JP4224383B2 - Exhaust purification equipment - Google Patents

Exhaust purification equipment Download PDF

Info

Publication number
JP4224383B2
JP4224383B2 JP2003389411A JP2003389411A JP4224383B2 JP 4224383 B2 JP4224383 B2 JP 4224383B2 JP 2003389411 A JP2003389411 A JP 2003389411A JP 2003389411 A JP2003389411 A JP 2003389411A JP 4224383 B2 JP4224383 B2 JP 4224383B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
oxidation catalyst
reduction catalyst
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003389411A
Other languages
Japanese (ja)
Other versions
JP2005023921A (en
Inventor
満 細谷
正敏 下田
信也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2003389411A priority Critical patent/JP4224383B2/en
Publication of JP2005023921A publication Critical patent/JP2005023921A/en
Application granted granted Critical
Publication of JP4224383B2 publication Critical patent/JP4224383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)

Description

本発明は、ディーゼルエンジン等のエンジンに適用される排気浄化装置に関するものである。   The present invention relates to an exhaust purification device applied to an engine such as a diesel engine.

従来より、ディーゼルエンジンにおいては、排気ガスが流通する排気管の途中に、酸素共存下でも選択的にNOxを還元剤と反応させる性質を備えた選択還元型触媒を装備し、該選択還元型触媒の上流側に必要量の還元剤を添加して該還元剤を選択還元型触媒上で排気ガス中のNOx(窒素酸化物)と還元反応させ、これによりNOxの排出濃度を低減し得るようにしたものがある。   Conventionally, a diesel engine is equipped with a selective reduction catalyst having a property of selectively reacting NOx with a reducing agent even in the presence of oxygen in the middle of an exhaust pipe through which exhaust gas flows, and the selective reduction catalyst A required amount of a reducing agent is added to the upstream side of the catalyst so that the reducing agent undergoes a reduction reaction with NOx (nitrogen oxide) in the exhaust gas on the selective catalytic reduction catalyst, thereby reducing the NOx emission concentration. There is what I did.

例えば、この種の選択還元型触媒としては、白金,パラジウム等の貴金属触媒や、バナジウム,銅,鉄の酸化物等の卑金属触媒が前述した如き性質を有するものとして既に知られているが、これらの選択還元型触媒の活性温度域(温度ウィンドウ)は一般的に狭く、ディーゼルエンジンの排気温度範囲の一部でしかNOxを浄化できていないのが現状であり、選択還元型触媒の活性温度域の拡大、特に低温活性の向上が今後の大きな課題となっている。   For example, as this type of selective reduction catalyst, noble metal catalysts such as platinum and palladium and base metal catalysts such as vanadium, copper and iron oxides are already known as having the above-described properties. The active temperature range (temperature window) of the selective catalytic reduction catalyst is generally narrow, and NOx can be purified only in a part of the exhaust temperature range of the diesel engine. Expansion, especially improvement of low-temperature activity, will become a major challenge in the future.

そこで、本発明者らは、選択還元型触媒の前段に酸化触媒を配置して該酸化触媒により排気ガス中のNOを酸化して酸化力の強いNO2を生成し、このような酸化力の強いNO2を選択還元型触媒に導くことにより該選択還元型触媒上での還元剤による還元反応を促進し、通常の選択還元型触媒の単独使用の場合より低い温度域から還元反応が起こるようにすることを創案するに到った(例えば、特許文献1参照)。
特開2002−161732号公報
Therefore, the present inventors have arranged an oxidation catalyst in the preceding stage of the selective catalytic reduction catalyst to oxidize NO in the exhaust gas by the oxidation catalyst to generate strong oxidizing power NO 2 , By introducing strong NO 2 to the selective catalytic reduction catalyst, the reduction reaction by the reducing agent on the selective catalytic reduction catalyst is promoted, so that the reduction reaction starts from a lower temperature range than in the case of normal use of the selective catalytic reduction catalyst alone. (See, for example, Patent Document 1).
JP 2002-161732 A

尚、プラント等における工業的な排煙脱硝処理の分野では、還元剤にアンモニア(NH3)を用いてNOxを還元浄化する手法の有効性が既に広く知られているところであるが、自動車の場合には、アンモニアのような有毒な物質を搭載して走行することに関し安全確保が困難であるため、近年においては、毒性のない尿素水を還元剤として使用することが研究されている。 In addition, in the field of industrial flue gas denitration treatment in plants and the like, the effectiveness of a method of reducing and purifying NOx using ammonia (NH 3 ) as a reducing agent is already widely known. In recent years, it has been difficult to ensure safety when traveling with a toxic substance such as ammonia, and in recent years, the use of non-toxic urea water as a reducing agent has been studied.

しかしながら、本発明者らによる鋭意研究の結果、選択還元型触媒の前段に酸化触媒を装備することで前記選択還元型触媒の低温活性を良化できる反面、この種の酸化触媒が300℃近辺の排気温度でピークを成すような山形の触媒特性を有するものであるために、300℃近辺の排気温度にて過剰にNO2が生成されてしまってNOx低減率が落ち込む現象が生じるという知見が得られた。 However, as a result of diligent research by the present inventors, it is possible to improve the low-temperature activity of the selective catalytic reduction catalyst by equipping the selective catalytic reduction catalyst with an oxidation catalyst, but on the other hand, this type of catalytic oxidation catalyst has a temperature around 300 ° C. Since it has a mountain-shaped catalyst characteristic that peaks at the exhaust temperature, it has been found that NO 2 is excessively generated at an exhaust temperature around 300 ° C. and the NOx reduction rate drops. It was.

即ち、選択還元型触媒に添加された尿素水は、約170℃以上の温度条件下で、次式
[化1]
(NH22CO+H2O→2NH3+CO2
によりアンモニアと炭酸ガスになるので、このアンモニアによりNOxが還元浄化されることになるが、排気ガス中のNOxの大半を占めるNOに対し酸化触媒によりNO2が増やされていくと、最も反応速度の早い次式
[化2]
NO+NO2+2NH3→2N2+3H2
による還元反応が促されて良好なNOxの低減化が図られることになる。
That is, the urea water added to the selective catalytic reduction catalyst has the following formula [Chemical Formula 1] under a temperature condition of about 170 ° C. or higher.
(NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2
As a result of ammonia and carbon dioxide gas, NOx is reduced and purified by this ammonia. However, when NO 2 is increased by the oxidation catalyst with respect to NO occupying most of the NOx in the exhaust gas, the reaction rate is the highest. The following formula [Formula 2]
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O
As a result, the reduction reaction by NO is promoted, and the reduction of NOx is facilitated.

そして、この還元反応を促すにあたっては、排気ガス中のNOとNO2の比が約1:1に近いことが重要となるが、酸化触媒により300℃近辺の排気温度にて過剰にNO2が生成されてしまうと、NOの比率よりもNO2の比率の方が大きく上まわってしまい、このNO2の過剰分は、次式
[化3]
6NO2+8NH3→7N2+12H2
で反応することになるため、反応速度が鈍化して選択還元型触媒を未反応のまま通過してしまうリークアンモニアが増加し、結果的にNOxの低減率が300℃近辺の排気温度で落ち込みを生じてしまっていた。
In order to promote this reduction reaction, it is important that the ratio of NO to NO 2 in the exhaust gas is close to about 1: 1. However, the oxidation catalyst causes excessive NO 2 at an exhaust temperature around 300 ° C. Once generated, the ratio of NO 2 is much higher than the ratio of NO. The excess of NO 2 is expressed by the following equation [Formula 3].
6NO 2 + 8NH 3 → 7N 2 + 12H 2 O
As a result, the reaction rate slows down and leaked ammonia that passes through the selective catalytic reduction catalyst unreacted increases. As a result, the NOx reduction rate drops at an exhaust temperature around 300 ° C. It has occurred.

尚、ここで付言しておくと、NOの比率よりもNO2の比率が下まわっている間は、次式
[化4]
6NO+4NH3→5N2+6H2
或いは、次式
[化5]
4NO+4NH3+O2→4N2+6H2
によっても排気ガス中のNOxが還元浄化されることになる。
It should be noted that while the ratio of NO 2 is lower than the ratio of NO, the following equation [Chemical Formula 4]
6NO + 4NH 3 → 5N 2 + 6H 2 O
Alternatively, the following formula [Chemical Formula 5]
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O
As a result, NOx in the exhaust gas is reduced and purified.

本発明は、上述の実情に鑑みてなされたものであり、選択還元型触媒の前段に酸化触媒を配置した構成を採用しても、該酸化触媒による過剰なNO2の生成を抑制してNOx低減率の落ち込みを回避することを目的としている。 The present invention has been made in view of the above-described circumstances, and even if a configuration in which an oxidation catalyst is arranged in the preceding stage of the selective reduction catalyst is used, the generation of excess NO 2 by the oxidation catalyst is suppressed and NOx is reduced. The purpose is to avoid a drop in the reduction rate.

本発明は、エンジンの排気管途中に装備されて酸素共存下でも選択的にNOxをアンモニアと反応させ得る選択還元型触媒と、
該選択還元型触媒の前段に並列に対で装備されたNO酸化力の異なる酸化触媒と、
該各酸化触媒に対し排気ガスを振り分けて流し且つ選択還元型触媒の入側で合流せしめる分岐流路と、
該分岐流路の分岐箇所に設けられた流路切換手段と、
前記選択還元型触媒の入側で排気ガス中に還元剤として尿素水を添加する尿素水添加手段と、
エンジンの回転数を検出する回転センサと、
エンジンの負荷を検出する負荷センサと、
前記回転センサ及び負荷センサからの検出値に基づき酸化触媒によりNO 2 が過剰に生成される虞れがない運転状態にあると判断された場合には、NO酸化力が弱い方の酸化触媒への排気ガスの流れを閉塞し、排気ガスの全量をNO酸化力が強い方の酸化触媒を通し選択還元型触媒に導く一方、前記回転センサ及び負荷センサからの検出値に基づき酸化触媒によりNO 2 が過剰に生成される運転状態にあると判断された場合には、前記排気ガスの一部をNO酸化力が弱い方の酸化触媒側へ分配し、両酸化触媒によるNO 2 の生成量が前記NO酸化力が強い方の酸化触媒のみを使用した場合よりも抑制されて排気ガス中のNOとNO2の比が約1:1となるように運転状態に応じ前記流路切換手段を制御して分岐流路の各酸化触媒への排気ガスの分配量を調整しながら前記尿素水添加手段に尿素水の添加を行わしめる制御装置と
を備えたことを特徴とする排気浄化装置、に係るものである。
The present invention is a selective reduction catalyst that is installed in the middle of an exhaust pipe of an engine and can selectively react NOx with ammonia even in the presence of oxygen,
An oxidation catalyst having different NO oxidizing powers installed in parallel in a pair in front of the selective catalytic reduction catalyst;
A branch flow path that distributes exhaust gas to each of the oxidation catalysts and joins them on the inlet side of the selective catalytic reduction catalyst;
Flow path switching means provided at a branch point of the branch flow path;
Urea water addition means for adding urea water as a reducing agent in the exhaust gas on the entry side of the selective catalytic reduction catalyst;
A rotation sensor that detects the number of revolutions of the engine;
A load sensor for detecting the engine load;
If it is determined that there is no risk of excessive NO 2 generation by the oxidation catalyst based on the detection values from the rotation sensor and the load sensor , the oxidation catalyst having the weaker NO oxidation power is applied. The flow of exhaust gas is blocked, and the entire amount of exhaust gas is led to the selective reduction catalyst through the oxidation catalyst having the stronger NO oxidizing power, while NO 2 is caused by the oxidation catalyst based on the detection values from the rotation sensor and the load sensor. When it is determined that the operation state is excessively generated, a part of the exhaust gas is distributed to the oxidation catalyst side having a weaker NO oxidizing power, and the amount of NO 2 produced by both oxidation catalysts is the NO. The flow path switching means is controlled in accordance with the operating state so that the ratio of NO to NO 2 in the exhaust gas is suppressed to about 1: 1 as compared with the case where only the oxidation catalyst having the stronger oxidizing power is used. Exhaust gas to each oxidation catalyst in the branch channel Exhaust gas purification apparatus characterized by comprising a control device which occupies perform addition of urea water to the urea water addition means while adjusting the metering, in which according to the.

而して、このようにすれば、前記回転センサ及び負荷センサからの検出値に基づき酸化触媒によりNO 2 が過剰に生成される虞れがない運転状態にあると制御装置で判断された場合には、制御装置により流路切換手段が制御されてNO酸化力が弱い方の酸化触媒への排気ガスの流れが閉塞され、排気ガスの全量が前記NO酸化力が強い方の酸化触媒を通し選択還元型触媒に導かれながら尿素水添加手段により選択還元型触媒に尿素水が添加されることになり、排気ガス中のNOが前記NO酸化力が強い方の酸化触媒を通過する際に酸化して酸化力の強いNO2として生成され、このような酸化力の強いNO2が多く生成されて選択還元型触媒へと導かれることにより、該選択還元型触媒上での還元剤による還元反応が著しく促進され、通常の選択還元型触媒の単独使用の場合より低い温度域から還元反応が起こるようになり、排気ガス中のNOxが良好に還元処理されて浄化されることになる。 Thus, in this way, when it is determined by the control device that there is no fear of excessive generation of NO 2 by the oxidation catalyst based on the detection values from the rotation sensor and the load sensor. The control device controls the flow path switching means to block the flow of exhaust gas to the oxidation catalyst having the weaker NO oxidizing power, and the entire amount of exhaust gas is selected through the oxidation catalyst having the stronger NO oxidizing power. Urea water is added to the selective catalytic reduction catalyst by the urea water addition means while being guided to the catalytic reduction catalyst, and NO in the exhaust gas is oxidized when passing through the oxidation catalyst having the stronger NO oxidizing power. is generated as a strong NO 2 oxidizing power Te, by being guided to such that a strong NO 2 oxidation power many generated selective reduction catalyst, the reduction with a reducing agent on the selective reduction catalyst Remarkably promoted and normal selection Reduced form made from a low temperature range than in the case of single use of the catalyst as the reduction reaction occurs, NOx in the exhaust gas is to be purified are favorably reduction treatment.

一方、前記回転センサ及び負荷センサからの検出値に基づき酸化触媒によりNO 2 が過剰に生成される運転状態にあると制御装置で判断された場合には、流路切換手段により排気ガスの流れをNO酸化力が弱い方の酸化触媒側へ分配して選択還元型触媒に導くようにすると、両酸化触媒によるNO2の生成量が前記NO酸化力が強い方の酸化触媒のみを使用した場合よりも抑制されて排気ガス中のNOとNO2の比が約1:1に維持され、300℃近辺の排気温度にて過剰にNO2が生成されることに起因してNOx低減率が落ち込む現象が未然に回避されることになる。 On the other hand, when it is determined by the control device that the NO 2 is excessively generated by the oxidation catalyst based on the detection values from the rotation sensor and the load sensor , the flow of the exhaust gas is reduced by the flow path switching means. When the NO oxidation power is distributed to the weaker oxidation catalyst side and led to the selective reduction catalyst, the amount of NO 2 produced by both oxidation catalysts is higher than when only the oxidation catalyst having the stronger NO oxidation power is used. Is suppressed, and the ratio of NO to NO 2 in the exhaust gas is maintained at about 1: 1, and the NOx reduction rate drops due to excessive generation of NO 2 at an exhaust temperature around 300 ° C. Will be avoided in advance.

更に、本発明においては、酸化触媒と選択還元型触媒との間、又は選択還元型触媒の出口、又は選択還元型触媒の入口及び出口の両方に排気温度を検出する温度センサを配置し、該温度センサの検出値が所定の閾値を超えている条件下でのみ尿素水添加手段による尿素水の添加を実施し得るように制御装置を構成することが好ましく、このようにすれば、排気ガスの温度が選択還元型触媒の活性温度域まで到達していない条件下で無駄な尿素水が添加されることが防止される。   Furthermore, in the present invention, a temperature sensor for detecting the exhaust temperature is disposed between the oxidation catalyst and the selective catalytic reduction catalyst, or at the outlet of the selective catalytic reduction catalyst, or at both the inlet and outlet of the selective catalytic reduction catalyst, It is preferable to configure the control device so that urea water can be added by the urea water adding means only under the condition that the detection value of the temperature sensor exceeds a predetermined threshold value. It is possible to prevent useless urea water from being added under conditions where the temperature does not reach the activation temperature range of the selective catalytic reduction catalyst.

上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the exhaust emission control device of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、選択還元型触媒の前段に酸化触媒を配置した構成を採用しても、該酸化触媒によるNO2の生成量を適宜に抑制し得て、排気ガス中のNOとNO2の比を還元反応に最適な約1:1に維持することができ、過剰にNO2が生成されることに起因したNOx低減率の落ち込みを確実に回避することができる。 (I) According to the invention described in claim 1 of the present invention, even if a configuration in which an oxidation catalyst is arranged in the preceding stage of the selective catalytic reduction catalyst, the amount of NO 2 produced by the oxidation catalyst is appropriately suppressed. As a result, the ratio of NO to NO 2 in the exhaust gas can be maintained at about 1: 1 which is optimal for the reduction reaction, and the drop in the NOx reduction rate due to excessive generation of NO 2 can be ensured. It can be avoided.

(II)本発明の請求項2に記載の発明によれば、排気ガスの温度が選択還元型触媒の活性温度域まで到達していない条件下で無駄な尿素水が添加されることを防止でき、必要最小限の尿素水の添加により効率良くNOxの還元浄化を図ることができる。 (II) According to the invention described in claim 2 of the present invention, it is possible to prevent useless urea water from being added under conditions where the temperature of the exhaust gas does not reach the activation temperature range of the selective catalytic reduction catalyst. Further, NOx reduction and purification can be efficiently achieved by adding the minimum amount of urea water.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図4は本発明を実施する形態の参考例を示すもので、図1中における符号1はディーゼル機関であるエンジンを示し、ここに図示しているエンジン1では、ターボチャージャ2が備えられており、エアクリーナ3から導いた空気4が吸気管5を介し前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された空気4が更にインタークーラ6へと送られて冷却され、該インタークーラ6から図示しないインテークマニホールドへと空気4が導かれてエンジン1の各シリンダに導入されるようにしてある。 1 to 4 show reference examples of embodiments of the present invention. Reference numeral 1 in FIG. 1 denotes an engine that is a diesel engine. In the engine 1 shown here, a turbocharger 2 is provided. The air 4 guided from the air cleaner 3 is sent to the compressor 2a of the turbocharger 2 through the intake pipe 5, and the air 4 pressurized by the compressor 2a is further sent to the intercooler 6 for cooling. The air 4 is guided from the intercooler 6 to an intake manifold (not shown) and introduced into each cylinder of the engine 1.

また、このエンジン1の各シリンダから排出された排気ガス7がエキゾーストマニホールド8を介し前記ターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した排気ガス7が排気管9を介し車外へ排出されるようにしてある。   Further, the exhaust gas 7 discharged from each cylinder of the engine 1 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 8, and the exhaust gas 7 that has driven the turbine 2b goes out of the vehicle through the exhaust pipe 9. It is supposed to be discharged.

そして、排気ガス7が流通する排気管9の途中に、ケーシング10により抱持された酸化触媒11が装備されており、この酸化触媒11は、白金に酸化アルミニウム(アルミナ)を混合してステンレス製のメタル担体等に担持させた構造となっている。   An oxidation catalyst 11 held by a casing 10 is provided in the middle of an exhaust pipe 9 through which the exhaust gas 7 flows. This oxidation catalyst 11 is made of stainless steel by mixing platinum with aluminum oxide (alumina). The structure is supported on a metal carrier or the like.

また、前記酸化触媒11より下流側の排気管9には、ケーシング12により抱持された選択還元型触媒13が装備されており、この選択還元型触媒13は、フロースルー方式のハニカム構造物として形成され、酸素共存下でも選択的にNOxをアンモニアと反応させ得るような性質を有している。   The exhaust pipe 9 on the downstream side of the oxidation catalyst 11 is equipped with a selective reduction catalyst 13 held by a casing 12, and this selective reduction catalyst 13 is a flow-through type honeycomb structure. It is formed and has the property that NOx can be selectively reacted with ammonia even in the presence of oxygen.

ここで、前記選択還元型触媒13には、白金,パラジウム等の貴金属触媒や、バナジウム,銅,鉄の酸化物等の卑金属触媒といった従来周知の触媒を採用することが可能であるが、SO2をサルフェート(硫酸塩)に酸化し易い貴金属触媒を採用するよりも、比較的酸化力の弱い卑金属触媒を採用する方がより好ましい。 Here, the selective reduction catalyst 13, platinum, or a noble metal catalyst such as palladium, vanadium, copper, it is possible to adopt a conventionally known catalyst such as a base metal catalyst of oxides of iron, SO 2 It is more preferable to employ a base metal catalyst having a relatively weak oxidizing power than to employ a noble metal catalyst that easily oxidizes to sulfate (sulfate).

そして、排気管9におけるケーシング10の直前位置と、該ケーシング10後方のケーシング12の直前位置とがバイパス流路14により接続されており、エンジン1からの排気ガス7を前記バイパス流路14を介し酸化触媒11を迂回させて選択還元型触媒13に導き得るようにしてある。   A position immediately before the casing 10 in the exhaust pipe 9 and a position immediately before the casing 12 behind the casing 10 are connected by a bypass flow path 14, and the exhaust gas 7 from the engine 1 is passed through the bypass flow path 14. The oxidation catalyst 11 can be bypassed and guided to the selective reduction catalyst 13.

ここで、バイパス流路14の排気管9に対する分岐箇所には、排気ガス7の流れを適宜にバイパス流路14側に切り換え得るよう切換バルブ15,16(流路切換手段)が夫々設けられている。   Here, switching valves 15 and 16 (flow path switching means) are respectively provided at the branch passages of the bypass flow path 14 with respect to the exhaust pipe 9 so that the flow of the exhaust gas 7 can be appropriately switched to the bypass flow path 14 side. Yes.

また、前記エンジン1には、その機関回転数を検出する回転センサ17が装備されており、該回転センサ17からの回転数信号17aと、アクセル開度をエンジン1の負荷として検出するアクセルセンサ18(負荷センサ)からの負荷信号18aとが制御装置19に入力されるようになっている。   Further, the engine 1 is equipped with a rotation sensor 17 for detecting the engine rotation speed, and an acceleration sensor 18 for detecting the rotation speed signal 17 a from the rotation sensor 17 and the accelerator opening as a load of the engine 1. A load signal 18 a from the (load sensor) is input to the control device 19.

そして、制御装置19においては、図2に具体的な制御手順を示している通り、ステップS1にて回転センサ17からの回転数信号17aに基づいて現在のエンジン1の回転数が読み出される一方、ステップS2にてアクセルセンサ18からの負荷信号18aに基づいて現在の燃料噴射量が換算され、これら現在のエンジン1の回転数及び燃料噴射量を基にステップS3にて切換バルブ15,16の開度制御用二次元マップから排気ガス7中のNOとNO2の比が約1:1となるような開度が夫々読み出され、これが次のステップS4にて切換バルブ15,16に向け開度指令信号15a,16aとして出力され、バイパス流路14への排気ガス7の分配量が調整されるようになっている。 Then, in the control device 19, as shown in a specific control procedure in FIG. 2, the current rotational speed of the engine 1 is read based on the rotational speed signal 17a from the rotational sensor 17 in step S1, while In step S2, the current fuel injection amount is converted based on the load signal 18a from the accelerator sensor 18. Based on the current engine speed and fuel injection amount, the switching valves 15 and 16 are opened in step S3. The degree of opening at which the ratio of NO to NO 2 in the exhaust gas 7 is about 1: 1 is read from the two-dimensional map for degree control, and this is opened toward the switching valves 15 and 16 in the next step S4. The degree command signals 15a and 16a are output, and the distribution amount of the exhaust gas 7 to the bypass passage 14 is adjusted.

つまり、現在のエンジン1の回転数と燃料噴射量とが把握できれば、その排気ガス7の流量や排気温度等が概ね推定できるので、現在の運転状態における排気ガス7の全量を酸化触媒11に通した場合にNOとNO2の比がどのように変化するかが予備実験データ等との照合により判り、しかも、どのような運転状態の時にNOの比率よりもNO2の比率の方が上まわってしまうか、更には、NOの比率よりもNO2の比率の方が上まわってしまう場合にバイパス流路14側へ排気ガス7をどの程度の分配量で迂回させればNOとNO2の比が1:1に維持できるかが予備実験データ等との照合から判るので、この分配量を実現するための切換バルブ15,16の開度制御をエンジン1の回転数と燃料噴射量の二次元マップとして予め設定しておけば、この二次元マップからエンジン1の回転数と燃料噴射量に基づき制御開度を読み出すだけで酸化触媒11による過剰なNO2の生成を抑制することが可能となるのである。 That is, if the current rotational speed of the engine 1 and the fuel injection amount can be grasped, the flow rate and exhaust temperature of the exhaust gas 7 can be roughly estimated, so that the entire amount of the exhaust gas 7 in the current operating state is passed through the oxidation catalyst 11. In such a case, it is possible to know how the ratio of NO and NO 2 changes by comparing with preliminary experimental data, etc., and the ratio of NO 2 is higher than the ratio of NO in any operating condition. Furthermore, when the ratio of NO 2 exceeds the ratio of NO, if the exhaust gas 7 is diverted to the bypass flow path 14 side by what distribution amount, NO and NO 2 Whether the ratio can be maintained at 1: 1 can be determined from collation with preliminary experimental data or the like. Therefore, the opening degree control of the switching valves 15 and 16 for realizing this distribution amount is controlled according to the engine speed and the fuel injection amount. Preset as a dimensional map Fluff, it's becomes possible to suppress only production of excessive NO 2 by the oxidation catalyst 11 reads the control opening based from the two-dimensional map of the rotational speed and the fuel injection amount of the engine 1.

ただし、排気ガス7中のNOとNO2の比が約1:1となるような切換バルブ15,16の開度を決定するにあたっては、実際に酸化触媒11より上流にλセンサや温度センサ、NOxセンサを配設し、これらの実測値に基づいて切換バルブ15,16の開度を決定するようにしても良い。 However, in determining the opening degree of the switching valves 15 and 16 so that the ratio of NO to NO 2 in the exhaust gas 7 is about 1: 1, a λ sensor, a temperature sensor, A NOx sensor may be provided, and the opening degree of the switching valves 15 and 16 may be determined based on these actually measured values.

尚、運転状態が大きく変化している過渡時には、排気ガス7の温度と酸化触媒11の温度とに相違(ずれ)が生じることが考えられるので、このような過渡時の対策として、酸化触媒11の下流にNOxセンサや温度センサ(後述する温度センサ20の流用で良い)を配設し、これらの実測値に基づいて前述の如く決定された切換バルブ15,16の開度を適宜に補正してから開度指令信号15a,16aとして出力させると良い。   It should be noted that there may be a difference (displacement) between the temperature of the exhaust gas 7 and the temperature of the oxidation catalyst 11 at the time of transition in which the operation state is greatly changed. A NOx sensor and a temperature sensor (which may be diverted from the temperature sensor 20 described later) are disposed downstream of the sensor, and the opening degree of the switching valves 15 and 16 determined as described above is corrected as appropriate based on these measured values. After that, the opening command signals 15a and 16a may be output.

更に、酸化触媒11と選択還元型触媒13との間の排気管9には、該排気管9内を流れる排気ガス7の温度を検出する温度センサ20が装備されており、該温度センサ20からの温度信号20aが前記制御装置19に入力されるようになっている。   Further, the exhaust pipe 9 between the oxidation catalyst 11 and the selective reduction catalyst 13 is equipped with a temperature sensor 20 for detecting the temperature of the exhaust gas 7 flowing through the exhaust pipe 9. The temperature signal 20a is input to the control device 19.

また、排気管9における選択還元型触媒13の入口付近と、所要場所に設けた尿素水タンク21との間が尿素水供給管22により接続されており、該尿素水供給管22の途中に装備した供給ポンプ23の駆動により尿素水タンク21内の尿素水24(還元剤)を噴射ノズル25を介し選択還元型触媒13の入口付近に添加し得るようにしてある。   Further, the vicinity of the inlet of the selective reduction catalyst 13 in the exhaust pipe 9 and the urea water tank 21 provided at a required place are connected by a urea water supply pipe 22, and the urea water supply pipe 22 is equipped in the middle. By driving the supply pump 23, urea water 24 (reducing agent) in the urea water tank 21 can be added to the vicinity of the inlet of the selective catalytic reduction catalyst 13 via the injection nozzle 25.

そして、この尿素水24を噴射させる供給ポンプ23の駆動は、制御装置19からの駆動指令信号23aにより行われるようになっており、図3に具体的な制御手順を示している通り、ステップS11にて回転センサ17からの回転数信号17aに基づいて現在のエンジン1の回転数が読み出される一方、ステップS12にてアクセルセンサ18からの負荷信号18aに基づいて現在の燃料噴射量が換算され、これら現在のエンジン1の回転数及び燃料噴射量を基にステップS13にて供給ポンプ23の駆動制御用二次元マップから適切な駆動時間が読み出され、これが次のステップS14を経たステップS15にて供給ポンプ23に向け駆動指令信号23aとして出力され、この供給ポンプ23の適切な時間分の駆動により尿素水24の添加量が調整されるようになっている。   The supply pump 23 for injecting the urea water 24 is driven by a drive command signal 23a from the control device 19, and step S11 is shown as a specific control procedure in FIG. In step S12, the current rotational speed of the engine 1 is read based on the rotational speed signal 17a from the rotational sensor 17, while the current fuel injection amount is converted based on the load signal 18a from the accelerator sensor 18 in step S12. Based on these current engine speed and fuel injection amount, an appropriate drive time is read from the two-dimensional map for drive control of the supply pump 23 in step S13, and this is the next step S15 after step S14. A drive command signal 23a is output to the supply pump 23, and the urea water 24 is added by driving the supply pump 23 for an appropriate time. The amount is adapted to be adjusted.

つまり、現在のエンジン1の回転数と燃料噴射量とが把握できれば、現在の運転状態におけるNOxの推定発生量が予備実験データ等との照合により判り、その発生したNOxの全量を還元浄化するのに必要な尿素水24の添加量が予備実験データ等との照合から判るので、この添加量を実現するための供給ポンプ23の駆動制御をエンジン1の回転数と燃料噴射量の二次元マップとして予め設定しておけば、この二次元マップからエンジン1の回転数と燃料噴射量に基づき制御時間を読み出すだけで適切な添加量で尿素水24を噴射することが可能となるのである。   That is, if the current rotational speed of the engine 1 and the fuel injection amount can be grasped, the estimated NOx generation amount in the current operating state can be determined by comparison with preliminary experiment data, and the total amount of NOx generated can be reduced and purified. The amount of urea water 24 required for the addition is known from comparison with preliminary experimental data and the like, so that the drive control of the supply pump 23 for realizing this amount of addition is a two-dimensional map of the engine speed and the fuel injection amount. If it is set in advance, it is possible to inject the urea water 24 with an appropriate addition amount simply by reading the control time from the two-dimensional map based on the rotational speed of the engine 1 and the fuel injection amount.

ここで、ステップS13とステップS15との間に介装されるステップS14においては、温度センサ20からの温度信号20aに基づき現在の排気温度が読み出され、該温度センサ20の検出値が所定の閾値(約170℃程度)を超えている条件下でのみステップS15へと進み、この閾値以下の場合はステップS16へと進んで前記駆動指令信号23aの出力が停止されるようにしてある。   Here, in step S14 interposed between step S13 and step S15, the current exhaust gas temperature is read based on the temperature signal 20a from the temperature sensor 20, and the detected value of the temperature sensor 20 is a predetermined value. Only when the threshold value (about 170 ° C.) is exceeded, the process proceeds to step S15. When the threshold value is not more than this threshold value, the process proceeds to step S16 and the output of the drive command signal 23a is stopped.

つまり、現在の排気温度が選択還元型触媒13の活性温度域に到達していなければ、尿素水24を添加しても選択還元型触媒13上での還元反応が起こらないので、現在の排気温度が選択還元型触媒13の活性温度域に到達している条件下(温度センサ20の検出値が所定の閾値を超えている条件下)でのみ尿素水24の添加を実施し得るようにしているのである。   That is, if the current exhaust temperature does not reach the activation temperature range of the selective catalytic reduction catalyst 13, no reduction reaction occurs on the selective catalytic reduction catalyst 13 even if the urea water 24 is added. The urea water 24 can be added only under the condition that the catalyst reaches the activation temperature range of the selective catalytic reduction catalyst 13 (the condition that the detection value of the temperature sensor 20 exceeds a predetermined threshold). It is.

尚、図1中における符号26はケーシング12内における選択還元型触媒13の直後に装備されて該選択還元型触媒13を未反応のまま通過してしまった微量のリークアンモニアをNOやN2に酸化処理するための酸化触媒を示しており、この酸化触媒26により最終的に大気中へ排出される排気ガス7中にアンモニアが残存してしまう虞れを回避し得るようにしてある。 1 is provided immediately after the selective catalytic reduction catalyst 13 in the casing 12, and a small amount of leaked ammonia that has passed through the selective catalytic reduction catalyst 13 unreacted is converted into NO and N 2 . An oxidation catalyst for oxidation treatment is shown, and the possibility that ammonia may remain in the exhaust gas 7 finally discharged into the atmosphere by the oxidation catalyst 26 can be avoided.

而して、このように排気浄化装置を構成すれば、回転センサ17の回転数信号17aと、アクセルセンサ18の負荷信号18aとに基づき、酸化触媒11によりNO2が過剰に生成される虞れがない運転状態にあると制御装置19で判断された場合に、該制御装置19からの開度指令信号15a,16aにより切換バルブ15が閉じ且つ切換バルブ16が開いてバイパス流路14側が閉塞され、排気ガス7の全量が酸化触媒11を通し選択還元型触媒13に導かれる。 Thus, if the exhaust gas purification apparatus is configured in this way, NO 2 may be generated excessively by the oxidation catalyst 11 based on the rotation speed signal 17a of the rotation sensor 17 and the load signal 18a of the accelerator sensor 18. When the control device 19 determines that there is no operation state, the switching valve 15 is closed and the switching valve 16 is opened by the opening command signals 15a and 16a from the control device 19, and the bypass flow path 14 side is closed. The entire amount of the exhaust gas 7 is led to the selective reduction catalyst 13 through the oxidation catalyst 11.

また、温度センサ20からの温度信号20aに基づき、現在の排気温度が選択還元型触媒13の活性温度域に到達している条件下でのみ制御装置19から供給ポンプ23に向け駆動指令信号23aが出力され、これにより適切な量の尿素水24が選択還元型触媒13に添加されることになる。   Further, based on the temperature signal 20 a from the temperature sensor 20, the drive command signal 23 a is sent from the control device 19 to the supply pump 23 only under the condition that the current exhaust temperature reaches the activation temperature range of the selective catalytic reduction catalyst 13. As a result, an appropriate amount of urea water 24 is added to the selective catalytic reduction catalyst 13.

このようにエンジン1からの排気ガス7を酸化触媒11を通して選択還元型触媒13に導きながら該選択還元型触媒13に尿素水24を添加すると、排気ガス7中のNOが酸化触媒11を通過する際に酸化して酸化力の強いNO2として生成され、このような酸化力の強いNO2が多く生成されて選択還元型触媒13へと導かれることにより、該選択還元型触媒13上での尿素水24による還元反応が著しく促進され、通常の選択還元型触媒13の単独使用の場合より低い温度域から還元反応が起こるようになり、排気ガス7中のNOxが良好に還元処理されて浄化されることになる。 When the urea water 24 is added to the selective reduction catalyst 13 while the exhaust gas 7 from the engine 1 is guided to the selective reduction catalyst 13 through the oxidation catalyst 11 in this way, NO in the exhaust gas 7 passes through the oxidation catalyst 11. oxidized to the time is generated as a strong NO 2 oxidizing power by being guided to selective reduction catalyst 13 such that a strong NO 2 oxidation power many are generated, the on the selective reduction catalyst 13 The reduction reaction by the urea water 24 is remarkably accelerated, and the reduction reaction starts from a lower temperature range than in the case of using the normal selective catalytic reduction catalyst 13 alone, and the NOx in the exhaust gas 7 is well reduced and purified. Will be.

一方、酸化触媒11によりNO2が過剰に生成される運転状態にあると制御装置19で判断された場合には、該制御装置19からの開度指令信号15a,16aにより切換バルブ15が適宜な開度だけ開き且つ切換バルブ16が適宜な開度だけ絞られて排気ガス7の流れがバイパス流路14側に分配され、排気ガス7の一部が酸化触媒11を迂回して選択還元型触媒13に導かれる。 On the other hand, when it is determined by the control device 19 that the oxidation catalyst 11 is in an operation state in which NO 2 is excessively generated, the switching valve 15 is appropriately set by the opening command signals 15a and 16a from the control device 19. The switching valve 16 is throttled by an appropriate opening degree and the flow of the exhaust gas 7 is distributed to the bypass flow path 14 side, and a part of the exhaust gas 7 bypasses the oxidation catalyst 11 to selectively reduce the catalyst. 13 leads to.

このようにエンジン1からの排気ガス7の一部を酸化触媒11を迂回させて選択還元型触媒13に導くようにすると、酸化触媒11によるNO2の生成量が抑制されて排気ガス7中のNOとNO2の比が約1:1に維持されることになる。 In this way, when a part of the exhaust gas 7 from the engine 1 is led to the selective catalytic reduction catalyst 13 by bypassing the oxidation catalyst 11, the amount of NO 2 generated by the oxidation catalyst 11 is suppressed and the exhaust gas 7 in the exhaust gas 7 is reduced. The ratio of NO to NO 2 will be maintained at about 1: 1.

この結果、図4にグラフで示す如く、選択還元型触媒13の前段に酸化触媒11を装備して該酸化触媒11に排気ガス7の全量を流すようにしていた従来例Aでは、約200℃〜約300℃にかけての温度域でNOx低減率の顕著な落ち込みが確認されていたのに対し、本形態例Bにおいては、約200℃〜約300℃にかけての温度域でNOx低減率が落ち込む現象が回避されることが確認された。   As a result, as shown in the graph of FIG. 4, in the conventional example A in which the oxidation catalyst 11 is provided in the preceding stage of the selective catalytic reduction catalyst 13 and the entire amount of the exhaust gas 7 is allowed to flow through the oxidation catalyst 11, it is about 200 ° C. While a remarkable drop in the NOx reduction rate was confirmed in the temperature range from ˜about 300 ° C., in this embodiment B, the NOx reduction rate dropped in the temperature range from about 200 ° C. to about 300 ° C. Was confirmed to be avoided.

以上に述べた如く、本参考例によれば、選択還元型触媒13の前段に酸化触媒11を配置した構成を採用しても、酸化触媒11によりNO2が過剰に生成される運転状態にある場合に、排気ガス7の一部をバイパス流路14を介し酸化触媒11を迂回させて選択還元型触媒13に導くことができるので、酸化触媒11によるNO2の生成量を適宜に抑制し得て、排気ガス7中のNOとNO2の比を還元反応に最適な約1:1に維持することができ、過剰にNO2が生成されることに起因したNOx低減率の落ち込みを確実に回避することができる。 As described above, according to the present reference example , even if the configuration in which the oxidation catalyst 11 is arranged in the preceding stage of the selective reduction catalyst 13 is employed, the oxidation catalyst 11 is in an operation state in which NO 2 is excessively generated. In this case, a part of the exhaust gas 7 can be led to the selective reduction catalyst 13 by bypassing the oxidation catalyst 11 via the bypass flow path 14, so that the amount of NO 2 generated by the oxidation catalyst 11 can be appropriately suppressed. Thus, the ratio of NO to NO 2 in the exhaust gas 7 can be maintained at about 1: 1 which is optimal for the reduction reaction, and the drop in the NOx reduction rate due to excessive generation of NO 2 can be ensured. It can be avoided.

図5は本発明を実施する形態の一例を示すもので、先の図1〜図4の参考例で酸化触媒11を迂回させて選択還元型触媒13に導くバイパス流路14を設けていたことに換えて、選択還元型触媒13の前段にNO酸化力の異なる二つの酸化触媒11A,11B(NO酸化力の強い酸化触媒11AとNO酸化力の弱い酸化触媒11B)をケーシング10により抱持して並列に装備し、これら各酸化触媒11A,11Bに対し分岐流路27により排気ガス7を振り分けて流して選択還元型触媒13の入側で合流せしめるようにしてあり、その分配量の比率については、先の形態例と同様に切換バルブ15,16(流路切換手段)により行うようにしてある。 FIG. 5 shows an example of an embodiment for carrying out the present invention. In the reference example shown in FIGS. 1 to 4, the bypass flow path 14 that bypasses the oxidation catalyst 11 and leads to the selective reduction catalyst 13 is provided. Instead, the casing 10 holds two oxidation catalysts 11A and 11B (an oxidation catalyst 11A having a strong NO oxidation power and an oxidation catalyst 11B having a low NO oxidation power) having different NO oxidation powers in front of the selective catalytic reduction catalyst 13. The exhaust gas 7 is distributed to the respective oxidation catalysts 11A and 11B through the branch flow path 27 so as to be merged on the inlet side of the selective catalytic reduction catalyst 13, and the ratio of the distribution amount Is performed by the switching valves 15 and 16 (flow path switching means) as in the previous embodiment.

而して、このように排気浄化装置を構成すれば、回転センサ17の回転数信号17aと、アクセルセンサ18の負荷信号18aとに基づき、酸化触媒11によりNO2が過剰に生成される虞れがない運転状態にあると制御装置19で判断された場合に、該制御装置19からの開度指令信号15a,16aにより切換バルブ15が閉じ且つ切換バルブ16が開いてNO酸化力が弱い方の酸化触媒11Bへの排気ガス7の流れが閉塞され、排気ガス7の全量がNO酸化力が強い方の酸化触媒11Aを通し選択還元型触媒13に導かれる。 Thus, if the exhaust gas purification apparatus is configured in this way, NO 2 may be generated excessively by the oxidation catalyst 11 based on the rotation speed signal 17a of the rotation sensor 17 and the load signal 18a of the accelerator sensor 18. When the control device 19 determines that there is no operation state, the switching valve 15 is closed and the switching valve 16 is opened by the opening command signals 15a and 16a from the control device 19, and the NO oxidizing power is weaker. The flow of the exhaust gas 7 to the oxidation catalyst 11B is blocked, and the entire amount of the exhaust gas 7 is guided to the selective reduction catalyst 13 through the oxidation catalyst 11A having the stronger NO oxidizing power.

また、温度センサ20からの温度信号20aに基づき、現在の排気温度が選択還元型触媒13の活性温度域に到達している条件下でのみ制御装置19から供給ポンプ23に向け駆動指令信号23aが出力され、これにより適切な量の尿素水24が選択還元型触媒13に添加されることになる。   Further, based on the temperature signal 20 a from the temperature sensor 20, the drive command signal 23 a is sent from the control device 19 to the supply pump 23 only under the condition that the current exhaust temperature reaches the activation temperature range of the selective catalytic reduction catalyst 13. As a result, an appropriate amount of urea water 24 is added to the selective catalytic reduction catalyst 13.

このようにエンジン1からの排気ガス7を酸化触媒11Aを通して選択還元型触媒13に導きながら該選択還元型触媒13に尿素水24を添加すると、排気ガス7中のNOが酸化触媒11Aを通過する際に酸化して酸化力の強いNO2として生成され、このような酸化力の強いNO2が多く生成されて選択還元型触媒13へと導かれることにより、該選択還元型触媒13上での尿素水24による還元反応が著しく促進され、通常の選択還元型触媒13の単独使用の場合より低い温度域から還元反応が起こるようになり、排気ガス7中のNOxが良好に還元処理されて浄化されることになる。 When the urea water 24 is added to the selective reduction catalyst 13 while the exhaust gas 7 from the engine 1 is guided to the selective reduction catalyst 13 through the oxidation catalyst 11A in this way, NO in the exhaust gas 7 passes through the oxidation catalyst 11A. oxidized to the time is generated as a strong NO 2 oxidizing power by being guided to selective reduction catalyst 13 such that a strong NO 2 oxidation power many are generated, the on the selective reduction catalyst 13 The reduction reaction by the urea water 24 is remarkably accelerated, and the reduction reaction starts from a lower temperature range than in the case of using the normal selective catalytic reduction catalyst 13 alone, and the NOx in the exhaust gas 7 is well reduced and purified. Will be.

一方、酸化触媒11によりNO2が過剰に生成される運転状態にあると制御装置19で判断された場合には、該制御装置19からの開度指令信号15a,16aにより切換バルブ15が適宜な開度だけ開き且つ切換バルブ16が適宜な開度だけ絞られて排気ガス7の流れがNO酸化力が弱い方の酸化触媒11B側へ分配され、両酸化触媒11A,11BによるNO2の生成量が前記酸化触媒11Aのみを使用した場合よりも抑制されて排気ガス7中のNOとNO2の比が約1:1に維持されることになる。 On the other hand, when it is determined by the control device 19 that the oxidation catalyst 11 is in an operation state in which NO 2 is excessively generated, the switching valve 15 is appropriately set by the opening command signals 15a and 16a from the control device 19. The switching valve 16 is opened only by the opening degree and the switching valve 16 is throttled by an appropriate opening degree, and the flow of the exhaust gas 7 is distributed to the oxidation catalyst 11B side having the weaker NO oxidizing power, and the amount of NO 2 produced by both oxidation catalysts 11A and 11B Is suppressed more than when only the oxidation catalyst 11A is used, and the ratio of NO to NO 2 in the exhaust gas 7 is maintained at about 1: 1.

従って、上記形態例によれば、NO酸化力が強い方の酸化触媒11AによりNO2が過剰に生成される運転状態にある場合に、排気ガス7の一部をNO酸化力が弱い方の酸化触媒11Bに分配して選択還元型触媒13に導くことができるので、両酸化触媒11A,11BによるNO2の生成量を適宜に抑制し得て、排気ガス7中のNOとNO2の比を還元反応に最適な約1:1に維持することができ、300℃近辺の排気温度にて過剰にNO2が生成されることに起因したNOx低減率の落ち込みを確実に回避することができる。 Therefore, according to the above embodiment, when the NO 2 is excessively generated by the oxidation catalyst 11A having the strong NO oxidizing power, the exhaust gas 7 is partially oxidized with the weak NO oxidizing power. Since it can be distributed to the catalyst 11B and guided to the selective reduction catalyst 13, the amount of NO 2 produced by the two oxidation catalysts 11A and 11B can be appropriately suppressed, and the ratio of NO to NO 2 in the exhaust gas 7 can be reduced. It can be maintained at about 1: 1 which is optimal for the reduction reaction, and a drop in the NOx reduction rate due to excessive NO 2 generation at an exhaust temperature around 300 ° C. can be reliably avoided.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、流路切換手段は必ずしも一対の切換バルブで構成しなくても良く、例えば、一つの三方切換バルブで構成するようにしても良いこと、また、酸化触媒と選択還元型触媒との間に温度センサを配置する以外に、選択還元型触媒の出口、又は選択還元型触媒の入口及び出口の両方に温度センサを配置するようにしても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The exhaust emission control device of the present invention is not limited to the above-described embodiment. The flow path switching means does not necessarily have to be composed of a pair of switching valves, for example, it is composed of a single three-way switching valve. In addition to arranging a temperature sensor between the oxidation catalyst and the selective catalytic reduction catalyst, a temperature sensor is provided at the outlet of the selective catalytic reduction catalyst, or at both the inlet and outlet of the selective catalytic reduction catalyst. Of course, various modifications may be made without departing from the scope of the present invention.

本発明を実施する形態の参考例を示す概略図である。It is the schematic which shows the reference example of the form which implements this invention. 流路切換手段の制御に関するフローチャートである。It is a flowchart regarding control of a flow-path switching means. 尿素水添加手段の制御に関するフローチャートである。It is a flowchart regarding control of urea water addition means. 参考例と従来例とをNOx低減率について比較したグラフである。It is the graph which compared this reference example and the prior art example about NOx reduction rate. 本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention.

符号の説明Explanation of symbols

1 エンジン
7 排気ガス
9 排気管
11 酸化触媒
11A NO酸化力が強い方の酸化触媒
11B NO酸化力が弱い方の酸化触媒
13 選択還元型触媒
14 バイパス流路
15 切換バルブ(流路切換手段)
16 切換バルブ(流路切換手段)
17 回転センサ
18 アクセルセンサ(負荷センサ)
19 制御装置
20 温度センサ
21 尿素水タンク(尿素水添加手段)
22 尿素水供給管(尿素水添加手段)
23 供給ポンプ(尿素水添加手段)
24 尿素水(還元剤)
25 噴射ノズル(尿素水添加手段)
DESCRIPTION OF SYMBOLS 1 Engine 7 Exhaust gas 9 Exhaust pipe 11 Oxidation catalyst 11A Oxidation catalyst with stronger NO oxidation power 11B Oxidation catalyst with less NO oxidation power 13 Selective reduction catalyst 14 Bypass flow path 15 Switching valve (flow path switching means)
16 switching valve (channel switching means)
17 Rotation sensor 18 Acceleration sensor (load sensor)
19 control device 20 temperature sensor 21 urea water tank (urea water addition means)
22 Urea water supply pipe (Urea water addition means)
23 Supply pump (urea water addition means)
24 Urea water (reducing agent)
25 Injection nozzle (urea water addition means)

Claims (2)

エンジンの排気管途中に装備されて酸素共存下でも選択的にNOxをアンモニアと反応させ得る選択還元型触媒と、
該選択還元型触媒の前段に並列に対で装備されたNO酸化力の異なる酸化触媒と、
該各酸化触媒に対し排気ガスを振り分けて流し且つ選択還元型触媒の入側で合流せしめる分岐流路と、
該分岐流路の分岐箇所に設けられた流路切換手段と、
前記選択還元型触媒の入側で排気ガス中に還元剤として尿素水を添加する尿素水添加手段と、
エンジンの回転数を検出する回転センサと、
エンジンの負荷を検出する負荷センサと、
前記回転センサ及び負荷センサからの検出値に基づき酸化触媒によりNO 2 が過剰に生成される虞れがない運転状態にあると判断された場合には、NO酸化力が弱い方の酸化触媒への排気ガスの流れを閉塞し、排気ガスの全量をNO酸化力が強い方の酸化触媒を通し選択還元型触媒に導く一方、前記回転センサ及び負荷センサからの検出値に基づき酸化触媒によりNO 2 が過剰に生成される運転状態にあると判断された場合には、前記排気ガスの一部をNO酸化力が弱い方の酸化触媒側へ分配し、両酸化触媒によるNO 2 の生成量が前記NO酸化力が強い方の酸化触媒のみを使用した場合よりも抑制されて排気ガス中のNOとNO2の比が約1:1となるように運転状態に応じ前記流路切換手段を制御して分岐流路の各酸化触媒への排気ガスの分配量を調整しながら前記尿素水添加手段に尿素水の添加を行わしめる制御装置と
を備えたことを特徴とする排気浄化装置。
A selective reduction catalyst that is installed in the exhaust pipe of the engine and can selectively react with ammonia even in the presence of oxygen;
An oxidation catalyst having different NO oxidizing powers installed in parallel in a pair in front of the selective catalytic reduction catalyst;
A branch flow path that distributes exhaust gas to each of the oxidation catalysts and joins them on the inlet side of the selective catalytic reduction catalyst;
Flow path switching means provided at a branch point of the branch flow path;
Urea water addition means for adding urea water as a reducing agent in the exhaust gas on the entry side of the selective catalytic reduction catalyst;
A rotation sensor that detects the number of revolutions of the engine;
A load sensor for detecting the engine load;
If it is determined that there is no risk of excessive NO 2 generation by the oxidation catalyst based on the detection values from the rotation sensor and the load sensor , the oxidation catalyst having the weaker NO oxidation power is applied. The flow of exhaust gas is blocked, and the entire amount of exhaust gas is led to the selective reduction catalyst through the oxidation catalyst having the stronger NO oxidizing power, while NO 2 is caused by the oxidation catalyst based on the detection values from the rotation sensor and the load sensor. When it is determined that the operation state is excessively generated, a part of the exhaust gas is distributed to the oxidation catalyst side having a weaker NO oxidizing power, and the amount of NO 2 produced by both oxidation catalysts is the NO. The flow path switching means is controlled in accordance with the operating state so that the ratio of NO to NO 2 in the exhaust gas is suppressed to about 1: 1 as compared with the case where only the oxidation catalyst having the stronger oxidizing power is used. Exhaust gas to each oxidation catalyst in the branch channel Exhaust gas purification apparatus characterized by comprising a control device which occupies perform addition of urea water to the urea water addition means while adjusting the metering.
酸化触媒と選択還元型触媒との間、又は選択還元型触媒の出口、又は選択還元型触媒の入口及び出口の両方に排気温度を検出する温度センサを配置し、該温度センサの検出値が所定の閾値を超えている条件下でのみ尿素水添加手段による尿素水の添加を実施し得るように制御装置を構成したことを特徴とする請求項1に記載の排気浄化装置。 A temperature sensor for detecting the exhaust gas temperature is arranged between the oxidation catalyst and the selective catalytic reduction catalyst, or at the outlet of the selective catalytic reduction catalyst, or at both the inlet and outlet of the selective catalytic reduction catalyst. 2. The exhaust emission control device according to claim 1 , wherein the control device is configured so that the urea water can be added by the urea water adding means only under a condition that exceeds the threshold value.
JP2003389411A 2003-06-12 2003-11-19 Exhaust purification equipment Expired - Fee Related JP4224383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003389411A JP4224383B2 (en) 2003-06-12 2003-11-19 Exhaust purification equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003168220 2003-06-12
JP2003389411A JP4224383B2 (en) 2003-06-12 2003-11-19 Exhaust purification equipment

Publications (2)

Publication Number Publication Date
JP2005023921A JP2005023921A (en) 2005-01-27
JP4224383B2 true JP4224383B2 (en) 2009-02-12

Family

ID=34197029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003389411A Expired - Fee Related JP4224383B2 (en) 2003-06-12 2003-11-19 Exhaust purification equipment

Country Status (1)

Country Link
JP (1) JP4224383B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4290032B2 (en) * 2004-02-18 2009-07-01 日産ディーゼル工業株式会社 Exhaust purification equipment
JP4652047B2 (en) * 2004-12-28 2011-03-16 独立行政法人交通安全環境研究所 Exhaust gas treatment method and urea SCR type automobile exhaust gas treatment device
JP4698314B2 (en) * 2005-07-15 2011-06-08 Udトラックス株式会社 Exhaust purification device
JP4618508B2 (en) * 2005-12-07 2011-01-26 株式会社豊田中央研究所 Exhaust gas purification apparatus and exhaust gas purification method using the same
US7771669B2 (en) 2006-03-20 2010-08-10 Ford Global Technologies, Llc Soot oxidation catalyst and method of making
JP5003042B2 (en) * 2006-07-14 2012-08-15 いすゞ自動車株式会社 Exhaust gas purification system
EP1970118A1 (en) 2007-03-14 2008-09-17 Ford Global Technologies, LLC Oxidation catalyst, method of making such catalyst and IC engine using such catalyst
JP4702310B2 (en) 2007-03-19 2011-06-15 トヨタ自動車株式会社 Exhaust gas purification device for compression ignition type internal combustion engine
EP2142771A1 (en) * 2007-05-02 2010-01-13 Perkins Engines Company Limited Exhaust treatment system implementing selective doc bypass
US20080295499A1 (en) * 2007-05-31 2008-12-04 James Joshua Driscoll Exhaust system utilizing a low-temperature oxidation catalyst
JP4730352B2 (en) 2007-08-08 2011-07-20 トヨタ自動車株式会社 Exhaust gas purification device for compression ignition type internal combustion engine
US8635853B2 (en) * 2008-01-25 2014-01-28 Caterpillar Inc. Exhaust reduction system having oxygen and temperature control
US8607553B2 (en) * 2008-02-15 2013-12-17 Caterpillar Inc. Exhaust system implementing selective catalyst flow control
JP5272455B2 (en) * 2008-03-11 2013-08-28 いすゞ自動車株式会社 NOx purification system control method and NOx purification system
WO2010113269A1 (en) 2009-03-31 2010-10-07 トヨタ自動車株式会社 Equipment and method for determining catalyst deterioration
JP2013002283A (en) * 2011-06-10 2013-01-07 Hitachi Constr Mach Co Ltd Exhaust emission control device
KR101875228B1 (en) * 2012-01-27 2018-07-05 두산인프라코어 주식회사 Apparatus and controlling method of urea-scr system
JP5672296B2 (en) * 2012-12-03 2015-02-18 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP6705294B2 (en) * 2016-06-03 2020-06-03 いすゞ自動車株式会社 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
CN115045739B (en) * 2022-05-16 2024-02-20 潍柴动力股份有限公司 Emission control method, emission control device and emission control system of marine diesel engine

Also Published As

Publication number Publication date
JP2005023921A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP4224383B2 (en) Exhaust purification equipment
EP2261477B1 (en) Method of controlling nox purification system, and nox purification system
US8713916B2 (en) NOx purification system and method for control of NOx purification system
ES2428163T3 (en) Control procedure, to control an exhaust gas post-treatment system and exhaust gas post-treatment system
CN101988410B (en) Method and device for cleaning an exhaust gas flow of an exhaust gas turbocharged combustion engine
WO2006022213A1 (en) Exhaust gas purification apparatus
JP2006009608A (en) Exhaust emission control device
WO2011135845A1 (en) Exhaust gas purification device
JP2005002968A (en) Exhaust emission control device of internal combustion engine
WO2006022214A1 (en) Exhaust gas purifier
JP2008231950A (en) Exhaust emission control device for internal combustion engine
JP4728124B2 (en) Exhaust purification device
JP2013124608A (en) Exhaust emission control device of internal combustion engine
JP2007182804A (en) Exhaust emission control device
EP2977578B1 (en) Exhaust purification device for internal combustion engine
EP3075975B1 (en) Exhaust gas purification device for internal combustion engine
JP2008274850A (en) Exhaust emission control device
JP2002161732A (en) Exhaust gas cleaning device
JP4267538B2 (en) Exhaust purification equipment
WO2005078250A1 (en) Engine exhaust emission control system
JP2005273614A (en) Urea water adding device
JP4233393B2 (en) Exhaust purification equipment
JP2007077957A (en) Exhaust emission control device
JP2012225283A (en) Exhaust gas purification apparatus and method for controlling the same
JP4233418B2 (en) Exhaust purification equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees