica en rotaciones del eje del rotor 5. La velocidad de giro del eje del rotor 5 puede reducirse o incrementarse con ayuda de una multiplicadora para obtener una salida de energía máxima del generador de imanes permanentes 6. La multiplicadora no es necesaria en turbinas eólicas con generadores de imanes permanentes caracterizados por un número elevado de polos.
La velocidad de giro de los generadores de imanes puede variar según la velocidad del viento. En ese caso, la frecuencia de la tensión de señal del generador variará del modo correspondiente. Puesto que la frecuencia de la señal de la tensión de la red de suministro eléctrico es constante, deberá transformarse la frecuencia variable de la tensión de señal del generador para satisfacer los requisitos de frecuencia de la red de suministro eléctrico. Para ello se utiliza un convertidor. El convertidor rectifica la señal eléctrica del generador de imanes en una señal CC (señal de corriente continua) , que puede filtrarse y amplificarse. Posteriormente, la señal CC se convierte en una señal CA (corriente alterna) con la frecuencia requerida, preferentemente una frecuencia que sea constante e igual a la frecuencia de la tensión de señal de la red de suministro eléctrico. También puede colocarse un filtro tras el inversor para reducir la distorsión de armónicos de la tensión de señal.
Si se produce una interrupción de la red de suministro eléctrico, el dispositivo de medición de la red 16 detectará la interrupción y, a continuación, el controlador 14 abrirá como mínimo uno de los interruptores 10 y 22 y, de este modo, desconectará la turbina eólica' de la red de suministro eléctrico 23 y posiblemente de las otras turbinas 24 y del consumo no critico 25. Debido a la capacidad del generador de imanes de producir energía eléctrica sin ningún suministro eléctrico externo, el generador podrá seguir produciendo energia mientras la turbina eólica esté desconectada de la red de suministro. Por lo tanto, la turbina eólica podrá producir energia eléctrica para sus propios consumidores de energia (consumo no critico 12 y consumo critico 13) .
El/los consumo/s críticos 13 de energia eléctrica incluyen los componentes de la turbina eólica que deben mantenerse en funcionamiento durante una interrupción de la red de suministro eléctrico o que es conveniente mantener en funcionamiento durante una interrupción de la red de suministro eléctrico. Una lista no exhaustiva de consumos críticos, incluye: como mínimo un actuador del paso de la pala, un controlador, un convertidor, un sistema de orientación, un sistema de lubricación, un sistema de refrigeración, un sistema de calefacción, un sistema de descongelación y un sistema de deshumidificación. Los consumos no críticos de energía eléctrica incluyen aquellos componentes de la turbina eólica que no deben mantenerse operativos durante una interrupción de la red eléctrica, como ordenadores auxiliares, instalaciones con un consumo de energía eléctrica limitado y el equipo de mantenimiento.
El consumo critico 13 de energía eléctrica de la turbina eólica forma parte de un grupo de componentes críticos que también deben mantenerse operativos durante una interrupción de la red de suministro eléctrico. Además del grupo de consumo critico, una lista no exhaustiva de componentes críticos incluye: la multiplicadora, uno o varios cojinetes, una pala del rotor como mínimo, un sistema de orientación y un sistema de posicionamiento de la pala.
Por lo tanto, todos los componentes críticos de la turbina eólica pueden mantenerse operativos durante un error de la red de suministro eléctrico. Mantener los componentes críticos operativos debe entenderse como mantenerlos en funcionamiento u operativos para evitar problemas de adherencia, heladas, calentamiento, enfriamiento y humedad. Mantenerlos en funcionamiento puede implicar el desplazamiento mecánico o rotación de partes mecánicas (como un sistema de posicionamiento de la pala, una multiplicadora, un sistema de orientación y los cojinetes) para evitar problemas tales como la adherencia y las heladas.
Además, mantener en funcionamiento también puede implicar la acción de calentar o refrigerar, por ejemplo en condiciones atmosféricas frías calentar un lubricante de la multiplicadora 4 y calentar los sistemas de lubricación como tal o en condiciones atmosféricas cálidas, por ejemplo, refrigerar el lubricante de la multiplicadora 4 y los componentes eléctricos como el convertidor 7. Mantener en funcionamiento también puede incluir la acción de calentar, refrigerar, descongelar o deshumidificar los componentes críticos o toda la góndola para mantener una turbina eólica en condiciones de temperatura controlada incluso bajo condiciones atmosféricas severas.
Una ventaja de mantener operativos los componentes críticos de la turbina eólica durante un fallo de la red de suministro es que el periodo de tiempo necesario para restablecer la conexión de una turbina eólica a una red de suministro eléctrico tras un fallo de la red será independiente de la duración de la interrupción de la red de suministro y, por lo tanto, se minimiza el periodo de tiempo requerido para restablecer la conexión. Ello permite restablecer la conexión a la red rápidamente tras su recuperación. Del mismo modo, la turbina eólica no requiere un tiempo de preparación para que los componentes críticos entren en funcionamiento antes de restablecer la conexión a la red de suministro eléctrico. De este modo se evitan inconvenientes como la pérdida de producción de energía eléctrica y la reducción de la energía utilizable de la turbina eólica. Gracias a las propiedades del generador de imanes no se necesita ninguna fuente de energía adicional además del generador de imanes para mantener operativos los componentes críticos. Por lo tanto, la turbina eólica puede mantenerse operativa incluso durante interrupciones prolongadas de la red de suministro eléctrico, siempre que la velocidad del viento se sitúe por encima de los 0,5 metros por segundo.
Al mantener la turbina eólica operativa, también se consigue evitar el desgaste y los daños ya que los componentes como los imanes del generador, la multiplicadora y los cojinetes (por ejemplo los cojinetes de los actuadores del paso de la pala y de los sistemas de orientación) 10 se mantienen a una temperatura y humedad ideales .
Además, pueden relajarse los requisitos de resistencia de los componentes expuestos, como las palas del rotor y la torre, en comparación con las anteriores turbinas eólicas, pues existe la posibilidad de utilizar el sistema de orientación, incluso durante interrupciones de la red de suministro eléctrico. De esta forma es posible ajustar la posición del rotor de forma ideal, por ejemplo para que el rotor mire en la dirección del viento.
Otra ventaja es que la energía eléctrica producida por la turbina eólica además de abastecer a los consumidores de energía de la propia turbina eólica también puede abastecer a otras turbinas, como otras turbinas eólicas equipadas con generadores asincronos. Los consumos externos no críticos como los de islas y otros con una sección limitada de la red de suministro eléctrico completa también pueden ser abastecidos durante un periodo de interrupción de la red de suministro eléctrico. La capacidad de producción de energía eléctrica del generador de imanes también puede utilizarse para abastecer a los generadores de una central eléctrica en caso de un arranque desde cero de una red de suministro eléctrico.
Durante el periodo de interrupción de la red de suministro, mientras la turbina eólica se mantiene operativa, la cantidad de energía eléctrica producida puede ajustarse para equipararla a la cantidad de energía eléctrica consumida para controlar la velocidad de giro del rotor.
Si la cantidad producida de energía eléctrica es superior a la cantidad consumida de energía eléctrica, se producirá una situación de fuga. De lo contrario, si la cantidad producida de energia eléctrica es inferior a la cantidad consumida de energia eléctrica, la velocidad del rotor bajará y puede llegar a detenerse.
La energia eléctrica consumida varia según el consumo energético de los consumidores de energia eléctrica (los consumidores pueden conectarse o desconectarse de forma imprevista) . Por lo tanto, es preciso ajustar la energia eléctrica producida según el consumo energético estocástico, dependiente del tiempo, de las cargas de los consumidores de la propia turbina eólica y de los consumidores externos de energia, como otras turbinas eólicas y posibles consumos no críticos. La cantidad de energia eléctrica producida se ajusta aumentando o reduciendo el ángulo de paso de la pala del rotor 3.
Debido al consumo estocástico, dependiente del tiempo, de energia, la energia consumida puede cambiar instantáneamente de cero a un valor máximo. Esta situación plantea elevadas exigencias sobre el sistema del paso de la pala que debe ajustar el ángulo de paso según las variaciones de energia consumida. Sin embargo, utilizando un consumidor ficticio de energia eléctrica que consume una cantidad de energia constante y superior a cero durante el periodo de interrupción de la red de suministro eléctrico, se reduce la variación relativa del consumo eléctrico porque la cantidad consumida de energia nunca baja por debajo de la cantidad constante de energia consumida por el consumidor ficticio y, por lo tanto, las variaciones relativas del ángulo de paso son también menores.
El controlador 14 genera una señal del paso de la pala 15 en forma de tensión de señal eléctrica, utilizada para impulsar o repercutir sobre el actuador del paso de la pala (no consta en el diagrama) como un motor eléctrico o actuador hidráulico, que por su parte aumentará o reducirá el ángulo de paso β de la pala del rotor 3. Si el consumo de energía cae inesperadamente, ello provocarla una aceleración del rotor 2 y un aumento de la velocidad de giro del eje del rotor y, como consecuencia, de la frecuencia de la señal de la tensión generada por el generador de imanes 6.
Por lo tanto, el controlador 14 puede utilizar las mediciones de la velocidad de giro del eje del rotor para determinar la señal del paso de la pala 15, de forma que la cantidad producida de energía sea igual a la cantidad consumida de energía. Alternativamente o adicionalmente, pueden realizarse mediciones de la frecuencia de la tensión de señal del generador en lugar de o además de medir la velocidad de rotación del eje del rotor y el controlador 14 puede utilizar estas mediciones para determinar la señal del paso de la pala 15 de forma que la cantidad producida de energía sea igual a la cantidad consumida de energía. El controlador también puede utilizar individualmente o combinadas otras acciones, como la medición de la velocidad del viento 17, la medición de la energía eléctrica consumida, la medición del momento de giro del rotor y la determinación del ángulo de paso real . El controlador puede utilizar estas acciones alternativa o adicionalmente para determinar la señal del paso de la pala 15.
Alternativamente, la energía eléctrica producida puede mantenerse en equilibrio con la energía eléctrica consumida midiendo alternativa o adicionalmente la energía transferida a la red de suministro eléctrico, de forma que dicha energía sea aproximadamente igual a cero. La energía transferida a la red de suministro eléctrico podría medirse en una posición entre el interruptor 10 y la red 23. Si la energía medida es distinta a cero, el ángulo de paso y/o los parámetros del controlador 14, como la fase entre las señales de corriente y tensión, se ajustan hasta que la energía activa transferida a la red de suministro eléctrico es aproximadamente igual a cero.
Utilizando este método es posible controlar la energía eléctrica generada por la turbina eólica de forma que no se transfiera energía a la red de suministro eléctrico incluso sin desconectar la turbina eólica de la red de suministro eléctrico. Según este método, podrían suprimirse los interruptores 22 y 10.
Durante una situación normal de producción energética sin interrupciones, el ángulo de paso se ajusta según otros parámetros que reflejan las condiciones para producir la mayor cantidad posible de energía eléctrica, los requisitos para mantener la velocidad de giro del rotor dentro de un intervalo especificado y/o los requisitos para evitar dañar los componentes de la turbina eólica.
El sistema de control que consta de un controlador 14 y del actuador del paso de la pala (no aparece en el diagrama) descrito anteriormente en relación con el método para ajustar el ángulo de paso durante el periodo de interrupción de la red de suministro eléctrico puede adaptarse para su uso como control de paso durante una situación normal de producción de energía modificando determinados parámetros de control, por ejemplo cambiando los algoritmos de control y cambiando la influencia de las mediciones de entrada sobre el controlador 14.
La entrada mencionada anteriormente que llega al controlador 14 puede- medirse con, como minimo, uno de los dispositivos siguientes: dispositivos para medir la velocidad de giro del eje del rotor (tacómetros o codificadores) , dispositivos para medir la frecuencia de la tensión de señal (contadores de frecuencia) , dispositivos para medir la velocidad del viento (anemómetros) , dispositivos para medir la energía eléctrica consumida (medidores de potencia) o dispositivos para medir el momento de giro del rotor (medidores del momento de giro) .
Las mediciones de cantidades distintas, como la velocidad del rotor, la frecuencia de una tensión de señal, la velocidad del viento y la energía eléctrica consumida, pueden complementarse de forma que, por ejemplo, el controlador 14 tolere la averia de un dispositivo de medición. Por ejemplo, si el tacómetro falla y las mediciones de la velocidad del rotor dejan de ser fiables, en su lugar podrán utilizarse las mediciones del contador de frecuencia; si el anemómetro falla y no se dispone de mediciones de la velocidad del viento, la velocidad del viento podrá estimarse a partir de otras mediciones como la medición de la energia eléctrica producida y la velocidad del rotor.
La Figura 1 muestra un convertidor 7 utilizado para adaptar la frecuencia de la tensión de señal proporcionada por el generador de imanes β. Dicha frecuencia varia según las variaciones de la velocidad del rotor. Sin embargo, puesto que los consumidores de energia eléctrica requieren una frecuencia constante, el convertidor debe ser capaz de transformar la tensión de señal de entrada con una frecuencia variable a una tensión de señal de salida con una frecuencia constante predeterminada. La tensión de pico de la tensión de señal suministrada por el generador de imanes 6 también puede variar según las variaciones de la velocidad del rotor. Sin embargo, puesto que los consumidores de energia eléctrica requieren una tensión de pico constante, el convertidor también debe ser capaz de ajustar la tensión de pico de la tensión de señal de forma que la tensión de señal de salida tenga una tensión de pico constante. Además, el convertidor debe ser capaz de cambiar la fase entre las señales de corriente y la tensión para el ajuste de la producción de energia activa y reactiva. El convertidor también puede incluir filtros para la reducción de la distorsión de armónicos. Los convertidores con las propiedades mencionadas anteriormente se conocen como convertidores estatóricos, convertidores de frecuencia, convertidores matriciales, convertidores CA/CC-CC/CA, y convertidores eléctricos.
El transformador 8 se utiliza para adaptar aún más la tensión de pico de la tensión de señal transmitida desde el convertidor 7 para ajustaría a la tensión de pico de la red de suministro eléctrico. Antes o después del transformador 8 puede colocarse un filtro 9 para eliminar la distorsión de armónicos de la tensión de señal. El transformador 8 también proporciona una separación galvánica entre la turbina eólica y la red de suministro eléctrico.
Durante el intervalo de tiempo entre el momento en que se produce la interrupción de la red de suministro eléctrico y el momento en que se ha establecido un equilibrio entre la producción de energía y el consumo energético, es preciso disipar una cantidad residual de energía almacenada como energía cinética de las partes giratorias de la turbina eólica. La duración de la transición de un estado de producción de energía a otro normalmente dura entre 0,1 segundos y 10 segundos. Un dispositivo que suele utilizarse para disipar energía eléctrica durante estos breves periodos de tiempo es un interruptor CC. En algunas situaciones, la duración de una interrupción de la red de suministro eléctrico está entre 0,1 segundos y 10 segundos y, en ese caso, el interruptor CC debe ser capaz de controlar por si sólo la interrupción de la red de suministro eléctrico. La energía eléctrica también podría disiparse permitiendo la aceleración del rotor 2, utilizando un motor para acelerar un volante pesado o simplemente utilizando una resistencia.
La Figura 2 muestra un gráfico que indica la relación entre el ángulo de paso β a lo largo del eje de ordenadas y el tiempo a lo largo del eje de abscisas. Al principio, durante un intervalo de tiempo 30, el ángulo de paso tiene un valor correspondiente a una situación normal de producción energética, en la que el ángulo de paso de las palas del rotor normalmente se sitúa en el intervalo entre -5 y 20 grados o en el intervalo entre 10 y 20 grados. En un momento aleatorio 31, el dispositivo de medición de la red (véase Fig. 1) detecta que no existe una conexión con la red de suministro eléctrico, un indicativo de una posible interrupción de la red. Durante un intervalo de tiempo 32 se verifica si la interrupción de la red de suministro persiste y si, al mismo tiempo, un interruptor CC u otro dispositivo para disipar energía eléctrica disipa la energía residual proporcionada por generadores de imanes. La duración del intervalo de tiempo 32 suele estar entre 3 y 5 segundos.
Si la red de suministro eléctrico no se restablece en un periodo que suele ser de 5 segundos, se abre el interruptor 10 y/o el interruptor 22 (véase Fig. 1) para desconectar intencionadamente la turbina eólica 1 de la red de suministro eléctrico 23. Posteriormente, se cambia el ángulo de paso de las palas del rotor a un valor predefinido durante un periodo de transición 33. El cambio del ángulo de paso a un valor predefinido puede combinarse con o sustituirse por un procedimiento en el que el ángulo de paso se ajuste en un bucle de control de retroalimentación durante el periodo de transición 33 hasta que la cantidad de energía producida por el generador de imanes equivalga a la cantidad consumida de energía de forma que el rotor gire a una velocidad constante.
Un procedimiento tipico de actuación ante una interrupción de la red de suministro eléctrico, según el método anterior, es cambiar el ángulo de paso por ejemplo a
90 grados, tal como muestra la linea discontinua 34, de forma que la velocidad de giro del rotor se reduce considerablemente o se detiene. Tras el periodo de transición 33, la turbina eólica se encuentra en un estado 35 en el que funciona en modo de auto abastecimiento en el que el generador de imanes de la turbina eólica produce energía para sus propios consumidores de energía eléctrica (consumos no críticos 12 y/o consumos críticos 13 (véase Fig. 1) ) y posiblemente para otras turbinas 24 (véase Fig. 1) y consumos no críticos externos 25 (véase Fig. 1) .
Durante el periodo en el que la turbina eólica se encuentra en el estado 35, el ángulo de paso se ajusta constantemente de forma que la cantidad producida de energía equivale a la cantidad de energía consumida y, como consecuencia, la velocidad del rotor se mantiene dentro de un rango óptimo en relación con el modo de auto abastecimiento. La duración del estado 35 pueden ser segundos, minutos, horas o dias si la velocidad del viento permanece por encima de, por ejemplo, 0,5 metros por segundo, siendo éste un posible limite inferior para el funcionamiento del rotor. Cuando la red de suministro eléctrico se ha recuperado de su interrupción y tras el periodo de tiempo 36 en el que se verifica si persiste la recuperación, el ángulo de paso se ajusta durante un periodo 37 hasta que se ha restablecido la situación normal de producción energética.
La Figura 3 ilustra las transiciones implicadas en un cambio del estado normal de producción de energía al estado en el que la turbina eólica produce energía para sus propios consumidores de energía eléctrica y posiblemente otras turbinas y consumos no críticos externos (es decir, el modo de auto abastecimiento) . En el primer estado 41 cuando la turbina eólica se encuentra en la situación normal de producción energética, la turbina eólica permanece en el estado 41, indicado por el bucle 42, siempre que el dispositivo de medición de la red 16 (véase Fig. 1) no detecte interrupciones en la red de suministro eléctrico. Si el dispositivo de medición de la red detecta que la red de suministro eléctrico no está presente, es decir, indica una interrupción de la red, la turbina eólica pasa al estado 43, que posteriormente se sustituye por el estado 44 en el que se activa el interruptor CC u otro dispositivo para disipar energía eléctrica con el objetivo de disipar la energía residual.
En el estado 44 se verifica si persiste la interrupción de la red de suministro eléctrico. La turbina eólica permanece en el estado 44 durante un periodo de tiempo, indicado por el bucle 45, durante normalmente entre
3 y 5 segundos. Si la red de suministro eléctrico se restablece dentro de un periodo normalmente de entre 5 y 10 segundos, la turbina eólica puede volver al estado de producción de energía normal 41. De lo contrario, si la red de suministro eléctrico no se restablece en un periodo de 5 segundos, la turbina eólica pasa al estado 47 abriendo los cortacircuitos de la red, es decir el interruptor 10 y/o el interruptor' 22. Esta tarea se lleva a cabo en el estado 45 intermedio al estado 46, en el que se verifica la condición de la red de suministro eléctrico, y en el estado 47, en el que se inicia el modo de abastecimiento automático.
En el estado 47, el ángulo de paso de las palas del rotor se cambia a un valor predefinido. El cambio del ángulo de paso a un valor predefinido en el estado 47 puede combinarse con o sustituirse por un procedimiento en el que el ángulo de paso se ajusta en un bucle de control de retroalimentación cuando la cantidad de potencia producida equivale a la cantidad de energía consumida de forma que el rotor gira a una velocidad constante. Posteriormente al paso en el que se consigue ajustar el ángulo de paso en el estado 47, el estado de la turbina eólica se pasa al estado 48. La turbina eólica permanece en el estado 48 durante la interrupción de la red de suministro, tal como indica el bucle 49. El bucle 49 finaliza si el dispositivo de medición de la red 16 (Véase Fig. 1) detecta el restablecimiento de la red de suministro eléctrico que, por su parte, provocará un cambio en la situación normal de producción energética del estado 41.
El bucle 49 también finaliza si la situación requiere la detención de la turbina eólica. Una situación de este tipo puede venir dada por condiciones climáticas extremas, la necesidad de reparar la turbina eólica o cualquier precaución de seguridad.
Debido a la capacidad de la turbina eólica de producir energía sin necesidad de fuentes de alimentación externas, la turbina eólica puede utilizarse para abastecer energía a generadores de inducción asincronos de otras turbinas eólicas, turbinas de gas o generadores de diesel durante una interrupción de la red de suministro eléctrico. Por lo tanto, en una sección limitada de una red de suministro eléctrico que consta como mínimo de una turbina eólica con un generador de imanes y otras turbinas eólicas con generadores de inducción asincronos u otras máquinas generadoras de electricidad con generador de inducción asincrona, la turbina eólica equipada con el generador de imanes podrá producir la energía eléctrica necesaria para la magnetización de, por ejemplo, las turbinas eólicas con generadores de inducción asincronos de forma que puedan mantenerse operativas .
Otra utilización de la capacidad de la turbina eólica para producir energía sin necesidad de energía externa se encuentra en el llamado arranque desde cero de una red de suministro eléctrico. Posteriormente a una interrupción de la red de suministro eléctrico y, por lo tanto, a una averia de la red, una central eléctrica necesitará una fuente de energía externa para el abastecimiento de equipos auxiliares antes de que poder restablecer la red de suministro eléctrico. Hoy en dia, en ocasiones se utilizan máquinas generadoras de energía como turbinas de gas o generadores diesel que impulsan a un generador como fuente de energía externa para la magnetización del generador de inducción asincrono de la central eléctrica.

Claims

Reivindicaciones
1. Método para mantener operativo como mínimo un componente critico de una turbina eólica durante el periodo de tiempo en el que la turbina eólica está desconectada de la red de suministro eléctrico, caracterizado porque incluye como minimo uno de los componentes críticos indicados incluye un consumidor de energía eléctrica, cuando dicha turbina eólica está prevista que se conecte a la red de suministro eléctrico y consta como minimo de un control del paso de la pala del rotor,
- el uso de un generador de imanes como el único elemento generador de energía eléctrica durante periodos de tiempo en los que la turbina eólica está conectada a la red de suministro eléctrico, asi como' durante periodos de tiempo en los que la turbina eólica está desconectada de la red de suministro eléctrico,
- seguir generando energía eléctrica del viento durante una desconexión de la red de suministro eléctrico, - ajustar una cantidad de la energía eléctrica producida para mantener la energía eléctrica producida en armonía con un consumo energético estocástico requerido, dependiente del tiempo, de una carga de la que como minimo hay un consumidor de energía eléctrica de la turbina eólica.
2. Método según la reivindicación 1, caracterizado porque incluya la utilización del generador de imanes como el único elemento generador de energía eléctrica cuando la turbina eólica sea reconectada a la red de suministro eléctrico, utilizando de este modo el generador de imanes para generar energía activa y energía reactiva.
3. Método acorde con la reivindicación 1, caracterizado porque el ángulo de paso de al menos una de dichas palas del rotor con control del paso se ajusta mediante un actuador eléctrico del paso de la pala que presenta un consumo de energía eléctrica estocástico, dependiente del tiempo, en equilibrio con la energía eléctrica producida.
4. Método acorde con la reivindicación 3, caracterizado porque el ángulo de paso se ajusta en relación con como mínimo uno de los parámetros seleccionados del grupo que incluye la velocidad del viento, la velocidad de giro del eje del rotor, el momento de giro del rotor, la velocidad de rotación del generador y el consumo de energía eléctrica.
5. Método acorde con cualquiera de las reivindicaciones 1-
4, caracterizado porque el generador de imanes incluye imanes permanentes cuyos imanes ya están totalmente magnetizados antes de conectar la turbina eólica a la red de suministro eléctrico, así como cuando la turbina eólica se desconecta de la red de suministro eléctrico.
6. Método acorde con cualquiera de las reivindicaciones 1-4, caracterizado porque el generador de imanes incluye imanes que se magnetizan cuando la turbina eólica se conecta a la red de suministro eléctrico y se desmagnetizan gradualmente cuando la turbina eólica se desconecta de la red de suministro eléctrico.
7. Método acorde con cualquiera de las reivindicaciones 1-
5, caracterizado porque el generador de imanes incluye imanes que yá han sido totalmente magnetizados y que están integrados estructuralmente con un generador de inducción síncrono o asincrono y cuyos imanes son magnéticamente independientes de los bobinados del estator del generador de inducción síncrono o asincrono.
8. Método según cualquiera de las reivindicaciones 1-4 o la reivindicación 6, caracterizado porque el generador de imanes incluye imanes magnetizados por el generador, cuyos imanes están integrados estructuralmente con un generador de inducción síncrono o asincrono, y cuyos imanes dependen magnéticamente de cualquier bobinado del estator del generador de inducción síncrono o asincrono.
9. Método acorde con cualquiera de las reivindicaciones anteriores, caracterizado porque la energía eléctrica producida se conduce a través de un convertidor antes de abastecerla a al menos un componente critico y en el que el convertidor se conoce como convertidor estatórico.
10. Método acorde con cualquiera de las reivindicaciones anteriores, caracterizado porque la energía eléctrica producida se mantiene en equilibrio con la energía eléctrica consumida midiendo como mínimo uno de los parámetros siguientes: la tensión, la corriente o la energía producida por el generador y en el que la medición de la tensión, la corriente o la energía se utiliza para ajustar el ángulo de paso.
11. Método acorde con cualquiera de las reivindicaciones anteriores, caracterizado porque la energía eléctrica producida se mantiene en equilibrio con la consumida midiendo alternativa o adicionalmente como mínimo un parámetro seleccionado de un grupo que incluye la energía eléctrica consumida, la velocidad de giro del eje del rotor, la velocidad de giro del eje del generador y el momento de giro del rotor, en el que la medición del parámetro en cuestión se utiliza para ajustar el paso.
12. Método acorde con cualquiera de las reivindicaciones anteriores, caracterizado porque la energía eléctrica producida se mantiene en equilibrio con la energía eléctrica consumida midiendo alternativamente la energía eléctrica que se abastece a la red de suministro eléctrico de forma que dicha energía eléctrica abastecida a la red de suministro permanece aproximadamente igual a cero, y en el que la medición de la energía se utiliza para ajustar el ángulo de paso.
13. Método acorde con cualquiera de las reivindicaciones anteriores, caracterizado porque la energía eléctrica producida se mantiene en equilibrio con la energía eléctrica consumida midiendo adicionalmente la energía eléctrica abastecida a la red de suministro eléctrico de forma que permanece igual a cero y en el que la medición de la energía se utiliza para ajustar el ángulo de paso.
14. Método acorde con cualquiera de las reivindicaciones anteriores, caracterizado porque comprende adicionalmente un convertidor eléctrico para ajustar una frecuencia de la señal de la tensión emitida por el convertidor.
15. Método acorde con cualquiera de las reivindicaciones anteriores, caracterizado porque comprende adicionalmente medios para ajustar una tensión de pico de la señal de la tensión eléctrica generada por el generador de imanes.
16. Método acorde con cualquiera de las reivindicaciones anteriores, caracterizado porque comprende adicionalmente medios para filtrar la señal de la tensión eléctrica generada por el generador de imanes .
17. Método acorde con cualquiera de las reivindicaciones anteriores, caracterizado porque comprende adicionalmente medios para transformar la señal de la tensión eléctrica generada por el generador de imanes.
18. Método acorde con cualquiera de las reivindicaciones anteriores, caracterizado porque como mínimo se mantiene operativo uno de los componentes críticos seleccionados del siguiente grupo: sistema de orientación, sistema del paso de la pala, sistema de lubricación, sistema de refrigeración, sistema de deshumidificación, sistema de descongelación y sistema de calentamiento.
19. Método acorde con cualquiera de las reivindicaciones anteriores, caracterizado porque incluye adicionalmente el paso de disipación de energía durante la transición de un estado de producción de energía a otro estado de producción de energía.
20. Método acorde con cualquiera de las reivindicaciones anteriores, caracterizado porque incluye adicionalmente el paso de estimar la velocidad del viento a partir de mediciones de como mínimo un parámetro seleccionado del siguiente grupo: energía producida, velocidad del rotor y ángulo de paso.
21. Una turbina eólica diseñada para ser conectada a una red de suministro eléctrico y para permanecer operativa durante el período de tiempo en el que la turbina eólica se desconecte de la red de suministro, caracterizada porque
- dicha turbina eólica consta de, como mínimo, un control del paso de la pala del rotor y un generador de imanes para producir energía eléctrica durante los períodos de tiempo en que la turbina eólica se desconecta de la red de suministro eléctrico, y
- dicha turbina eólica se dota con medios que permiten ajustar una cantidad de la energía eléctrica producida de forma que la energía eléctrica producida esté en equilibrio con un consumo estocástico necesario, dependiente del tiempo, de una carga,
- de la cual como mínimo una carga es un consumidor de energía eléctrica de la turbina eólica y dicha turbina eólica comprende un elemento generador de energía capaz de producir energía eléctrica durante los períodos de tiempo en que la turbina eólica está desconectada de la red de suministro eléctrico, - siendo dicho elemento generador de energía dicho generador de imanes.
22. Turbina eólica acorde con la reivindicación 21, caracterizada porque el generador de imanes incluye imanes permanentes que han sido totalmente magnetizados durante la fabricación.
23. Turbina eólica acorde con la reivindicación 21, caracterizada porque el generador de imanes incluye imanes que pueden magnetizarse durante los periodos de tiempo en los que la turbina eólica está conectada a la red de suministro eléctrico y que están sujetos a una desmagnetización gradual durante los periodos de tiempo en los que la turbina eólica está desconectada de la red.
24. Turbina eólica acorde con cualquiera de las reivindicaciones 21-23, caracterizada porque el generador de imanes incluye imanes que han sido totalmente magnetizados previamente, y cuyos imanes están integrados estructuralmente con un generador de inducción síncrono o asincrono, y que estos imanes son magnéticamente independientes de cualquier bobinado del estator del generador de inducción síncrono o asincrono.
25. Turbina eólica acorde con cualquiera de las reivindicaciones 21-23, caracterizada porque el generador de imanes es del tipo de los que comprende imanes magnetizados por el generador, cuyos imanes están integrados estructuralmente con un generador de inducción síncrono o asincrono, y cuyos imanes son también magnéticamente dependientes de cualquier bobina del estator del generador de inducción síncrono o asincrono.
26. Turbina eólica acorde con cualquiera de las reivindicaciones 21-25, caracterizada porque el generador de imanes es del tipo de los que al menos comprende un número de imanes creados a partir de bobinas superconductoras, y que alternativamente sólo comprende imanes creados a partir de bobinas superconductoras.
27. Turbina eólica acorde con cualquiera de las reivindicaciones 21-26, caracterizada por disponer de un convertidor capaz de modificar la frecuencia de una tensión de señal generada por el mencionado generador de imanes.
28 Turbina eólica acorde con cualquiera de las reivindicaciones 21-26, caracterizada por disponer de un convertidor capaz de modificar la tensión de pico de una señal generada por el mencionado generador de imanes.
29. Turbina eólica acorde con cualquiera de las reivindicaciones 21-26, caracterizada por disponer de un filtro para filtrar una señal eléctrica generada por el generador de imanes .
30. Turbina eólica acorde con cualquiera de las reivindicaciones 21-29 caracterizada por disponer de, como minimo, un sistema operativo seleccionado del grupo siguiente: sistema de calefacción, sistema de refrigeración, sistema de lubricación, sistema de deshumidificación y sistema de descongelación, y en la que dicho sistema operativo es capaz de mantener operativos los componentes críticos .
31. Turbina eólica acorde con cualquiera de las reivindicaciones 21-30 caracterizada por disponer de, como minimo, una de las actividades siguientes para disipar energía: abastecer energía eléctrica a un interruptor CC, cambiar mecánicamente el paso de la pala como mínimo una pala, acelerar el rotor y el eje del rotor.
32. Turbina eólica acorde con cualquiera de las reivindicaciones 21-31 caracterizada por disponer de medios para estimar la velocidad del viento, dichos medios se seleccionarán de un grupo de medios de medición de la velocidad del viento compuesto por: anemómetros, medios para medir la velocidad de giro del eje del rotor como tacómetros, medios para medir el momento de giro del rotor como galgas extensiométricas y medios para medir la energía como medidores de energía, y donde el objetivo de dichos medios es ayudar a ajustar la cantidad de energía eléctrica producida.
33. Turbina eólica acorde con cualquiera de las reivindicaciones 21-32, caracterizada por disponer de un consumo de energía eléctrica que no forma parte de los consumos de energía eléctrica operativos durante el período de tiempo en el que la turbina eólica está conectada a la red de suministro eléctrico, y que es capaz de consumir una cantidad de energía constante y superior a cero a lo largo de un período de tiempo.
PCT/ES2006/000407 2005-07-22 2006-07-14 Método para mantener operativos los componentes de una turbina eólica y una turbina con componentes que permitan el mantenimiento operativo WO2007012682A2 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/921,612 US8084874B2 (en) 2005-07-22 2006-07-14 Method of maintaining wind turbine components operational and a turbine comprising components suitable for operational maintenace
EP06807857.5A EP1961957B1 (en) 2005-07-22 2006-07-14 Method of maintaining wind turbine components operational and a turbine comprising components suitable for operational maintenance
CN2006800265928A CN101228351B (zh) 2005-07-22 2006-07-14 保持风力涡轮机组件运行的方法和具有能够保持运行的组件的风力涡轮机
ES06807857.5T ES2554552T3 (es) 2005-07-22 2006-07-14 Método para mantener operativos los componentes de una turbina eólica y una turbina con componentes que permitan el mantenimiento operativo
PL06807857T PL1961957T3 (pl) 2005-07-22 2006-07-14 Sposób utrzymania komponentów turbiny wiatrowej oraz turbina obejmująca komponenty odpowiednie do utrzymania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200501796 2005-07-22
ES200501796A ES2265771B1 (es) 2005-07-22 2005-07-22 Metodo para mantener operativos los componentes de una turbina eolica y una turbina eolica con componentes que permitan el mantenimiento operativo.

Publications (2)

Publication Number Publication Date
WO2007012682A2 true WO2007012682A2 (es) 2007-02-01
WO2007012682A3 WO2007012682A3 (es) 2007-04-26

Family

ID=37683696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000407 WO2007012682A2 (es) 2005-07-22 2006-07-14 Método para mantener operativos los componentes de una turbina eólica y una turbina con componentes que permitan el mantenimiento operativo

Country Status (6)

Country Link
US (1) US8084874B2 (es)
EP (1) EP1961957B1 (es)
CN (1) CN101228351B (es)
ES (2) ES2265771B1 (es)
PL (1) PL1961957T3 (es)
WO (1) WO2007012682A2 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2072813A2 (en) * 2007-12-19 2009-06-24 General Electric Company Control system and method for operating a wind farm
EP2146095B1 (en) 2008-07-16 2015-09-09 General Electric Company Method of operating a wind power plant during a grid loss

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008116463A1 (en) * 2007-03-23 2008-10-02 Vestas Wind Systems A/S Method for estimating the magnetization level of one or more permanent magnets established in one or more permanent magnet rotors of a wind turbine generator and wind turbine
EP2205862A2 (de) * 2007-10-15 2010-07-14 Suzion Energy GmbH Windenergieanlage mit erhöhtem überspannungsschutz
DE102008010543A1 (de) * 2008-02-22 2009-08-27 Nordex Energy Gmbh Verfahren zum Betreiben einer Windenergieanlage und Windenergieanlage
US8311679B2 (en) * 2008-04-21 2012-11-13 Paluszek Michael A Matrix converters for wind energy conversion systems
US20100058806A1 (en) * 2008-09-09 2010-03-11 General Electric Company Backup power system for cryo-cooled elements in wind turbines
EP2166225B1 (en) * 2008-09-19 2016-08-10 Vestas Wind Systems A/S A wind park having an auxiliary power supply
US8380357B2 (en) * 2009-03-23 2013-02-19 Acciona Windpower, S.A. Wind turbine control
ES2618029T3 (es) 2009-04-03 2017-06-20 Xemc Darwind B.V. Operación de un parque eléctrico conectado en red eléctrica independiente
WO2010137163A1 (ja) * 2009-05-29 2010-12-02 東芝三菱電機産業システム株式会社 無停電電源装置
US8039980B2 (en) * 2009-06-26 2011-10-18 Mitsubishi Heavy Industries, Ltd. Wind turbine generator and method of controlling the same
US8360723B2 (en) * 2009-09-30 2013-01-29 General Electric Company Method for reducing vibrations in wind turbines and wind turbine implementing said method
US8175755B2 (en) * 2009-11-18 2012-05-08 General Electric Company Systems and methods for monitoring power devices
US8018082B2 (en) * 2009-11-25 2011-09-13 General Electric Company Method and apparatus for controlling a wind turbine
BRPI1005396A2 (pt) * 2010-05-26 2016-03-08 Mitsubishi Heavy Ind Ltd aparelho e método de controle de uma turbina eólica
US20110144814A1 (en) * 2010-06-29 2011-06-16 Detlef Menke Wind turbine and method for operating a wind turbine
US8294289B2 (en) * 2010-06-30 2012-10-23 General Electric Company Method for operating a wind turbine, method for determining the temperature of a permanent magnet and controller for a wind turbine
WO2012001739A1 (ja) * 2010-06-30 2012-01-05 株式会社 日立製作所 風力発電システム及び風力発電システムの制御方法
EP2450565A1 (en) * 2010-11-08 2012-05-09 Siemens Aktiengesellschaft Wind turbine and method of control of a wind turbine
US9774198B2 (en) * 2010-11-08 2017-09-26 Brandon Culver Wind and solar powered heat trace with homeostatic control
US20120198829A1 (en) * 2011-02-04 2012-08-09 Francois Gagnon Energy management system using hydraulic compensator for the production of electricity from one or several networks of cynetic energy sources
EP2503146B1 (en) * 2011-03-21 2013-12-18 Siemens Aktiengesellschaft Method and arrangement for controlling an operation of an electric energy production facility during a disconnection to a utility grid.
EP2503148A1 (en) * 2011-03-21 2012-09-26 Siemens Aktiengesellschaft Wind turbine with an automatic liquid lubricant changing arrangement
US9509141B2 (en) 2011-04-15 2016-11-29 Siemens Aktiengesellschaft Black start of wind turbine devices
JP5619278B2 (ja) * 2011-04-25 2014-11-05 株式会社日立製作所 風力発電システム及び風力発電システムを用いた装置及びそれらの運転方法
EP2565443A1 (en) 2011-09-05 2013-03-06 XEMC Darwind B.V. Generating auxiliary power for a wind turbine
DE102011082856A1 (de) 2011-09-16 2013-03-21 Zf Friedrichshafen Ag Planetenträger mit Fördervorrichtung
US9030035B2 (en) 2011-12-19 2015-05-12 Vestas Wind Systems A/S Quick start-up of wind turbine generators
EP2795112B1 (en) * 2011-12-19 2017-05-03 Vestas Wind Systems A/S Quick start-up of wind turbine generators
EP2623997B1 (en) * 2012-02-03 2018-01-03 Siemens Aktiengesellschaft Determining a phase and a frequency of an electric quantity of an operating electrical device
DE102012204239A1 (de) 2012-03-16 2013-09-19 Wobben Properties Gmbh Verfahren zum Steuern einer Windenergieanlage
EP2657515A1 (de) 2012-04-27 2013-10-30 Moog Unna GmbH Windenergieanlage mit Pitchregelung
EP2844869A4 (en) 2012-05-04 2016-05-18 Wind Energy Corp WIND TURBINE SYSTEM AND METHOD OF OPERATING A WIND TURBINE SYSTEM
CN102797630A (zh) * 2012-08-15 2012-11-28 湘电风能有限公司 一种风力发电机组停机控制方法及装置
WO2014082757A1 (de) * 2012-11-27 2014-06-05 Abb Technology Ag Verfahren zum betrieb einer energieanlage und eines energiesystems mit solchen energieanlagen
US9677540B2 (en) 2012-11-29 2017-06-13 General Electric Company System and method for providing yaw backup to a wind farm
DE102013206119A1 (de) * 2013-04-08 2014-10-09 Wobben Properties Gmbh Windenergieanlage und Verfahren zum Betreiben einer Windenergieanlage
EP2848804A1 (en) * 2013-09-13 2015-03-18 Siemens Aktiengesellschaft Wind turbine test method
DE102013222452A1 (de) 2013-11-05 2015-05-07 Wobben Properties Gmbh Verfahren zum Betreiben einer Windenergieanlage
JP2016103968A (ja) * 2014-10-21 2016-06-02 ゼネラル・エレクトリック・カンパニイ 送電網損失ライドスルー機能を有する誘導発電機システム
CN106471695B (zh) * 2014-11-24 2019-05-14 Abb瑞士股份有限公司 黑启动风机、风电场和恢复风电场和风机的方法,以及使用该方法的风机、风电场
ES2710428T3 (es) 2015-01-15 2019-04-25 Vestas Wind Sys As Sistema de gestión de energía para una(s) turbina(s) eólica(s) que están conectadas a una alimentación eléctrica con una capacidad limitada
EP3051124B1 (en) 2015-01-30 2018-06-27 Adwen GmbH Method of operating a wind turbine without grid connection and wind turbine
JP2017008834A (ja) * 2015-06-23 2017-01-12 株式会社東芝 気流発生装置用電源および風力発電装置
DK3157161T3 (da) * 2015-10-12 2019-05-20 Siemens Ag Fremgangsmåde til styring af en vindkraftinstallation
EP3378147B1 (en) * 2015-11-17 2019-09-04 ABB Schweiz AG Determining a fundamental component of an ac voltage
CN105896592B (zh) * 2016-03-15 2019-08-27 重庆大学 基于复合结构感应电机的风力发电系统及风力发电测试系统
DE102016105662A1 (de) 2016-03-29 2017-10-05 Wobben Properties Gmbh Verfahren zum Einspeisen elektrischer Leistung in ein elektrisches Versorgungsnetz mit einem Windpark sowie Windpark
DE102016106215A1 (de) 2016-04-05 2017-10-05 Wobben Properties Gmbh Verfahren sowie Windenergieanlage zum Einspeisen elektrischer Leistung
US20170370349A1 (en) * 2016-06-27 2017-12-28 General Electric Company System and Method for Adjusting Environmental Operating Conditions Associated with Heat Generating Components of a Wind Turbine
CN108119320B (zh) * 2016-11-30 2024-02-23 北京金风科创风电设备有限公司 自发电加热除冰装置、叶片、风力发电机及除冰方法
EP3334025A1 (de) * 2016-12-07 2018-06-13 Siemens Aktiengesellschaft Hilfsversorgung für ein schaltnetzteil
EP3552291B1 (en) * 2016-12-09 2021-06-16 Vestas Wind Systems A/S Improvements relating to reactive power support in wind power plants
ES2951574T3 (es) 2017-06-08 2023-10-24 Vestas Wind Sys As Funcionamiento de una turbina eólica durante pérdida de red eléctrica usando una unidad de almacenamiento de energía
CN107476938B (zh) * 2017-08-13 2019-10-08 长沙小新新能源科技有限公司 一种双定子永磁风力发电系统
CN108318707A (zh) * 2018-01-30 2018-07-24 重创联合(广州)科技有限公司 一种风资源监测装置
DE102018003854A1 (de) * 2018-05-14 2019-11-14 Senvion Gmbh Windpark mit Eigenbedarfskompensation
CN113272547A (zh) * 2018-11-07 2021-08-17 维斯塔斯海上风力有限公司 待机模式中的风力涡轮机叶片的变桨控制
DE102019104892A1 (de) * 2019-02-26 2020-08-27 Wobben Properties Gmbh Verfahren zum Betreiben einer Windenergieanlage im Falle eines Netzfehlers
CN111917348B (zh) * 2019-05-08 2022-12-06 北京神州天鸿科技有限公司 智能发电设备
EP3987172A1 (en) * 2019-06-24 2022-04-27 Vestas Wind Systems A/S Method of shutting down a wind turbine
WO2021069045A1 (en) * 2019-10-09 2021-04-15 Vestas Wind Systems A/S Waking a wind turbine from a sleep state
CN112780509B (zh) * 2019-11-01 2023-07-28 新疆金风科技股份有限公司 空气冷却系统、风力发电机组及其冷却方法
EP3872335A1 (en) * 2020-02-25 2021-09-01 Siemens Gamesa Renewable Energy A/S Wind turbine operable in a reverse mode of operation and corresponding method of operating a wind turbine
EP3879097A1 (en) * 2020-03-10 2021-09-15 Siemens Gamesa Renewable Energy A/S Wind turbine thermal assembly

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072302A (en) * 1998-08-26 2000-06-06 Northrop Grumman Corporation Integrated control system and method for controlling mode, synchronization, power factor, and utility outage ride-through for micropower generation systems
DE10009472C2 (de) * 2000-02-28 2002-06-13 Norbert Hennchen Vorrichtung zum Verstellen der Anstellwinkel der auf einer Nabe einer Rotorwelle verdrehbar angeordneten Rotorblätter einer Windkraftanlage
DE20020232U1 (de) * 2000-11-29 2002-01-17 Siemens AG, 80333 München Windkraftanlage mit Hilfsenergieeinrichtung zur Verstellung von Rotorblättern in einem Fehlerfall
DE10109553B4 (de) * 2001-02-28 2006-03-30 Wobben, Aloys, Dipl.-Ing. Luftdichteabhängige Leistungsregelung
CZ299154B6 (cs) * 2001-04-20 2008-05-07 Zpusob provozu zarízení vetrné elektrárny a zarízení vetrné elektrárny
EP1563598B1 (en) * 2002-11-01 2012-10-03 Vestas Wind Systems A/S Circuit arrangement for use in a variable speed wind turbine system comprising a double-fed induction generator and a back-to-back converter
US6921985B2 (en) * 2003-01-24 2005-07-26 General Electric Company Low voltage ride through for wind turbine generators
AU2003203152B2 (en) * 2003-02-07 2006-11-09 Vestas Wind Systems A/S Method for controlling a power-grid connected wind turbine generator during grid faults and apparatus for implementing said method
ES2402150T3 (es) * 2003-04-08 2013-04-29 Converteam Gmbh Turbina eólica para la producción de energía eléctrica y procedimiento de funcionamiento
CA2518074C (en) * 2003-05-02 2011-07-26 Xantrex Technology Inc. Control system for doubly fed induction generator
US7289920B2 (en) * 2003-06-26 2007-10-30 General Electric Company Method and apparatus for capture of grid characteristics corresponding to fluctuation events
JP4210286B2 (ja) * 2003-08-07 2009-01-14 ヴェスタス,ウィンド,システムズ エー/エス 機能異常中の電力網に接続されている風力タービンを制御する方法、制御システム、風力タービン、及び一群の風力タービン
DE10338127C5 (de) * 2003-08-15 2015-08-06 Senvion Se Windenergieanlage mit einem Rotor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP1961957A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2072813A2 (en) * 2007-12-19 2009-06-24 General Electric Company Control system and method for operating a wind farm
EP2072813A3 (en) * 2007-12-19 2012-12-19 General Electric Company Control system and method for operating a wind farm
EP2146095B1 (en) 2008-07-16 2015-09-09 General Electric Company Method of operating a wind power plant during a grid loss
EP2146095B2 (en) 2008-07-16 2019-05-01 General Electric Company Method of operating a wind power plant during a grid loss

Also Published As

Publication number Publication date
EP1961957B1 (en) 2015-09-02
EP1961957A4 (en) 2013-01-16
US20090206603A1 (en) 2009-08-20
CN101228351A (zh) 2008-07-23
ES2265771B1 (es) 2008-01-16
PL1961957T3 (pl) 2016-02-29
CN101228351B (zh) 2010-05-26
US8084874B2 (en) 2011-12-27
EP1961957A2 (en) 2008-08-27
WO2007012682A3 (es) 2007-04-26
ES2554552T3 (es) 2015-12-21
ES2265771A1 (es) 2007-02-16

Similar Documents

Publication Publication Date Title
ES2554552T3 (es) Método para mantener operativos los componentes de una turbina eólica y una turbina con componentes que permitan el mantenimiento operativo
ES2951574T3 (es) Funcionamiento de una turbina eólica durante pérdida de red eléctrica usando una unidad de almacenamiento de energía
ES2893314T3 (es) Método y disposición para controlar una turbina eólica
CN101672252B (zh) 风力涡轮机及其控制方法
ES2739075T3 (es) Generación de potencia auxiliar para un aerogenerador
US10774808B2 (en) Method of operating a wind turbine without grid connection and wind turbine
JP4619409B2 (ja) 補助発電機を有する風力発電設備およびその制御方法
AU2004208135B2 (en) Wind turbine generator with a low voltage ride through controller and a method for controlling wind turbine components
RU2611725C2 (ru) Электрогенерирующая установка, снабженная средствами аккумулирования энергии, и способ управления такой установкой
EP2270331B1 (en) Wind turbine with control means to manage power during grid faults
CN102239320B (zh) 具有瞬时控制的电力系统
ES2440925T3 (es) Instalación de energía eólica
EP2400150A2 (en) Overspeed protection system and method for wind turbines
DK2458205T3 (en) Method and system for controlling an electric device of a wind turbine
ES2545692T3 (es) Disposición de turbinas eólicas con una turbina eólica principal y al menos una turbina eólica secundaria
ES2714253T3 (es) Control de par para un generador de turbina eólica en caso de falla
RU2708646C1 (ru) Способ, а также ветроэнергетическая установка для подачи электрической мощности
JP6742592B2 (ja) マイクログリッドの制御システム
BR102015012643B1 (pt) Método para controlar um sistema de geração de potência e sistema para controlar um sistema de geração de potência
ITMI20121666A1 (it) Impianto eolico per la generazione di energia elettrica
US20130187382A1 (en) Method and apparatus for control of redundant devices in a wind turbine
US10851761B2 (en) Wind turbine pitch cabinet temperature control system
EP4141256A1 (en) Operation of a disconnected wind turbine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680026592.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2006807857

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06807857

Country of ref document: EP

Kind code of ref document: A2

WWP Wipo information: published in national office

Ref document number: 2006807857

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11921612

Country of ref document: US