WO2007012417A1 - Gewindeschneidender betonanker - Google Patents

Gewindeschneidender betonanker Download PDF

Info

Publication number
WO2007012417A1
WO2007012417A1 PCT/EP2006/007059 EP2006007059W WO2007012417A1 WO 2007012417 A1 WO2007012417 A1 WO 2007012417A1 EP 2006007059 W EP2006007059 W EP 2006007059W WO 2007012417 A1 WO2007012417 A1 WO 2007012417A1
Authority
WO
WIPO (PCT)
Prior art keywords
thread
cutting
concrete anchor
anchor according
cutting concrete
Prior art date
Application number
PCT/EP2006/007059
Other languages
English (en)
French (fr)
Inventor
Adnan Fidan
Original Assignee
Petras Und Guggumos Gbr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petras Und Guggumos Gbr filed Critical Petras Und Guggumos Gbr
Priority to EP06776287A priority Critical patent/EP1907714B1/de
Priority to AT06776287T priority patent/ATE490411T1/de
Priority to DE502006008451T priority patent/DE502006008451D1/de
Priority to PL06776287T priority patent/PL1907714T3/pl
Publication of WO2007012417A1 publication Critical patent/WO2007012417A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B25/00Screws that cut thread in the body into which they are screwed, e.g. wood screws
    • F16B25/0036Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw
    • F16B25/0042Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw characterised by the geometry of the thread, the thread being a ridge wrapped around the shaft of the screw
    • F16B25/0068Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw characterised by the geometry of the thread, the thread being a ridge wrapped around the shaft of the screw with multiple-threads, e.g. a double thread screws
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B25/00Screws that cut thread in the body into which they are screwed, e.g. wood screws
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B25/00Screws that cut thread in the body into which they are screwed, e.g. wood screws
    • F16B25/001Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by the material of the body into which the screw is screwed
    • F16B25/0026Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by the material of the body into which the screw is screwed the material being a hard non-organic material, e.g. stone, concrete or drywall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B25/00Screws that cut thread in the body into which they are screwed, e.g. wood screws
    • F16B25/0036Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw
    • F16B25/0042Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw characterised by the geometry of the thread, the thread being a ridge wrapped around the shaft of the screw
    • F16B25/0047Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw characterised by the geometry of the thread, the thread being a ridge wrapped around the shaft of the screw the ridge being characterised by its cross-section in the plane of the shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B25/00Screws that cut thread in the body into which they are screwed, e.g. wood screws
    • F16B25/0036Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw
    • F16B25/0042Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw characterised by the geometry of the thread, the thread being a ridge wrapped around the shaft of the screw
    • F16B25/0057Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw characterised by the geometry of the thread, the thread being a ridge wrapped around the shaft of the screw the screw having distinct axial zones, e.g. multiple axial thread sections with different pitch or thread cross-sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B23/00Specially shaped nuts or heads of bolts or screws for rotations by a tool
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/02Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread
    • F16B5/0275Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread the screw-threaded element having at least two axially separated threaded portions

Definitions

  • the invention relates to a thread-cutting concrete anchor for hard substrates, in particular for concrete, stone, masonry or the like, according to the preamble of patent claim 1.
  • a type of fasteners is provided with a largely expansion-pressure-free, positive-locking anchoring.
  • the positive anchoring is that provided on the dowel body Sp Dr Drownlappen be issued in a, usually in the vicinity of the borehole bottom mounted undercut.
  • the undercut in the subsurface must first be prepared separately, using special undercut devices in the borehole.
  • This type of fastening technique is very time consuming and costly. It is therefore usually used only for particularly safety-relevant fasteners and in particular for heavy load fastenings.
  • So-called thread-cutting concrete screws are also known from the prior art. These have a cylindrical shaft whose lateral surface is at least partially provided with a helically rotating cutting edge. At the end facing away from the setting direction, the shaft has a head, which is usually designed as a hexagon. The head serves as a means of attack for torque transmission when screwing the concrete screw in a prepared receiving bore and at the same time for fixing a component.
  • a cylindrical shaft whose lateral surface is at least partially provided with a helically rotating cutting edge.
  • the shaft has a head, which is usually designed as a hexagon. The head serves as a means of attack for torque transmission when screwing the concrete screw in a prepared receiving bore and at the same time for fixing a component.
  • a concrete screw with a cutting thread is known whose thread flanks extend substantially parallel to one another.
  • the outer surface connecting the thread flanks extends axially parallel to the shank of the concrete screw.
  • the cutting thread is equipped with cutting notches extending from the Extend the outer surface in the direction of the shaft and form the outer surface open triangles.
  • a self-tapping or thread-cutting concrete screw which has a shank with a setting direction-side front end which is of frusto-conical form. At the opposite end a torque and load engagement means in the form of a hexagonal head is provided.
  • the cutting thread formed on the screw shaft has a cylindrical outer surface, which runs parallel to the axis of the shaft.
  • the concrete screw is equipped with a pre-thread, which engages around the shaft in a range between 90 ° and 270 °. Over this angular range, the width of the outer surface decreases in the setting direction and reduces the thread projection in the setting direction.
  • Another concrete screw is described in EP 0 905 389 A2, which has a substantially cylindrical shank and an at least partially formed thereon cutting thread.
  • the front side screw section is made of hardened steel.
  • the screw section adjoining to the rear is made of corrosion-resistant steel.
  • the two screw sections are non-rotatably connected.
  • the toothed cutting thread portion of the front screw portion is formed on a cylinder sleeve which is mounted on a cylindrical projection of the shaft and means of adhesive rotatably connected thereto.
  • the cutting thread portion of the front screw portion merges with the cutting thread portion of the rear screw portion.
  • the known concrete screws are used for mounting components directly on more or less hard ground.
  • classic screw style usually provided with a hexagon screw head serves as a means of attack for torque transmission when screwing the concrete screw in a prepared receiving bore and at the same time for fixing a component.
  • thread-cutting concrete anchors are known from the prior art, on the one hand have a cutting thread and counter to the setting direction are subsequently equipped with a further thread, which serves in conjunction with a screw-nut or the like as a load engagement means for a component to be fastened.
  • Such a thread-cutting concrete anchor is described in EP 0356019. It has a cutting shank with a deep, coarse, raised cutting thread, to which a fastening section with an external thread or with a threaded bore adjoins.
  • the helical cutting thread has a flat cutting edge, can be used in the carbide inserts.
  • interruptions are provided which extend from the cutting edge to the lateral surface of the shaft. The interruptions serve as chip breakers and are intended to enable removal of the removed material.
  • the breaks are axially aligned so as to form an axial slot into which a wedge is driven to lock the concrete anchor screwed into the receiving bore.
  • the cutting shaft is driven in rotation to drive into a receiving bore.
  • the attachment portion serves at the same time for torque transmission.
  • a thread-cutting concrete anchor which serves for fastening the support post for crash barriers on motor vehicle roads on a concrete foundation.
  • the thread-cutting concrete anchor has a cutting section with a cutting thread and a fastening section with a metric thread, which are separated from each other by a threadless intermediate section.
  • the cutting section is formed in analogy to the concrete screw known from WO 98/04842 and has a cutting thread whose thread flanks extend substantially parallel to each other.
  • the outer surface connecting the thread flanks extends axially parallel to the shank of the concrete screw.
  • the cutting thread is provided with cutting notches which extend from the outer surface in the direction of the shaft and form open triangles to the outer surface.
  • This known gauze-cutting concrete anchor is for the special application of attachment of Support posts designed for guardrails and allows an adapter to attach a base plate of the support bracket, which is equipped with conventional holes on a concrete foundation.
  • Object of the present invention is to provide a thread-cutting concrete anchor, which has a wide range of applications and can be displaced quickly and reliably in a prepared in hard surfaces, such as concrete, stone, masonry or the like, receiving bore. Wedges or the like for locking the concrete anchor in the receiving bore should be dispensed with. If necessary, the concrete anchor should be usable several times and should therefore simply be unscrewed from the locating hole.
  • the concrete anchor should be simple and inexpensive to produce.
  • the thread-cutting concrete anchor for self-tapping anchoring in hard surfaces such as concrete, stone, masonry or the like has a substantially cylindrical shaft whose core diameter is stepped.
  • the shank has a cutting section with a helically rotating cutting thread, which forms a front shank section with a first core diameter relative to a setting direction.
  • An attachment portion extends counter to the setting direction and forms a rearward shaft portion which has a load engagement means and a second core diameter.
  • the shaft is equipped with an engagement means for transmitting torque to the shaft.
  • the helical on the front shaft portion circumferential cutting thread has thread flanks, which enclose an acute angle with each other.
  • the thread-breaking concrete anchor according to the invention has two threaded sections.
  • the cutting thread is different from those of the prior art known concrete anchors not equipped with cutting notches or carbide inserts. Rather, the thread flanks enclose an acute angle with one another and thus form a continuous, all-round, sharp-edged cutting edge, which digs like a knife into the wall of a prepared receiving bore when the concrete anchor is rotated.
  • the cutting area of the concrete anchor is in itself already secured by the frictional engagement with the borehole wall against unintentional reverse rotation. Separate wedges or the like are not required.
  • When mounting a component on the load application means on the rear shaft portion of the positively anchored in the receiving bore concrete anchor concrete anchor is additionally braced. As a result, an automatic reverse rotation of the concrete anchor is practically impossible.
  • the formation of the cutting area with a continuous, sharp-edged cutting edge facilitates and lowers the production process of the concrete anchor.
  • the inventive concrete anchor is screwed directly into the created mounting hole. Its rear portion with the load application means protrudes from the receiving bore and allows the connection of a component, which is then fastened with a nut or the like.
  • the concrete anchor replaces the otherwise required for such assemblies metal expansion dowel into which a threaded rod is screwed to attach a component.
  • the expansion dowel is usually set by hammer blows on a special tool. Investigations show that this beating setting process leads repeatedly to injuries.
  • the inventive thread-cutting concrete anchor needs no expansion dowel. This eliminates a potential risk of injury. If necessary, the concrete anchor can be completely removed again.
  • the receiving bore can be created with a smaller bore diameter, without thereby affecting the achievable holding values. This shortens the time required to create the location hole. Also, the smaller hole can often be made with a less powerful drill.
  • the connection diameter can be the same size or even larger than with comparable expansion dowel / threaded rod combinations.
  • the one-piece construction of the concrete anchor also counteracts the risk of bending, which can occur in expansion dowel / threaded rod combinations because of an insufficiently wide screwing the threaded rod.
  • the positive anchoring of the cutting thread in the wall of the receiving bore leads to better holding and extension values and allows smaller axial and edge distances.
  • the thread flanks enclose an angle with each other, which is about 35 ° to about 55 °.
  • a particularly good compromise between the cutting function on the one hand and the largely expansion pressure-free positive anchoring of the turns of the cutting thread in the wall of the receiving bore on the other hand arises when the thread flanks enclose an angle of 45 °.
  • the contact area of the thread flanks is provided with a radius which is about 0.1 mm to about 1 mm. Despite the radius, the cutting edge of the cutting thread is still sharp enough to dig easily into the bore wall as the concrete anchor rotates.
  • the attachment of the concrete anchor is made easier to the receiving bore and the beginning of the cutting process.
  • the frusto-conical plug-in area is advantageously thread-free.
  • the cutting thread has, subsequent to the frusto-conical insertion region, a threaded inlet region in which the cutting thread starts on the lateral surface of the shaft and increases to a maximum radial projection. This prevents snagging of the front shaft portion of the concrete anchor at the beginning of the setting process.
  • the threaded inlet area causes a guide and a slight pre-cutting of the thread in the bore wall. In order for this pre-cutting process to be kept relatively short, it proves to be expedient if the area of the tissue circulation extends over an angle range of at most 85 °. Due to this relatively steep rise to the maximum radial projection of the cutting thread of the concrete anchor is driven very quickly into the interior of the borehole wall and stabilized there. This counteracts jamming and tilting of the concrete anchor during the setting process.
  • the front shaft section equipped with the cutting thread has a smaller core diameter than the rear shaft section equipped with the load engagement means.
  • Particularly effective in terms of the cross section of the required receiving bore and the usable connection diameter proves to be a thread-cutting concrete anchor whose cutting thread has an outer diameter in its region with maximum radial projection, which corresponds approximately to a connection diameter of the rear shaft portion.
  • the thread-cutting concrete anchor according to the invention makes it possible to make the core diameter of the front shank section equipped with the cutting thread only about 1 mm to about 5 mm smaller than the core diameter of the rear shank section. As a result, significantly higher holding and extraction values can be achieved with thread-cutting concrete anchors with a given connection diameter than with anchors / threaded rod combinations with a comparable connection diameter.
  • the thread-cutting concrete anchor provides that the front shaft portion has a thread-like profiling which extends between the turns of the cutting thread along the front shaft portion and a smaller radial projection than the cutting thread.
  • the thread-like profiling serves on the one hand as a guide of the cutting section during the setting process.
  • the thread-like profiling densifies that of the Cutting thread worn cuttings and thereby additionally increases the holding and Ausziehslitis.
  • the thread-like profiling has flanks which enclose an angle with one another that is greater than the angle enclosed by the thread flanks of the cutting thread.
  • the included angle is an obtuse angle of about 125 ° to about 155 °.
  • the control and the reproducibility of the setting process are further improved by the fact that a region of the intermediate section, which is closer to the front shaft section, is designed to extend in a truncated cone in the direction of the cutting thread.
  • the extended area serves as a stabilizer for the concrete anchor.
  • the inventive thread-cutting concrete anchor serves primarily as a replacement for dowels / threaded rod combinations. Accordingly, the load engagement means provided in the rearward shaft portion is formed by a thread-like profiling of the lateral surface of the shaft, which extends over a major part of its axial length.
  • the Wind-type profiling depending on the application, a coarse thread, for example a roller thread or a spindle thread, a metric thread, a Whitworth thread or a fine thread.
  • the inventive thread-cutting concrete anchor is also designed for a controlled multiple use.
  • the expansion dowels / threaded rod combinations currently in use do not specify the frequency of reusability of the threaded rod, nor any warranties in this respect.
  • visual inspection is usually not possible. Hairline cracks may possibly ifug one skilled identi f. So far, the user can not tell if a threaded rod has been used five times or already 100 times. Therefore, in the known threaded rods, a visual inspection is often not performed in practice, but used the threaded rod until the material fatigues and breaks. This can lead to machine damage or even personal injury.
  • the thread-cutting concrete anchor designed in accordance with the invention takes account of this fact in an advantageous embodiment variant in that the cutting thread is formed with wear markings at least in part of its turns.
  • the wear marks are preferably formed by regionally provided recesses or flattenings of the windings, which extend radially from the circumference of the thread to about% of the maximum radial projection of the cutting thread.
  • the wear marks allow a simple and quick visual check also by the layman. Dirt or rust does not matter. Depending on the application, the wear marks disappear after about 50 to 100 settling operations. Once the wear marks in the cutting thread have disappeared, the user knows that the concrete anchor needs to be sorted out. As a result, accidents involving machine or even personal injury due to a failure of the concrete anchor can be reliably avoided.
  • the inventive design of the thread-cutting concrete anchor makes it possible to produce this in a cost roll rolling process.
  • a variant embodiment of the thread-cutting concrete anchor provides that the engagement means for torque transmission is an integrally formed on the rearward shaft portion neck, which has a polygonal, preferably regularly polygonal, in particular hexagonal, cross-sectional contour.
  • the formation of the engaging means at the rear end portion of the shank allows the concrete anchor to be set manually or with a rotary drilling device.
  • the polygonal, in particular discontinuedek- kige cross-sectional contour allows the use of a simple socket.
  • the engagement means for transmitting torque may also be formed on the unthreaded intermediate section.
  • the intermediate section has an area with a polygonal, preferably regularly polygonal, in particular hexagonal, cross-sectional contour, which serves for the engagement of a tool, for example an open-end wrench.
  • the thread-cutting concrete anchor designed according to the invention can be used in a variety of ways. Depending on the training variant, it can be used for releasable temporary attachment of a mounting plate of a core drilling machine or other tool, for fastening the mounting rail of a diamond saw, for attaching fall protection on stairs and the like. This list is not exhaustive. The person skilled in the art will readily be aware of other areas of application which are not explicitly mentioned here.
  • Fig. 1 is a side view of the concrete anchor
  • Fig. 2 is an enlarged sectional view of a front shaft portion
  • FIG. 3 is a view of the concrete anchor according to arrow III in Fig. 1st
  • the thread-cutting concrete anchor shown in Fig. 1 bears overall the reference numeral 1. It has a cylindrical shaft 2, which comprises a front shaft portion 3 and a rear shaft portion 4 in relation to a setting direction S.
  • the front shaft portion 3 is formed as a cutting portion and equipped with a helical circumferential cutting thread 9.
  • the turns of the cutting thread 9 project beyond the core diameter v of the front shaft section 3 and have an outer diameter a measured over the largest radial projection of the cutting thread 9.
  • the cutting thread 9 extends continuously substantially over the entire length of the front shaft portion 3 and is knife-like sharp-edged. Areawise recesses or flattenings on the circumference of the cutting edge 9 form wear marks 13. Not all turns of the cutting thread 9 must be provided with wear marks 13.
  • the setting direction-side front end of the front shaft portion terminates in a plug-in portion 7, which is truncated cone-shaped and threadless.
  • a thread-like profiling 12 which has a smaller projection over the core diameter of the front shaft portion 3 than the cutting thread 9.
  • the pitch of the thread-like profiling 12 corresponds to the pitch of the cutting thread.
  • the front shaft portion 3 is separated from the rear shaft portion 4 by an intermediate portion 5.
  • the intermediate section 5 forms a transition from
  • the rear shaft portion 4 is formed with a load application means 11 for connecting a component.
  • the load engagement means 11 is formed as a thread-like profiling and may be a coarse thread, for example a roller thread or a spindle thread, a metric thread, a Whitworth thread or a fine thread.
  • a coreteurmesset of the rear shaft portion 4 is provided with the reference numeral r.
  • a measured over the windings of the load application means 11 connection diameter d in the rear shaft portion 4 is about the same size or only slightly larger than the measured over the blades 9 outer diameter a of the front shaft portion 3.
  • connection diameter d 17 mm
  • the over the cutting 9th For example, the measured outside diameter a is about 16.5 mm.
  • the core diameter r of the rear shaft portion 4 is 15 mm, and the core diameter v of the front shaft portion is about 11.7 mm.
  • a projection 8 is formed, which is provided with an Allen hexagon.
  • the approach 8 is used to attack a tool or a rotary drilling device for torque transmission to the concrete anchor 1 during the setting process.
  • the sectional view in Fig. 2 shows the front shaft portion 3 with the helical circumferential cutting edge 9 and the thread-like profiling 12.
  • the cutting edge 9 has thread flanks 91, 92 which are inclined at an acute angle ⁇ to each other.
  • the included by the thread flanks 91, 92 angle is about 35 ° to about 55 °, preferably 45 °.
  • a contact area 93 of the two thread flanks 91, 92 is provided with a radius which is about 0.1 mm to about 1 mm.
  • Threads of the cutting edge 9 is the thread-like profiling 12, the radial projection over the lateral surface of the front shaft portion 3 is less than that of the peripheral cutting edge 9.
  • the thread-like profiling 12 has flanks 121, 122 which enclose an angle ß with each other.
  • the angle ⁇ is obtuse and is about 125 ° to about 155 °.
  • Fig. 3 shows a view of the insertion region 7 of the concrete anchor 1 according to arrow III in Fig. 1.
  • the blunt front end of the truncated cone-shaped insertion region 7 is clearly visible.
  • the cutting thread 9 has a thread inlet 10, in which the projection of the cutting thread 9 increases from zero to the maximum radial projection.
  • the threaded inlet region 10 extends over an angle which is not greater than 85 °.
  • Figure 3 also shows a Verschleissmark ist 13, which is formed as a region-wise recess on the circumference of a turn of the cutting thread 9. The recess extends radially from the circumference of the cutting edge 9 to about% of the maximum radial projection of the cutting thread 9.
  • the thread-cutting concrete anchor is designed for anchorage boreholes in hard surfaces such as concrete, stone, masonry or the like. It allows an immediate positive anchoring in the wall of the receiving bore. Expansion dowels, threaded rods and the like can be dispensed with. The connection of a component to the load application provided with the rear shaft portion of the concrete anchor via a screw-nut or the like.
  • the thread-cutting concrete anchor is versatile. Depending on the training variant, it can be used for releasable temporary attachment of a mounting plate of a core drilling machine or other tool, for fastening the mounting rail of a diamond saw, for attaching fall protection on stairs and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Dowels (AREA)
  • Piles And Underground Anchors (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

Ein gewindeschneidender Betonanker (1) zur selbstfurchenden Verankerung in harten Untergründen wie Beton, Stein, Mauerwerk oder dergleichen, besitzt einen im wesentlichen zylindrischen Schaft (2), dessen Kerndurchmesser gestuft ausgebildet ist. Der Schaft (2) weist einen Schneidabschnitt mit einem wendelförmig umlaufenden Schneidgewinde (9) auf, der bezogen auf eine Setzrichtung (S) einen vorderen Schaftabschnitt (3) mit einem ersten Kerndurchmesser (v) bildet. Ein Befestigungsabschnitt erstreckt sich entgegen der Setzrichtung (S) und bildet einen rückwärtigen Schaftabschnitt (4), der ein Lastangriffsmittel (11) aufweist und einen zweiten Kerndurchmesser (r) aufweist. Weiters ist der Schaft (2) mit einem Angriffsmittel (8) zur Übertragung von Drehmoment an den Schaft (2) ausgestattet. Das wendeiförmig am vorderen Schaftabschnitt (3) umlaufende Schneidgewinde (9) weist Gewindeflanken auf, die miteinander einen spitzen Winkel einschliessen.

Description

Gewindeschneidender Betonanker
Die Erfindung betrifft einen gewindeschneidenden Betonanker für harte Untergründe, insbesondere für Beton, Stein, Mauerwerk oder dergleichen, gemäss dem Oberbegriff des Patentanspruchs 1.
Für die Erstellung von Befestigungen mit geringen Achs- und Randabständen ist bei einer Gattung von Befestigungselementen eine weitgehend spreizdruckfreie, form- schlüssige Verankerung vorgesehen. Bei sogenannten Hinterschnittdübeln besteht die formschlüssige Verankerung darin, dass am Dübelkörper vorgesehene Spreizlappen in eine, meist in der Nähe des Bohrlochgrunds angebrachte Hinterschneidung ausgestellt werden. Die Hinterschneidung im Untergrund muss zuvor gesondert, mit Hilfe von speziellen Hinterschnittgeräten im Bohrloch erstellt werden. Diese Art der Befesti- gungstechnik ist sehr zeit- und kostenaufwendig. Sie wird daher üblicherweise nur bei besonders sicherheitsrelevanten Befestigungen und insbesondere für Schwerstlastbefe- stigungen angewandt.
Aus dem Stand der Technik sind auch sogenannte gewindeschneidende Betonschrau- ben bekannt. Diese weisen einen zylindrischen Schaft auf, dessen Mantelfläche zumindest bereichsweise mit einer wendeiförmig umlaufenden Schneide versehen ist. Am setzrichtungsseitig abgewandten Ende weist der Schaft einen üblicherweise als Sechskant ausgebildeten Kopf auf. Der Kopf dient als Angriffsmittel zur Drehmomentübertragung beim Einschrauben der Betonschraube in eine vorbereitete Aufnahmebohrung und gleichzeitig zur Festlegung eines Bauteils. Beim Einschrauben gräbt sich die
Schneide in die Wandung der zuvor erstellten Aufnahmebohrung und erzeugt so eine im wesentlichen formschlüssige Verankerung.
Aus der WO 98/04842 ist eine Betonschraube mit einem Schneidgewinde bekannt, des- sen Gewindeflanken im wesentlichen parallel zu einander verlaufen. Die die Gewindeflanken verbindende Aussenfläche verläuft achsparallel zum Schaft der Betonschraube. Das Schneidgewinde ist mit Schneid-Kerben ausgestattet, die sich von der Aussenfläche in Richtung des Schafts erstrecken und zur Aussenfläche hin offene Dreiecke bilden.
Aus der EP 1 233 194 Bl ist eine selbstfurchende oder gewindeschneidende Beton- schraube bekannt, die einen Schaft mit einem setzrichtungsseitigen Vorderende aufweist, das kegelstumpff örmig ausgebildet ist. Am gegenüberliegenden Ende ist ein Drehmoment- und Lastangriffsmittel in Form eines Sechskantkopfes vorgesehen. Das am Schraubenschaft ausgebildete Schneidgewinde weist eine zylindrische Aussenfläche auf, die achsparallel zum Schaft verläuft. Ausserdem ist die Betonschraube mit einem Vorgewinde ausgestattet, das den Schaft in einem Bereich zwischen 90° und 270° umgreift. Über diesen Winkelbereich nimmt die Breite der Aussenfläche in Setzrichtung ab und verringert sich der Gewindeüberstand in Setzrichtung. Durch diese Massnahme sollen ein gutes Eindreh- und Ausdrehverhalten bei Untergründen mit einer hohen bis zu einer niedrigen Härte erreicht werden.
Eine andere Betonschraube ist in der EP 0 905389 A2 beschrieben, die einen im wesentlichen zylindrischen Schaft und ein zumindest abschnittsweise hieran ausgebildetes Schneidgewinde aufweist. Der setzrichtungsseitig vordere Schraubenabschnitt besteht aus gehärtetem Stahl. Der nach rückwärts daran anschliessende Schraubenab- schnitt besteht aus korrosionsfestem Stahl. Die beiden Schraubenabschnitte sind drehfest miteinander verbunden. Der gezahnte Schneidgewindeabschnitt des vorderen Schraubenabschnitts ist an einer Zylinderhülse ausgebildet, die auf einen zylindrischen Ansatz des Schafts aufgesetzt und mittel Klebstoff drehfest mit diesem verbunden ist. Der Schneidgewindeabschnitt des vorderen Schraubenabschnitts geht in den Schneid- gewindeabschnitt des rückwärtigen Schraubenabschnitts über.
Die bekannten Betonschrauben dienen zur Montage von Bauteilen direkt am mehr oder weniger harten Untergrund. In klassischer Schraubenmanier dient der üblicherweise mit einem Sechskant versehene Schraubenkopf als als Angriffsmittel zur Drehmomentübertragung beim Einschrauben der Betonschraube in eine vorbereitete Aufnahmebohrung und gleichzeitig zur Festlegung eines Bauteils. Andererseits sind aus dem Stand der Technik auch gewindeschneidende Betonanker bekannt, die einerseits ein Schneidgewinde aufweisen und entgegen der Setzrichtung daran anschliessend mit einem weiteren Gewinde ausgestattet sind, das in Verbindung mit einer aufschraubbaren Mutter oder dergleichen als Lastangriffsmittel für ein zu befestigendes Bauteil dient.
Ein derartiger gewindeschneidender Betonanker ist in der EP 0356019 beschrieben. Er weist einen Schneidschaft mit einem tiefen, groben, erhabenen Schneidgewinde auf, an den ein Befestigungsabschnitt mit einem Aussengewinde oder mit einer Gewindeboh- rung anschliesst. Das wendeiförmig verlaufende Schneidgewinde besitzt einen flächig ausgebildeten Schneidrand, in den Hartmetalleinsätze eingesetzt sein können. Längs des wendeiförmigen Schneidgewindes sind Unterbrechungen vorgesehen, die sich vom Schneidrand bis zur Mantelfläche des Schafts erstrecken. Die Unterbrechungen dienen als Spanbrecher und sollen ein Entfernen des abgetragenen Materials ermögli- chen. Die Unterbrechungen sind axial derart ausgerichtet, dass sie einen axialen Schlitz bilden, in den ein Keil eintreibbar ist, um den in die Aufnahmebohrung eingedrehten Betonanker zu verriegeln. Der Schneidschaft wird drehend schlagend in eine Aufnahmebohrung eingetrieben. Der Befestigungsabschnitt dient dabei zugleich zur Drehmomentübertragung.
Aus der DE 20005 166 ist ein gewindeschneidender Betonanker bekannt, der zur Befestigung der Tragstütze für Leitplanken an Kraftfahrzeugstrassen auf einem Betonfundament dient. Der gewindeschneidende Betonanker weist einen Schneidabschnitt mit einem Schneidgewinde und einen Befestigungsabschnitt mit einem metrischen Gewin- de auf, die durch einen gewindelosen Zwischenabschnitt voneinander getrennt sind. Der Schneidabschnitt ist in Analogie zu der aus der WO 98/04842 bekannten Betonschraube ausgebildet und weist ein Schneidgewinde auf, dessen Gewindeflanken im wesentlichen parallel zu einander verlaufen. Die die Gewindeflanken verbindende Aussenfläche verläuft achsparallel zum Schaft der Betonschraube. Das Schneidgewin- de ist mit Schneid-Kerben ausgestattet, die sich von der Aussenfläche in Richtung des Schafts erstrecken und zur Aussenfläche hin offene Dreiecke bilden. Dieser bekannte gwindeschneidende Betonanker ist für die spezielle Anwendung zur Befestigung von Tragstützen für Leitplanken ausgelegt und ermöglicht über einen Adapter die Befestigung einer Grundplatte der Tragstütze, die mit konventionellen Bohrungen ausgestattet ist, auf einem Betonfundament.
Aufgabe der vorliegenden Erfindung ist es, einen gewindeschneidenden Betonanker zu schaffen, der ein breites Anwendungsgebiet aufweist und schnell und zuverlässig in einer in harten Untergründen, wie Beton, Stein, Mauerwerk oder dergleichen, erstellten Aufnahmebohrung versetzbar ist. Auf Keile oder dergleichen zur Verriegelung des Betonankers in der Aufnahmebohrung soll verzichtet werden können. Der Beton- anker soll bei Bedarf mehrfach verwendbar sein und soll daher auch wieder einfach aus der Aufnahmebohrung herausgeschraubt werden können. Dabei soll der Betonanker einfach und kostengünstig herstellbar sein.
Die Lösung dieser und noch weiterer Aufgaben besteht in einem gewindeschneiden- den Betonanker, der die im kennzeichnenden Abschnitt des Patentanspruchs 1 aufgelisteten Merkmale aufweist. Weiterbildungen und/ oder vorteilhafte Ausführungsvarianten der Erfindung sind Gegenstand der abhängigen Patentansprüche.
Der gewindeschneidende Betonanker zur selbstfurchenden Verankerung in harten Untergründen wie Beton, Stein, Mauerwerk oder dergleichen, besitzt einen im wesentlichen zylindrischen Schaft, dessen Kerndurchmesser gestuft ausgebildet ist. Der Schaft weist einen Schneidabschnitt mit einem wendeiförmig umlaufenden Schneidgewinde auf, der bezogen auf eine Setzrichtung einen vorderen Schaftabschnitt mit einem ersten Kerndurchmesser bildet. Ein Befestigungsabschnitt erstreckt sich entgegen der Setz- richtung und bildet einen rückwärtigen Schaftabschnitt, der ein Lastangriffsmittel aufweist und einen zweiten Kerndurchmesser aufweist. Weiters ist der Schaft mit einem Angriffsmittel zur Übertragung von Drehmoment an den Schaft ausgestattet. Das wendeiförmig am vorderen Schaftabschnitt umlaufende Schneidgewinde weist Gewindeflanken auf, die miteinander einen spitzen Winkel einschliessen.
Der erfindungsgemässe gewindescheidende Betonanker weist zwei Gewindeabschnitte auf. Das Schneidgewinde ist zum Unterschied von den aus dem Stand der Technik bekannten Betonankern nicht mit Schneid-Kerben oder Hartmetalleinsätzen bestückt. Vielmehr schliessen die Gewindeflanken miteinander einen spitzen Winkel ein und bilden so eine durchgehende, umlaufende scharfkantige Schneide, die sich beim rotierenden Setzen des Betonankers messerartig in die Wandung einer vorbereiteten Auf- nahmebohrung gräbt. Der Schneidbereich des Betonankers ist an sich bereits durch den Reibschluss mit der Bohrlochwandung gegen ein unbeabsichtigtes Rückdrehen gesichert. Gesonderte Keile oder dergleichen sind nicht erforderlich. Bei der Montage eines Bauteils am Lastangriffsmittel am rückwärtigen Schaftabschnitt wird der formschlüssig in der Aufnahmebohrung verankerte Betonanker zusätzlich verspannt. Da- durch wird ein selbsttätiges Rückdrehen des Betonankers praktisch verunmöglicht. Die Ausbildung des Schneidenbereichs mit einer durchgehenden, scharfkantigen Schneide erleichtert und verbilligt den Herstellungsprozess des Betonankers.
Der erfindungsgemäss ausgebildete Betonanker wird unmittelbar in die erstellte Auf- nahmebohrung eingeschraubt. Sein rückwärtiger Abschnitt mit dem Lastangriffsmittel ragt aus der Aufnahmebohrung und erlaubt den Anschluss eines Bauteils, welches dann mit einer Mutter oder dergleichen befestigt wird. Damit ersetzt der Betonanker den sonst für derartige Montagen erforderlichen metallischen Spreizdübel, in den eine Gewindestange eingeschraubt wird, um daran ein Bauteil zu befestigen. Gerade bei temporären Befestigungen ist bisher der Spreizdübel ein verlorenes Bauteil, das sich zu einem späteren Zeitpunkt sogar als störend erweisen kann. Der Spreizdübel wird üblicherweise durch Hammerschläge auf ein spezielles Werkzeug gesetzt. Untersuchungen zeigen, dass dieser schlagende Setzvorgang immer wieder zu Verletzungen führt. Der erfindungsgemässe gewindeschneidende Betonanker benötigt keinen Spreizdübel. Dadurch ist eine potentielle Verletzungsgefahr beseitigt. Der Betonanker ist bei Bedarf wieder vollständig demontierbar. Dadurch können temporäre Befestigungspunkte kostengünstiger erstellt werden. Durch den Verzicht auf den Spreizdübel kann die Aufnahmebohrung mit einem kleineren Bohrungsdurchmesser erstellt werden, ohne dadurch die erzielbaren Haltewerte zu beeinträchtigen. Dadurch verkürzt sich die Zeit, die für die Erstellung der Aufnahmebohrung erforderlich ist. Auch kann die kleinere Aufnahmebohrung oft bereits mit einem weniger leistungsstarken Bohrgerät erstellt werden. Der Anschlussdurchmesser kann gleich gross oder sogar grösser ausgebildet werden, als bei vergleichbaren Spreizdübel/ Gewindestangen Kombinationen. Die einteilige Ausbildung des Betonankers wirkt auch der Gefahr eines Verbiegens entgegen, die bei Spreizdübel/ Gewindestangenkombinationen wegen eines ungenügend weiten Einschraubens der Gewindestange auftreten kann. Die formschlüssige Veran- kerung des Schneidgewindes in der Wandung der Aufnahmebohrung führt zu besseren Halte- und Auszugswerten und erlaubt kleinere Achs- und Randabstände.
Für die Schneidfunktion des Schneidgewindes am vorderen Schaftabschnitt erweist es sich als zweckmässig, wenn die Gewindeflanken miteinander einen Winkel einschlie- ssen, der etwa 35° bis etwa 55° beträgt. Ein besonders guter Kompromiss zwischen der Schneidfunktion einerseits und der weitgehend Spreizdruckfreien formschlüssigen Verankerung des Windungen des Schneidgewindes in der Wandung der Aufnahmebohrung andererseits ergibt sich, wenn die Gewindeflanken miteinander einen Winkel von 45° einschliessen.
Aus fertigungstechnischen Gründen und um eine Verletzungsgefahr des Anwenders abzuwenden ist der Berührungsbereich der Gewindeflanken mit einem Radius versehen, der etwa 0.1 mm bis etwa 1 mm beträgt. Trotz des Radius ist die Schneide des Schneidgewindes immer noch scharfkantig genug, um sich beim drehenden Setzen des Betonankers leicht in die Bohrungwandung zu graben.
Indem das setzrichtungsseitige Vorderende des Schafts in einem kegelsrumpfförmigen Einsteckbereich endet, wird das Ansetzen des Betonankers an die Aufnahmebohrung und der Beginn des Schneidvorgangs erleichtert.
Der kegelstumpfförmige Einsteckbereich ist mit Vorteil gewindefrei ausgebildet. Das Schneidgewinde weist im Anschluss an den kegelstumpfförmigen Einsteckbereich einen Gewindeeinlaufbereich auf, in dem das Schneidgewinde an der Mantelfläche des Schafts beginnt und auf einen maximalen radialen Überstand zunimmt. Dadurch wird ein Verhaken des vorderen Schaftabschnitts des Betonankers am Beginn des Setzvorgangs verhindert. Der Gewindeeinlaufbereich bewirkt eine Führung und ein leichtes Vorschneiden des Gewindes in der Bohrungswandung. Damit dieser Vorschneidvorgang relativ kurz gehalten wird, erweist es sich als zweckmässig wenn der Geweindeeirüaufbereich sich über einen Winkelbereich von maximal 85° erstreckt. Durch diesen relativ steilen Anstieg auf den maximalen radialen Überstand des Schneidgewindes wird der Betonanker sehr schnell in das Innere der Bohrlochwandung vorgetrieben und dort stabilisiert. Dadurch wird einem Verkanten und Verkippen des Betonankers beim Setzvorgang entgegengewirkt.
Aus bohrsökonomischer Sicht weist der mit dem Schneidgewinde ausgestattete vorde- re Schaftabschnitt einen kleineren Kerndurchmesser auf als der mit dem Lastangriffsmittel ausgestattete rückwärtige Schaftabschnitt. Besonders effektiv hinsichtlich des Querschnitts der erforderlichen Aufnahmebohrung und des nutzbaren Anschlussdurchmessers erweist sich ein gewindeschneidender Betonanker, dessen Schneidgewinde in seinem Bereich mit maximalem radialem Überstand einen Aussendurchmes- ser aufweist, der etwa einem Anschlussdurchmesser des rückwärtigen Schaftabschnitts entspricht.
Der erfindungsgemässe gewindeschneidende Betonanker erlaubt es den Kerndurchmesser des mit dem Schneidgewinde ausgestatteten vorderen Schaftabschnitts nur etwa 1 mm bis etwa 5 mm kleiner auszubilden als den Kerndurchmesser des rückwärtigen Schaftabschnitts. Dadurch sind bei gewindeschneidenden Betonankern mit einem gegebenen Anschlussdurchmesser deutlich höhere Halte- und Auszugswerte erzielbar als bei Dübel/ Gewindestangenkombinationen mit vergleichbarem Anschlussdurchmesser.
Eine vorteilhafte Ausführungsvariante des gewindeschneidenden Betonankers sieht vor, dass der vordere Schaftabschnitt eine gewindeartige Profilierung aufweist, die sich zwischen den Windungen des Schneidgewindes entlang des vorderen Schaftabschnitts erstreckt und einen kleineren radialen Überstand aufweist als das Schneidgewinde. Die gewindeartige Profilierung dient einerseits als Führung des Schneidabschnitts beim Setzvorgang. Andererseits verdichtet die gewindeartige Profilierung das vom Schneidgewinde abgetragene Bohrklein und erhöht dadurch noch zusätzlich die Halte- und Auszugswerte.
Für die Verdichtungsfunktion erweist es sich von Vorteil, wenn die gewindeartige Pro- filierung Flanken aufweist, die miteinander einen Winkel einschliessen, der grösser ist, als der von den Gewindeflanken des Schneidgewindes eingeschlossene Winkel. Insbesondere ist der eingeschlossene Winkel ein stumpfer Winkel von ca. 125° bis etwa 155°.
Für die Führungsfunktion der gewindeartigen Profilierung erweist es sich von Vorteil, wenn sie eine Steigung aufweist, die einer Steigung des Schneidgewindes entspricht.
Damit der gewindeschneidende Betonanker beim Setzvorgang mit seinem Schneidbereich vollständig in die Aufnahmebohrung eingeschraubt wird, erweist es sich als zweckmässig, wenn der mit dem Schneidgewinde ausgestattete vordere Schaf tab- schnitt und der mit dem Lastangriffsmittel ausgestattete rückwärtigen Schaftabschnitt durch einen Zwischenabschnitt voneinander getrennt sind. Der Anwender hat dadurch eine einfache visuelle Kontrolle über den Einschraubvorgang.
Die Kontrolle und die Reproduzierbarkeit des Setzvorgangs wird noch dadurch ver- bessert, dass ein dem vorderen Schaftabschnitt näherer Bereich des Zwischenabschnitts in Richtung des Schneidgewindes kegelstumpfförmig erweitert ausgebildet ist. Der erweiterte Bereich dient als Stabilisierungshilfe für den Betonanker. Beim Setzvorgang erhöht sich der Einschraubwiderstand sobald der erweiterte Bereich die Bohrungsmündung erreicht. Dadurch merkt der Anwender auch ohne genaue visuelle Kontrol- Ie, dass der Betonanker ausreichend tief gesetzt ist und der Setzvorgang beendet ist. Dadurch wird auch ein Überdrehen des Betonankers vermieden.
Der erfindungsgemässe gewindeschneidende Betonanker dient vorwiegend als Ersatz für Dübel/ Gewindestangenkombinationen. Entsprechend ist das im rückwärtigen Schaftabschnitt vorgesehene Lastangriffsmittel von einer gewindeartigen Profilierung der Mantelfläche des Schafts gebildet, die sich über einen Grossteil seiner axialen Länge erstreckt. Für eine möglichst vielfältige Einsetzbarkeit des Betonankers ist die ge- windeartige Profilierung je nach Anwendung ein Grobgewinde, beispielsweise ein Rollgewinde oder ein Spindelgewinde, ein metrisches Gewinde, ein Whitworthgewin- de oder ein Feingewinde.
Der erfindungsgemässe gewindeschneidende Betonanker ist auch für eine kontrollierte Mehrfachverwendung ausgebildet. Bei den derzeit in Verwendung stehenden Spreizdübel/ Gewindestangenkombinationen werden keine Angaben bezüglich der Häufigkeit der Wiederverwendbarkeit der Gewindestange gemacht, noch diesbezüglich irgendwelche Garantien gegeben. Bei verbogenen, verschmutzten oder verrosteten Gewindestangen ist eine Sichtprüfung meist nicht möglich. Feinste Haarrisse kann allenfalls ein Fachmann identifizieren. Bisher kann der Anwender nicht erkennen, ob eine Gewindestange fünfmal oder bereits 100 mal in Gebrauch war. Daher wird bei den bekannten Gewindestangen eine Sichtprüfung in der Praxis oft nicht durchgeführt, sondern die Gewindestange solange verwendet, bis das Material ermüdet und bricht. Dabei kann es zu Maschinenschäden oder sogar zu Personenschäden kommen. Der erfindungsgemäss ausgebildete gewindeschneidende Betonanker trägt diesem Umstand in einer vorteilhaften Ausführungsvariante dadurch Rechnung, dass das Schneidgewinde wenigstens in einem Teil seiner Windungen mit Verschleissmarkie- rungen ausgebildet ist.
Vorzugsweise sind die Verschleissmarkierungen von bereichsweise vorgesehenen Aussparungen bzw. Abflachungen der Windungen gebildet, die sich vom Umfang des Gewindes radial bis etwa % des maximalen radialen Überstands des Schneidgewindes erstrecken. Die Verschleissmarkierungen erlauben eine einfache und schnelle Sichtprü- fung auch durch den Laien. Schmutz oder Rost spielen keine Rolle. Je nach Anwendung verschwinden die Verschleissmarkierungen nach etwa 50 bis 100 Setzvorgängen. Sind die Verschleissmarkierungen im Schneidgewinde verschwunden, weiss der Anwender, dass der Betonanker aussortiert werden muss. Dadurch können Unfälle mit Maschinen- oder sogar Personenschäden wegen eines Versagens des Betonankers zu- verlässig vermieden werden. Die erfindungsgemäss Ausbildung des gewindeschneidenden Betonanker ermöglicht es, diesen in einem kostengünstigen Rollwalzverfahren herzustellen.
Eine Ausführungsvariante des gewindeschneidendernBetonankers sieht vor, dass das Angriffsmittel zur Drehmomentübertragung ein an den rückwärtigen Schaftabschnitt angeformter Ansatz ist, der eine polygone, vorzugsweise regelmässig mehreckige, insbesondere sechseckige, Querschnittskontur aufweist. Die Ausbildung des Angriffsmittels am rückwärtigen Endabschnitt des Schaftes erlaubt es, den Betonanker manuell oder mit einer Drehbohreinrichtung zu setzen. Die polygonale, insbesondere sechsek- kige Querschnittskontur ermöglicht den Einsatz einer einfachen Stecknuss.
In einer alternativen Ausführungsvariante des gewindeschneidenden Betonankers kann das Angriffsmittel zur Drehmomentübertragung auch am gewindelosen Zwischenabschnitt ausgebildet sein. Der Zwischenabschnitt weist dazu einen Bereich mit einer polygonalen, vorzugsweise regelmässig mehreckigen, insbesondere sechseckigen, Querschnittskontur auf, die für den Angriff eines Werkzeugs, beispielsweise eines Gabelschlüssels dient.
Der erfindungsgemäss ausgebildete gewindeschneidende Betonanker ist vielfältig ein- setzbar. Je nach Ausbildungsvariante kann er zur lösbaren temporären Befestigung einer Montageplatte eines Kernbohrgeräts oder eines sonstigen Werkzeugs, zur Befestigung der Montageschiene einer Diamantsäge, zur Befestigung von Absturzsicherungen an Treppen und dergleichen verwendet werden. Diese Aufzählung ist nicht abschliessend. Dem Fachmann erschliessen sich ohne weiteres auch noch weitere An- Wendungsgebiete, die an dieser Stelle nicht explizit genannt sind.
Weitere Vorteile und Merkmale ergeben sich aus der nachfolgenden Beschreibung einer beispielsweisen Ausführungsvariante der Erfindung unter Bezugnahme auf die schematischen Zeichnungen. Es zeigen in nicht massstabsgetreuer Darstellung:
Fig. 1 eine Seitenansicht des Betonankers; Fig. 2 eine vergrösserte Schnittdarstellung eines vorderen Schaftabschnitts; und
Fig. 3 eine Ansicht des Betonankers gemäss Pfeil III in Fig. 1
Der in Fig. 1 dargestellte gewindeschneidende Betonanker trägt gesamthaft das Bezugszeichen 1. Er weist einen zylindrischen Schaft 2 auf, der bezogen auf eine Setzrichtung S einen vorderen Schaftabschnitt 3 und einen rückwärtigen Schaftabschnitt 4 umf asst. Der vordere Schaftabschnitt 3 ist als ein Schneidabschnitt ausgebildet und mit einem wendelartig umlaufenden Schneidgewinde 9 ausgestattet. Die Windungen des Schneidgewindes 9 überragen den Kerndurchmesser v des vorderen Schaftabschnitts 3 und weisen einen über den grössten radialen Überstand des Schneidgewindes 9 gemessenen Aussendurchmesser a auf. Das Schneidgewinde 9 erstreckt sich durchgehend im wesentlichen über die gesamte Länge des vorderen Schaftabschnitts 3 und ist messerartig scharfkantig ausgebildet. Bereichsweise Aussparungen bzw. Abflachun- gen am Umfang der Schneide 9 bilden Verschleissmarkierungen 13. Es müssen nicht alle Windungen des Schneidgewindes 9 mit Verschleissmarkierungen 13 versehen sein. Das setzrichtungsseitige Vorderende des vorderen Schaftabschnitts endet in einem Einsteckabschnitt 7, der kegelstumpff örmig ausgebildet und gewindelos ist. Zwischen den Windungen des Schneidgewindes 9 verläuft eine gewindeartige Profilierung 12, die einen geringeren Überstand über den Kerndurchmesser des vorderen Schaftabschnitts 3 aufweist als das Schneidgewinde 9. Die Steigung der gewindeartigen Profilierung 12 entspricht der Steigung des Schneidgewindes 9.
Der vordere Schaftabschnitt 3 ist durch einen Zwischenabschnitt 5 vom rückwärtigen Schaftabschnitt 4 getrennt. Der Zwischenabschnitt 5 bildet einen Übergang vom
Schneidgewinde zum Anschlussgewinde und besitzt einen an den vorderen Schaftabschnitt 3 angrenzenden, kegelstumpfförmig in Richtung des Schneidgewindes 9 erweiterten Bereich 6 zur Stabilisierung des gesetzten Betonankers 1. Der rückwärtige Schaftabschnitt 4 ist mit einem Lastangriffsmittel 11 zur Anbindung eines Bauteils aus- gebildet. Das Lastangriffsmittel 11 ist als eine gewindeartige Profilierung ausgebildet und kann ein Grobgewinde, beispielsweise ein Rollgewinde oder ein Spindelgewinde, ein metrischen Gewinde, ein Whitworthgewinde oder ein Feingewinde sein. Ein Kern- durchmesset des rückwärtigen Schaftabschnitts 4 ist mit dem Bezugszeichen r versehen. Ein über die Windungen des Lastangriffsmittels 11 gemessener Anschlussdurchmesser d im rückwärtigen Schaftabschnitt 4 ist etwa gleich gross bzw. nur geringfügig grösser als der über die Schneiden 9 gemessen Aussendurchmesser a des vorderen Schaftabschnitts 3. Bei einem Anschlussdurchmesser d von 17 mm beträgt der über die Schneiden 9 gewessene Aussendurchmesser a beispielsweise etwa 16,5 mm. Der Kerndurchmesser r des rückwärtigen Schaftabschnitts 4 beträgt dabei 15 mm, und der Kerndurchmesser v des vorderen Schaftabschnitts beträgt ca. 11,7 mm.
An den rückwärtigen Schaftabschnitt 4 ist ein Ansatz 8 angeformt, der mit einem Au- ssensechskant versehen ist. Der Ansatz 8 dient zum Angriff eines Werkzeugs bzw. eines Drehbohrgeräts zur Drehmomentübertragung an den Betonanker 1 beim Setzvorgang.
Die Schnittdarstellung in Fig. 2 zeigt den vorderen Schaftabschnitt 3 mit der wendelartig umlaufenden Schneide 9 und der gewindeartigen Profilierung 12. Die Schneide 9 besitzt Gewindeflanken 91, 92 die in einem spitzen Winkel α zueinander geneigt sind. Der von den Gewindeflanken 91, 92 eingeschlossene Winkel beträgt etwa 35° bis etwa 55°, vorzugsweise 45°. Ein Berührungsbereich 93 der beiden Gewindeflanken 91, 92 ist mit einem Radius versehen, der etwa 0.1 mm bis etwa 1 mm beträgt. Zwischen den
Gewindegängen der Schneide 9 befindet sich die gewindeartige Profilierung 12, deren radialer Überstand über die Mantelfläche des vorderen Schaftabschnitts 3 geringer ist als derjenige der umlaufenden Schneide 9. Die gewindeartige Profilierung 12 weist Flanken 121, 122 auf, die miteinander einen Winkel ß einschliessen. Der Winkel ß ist stumpfwinkelig und beträgt etwa 125° bis etwa 155°.
Fig. 3 zeigt eine Ansicht auf den Einsteckbereich 7 des Betonankers 1 gemäss Pfeil III in Fig. 1. Das stumpfe Vorderende des kegelstumpf förmigen Einsteckbereichs 7 ist klar ersichtlich. Das Schneidgewinde 9 besitzt einen Gewindeeinlauf 10, in dem der Über- stand des Schneidgewindes 9 von Null auf den maximalen radialen Überstand anwächst. Der Gewindeeinlaufbereich 10 erstreckt sich dabei über einen Winkel, der nicht grösser ist als 85°. Bei 12 ist die gewindeartige Profüierung angedeutet. Fig.3 zeigt auch eine Verschleissmarkierung 13, die als eine bereichsweise Aussparung am Umfang einer Windung des Schneidgewindes 9 ausgebildet ist. Die Ausparung erstreckt sich vom Umfang der Schneide 9 radial bis etwa % des maximalen radialen Überstands des Schneidgewindes 9.
Der gewindeschneidende Betonanker ist für Verankerungen Aufhahmebohrungen in harten Untergründen wie Beton, Stein, Mauerwerk oder dergleichen ausgebildet. Er erlaubt eine unmittelbare formschlüssige Verankerung in der Wandung der Aufnahmebohrung. Auf Spreizdübel, Gewindestangen und dergleichen kann verzichtet wer- den. Die Anbindung eines Bauteils an den mit dem Lastangriffsmittel versehen rückwärtigen Schaftabschnitt des Betonankers erfolgt über eine aufschraubbare Mutter oder dergleichen. Der gewindeschneidende Betonanker ist vielfältig einsetzbar. Je nach Ausbildungsvariante kann er zur lösbaren temporären Befestigung einer Montageplatte eines Kernbohrgeräts oder eines sonstigen Werkzeugs, zur Befestigung der Montageschiene einer Diamantsäge, zur Befestigung von Absturzsicherungen an Treppen und dergleichen verwendet werden.

Claims

Patentansprüche
1. Gewindeschneidender Betonanker zur selbstfurchenden Verankerung in harten Untergründen wie Beton, Stein, Mauerwerk oder dergleichen, mit einem im wesentlichen zylindrischen Schaft (2), dessen Kerndurchmesser gestuft ausgebildet ist und einen Schneidabschnitt mit einem wendeiförmig umlaufenden Schneidgewinde (9) aufweist, der bezogen auf eine Setzrichtung (S) einen vor- deren Schaftabschnitt (3) mit einem ersten Kerndurchmesser (v) bildet, und einem sich entgegen der Setzrichtung (S) erstreckenden Befestigungsabschnitt, der ein Lastangriffsmittel (11) aufweist und einen rückwärtigen Schaftabschnitt (4) mit einem zweiten Kerndurchmesser (r) bildet, sowie mit einem Angriffsmittel (8) zur Übertragung von Drehmoment an den Schaft (2), dadurch ge- kennzeichnet, dass das wendeiförmig umlaufende Schneidgewinde (9) Gewindeflanken (91, 92) aufweist, die miteinander einen spitzen Winkel (α) einschlie- ssen.
2. Gewindeschneidender Betonanker nach Anspruch 1, dadurch gekennzeichnet, dass der von den Gewindeflanken (91, 92) eingeschlossene Winkel (α) etwa 35° bis etwa 55° beträgt.
3. Gewindeschneidender Betonanker nach Anspruch 2, dadurch gekennzeichnet, dass der von den Gewindeflanken (91, 92) eingeschlossene Winkel (α) etwa 45° beträgt.
4. Gewindeschneidender Betonanker nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein Berührungsbereich (93) der Gewindeflanken (91, 92) mit einem Radius versehen ist, der etwa 0.1 mm bis etwa 1 mm beträgt.
5. Gewindeschneidender Betonanker nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das setzrichtungsseitige Vorderende des Schafts (2) in einem kegelstumpfförmigen Einsteckbereich (7) endet.
6. Gewindeschneidender Betonanker nach Anspruch 5, dadurch gekennzeichnet, dass der kegelstumpfförmige Einsteckbereich (7) gewindefrei ausgebildet ist und das Schneidgewinde (9) im Anschluss an den kegelstumpfförmigen Einsteckbereich (7) einen Gewindeeinlaufbereich (10) aufweist, in dem das Schneidgewinde (9) von der Mantelfläche des Schafts (2) auf einen maximalen radialen Überstand zunimmt.
7. Gewindeschneidender Betonanker nach Anspruch 7, dadurch gekennzeichnet, dass der Geweindeeinlaufbereich (10) sich über einen Winkelbereich von maximal 85° erstreckt.
8. Gewindeschneidender Betonanker nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der mit dem Schneidgewinde (9) ausgestattete vordere Schaftabschnitt (3) einen kleineren Kerndurchmesser (v) aufweist als der mit dem Lastangriffsmittel (11) ausgestattete rückwärtige Schaftabschnitt (4).
9. Gewindeschneidender Betonanker nach Anspruch 8, dadurch gekennzeichnet, dass das Schneidgewinde (9) in seinem Bereich mit maximalem radialem Überstand einen Aussendurchmesser (a) aufweist, der etwa einem Anschluss- durchmesser (d) des rückwärtigen Schaftabschnitts (4) entspricht.
10. Gewindeschneidender Betonanker nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Kerndurchmesser (v) des mit dem Schneidgewinde (9) ausgestatteten vorderen Schaftabschnitts (3) etwa etwa 1 mm bis 5 mm kleiner ist als der Kerndurchmesser (r) des rückwärtigen Schaftabschnitts (4).
11. Gewindeschneidender Betonanker nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der vordere Schaftabschnitt (3) eine gewindeartige Profilierung (12) aufweist, die sich zwischen den Windungen des Schneidgewindes (9) entlang des vorderen Schaftabschnitts (3) erstreckt und einen klei- neren radialen Überstand aufweist als das Schneidgewinde (9).
12. Gewindeschneidender Betonanker nach Anspruch 11, dadurch gekennzeichnet, dass die gewindeartige Profilierung (12) Flanken (121, 122) aufweist, die miteinander einen stumpfen Winkel (ß) einschliessen, der etwa 125° bis etwa 155° beträgt.
13. Gewindeschneidender Betonanker nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die gewindeartige Profilierung (12) eine Steigung aufweist, die einer Steigung des Schneidgewindes (9) entspricht.
14. Gewindeschneidender Betonanker nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der mit dem Schneidgewinde (9) ausgestattete vordere Schaftabschnitt (3) und der mit dem Lastangriffsmittel (11) ausgestattete rückwärtigen Schaftabschnitt (4) durch einen Zwischenabschnitt (5) von- einander getrennt sind.
15. Gewindeschneidender Betonanker nach Anspruch 14, dadurch gekennzeichnet, dass ein dem vorderen Schaftabschnitt (3) näherer Bereich (6) des Zwischenabschnitts (5) in Richtung des Schneidgewindes (9) kegelstumpfförmig erweitert ausgebildet ist.
16. Gewindeschneidender Betonanker nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das im rückwärtigen Schaftabschnitt (4) vorgesehene Lastangriffsmittel (11) von einer gewindeartigen Profilierung der Man- telfläche des Schafts (2) gebildet ist, die sich über einen Grossteil seiner axialen
Länge erstreckt.
17. Gewindeschneidender Betonanker nach Anspruch 16, dadurch gekennzeichnet, dass die gewindeartige Profüierung (11) ein Grobgewinde, beispielsweise ein Rollgewinde oder ein Spindelgewinde, ein metrisches Gewinde, ein Whit- worthgewinde oder ein Feingewinde ist.
18. Gewindeschneidender Betonanker nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Schneidgewinde (9) wenigstens in einem Teil seiner Windungen mit Verschleissmarkierungen (13) ausgebildet ist.
19. Gewindeschneidender Betonanker nach Anspruch 18, dadurch gekennzeichnet, dass die Verschleissmarkierungen (13) von bereichsweise vorgesehenen Aussparungen bzw. Abflachungen der Windungen gebildet sind, die sich vom Umfang des Schneidgewindes (9) radial bis etwa % des maximalen radialen Überstands des Schneidgewindes (9) erstrecken.
20. Gewindeschneidender Betonanker nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass er in einem Rollwalzverfahren hergestellt ist.
21. Gewindeschneidender Betonanker nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Angriffsmittel (8) zur Drehmomentübertragung ein an den rückwärtigen Schaftabschnitt (4) angeformter Ansatz ist, der eine polygone, vorzugsweise regelmässig mehreckige, insbesondere sechseckige, Querschnittskontur aufweist.
22. Gewindeschneidender Betonanker nach einem der Ansprüche 14 - 20, dadurch gekennzeichnet, dass das Angriffsmittel zur Drehmomentübertragung am gewindelosen Zwischenabschnitt ausgebildet ist und eine polygonale, vorzugsweise regelmässig mehreckige, insbesondere sechseckige, Querschnittskontur aufweist.
23. Verwendung eines gewindeschneidenden Betonankers (1) gemäss Patentanspruch 21 oder 22 zur lösbaren temporären Befestigung einer Montageplatte eines Kernbohrgeräts oder eines sonstigen Werkzeugs, zur Befestigung der Montageschiene einer Diamantsäge, zur Befestigung von Absturzsicherungen an Treppen und dergleichen.
PCT/EP2006/007059 2005-07-28 2006-07-18 Gewindeschneidender betonanker WO2007012417A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06776287A EP1907714B1 (de) 2005-07-28 2006-07-18 Gewindeschneidender betonanker
AT06776287T ATE490411T1 (de) 2005-07-28 2006-07-18 Gewindeschneidender betonanker
DE502006008451T DE502006008451D1 (de) 2005-07-28 2006-07-18 Gewindeschneidender betonanker
PL06776287T PL1907714T3 (pl) 2005-07-28 2006-07-18 Gwintująca kotew do betonu

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005035942 2005-07-28
DE102005035942.6 2005-07-28

Publications (1)

Publication Number Publication Date
WO2007012417A1 true WO2007012417A1 (de) 2007-02-01

Family

ID=37076018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/007059 WO2007012417A1 (de) 2005-07-28 2006-07-18 Gewindeschneidender betonanker

Country Status (6)

Country Link
EP (1) EP1907714B1 (de)
AT (1) ATE490411T1 (de)
DE (1) DE502006008451D1 (de)
ES (1) ES2359937T3 (de)
PL (1) PL1907714T3 (de)
WO (1) WO2007012417A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011006015A1 (de) * 2011-03-24 2012-09-27 Hilti Aktiengesellschaft Gewindeschneidsystem
DE102012102466A1 (de) 2011-03-23 2012-09-27 Adnan Fidan Abhebevorrichtung
WO2017162508A3 (de) * 2016-03-24 2017-11-16 Ludwig Hettich Holding Gmbh & Co. Kg Verfahren zur herstellung eines schraubankers mit einem metrischen anschlussgewinde und schraubanker
WO2020165907A1 (en) 2019-02-14 2020-08-20 Yeda Research And Development Co. Ltd. Spt5 inhibitors and uses thereof
EP3940250A1 (de) * 2020-07-14 2022-01-19 Hilti Aktiengesellschaft Hybridschraube mit pufferzone
EP3940249A1 (de) * 2020-07-14 2022-01-19 Hilti Aktiengesellschaft Hybridschraube mit unterteilter keilnut
EP3940248A1 (de) * 2020-07-14 2022-01-19 Hilti Aktiengesellschaft Hybridschraube mit gewinde, das weiter nach hinten reicht als der keil

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB466039A (en) * 1935-11-20 1937-05-20 Christiaan Hendrik Jasper Improvements in and relating to fixing or fastening screws
DE1137197B (de) * 1960-08-09 1962-09-27 Artur Fischer Befestigung von Tuerstockrahmen, Fensterblendrahmen oder aehnlichen Holzbauteilen amMauerwerk mittels Duebel und Schrauben
EP0356019A1 (de) 1988-08-20 1990-02-28 Emhart Inc. Anker zum Befestigen in dichtem Beton, Mauerwerk und ähnlichem
US5531553A (en) * 1990-12-14 1996-07-02 Bickford; Charles Masonry fixing
WO1998004842A1 (de) 1996-07-29 1998-02-05 TOGE-Dübel A. Gerhard KG Selbstschneidende schraube, insbesondere betonschraube
EP0905389A2 (de) 1997-09-25 1999-03-31 TOGE-Dübel A. Gerhard KG Betonschraube
DE20005166U1 (de) 2000-03-21 2000-06-08 Toge Duebel A Gerhard Kg Befestigungs-Einrichtung
EP1233194A2 (de) 2001-02-19 2002-08-21 HILTI Aktiengesellschaft Betonschraube
JP2005083523A (ja) * 2003-09-10 2005-03-31 Sugano Masato 連結ねじ金具
US20050129484A1 (en) * 2002-05-01 2005-06-16 Joker Industrial Co., Ltd. Anchoring screw with double heads and triple threads of different depths of thread

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB466039A (en) * 1935-11-20 1937-05-20 Christiaan Hendrik Jasper Improvements in and relating to fixing or fastening screws
DE1137197B (de) * 1960-08-09 1962-09-27 Artur Fischer Befestigung von Tuerstockrahmen, Fensterblendrahmen oder aehnlichen Holzbauteilen amMauerwerk mittels Duebel und Schrauben
EP0356019A1 (de) 1988-08-20 1990-02-28 Emhart Inc. Anker zum Befestigen in dichtem Beton, Mauerwerk und ähnlichem
US5531553A (en) * 1990-12-14 1996-07-02 Bickford; Charles Masonry fixing
WO1998004842A1 (de) 1996-07-29 1998-02-05 TOGE-Dübel A. Gerhard KG Selbstschneidende schraube, insbesondere betonschraube
EP0905389A2 (de) 1997-09-25 1999-03-31 TOGE-Dübel A. Gerhard KG Betonschraube
DE20005166U1 (de) 2000-03-21 2000-06-08 Toge Duebel A Gerhard Kg Befestigungs-Einrichtung
EP1233194A2 (de) 2001-02-19 2002-08-21 HILTI Aktiengesellschaft Betonschraube
US20050129484A1 (en) * 2002-05-01 2005-06-16 Joker Industrial Co., Ltd. Anchoring screw with double heads and triple threads of different depths of thread
JP2005083523A (ja) * 2003-09-10 2005-03-31 Sugano Masato 連結ねじ金具

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012102466A1 (de) 2011-03-23 2012-09-27 Adnan Fidan Abhebevorrichtung
AT511276A3 (de) * 2011-03-23 2013-06-15 Fidan Abhebevorrichtung
DE102011006015A1 (de) * 2011-03-24 2012-09-27 Hilti Aktiengesellschaft Gewindeschneidsystem
WO2017162508A3 (de) * 2016-03-24 2017-11-16 Ludwig Hettich Holding Gmbh & Co. Kg Verfahren zur herstellung eines schraubankers mit einem metrischen anschlussgewinde und schraubanker
DE102016105622B4 (de) 2016-03-24 2022-01-13 Ludwig Hettich Holding Gmbh & Co. Kg Verfahren zur Herstellung eines Schraubankers mit einem metrischen Anschlussgewinde
WO2020165907A1 (en) 2019-02-14 2020-08-20 Yeda Research And Development Co. Ltd. Spt5 inhibitors and uses thereof
EP3940250A1 (de) * 2020-07-14 2022-01-19 Hilti Aktiengesellschaft Hybridschraube mit pufferzone
EP3940249A1 (de) * 2020-07-14 2022-01-19 Hilti Aktiengesellschaft Hybridschraube mit unterteilter keilnut
EP3940248A1 (de) * 2020-07-14 2022-01-19 Hilti Aktiengesellschaft Hybridschraube mit gewinde, das weiter nach hinten reicht als der keil
WO2022012974A1 (en) * 2020-07-14 2022-01-20 Hilti Aktiengesellschaft Hybrid screw with compartmentalized wedge groove
WO2022012976A1 (en) * 2020-07-14 2022-01-20 Hilti Aktiengesellschaft Hybrid screw with buffer zone
WO2022012975A1 (en) * 2020-07-14 2022-01-20 Hilti Aktiengesellschaft Hybrid screw, with thread reaching further back than wedge

Also Published As

Publication number Publication date
DE502006008451D1 (de) 2011-01-13
EP1907714A1 (de) 2008-04-09
PL1907714T3 (pl) 2011-05-31
EP1907714B1 (de) 2010-12-01
ES2359937T3 (es) 2011-05-30
ATE490411T1 (de) 2010-12-15

Similar Documents

Publication Publication Date Title
EP2233757B1 (de) Verfahren zur Verankerung eines Befestigungselementes in einem mineralischen Bauteil
DE2607338C2 (de) Schlagdübel mit Spreizhülse und Spreizelement
DE60124046T2 (de) Mauerwerkanker mit selbstschneidendem Gewinde
EP0068227B1 (de) Ankerbolzen
EP2048382B1 (de) Befestigungselement
EP1892425A2 (de) Befestigungselement für harte Untergründe
DE2721911A1 (de) Selbstbohrende und selbstschneidende mauerwerkverankerung
EP1907714B1 (de) Gewindeschneidender betonanker
EP0955476A2 (de) Selbstschneidende Schraube zum Einsatz in Vollbaustoffen
DE19615191C5 (de) Schraube und Verfahren zur drehmomentbegrenzten Befestigung von Metall- und/oder Kunststoffprofilen oder -platten auf einem Unterbau
DE60300630T2 (de) Tief einführbarer und entfernbarer Anker
DE102006000539A1 (de) Befestigungselement
EP1285172B1 (de) Gewindefurchender, hülsenförmiger schraubdübel
WO2008141693A1 (de) Gewindeschneidende betonschraube und anordnung mit einer solchen betonschraube
EP2511541B1 (de) Gewindeschneidende Schraube
DE3139174C2 (de) Ankerbolzen
DE19944217A1 (de) Bolzenanker
WO2003014583A1 (de) Spreizdübel
DE3633628A1 (de) Verankerungselement, insbesondere duebel
DE19743054A1 (de) Schraubanker
EP0284894A1 (de) Befestigungseinrichtung mit Schraube und Impulswerkzeug für universelle Befestigungen
EP0470470A2 (de) Dübel mit einer Dübelhülse
DE102010031410A1 (de) Selbstzentrierende Schraube
WO2005108803A1 (de) Einschlaganker
DE102004052184A1 (de) Nageldübel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006776287

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006776287

Country of ref document: EP