WO2007010664A1 - Exhaust purification apparatus - Google Patents
Exhaust purification apparatus Download PDFInfo
- Publication number
- WO2007010664A1 WO2007010664A1 PCT/JP2006/309600 JP2006309600W WO2007010664A1 WO 2007010664 A1 WO2007010664 A1 WO 2007010664A1 JP 2006309600 W JP2006309600 W JP 2006309600W WO 2007010664 A1 WO2007010664 A1 WO 2007010664A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust
- flow rate
- catalyst
- exhaust gas
- temperature
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9431—Processes characterised by a specific device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9495—Controlling the catalytic process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
- F01N11/002—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0093—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0097—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/011—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/105—General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
- F01N3/106—Auxiliary oxidation catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2053—By-passing catalytic reactors, e.g. to prevent overheating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/206—Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/06—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/07—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas flow rate or velocity meter or sensor, intake flow meters only when exclusively used to determine exhaust gas parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to an exhaust gas purification apparatus that reduces and purifies nitrogen oxides (NOx) in exhaust gas, and particularly relates to a technique for improving the NOx purification rate.
- NOx nitrogen oxides
- Patent Document 1 As a catalyst purification system for purifying NOx in engine exhaust, an exhaust purification device described in JP 2000-27627 A (Patent Document 1) has been proposed.
- the exhaust purifier is a catalyst that removes NOx and reducing agent in the exhaust gas by injecting and supplying a reducing agent according to the engine operating condition to the upstream side of the exhaust of the reducing catalyst installed in the engine exhaust pipe.
- a reduction reaction is performed to purify NOx into harmless components.
- the reduction reaction uses ammonia having good reactivity with NOx, and as the reducing agent, an aqueous urea solution that generates ammonia by hydrolysis with exhaust heat and steam in the exhaust is used.
- Patent Document 1 JP 2000-27627 A
- the NOx purification rate due to the reduction catalyst decreased, and exhaust that was not sufficiently purified could be discharged into the atmosphere.
- light oil, gasoline, alcohol, and other fuels are used as reducing agents.
- there is a possibility that the same problem as in the exhaust gas purification device using an aqueous urea solution as a reducing agent may occur.
- the present invention controls the ratio of NO to NO in the exhaust gas introduced into the reduction catalyst by appropriately controlling the exhaust gas flow rate through which the oxidation catalyst passes.
- An object of the present invention is to provide an exhaust purification device that is close to a predetermined ratio and has an improved NOx purification rate in a wide range of operation.
- the exhaust emission control device is arranged in an engine exhaust pipe, and a reduction catalyst for reducing and reducing NOx, and each branch pipe branched into a plurality of exhaust pipes located upstream of the exhaust gas Plural acids with different oxidation capacities that are each arranged to oxidize NO to NO
- a catalyst a flow control valve capable of controlling the exhaust flow divided into each branch pipe independently and in multiple stages, an exhaust flow sensor for detecting the volume flow of the exhaust, a temperature sensor for detecting the catalyst temperature of the oxidation catalyst, and an exhaust Based on the volume flow rate of the catalyst and the catalyst temperature of the oxidation catalyst, the flow rate control valve is controlled so that the ratio of NO to NO in the exhaust gas introduced into the reduction catalyst approaches a predetermined ratio.
- the predetermined ratio for effectively promoting the NOx reduction reaction in the reducing catalyst is a ratio suitable for the NOx reduction reaction by the reduction catalyst.
- an oxidation catalyst is provided in one of the branch pipes branched into two exhaust pipes located upstream of the exhaust of the reduction catalyst.
- a plurality of acid catalysts having different acid capacities may be arranged on the branch pipes except at least one of the branch pipes.
- the flow rate control valve is controlled based on the exhaust gas volume flow rate and the catalyst temperature of the oxidation catalyst, which are closely related to the oxidation capability of the oxidation catalyst, and each branch pipe
- the flow rate of the exhaust gas divided into two is controlled independently and in multiple stages. For this reason, the flow rate of exhaust gas passing through the oxidation catalyst is appropriately controlled, and exhaust gases with different ratios of NO and NO are mixed.
- the ratio of NO to NO in the exhaust gas introduced into the reduction catalyst approaches the specified ratio.
- the NOx purification rate can be improved in a wide range of operation.
- FIG. 1 is a configuration diagram showing a first embodiment of an exhaust emission control device according to the present invention.
- FIG. 2 is a flowchart showing the contents of control of the exhaust gas purification device.
- FIG. 3 is a configuration diagram showing a second embodiment of the exhaust purification apparatus according to the present invention. Explanation of symbols
- an exhaust nozzle 12 connected to the engine 10 is supplied with an injection nozzle 14 for supplying an aqueous urea solution functioning as a reducing agent along the exhaust flow direction, and an aqueous urea solution.
- NOx reduction catalyst 16 for reducing and purifying NOx with ammonia obtained by hydrolyzing NOx, and ammonia oxidation catalyst 18 for oxidizing ammonia that has passed through NOx reduction catalyst 16 are provided, respectively.
- the spray nozzle 14 is supplied with a urea aqueous solution corresponding to the engine operating state in a sprayed state mixed with air.
- Each of the branch pipes 12A and 12B branching the exhaust pipe 12 located upstream of the six exhaust pipes 12A and 12B is an electromagnetic type whose exhaust passage area (opening) can be controlled in multiple stages along the exhaust flow direction.
- the oxidation catalysts 22A and 22B disposed in the branch pipes 12A and 12B have different acidifying capacities.
- a low-temperature oxidation catalyst that exhibits good oxidation ability at a low temperature where the catalyst temperature is less than a predetermined value, and a high-temperature oxidation catalyst that exhibits good oxidation ability at a high temperature where the catalyst temperature is higher than a predetermined value can be used.
- an exhaust gas temperature sensor 24 that indirectly detects the catalyst temperature T from the exhaust gas temperature upstream of the oxidation catalysts 22A and 22B, and a mass flow rate Fi of the intake air are detected.
- an air flow sensor 26 is provided.
- Each output signal from the exhaust temperature sensor 24 and the airflow sensor 26 is input to a control unit 28 with a built-in computer and introduced into the NOx reduction catalyst 16 by a control program stored in its ROM (Read Only Memory).
- the ratio of NO to NO in the exhaust gas is a predetermined ratio
- the flow rate control valves 20A and 20B are controlled so as to approach
- the control unit 28 is connected to the engine control unit 30 that performs fuel injection control of the engine 10 via CAN (Controller Area Network) and the like so as to be able to communicate with each other, so that the fuel consumption rate C can be read appropriately.
- CAN Controller Area Network
- the exhaust flow sensor is configured by the cooperation of the air flow sensor 26, the control unit 28, and the engine control unit 30.
- FIG. 2 shows the contents of a control program that is repeatedly executed at predetermined time intervals in the control unit 28.
- step 1 the catalyst temperature T of the acid catalyst 22A and 22B is read from the exhaust temperature sensor 24.
- the catalyst temperature T is indirectly detected from the exhaust gas temperature upstream of the exhaust gas, there is no need to attach a temperature sensor to the oxidation catalysts 22A and 22B.
- the oxidation catalysts 22A and 22B are partially Even at high temperatures, it can be prevented from being affected by the heat.
- Step 2 the intake air mass flow Fi is read from the air flow sensor 26.
- step 3 the engine control unit 30 power also reads the fuel consumption rate C.
- step 4 based on the mass flow rate Fi of the intake air and the fuel consumption rate C, the volume flow rate Fe of the exhaust gas is calculated from a predetermined calculation formula.
- the exhaust volume flow rate Fe is indirectly detected from the intake mass flow rate Fi and the fuel consumption rate C, for example, the exhaust volume does not get dirty by the exhaust gas for many years.
- the flow rate Fe can be detected stably.
- step 5 a control value corresponding to the catalyst temperature T and the volume flow rate Fe is calculated with reference to a map in which control values corresponding to the exhaust volume flow rate and the catalyst temperature of the oxidation catalyst are set.
- the control values can be the opening ⁇ and ⁇ of the flow control valves 20A and 20B.
- control values of the flow control valves 20A and 20B are calculated with reference to the map, an increase in processing load related to the flow control can be suppressed.
- step 6 the flow control valves 20A and 20B are controlled according to the control value.
- the exhaust volume flow rate Fe and the catalyst temperature T of the oxidation catalysts 22A and 22B are used as a map.
- the control value (opening) corresponding to the volume flow rate Fe and the catalyst temperature T is calculated.
- the flow rate control valves 20A and 20B are controlled based on the control value, respectively, and the exhaust flow rate divided into the branch pipes 12A and 12B is controlled independently and in multiple stages. For this reason, if appropriate control values are set in the map through experiments, etc., NO and NO
- the ratio of NO to NO in the exhaust can be determined by appropriately mixing the exhaust with different ratios to 2.
- the fixed rate can be approached and the NOx purification rate can be improved in a wide range of operation.
- urea aqueous solution injected and supplied together with air upstream of the NOx reduction catalyst 16 in the exhaust state is hydrolyzed by the exhaust heat and water vapor in the exhaust to become ammonia (NH).
- NOx reduction catalyst 16 Supplied to the NOx reduction catalyst 16.
- NOx in the exhaust gas undergoes a reduction reaction with ammonia to form harmless water (H 2 O) and nitrogen (N 2) into the atmosphere.
- the branch pipe 12B located below is provided with an electromagnetic flow control valve 34 capable of controlling the exhaust passage area (opening) in multiple stages.
- an electromagnetic flow control valve 34 capable of controlling the exhaust passage area (opening) in multiple stages.
- the oxidation catalyst 32 for example, a catalyst that exhibits a good acidity ability in a frequently used engine operating state can be used.
- the control program for controlling the flow control valve 34 the one shown in FIG. 2 can be used as it is, with only a slight change in the map in the first embodiment.
- NO and NO in the exhaust gas are mixed appropriately with exhaust gas that has not been oxidized.
- the ratio of 2 approaches the predetermined ratio, and the NOx purification rate can be improved in a wide range of operation.
- the exhaust pipe is branched into two by two branch pipes.
- the present invention can also be applied to a configuration in which the exhaust pipe is branched into a plurality of branches by three or more branch pipes. In this way, the ratio of NO to NO in the exhaust introduced into the NOx reduction catalyst can be finely changed regardless of the engine operating condition.
- the NOx purification rate can be further improved.
- the flow rate of the exhaust gas diverted to each branch pipe may be controlled by a single flow rate control valve disposed at the branch portion of the exhaust pipe.
- the reducing agent various fuels such as light oil, gasoline, alcohols and the like mainly containing hydrocarbons may be used according to the reduction reaction in the NOx reduction catalyst.
- the ratio force between NO and NO in the exhaust gas introduced into the NOx reduction catalyst approaches a predetermined ratio suitable for the NOx reduction reaction by the NOx reduction catalyst.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Not only is a reduction catalyst capable of reduction purification of NOx disposed in an engine exhaust pipe but also in two pipes branched from the exhaust pipe positioned in the exhaust upstream, there are respectively disposed plural oxidation catalysts differing from each other in the capacity of oxidation of NO to NO2. A control unit appropriately controls a flow rate control valve capable of independent and multistaged control of exhaust flow rates to the branched pipes on the basis of exhaust volume flow rate and oxidation catalyst temperature so that the ratio between NO and NO2 in the exhaust led to the reduction catalyst approaches a given ratio.
Description
明 細 書 Specification
排気浄化装置 Exhaust purification device
技術分野 Technical field
[0001] 本発明は、排気中の窒素酸ィ匕物 (NOx)を還元浄ィ匕する排気浄ィ匕装置において、 特に、 NOx浄ィ匕率を向上させる技術に関する。 TECHNICAL FIELD [0001] The present invention relates to an exhaust gas purification apparatus that reduces and purifies nitrogen oxides (NOx) in exhaust gas, and particularly relates to a technique for improving the NOx purification rate.
背景技術 Background art
[0002] エンジン排気中の NOxを浄化する触媒浄化システムとして、特開 2000— 27627 号公報 (特許文献 1)に記載された排気浄ィ匕装置が提案されている。カゝかる排気浄ィ匕 装置は、エンジン排気管に配設された還元触媒の排気上流に、エンジン運転状態に 応じた還元剤を噴射供給することで、排気中の NOxと還元剤とを触媒還元反応させ て、 NOxを無害成分に浄ィ匕処理するものである。ここで、還元反応は、 NOxと反応 性が良好なアンモニアを用いるもので、還元剤としては、排気熱及び排気中の水蒸 気により加水分解してアンモニアを発生する尿素水溶液が用いられる。 As a catalyst purification system for purifying NOx in engine exhaust, an exhaust purification device described in JP 2000-27627 A (Patent Document 1) has been proposed. The exhaust purifier is a catalyst that removes NOx and reducing agent in the exhaust gas by injecting and supplying a reducing agent according to the engine operating condition to the upstream side of the exhaust of the reducing catalyst installed in the engine exhaust pipe. A reduction reaction is performed to purify NOx into harmless components. Here, the reduction reaction uses ammonia having good reactivity with NOx, and as the reducing agent, an aqueous urea solution that generates ammonia by hydrolysis with exhaust heat and steam in the exhaust is used.
特許文献 1:特開 2000— 27627号公報 Patent Document 1: JP 2000-27627 A
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0003] ところで、アンモニアを還元剤として用いる排気浄ィ匕装置では、排気中の一酸化窒 素 (NO)と二酸ィ匕窒素 (NO [0003] By the way, in an exhaust gas purification apparatus using ammonia as a reducing agent, nitrogen monoxide (NO) and dioxygen nitrogen (NO) in the exhaust gas are used.
2 )との割合がある所定割合のときに、還元触媒による NO 2) When the ratio of
X净ィ匕率が最良となることが知られている。このため、還元触媒の排気上流に配設し た酸ィ匕触媒により排気中の NOを酸ィ匕し、還元触媒に導入される排気中の NOと NO It is known that the X rate is the best. For this reason, NO in the exhaust is oxidized by the acid catalyst installed upstream of the reduction catalyst, and the NO and NO in the exhaust introduced into the reduction catalyst are oxidized.
2 との割合を改善する技術が開発された。 Technology to improve the ratio of 2 was developed.
[0004] し力しながら、排気中の NOと NOとの割合はエンジン運転状態に応じて大きく変 [0004] However, the ratio of NO to NO in the exhaust gas varies greatly depending on the engine operating condition.
2 2
化する一方、酸化触媒による NOを NOへと酸化させる酸化能力は大きく変化しない On the other hand, the oxidation ability to oxidize NO to NO by the oxidation catalyst does not change significantly
2 2
ため、広範な運転領域で NOと NOとの割合を所定割合に近づけることは困難であつ Therefore, it is difficult to bring the ratio of NO and NO close to the predetermined ratio in a wide range of operation.
2 2
た。そして、排気中の NOと NOとの割合が所定割合となっていない運転領域では、 It was. And in the operating range where the ratio of NO to NO in the exhaust is not a predetermined ratio,
2 2
還元触媒による NOx浄ィ匕率が低下し、浄化が不十分な排気が大気中に排出されて しまうおそれがあった。また、燃料である軽油,ガソリン,アルコール類などを還元剤と
して用いる排気浄ィ匕装置もあるが、尿素水溶液を還元剤として用いる排気浄ィ匕装置 と同様な問題が発生するおそれがあった。 The NOx purification rate due to the reduction catalyst decreased, and exhaust that was not sufficiently purified could be discharged into the atmosphere. In addition, light oil, gasoline, alcohol, and other fuels are used as reducing agents. However, there is a possibility that the same problem as in the exhaust gas purification device using an aqueous urea solution as a reducing agent may occur.
[0005] そこで、本発明は以上のような従来の問題点に鑑み、酸化触媒を通過させる排気 流量を適宜制御することで、還元触媒に導入される排気中の NOと NOとの割合を [0005] In view of the above-described conventional problems, the present invention controls the ratio of NO to NO in the exhaust gas introduced into the reduction catalyst by appropriately controlling the exhaust gas flow rate through which the oxidation catalyst passes.
2 2
所定割合に近づけ、広範な運転領域で NOx浄化率を向上させた排気浄化装置を 提供することを目的とする。 An object of the present invention is to provide an exhaust purification device that is close to a predetermined ratio and has an improved NOx purification rate in a wide range of operation.
課題を解決するための手段 Means for solving the problem
[0006] このため、本発明に係る排気浄化装置は、エンジン排気管に配設され、 NOxを還 元浄化する還元触媒と、その排気上流に位置する排気管を複数に分岐した各分岐 管に夫々配設され、 NOを NOへと酸化させる酸化能力が相互に異なる複数の酸ィ匕 [0006] For this reason, the exhaust emission control device according to the present invention is arranged in an engine exhaust pipe, and a reduction catalyst for reducing and reducing NOx, and each branch pipe branched into a plurality of exhaust pipes located upstream of the exhaust gas Plural acids with different oxidation capacities that are each arranged to oxidize NO to NO
2 2
触媒と、各分岐管に分流する排気流量を独立かつ多段階に制御可能な流量制御弁 と、排気の体積流量を検出する排気流量センサと、酸化触媒の触媒温度を検出する 温度センサと、排気の体積流量及び酸化触媒の触媒温度に基づいて、還元触媒に 導入される排気中の NOと NOとの割合が所定割合に近づくように流量制御弁を制 A catalyst, a flow control valve capable of controlling the exhaust flow divided into each branch pipe independently and in multiple stages, an exhaust flow sensor for detecting the volume flow of the exhaust, a temperature sensor for detecting the catalyst temperature of the oxidation catalyst, and an exhaust Based on the volume flow rate of the catalyst and the catalyst temperature of the oxidation catalyst, the flow rate control valve is controlled so that the ratio of NO to NO in the exhaust gas introduced into the reduction catalyst approaches a predetermined ratio.
2 2
御するコントロールユニットと、を含んで構成されたことを特徴とする。ここで、還元触 媒における NOxの還元反応を効果的に促進すベぐ所定割合としては、還元触媒に よる NOxの還元反応に適合した割合とすることが望ましい。 And a control unit to be controlled. Here, it is desirable that the predetermined ratio for effectively promoting the NOx reduction reaction in the reducing catalyst is a ratio suitable for the NOx reduction reaction by the reduction catalyst.
[0007] また、各分岐管に酸化触媒を夫々配設する構成に代えて、還元触媒の排気上流 に位置する排気管を 2つに分岐した分岐管の一方に酸ィ匕触媒を配設したり、各分岐 管のうち少なくとも 1つを除いた分岐管に、酸ィ匕能力が相互に異なる複数の酸ィ匕触 媒を夫々配設するようにしてもょ ヽ。 [0007] Further, instead of a configuration in which an oxidation catalyst is provided in each branch pipe, an oxidation catalyst is provided in one of the branch pipes branched into two exhaust pipes located upstream of the exhaust of the reduction catalyst. Alternatively, a plurality of acid catalysts having different acid capacities may be arranged on the branch pipes except at least one of the branch pipes.
発明の効果 The invention's effect
[0008] 本発明に係る排気浄化装置によれば、酸化触媒の酸化能力と密接な関連がある 排気の体積流量及び酸化触媒の触媒温度に基づ 、て流量制御弁が制御され、各 分岐管に分流する排気流量が独立かつ多段階に制御される。このため、酸化触媒を 通過する排気流量が適宜制御され、 NOと NOとの割合が相互に異なる排気を混合 [0008] According to the exhaust emission control device of the present invention, the flow rate control valve is controlled based on the exhaust gas volume flow rate and the catalyst temperature of the oxidation catalyst, which are closely related to the oxidation capability of the oxidation catalyst, and each branch pipe The flow rate of the exhaust gas divided into two is controlled independently and in multiple stages. For this reason, the flow rate of exhaust gas passing through the oxidation catalyst is appropriately controlled, and exhaust gases with different ratios of NO and NO are mixed.
2 2
することで、還元触媒に導入される排気中の NOと NOとの割合が所定割合に近づき As a result, the ratio of NO to NO in the exhaust gas introduced into the reduction catalyst approaches the specified ratio.
2 2
、広範な運転領域において NOx浄ィ匕率を向上させることができる。
図面の簡単な説明 The NOx purification rate can be improved in a wide range of operation. Brief Description of Drawings
[0009] [図 1]図 1は、本発明に係る排気浄化装置の第 1実施形態を示す構成図である。 [0009] FIG. 1 is a configuration diagram showing a first embodiment of an exhaust emission control device according to the present invention.
[図 2]図 2は、排気浄ィ匕装置の制御内容を示すフローチャートである。 FIG. 2 is a flowchart showing the contents of control of the exhaust gas purification device.
[図 3]図 3は、本発明に係る排気浄化装置の第 2実施形態を示す構成図である。 符号の説明 FIG. 3 is a configuration diagram showing a second embodiment of the exhaust purification apparatus according to the present invention. Explanation of symbols
10 エンジン 10 engine
12 排気管 12 Exhaust pipe
12A 分岐管 12A branch pipe
12B 分岐管 12B branch pipe
16 NOx還元触媒 16 NOx reduction catalyst
20A 流量制御弁 20A flow control valve
20B 流量制御弁 20B Flow control valve
22A 酸化触媒 22A oxidation catalyst
22B 酸化触媒 22B oxidation catalyst
24 排気温度センサ 24 Exhaust temperature sensor
26 エアフローセンサ 26 Air flow sensor
28 : πン卜ロールュ-ッ卜 28: Pioneer roll tree
30 エンジンコントローノレユニット 30 Engine control unit
32 酸化触媒 32 Oxidation catalyst
34 流量制御弁 34 Flow control valve
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、添付された図面を参照して本発明を詳述する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
本発明の第 1実施形態を示す図 1において、エンジン 10に接続される排気管 12に は、排気流通方向に沿って、還元剤として機能する尿素水溶液を噴射供給する噴射 ノズル 14と、尿素水溶液を加水分解して得られるアンモニアにより NOxを還元浄ィ匕 する NOx還元触媒 16と、 NOx還元触媒 16を通過したアンモニアを酸ィ匕させるアン モ-ァ酸化触媒 18と、が夫々配設される。噴射ノズル 14には、エンジン運転状態に 応じた尿素水溶液が空気と混合した噴霧状態で供給される。また、 NOx還元触媒 1
6の排気上流に位置する排気管 12を 2つに分岐した各分岐管 12A及び 12Bには、 排気流通方向に沿って、その排気通路面積(開度)を多段階に制御可能な電磁式の 流量制御弁 20A及び 20Bと、排気中の NOを NOへと酸化させる酸化触媒 22A及 In FIG. 1 showing the first embodiment of the present invention, an exhaust nozzle 12 connected to the engine 10 is supplied with an injection nozzle 14 for supplying an aqueous urea solution functioning as a reducing agent along the exhaust flow direction, and an aqueous urea solution. NOx reduction catalyst 16 for reducing and purifying NOx with ammonia obtained by hydrolyzing NOx, and ammonia oxidation catalyst 18 for oxidizing ammonia that has passed through NOx reduction catalyst 16 are provided, respectively. . The spray nozzle 14 is supplied with a urea aqueous solution corresponding to the engine operating state in a sprayed state mixed with air. NOx reduction catalyst 1 Each of the branch pipes 12A and 12B branching the exhaust pipe 12 located upstream of the six exhaust pipes 12A and 12B is an electromagnetic type whose exhaust passage area (opening) can be controlled in multiple stages along the exhaust flow direction. Flow control valves 20A and 20B and oxidation catalyst 22A that oxidizes NO in the exhaust to NO
2 2
び 22Bと、が夫々配設される。各分岐管 12A及び 12Bに配設された酸化触媒 22A 及び 22Bは、相互に異なる酸ィ匕能力を有するものであって、例えば、図中上方及び 下方に位置する酸化触媒 22A及び 22Bとしては、夫々、触媒温度が所定値未満の 低温で良好な酸化能力を発揮する低温酸化触媒、触媒温度が所定値以上の高温 で良好な酸化能力を発揮する高温酸化触媒を用いることができる。 And 22B, respectively. The oxidation catalysts 22A and 22B disposed in the branch pipes 12A and 12B have different acidifying capacities. For example, as the oxidation catalysts 22A and 22B located at the upper side and the lower side in the figure, A low-temperature oxidation catalyst that exhibits good oxidation ability at a low temperature where the catalyst temperature is less than a predetermined value, and a high-temperature oxidation catalyst that exhibits good oxidation ability at a high temperature where the catalyst temperature is higher than a predetermined value can be used.
[0012] 一方、排気浄ィ匕装置の制御系として、酸化触媒 22A及び 22Bの排気上流における 排気温度から触媒温度 Tを間接的に検出する排気温度センサ 24と、吸気の質量流 量 Fiを検出するエアフローセンサ 26と、が夫々設けられる。そして、排気温度センサ 24及びエアフローセンサ 26からの各出力信号は、コンピュータを内蔵したコントロー ルユニット 28に入力され、その ROM (Read Only Memory)に記憶された制御プログ ラムにより、 NOx還元触媒 16に導入される排気中の NOと NOとの割合が所定割合 [0012] On the other hand, as a control system for the exhaust gas purification device, an exhaust gas temperature sensor 24 that indirectly detects the catalyst temperature T from the exhaust gas temperature upstream of the oxidation catalysts 22A and 22B, and a mass flow rate Fi of the intake air are detected. And an air flow sensor 26 is provided. Each output signal from the exhaust temperature sensor 24 and the airflow sensor 26 is input to a control unit 28 with a built-in computer and introduced into the NOx reduction catalyst 16 by a control program stored in its ROM (Read Only Memory). The ratio of NO to NO in the exhaust gas is a predetermined ratio
2 2
に近づくように、流量制御弁 20A及び 20Bが夫々制御される。また、コントロールュ ニット 28は、 CAN (Controller Area Network)などを介して、エンジン 10の燃料噴射 制御などを行なうエンジンコントロールユニット 30と相互通信可能に接続され、燃料 消費率 Cを適宜読み込み可能に構成されている。なお、エアフローセンサ 26,コント ロールユニット 28及びエンジンコントロールユニット 30の協働により排気流量センサ が構成される。 The flow rate control valves 20A and 20B are controlled so as to approach In addition, the control unit 28 is connected to the engine control unit 30 that performs fuel injection control of the engine 10 via CAN (Controller Area Network) and the like so as to be able to communicate with each other, so that the fuel consumption rate C can be read appropriately. Has been. The exhaust flow sensor is configured by the cooperation of the air flow sensor 26, the control unit 28, and the engine control unit 30.
[0013] 図 2は、コントロールユニット 28において、所定時間ごとに繰り返し実行される制御 プログラムの内容を示す。 FIG. 2 shows the contents of a control program that is repeatedly executed at predetermined time intervals in the control unit 28.
ステップ 1 (図では「S1」と略記する。以下同様)では、排気温度センサ 24から酸ィ匕 触媒 22A及び 22Bの触媒温度 Tを読み込む。ここで、触媒温度 Tは、その排気上流 における排気温度から間接的に検出されるため、酸化触媒 22A及び 22Bに温度セ ンサなどを付設する必要がなぐ例えば、酸化触媒 22A及び 22Bが部分的に高温と なってもその熱影響を受けることを防止できる。 In step 1 (abbreviated as “S1” in the figure, the same applies hereinafter), the catalyst temperature T of the acid catalyst 22A and 22B is read from the exhaust temperature sensor 24. Here, since the catalyst temperature T is indirectly detected from the exhaust gas temperature upstream of the exhaust gas, there is no need to attach a temperature sensor to the oxidation catalysts 22A and 22B. For example, the oxidation catalysts 22A and 22B are partially Even at high temperatures, it can be prevented from being affected by the heat.
[0014] ステップ 2では、エアフローセンサ 26から吸気の質量流量 Fiを読み込む。
ステップ 3では、エンジンコントロールユニット 30力も燃料消費率 Cを読み込む。 ステップ 4では、吸気の質量流量 Fi及び燃料消費率 Cに基づいて、所定演算式か ら排気の体積流量 Feを演算する。ここで、排気の体積流量 Feは、吸気の質量流量 Fi 及び燃料消費率 Cから間接的に検出されるため、例えば、排気により流量センサの 検出部が汚れることがなぐ長年に亘つて排気の体積流量 Feを安定して検出すること ができる。 In Step 2, the intake air mass flow Fi is read from the air flow sensor 26. In step 3, the engine control unit 30 power also reads the fuel consumption rate C. In step 4, based on the mass flow rate Fi of the intake air and the fuel consumption rate C, the volume flow rate Fe of the exhaust gas is calculated from a predetermined calculation formula. Here, since the exhaust volume flow rate Fe is indirectly detected from the intake mass flow rate Fi and the fuel consumption rate C, for example, the exhaust volume does not get dirty by the exhaust gas for many years. The flow rate Fe can be detected stably.
[0015] ステップ 5では、排気の体積流量及び酸化触媒の触媒温度に対応した制御値が設 定されたマップを参照し、触媒温度 T及び体積流量 Feに応じた制御値を演算する。 ここで、制御値としては、流量制御弁 20A及び 20Bの開度 Θ 及び Θ とすることがで In step 5, a control value corresponding to the catalyst temperature T and the volume flow rate Fe is calculated with reference to a map in which control values corresponding to the exhaust volume flow rate and the catalyst temperature of the oxidation catalyst are set. Here, the control values can be the opening Θ and Θ of the flow control valves 20A and 20B.
1 2 1 2
きる。なお、流量制御弁 20A及び 20Bの制御値は、マップを参照して演算されるため 、流量制御に係る処理負荷増加を抑制することができる。 wear. Since the control values of the flow control valves 20A and 20B are calculated with reference to the map, an increase in processing load related to the flow control can be suppressed.
[0016] ステップ 6では、制御値に応じて流量制御弁 20A及び 20Bを夫々制御する。 [0016] In step 6, the flow control valves 20A and 20B are controlled according to the control value.
カゝかる構成によれば、吸気の質量流量 Fi及び燃料消費率 Cから排気の体積流量 F eが演算された後、排気の体積流量 Fe並びに酸化触媒 22A及び 22Bの触媒温度 T をキーとしてマップを参照し、体積流量 Fe及び触媒温度 Tに対応した制御値(開度) が演算される。そして、制御値に基づいて流量制御弁 20A及び 20Bが夫々制御され 、各分岐管 12A及び 12Bに分流される排気流量が独立かつ多段階に制御される。こ のため、実験などを通してマップに適切な制御値を設定しておけば、 NOと NO According to the construction, after the exhaust gas volume flow rate Fe is calculated from the intake mass flow rate Fi and the fuel consumption rate C, the exhaust volume flow rate Fe and the catalyst temperature T of the oxidation catalysts 22A and 22B are used as a map. The control value (opening) corresponding to the volume flow rate Fe and the catalyst temperature T is calculated. Then, the flow rate control valves 20A and 20B are controlled based on the control value, respectively, and the exhaust flow rate divided into the branch pipes 12A and 12B is controlled independently and in multiple stages. For this reason, if appropriate control values are set in the map through experiments, etc., NO and NO
2との 割合が相互に異なる排気を適宜混合することで、排気中の NOと NOとの割合が所 The ratio of NO to NO in the exhaust can be determined by appropriately mixing the exhaust with different ratios to 2.
2 2
定割合に近づき、広範な運転領域において、 NOx浄ィ匕率を向上させることができる The fixed rate can be approached and the NOx purification rate can be improved in a wide range of operation.
[0017] また、 NOx還元触媒 16の排気上流に空気と共に噴霧状態で噴射供給された尿素 水溶液は、排気熱及び排気中の水蒸気により加水分解してアンモニア (NH )となり [0017] Further, the urea aqueous solution injected and supplied together with air upstream of the NOx reduction catalyst 16 in the exhaust state is hydrolyzed by the exhaust heat and water vapor in the exhaust to become ammonia (NH).
3 Three
、 NOx還元触媒 16へと供給される。そして、 NOx還元触媒 16において、排気中の NOxがアンモニアと還元反応して無害な水(H O)及び窒素(N )となって大気中に , Supplied to the NOx reduction catalyst 16. In the NOx reduction catalyst 16, NOx in the exhaust gas undergoes a reduction reaction with ammonia to form harmless water (H 2 O) and nitrogen (N 2) into the atmosphere.
2 2 twenty two
排出される。このとき、 NOx還元触媒 16を通過したアンモニアは、その排気下流に 配設されたアンモニア酸ィ匕触媒 18により酸ィ匕されるので、アンモニアがそのまま排出 されること力ない。
[0018] 次に、本発明に係る排気浄化装置の第 2実施形態について説明する。なお、以下 の説明では、重複説明を排除する目的から、第 1実施形態とは異なる構成について のみ説明し、共通構成には同一符号を付してその説明を省略又は簡単とする。 本発明の第 2実施形態の構成を示す図 3において、図中上方に位置する分岐管 1 2Aには、排気中の NOを NOへと酸化させる酸化触媒 32が配設される一方、図中 Discharged. At this time, the ammonia that has passed through the NOx reduction catalyst 16 is oxidized by the ammonia acid catalyst 18 disposed downstream of the exhaust gas, so that ammonia cannot be discharged as it is. Next, a second embodiment of the exhaust emission control device according to the present invention will be described. In the following description, for the purpose of eliminating redundant description, only the configuration different from the first embodiment will be described, and the common configuration will be denoted by the same reference numeral and the description thereof will be omitted or simplified. In FIG. 3 showing the configuration of the second embodiment of the present invention, an oxidation catalyst 32 that oxidizes NO in the exhaust to NO is disposed in the branch pipe 12A located in the upper part of the figure, while in the figure
2 2
下方に位置する分岐管 12Bには、その排気通路面積(開度)を多段階に制御可能な 電磁式の流量制御弁 34が配設される。ここで、酸化触媒 32としては、例えば、多用 されるエンジン運転状態で良好な酸ィ匕能力を発揮するものを用いることができる。ま た、流量制御弁 34を制御する制御プログラムとしては、第 1実施形態におけるマップ を多少変更するだけで、図 2に示すものをそのまま利用することができる。 The branch pipe 12B located below is provided with an electromagnetic flow control valve 34 capable of controlling the exhaust passage area (opening) in multiple stages. Here, as the oxidation catalyst 32, for example, a catalyst that exhibits a good acidity ability in a frequently used engine operating state can be used. Further, as the control program for controlling the flow control valve 34, the one shown in FIG. 2 can be used as it is, with only a slight change in the map in the first embodiment.
[0019] 力かる構成によれば、酸ィ匕触媒 32を通過して NOが NOへと酸ィ匕された排気と NO [0019] According to a powerful configuration, the exhaust gas in which NO is oxidized to NO through the acid catalyst 32 and NO
2 2
が酸化されていない排気とを適宜混合することで、排気中の NOと NO NO and NO in the exhaust gas are mixed appropriately with exhaust gas that has not been oxidized.
2との割合が所 定割合に近づき、広範な運転領域において、 NOx浄ィ匕率を向上させることができる なお、以上説明した実施形態は、 2つの分岐管により排気管が 2つに分岐される構 成であるが、 3つ以上の分岐管により排気管を複数に分岐する構成であっても、本発 明は適用可能である。このようにすれば、エンジン運転状態にかかわらず、 NOx還 元触媒へと導入される排気中の NOと NOとの割合を細カゝく変化させることが可能と The ratio of 2 approaches the predetermined ratio, and the NOx purification rate can be improved in a wide range of operation. In the embodiment described above, the exhaust pipe is branched into two by two branch pipes. However, the present invention can also be applied to a configuration in which the exhaust pipe is branched into a plurality of branches by three or more branch pipes. In this way, the ratio of NO to NO in the exhaust introduced into the NOx reduction catalyst can be finely changed regardless of the engine operating condition.
2 2
なり、 NOx浄ィ匕率を一層向上させることができる。また、各分岐管に分流する排気流 量は、排気管の分岐部に配設された 1つの流量制御弁で制御するようにしてもよい。 Thus, the NOx purification rate can be further improved. Further, the flow rate of the exhaust gas diverted to each branch pipe may be controlled by a single flow rate control valve disposed at the branch portion of the exhaust pipe.
[0020] さらに、還元剤としては、 NOx還元触媒における還元反応に応じて、炭化水素を主 成分とする軽油,ガソリン,アルコール類などの各種燃料を用いるようにしてもよい。こ の場合、流量制御弁の制御としては、 NOx還元触媒に導入される排気中の NOと N Oとの割合力 NOx還元触媒による NOxの還元反応に適合した所定割合に近づく[0020] Further, as the reducing agent, various fuels such as light oil, gasoline, alcohols and the like mainly containing hydrocarbons may be used according to the reduction reaction in the NOx reduction catalyst. In this case, as a control of the flow control valve, the ratio force between NO and NO in the exhaust gas introduced into the NOx reduction catalyst approaches a predetermined ratio suitable for the NOx reduction reaction by the NOx reduction catalyst.
2 2
ようにすればよい。
What should I do?
Claims
[1] エンジン排気管に配設され、窒素酸化物を還元浄化する還元触媒と、 [1] a reduction catalyst disposed in the engine exhaust pipe for reducing and purifying nitrogen oxides;
該還元触媒の排気上流に位置する排気管を複数に分岐した各分岐管に夫々配設 され、一酸化窒素を二酸化窒素へと酸化させる酸化能力が相互に異なる複数の酸 化触媒と、 A plurality of oxidation catalysts disposed in each branch pipe branched into a plurality of exhaust pipes located upstream of the reduction catalyst and having different oxidation capacities for oxidizing nitric oxide into nitrogen dioxide;
前記各分岐管に分流する排気流量を独立かつ多段階に制御可能な流量制御弁と 排気の体積流量を検出する排気流量センサと、 A flow rate control valve capable of controlling the flow rate of the exhaust gas divided into each branch pipe independently and in multiple stages, an exhaust flow rate sensor for detecting the volume flow rate of the exhaust gas,
前記酸化触媒の触媒温度を検出する温度センサと、 A temperature sensor for detecting a catalyst temperature of the oxidation catalyst;
前記排気流量センサにより検出された体積流量及び前記温度センサにより検出さ れた触媒温度に基づいて、前記還元触媒に導入される排気中の一酸化窒素と二酸 化窒素との割合が所定割合に近づくように流量制御弁を制御するコントロールュニッ トと、 Based on the volume flow rate detected by the exhaust flow sensor and the catalyst temperature detected by the temperature sensor, the ratio of nitrogen monoxide and nitrogen dioxide in the exhaust gas introduced into the reduction catalyst becomes a predetermined ratio. A control unit that controls the flow control valve so as to approach,
を含んで構成されたことを特徴とする排気浄化装置。 An exhaust emission control device comprising:
[2] 前記コントロールユニットは、排気の体積流量及び酸化触媒の触媒温度に対応し た制御値が設定されたマップを参照して、前記流量制御弁を制御することを特徴と する請求項 1記載の排気浄化装置。 2. The control unit according to claim 1, wherein the control unit controls the flow rate control valve with reference to a map in which control values corresponding to a volume flow rate of exhaust gas and a catalyst temperature of the oxidation catalyst are set. Exhaust purification equipment.
[3] 前記排気流量センサは、吸気の質量流量及びエンジンの燃料消費率から、排気の 体積流量を間接的に検出することを特徴とする請求項 1記載の排気浄化装置。 3. The exhaust emission control device according to claim 1, wherein the exhaust flow rate sensor indirectly detects a volume flow rate of the exhaust gas from an intake mass flow rate and an engine fuel consumption rate.
[4] 前記温度センサは、前記酸化触媒の排気上流における排気温度から、該酸化触 媒の触媒温度を間接的に検出することを特徴とする請求項 1記載の排気浄化装置。 4. The exhaust gas purification apparatus according to claim 1, wherein the temperature sensor indirectly detects a catalyst temperature of the oxidation catalyst from an exhaust gas temperature upstream of the oxidation catalyst.
[5] 前記所定割合は、前記還元触媒による窒素酸ィ匕物の還元反応に適合した割合で あることを特徴とする請求項 1記載の排気浄化装置。 5. The exhaust emission control device according to claim 1, wherein the predetermined ratio is a ratio suitable for a reduction reaction of nitrogen oxides by the reduction catalyst.
[6] エンジン排気管に配設され、窒素酸化物を還元浄化する還元触媒と、 [6] A reduction catalyst disposed in the engine exhaust pipe for reducing and purifying nitrogen oxides;
該還元触媒の排気上流に位置する排気管を 2つに分岐した分岐管の一方に配設 され、一酸化窒素を二酸化窒素へと酸化させる酸化触媒と、 An oxidation catalyst that is disposed on one of the two branch pipes branched from the exhaust pipe located upstream of the reduction catalyst to oxidize nitrogen monoxide to nitrogen dioxide;
前記各分岐管に分流する排気流量を独立かつ多段階に制御可能な流量制御弁と
排気の体積流量を検出する排気流量センサと、 A flow rate control valve capable of controlling the exhaust flow rate divided into each branch pipe independently and in multiple stages; An exhaust flow sensor for detecting the volume flow of the exhaust;
前記酸化触媒の触媒温度を検出する温度センサと、 A temperature sensor for detecting a catalyst temperature of the oxidation catalyst;
前記排気流量センサにより検出された体積流量及び前記温度センサにより検出さ れた触媒温度に基づいて、前記還元触媒に導入される排気中の一酸化窒素と二酸 化窒素との割合が所定割合に近づくように流量制御弁を制御するコントロールュニッ トと、 Based on the volume flow rate detected by the exhaust flow sensor and the catalyst temperature detected by the temperature sensor, the ratio of nitrogen monoxide and nitrogen dioxide in the exhaust gas introduced into the reduction catalyst becomes a predetermined ratio. A control unit that controls the flow control valve so as to approach,
を含んで構成されたことを特徴とする排気浄化装置。 An exhaust emission control device comprising:
[7] 前記コントロールユニットは、排気の体積流量及び酸化触媒の触媒温度に対応し た制御値が設定されたマップを参照して、前記流量制御弁を制御することを特徴と する請求項 6記載の排気浄化装置。 7. The control unit according to claim 6, wherein the control unit controls the flow control valve with reference to a map in which control values corresponding to a volume flow rate of exhaust gas and a catalyst temperature of the oxidation catalyst are set. Exhaust purification equipment.
[8] 前記排気流量センサは、吸気の質量流量及びエンジンの燃料消費率から、排気の 体積流量を間接的に検出することを特徴とする請求項 6記載の排気浄化装置。 8. The exhaust emission control device according to claim 6, wherein the exhaust flow rate sensor indirectly detects a volume flow rate of exhaust gas from an intake mass flow rate and an engine fuel consumption rate.
[9] 前記温度センサは、前記酸化触媒の排気上流における排気温度から、該酸化触 媒の触媒温度を間接的に検出することを特徴とする請求項 6記載の排気浄化装置。 9. The exhaust gas purification apparatus according to claim 6, wherein the temperature sensor indirectly detects the catalyst temperature of the oxidation catalyst from the exhaust gas temperature upstream of the oxidation catalyst.
[10] 前記所定割合は、前記還元触媒による窒素酸化物の還元反応に適合した割合で あることを特徴とする請求項 6記載の排気浄化装置。 10. The exhaust emission control device according to claim 6, wherein the predetermined ratio is a ratio suitable for a reduction reaction of nitrogen oxides by the reduction catalyst.
[11] エンジン排気管に配設され、窒素酸化物を還元浄化する還元触媒と、 [11] A reduction catalyst disposed in the engine exhaust pipe for reducing and purifying nitrogen oxides;
該還元触媒の排気上流に位置する排気管を複数に分岐した各分岐管のうち、少な くとも 1つを除いた分岐管に夫々配設され、一酸ィ匕窒素を二酸ィ匕窒素へと酸化させる 酸化能力が相互に異なる複数の酸化触媒と、 Of the branch pipes branched into a plurality of exhaust pipes located upstream of the reduction catalyst, at least one of the branch pipes is disposed, and the monoacid-nitrogen is converted to diacid-nitrogen. A plurality of oxidation catalysts having different oxidation capacities, and
前記各分岐管に分流する排気流量を独立かつ多段階に制御可能な流量制御弁と 排気の体積流量を検出する排気流量センサと、 A flow rate control valve capable of controlling the flow rate of the exhaust gas divided into each branch pipe independently and in multiple stages, an exhaust flow rate sensor for detecting the volume flow rate of the exhaust gas,
前記酸化触媒の触媒温度を検出する温度センサと、 A temperature sensor for detecting a catalyst temperature of the oxidation catalyst;
前記排気流量センサにより検出された体積流量及び前記温度センサにより検出さ れた触媒温度に基づいて、前記還元触媒に導入される排気中の一酸化窒素と二酸 化窒素との割合が所定割合に近づくように流量制御弁を制御するコントロールュニッ トと、
を含んで構成されたことを特徴とする排気浄化装置。 Based on the volume flow rate detected by the exhaust flow sensor and the catalyst temperature detected by the temperature sensor, the ratio of nitrogen monoxide and nitrogen dioxide in the exhaust gas introduced into the reduction catalyst becomes a predetermined ratio. A control unit that controls the flow control valve so as to approach, An exhaust emission control device comprising:
[12] 前記コントロールユニットは、排気の体積流量及び酸化触媒の触媒温度に対応し た制御値が設定されたマップを参照して、前記流量制御弁を制御することを特徴と する請求項 11記載の排気浄化装置。 12. The control unit according to claim 11, wherein the control unit controls the flow control valve with reference to a map in which control values corresponding to a volume flow rate of exhaust gas and a catalyst temperature of the oxidation catalyst are set. Exhaust purification equipment.
[13] 前記排気流量センサは、吸気の質量流量及びエンジンの燃料消費率から、排気の 体積流量を間接的に検出することを特徴とする請求項 11記載の排気浄化装置。 13. The exhaust emission control device according to claim 11, wherein the exhaust flow rate sensor indirectly detects a volume flow rate of exhaust gas from a mass flow rate of intake air and a fuel consumption rate of the engine.
[14] 前記温度センサは、前記酸化触媒の排気上流における排気温度から、該酸化触 媒の触媒温度を間接的に検出することを特徴とする請求項 11記載の排気浄化装置 14. The exhaust gas purification apparatus according to claim 11, wherein the temperature sensor indirectly detects the catalyst temperature of the oxidation catalyst from the exhaust gas temperature upstream of the oxidation catalyst.
[15] 前記所定割合は、前記還元触媒による窒素酸化物の還元反応に適合した割合で あることを特徴とする請求項 11記載の排気浄化装置。
15. The exhaust emission control device according to claim 11, wherein the predetermined ratio is a ratio suitable for a reduction reaction of nitrogen oxides by the reduction catalyst.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005206319A JP4698314B2 (en) | 2005-07-15 | 2005-07-15 | Exhaust purification device |
JP2005-206319 | 2005-07-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007010664A1 true WO2007010664A1 (en) | 2007-01-25 |
Family
ID=37668551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/309600 WO2007010664A1 (en) | 2005-07-15 | 2006-05-12 | Exhaust purification apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4698314B2 (en) |
WO (1) | WO2007010664A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008103109A1 (en) * | 2007-02-21 | 2008-08-28 | Volvo Lastvagnar Ab | Control method for controlling an exhaust aftertreatment system and exhaust aftertreatment system |
GB2471001A (en) * | 2009-06-11 | 2010-12-15 | Agco Sa | Catalytic converter module |
GB2534301A (en) * | 2015-11-11 | 2016-07-20 | Horiba Mira Ltd | An exhaust flow tube system for use with emissions test equipment and associated parts and systems |
EP3569834A1 (en) * | 2018-05-18 | 2019-11-20 | Winterthur Gas & Diesel Ltd. | Internal combustion engine and method for reducing nitrogen oxide emissions |
US11519315B1 (en) | 2021-11-30 | 2022-12-06 | Cummins Power Generation Inc. | Aftertreatment system, dual fuel system, and dual fuel apparatus |
US11927124B2 (en) | 2021-11-30 | 2024-03-12 | Cummins Power Generation Inc. | Aftertreatment system, dual fuel system, and methods therefor |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2142771A1 (en) * | 2007-05-02 | 2010-01-13 | Perkins Engines Company Limited | Exhaust treatment system implementing selective doc bypass |
US8635853B2 (en) | 2008-01-25 | 2014-01-28 | Caterpillar Inc. | Exhaust reduction system having oxygen and temperature control |
JP5272455B2 (en) * | 2008-03-11 | 2013-08-28 | いすゞ自動車株式会社 | NOx purification system control method and NOx purification system |
JP6326580B2 (en) * | 2013-04-24 | 2018-05-23 | 株式会社 Acr | Exhaust gas purification apparatus equipped with NOx reduction catalyst means |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002089327A (en) * | 2000-09-14 | 2002-03-27 | Nissan Motor Co Ltd | Exhaust emission control device of internal combustion engine |
JP2005002968A (en) * | 2003-06-16 | 2005-01-06 | Mitsubishi Fuso Truck & Bus Corp | Exhaust emission control device of internal combustion engine |
JP2005023921A (en) * | 2003-06-12 | 2005-01-27 | Hino Motors Ltd | Exhaust emission control device |
JP2005048738A (en) * | 2003-07-31 | 2005-02-24 | Nissan Motor Co Ltd | Exhaust emission control device for engine, and particulate accumulation state determination method for particulate collection filter |
-
2005
- 2005-07-15 JP JP2005206319A patent/JP4698314B2/en not_active Expired - Fee Related
-
2006
- 2006-05-12 WO PCT/JP2006/309600 patent/WO2007010664A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002089327A (en) * | 2000-09-14 | 2002-03-27 | Nissan Motor Co Ltd | Exhaust emission control device of internal combustion engine |
JP2005023921A (en) * | 2003-06-12 | 2005-01-27 | Hino Motors Ltd | Exhaust emission control device |
JP2005002968A (en) * | 2003-06-16 | 2005-01-06 | Mitsubishi Fuso Truck & Bus Corp | Exhaust emission control device of internal combustion engine |
JP2005048738A (en) * | 2003-07-31 | 2005-02-24 | Nissan Motor Co Ltd | Exhaust emission control device for engine, and particulate accumulation state determination method for particulate collection filter |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008103109A1 (en) * | 2007-02-21 | 2008-08-28 | Volvo Lastvagnar Ab | Control method for controlling an exhaust aftertreatment system and exhaust aftertreatment system |
CN101646847B (en) * | 2007-02-21 | 2012-11-28 | 沃尔沃拉斯特瓦格纳公司 | Control method for controlling an exhaust aftertreatment system and exhaust aftertreatment system |
US8407987B2 (en) | 2007-02-21 | 2013-04-02 | Volvo Lastvagnar Ab | Control method for controlling an exhaust aftertreatment system and exhaust aftertreatment system |
GB2471001A (en) * | 2009-06-11 | 2010-12-15 | Agco Sa | Catalytic converter module |
GB2471001B (en) * | 2009-06-11 | 2011-10-12 | Agco Sa | Catalytic converter module |
GB2534301B (en) * | 2015-11-11 | 2017-02-22 | Horiba Mira Ltd | An exhaust flow tube system for use with emissions test equipment and associated parts and systems |
GB2534301A (en) * | 2015-11-11 | 2016-07-20 | Horiba Mira Ltd | An exhaust flow tube system for use with emissions test equipment and associated parts and systems |
US10274401B2 (en) | 2015-11-11 | 2019-04-30 | Horiba Mira Limited | Exhaust flow tube system for use with emissions test equipment and associated parts and systems |
EP3569834A1 (en) * | 2018-05-18 | 2019-11-20 | Winterthur Gas & Diesel Ltd. | Internal combustion engine and method for reducing nitrogen oxide emissions |
EP3569835A1 (en) | 2018-05-18 | 2019-11-20 | Winterthur Gas & Diesel Ltd. | Internal combustion engine and method for reducing nitrogen oxide emissions |
CN110500165A (en) * | 2018-05-18 | 2019-11-26 | 温特图尔汽柴油公司 | Internal combustion engines and method for reducing nitrogen oxides emission |
US11519315B1 (en) | 2021-11-30 | 2022-12-06 | Cummins Power Generation Inc. | Aftertreatment system, dual fuel system, and dual fuel apparatus |
US11927124B2 (en) | 2021-11-30 | 2024-03-12 | Cummins Power Generation Inc. | Aftertreatment system, dual fuel system, and methods therefor |
Also Published As
Publication number | Publication date |
---|---|
JP4698314B2 (en) | 2011-06-08 |
JP2007023872A (en) | 2007-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007010664A1 (en) | Exhaust purification apparatus | |
US20100199643A1 (en) | Exhaust gas purification system | |
KR101114816B1 (en) | Exhaust gas purifying system | |
JP3555034B2 (en) | How to operate a diesel engine | |
WO2011135845A1 (en) | Exhaust gas purification device | |
US7673446B2 (en) | Dual path exhaust emission control system | |
JPH04243525A (en) | Apparatus for purifying exhaust gas of internal combustion engine | |
JP5536180B2 (en) | Exhaust gas purification device | |
CN101680332A (en) | NOX purification system, and method for control of nox purification system | |
ITRM960768A1 (en) | PROCEDURE FOR THE OPERATION OF A DIESEL ENGINE | |
WO2006027904A1 (en) | Guide structure and exhaust emission control device | |
WO2005124116A1 (en) | Exhaust gas purification apparatus | |
CN102472136A (en) | Method and apparatus for regenerating a particle filter arranged in the exhaust gas tract of an internal combustion engine | |
JP4224383B2 (en) | Exhaust purification equipment | |
AU2012251483A1 (en) | Exhaust temperature control | |
WO2005078250A1 (en) | Engine exhaust emission control system | |
JP2012026331A (en) | Exhaust gas post treatment system | |
US20120237408A1 (en) | Exhaust gas purification apparatus for engine | |
US20110239633A1 (en) | Exhaust emission purifying apparatus | |
KR100398099B1 (en) | Urea-SCR SYSTEM CONTROLED WITH TEMPERATURE AND RPM | |
JP2006057576A (en) | Exhaust emission control device | |
KR20170075501A (en) | Power plant with selective catalytic reduction system | |
JP5681267B2 (en) | Exhaust purification device | |
JP2023113032A (en) | Exhaust emission control system | |
JPH04175417A (en) | Exhaust emission control device of internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06746347 Country of ref document: EP Kind code of ref document: A1 |