WO2007007512A1 - Pattern forming method - Google Patents

Pattern forming method Download PDF

Info

Publication number
WO2007007512A1
WO2007007512A1 PCT/JP2006/312095 JP2006312095W WO2007007512A1 WO 2007007512 A1 WO2007007512 A1 WO 2007007512A1 JP 2006312095 W JP2006312095 W JP 2006312095W WO 2007007512 A1 WO2007007512 A1 WO 2007007512A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pattern forming
forming method
pattern
exposure
Prior art date
Application number
PCT/JP2006/312095
Other languages
French (fr)
Japanese (ja)
Inventor
Masanobu Takashima
Kazuki Komori
Hiromi Ishikawa
Yoji Okazaki
Toshihiko Omori
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Publication of WO2007007512A1 publication Critical patent/WO2007007512A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels

Definitions

  • the present invention relates to a pattern forming method in which light modulated by light modulation means such as a spatial light modulation element is imaged on a photosensitive layer and the photosensitive layer is exposed.
  • light modulation means such as a spatial light modulation element
  • the DMD is a mirror device in which a large number of micromirrors whose reflection surfaces change in response to a control signal are two-dimensionally arranged on a semiconductor substrate such as silicon.
  • a light source for irradiating laser light for example, a lens system for collimating the laser light irradiated with the light source force, and the lens system Generated according to pattern information or the like using an exposure head including the DMD arranged at a substantially focal position of the lens and a lens system that forms an image of the laser light reflected by the DMD on a scanning surface.
  • Each of the DMD micromirrors is controlled to be turned on and off by a control signal to modulate the laser light, and the modulated laser light (light beam) is set on the stage of the exposure apparatus and moved along the scanning direction.
  • the pattern is scanned and exposed to photosensitive materials such as printed wiring boards and liquid crystal display elements.
  • the light emitted from the exposure head has a lower light intensity at the periphery than at the center of the optical axis due to the factors of each lens system in the exposure head. This is particularly noticeable in systems that irradiate the light collected through the microlens array for each drawing unit.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-22248
  • Patent Document 2 # 112005-22249
  • the present invention has been made in view of the current situation, and it is an object of the present invention to solve the above-described problems and achieve the following objects. That is, according to the present invention, the amount of light of each drawing unit distributed two-dimensionally is made uniform while reducing the cost for exposure using a digital exposure apparatus having an exposure head in which the drawing unit is distributed two-dimensionally. Thus, an object of the present invention is to provide a pattern forming method capable of forming a fine pattern with high accuracy.
  • the photosensitive layer has n (where n is a natural number of 1 or more) two-dimensionally arranged pixel parts, and the light modulation state is changed for each of the pixel parts according to pattern information.
  • Light modulation hand Irradiating the light beam emitted from the light irradiating means via a condensing optical system having a light distribution correcting means, and irradiating with the light beam modulated by the light modulating means,
  • the exposure gives a distribution of the amount of light within the irradiation region of the light beam irradiated from the light irradiation unit to the light modulation unit, and the light amount distribution force of the light beam modulated by the light modulation unit.
  • the pattern forming method is characterized in that the correction is performed so as to be uniform on the exposed surface.
  • the light amount in the irradiation region of the light beam irradiated to the light modulation unit is distributed by the condensing optical system having the light amount distribution correction unit.
  • the light quantity distribution on the exposure surface of the light beam modulated by the light modulation means is corrected to be uniform, the light quantity of each drawing unit is corrected to be uniform in the picture element unit, and high accuracy is achieved.
  • Exposure For example, a high-definition pattern is then formed by developing the photosensitive layer.
  • the light modulation unit is configured to irradiate the light modulation unit with the light beam emitted from the light irradiation unit as a light beam having a distribution in the angle of the principal ray by a condensing optical system.
  • the light beam emitted from the light irradiation unit is irradiated to the light modulation unit by the condensing optical system as a light beam having a distribution in the chief ray angle. Therefore, a distribution is given to the amount of light within the irradiation region of the light beam irradiated to the light modulation means.
  • the photosensitive layer is developed to form a very fine pattern.
  • Light irradiation means force The pattern forming method according to ⁇ 1>, wherein the emitted light beam is irradiated to the light modulation means as telecentric light by a condensing optical system.
  • the pattern forming method according to ⁇ 3> since the light beam emitted from the light irradiation unit is irradiated to the light modulation unit as telecentric light by the condensing optical system, the light modulation unit The telecentricity of the light applied to the light and the uniformity of the light quantity distribution on the exposure surface of the light modulated by the light modulation means can be achieved, and extremely high-precision exposure is performed. For example, by developing the photosensitive layer thereafter, extremely high definition Pattern is formed.
  • a first optical lens that has an aspherical shape in which the condensing optical system decreases in lens power as it moves away from the optical axis center force, and an aspherical shape in which the lens power increases as it moves away from the optical axis center
  • the pattern forming method according to ⁇ 3> further including: a light distribution correcting unit including a second optical lens having In the pattern forming method according to ⁇ 4>, the condensing optical system has an aspherical shape (such as a convex lens for condensing a parallel incident beam) such that the lens power becomes smaller as the optical axis central force is also separated.
  • a second optical lens having an aspherical shape (such as a concave lens that diverges a parallel incident beam) such that the lens power increases as the distance from the optical axis center increases. Since the light distribution correcting means is provided, a situation is realized in which the light passing through the center of the first optical lens is stronger than the light passing through the periphery of the first optical lens. In addition, a telecentric optical system is realized by reversing the change in lens power along the optical axis between the first optical lens and the second optical lens.
  • the light amount distribution of the light beam emitted from the telecentric optical system has a higher distribution density in the peripheral portion with respect to the center of the optical axis, the light amount distribution on the exposure surface is made uniform, and extremely accurate exposure is possible. Done. For example, by developing the photosensitive layer thereafter, an extremely fine pattern is formed.
  • the condensing optical system increases the amount of light in the peripheral portion rather than the central portion within the irradiation region of the light beam irradiated from the light irradiation means to the light modulation means.
  • ⁇ 4> The pattern forming method according to any one of ⁇ 4>.
  • the condensing optical system is arranged in a peripheral portion rather than a central portion in an irradiation region of a light beam irradiated from the light irradiation unit to the light modulation unit.
  • the amount of light in the peripheral portion that is lower than the central portion is increased by the condensing optical system, and light use efficiency in exposure is improved.
  • Light modulation means force force The pattern forming method according to any one of ⁇ 1> to ⁇ 5>, which is a spatial light modulation element.
  • ⁇ 7> The pattern forming method according to ⁇ 6>, wherein the spatial light modulator is a digital 'micromirror' device (DMD).
  • DMD digital 'micromirror' device
  • ⁇ 8> The pattern forming method according to any one of ⁇ 1> to ⁇ 7>, wherein the photosensitive layer is developed after exposure.
  • ⁇ 9> The pattern forming method according to any one of ⁇ 1> to ⁇ 8>, wherein a permanent pattern is formed after development.
  • ⁇ 11> The pattern forming method according to any one of ⁇ 1>, ⁇ 10>, ⁇ 10>, wherein the light irradiation means can synthesize and irradiate two or more lights.
  • the pattern forming material according to ⁇ 11> since the light irradiation unit can synthesize and irradiate two or more lights, exposure is performed with exposure light having a deep focal depth. As a result, the pattern forming material is exposed with extremely high definition. For example, by developing the photosensitive layer thereafter, a very high-definition pattern is formed.
  • the light irradiating means collimates and condenses the laser beams irradiated with the plurality of lasers, the multimode optical fiber, and the plurality of laser forces, respectively, on the incident end face of the multimode optical fiber.
  • laser beams emitted from the plurality of lasers are condensed by the light source condensing optical system by the light irradiation unit, and the multimode optical fiber
  • the pattern forming material is exposed with extremely high definition. For example, after that, the photosensitive layer is developed to form a very fine pattern.
  • the photosensitive layer contains a binder, a polymerizable compound, and a photopolymerization initiator.
  • Binder strength The pattern forming method according to 13 above, which has an acidic group.
  • ⁇ 16> The binder according to any one of ⁇ 13> and ⁇ 15>, wherein the binder includes a copolymer, and the copolymer has structural units derived from at least one of styrene and a styrene derivative. It is a pattern forming material.
  • ⁇ 17> The pattern forming material according to any one of ⁇ 13> to ⁇ 16>, wherein the glass transition temperature (Tg) force of the binder is 80 ° C or more.
  • ⁇ 18> The pattern forming method according to any one of ⁇ 13>, ⁇ 17>, wherein the binder has an acid value of 70 to 250 mgKOHZg.
  • the photopolymerization initiator is a halogenated hydrocarbon derivative, hexarylbiimidazole, oxime derivative, organic peroxide, thio compound, ketone compound, aromatic onium salt,
  • ⁇ 21> The pattern forming method according to any one of ⁇ 1> to ⁇ 20>, wherein the photosensitive layer contains 10 to 90% by mass of a noinder and 5 to 90% by mass of a polymerizable compound.
  • ⁇ 22> The pattern forming method according to any one of ⁇ 1> to ⁇ 21>, wherein the photosensitive layer has a thickness of 1 to 100111.
  • ⁇ 24> The pattern forming method according to any one of ⁇ 1>, ⁇ 23>, wherein the support has a long shape.
  • Pattern forming material force The pattern forming method according to any one of the above-mentioned ⁇ 1> force ⁇ 24>, which is long and wound in a roll shape.
  • the conventional problems can be solved, and the exposure can be performed while using a digital exposure apparatus including an exposure head in which drawing units are two-dimensionally distributed, while reducing the cost.
  • a pattern forming method capable of forming a fine pattern with high accuracy can be provided by equalizing the amount of light of each drawing unit distributed in a uniform manner.
  • FIG. 1 is a schematic block diagram showing an optical system of an exposure head provided in an exposure apparatus used in the color filter manufacturing method of the present invention.
  • FIG. 2 is an example of a partially enlarged view showing the configuration of a digital micromirror device (DMD).
  • DMD digital micromirror device
  • FIG. 3A is an explanatory diagram for explaining the operation of the DMD shown in FIG.
  • FIG. 3B is an explanatory diagram for explaining the operation of the DMD shown in FIG.
  • FIG. 4A is a perspective view showing a configuration of a fiber array light source.
  • FIG. 4B is a plan view showing an array of light emitting points in the laser emitting section of FIG. 4A.
  • FIG. 5 is a plan view showing a configuration of a combined laser light source.
  • FIG. 6 is a plan view showing a configuration of a laser module.
  • FIG. 7 is a side view showing the configuration of the laser module shown in FIG.
  • FIG. 8 is a partial side view showing the configuration of the laser module shown in FIG.
  • FIG. 9A is a schematic diagram schematically showing the inclination of the chief ray of laser light irradiated on the DMD.
  • FIG. 9B is a graph showing the distribution of chief ray angles of laser light irradiated on the DMD.
  • FIG. 10 shows a case where a laser beam having a chief ray angle distribution corresponding to the chief ray angle distribution (1) of the laser beam emitted onto the DMD shown in FIG.
  • the graph (2) showing the light intensity distribution of the image
  • the graph (3) showing the light transmission characteristics between the DMD and the microlens array, and performing image exposure with the laser light adjusted as shown in the graph (3).
  • FIG. 14 is a graph (4) showing a state where the light amount distribution in the exposure area is made uniform and corrected.
  • FIG. 11A is a block diagram showing a telecentric optical system, and shows a second embodiment of the present invention. It is a block diagram which shows the telecentric optical system which has the aspherical lens which concerns on a form.
  • FIG. 11B is a configuration diagram showing a telecentric optical system, and is a configuration diagram showing a telecentric optical system having a spherical lens as a base of the telecentric optical system in FIG. 11A.
  • the pattern forming method of the present invention includes at least an exposure step of exposing the photosensitive layer after laminating the photosensitive layer in the pattern forming material on the substrate to be processed, and includes other steps appropriately selected.
  • the exposure step includes n (where n is a natural number of 1 or more) two-dimensionally arranged pixel parts, and the light modulation state is changed for each of the pixel parts according to pattern information.
  • the light modulation means to be changed is irradiated with a light beam emitted from the light irradiation means via a condensing optical system having a light distribution correction means, and the light beam modulated by the light modulation means is irradiated for exposure.
  • the exposure gives a distribution of the amount of light within the irradiation region of the light beam irradiated from the light irradiation unit to the light modulation unit, and the light amount distribution force of the light beam modulated by the light modulation unit.
  • the correction is performed so as to be uniform on the exposed surface.
  • a method for providing a distribution of the amount of light in the irradiation region of the light beam irradiated from the light irradiation unit to the light modulation unit can be appropriately selected according to the purpose without any particular limitation.
  • the first embodiment in which a light beam emitted from the light irradiating means is irradiated to the light modulating means as a light beam having a distribution in the principal ray angle by the condensing optical system
  • the light There is a second embodiment in which a light beam emitted from an irradiating means is irradiated to the light modulating means as telecentric light by the condensing optical system.
  • FIG. 1 shows a schematic configuration of an exposure head 100 provided in the exposure apparatus according to the first embodiment.
  • the exposure head 100 may represent an incident light beam as a pixel part (hereinafter referred to as “pixel”) according to pattern information (hereinafter also referred to as “image data”). )
  • pixel pixel part
  • image data pattern information
  • a digital 'micromirror' device (DMD) 50 of a spatial light modulation element is provided.
  • the DMD 50 is connected to a controller (not shown) having a data processing unit and a mirror drive control unit.
  • the data processing unit of the controller Based on the input pattern information (image data), the data processing unit of the controller generates a control signal for driving and controlling each micromirror of the DMD 50 which is a pixel part (pixel) based on the input pattern information (image data).
  • the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 50 based on the control signal generated by the image data processing unit.
  • a fiber array light source 112 having a laser emission portion in which emission ends (light emission points) of optical fibers are arranged in a line along a predetermined direction are emitted from the fiber array light source 112.
  • the condensing optical system 114 that corrects the laser beam that has been corrected and collects the light on the DMD, and the mirrors 122 and 124 that reflect the laser light transmitted through the condensing optical system 114 toward the DMD 50 are arranged in this order.
  • the condensing optical system 114 includes a pair of combination lenses 116 that condense the laser light emitted from the fiber array light source 112, and a rod that corrects the light amount distribution of the collected laser light to be uniform. It comprises an integrator 118 and a condensing lens 120 that condenses the laser light whose light intensity distribution has been corrected on the DMD.
  • the rod integrator 118 Since the rod integrator 118 guides the light while totally reflecting the light inside the integrator, the rod integrator 118 can correct the laser light so that the light quantity distribution is uniform.
  • a projection optical system is provided on the light reflection side of the DMD 50.
  • the projection optical system projects a light source image onto a photosensitive material (laminated body in which the photosensitive layer in the pattern forming material is laminated on a substrate to be processed) 134 on the exposure surface of the DMD 50 on the light reflection side.
  • a photosensitive material laminated body in which the photosensitive layer in the pattern forming material is laminated on a substrate to be processed
  • the optical members for exposure of the lens system 126, the microlens array 128, and the objective lens system 130 are arranged in order toward the DMD50 side force photosensitive material 134. It is configured.
  • the lens system 126 and the objective lens system 130 are configured as a magnifying optical system in which a plurality of lenses (such as a convex lens and a concave lens) are combined, and are reflected by the DMD 50.
  • a plurality of lenses such as a convex lens and a concave lens
  • the DMD 50 By expanding the cross-sectional area of the light beam (light beam), the area of the exposure area on the photosensitive material 134 by the light beam reflected by the DMD 50 is expanded to a predetermined size.
  • the photosensitive material 134 is disposed at the rear focal position of the objective lens system 130.
  • the microlens array 128 includes a plurality of one-to-one correspondences with each micromirror 62 (see FIG. 2) of the DMD 50 that reflects the laser light emitted from the fiber array light source 112.
  • the microlenses 132 are two-dimensionally arranged and integrally molded into a rectangular flat plate shape. Each microlens 132 is on the optical axis of each laser beam transmitted through the lens system 126. Each is arranged.
  • the microlens array 128 can be formed, for example, by molding a resin or optical glass.
  • the DMD 50 as an example of the light modulation means is configured such that a micromirror 62 is supported on a SRAM cell (memory cell) 60 by a support column.
  • This is a mirror device configured by arranging a large number (for example, 600 ⁇ 800) of micromirrors constituting a portion (also referred to as “pixel” or “pixel”) in a grid pattern.
  • Each pixel is provided with a micro mirror 62 supported by a support column at the top, and a material having high reflectivity such as aluminum is deposited on the surface of the microphone opening mirror 62. Note that the reflectivity of the micromirror 62 is 90% or more.
  • CMOS SRAM cell 60 manufactured in a normal semiconductor memory manufacturing line is disposed directly below the micromirror 62 via a support including a hinge and a yoke. (Integrated type).
  • the microphone mirror 62 supported by the support is ⁇ degrees (eg ⁇ 10 °) with respect to the substrate side on which the DMD50 is placed with the diagonal line as the center. ) Tilted within the range.
  • Figure 3A shows micromirror 62 in the on state + shows a state tilted to ⁇ degrees
  • Fig. 3 (b) shows a state tilted to ⁇ degrees when the micromirror 62 is in the OFF state. Therefore, by controlling the tilt of the micro mirror 62 in each pixel of the DMD 50 according to the image signal as shown in FIG. 2, the light incident on the DMD 50 is reflected in the tilt direction of each micro mirror 62. .
  • FIG. 2 shows an example of a state in which a part of the DMD 50 is enlarged and the micromirror 62 is controlled to be + ⁇ degrees or ⁇ degrees.
  • On / off control of each micromirror 62 is performed by a controller (not shown) connected to the DMD 50.
  • a light absorber (not shown) is arranged in the direction in which the light beam is reflected by the micromirror 62 in the off state.
  • the fiber array light source 112 as an example of the light irradiating means includes a plurality of (25 in the figure) laser modules 64 as shown in FIG. 4A.
  • Each laser module 64 includes a multimode optical fiber 30. One end of each is joined. The other end of the multimode optical fiber 30 is coupled with an optical fiber 31 having the same core diameter as the multimode optical fiber 30 and a cladding diameter smaller than the multimode optical fiber 30.
  • a plurality of rows (three rows in the figure) of emission end portions (light emission points) of the laser emission portion 68 are arranged along a predetermined direction.
  • the multimode optical fiber 30 and the optical fiber 31 may be any of a step index optical fiber, a graded index optical fiber, and a composite optical fiber.
  • a step index type optical fiber manufactured by Mitsubishi Cable Industries, Ltd. can be used.
  • the cladding diameter of the optical fiber 31 is not limited to 60 m.
  • the optical fiber used in conventional fiber light sources has a cladding diameter of 125 m.
  • the smaller the cladding diameter, the deeper the depth of focus, so the cladding diameter of multimode optical fibers is 80 m or less. 60 ⁇ m or less is more preferable, and 40 ⁇ m or less is more preferable.
  • the cladding diameter of the optical fiber 31 is preferably 10 m or more.
  • the laser module 64 is configured by a combined laser light source (fiber light source) shown in FIG.
  • This combined laser light source is composed of a plurality of (for example, 7) chip-shaped lateral multimode or single mode GaN semiconductor lasers L Dl, LD2, LD3, LD4, LD5, LD6 and LD7, collimator lenses 11, 12, 13, 14, 15, 16, and 17 provided corresponding to each of the GaN-based semiconductor lasers LD1 to LD7, one condenser lens 20, and 1 It is composed of a multi-mode optical fiber 30 and a force.
  • the number of semiconductor lasers is not limited to seven.
  • the GaN semiconductor lasers LD1 to LD7 all have the same oscillation wavelength (for example, 405 nm), and all the maximum outputs are also common (for example, 100 mW for the multimode laser and 30 mW for the single mode laser).
  • As the GaN-based semiconductor lasers LD1 to LD7 lasers having an oscillation wavelength other than the above-described 405 nm in a wavelength range of 350 nm to 450 nm may be used.
  • the combined laser light source is housed in a box-shaped package 40 having an upper opening together with other optical elements.
  • the package 40 is provided with a package lid 41 created so as to close the opening thereof. After the degassing process, a sealing gas is introduced, and the opening of the knock 40 is closed by the package lid 41, whereby the package 40 and the package 40 are packaged.
  • the combined laser light source is hermetically sealed in a closed space (sealed space) formed by the cage lid 41.
  • a base plate 42 is fixed to the bottom surface of the package 40.
  • the heat block 10 On the top surface of the base plate 42, the heat block 10, a condensing lens holder 45 for holding the light source condensing lens 20, and a multimode are provided. Attached with fiber holder 46 that holds the incident end of optical fiber 30 It has been. The exit end of the multimode optical fiber 30 is drawn out of the package through an opening formed in the wall surface of the package 40.
  • a collimator lens holder 44 is attached to the side of the heat block 10.
  • the collimator lenses 11 to 17 are held.
  • An opening is formed in the lateral wall surface of the package 40, and wiring 47 for supplying a driving current to the GaN-based semiconductor lasers LD1 to LD7 is drawn out of the package through the opening.
  • FIG. 8 shows the front shape of the mounting portion of the collimator lenses 11 to 17.
  • Each of the collimator lenses 11 to 17 is a plane parallel to a region including the optical axis of a circular lens having an aspheric surface. It is formed into a shape that has been cut long and thin.
  • the elongated collimator lens can be formed, for example, by molding resin or optical glass.
  • the collimator lenses 11 to 17 are closely arranged in the arrangement direction of the light emitting points so that the length direction is orthogonal to the arrangement direction of the light emitting points of the GaN-based semiconductor lasers LD1 to LD7 (left and right direction in FIG. 8).
  • each of the GaN-based semiconductor lasers LD1 to LD7 includes an active layer having an emission width of 2 ⁇ m, and the divergence angles in a direction parallel to the active layer and in a direction perpendicular thereto are, for example, 10 ° and 30 °, respectively.
  • Lasers that emit laser beams B1 to B7 are used.
  • These GaN-based semiconductor lasers LD1 to LD7 are arranged so that the light emitting points are arranged in a line in a direction parallel to the active layer.
  • the laser beams B1 to B7 emitted by the respective light emission point forces are expanded in the direction in which the divergence angle is large with respect to the elongated collimator lenses 11 to 17 as described above.
  • the incident light enters in a state where the direction with a small angle coincides with the width direction (direction perpendicular to the length direction). That is, the collimator lenses 11 to 17 have a width of 1. lmm and a length of 4.6 mm, and the horizontal and vertical beam diameters of the laser beams B1 to B7 incident on them are 0.9 mm and 2 respectively. 6mm.
  • Each of the collimator lenses 11 to 17 has a focal length.
  • the distance f is 3 mm
  • NA is 0.6
  • the lens arrangement pitch is 1.25 mm.
  • the light source condensing lens 20 is obtained by cutting an area including the optical axis of a circular lens having an aspherical surface into a long and narrow plane parallel to the arrangement direction of the collimator lenses 11 to 17, that is, perpendicular to the length in the horizontal direction. It is formed in a short shape in any direction.
  • it is formed by molding a resin or optical glass.
  • the laser beams B1, B2, B3, B4, B5 emitted in the force divergent light states of the Ga N-based semiconductor lasers LD1 to LD7 constituting the combined laser light source , B6, and B7 are collimated by the corresponding collimator lenses 11-17.
  • the collimated laser beams B1 to B7 are collected by the light source condenser lens 20 and converge on the incident end face of the core 30a of the multimode optical fiber 30.
  • the collimator lenses 11 to 17 and the light source condenser lens 20 constitute a light source condensing optical system, and the light source condensing optical system and the multimode optical fiber 30 constitute a multiplexing optical system.
  • the laser beams B1 to B7 condensed as described above by the light source condenser lens 20 enter the core 30a of the multimode optical fiber 30 and propagate through the optical fiber, and merge with the single laser beam B.
  • the light is emitted from the optical fiber 31 coupled to the output end of the multimode optical fiber 30.
  • the laser emitting section 68 of the fiber array light source 112 light emission points with high luminance are arranged along the main traveling direction as described above.
  • Conventional fiber light sources that combine laser light from a single semiconductor laser into a single optical fiber have low output, so it was not possible to obtain the desired output without arranging multiple rows.
  • a laser with an output of about 30 mW (milliwatt) is usually used as a semiconductor laser, and a core diameter is used as an optical fiber.
  • Multimode optical fiber with 50 m, clad diameter 125 m, NA (numerical aperture) of 0.2 can be used, and 225 multimode optical fibers can be obtained if an output of about 4.5 W (watt) is to be obtained.
  • (15 X 15) must bundled, the area of the light emitting region 3. 6 mm 2 because it is (1. 9m m X l. 9mm ), the luminance at laser emitting portion 68 1. 25 (WZmm 2), The luminance per optical fiber is 10 (WZmm 2 ).
  • an output of about 4.5 W can be obtained with 25 multimode optical fibers, and the area of the light emitting region at the laser emitting portion 68 is 0.2 mm. 2 (0.18 mm ⁇ l. 13 mm), the luminance at the laser emitting portion 68 is 22.5 (W / mm 2 ), which is about 18 times higher than the conventional luminance.
  • the luminance per optical fiber is 90 (WZmm 2 ), which makes it possible to increase the luminance by about 9 times.
  • a blue laser having an oscillation wavelength near 400 nm is preferable.
  • Directional force using blue laser Microlens array 1 A condensing beam of each microlens 132 of 28 can be narrowed down.
  • the condensing optical system 114 described above is an exposure surface of the exposure beam modulated by the DMD 50 separately from the light amount distribution correction function provided in the rod integrator 118.
  • the laser light emitted to the DMD 50 has a predetermined distribution of the light intensity within the irradiation area, in detail, the laser incident from the fiber array light source 112 It has the function of emitting laser light with a predetermined distribution of chief ray angles to the light and irradiating the DMD 50.
  • the principal ray is a ray that passes through the center of the entrance pupil (or aperture stop) in the object space in the optical system (a ray that exists without vignetting even when the aperture stop is minimized). In the broad sense, it is the ray at the center of the oblique ray bundle. Used in the meaning of the person.
  • FIG. 9A is a diagram schematically showing the inclination of the chief ray of the laser light irradiated on the DMD 50.
  • Fig. 9A in the laser beam LB irradiated to a specific position P on the DMD 50, when the chief ray of the laser beam LB tilts to the minus (-) side, as shown by the arrow PR The chief ray tilts in the direction approaching the optical axis (optical axis center) X of the laser beam, and in the case of tilting to the plus (+) side, the direction moving away from the optical axis X of the laser beam as indicated by the arrow + PR Lean to.
  • FIG. 9B shows a state in which the chief ray angle is distributed according to the distance from the optical axis center in the illumination area on the laser beam power DMD 50 emitted from the condensing optical system 114 of the present embodiment. It is the figure which showed the example irradiated. As shown in Fig. 9B, the chief ray angle distribution of the laser beam irradiated to the illumination area (laser beam irradiation area) on DMD50 is parallel to the optical axis without tilting the chief ray at the center of the optical axis of the laser beam.
  • the chief ray gradually tilts to the + side and gradually tilts as it goes from the optical axis center to the periphery of the illumination area, and when the predetermined distance YA is reached, the chief ray moves to the + side.
  • the tilt angle becomes maximum (maximum tilt angle A), and after a predetermined distance YA, the tilt angle of the chief ray toward the + side gradually decreases, and when it reaches the peripheral edge of the illumination area, it is the same as the center of the optical axis.
  • the distribution is such that the inclination of the light beam disappears.
  • the light density in the periphery of the DMD50 is increased compared to the center of the optical axis, that is, in the center of the optical axis. In comparison, the laser light having a higher brightness in the peripheral portion is irradiated.
  • the size of the distribution amount determined by the maximum tilt angle A of the chief ray is equal to or greater than the light amount reduction amount in the peripheral portion.
  • the telecentricity (parallelism between the principal ray and the optical axis) of the exposure beam required on the exposure surface is preferably set to an amount that satisfies the amount.
  • the reduction in the amount of light at the periphery of the exposure beam on the exposure surface is mainly caused by the microlens array 128 (see FIG. 1) of the projection optical system disposed on the light reflection side of the DMD 50. Therefore, it is desirable to set the size of the distribution amount to be greater than or equal to the amount of light reduction in the peripheral portion caused by the microlens array 128, for example.
  • the light amount reduction amount and the light amount reduction region (light 9B, in the example shown in Fig. 9B, if the distance from the optical axis center to the peripheral edge of the illumination area (the outer edge of DMD50) is YS, YS>YA> YSZ2 is set.
  • the controller controls the drive of each micromirror 62 of the DMD 50 provided in the exposure head 100 based on the input image data. And based on the generated control signal! Control the angle of the reflection surface of each micromirror 62 of DMD50.
  • Laser light is reflected and modulated in a predetermined direction according to the angle of the reflection surface of each micromirror 62, and the modulated light beam is expanded by the lens system 126 and provided in the microlens array 128.
  • Each of the beams 132 is incident and collected.
  • the condensed light beam is imaged on the exposure surface of the photosensitive material 134 by the objective lens system 130. In this way, the laser light emitted from the fiber array light source 112 is turned off for each pixel ( Then, the photosensitive material 134 is exposed in a pixel unit (exposure area) of approximately the same number as the number of used pixels of the DMD 36.
  • the exposure head 100 of the present embodiment includes A rod integrator 118 is provided in the condensing optical system 114 arranged on the optical path on the light incident side of the DMD 50 in order to make the light distribution of the laser light emitted from the fiber array light source 112 uniform and irradiate the DMD 50. .
  • the laser light incident on the condensing optical system 114 from the fiber array light source 112 is as shown in (1) of FIG.
  • the laser beam is emitted from the condensing optical system 114 and irradiated to the DMD 50 as a laser beam having a distribution in the angle of the chief ray and having a higher brightness in the peripheral area than the center of the optical axis.
  • the light amount distribution in the light irradiation region increases the light amount in the peripheral portion as compared with the center of the optical axis. Therefore, as shown in (3) in FIG.
  • the microlens array 128 having a characteristic of reducing the amount of transmitted light as the light beam modulated for each pixel by the DMD 50 goes to the periphery of the optical axis central force.
  • the light amount distribution of the light beam on the exposure surface is corrected to be uniform as shown in (4) of FIG.
  • the light quantity of each drawing unit is corrected so as to be uniform in a plurality of two-dimensionally distributed pixel units, and high-accuracy image exposure is performed. It can be carried out.
  • the DMD 50 is corrected in advance so that the light intensity of each drawing unit is uniform. This reduces the load on the drive controller and reduces the effect on processing speed, simplifies the electrical circuit configuration and processing software, and reduces costs.
  • the light amount distribution correcting unit includes the optical system (the condensing optical system 114) used in the present embodiment, the above-described unit for correcting the light amount distribution can be realized with a simple and inexpensive configuration.
  • the concentrating optical system 114 includes a telecentric lens having an aspheric lens as the light distribution correcting means.
  • the light distribution is provided in the condensing optical system 114.
  • a telecentric optical system 150 constituted by a pair of plano-convex lenses 152 and 154 as shown in FIG. 11A.
  • the telecentric optical system 150 is, for example, a rod integrator 118 and a condensing lens. Located between the lenses 120.
  • the plano-convex lenses 152 and 154 are aspherical lenses whose convex surfaces are formed in an aspheric shape, and the lens power decreases as the distance from the optical axis center increases (convex lenses that collect parallel incident beams).
  • a first optical lens having an aspheric shape such as a concave lens that diverges a parallel incident beam) such that the lens power increases as the distance from the center of the optical axis increases. It is a combination of lenses.
  • the plano-convex lens 152 disposed on the laser beam incident side is such that the surface shape of the incident surface S2 increases as the radius of curvature increases from the optical axis (optical axis center) X. It is a spherical surface, in other words, an aspherical surface whose curvature decreases with increasing distance from the optical axis X, and the exit surface S3 is planar.
  • plano-convex lens 154 arranged on the laser beam emission side has an aspheric surface in which the incident surface S4 has a flat surface and the surface shape of the output surface S5 decreases as the radius of curvature increases from the optical axis X In other words, it is an aspheric surface whose curvature increases with distance from the optical axis X.
  • Table 1 below shows an example of lens data of the telecentric optical system 150 according to the present embodiment
  • Table 2 shows an example of aspherical data of the entrance surface S2 and the exit surface S5 according to the embodiment. .
  • each coefficient is defined as follows.
  • z Length of perpendicular line (mm) drawn from a point on the aspheric surface at a height h from the optical axis to the tangent plane (plane perpendicular to the optical axis) of the apex of the aspheric surface
  • R radius of curvature (curvature: 1ZR)
  • the laser beam LB2 emitted from the plano-convex lens 152 has a longer focal length as it moves away from the optical axis X. Become. Therefore, when the laser beam LB2 reaches the incident surface S4 of the plano-convex lens 154, the direction of the light that has passed near the center tends to move away from the optical axis X compared to the light that has passed through the periphery of the plano-convex lens 152. Becomes stronger. As a result, the brightness of light is higher in the periphery than in the vicinity of the center of the lens.
  • plano-convex lens 154 is opposite to the plano-convex lens 152, and the focal length becomes shorter as the distance from the optical axis X increases. Therefore, combining these two plano-convex lenses 152, 154 forms a telecentric optical system. Can do.
  • FIG. 11B shows a ray diagram of the telecentric optical system 160 of the spherical lens system, which is the base of the telecentric optical system 150 of the present embodiment that is an aspherical lens system.
  • the incident surface of the plano-convex lens 162 arranged on the incident side of the laser beam (LB1) is a spherical surface
  • the emitting surface of the laser beam (the emitting surface of the plano-convex lens 164 arranged on the output side of the LB3 is spherical) Therefore, in this telecentric optical system 160, the light quantity distribution of the laser beam LB3 ′ emitted from the emission surface is almost evenly distributed around the optical axis central force as shown in FIG. 11B. It becomes.
  • the aspherical lens system (telecentric optical system 150) of the second embodiment can also be seen from a comparison with the light amount distribution when the above spherical lens system (telecentric optical system 160) is used.
  • the light amount distribution of the emitted laser light has a higher distribution density in the peripheral portion with respect to the optical axis center, and the light amount in the peripheral portion is increased than the optical axis center.
  • the light beam modulated by the DMD 50 passes through the microphone aperture lens array 128, so that even if the light amount in the peripheral portion with respect to the central portion of the optical axis is reduced, exposure is performed.
  • the surface is irradiated with a light beam that has been corrected so that the light quantity distribution is uniform, and an exposure apparatus equipped with the telecentric optical system 150 can perform high-accuracy image exposure.
  • the laser light emitted from the telecentric optical system 150 is emitted as telecentric light and applied to the DMD 50, so that the telecentricity of the laser light applied to the DMD 50 and the DMD 50 are modulated.
  • the second embodiment is also a light amount distribution correcting means including a condensing optical system having two pairs of plano-convex lenses 152, 154 (telecentric optical system). If so, the means for correcting the light quantity distribution described above can be realized with a simple configuration.
  • the telecentric optical system 150 is used to increase the amount of light in the peripheral portion of the laser light, so that a reduction in light use efficiency in exposure can be suppressed. This also makes it possible to reduce the output of the laser light emitted from the fiber array light source 112, thereby extending the life of the fiber array light source 112 and suppressing contamination of the optical system with high-intensity light. Can also be planned. In addition, fiber array light source 112 and optical system It is also possible to reduce the number of maintenance operations, which reduces the maintenance cost of the exposure equipment.
  • an exposure head provided with a DMD as a spatial modulation element has been described as the light modulation unit.
  • a transparent spatial light is used.
  • a modulation element (LCD) can also be used.
  • MEMS Micro Electro Mechanical Systems
  • SLM Spatial Light Modulator
  • PZT element optical element
  • FLC liquid crystal light shutter
  • MEMS is a collective term for micro-sized sensors, actuators, and control circuits using micro-machining technology based on the IC manufacturing process, and a micro system integrated with a control circuit. It means a spatial light modulator driven by electromechanical action using force. In addition, it is possible to use two or more Grating Light Valves (GLV) configured in two dimensions.
  • GLV Grating Light Valves
  • a lamp or the like can be used as a light source in addition to the laser light source described above.
  • a fiber array light source having a plurality of combined laser light sources, a single semiconductor laser power having one light emitting point, and a single optical fiber for emitting incident laser light A fiber array light source that is an array of fiber light sources equipped with a light source in which a plurality of light emitting points are arranged in a two-dimensional shape (for example, an LD array, an organic EL array, etc.) can be applied.
  • the exposure target is not particularly limited as long as it is a photosensitive layer in a laminate formed by laminating the photosensitive layer in a pattern forming material having a photosensitive layer on a support on a substrate to be processed. It can be selected appropriately.
  • the laminate for example, A layer other than the photosensitive layer in the pattern forming material is laminated.
  • the pattern forming material is not particularly limited as long as it has a photosensitive layer on a support, and can be appropriately selected according to the purpose.
  • the photosensitive layer can be appropriately selected from known pattern forming materials that are not particularly limited, and includes, for example, a needle, a polymerizable compound, and a photopolymerization initiator. Those containing other appropriately selected components are preferred.
  • the number of laminated photosensitive layers can be appropriately selected according to the purpose without any particular limitation.
  • it may be one layer or two or more layers.
  • the noder is preferably swellable in an alkaline aqueous solution, more preferably soluble in an alkaline aqueous solution.
  • binder exhibiting swellability or solubility with respect to the alkaline aqueous solution for example, those having an acidic group are preferably exemplified.
  • the acidic group is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a carboxyl group, a sulfonic acid group, and a phosphoric acid group. Among these, a carboxyxenore group is preferable. .
  • binder having a carboxyl group examples include a vinyl copolymer having a carboxyl group, polyurethane resin, polyamic acid resin, and modified epoxy resin.
  • solubility in a coating solvent Viewpoints such as solubility in alkaline developer, suitability for synthesis, and ease of adjustment of film properties.
  • Vinyl copolymers having a carboxyl group are preferred. From the viewpoint of developability, a copolymer of at least one of styrene and a styrene derivative is also preferable.
  • the vinyl copolymer having a carboxyl group can be obtained by copolymerization with at least (1) a vinyl monomer having a carboxyl group, and (2) a monomer copolymerizable therewith. Specific examples of these monomers include the compounds described in paragraph numbers [0164] to [0205] of JP-A-2005-258431.
  • the content of the binder in the photosensitive layer is not particularly limited. A force that can be appropriately selected according to the purpose. For example, 10 to 90% by mass is preferable, and 20 to 80% by mass is more preferable. 40-80 mass% is especially preferable.
  • the content is less than 10% by mass, the alkali developability and the adhesion to a printed wiring board forming substrate (for example, a copper-clad laminate) may be deteriorated. The stability against image time and the strength of the cured film (tent film) may be reduced.
  • the above content may be the total content of the binder and the polymer binder used in combination as necessary.
  • the glass transition temperature is not particularly limited and may be appropriately selected depending on the purpose.
  • the pattern forming material 80 ° C or higher is preferable, 100 ° C or higher is more preferable, and 120 ° C or higher is particularly preferable, from the viewpoint of suppressing tack and edge fusion and improving the peelability of the support. preferable.
  • the glass transition temperature is less than 80 ° C.
  • tack and edge fusion of the pattern forming material may increase or the peelability of the support may deteriorate.
  • the Noinda one acid value, especially the force limit Ru can be appropriately selected depending on the Nag purpose for example, preferably 70 ⁇ 250mgKOHZg force s, 90 ⁇ 200mgKOH / g and more preferred signaling 100 ⁇ 180MgKOH / g is particularly preferred.
  • the acid value is less than 70 mg KOHZg, developability may be insufficient or resolution may be inferior, and permanent patterns such as wiring patterns may not be obtained in high definition. At least the developer resistance and adhesion of the turn may be poor, and a permanent pattern such as a wiring pattern may not be obtained with high definition.
  • the polymerizable compound is not particularly limited and may be appropriately selected according to the purpose.
  • a monomer or oligomer having at least one of a urethane group and an aryl group is preferably exemplified. These preferably have two or more polymerizable groups.
  • Examples of the polymerizable group include an ethylenically unsaturated bond (for example, (meth) atariloy).
  • ethylenically unsaturated bonds are preferred.
  • the monomer having a urethane group is not particularly limited as long as it has a urethane group, and can be appropriately selected according to the purpose.
  • the monomer having an aryl group is not particularly limited as long as it has an aryl group, and can be appropriately selected according to the purpose.
  • a polyhydric alcohol compound having an aryl group a polyvalent amine compound.
  • a polymerizable monomer other than the monomer containing a urethane group and the monomer having an aryl group may be used in combination as long as the characteristics as the pattern forming material are not deteriorated.
  • Examples of the polymerizable monomer other than the monomer containing a urethane group and the monomer containing an aromatic ring include an unsaturated carboxylic acid (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, And an amide of an unsaturated carboxylic acid and a polyvalent amine compound.
  • an unsaturated carboxylic acid for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, And an amide of an unsaturated carboxylic acid and a polyvalent amine compound.
  • the content of the polymerizable compound in the photosensitive layer is preferably, for example, 5 to 90% by mass.
  • 15 to 60% by mass is more preferable. 20 to 50% by mass is particularly preferable.
  • the strength of the tent film may be reduced. Exceeding this may cause deterioration of edge fusion during storage (exudation of roll end force).
  • the content of the polyfunctional monomer having two or more polymerizable groups in the polymerizable compound is preferably 5 to: LOO mass% is preferable 20 to: LOO mass% is more preferable 40 to: LOO mass % Is particularly preferred.
  • the photopolymerization initiator can be appropriately selected from known photopolymerization initiators that are not particularly limited as long as it has the ability to initiate the polymerization of the polymerizable compound. Those that have photosensitivity to visible light may have some effect with photo-excited sensitizers, and may be active agents that generate active radicals. Cationic polymerization is performed depending on the type of monomer. It may be an initiator that initiates.
  • the photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a wavelength range of about 300 to 800 nm. The wavelength ⁇ to 330-500mn force is particularly preferred!
  • Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton, etc.), hexarylbiimidazole, oxime derivatives, organic peroxides. Products, thio compounds, ketone compounds, aromatic onium salts, meta-octenes, and the like.
  • a halogenated hydrocarbon having a triazine skeleton, an oxime derivative, a ketone compound, Hexaarylbiimidazole compounds are preferred.
  • preferable photopolymerization initiator include the compounds described in paragraph numbers [0288] to [0309] of JP-A-2005-258431.
  • the content of the photopolymerization initiator in the photosensitive layer is preferably 0.1 to 30% by mass.
  • Examples of the other components include compounds described in paragraph numbers [03 12] to [0336] of JP-A-2005-258431. Contains these ingredients as appropriate From this, it is possible to adjust properties such as stability, photographic properties, print-out properties, and film properties of the target pattern forming material.
  • the thickness of the photosensitive layer is not particularly limited, and can be appropriately selected according to the purpose. However, if it is omitted, 1 to: LOO ⁇ m force S, preferably 2 to 50 ⁇ m force S 4-30 ⁇ m force S is particularly preferable.
  • the pattern forming material can be manufactured, for example, as follows. First, the above-mentioned various materials are dissolved, emulsified or dispersed in water or a solvent to prepare a photosensitive resin composition solution.
  • the solvent of the photosensitive resin composition solution is not particularly limited and may be appropriately selected according to the purpose.
  • Halogenated hydrocarbons such as tetrahydrofuran, ethinoreethenole, ethyleneglycololemethylenoleethenole, ethyleneglycololemonoethylether, 1-methoxy-2-propanol; dimethylformamide, dimethylacetamide, dimethylsulfoxide, Examples include sulfolane. These may be used alone or in combination of two or more. In addition, a known surfactant may be added.
  • the photosensitive resin composition solution is applied on a support and dried to form a photosensitive layer, whereby a pattern forming material can be produced.
  • the method for applying the photosensitive resin composition solution is not particularly limited, and can be appropriately selected according to the purpose.
  • Various coating methods such as a coating method, a wire bar coating method, and a knife coating method may be mentioned.
  • the drying conditions vary depending on each component, the type of solvent, the ratio of use, etc., but are usually 60 to 110 ° C. for 30 seconds to 15 minutes.
  • the support is not particularly limited, and can be appropriately selected according to the purpose. However, it is preferable that the photosensitive layer is peelable and has good light transmittance. Further, the surface is smooth. It is more preferable that the property is good.
  • the support is preferably made of a synthetic resin and transparent, for example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, poly (meth) acrylic.
  • plastic films such as butyl acetate copolymer, polytetrafluoroethylene, polytrifluoroethylene, cellulose-based film, nylon film and the like can be mentioned, and among these, polyethylene terephthalate is particularly preferable. These may be used alone or in combination of two or more.
  • the thickness of the support is not particularly limited, and can be appropriately selected according to the purpose. However, if it is omitted, 2 to 150 ⁇ m force S, preferably 5 to: LOO ⁇ m force S Preferably, 8 to 50 ⁇ m force S is particularly preferable.
  • the shape of the support is not particularly limited, and can be appropriately selected according to the purpose, but is preferably long.
  • the length of the long support is not particularly limited, and examples thereof include those having a length of 10 to 20, OOOm.
  • the pattern forming material may form a protective film on the photosensitive layer.
  • Examples of the protective film include those used for the support, paper, polyethylene, paper laminated with polypropylene, and the like. Among these, a polyethylene film and a polypropylene film are preferable.
  • the thickness of the protective film is not particularly limited and can be appropriately selected according to the purpose. For example, 5 to: LOO ⁇ m force S is preferable, 8 to 50 ⁇ m force S is more preferable, and 10 to 30 ⁇ m force S is particularly preferable.
  • the adhesive force A of the photosensitive layer and the support and the adhesive force B of the photosensitive layer and the protective film satisfy the relationship of adhesive force A> adhesive force B.
  • Examples of the combination of the support and the protective film include, for example, polyethylene terephthalate Z polypropylene, polyethylene terephthalate Z polyethylene, polychlorinated bur Z cellophane, polyimide Z polypropylene, polyethylene terephthalate.
  • Examples of the above-described adhesive force relationship can be satisfied by surface-treating at least one of the support and the protective film. The surface treatment of the support may be performed in order to increase the adhesive force with the photosensitive layer.
  • a primer layer for example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glossy treatment,
  • ultraviolet irradiation treatment for example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glossy treatment,
  • One discharge irradiation treatment, active plasma irradiation treatment, laser beam irradiation treatment and the like can be mentioned.
  • the coefficient of static friction between the support and the protective film is preferably 0.3 to 1.4, more preferably 0.5 to 1.2 force! / !.
  • the pattern forming material is preferably stored, for example, by winding it around a cylindrical core and winding it into a long roll.
  • the length of the long pattern forming material is not particularly limited. For example, a range force of 10-20,000 m can be appropriately selected.
  • slitting may be performed to make it easy for the user to use, and a long body in the range of 100 to 1,000 m may be rolled. In this case, it is preferable that the support is scraped off so as to be the outermost side.
  • the roll-shaped pattern forming material may be slit into a sheet shape.
  • the protective film may be surface-treated in order to adjust the adhesion between the protective film and the photosensitive layer.
  • an undercoat layer made of a polymer such as polyorganosiloxane, fluorinated polyolefin, polyfluoroethylene, or polybutyl alcohol is formed on the surface of the protective film.
  • the undercoat layer is formed by applying the polymer coating solution to the surface of the protective film and then drying at 30 to 150 ° C (particularly 50 to 120 ° C) for 1 to 30 minutes. Can do.
  • the photosensitive layer, the support, and the protective film it may have a layer such as a release layer, an adhesive layer, a light absorption layer, and a surface protective layer.
  • the substrate to be treated can be appropriately selected from known materials having no particular limitation, from those having high surface smoothness to those having an uneven surface. Specifically, a plate-like substrate (substrate) is preferable.
  • Known printed wiring board forming substrates for example, copper-clad laminates
  • glass plates for example, soda glass plates
  • synthetic oil-repellent films Paper, metal plate and the like.
  • the substrate can be used by forming a laminated body in which the photosensitive layer of the pattern forming material is laminated on the substrate. That is, by exposing the photosensitive layer of the pattern forming material in the laminate, the exposed region can be cured, and a pattern can be formed by a development process described later.
  • the pattern forming material can be widely used for pattern formation of printed wiring boards, color filters, pillar materials, rib materials, spacers, display members such as partition walls, holograms, micromachines, and proofs. In particular, it can be suitably used in the pattern forming method of the present invention.
  • the photosensitive layer is exposed by the exposure step, and the photosensitive layer is exposed. After the region is cured, the uncured region is removed and developed to form a pattern.
  • the method for removing the uncured region is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a method for removing using a developer.
  • the developer is not particularly limited and may be appropriately selected according to the purpose.
  • examples thereof include an alkaline aqueous solution, an aqueous developer, an organic solvent, etc.
  • a weak alkaline aqueous solution is used.
  • examples of the base component of the weak alkaline aqueous solution include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and phosphoric acid.
  • the pH of the weakly alkaline aqueous solution is more preferably, for example, about 9 to about 8 to 12, preferably L1.
  • Examples of the weak alkaline aqueous solution include 0.1 to 5% by mass of sodium carbonate aqueous solution or potassium carbonate aqueous solution.
  • the temperature of the developer may be appropriately selected according to the developability of the photosensitive layer.
  • the temperature is preferably about 25 ° C. to 40 ° C.
  • the developer is a surfactant, an antifoaming agent, an organic base (for example, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, triethanolamine, etc.)
  • an organic solvent for example, alcohols, ketones, esters, ethers, amides, latatones, etc.
  • the developer may be an aqueous developer obtained by mixing water or an alkaline aqueous solution and an organic solvent, or may be an organic solvent alone.
  • the etching step can be performed by a method appropriately selected from among known etching methods.
  • the etching solution used for the etching treatment can be appropriately selected according to the purpose without any particular limitation.
  • a cupric chloride solution a cupric chloride solution, Ferric solution, alkaline etching solution, hydrogen peroxide-based etching solution, etc.
  • a ferric solution is preferred.
  • a permanent pattern can be formed on the surface of the substrate by removing the pattern after performing the etching process in the etching step.
  • the permanent pattern is not particularly limited and can be appropriately selected according to the purpose, and examples thereof include a wiring pattern.
  • the plating step can be performed by an appropriately selected method selected from known plating processes.
  • Examples of the plating treatment include copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high-flow solder plating, and Watt bath (nickel sulfate-salt nickel nickel) plating.
  • nickel plating such as nickel sulfamate
  • gold plating such as hard gold plating and soft gold plating.
  • a permanent pattern can be formed on the surface of the substrate by removing the pattern after performing a plating process in the plating process, and further removing unnecessary portions by an etching process or the like as necessary.
  • the pattern forming method of the present invention reduces variations in resolution and density unevenness of the pattern formed on the exposed surface of the pattern forming material, and suppresses distortion of an image to be formed. Since the pattern can be formed with high definition and efficiency, it can be suitably used for forming various patterns that require high-definition exposure, and particularly suitable for forming high-definition wiring patterns. Can be used.
  • the pattern forming method of the present invention can be suitably used for the production of a printed wiring board, particularly for the production of a printed wiring board having a hole portion such as a through hole or a via hole.
  • a method for producing a printed wiring board using the pattern forming method of the present invention will be described.
  • the pattern forming material is formed on a printed wiring board forming substrate having a hole portion as the base.
  • a photosensitive layer is laminated in a positional relationship to be on the substrate side to form a laminate, and (2) a wiring pattern forming region is formed from the side of the laminate opposite to the substrate.
  • the photosensitive layer is cured, (3) the support in the pattern forming material is removed from the laminate, and (4) the photosensitive layer in the laminate is developed, and the uncured portion in the laminate is removed.
  • a pattern can be formed by removing.
  • the removal of the support in (3) may be performed between (1) and (2) instead of between (2) and (4). Good.
  • a method of etching or plating the printed wiring board forming substrate using the formed pattern for example, a known subtractive method or additive method (for example, Semi-additive method and full additive method)).
  • the subtractive method is preferable in order to form a printed wiring board with industrially advantageous tenting.
  • the cured resin remaining on the printed wiring board forming substrate is peeled off.
  • the copper thin film portion is further etched after the peeling to produce a desired printed wiring board. can do.
  • a multilayer printed wiring board can also be manufactured in the same manner as the printed wiring board manufacturing method.
  • a printed wiring board forming substrate having through holes and having a surface covered with a metal plating layer is prepared.
  • the printed wiring board forming substrate for example, a copper clad laminated substrate and a substrate in which a copper plating layer is formed on an insulating base material such as glass-epoxy, or an interlayer insulating film is laminated on these substrates, and a copper plating layer is formed.
  • a formed substrate (laminated substrate) can be used.
  • the lamination temperature of the pattern forming material is not particularly limited, and examples thereof include room temperature (15 to 30 ° C.) or under heating (30 to 180 ° C.). Among these, under heating (60 to 140 ° C.) C) is preferred.
  • the roll pressure of the pressure-bonding roll is not particularly limited. For example, 0.1 to 1 MPa is preferable.
  • the speed of the pressure-bonding is particularly preferably 1 to 3 mZ without limitation.
  • the printed wiring board forming substrate may be preheated or laminated under reduced pressure.
  • the laminated body is formed for producing a photosensitive layer of the pattern forming material.
  • the method may be such that the photosensitive resin composition solution is directly applied to the surface of the printed wiring board forming substrate and dried.
  • the photosensitive layer is cured by irradiating light from the surface of the laminate opposite to the substrate.
  • the support may be peeled off and force exposure may be performed.
  • the support is still peeled! /.
  • the support is peeled off from the laminate (support peeling step).
  • the uncured region of the photosensitive layer on the printed wiring board forming substrate is dissolved and removed with an appropriate developer, and the cured layer for forming the wiring pattern and the curing for protecting the metal layer of the through hole are performed.
  • a layer pattern is formed to expose the metal layer on the surface of the printed wiring board forming substrate (development process).
  • post-heating treatment or post-exposure processing may be performed to further accelerate the curing reaction of the cured portion.
  • the development may be a wet development method as described above or a dry development method.
  • etching step the metal layer exposed on the surface of the printed wiring board forming substrate is dissolved and removed with an etching solution (etching step). Since the opening of the through hole is covered with a cured resin composition (tent film), the metal coating of the through hole prevents the etching solution from entering the through hole and corroding the metal plating in the through hole. Will remain in the prescribed shape. Thereby, a wiring pattern is formed on the printed wiring board forming substrate.
  • the etching solution is not particularly limited and may be appropriately selected depending on the purpose.
  • a cupric chloride solution a salty ferric solution, an alkaline etching solution, a hydrogen peroxide-based etching solution, and the like can be mentioned.
  • a salty ferric solution is preferable from the viewpoint of etching factor.
  • the cured layer is removed from the printed wiring board forming substrate as a peeled piece with a strong alkaline aqueous solution or the like (cured product removing step).
  • the base component in the strong alkaline aqueous solution is not particularly limited, and examples thereof include sodium hydroxide and potassium hydroxide.
  • the pH of the strong alkaline aqueous solution is more preferably about 13-14, for example, preferably about 12-14.
  • the strong alkaline aqueous solution is not particularly limited, and examples thereof include 1 to 10% by mass of sodium hydroxide aqueous solution or potassium hydroxide aqueous solution.
  • the printed wiring board may be a multilayer printed wiring board.
  • the pattern forming material may be used in a Meki process that is performed only by the etching process.
  • the plating method include copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high-flow solder plating, watt bath (nickel sulfate monochloride-nickel) plating, nickel plating such as nickel sulfamate, Examples include hard gold plating and gold plating such as soft gold plating.
  • a photosensitive resin composition solution having the following composition is applied to a 20 ⁇ m-thick polyethylene terephthalate film as the support and dried to form a 15-m-thick photosensitive layer. Manufactured.
  • the crimping conditions were a crimping roll temperature of 105 ° C, a crimping roll pressure of 0.3 MPa, and a laminating speed of lmZ.
  • the photosensitive layer of the pattern forming material in the prepared laminate is exposed using the following apparatus, and (a) resolution, (b) edge roughness, and (c) etchability are obtained by the following methods. evaluated. The results are shown in Table 3.
  • the laminate strength is peeled off, and a 1 mass% sodium carbonate aqueous solution at 30 ° C. is sprayed at a pressure of 0.15 MPa over the entire surface of the photosensitive layer on the copper clad laminate, Spray start force The time required for the photosensitive layer on the copper clad laminate to be dissolved and removed was measured, and this was taken as the shortest development time.
  • the shortest development time was 10 seconds.
  • a sensitivity curve was obtained by plotting the relationship between the light irradiation amount and the thickness of the hardened layer. From the sensitivity curve, the amount of light energy when the thickness of the cured region was 15 m, which was the same as that of the photosensitive layer before exposure, was determined as the amount of light energy necessary for curing the photosensitive layer.
  • the amount of light energy required to cure the photosensitive layer was 3.5 mj / cm (?).
  • the condensing optical system has a predetermined distribution in the angle of the chief ray with respect to the laser light incident on the fiber array light source, separately from the light amount distribution correction function provided in the rod integrator 118.
  • the light intensity distribution amount is set to be equal to or greater than the peripheral light amount reduction caused by the microlens array, and the optical axis shown in Fig. 9B is provided.
  • the predetermined distance YA from the center was set to YS> YA> YSZ2, where YS is the distance from the center of the optical axis to the peripheral edge of the illumination area (the outer periphery of the DMD).
  • the laminated body is irradiated and exposed so that a horizontal line pattern perpendicular to the scanning direction of the exposure head is formed, and a part of the photosensitive layer is exposed to the resolution.
  • a pattern was formed in the same manner as in (3) in the measurement.
  • any five points on a line with a line width of 30 / zm were observed using a laser microscope (VK-950 0, manufactured by Keyence Corporation; objective lens 50x), and the edges in the field of view were observed.
  • VK-950 laser microscope
  • the absolute value of the difference between the most swollen part (mountain peak) and the most constricted part (valley bottom) was calculated, and the average value of the five observed points was calculated as the edge roughness.
  • the edge roughness is preferably as the value is small, since it exhibits good performance. The results are shown in Table 3.
  • a salted pig iron etchant (ferric chloride-containing etching solution, 40 ° Baume, Etching was performed by spraying at a liquid temperature of 40 ° C at 0.25 MPa for 36 seconds to dissolve and remove the exposed copper layer not covered with the hardened layer.
  • the formed pattern was removed by spraying a 2% by mass aqueous solution of sodium hydroxide and sodium hydroxide, and a printed wiring board having a copper layer wiring pattern as the permanent pattern on the surface was prepared.
  • the wiring pattern on the printed wiring board was observed with an optical microscope, and the minimum line width of the wiring pattern was measured. A smaller minimum line width means that a finer wiring pattern can be obtained and the etching property is better.
  • Table 3 The results are shown in Table 3.
  • Example 1 except that the exposure apparatus was changed to that described below, a pattern was formed in the same manner as in Example 1, and (a) resolution, (b) edge roughness, and (c) etchability were evaluated. The results are shown in Table 3.
  • FIG. 4A to 8 as the light irradiating means and the DMD schematically shown in FIG. 2 as the light modulating means, in which 1024 micromirrors are arranged in the main scanning direction.
  • Micromirror column force An exposure apparatus having an exposure head having a DMD controlled to drive only 1024 X 256 columns out of 768 arrays arranged in the sub-scanning direction and the optical system shown in FIG. was used. Between the rod integrator 118 and the condenser lens 120 of the exposure head shown in FIG. 1, as a light distribution correcting means, a telecentric lens composed of a pair of plano-convex lenses 152 and 154 as shown in FIG. 11A. An optical system 150 is provided.
  • the surface shape of the incident surface S2 is an aspheric surface whose radius of curvature increases as it moves away from the optical axis (optical axis center) X, in other words, an aspheric surface that decreases as the radius of curvature increases away from the optical axis X. It is flat.
  • plano-convex lens 154 arranged on the laser beam emission side has an aspheric surface in which the incident surface S4 has a flat surface and the surface shape of the output surface S5 decreases as the radius of curvature increases from the optical axis X In other words, it is an aspheric surface whose curvature increases with distance from the optical axis X.
  • the light intensity distribution of the laser beam emitted from the telecentric optical system 150 after being collimated becomes higher in the peripheral density with respect to the center of the optical axis.
  • the amount of light in the peripheral portion is increased from the central portion (optical axis center) of the laser light irradiation region.
  • the laser beam passes through the microlens array 128 to cause a reduction in the amount of light in the peripheral portion with respect to the central portion of the optical axis, and the exposure surface is irradiated with the light beam corrected so that the light amount distribution is uniform.
  • Example 1 a 1Z2 molar addition product of hexamethylene diisocyanate and pentaethylene oxide monomethaacrylate in the photosensitive resin composition solution is represented by the following structural formula (2).
  • a pattern forming material and a laminate were prepared in the same manner as in Example 1 except that the compound was replaced with the above compound. A pattern was formed, and (a) resolution, (b) edge roughness, and (c) etching property were evaluated. . The results are shown in Table 3.
  • the shortest development time was 10 seconds, and the amount of photoenergy required to cure the photosensitive layer was 3.5 mjZcm 2 .
  • Example 1 a 1Z2 molar ratio adduct of hexamethylene diisocyanate and tetraethylene oxide monomethaacrylate in the photosensitive resin composition solution is represented by the following structural formula (3).
  • a pattern forming material and a laminate were prepared in the same manner as in Example 1 except that the compound was changed to a non-turned material, and (a) resolution, (b) edge roughness, and (c) etching property were evaluated. I was worth it. The results are shown in Table 3.
  • the shortest development time was 10 seconds, and the amount of photoenergy required to cure the photosensitive layer was 3.5 mjZcm 2 .
  • Example 1 methacrylic acid Z methyl metatalylate Z styrene copolymer (copolymer composition (mass ratio): 29Z19Z52, mass average molecular weight: 60,000, acid value 189) was converted to methyl metatalylate Z styrene.
  • Example 1 except that Z benzyl metatalate Z methacrylic acid copolymer (copolymer composition (mass ratio): 8/30/37/25, mass average molecular weight: 60,000, acid value 163)
  • a pattern forming material and a laminate were prepared, a pattern was formed, and (a) resolution, (b) edge roughness, and (c) etching property were evaluated. The results are shown in Table 3.
  • the shortest development time is 10 seconds, and the light energy required to cure the photosensitive layer is approximately 4 mj / cm (?
  • Example 3 a pattern forming material and a laminate were prepared in the same manner as in Example 1 except that an exposure head having a configuration that does not include a light distribution correction unit in the condensing optical system was prepared. And (a) resolution, (b) edge roughness, and (c) etchability were evaluated. The results are shown in Table 3.
  • the amount of light energy required to cure the photosensitive layer was 3.5 miZcm 2
  • the light collecting optical system is not equipped with light distribution correction means! Except for using the exposure head with the configuration, the pattern forming material and the laminate were prepared in the same manner as in Example 2. It was prepared to form a pattern, and (a) resolution, (b) edge roughness, and (c) etching property were evaluated. The results are shown in Table 3.
  • the amount of light energy required to cure the photosensitive layer was 3.5 miZcm 2
  • the pattern forming method of the present invention provides a light amount of each drawing unit that is two-dimensionally distributed while suppressing costs in exposure using a digital exposure apparatus including an exposure head in which drawing units are two-dimensionally distributed.
  • a pattern forming method capable of forming a fine pattern with high precision, and therefore, it can be suitably used for forming various patterns that require high-definition exposure. In particular, it can be suitably used for forming a high-definition wiring pattern.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

Provided is a pattern forming method by which a fine pattern can be accurately formed by making a light quantity of each exposure unit uniform while suppressing cost, for exposure using a digital exposure apparatus having an exposure head wherein the exposure units are two-dimensionally distributed. The method at least includes a step wherein a photosensitive layer is irradiated with optical beams emitted from a light irradiation means, through a focusing optical system having a light distribution correcting means, and exposure is performed by irradiating the photosensitive layer with optical beams modulated by a light modulating means. In the pattern forming method, the exposure is performed by permitting light quantities of the optical beams applied on the light modulating means from the light irradiation means in an irradiation area to have distribution, and that the light quantity distribution of the optical beams modulated by the light modulating means is corrected to be uniform on the plane of the photosensitive layer to be exposed.

Description

明 細 書  Specification
パターン形成方法  Pattern formation method
技術分野  Technical field
[0001] 本発明は、空間光変調素子等の光変調手段により変調された光を感光層上に結 像させて、該感光層を露光するパターン形成方法に関する。  The present invention relates to a pattern forming method in which light modulated by light modulation means such as a spatial light modulation element is imaged on a photosensitive layer and the photosensitive layer is exposed.
背景技術  Background art
[0002] 従来から、デジタル ·マイクロミラー ·デバイス (DMD)等の空間光変調素子(SLM) により、パターン情報 (画像データ)に応じて変調された光で露光を行う露光装置が 種々提案されている。  [0002] Conventionally, various exposure apparatuses that perform exposure with light modulated in accordance with pattern information (image data) by a spatial light modulation element (SLM) such as a digital micromirror device (DMD) have been proposed. Yes.
[0003] 前記 DMDは、制御信号に応じて反射面の角度が変化する多数のマイクロミラーが 、シリコン等の半導体基板上に 2次元状に配列されたミラーデバイスである。この DM Dを用いた従来のデジタル露光方式の露光装置を用いた露光方法では、例えば、レ 一ザ光を照射する光源、該光源力 照射された前記レーザ光をコリメートするレンズ 系、前記レンズ系の略焦点位置に配置された前記 DMD、及び前記 DMDで反射さ れた前記レーザ光を走査面上に結像するレンズ系を備えた露光ヘッドを用い、パタ ーン情報等に応じて生成した制御信号により前記 DMDのマイクロミラーの各々をォ ンオフ制御して前記レーザ光を変調し、変調されたレーザ光 (光ビーム)で、前記露 光装置のステージ上にセットされ走査方向に沿って移動されるプリント配線板や液晶 表示素子等の感光材料に対しパターンを走査露光している。  [0003] The DMD is a mirror device in which a large number of micromirrors whose reflection surfaces change in response to a control signal are two-dimensionally arranged on a semiconductor substrate such as silicon. In an exposure method using a conventional digital exposure type exposure apparatus using this DMD, for example, a light source for irradiating laser light, a lens system for collimating the laser light irradiated with the light source force, and the lens system Generated according to pattern information or the like using an exposure head including the DMD arranged at a substantially focal position of the lens and a lens system that forms an image of the laser light reflected by the DMD on a scanning surface. Each of the DMD micromirrors is controlled to be turned on and off by a control signal to modulate the laser light, and the modulated laser light (light beam) is set on the stage of the exposure apparatus and moved along the scanning direction. The pattern is scanned and exposed to photosensitive materials such as printed wiring boards and liquid crystal display elements.
[0004] 上記のような、描画単位が 2次元的に分布した露光ヘッドを備えるデジタル露光装 置を用いた露光方法においては、微細なパターンを高精度に形成するために、前記 描画単位の光量が均一であることが重要である。  In an exposure method using a digital exposure apparatus including an exposure head in which drawing units are two-dimensionally distributed as described above, in order to form a fine pattern with high accuracy, It is important that is uniform.
し力しながら、実際には、前記露光ヘッドから照射される光は、前記露光ヘッド内の 各レンズ系の要因で、光軸の中心部に比べて周辺部の光強度が低下してしまうとい う問題があり、特に、各描画単位の光をマイクロレンズアレイを通して集光された光を 照射する系にお 、て顕著である。  However, in reality, the light emitted from the exposure head has a lower light intensity at the periphery than at the center of the optical axis due to the factors of each lens system in the exposure head. This is particularly noticeable in systems that irradiate the light collected through the microlens array for each drawing unit.
[0005] この問題に対し、前記露光ヘッドから照射された光の光強度分布 (光量)を測定し、 この光強度分布に応じて前記空間光変調素子の各描素部の駆動タイミングを変化さ せるよう駆動制御することにより、各描画単位の光量が均一になるよう補正するシヱー デイング技術を、既に本出願人が提案している (例えば、特許文献 1及び 2参照)。 [0005] To solve this problem, the light intensity distribution (light quantity) of the light emitted from the exposure head is measured, The seeding technique for correcting the light quantity of each drawing unit to be uniform by controlling the drive so that the drive timing of each picture element portion of the spatial light modulator is changed according to the light intensity distribution has already been developed. The applicant has proposed (see, for example, Patent Documents 1 and 2).
[0006] し力しながら、上述した特許文献 1及び 2の技術では、前記空間光変調素子の駆動 制御部に掛かる負荷が増加して処理速度に影響が及び、また、そのような露光装置 は、電気的な回路構成や処理ソフトが複雑化してコストアップを招 ヽてしまう場合があ る。電気的な制御系システムのコストは、装置全体のコストにおいて大きな割合を占 めるため、コストを抑えるために、制御系システムの負荷を軽減できる新たな技術が 望まれる。 However, in the techniques of Patent Documents 1 and 2 described above, the load applied to the drive control unit of the spatial light modulation element increases to affect the processing speed, and such an exposure apparatus is In some cases, the electrical circuit configuration and processing software become complicated, leading to an increase in cost. The cost of the electrical control system accounts for a large percentage of the overall cost of the device, so a new technology that can reduce the load on the control system is desired to reduce the cost.
[0007] よって、描画単位が 2次元的に分布した露光ヘッドを備えるデジタル露光装置を用 いた露光において、コストを抑えつつ、 2次元的に分布した各描画単位の光量を均 一化することにより、微細なパターンを高精度に形成可能なパターン形成方法は未 だ提供されておらず、更なる改良開発が望まれているのが現状である。  [0007] Therefore, in exposure using a digital exposure apparatus including an exposure head in which drawing units are two-dimensionally distributed, the light amount of each drawing unit distributed two-dimensionally is made uniform while suppressing costs. However, a pattern forming method capable of forming a fine pattern with high accuracy has not been provided yet, and further improvement and development are desired at present.
[0008] 特許文献 1 :特開 2005— 22248号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2005-22248
特許文献 2: #112005 - 22249号公報  Patent Document 2: # 112005-22249
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、力かる現状に鑑みてなされたものであり、従来における前記諸問題を解 決し、以下の目的を達成することを課題とする。即ち、本発明は、描画単位が 2次元 的に分布した露光ヘッドを備えるデジタル露光装置を用いた露光にぉ 、て、コストを 抑えつつ、 2次元的に分布した各描画単位の光量を均一化することにより、微細なパ ターンを高精度に形成可能なパターン形成方法を提供することを目的とする。 [0009] The present invention has been made in view of the current situation, and it is an object of the present invention to solve the above-described problems and achieve the following objects. That is, according to the present invention, the amount of light of each drawing unit distributed two-dimensionally is made uniform while reducing the cost for exposure using a digital exposure apparatus having an exposure head in which the drawing unit is distributed two-dimensionally. Thus, an object of the present invention is to provide a pattern forming method capable of forming a fine pattern with high accuracy.
課題を解決するための手段  Means for solving the problem
[0010] 前記課題を解決するための手段としては、以下の通りである。即ち、 [0010] Means for solving the above-described problems are as follows. That is,
< 1 > 支持体上に感光層を有するパターン形成材料における該感光層を、被処 理基体上に積層した後、  <1> After laminating the photosensitive layer in a pattern forming material having a photosensitive layer on a support on a substrate to be processed,
該感光層に対し、 n個(ただし、 nは 1以上の自然数)の 2次元的に配列された描素 部を有し、パターン情報に応じて前記描素部毎に光変調状態を変化させる光変調手 段に、光照射手段から出射した光ビームを光分布補正手段を有する集光光学系を 介して照射し、前記光変調手段により変調された光ビームを照射して露光を行うこと を少なくとも含み、 The photosensitive layer has n (where n is a natural number of 1 or more) two-dimensionally arranged pixel parts, and the light modulation state is changed for each of the pixel parts according to pattern information. Light modulation hand Irradiating the light beam emitted from the light irradiating means via a condensing optical system having a light distribution correcting means, and irradiating with the light beam modulated by the light modulating means,
該露光が、前記光照射手段から前記光変調手段に照射される光ビームの照射領 域内での光量に分布を持たせ、前記光変調手段により変調された光ビームの光量分 布力 前記感光層の被露光面上において均一となるように補正されて行われることを 特徴とするパターン形成方法である。該< 1 >に記載のパターン形成方法において は、前記光量分布補正手段を有する前記集光光学系によって、前記光変調手段に 照射される光ビームの照射領域内での光量に分布が持たせられ、前記光変調手段 により変調された光ビームの露光面での光量分布が均一になるように補正されるため 、前記描素部において、各描画単位の光量が均一になるよう補正され、高精度な露 光が行われる。例えば、その後、前記感光層を現像することにより、高精細なパター ンが形成される。  The exposure gives a distribution of the amount of light within the irradiation region of the light beam irradiated from the light irradiation unit to the light modulation unit, and the light amount distribution force of the light beam modulated by the light modulation unit. The pattern forming method is characterized in that the correction is performed so as to be uniform on the exposed surface. In the pattern forming method according to <1>, the light amount in the irradiation region of the light beam irradiated to the light modulation unit is distributed by the condensing optical system having the light amount distribution correction unit. Since the light quantity distribution on the exposure surface of the light beam modulated by the light modulation means is corrected to be uniform, the light quantity of each drawing unit is corrected to be uniform in the picture element unit, and high accuracy is achieved. Exposure. For example, a high-definition pattern is then formed by developing the photosensitive layer.
< 2> 光照射手段から出射した光ビームを、集光光学系により、主光線の角度に 分布を有する光ビームとして光変調手段に照射する前記 < 1 >に記載のパターン形 成方法である。該 < 2 >に記載のパターン形成方法においては、前記光照射手段か ら出射した光ビームが、集光光学系により、主光線の角度に分布を有する光ビームと して光変調手段に照射されるため、前記光変調手段に照射される光ビームの照射領 域内での光量に分布が持たせられるようになる。この結果、露光面での光量分布が 均一化され、極めて高精度な露光が行われる。例えば、その後、前記感光層を現像 することにより、極めて高精細なパターンが形成される。  <2> The pattern forming method according to <1>, wherein the light modulation unit is configured to irradiate the light modulation unit with the light beam emitted from the light irradiation unit as a light beam having a distribution in the angle of the principal ray by a condensing optical system. In the pattern forming method according to <2>, the light beam emitted from the light irradiation unit is irradiated to the light modulation unit by the condensing optical system as a light beam having a distribution in the chief ray angle. Therefore, a distribution is given to the amount of light within the irradiation region of the light beam irradiated to the light modulation means. As a result, the light quantity distribution on the exposure surface is made uniform, and extremely high-precision exposure is performed. For example, after that, the photosensitive layer is developed to form a very fine pattern.
< 3 > 光照射手段力 出射された光ビームを、集光光学系により、テレセントリック 光として光変調手段に照射する前記 < 1 >に記載のパターン形成方法である。該< 3 >に記載のパターン形成方法においては、前記光照射手段から出射された光ビー ムが、前記集光光学系により、テレセントリック光として前記光変調手段に照射される ため、前記光変調手段に照射される光のテレセントリック性と、前記光変調手段により 変調された光の露光面での光量分布の均一性との両立が図られ、極めて高精度な 露光が行われる。例えば、その後、前記感光層を現像することにより、極めて高精細 なパターンが形成される。 <3> Light irradiation means force The pattern forming method according to <1>, wherein the emitted light beam is irradiated to the light modulation means as telecentric light by a condensing optical system. In the pattern forming method according to <3>, since the light beam emitted from the light irradiation unit is irradiated to the light modulation unit as telecentric light by the condensing optical system, the light modulation unit The telecentricity of the light applied to the light and the uniformity of the light quantity distribution on the exposure surface of the light modulated by the light modulation means can be achieved, and extremely high-precision exposure is performed. For example, by developing the photosensitive layer thereafter, extremely high definition Pattern is formed.
<4> 集光光学系が、光軸中心力 離れるに従いレンズパワーが小さくなるような 非球面形状を有する第一の光学レンズと、光軸中心から離れるに従いレンズパワー が大きくなるような非球面形状を有する第二の光学レンズとからなる光分布補正手段 を有する前記 < 3 >に記載のパターン形成方法である。該 < 4 >に記載のパターン 形成方法においては、前記集光光学系が、光軸中心力も離れるに従いレンズパワー 力 、さくなるような (平行入射ビームを集光する凸レンズのような)非球面形状を有す る第一の光学レンズと、光軸中心から離れるに従いレンズパワーが大きくなるような( 平行入射ビームを発散させる凹レンズのような)非球面形状を有する第二の光学レン ズとからなる光分布補正手段を有するため、前記第一の光学レンズの周辺部を通過 した光に比べて中央付近を通過した光の方が、光軸力 遠ざ力る度合いを強める状 況が実現され、また、光軸に沿ったレンズパワーの変化を第一の光学レンズと第二の 光学レンズにて逆転させることにより、テレセントリック光学系が実現される。この結果 、該テレセントリック光学系から出射された光ビームの光量分布は、光軸中心に対し て周辺部の分布密度が高くなり、露光面での光量分布が均一化され、極めて高精度 な露光が行われる。例えば、その後、前記感光層を現像することにより、極めて高精 細なパターンが形成される。  <4> A first optical lens that has an aspherical shape in which the condensing optical system decreases in lens power as it moves away from the optical axis center force, and an aspherical shape in which the lens power increases as it moves away from the optical axis center The pattern forming method according to <3>, further including: a light distribution correcting unit including a second optical lens having In the pattern forming method according to <4>, the condensing optical system has an aspherical shape (such as a convex lens for condensing a parallel incident beam) such that the lens power becomes smaller as the optical axis central force is also separated. And a second optical lens having an aspherical shape (such as a concave lens that diverges a parallel incident beam) such that the lens power increases as the distance from the optical axis center increases. Since the light distribution correcting means is provided, a situation is realized in which the light passing through the center of the first optical lens is stronger than the light passing through the periphery of the first optical lens. In addition, a telecentric optical system is realized by reversing the change in lens power along the optical axis between the first optical lens and the second optical lens. As a result, the light amount distribution of the light beam emitted from the telecentric optical system has a higher distribution density in the peripheral portion with respect to the center of the optical axis, the light amount distribution on the exposure surface is made uniform, and extremely accurate exposure is possible. Done. For example, by developing the photosensitive layer thereafter, an extremely fine pattern is formed.
[0011] < 5 > 集光光学系が、光照射手段から光変調手段に照射される光ビームの照射 領域内にぉ 、て、中心部よりも周辺部の光量を増加させる前記 < 1 >から < 4 >のい ずれかに記載のパターン形成方法である。該 < 5 >に記載のパターン形成方法にお いては、前記集光光学系が、前記光照射手段から前記光変調手段に照射される光 ビームの照射領域内において、中心部よりも周辺部の光量を増加させるため、前記 光変調手段に照射された光ビームの照射領域において、中心部よりも低下した周辺 部の光量が前記集光光学系により増加され、露光における光利用効率が向上する。  <5> From the above <1>, the condensing optical system increases the amount of light in the peripheral portion rather than the central portion within the irradiation region of the light beam irradiated from the light irradiation means to the light modulation means. <4> The pattern forming method according to any one of <4>. In the pattern forming method according to <5>, the condensing optical system is arranged in a peripheral portion rather than a central portion in an irradiation region of a light beam irradiated from the light irradiation unit to the light modulation unit. In order to increase the amount of light, in the irradiation region of the light beam irradiated to the light modulation means, the amount of light in the peripheral portion that is lower than the central portion is increased by the condensing optical system, and light use efficiency in exposure is improved.
[0012] < 6 > 光変調手段力 空間光変調素子である前記 < 1 >から < 5 >のいずれかに 記載のパターン形成方法である。  <6> Light modulation means force The pattern forming method according to any one of <1> to <5>, which is a spatial light modulation element.
< 7> 空間光変調素子が、デジタル 'マイクロミラー'デバイス (DMD)である前記 < 6 >に記載のパターン形成方法である。 [0013] < 8 > 露光が行われた後、感光層の現像を行う前記 < 1 >から < 7>のいずれか に記載のパターン形成方法である。 <7> The pattern forming method according to <6>, wherein the spatial light modulator is a digital 'micromirror' device (DMD). <8> The pattern forming method according to any one of <1> to <7>, wherein the photosensitive layer is developed after exposure.
< 9 > 現像が行われた後、永久パターンの形成を行う前記 < 1 >から < 8 >のい ずれかに記載のパターン形成方法である。  <9> The pattern forming method according to any one of <1> to <8>, wherein a permanent pattern is formed after development.
< 10> 永久パターンが配線パターンであり、該永久パターンの形成がエッチング 処理及びメツキ処理の少なくともいずれかにより行われる前記 < 9 >に記載のパター ン形成方法である。  <10> The pattern forming method according to <9>, wherein the permanent pattern is a wiring pattern, and the formation of the permanent pattern is performed by at least one of an etching process and a plating process.
[0014] < 11 > 光照射手段が、 2以上の光を合成して照射可能である前記く 1 >からく 1 0>のいずれかに記載のパターン形成方法である。該< 11 >に記載のパターン形 成材料においては、前記光照射手段が 2以上の光を合成して照射可能であることに より、露光が焦点深度の深い露光光で行われる。この結果、前記パターン形成材料 への露光が極めて高精細に行われる。例えば、その後、前記感光層を現像すること により、極めて高精細なパターンが形成される。  <11> The pattern forming method according to any one of <1>, <10>, <10>, wherein the light irradiation means can synthesize and irradiate two or more lights. In the pattern forming material according to <11>, since the light irradiation unit can synthesize and irradiate two or more lights, exposure is performed with exposure light having a deep focal depth. As a result, the pattern forming material is exposed with extremely high definition. For example, by developing the photosensitive layer thereafter, a very high-definition pattern is formed.
< 12> 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレ 一ザ力 それぞれ照射されたレーザビームを平行光化して集光し、前記マルチモー ド光ファイバの入射端面に収束させる光源集光光学系とを有する前記 < 1 >力ら< 1 1 >のいずれかに記載のパターン形成方法である。該< 12>に記載のパターン形 成方法においては、前記光照射手段により、前記複数のレーザからそれぞれ照射さ れたレーザビームが前記光源集光光学系により集光され、前記マルチモード光ファ ィバの入射端面に収束されることにより、高輝度かつ焦点深度の深い光ビームが得ら れる。この結果、前記パターン形成材料への露光が極めて高精細に行われる。例え ば、その後、前記感光層を現像することにより、極めて高精細なパターンが形成され る。  <12> The light irradiating means collimates and condenses the laser beams irradiated with the plurality of lasers, the multimode optical fiber, and the plurality of laser forces, respectively, on the incident end face of the multimode optical fiber. The pattern forming method according to any one of <1>, <1 1>, and the like, including a light source condensing optical system for convergence. In the pattern forming method according to <12>, laser beams emitted from the plurality of lasers are condensed by the light source condensing optical system by the light irradiation unit, and the multimode optical fiber By focusing on the incident end face of the bar, a light beam with high brightness and deep focal depth can be obtained. As a result, the pattern forming material is exposed with extremely high definition. For example, after that, the photosensitive layer is developed to form a very fine pattern.
[0015] < 13 > 感光層が、バインダーと、重合性化合物と、光重合開始剤とを含む前記 < 1 >から < 12 >のいずれかに記載のパターン形成方法である。  <13> The pattern forming method according to any one of <1> to <12>, wherein the photosensitive layer contains a binder, a polymerizable compound, and a photopolymerization initiator.
< 14> バインダー力 酸性基を有する前記く 13 >に記載のパターン形成方法 である。  <14> Binder strength The pattern forming method according to 13 above, which has an acidic group.
< 15 > バインダーが、ビニル共重合体である前記く 13 >からく 14>のいずれ かに記載のパターン形成方法である。 <15> Any of the above 13> Karaku 14> wherein the binder is a vinyl copolymer. The pattern forming method according to claim 1.
< 16> バインダーが、共重合体を含み、該共重合体がスチレン及びスチレン誘 導体の少なくとも 、ずれかに由来する構造単位を有する前記く 13>からく 15>の V、ずれかに記載のパターン形成材料である。  <16> The binder according to any one of <13> and <15>, wherein the binder includes a copolymer, and the copolymer has structural units derived from at least one of styrene and a styrene derivative. It is a pattern forming material.
< 17> バインダーのガラス転移温度 (Tg)力 80°C以上である前記 < 13>から < 16 >のいずれかに記載のパターン形成材料である。  <17> The pattern forming material according to any one of <13> to <16>, wherein the glass transition temperature (Tg) force of the binder is 80 ° C or more.
< 18> バインダーの酸価力 70〜250mgKOHZgである前記く 13 >からく 1 7 >の 、ずれかに記載のパターン形成方法である。  <18> The pattern forming method according to any one of <13>, <17>, wherein the binder has an acid value of 70 to 250 mgKOHZg.
< 19> 重合性化合物が、ウレタン基及びァリール基の少なくともいずれかを有す るモノマーを含む前記 < 13>から< 18 >のいずれかに記載のパターン形成方法で ある。  <19> The pattern forming method according to any one of <13> to <18>, wherein the polymerizable compound contains a monomer having at least one of a urethane group and an aryl group.
< 20> 光重合開始剤が、ハロゲン化炭化水素誘導体、へキサァリールビイミダゾ ール、ォキシム誘導体、有機過酸化物、チォ化合物、ケトンィ匕合物、芳香族ォ -ゥム 塩及びメタ口セン類カゝら選択される少なくとも 1種を含む前記く 13 >からく 18 >のい ずれかに記載のパターン形成方法である。  <20> The photopolymerization initiator is a halogenated hydrocarbon derivative, hexarylbiimidazole, oxime derivative, organic peroxide, thio compound, ketone compound, aromatic onium salt, The pattern forming method according to any one of the above items 13> Karaku 18>, which includes at least one selected from Sensen.
く 21 > 感光層が、ノインダーを 10〜90質量%含有し、重合性化合物を 5〜90 質量%含有する前記 < 1 >から < 20 >の 、ずれかに記載のパターン形成方法であ る。  <21> The pattern forming method according to any one of <1> to <20>, wherein the photosensitive layer contains 10 to 90% by mass of a noinder and 5 to 90% by mass of a polymerizable compound.
< 22> 感光層の厚みが、 1〜100 111でぁる前記< 1 >から< 21 >のぃずれか に記載のパターン形成方法である。  <22> The pattern forming method according to any one of <1> to <21>, wherein the photosensitive layer has a thickness of 1 to 100111.
< 23> 支持体力 合成樹脂を含み、かつ透明である前記く 1 >からく 22>のい ずれかに記載のパターン形成方法である。  <23> Support strength The pattern forming method according to any one of the above items <1> to <22>, which contains a synthetic resin and is transparent.
< 24> 支持体が、長尺状である前記く 1 >からく 23>のいずれかに記載のパタ ーン形成方法である。  <24> The pattern forming method according to any one of <1>, <23>, wherein the support has a long shape.
< 25> パターン形成材料力 長尺状であり、ロール状に巻かれてなる前記く 1 > 力もく 24 >のいずれかに記載のパターン形成方法である。  <25> Pattern forming material force The pattern forming method according to any one of the above-mentioned <1> force <24>, which is long and wound in a roll shape.
< 26> パターン形成材料における感光層上に保護フィルムを形成する前記く 1 >からく 25 >のいずれかに記載のパターン形成方法である。 発明の効果 <26> The pattern forming method according to any one of <1> to <25>, wherein a protective film is formed on the photosensitive layer in the pattern forming material. The invention's effect
[0017] 本発明によると、従来における問題を解決することができ、描画単位が 2次元的に 分布した露光ヘッドを備えるデジタル露光装置を用いた露光にぉ 、て、コストを抑え つつ、 2次元的に分布した各描画単位の光量を均一化することにより、微細なパター ンを高精度に形成可能なパターン形成方法を提供することができる。  [0017] According to the present invention, the conventional problems can be solved, and the exposure can be performed while using a digital exposure apparatus including an exposure head in which drawing units are two-dimensionally distributed, while reducing the cost. A pattern forming method capable of forming a fine pattern with high accuracy can be provided by equalizing the amount of light of each drawing unit distributed in a uniform manner.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]図 1は、本発明のカラーフィルタの製造方法に用いられる露光装置が備える露 光ヘッドの光学系を示す概略構成図である。  FIG. 1 is a schematic block diagram showing an optical system of an exposure head provided in an exposure apparatus used in the color filter manufacturing method of the present invention.
[図 2]図 2は、デジタル ·マイクロミラー ·デバイス (DMD)の構成を示す部分拡大図の 一例である。  [FIG. 2] FIG. 2 is an example of a partially enlarged view showing the configuration of a digital micromirror device (DMD).
[図 3A]図 3Aは、図 2に示した DMDの動作を説明するための説明図である。  FIG. 3A is an explanatory diagram for explaining the operation of the DMD shown in FIG.
[図 3B]図 3Bは、図 2に示した DMDの動作を説明するための説明図である。  FIG. 3B is an explanatory diagram for explaining the operation of the DMD shown in FIG.
[図 4A]図 4Aは、ファイバアレイ光源の構成を示す斜視図である。  FIG. 4A is a perspective view showing a configuration of a fiber array light source.
[図 4B]図 4Bは、図 4Aのレーザ出射部における発光点の配列を示す平面図である。  FIG. 4B is a plan view showing an array of light emitting points in the laser emitting section of FIG. 4A.
[図 5]図 5は、合波レーザ光源の構成を示す平面図である。  FIG. 5 is a plan view showing a configuration of a combined laser light source.
[図 6]図 6は、レーザモジュールの構成を示す平面図である。  FIG. 6 is a plan view showing a configuration of a laser module.
[図 7]図 7は、図 6に示すレーザモジュールの構成を示す側面図である。  FIG. 7 is a side view showing the configuration of the laser module shown in FIG.
[図 8]図 8は、図 6に示すレーザモジュールの構成を示す部分側面図である。  FIG. 8 is a partial side view showing the configuration of the laser module shown in FIG.
[図 9A]図 9Aは、 DMD上に照射されるレーザ光の主光線の傾きを模式的に示す模 式図である。  [FIG. 9A] FIG. 9A is a schematic diagram schematically showing the inclination of the chief ray of laser light irradiated on the DMD.
[図 9B]図 9Bは DMD上に照射されるレーザ光の主光線角度の分布を示すグラフ図 である。  [FIG. 9B] FIG. 9B is a graph showing the distribution of chief ray angles of laser light irradiated on the DMD.
[図 10]図 10は、図 9Bに示した DMD上に照射されるレーザ光の主光線角度の分布( 1)に対応する、主光線角度の分布を有するレーザ光を DMD上に照射したときの光 量分布を示すグラフ図(2)、 DMD—マイクロレンズアレイ間の光透過特性を示すグ ラフ図(3)、前記グラフ図(3)のように調整したレーザ光で画像露光を行うことにより 露光エリアでの光量分布が均一化されて補正された状態を示すグラフ図 (4)である。  [FIG. 10] FIG. 10 shows a case where a laser beam having a chief ray angle distribution corresponding to the chief ray angle distribution (1) of the laser beam emitted onto the DMD shown in FIG. The graph (2) showing the light intensity distribution of the image, the graph (3) showing the light transmission characteristics between the DMD and the microlens array, and performing image exposure with the laser light adjusted as shown in the graph (3). FIG. 14 is a graph (4) showing a state where the light amount distribution in the exposure area is made uniform and corrected.
[図 11A]図 11Aは、テレセントリック光学系を示す構成図であり、本発明の第 2の実施 形態に係る非球面レンズを有するテレセントリック光学系を示す構成図である。 FIG. 11A is a block diagram showing a telecentric optical system, and shows a second embodiment of the present invention. It is a block diagram which shows the telecentric optical system which has the aspherical lens which concerns on a form.
[図 11B]図 11Bは、テレセントリック光学系を示す構成図であり、図 11Aのテレセントリ ック光学系のベースとなる球面レンズを有するテレセントリック光学系を示す構成図で ある。  FIG. 11B is a configuration diagram showing a telecentric optical system, and is a configuration diagram showing a telecentric optical system having a spherical lens as a base of the telecentric optical system in FIG. 11A.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] (パターン形成方法) [0019] (Pattern formation method)
本発明のパターン形成方法は、パターン形成材料における感光層を、被処理基体 上に積層した後、該感光層に対し、露光を行う露光工程を少なくとも含み、適宜選択 したその他の工程を含む。  The pattern forming method of the present invention includes at least an exposure step of exposing the photosensitive layer after laminating the photosensitive layer in the pattern forming material on the substrate to be processed, and includes other steps appropriately selected.
[0020] 前記露光工程は、 n個(ただし、 nは 1以上の自然数)の 2次元的に配列された描素 部を有し、パターン情報に応じて前記描素部毎に光変調状態を変化させる光変調手 段に、光照射手段から出射した光ビームを光分布補正手段を有する集光光学系を 介して照射し、前記光変調手段により変調された光ビームを照射して露光を行うこと を少なくとも含み、 [0020] The exposure step includes n (where n is a natural number of 1 or more) two-dimensionally arranged pixel parts, and the light modulation state is changed for each of the pixel parts according to pattern information. The light modulation means to be changed is irradiated with a light beam emitted from the light irradiation means via a condensing optical system having a light distribution correction means, and the light beam modulated by the light modulation means is irradiated for exposure. Including at least
該露光が、前記光照射手段から前記光変調手段に照射される光ビームの照射領 域内での光量に分布を持たせ、前記光変調手段により変調された光ビームの光量分 布力 前記感光層の被露光面上において均一となるように補正されて行われる。  The exposure gives a distribution of the amount of light within the irradiation region of the light beam irradiated from the light irradiation unit to the light modulation unit, and the light amount distribution force of the light beam modulated by the light modulation unit. The correction is performed so as to be uniform on the exposed surface.
[0021] 前記記光照射手段から前記光変調手段に照射される光ビームの照射領域内での 光量に分布を持たせる方法としては、特に制限はなぐ目的に応じて適宜選択するこ とができるが、例えば、前記光照射手段から出射した光ビームを、前記集光光学系に より、主光線の角度に分布を有する光ビームとして前記光変調手段に照射する第 1 の実施形態、及び前記光照射手段から出射された光ビームを、前記集光光学系によ り、テレセントリック光として光変調手段に照射する第 2の実施形態が挙げられる。  [0021] A method for providing a distribution of the amount of light in the irradiation region of the light beam irradiated from the light irradiation unit to the light modulation unit can be appropriately selected according to the purpose without any particular limitation. For example, the first embodiment in which a light beam emitted from the light irradiating means is irradiated to the light modulating means as a light beam having a distribution in the principal ray angle by the condensing optical system, and the light There is a second embodiment in which a light beam emitted from an irradiating means is irradiated to the light modulating means as telecentric light by the condensing optical system.
[0022] 本発明のパターン形成方法の露光工程に係る露光装置の一例について、以下、 図面を参照しながら説明する。前記露光工程における露光方法は、前記露光装置の 説明を通じて明らかにする。  An example of an exposure apparatus relating to the exposure process of the pattern forming method of the present invention will be described below with reference to the drawings. The exposure method in the exposure process will be clarified through the description of the exposure apparatus.
[0023] [第 1の実施形態]  [First Embodiment]
<露光装置の概略構成 > 図 1には、第 1の実施形態に係る露光装置に設けられた露光ヘッド 100の概略構成 が示されている。 <Schematic configuration of exposure system> FIG. 1 shows a schematic configuration of an exposure head 100 provided in the exposure apparatus according to the first embodiment.
図 1に示すように、露光ヘッド 100は、入射された光ビームをパターン情報(以下、「 画像データ」と表すことがある)に応じて描素部(以下、「画素」と表すことがある)毎に 変調する光変調手段として、空間光変調素子のデジタル 'マイクロミラー'デバイス (D MD) 50を備えている。この DMD50は、データ処理部とミラー駆動制御部とを備え た図示しな!、コントローラに接続されて 、る。  As shown in FIG. 1, the exposure head 100 may represent an incident light beam as a pixel part (hereinafter referred to as “pixel”) according to pattern information (hereinafter also referred to as “image data”). ) As a light modulation means to modulate every time, a digital 'micromirror' device (DMD) 50 of a spatial light modulation element is provided. The DMD 50 is connected to a controller (not shown) having a data processing unit and a mirror drive control unit.
該コントローラのデータ処理部では、入力されたパターン情報 (画像データ)に基づ V、て、描素部(画素)である DMD50の各マイクロミラーを駆動制御する制御信号を 生成する。また、ミラー駆動制御部では、画像データ処理部で生成した制御信号に 基づ!/、て、 DMD50の各マイクロミラーの反射面の角度を制御する。  Based on the input pattern information (image data), the data processing unit of the controller generates a control signal for driving and controlling each micromirror of the DMD 50 which is a pixel part (pixel) based on the input pattern information (image data). The mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 50 based on the control signal generated by the image data processing unit.
なお、反射面の角度の制御については後述する。  The control of the angle of the reflecting surface will be described later.
[0024] DMD50の光入射側には、光ファイバの出射端部 (発光点)が所定方向に沿って 一列に配列されたレーザ出射部を備えたファイバアレイ光源 112、ファイバアレイ光 源 112から出射されたレーザ光を補正して DMD上に集光させる集光光学系 114、 集光光学系 114を透過したレーザ光を DMD50に向けて反射するミラー 122、 124 力 の順に配置されている。 [0024] On the light incident side of the DMD 50, a fiber array light source 112 having a laser emission portion in which emission ends (light emission points) of optical fibers are arranged in a line along a predetermined direction are emitted from the fiber array light source 112. The condensing optical system 114 that corrects the laser beam that has been corrected and collects the light on the DMD, and the mirrors 122 and 124 that reflect the laser light transmitted through the condensing optical system 114 toward the DMD 50 are arranged in this order.
[0025] 集光光学系 114は、ファイバアレイ光源 112から出射されたレーザ光を集光する 1 対の組合せレンズ 116、集光されたレーザ光の光量分布が均一になるように補正す るロッドインテグレータ 118、及び光量分布が補正されたレーザ光を DMD上に集光 する集光レンズ 120で構成されて 、る。 [0025] The condensing optical system 114 includes a pair of combination lenses 116 that condense the laser light emitted from the fiber array light source 112, and a rod that corrects the light amount distribution of the collected laser light to be uniform. It comprises an integrator 118 and a condensing lens 120 that condenses the laser light whose light intensity distribution has been corrected on the DMD.
ロッドインテグレータ 118は、インテグレータ内を光が全反射しながら導光して行くの で、光量分布が均一となるようにレーザ光を補正することができる。  Since the rod integrator 118 guides the light while totally reflecting the light inside the integrator, the rod integrator 118 can correct the laser light so that the light quantity distribution is uniform.
[0026] 一方、 DMD50の光反射側には投影光学系が設けられている。 On the other hand, a projection optical system is provided on the light reflection side of the DMD 50.
前記投影光学系は、 DMD50の光反射側の露光面にある感光材料 (前記パターン 形成材料における該感光層を、被処理基体上に積層してなる積層体) 134上に、光 源像を投影するために、 DMD50側力 感光材料 134へ向って順に、レンズ系 126 、マイクロレンズアレイ 128、対物レンズ系 130の各露光用の光学部材が配置されて 構成されている。 The projection optical system projects a light source image onto a photosensitive material (laminated body in which the photosensitive layer in the pattern forming material is laminated on a substrate to be processed) 134 on the exposure surface of the DMD 50 on the light reflection side. In order to do this, the optical members for exposure of the lens system 126, the microlens array 128, and the objective lens system 130 are arranged in order toward the DMD50 side force photosensitive material 134. It is configured.
[0027] ここで、レンズ系 126及び対物レンズ系 130は、図 1に示すように複数枚のレンズ( 凸レンズや凹レンズ等)を組み合せた拡大光学系として構成されており、 DMD50に より反射される光ビーム (光線束)の断面積を拡大することで、 DMD50により反射さ れた光ビームによる感光材料 134上の露光エリアの面積を、所定の大きさに拡大し ている。  Here, as shown in FIG. 1, the lens system 126 and the objective lens system 130 are configured as a magnifying optical system in which a plurality of lenses (such as a convex lens and a concave lens) are combined, and are reflected by the DMD 50. By expanding the cross-sectional area of the light beam (light beam), the area of the exposure area on the photosensitive material 134 by the light beam reflected by the DMD 50 is expanded to a predetermined size.
なお、感光材料 134は、対物レンズ系 130の後方焦点位置に配置される。  Note that the photosensitive material 134 is disposed at the rear focal position of the objective lens system 130.
[0028] マイクロレンズアレイ 128は、図 1に示すように、ファイバアレイ光源 112から照射さ れたレーザ光を反射する DMD50の各マイクロミラー 62 (図 2参照)に 1対 1で対応す る複数のマイクロレンズ 132が 2次元状に配列され、一体的に成形されて矩形平板状 に形成されたものであり、各マイクロレンズ 132は、それぞれレンズ系 126を透過した 各レーザビームの光軸上にそれぞれ配置されている。 [0028] As shown in FIG. 1, the microlens array 128 includes a plurality of one-to-one correspondences with each micromirror 62 (see FIG. 2) of the DMD 50 that reflects the laser light emitted from the fiber array light source 112. The microlenses 132 are two-dimensionally arranged and integrally molded into a rectangular flat plate shape. Each microlens 132 is on the optical axis of each laser beam transmitted through the lens system 126. Each is arranged.
このマイクロレンズアレイ 128は、例えば、榭脂又は光学ガラスをモールド成形する こと〖こよって形成することができる。  The microlens array 128 can be formed, for example, by molding a resin or optical glass.
[0029] 一光変調手段 [0029] One-light modulation means
前記光変調手段の一例としての DMD50は、図 2に示すように、 SRAMセル (メモリ セル) 60上に、微小ミラー(マイクロミラー) 62が支柱により支持されて配置されたもの であり、描素部(「画素」、又は「ピクセル」ともいう)を構成する多数の(例えば、 600個 X 800個)の微小ミラーを格子状に配列して構成されたミラーデバイスである。  As shown in FIG. 2, the DMD 50 as an example of the light modulation means is configured such that a micromirror 62 is supported on a SRAM cell (memory cell) 60 by a support column. This is a mirror device configured by arranging a large number (for example, 600 × 800) of micromirrors constituting a portion (also referred to as “pixel” or “pixel”) in a grid pattern.
各ピクセルには、最上部に支柱に支えられたマイクロミラー 62が設けられており、マ イク口ミラー 62の表面にはアルミニウム等の反射率の高 、材料が蒸着されて 、る。な お、マイクロミラー 62の反射率は 90%以上である。  Each pixel is provided with a micro mirror 62 supported by a support column at the top, and a material having high reflectivity such as aluminum is deposited on the surface of the microphone opening mirror 62. Note that the reflectivity of the micromirror 62 is 90% or more.
また、マイクロミラー 62の直下には、ヒンジ及びヨークを含む支柱を介して通常の半 導体メモリの製造ラインで製造されるシリコンゲートの CMOSの SRAMセル 60が配 置されており、全体はモノリシック(一体型)に構成されている。  In addition, a silicon gate CMOS SRAM cell 60 manufactured in a normal semiconductor memory manufacturing line is disposed directly below the micromirror 62 via a support including a hinge and a yoke. (Integrated type).
[0030] DMD50の SRAMセル 60にデジタル信号が書き込まれると、支柱に支えられたマ イク口ミラー 62が、対角線を中心として DMD50が配置された基板側に対して ± ひ度 (例えば ± 10度)の範囲で傾けられる。図 3Aは、マイクロミラー 62がオン状態である + α度に傾いた状態を示し、図 3Βは、マイクロミラー 62がオフ状態である α度に 傾いた状態を示す。従って、画像信号に応じて、 DMD50の各ピクセルにおけるマイ クロミラー 62の傾きを、図 2に示すように制御することによって、 DMD50に入射され た光はそれぞれのマイクロミラー 62の傾き方向へ反射される。 [0030] When a digital signal is written to the SRAM cell 60 of the DMD50, the microphone mirror 62 supported by the support is ±± degrees (eg ± 10 °) with respect to the substrate side on which the DMD50 is placed with the diagonal line as the center. ) Tilted within the range. Figure 3A shows micromirror 62 in the on state + shows a state tilted to α degrees, and Fig. 3 (b) shows a state tilted to α degrees when the micromirror 62 is in the OFF state. Therefore, by controlling the tilt of the micro mirror 62 in each pixel of the DMD 50 according to the image signal as shown in FIG. 2, the light incident on the DMD 50 is reflected in the tilt direction of each micro mirror 62. .
[0031] なお、図 2には、 DMD50の一部を拡大し、マイクロミラー 62が + α度又は α度 に制御されて ヽる状態の一例を示す。それぞれのマイクロミラー 62のオンオフ制御は 、 DMD50に接続された図示しないコントローラによって行われる。なお、オフ状態の マイクロミラー 62により光ビームが反射される方向には、光吸収体(図示せず)が配置 されている。  FIG. 2 shows an example of a state in which a part of the DMD 50 is enlarged and the micromirror 62 is controlled to be + α degrees or α degrees. On / off control of each micromirror 62 is performed by a controller (not shown) connected to the DMD 50. A light absorber (not shown) is arranged in the direction in which the light beam is reflected by the micromirror 62 in the off state.
[0032] 一光照射手段  [0032] Single light irradiation means
前記光照射手段の一例としてのファイバアレイ光源 112は、図 4Αに示すように、複 数(図では 25個)のレーザモジュール 64を備えており、各レーザモジュール 64には、 マルチモード光ファイバ 30の一端が結合されて 、る。 マルチモード光ファイバ 30の他端には、コア径がマルチモード光ファイバ 30と同一 で且つクラッド径がマルチモード光ファイバ 30より小さい光ファイバ 31が結合され、 図 4Βに示すように、光ファイバ 31の出射端部 (発光点)が所定方向に沿って複数列 (図では 3列)配列されてレーザ出射部 68が構成されている。 The fiber array light source 112 as an example of the light irradiating means includes a plurality of (25 in the figure) laser modules 64 as shown in FIG. 4A. Each laser module 64 includes a multimode optical fiber 30. One end of each is joined. The other end of the multimode optical fiber 30 is coupled with an optical fiber 31 having the same core diameter as the multimode optical fiber 30 and a cladding diameter smaller than the multimode optical fiber 30. As shown in FIG. A plurality of rows (three rows in the figure) of emission end portions (light emission points) of the laser emission portion 68 are arranged along a predetermined direction.
[0033] マルチモード光ファイバ 30及び光ファイバ 31としては、ステップインデックス型光フ アイバ、グレーテッドインデックス型光ファイバ、及び複合型光ファイバの何れでもよい 。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いること ができる。 [0033] The multimode optical fiber 30 and the optical fiber 31 may be any of a step index optical fiber, a graded index optical fiber, and a composite optical fiber. For example, a step index type optical fiber manufactured by Mitsubishi Cable Industries, Ltd. can be used.
本実施の形態では、マルチモード光ファイバ 30及び光ファイバ 31は、ステップイン デッタス型光ファイバであり、マルチモード光ファイバ 30は、クラッド径 = 125 m、コ ァ径 = 50 /ζ πι、 NA=0. 2、入射端面コートの透過率 = 99. 5%以上であり、光ファ イノく 31は、クラッド径 =60 m、コア径 = 50 m、 NA=0. 2である。  In the present embodiment, the multimode optical fiber 30 and the optical fiber 31 are step index optical fibers, and the multimode optical fiber 30 has a cladding diameter = 125 m, a core diameter = 50 / ζ πι, NA = 0.2, the transmittance of the incident end face coating is 99.5% or more, and the optical fiber 31 has a cladding diameter = 60 m, a core diameter = 50 m, and NA = 0.2.
[0034] 但し、光ファイバ 31のクラッド径は 60 mには限定されない。従来のファイバ光源 に使用されている光ファイバのクラッド径は 125 mである力 クラッド径が小さくなる ほど焦点深度がより深くなるので、マルチモード光ファイバのクラッド径は 80 m以下 が好ましぐ 60 μ m以下がより好ましぐ 40 μ m以下が更に好ましい。 However, the cladding diameter of the optical fiber 31 is not limited to 60 m. The optical fiber used in conventional fiber light sources has a cladding diameter of 125 m. The smaller the cladding diameter, the deeper the depth of focus, so the cladding diameter of multimode optical fibers is 80 m or less. 60 μm or less is more preferable, and 40 μm or less is more preferable.
一方、コア径は少なくとも 3〜4 /ζ πι必要であることから、光ファイバ 31のクラッド径 は 10 m以上が好ましい。  On the other hand, since the core diameter needs to be at least 3 to 4 / ζ πι, the cladding diameter of the optical fiber 31 is preferably 10 m or more.
[0035] レーザモジュール 64は、図 5に示す合波レーザ光源(ファイバ光源)によって構成さ れている。この合波レーザ光源は、ヒートブロック 10上に配列固定された複数 (例え ば、 7個)のチップ状の横マルチモード又はシングルモードの GaN系半導体レーザ L Dl, LD2, LD3, LD4, LD5, LD6,及び LD7と、 GaN系半導体レーザ LD1〜L D7の各々に対応して設けられたコリメータレンズ 11, 12, 13, 14, 15, 16,及び 17 と、 1つの集光レンズ 20と、 1本のマルチモード光ファイバ 30と、力 構成されている。 なお、半導体レーザの個数は 7個には限定されない。例えば、クラッド径 =60 /ζ πι 、コア径 = 50 πι、 NA=0. 2のマルチモード光ファイバには、 20個もの半導体レー ザ光を入射することが可能であり、照射ヘッドの必要光量を実現して、且つ光フアイ バ本数をより減らすことができる。  [0035] The laser module 64 is configured by a combined laser light source (fiber light source) shown in FIG. This combined laser light source is composed of a plurality of (for example, 7) chip-shaped lateral multimode or single mode GaN semiconductor lasers L Dl, LD2, LD3, LD4, LD5, LD6 and LD7, collimator lenses 11, 12, 13, 14, 15, 16, and 17 provided corresponding to each of the GaN-based semiconductor lasers LD1 to LD7, one condenser lens 20, and 1 It is composed of a multi-mode optical fiber 30 and a force. The number of semiconductor lasers is not limited to seven. For example, a multimode optical fiber with a cladding diameter of 60 / ζ πι, a core diameter of 50 πι, and NA = 0.2 can receive as many as 20 semiconductor laser beams. And the number of optical fibers can be further reduced.
[0036] GaN系半導体レーザ LD1〜LD7は、発振波長が総て共通(例えば、 405nm)で あり、最大出力も総て共通(例えば、マルチモードレーザでは 100mW、シングルモ 一ドレーザでは 30mW)である。なお、 GaN系半導体レーザ LD1〜LD7としては、 3 50nm〜450nmの波長範囲で、上記の 405nm以外の発振波長を備えるレーザを 用いてもよい。  [0036] The GaN semiconductor lasers LD1 to LD7 all have the same oscillation wavelength (for example, 405 nm), and all the maximum outputs are also common (for example, 100 mW for the multimode laser and 30 mW for the single mode laser). As the GaN-based semiconductor lasers LD1 to LD7, lasers having an oscillation wavelength other than the above-described 405 nm in a wavelength range of 350 nm to 450 nm may be used.
なお、好適な波長範囲については後述する。  A suitable wavelength range will be described later.
[0037] 上記の合波レーザ光源は、図 6及び図 7に示すように、他の光学要素と共に、上方 が開口した箱状のパッケージ 40内に収納されている。パッケージ 40は、その開口を 閉じるように作成されたパッケージ蓋 41を備えており、脱気処理後に封止ガスを導入 し、ノ ッケージ 40の開口をパッケージ蓋 41で閉じることにより、パッケージ 40とパッケ ージ蓋 41とにより形成される閉空間 (封止空間)内に上記合波レーザ光源が気密封 止されている。  [0037] As shown in Figs. 6 and 7, the combined laser light source is housed in a box-shaped package 40 having an upper opening together with other optical elements. The package 40 is provided with a package lid 41 created so as to close the opening thereof. After the degassing process, a sealing gas is introduced, and the opening of the knock 40 is closed by the package lid 41, whereby the package 40 and the package 40 are packaged. The combined laser light source is hermetically sealed in a closed space (sealed space) formed by the cage lid 41.
[0038] パッケージ 40の底面にはベース板 42が固定されており、このベース板 42の上面に は、前記ヒートブロック 10と、光源集光レンズ 20を保持する集光レンズホルダー 45と 、マルチモード光ファイバ 30の入射端部を保持するファイバホルダー 46とが取り付け られている。マルチモード光ファイバ 30の出射端部は、パッケージ 40の壁面に形成 された開口からパッケージ外に引き出されている。 [0038] A base plate 42 is fixed to the bottom surface of the package 40. On the top surface of the base plate 42, the heat block 10, a condensing lens holder 45 for holding the light source condensing lens 20, and a multimode are provided. Attached with fiber holder 46 that holds the incident end of optical fiber 30 It has been. The exit end of the multimode optical fiber 30 is drawn out of the package through an opening formed in the wall surface of the package 40.
[0039] また、ヒートブロック 10の側面にはコリメータレンズホルダー 44が取り付けられており[0039] A collimator lens holder 44 is attached to the side of the heat block 10.
、コリメータレンズ 11〜17が保持されている。パッケージ 40の横壁面には開口が形 成され、この開口を通して GaN系半導体レーザ LD1〜LD7に駆動電流を供給する 配線 47がパッケージ外に引き出されている。 The collimator lenses 11 to 17 are held. An opening is formed in the lateral wall surface of the package 40, and wiring 47 for supplying a driving current to the GaN-based semiconductor lasers LD1 to LD7 is drawn out of the package through the opening.
[0040] なお、図 6においては、図の煩雑化を避けるために、複数の GaN系半導体レーザ のうち GaN系半導体レーザ LD7にのみ番号を付し、複数のコリメータレンズのうちコ リメータレンズ 17にのみ番号を付している。 In FIG. 6, in order to avoid complication of the drawing, only the GaN semiconductor laser LD 7 among the plurality of GaN semiconductor lasers is numbered, and the collimator lens 17 among the plurality of collimator lenses is assigned. Only numbered.
[0041] 図 8は、前記コリメータレンズ 11〜17の取り付け部分の正面形状を示すものである コリメータレンズ 11〜17の各々は、非球面を備えた円形レンズの光軸を含む領域 を平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメータ レンズは、例えば、榭脂又は光学ガラスをモールド成形することによって形成すること ができる。コリメータレンズ 11〜17は、長さ方向が GaN系半導体レーザ LD1〜LD7 の発光点の配列方向(図 8の左右方向)と直交するように、上記発光点の配列方向に 密接配置されている。 FIG. 8 shows the front shape of the mounting portion of the collimator lenses 11 to 17. Each of the collimator lenses 11 to 17 is a plane parallel to a region including the optical axis of a circular lens having an aspheric surface. It is formed into a shape that has been cut long and thin. The elongated collimator lens can be formed, for example, by molding resin or optical glass. The collimator lenses 11 to 17 are closely arranged in the arrangement direction of the light emitting points so that the length direction is orthogonal to the arrangement direction of the light emitting points of the GaN-based semiconductor lasers LD1 to LD7 (left and right direction in FIG. 8).
[0042] 一方、 GaN系半導体レーザ LD1〜LD7としては、発光幅が 2 μ mの活性層を備え 、活性層と平行な方向、直角な方向の拡がり角が各々例えば 10° 、30° の状態で 各々レーザビーム B1〜B7を発するレーザが用いられている。これら GaN系半導体 レーザ LD1〜LD7は、活性層と平行な方向に発光点が 1列に並ぶように配設されて いる。  On the other hand, each of the GaN-based semiconductor lasers LD1 to LD7 includes an active layer having an emission width of 2 μm, and the divergence angles in a direction parallel to the active layer and in a direction perpendicular thereto are, for example, 10 ° and 30 °, respectively. Lasers that emit laser beams B1 to B7 are used. These GaN-based semiconductor lasers LD1 to LD7 are arranged so that the light emitting points are arranged in a line in a direction parallel to the active layer.
[0043] 従って、各発光点力 発せられたレーザビーム B1〜B7は、上述のように細長形状 の各コリメータレンズ 11〜17に対して、拡がり角度が大きい方向が長さ方向と一致し 、拡がり角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入 射することになる。つまり、各コリメータレンズ 11〜17の幅が 1. lmm、長さが 4. 6m mであり、それらに入射するレーザビーム B1〜B7の水平方向、垂直方向のビーム径 は各々 0. 9mm、 2. 6mmである。また、コリメータレンズ 11〜17の各々は、焦点距 離 f = 3mm、 NA=0. 6、レンズ配置ピッチ = 1. 25mmである。 [0043] Accordingly, the laser beams B1 to B7 emitted by the respective light emission point forces are expanded in the direction in which the divergence angle is large with respect to the elongated collimator lenses 11 to 17 as described above. The incident light enters in a state where the direction with a small angle coincides with the width direction (direction perpendicular to the length direction). That is, the collimator lenses 11 to 17 have a width of 1. lmm and a length of 4.6 mm, and the horizontal and vertical beam diameters of the laser beams B1 to B7 incident on them are 0.9 mm and 2 respectively. 6mm. Each of the collimator lenses 11 to 17 has a focal length. The distance f is 3 mm, NA is 0.6, and the lens arrangement pitch is 1.25 mm.
1  1
[0044] 光源集光レンズ 20は、非球面を備えた円形レンズの光軸を含む領域を平行な平面 で細長く切り取って、コリメータレンズ 11〜17の配列方向、つまり水平方向に長ぐそ れと直角な方向に短い形状に形成されている。この光源集光レンズ 20は、焦点距離 f = 23mm、 NA=0. 2である。光源集光レンズ 20も、前記コリメータレンズ同様、例 [0044] The light source condensing lens 20 is obtained by cutting an area including the optical axis of a circular lens having an aspherical surface into a long and narrow plane parallel to the arrangement direction of the collimator lenses 11 to 17, that is, perpendicular to the length in the horizontal direction. It is formed in a short shape in any direction. The light source condenser lens 20 has a focal length f = 23 mm and NA = 0.2. Similarly to the collimator lens, the light source condenser lens 20 is also an example.
2 2
えば、榭脂又は光学ガラスをモールド成形することにより形成される。  For example, it is formed by molding a resin or optical glass.
[0045] このように構成されたファイバアレイ光源 112では、合波レーザ光源を構成する Ga N系半導体レーザ LD1〜LD7の各々力 発散光状態で出射したレーザビーム B1, B2, B3, B4, B5, B6,及び B7の各々は、対応するコリメータレンズ 11〜17によつ て平行光化される。平行光化されたレーザビーム B1〜B7は、光源集光レンズ 20に よって集光され、マルチモード光ファイバ 30のコア 30aの入射端面に収束する。  In the fiber array light source 112 configured in this way, the laser beams B1, B2, B3, B4, B5 emitted in the force divergent light states of the Ga N-based semiconductor lasers LD1 to LD7 constituting the combined laser light source , B6, and B7 are collimated by the corresponding collimator lenses 11-17. The collimated laser beams B1 to B7 are collected by the light source condenser lens 20 and converge on the incident end face of the core 30a of the multimode optical fiber 30.
[0046] コリメータレンズ 11〜17、及び光源集光レンズ 20によって光源集光光学系が構成 され、該光源集光光学系とマルチモード光ファイバ 30とによって合波光学系が構成 されている。  The collimator lenses 11 to 17 and the light source condenser lens 20 constitute a light source condensing optical system, and the light source condensing optical system and the multimode optical fiber 30 constitute a multiplexing optical system.
即ち、光源集光レンズ 20によって上述のように集光されたレーザビーム B1〜B7が 、マルチモード光ファイバ 30のコア 30aに入射して光ファイバ内を伝搬し、 1本のレー ザビーム Bに合波されて、マルチモード光ファイバ 30の出射端部に結合された光ファ ィバ 31から出射する。  That is, the laser beams B1 to B7 condensed as described above by the light source condenser lens 20 enter the core 30a of the multimode optical fiber 30 and propagate through the optical fiber, and merge with the single laser beam B. The light is emitted from the optical fiber 31 coupled to the output end of the multimode optical fiber 30.
[0047] 各レーザモジュールにおいて、レーザビーム B1〜: B7のマルチモード光ファイバ 30 への結合効率が 0. 85で、 GaN系半導体レーザ LD1〜LD7の各出力が 30mWの 場合 (シングルモードレーザを使用する場合)には、アレイ状に配列された光ファイバ 31の各々について、出カ180mW( = 30mWX 0. 85 X 7)の合波レーザビーム Bを 得ることができる。従って、 25本の光ファイバ 31がアレイ状に配列されたレーザ出射 部 68での出力は約 4. 5W ( = 180mW X 25)である。  [0047] In each laser module, when the laser beam B1 ~: B7 coupling efficiency to the multimode optical fiber 30 is 0.85 and each output of the GaN-based semiconductor lasers LD1 ~ LD7 is 30mW (single mode laser is used) In this case, a combined laser beam B with an output of 180 mW (= 30 mWX 0.85 X 7) can be obtained for each of the optical fibers 31 arranged in an array. Therefore, the output from the laser emitting section 68 in which 25 optical fibers 31 are arranged in an array is about 4.5 W (= 180 mW × 25).
[0048] ファイバアレイ光源 112のレーザ出射部 68には、この通り高輝度の発光点が主走 查方向に沿って配列されている。単一の半導体レーザからのレーザ光を 1本の光フ アイバに結合させる従来のファイバ光源は低出力であるため、多数列配列しなけれ ば所望の出力を得ることができなかったが、本実施の形態で使用する合波レーザ光 源は高出力であるため、少数列、例えば 1列でも所望の出力を得ることができる。 [0048] In the laser emitting section 68 of the fiber array light source 112, light emission points with high luminance are arranged along the main traveling direction as described above. Conventional fiber light sources that combine laser light from a single semiconductor laser into a single optical fiber have low output, so it was not possible to obtain the desired output without arranging multiple rows. Combined laser light used in the form of Since the source has a high output, the desired output can be obtained even with a small number of columns, for example one column.
[0049] 例えば、半導体レーザと光ファイバを 1対 1で結合させた従来のファイバ光源では、 通常、半導体レーザとしては出力 30mW (ミリワット)程度のレーザが使用され、光ファ ィバとしてはコア径 50 m、クラッド径 125 m、 NA (開口数) 0. 2のマルチモード光 ファイバが使用でき、約 4. 5W (ワット)の出力を得ようとすれば、マルチモード光ファ ィバを 225本(15 X 15)束ねなければならず、発光領域の面積は 3. 6mm2 (1. 9m m X l. 9mm)であるから、レーザ出射部 68での輝度は 1. 25 (WZmm2)、光フアイ ノ 1本当りの輝度は 10 (WZmm2)である。 [0049] For example, in a conventional fiber light source in which a semiconductor laser and an optical fiber are coupled on a one-to-one basis, a laser with an output of about 30 mW (milliwatt) is usually used as a semiconductor laser, and a core diameter is used as an optical fiber. Multimode optical fiber with 50 m, clad diameter 125 m, NA (numerical aperture) of 0.2 can be used, and 225 multimode optical fibers can be obtained if an output of about 4.5 W (watt) is to be obtained. (15 X 15) must bundled, the area of the light emitting region 3. 6 mm 2 because it is (1. 9m m X l. 9mm ), the luminance at laser emitting portion 68 1. 25 (WZmm 2), The luminance per optical fiber is 10 (WZmm 2 ).
[0050] これに対し、本実施の形態では、上述した通り、マルチモード光ファイバ 25本で約 4. 5Wの出力を得ることができ、レーザ出射部 68での発光領域の面積は 0. 2mm2 ( 0. 18mmX l. 13mm)であるから、レーザ出射部 68での輝度は 22. 5 (W/mm2) となり、従来に比べ約 18倍の高輝度化を図ることができる。また、光ファイバ 1本当り の輝度は 90 (WZmm2)であり、従来に比べ約 9倍の高輝度化を図ることができる。 In contrast, in the present embodiment, as described above, an output of about 4.5 W can be obtained with 25 multimode optical fibers, and the area of the light emitting region at the laser emitting portion 68 is 0.2 mm. 2 (0.18 mm × l. 13 mm), the luminance at the laser emitting portion 68 is 22.5 (W / mm 2 ), which is about 18 times higher than the conventional luminance. In addition, the luminance per optical fiber is 90 (WZmm 2 ), which makes it possible to increase the luminance by about 9 times.
[0051] 前記合波レーザ光源を構成する半導体レーザとしては、 400nm近傍の発振波長 を有する青色レーザが好適である。青色レーザを用いた方力 マイクロレンズアレイ 1 28の各マイクロレンズ 132の集光ビームを絞ることができる。  [0051] As the semiconductor laser constituting the combined laser light source, a blue laser having an oscillation wavelength near 400 nm is preferable. Directional force using blue laser Microlens array 1 A condensing beam of each microlens 132 of 28 can be narrowed down.
[0052] 光分布補正手段を有する集光光学系  [0052] Condensing optical system having light distribution correcting means
第 1の実施形態である本実施形態の露光ヘッド 100では、前述した集光光学系 11 4は、ロッドインテグレータ 118が備える光量分布補正機能とは別に、 DMD50により 変調された露光ビームの露光面での光量分布をより高い精度で均一に補正するた め、 DMD50に照射するレーザ光の照射領域内での光量に所定の分布を持たせる 機能、詳細には、ファイバアレイ光源 112から入射されるレーザ光に対し、主光線の 角度に所定の分布を持たせたレーザ光を出射して DMD50に照射する機能を備え ている。  In the exposure head 100 of the present embodiment, which is the first embodiment, the condensing optical system 114 described above is an exposure surface of the exposure beam modulated by the DMD 50 separately from the light amount distribution correction function provided in the rod integrator 118. In order to evenly correct the light intensity distribution with higher accuracy, the laser light emitted to the DMD 50 has a predetermined distribution of the light intensity within the irradiation area, in detail, the laser incident from the fiber array light source 112 It has the function of emitting laser light with a predetermined distribution of chief ray angles to the light and irradiating the DMD 50.
[0053] ここで、この主光線の角度に分布を有するレーザ光を DMD50に照射する例を、図 9を用いて説明する。なお、主光線 (principal ray/chief ray)とは、光学系で物体 空間での入射瞳 (あるいは開口絞り)の中心を通過する光線(開口絞りを最小にして もケラレなしに存在する光線)、広義には斜光線束の中心の光線であり、ここでは後 者の意味で用いる。 Here, an example of irradiating the DMD 50 with laser light having a distribution in the chief ray angle will be described with reference to FIG. The principal ray (principal ray / chief ray) is a ray that passes through the center of the entrance pupil (or aperture stop) in the object space in the optical system (a ray that exists without vignetting even when the aperture stop is minimized). In the broad sense, it is the ray at the center of the oblique ray bundle. Used in the meaning of the person.
[0054] 図 9Aは、 DMD50上に照射されるレーザ光の主光線の傾きを模式的に示した図 である。図 9Aに示すように、 DMD50上の特定の位置 Pに照射されるレーザ光 LBに おいて、レーザ光 LBの主光線がマイナス(-)側に傾く場合には、矢印— PRで示す ように主光線はレーザ光の光軸 (光軸中心) Xに近づく方向へ傾き、プラス(+ )側に 傾く場合には、矢印 + PRで示すようにレーザ光の光軸 Xから遠ざ力る方向へ傾く。  FIG. 9A is a diagram schematically showing the inclination of the chief ray of the laser light irradiated on the DMD 50. As shown in Fig. 9A, in the laser beam LB irradiated to a specific position P on the DMD 50, when the chief ray of the laser beam LB tilts to the minus (-) side, as shown by the arrow PR The chief ray tilts in the direction approaching the optical axis (optical axis center) X of the laser beam, and in the case of tilting to the plus (+) side, the direction moving away from the optical axis X of the laser beam as indicated by the arrow + PR Lean to.
[0055] 図 9Bは、本実施形態の集光光学系 114から出射されるレーザ光力 DMD50上の 照明領域に、光軸中心からの距離に応じて主光線の角度に分布を持った状態で照 射される例を示した図である。図 9Bに示すように、 DMD50上の照明領域 (レーザ光 照射領域)に照射されるレーザ光の主光線角度の分布は、レーザ光の光軸中心では 主光線が傾かずに光軸と平行であり、光軸中心から照明領域の周辺部に行くに従つ て、主光線が +側に除々に傾くとともにその傾斜角度が除々に大きくなり、所定距離 YAに達すると主光線の +側への傾斜角度が最大となり(最大傾斜角度 A)、所定距 離 YAを過ぎると主光線の +側への傾斜角度が除々に小さくなり、照明領域の周辺 端部に至ると、光軸中心と同じく主光線の傾きが無くなる分布となっている。  FIG. 9B shows a state in which the chief ray angle is distributed according to the distance from the optical axis center in the illumination area on the laser beam power DMD 50 emitted from the condensing optical system 114 of the present embodiment. It is the figure which showed the example irradiated. As shown in Fig. 9B, the chief ray angle distribution of the laser beam irradiated to the illumination area (laser beam irradiation area) on DMD50 is parallel to the optical axis without tilting the chief ray at the center of the optical axis of the laser beam. The chief ray gradually tilts to the + side and gradually tilts as it goes from the optical axis center to the periphery of the illumination area, and when the predetermined distance YA is reached, the chief ray moves to the + side. The tilt angle becomes maximum (maximum tilt angle A), and after a predetermined distance YA, the tilt angle of the chief ray toward the + side gradually decreases, and when it reaches the peripheral edge of the illumination area, it is the same as the center of the optical axis. The distribution is such that the inclination of the light beam disappears.
レーザ光の主光線の角度にこのような分布を持たせることにより、 DMD50上の照 明領域には、光軸中心に比べて周辺部の光密度が高められた、すなわち、光軸中 心に比べて周辺部の光輝度が高められたレーザ光が照射される。  By providing such a distribution of the chief ray angles of the laser light, the light density in the periphery of the DMD50 is increased compared to the center of the optical axis, that is, in the center of the optical axis. In comparison, the laser light having a higher brightness in the peripheral portion is irradiated.
[0056] なお、レーザ光の主光線角度に上述した分布を持たせる場合には、主光線の最大 傾斜角度 Aによって決定される分布量の大きさは、周辺部での光量低下量以上で、 且つ、露光面で要求される露光ビームのテレセントリック性 (主光線と光軸との平行度 )を満足する量以下にすることが好ましい。  [0056] In the case where the chief ray angle of the laser beam has the above-described distribution, the size of the distribution amount determined by the maximum tilt angle A of the chief ray is equal to or greater than the light amount reduction amount in the peripheral portion. In addition, the telecentricity (parallelism between the principal ray and the optical axis) of the exposure beam required on the exposure surface is preferably set to an amount that satisfies the amount.
本実施形態の露光ヘッド 100の場合、露光面における露光ビームの周辺部の光量 低下は、主に、 DMD50の光反射側に配置された投影光学系のマイクロレンズアレイ 128 (図 1参照)によって引き起こされるため、上記の分布量の大きさを、例えばこの マイクロレンズアレイ 128によって生じる周辺部の光量低下量以上に設定することが 望ましい。  In the case of the exposure head 100 of the present embodiment, the reduction in the amount of light at the periphery of the exposure beam on the exposure surface is mainly caused by the microlens array 128 (see FIG. 1) of the projection optical system disposed on the light reflection side of the DMD 50. Therefore, it is desirable to set the size of the distribution amount to be greater than or equal to the amount of light reduction in the peripheral portion caused by the microlens array 128, for example.
また、所定距離 YAについては、この周辺部の光量低下量及び光量低下領域 (光 量を補正する領域)に応じて適宜設定することができるが、図 9Bに示した例では、光 軸中心から照明領域の周辺端部(DMD50の外周端部)までの距離を YSとすると、 YS > YA> YSZ2に設定している。 In addition, for the predetermined distance YA, the light amount reduction amount and the light amount reduction region (light 9B, in the example shown in Fig. 9B, if the distance from the optical axis center to the peripheral edge of the illumination area (the outer edge of DMD50) is YS, YS>YA> YSZ2 is set.
[0057] <露光装置の動作 > [0057] <Operation of exposure apparatus>
前記露光装置の動作につ!、て説明する。  The operation of the exposure apparatus will be described.
この露光装置では、図示しないコントローラに画像データが入力されると、コント口 ーラは入力された画像データに基づいて、露光ヘッド 100に設けられた DMD50の 各マイクロミラー 62を駆動制御する制御信号を生成し、生成した制御信号に基づ!/、 て DMD50の各マイクロミラー 62の反射面の角度を制御する。  In this exposure apparatus, when image data is input to a controller (not shown), the controller controls the drive of each micromirror 62 of the DMD 50 provided in the exposure head 100 based on the input image data. And based on the generated control signal! Control the angle of the reflection surface of each micromirror 62 of DMD50.
[0058] ファイバアレイ光源 112から集光光学系 114を介して DMD50に照射された照明光 [0058] Illumination light emitted from the fiber array light source 112 to the DMD 50 via the condensing optical system 114
(レーザ光)は、各マイクロミラー 62の反射面の角度に応じて所定方向に反射されて 変調され、変調された光ビームがレンズ系 126により拡大されてマイクロレンズアレイ 128に設けられたマイクロレンズ 132の各々に入射され集光される。そして、この集光 された光ビームは、対物レンズ系 130によって感光材料 134の露光面上に結像され 、このようにして、ファイバアレイ光源 112から照射されたレーザ光が画素毎にオンォ フ(変調)されて、感光材料 134が DMD36の使用画素数と略同数の画素単位 (露光 エリア)で露光される。  (Laser light) is reflected and modulated in a predetermined direction according to the angle of the reflection surface of each micromirror 62, and the modulated light beam is expanded by the lens system 126 and provided in the microlens array 128. Each of the beams 132 is incident and collected. The condensed light beam is imaged on the exposure surface of the photosensitive material 134 by the objective lens system 130. In this way, the laser light emitted from the fiber array light source 112 is turned off for each pixel ( Then, the photosensitive material 134 is exposed in a pixel unit (exposure area) of approximately the same number as the number of used pixels of the DMD 36.
[0059] 通常は、この光ビームの光量 (光強度)分布は、レンズ系の要因により光軸の中心 部に比べて周辺部が低下してしまうが、本実施形態の露光ヘッド 100には、ファイバ アレイ光源 112から出射されたレーザ光の光量分布を均一化して DMD50に照射す るために、 DMD50の光入射側の光路上に配置した集光光学系 114にロッドインテ グレータ 118を設けている。  [0059] Normally, the light amount (light intensity) distribution of this light beam is lower in the peripheral portion than in the central portion of the optical axis due to factors of the lens system, but the exposure head 100 of the present embodiment includes A rod integrator 118 is provided in the condensing optical system 114 arranged on the optical path on the light incident side of the DMD 50 in order to make the light distribution of the laser light emitted from the fiber array light source 112 uniform and irradiate the DMD 50. .
ただし、このロッドインテグレータ 118によっても、本実施形態のように各描画単位を マイクロレンズアレイ 128によって集光する系では、光軸中心部に対する周辺部の光 強度低下が顕著となり、より高い精度で画像露光を行う場合に光量分布を要求精度 まで補正することが難しい。この光量分布の補正精度を高めるために、ロッドインテグ レータ 118を長尺化することも考えられる力 ロッドインテグレータ 118は非常に高価 な光学部品であるため、装置コストが上昇し、また、露光ヘッド 100が大型化してしま うというデメリットがある。 However, with this rod integrator 118 as well, in the system in which each drawing unit is condensed by the microlens array 128 as in the present embodiment, the light intensity at the peripheral portion with respect to the central portion of the optical axis is significantly reduced, and the image can be obtained with higher accuracy. When performing exposure, it is difficult to correct the light intensity distribution to the required accuracy. In order to improve the correction accuracy of this light quantity distribution, it is possible to lengthen the rod integrator 118. Since the rod integrator 118 is an extremely expensive optical component, the cost of the apparatus increases, and the exposure head 100 Has become larger There is a demerit.
[0060] これに対し、本実施形態の露光ヘッド 100では、前述したように、ファイバアレイ光 源 112から集光光学系 114へ入射されたレーザ光が、図 10中の(1)に示すように、 主光線の角度に分布を持ち光軸中心に比べて周辺部の光輝度が高められたレーザ 光とされて集光光学系 114から出射され、 DMD50に照射されるため、 DMD50のレ 一ザ光照射領域における光量分布は、図 10中の(2)に示すように、光軸中心に比 ベて周辺部の光量が高められる。そのため、 DMD50により画素毎に変調された光 ビームが、図 10中の(3)に示すように、光軸中心力 周辺部に行くに従って光の透 過量を低下させる特性を持つマイクロレンズアレイ 128を透過して感光材料 134の露 光面に照射されると、図 10中の (4)に示すように、露光面での光ビームの光量分布 は均一〖こなるようネ ΐ正される。  In contrast, in the exposure head 100 of the present embodiment, as described above, the laser light incident on the condensing optical system 114 from the fiber array light source 112 is as shown in (1) of FIG. In addition, the laser beam is emitted from the condensing optical system 114 and irradiated to the DMD 50 as a laser beam having a distribution in the angle of the chief ray and having a higher brightness in the peripheral area than the center of the optical axis. As shown in (2) of FIG. 10, the light amount distribution in the light irradiation region increases the light amount in the peripheral portion as compared with the center of the optical axis. Therefore, as shown in (3) in FIG. 10, the microlens array 128 having a characteristic of reducing the amount of transmitted light as the light beam modulated for each pixel by the DMD 50 goes to the periphery of the optical axis central force. When the light is transmitted and irradiated on the exposure surface of the photosensitive material 134, the light amount distribution of the light beam on the exposure surface is corrected to be uniform as shown in (4) of FIG.
[0061] 以上説明した通り、第 1の実施形態の露光装置では、 2次元的に分布した複数の画 素部において、各描画単位の光量が均一になるよう補正され、高精度な画像露光を 行うことができる。  [0061] As described above, in the exposure apparatus of the first embodiment, the light quantity of each drawing unit is corrected so as to be uniform in a plurality of two-dimensionally distributed pixel units, and high-accuracy image exposure is performed. It can be carried out.
また、光量分布に応じて DMD50の各マイクロミラー 62の駆動タイミングを変化させ るよう駆動制御する技術を組み合わせて用いる場合でも、各描画単位の光量が均一 になるよう予め補正されているため、 DMD50の駆動制御部に掛カる負荷が軽減さ れて処理速度への影響が低減され、また、電気的な回路構成や処理ソフトを簡素化 することができて、コストを抑えることができる。  Even when using a combination of drive control technologies that change the drive timing of each micromirror 62 of the DMD 50 according to the light intensity distribution, the DMD 50 is corrected in advance so that the light intensity of each drawing unit is uniform. This reduces the load on the drive controller and reduces the effect on processing speed, simplifies the electrical circuit configuration and processing software, and reduces costs.
[0062] また、本実施形態で用いた光学系 (集光光学系 114)からなる光量分布補正手段 であれば、上述した光量分布を補正する手段を簡素且つ安価な構成により実現でき る。 [0062] In addition, if the light amount distribution correcting unit includes the optical system (the condensing optical system 114) used in the present embodiment, the above-described unit for correcting the light amount distribution can be realized with a simple and inexpensive configuration.
[0063] [第 2の実施形態]  [0063] [Second Embodiment]
第 2の実施形態は、上述した第 1の実施形態に係る露光装置の露光ヘッド 100〖こ おいて、集光光学系 114に、前記光分布補正手段として、非球面レンズを有するテ レセントリック光学系を設けることで、第 1の実施形態と同様に露光面での光ビームの 光量分布を均一化する技術である。  In the second embodiment, in the exposure head 100 of the exposure apparatus according to the first embodiment described above, the concentrating optical system 114 includes a telecentric lens having an aspheric lens as the light distribution correcting means. By providing an optical system, this is a technique for equalizing the light amount distribution of the light beam on the exposure surface as in the first embodiment.
[0064] 該第 2の実施形態に係る露光ヘッドでは、例えば、集光光学系 114に前記光分布 補正手段として、図 11Aに示すような 2枚で一組の平凸レンズ 152、 154により構成 されたテレセントリック光学系 150が設けられており、このテレセントリック光学系 150 は、例えば、ロッドインテグレータ 118と集光レンズ 120の間に配置されている。 In the exposure head according to the second embodiment, for example, the light distribution is provided in the condensing optical system 114. As a correcting means, there is provided a telecentric optical system 150 constituted by a pair of plano-convex lenses 152 and 154 as shown in FIG. 11A. The telecentric optical system 150 is, for example, a rod integrator 118 and a condensing lens. Located between the lenses 120.
[0065] 平凸レンズ 152、 154は、凸面側が非球面状に形成された非球面レンズとされてお り、光軸中心から離れるに従いレンズパワーが小さくなるような(平行入射ビームを集 光する凸レンズのような)非球面形状を有する第一の光学レンズ、及び光軸中心から 離れるに従いレンズパワーが大きくなるような(平行入射ビームを発散させる凹レンズ のような)非球面形状を有する第二の光学レンズの組合せである。  The plano-convex lenses 152 and 154 are aspherical lenses whose convex surfaces are formed in an aspheric shape, and the lens power decreases as the distance from the optical axis center increases (convex lenses that collect parallel incident beams). A first optical lens having an aspheric shape (such as a concave lens that diverges a parallel incident beam) such that the lens power increases as the distance from the center of the optical axis increases. It is a combination of lenses.
[0066] レーザ光の入射側(ファイバアレイ光源 112側)に配置された平凸レンズ 152は、入 射面 S2の面形状が、曲率半径が光軸 (光軸中心) Xから離れるに従い大きくなる非 球面、換言すれば、曲率が光軸 Xから離れるに従い小さくなる非球面とされ、出射面 S3が平面状とされている。  [0066] The plano-convex lens 152 disposed on the laser beam incident side (fiber array light source 112 side) is such that the surface shape of the incident surface S2 increases as the radius of curvature increases from the optical axis (optical axis center) X. It is a spherical surface, in other words, an aspherical surface whose curvature decreases with increasing distance from the optical axis X, and the exit surface S3 is planar.
また、レーザ光の出射側(DMD50側)に配置された平凸レンズ 154は、入射面 S4 が平面状とされ、出射面 S5の面形状が、曲率半径が光軸 Xから離れるに従い小さく なる非球面、換言すれば、曲率が光軸 Xから離れるに従い大きくなる非球面とされて いる。  In addition, the plano-convex lens 154 arranged on the laser beam emission side (DMD50 side) has an aspheric surface in which the incident surface S4 has a flat surface and the surface shape of the output surface S5 decreases as the radius of curvature increases from the optical axis X In other words, it is an aspheric surface whose curvature increases with distance from the optical axis X.
[0067] 以下、表 1に、本実施形態に係るテレセントリック光学系 150のレンズデータの一例 を示し、表 2に、本実施形態に係る入射面 S2及び出射面 S5の非球面データの一例 を示す。  [0067] Table 1 below shows an example of lens data of the telecentric optical system 150 according to the present embodiment, and Table 2 shows an example of aspherical data of the entrance surface S2 and the exit surface S5 according to the embodiment. .
[0068] [表 1]  [0068] [Table 1]
Figure imgf000021_0001
Figure imgf000021_0001
[0069] [表 2] 非球面デ一夕 [0069] [Table 2] Aspheric surface
面番号 S2 S5  Surface number S2 S5
A -0.0001 2 0.00003 また、上記の非球面データは、非球面形状を表す下記式(1)における係数で表さ れる。  A -0.0001 2 0.00003 The above aspheric data is represented by a coefficient in the following equation (1) representing the aspheric shape.
[0070] [数 1] hVR  [0070] [Equation 1] hVR
+Ah 式(1 )  + Ah formula (1)
1 + 1— h2/R2 前記式(1)において各係数を以下の通り定義する。 1 + 1−h 2 / R 2 In the above formula (1), each coefficient is defined as follows.
z:光軸から高さ hの位置にある非球面上の点から、非球面の頂点の接平面 (光軸に 垂直な平面)に下ろした垂線の長さ(mm)  z: Length of perpendicular line (mm) drawn from a point on the aspheric surface at a height h from the optical axis to the tangent plane (plane perpendicular to the optical axis) of the apex of the aspheric surface
h:光軸からの距離 (mm) (h2=x2+y ) h: Distance from optical axis (mm) (h 2 = x 2 + y)
R:曲率半径 (曲率: 1ZR)  R: radius of curvature (curvature: 1ZR)
A:非球面データ  A: Aspheric data
[0071] 以上の構成により、第 2の実施形態の露光装置では、図 11Aに示すように、平凸レ ンズ 152から出射されたレーザ光 LB2では、光軸 Xから離れるに従い焦点距離が長 くなる。よって、レーザ光 LB2が平凸レンズ 154の入射面 S4に到達した際には、平凸 レンズ 152の周辺部を通過した光に比べて中央付近を通過した光の方力 光軸 Xか ら離れる傾向が強くなる。これにより、レンズの中央付近よりも周辺部の方が光の輝度 が高くなる。また、平凸レンズ 154は、平凸レンズ 152とは反対に、光軸 Xから離れる に従い焦点距離が短くなるため、これらの 2枚の平凸レンズ 152、 154を組み合わせ ると、テレセントリックな光学系を組むことができる。  With the above configuration, in the exposure apparatus of the second embodiment, as shown in FIG. 11A, the laser beam LB2 emitted from the plano-convex lens 152 has a longer focal length as it moves away from the optical axis X. Become. Therefore, when the laser beam LB2 reaches the incident surface S4 of the plano-convex lens 154, the direction of the light that has passed near the center tends to move away from the optical axis X compared to the light that has passed through the periphery of the plano-convex lens 152. Becomes stronger. As a result, the brightness of light is higher in the periphery than in the vicinity of the center of the lens. Also, the plano-convex lens 154 is opposite to the plano-convex lens 152, and the focal length becomes shorter as the distance from the optical axis X increases. Therefore, combining these two plano-convex lenses 152, 154 forms a telecentric optical system. Can do.
[0072] これにより、この平凸レンズ 152、 154を有するテレセントリック光学系 150から平行 化されて出射されたレーザ光 LB3の光量分布は、光軸中心に対して周辺部の分布 密度が高くなり、このレーザ光 LB3が照射された DMD50では、レーザ光照射領域 の中心部(光軸中心)よりも周辺部の光量が増加される。 [0073] 図 11Bには、非球面レンズ系とした本実施形態のテレセントリック光学系 150のべ ースとなる、球面レンズ系のテレセントリック光学系 160の光線図を示す。 As a result, the light quantity distribution of the laser beam LB3 emitted from the telecentric optical system 150 having the plano-convex lenses 152 and 154 in parallel is increased in the distribution density of the peripheral portion with respect to the optical axis center. In the DMD 50 irradiated with the laser beam LB3, the amount of light in the peripheral portion is increased from the central portion (optical axis center) of the laser light irradiation region. FIG. 11B shows a ray diagram of the telecentric optical system 160 of the spherical lens system, which is the base of the telecentric optical system 150 of the present embodiment that is an aspherical lens system.
このテレセントリック光学系 160では、レーザ光 (LB1)の入射側に配置された平凸 レンズ 162の入射面 が球面とされ、レーザ光 (LB3 の出射側に配置された平 凸レンズ 164の出射面 が球面とされており、したがって、このテレセントリック光学 系 160では、出射面 から出射されたレーザ光 LB3'の光量分布は、図 11Bに示 すように、光軸中心力 周辺部に掛けてほぼ均等な分布となる。  In this telecentric optical system 160, the incident surface of the plano-convex lens 162 arranged on the incident side of the laser beam (LB1) is a spherical surface, and the emitting surface of the laser beam (the emitting surface of the plano-convex lens 164 arranged on the output side of the LB3 is spherical) Therefore, in this telecentric optical system 160, the light quantity distribution of the laser beam LB3 ′ emitted from the emission surface is almost evenly distributed around the optical axis central force as shown in FIG. 11B. It becomes.
[0074] このように、第 2の実施形態の非球面レンズ系(テレセントリック光学系 150)では、 上記の球面レンズ系(テレセントリック光学系 160)を用いた場合の光量分布との比較 からも分かるように、出射されたレーザ光の光量分布は光軸中心に対して周辺部の 分布密度が高くなり、光軸中心よりも周辺部の光量が増加される。  As described above, the aspherical lens system (telecentric optical system 150) of the second embodiment can also be seen from a comparison with the light amount distribution when the above spherical lens system (telecentric optical system 160) is used. In addition, the light amount distribution of the emitted laser light has a higher distribution density in the peripheral portion with respect to the optical axis center, and the light amount in the peripheral portion is increased than the optical axis center.
[0075] したがって、第 1の実施形態と同様に、 DMD50によって変調された光ビームがマ イク口レンズアレイ 128を透過することで、光軸中心部に対する周辺部の光量低下を 生じても、露光面には光量分布が均一になるよう補正された光ビームが照射され、こ のテレセントリック光学系 150を備えた露光装置によっても高精度な画像露光を行う ことができる。  Therefore, as in the first embodiment, the light beam modulated by the DMD 50 passes through the microphone aperture lens array 128, so that even if the light amount in the peripheral portion with respect to the central portion of the optical axis is reduced, exposure is performed. The surface is irradiated with a light beam that has been corrected so that the light quantity distribution is uniform, and an exposure apparatus equipped with the telecentric optical system 150 can perform high-accuracy image exposure.
また、上述したように、テレセントリック光学系 150から出射されるレーザ光は、テレ セントリック光として出射されて DMD50に照射されるため、 DMD50に照射するレー ザ光のテレセントリック性と、 DMD50により変調された光ビームの露光面での光量分 布の均一性との両立を図ることができる。  In addition, as described above, the laser light emitted from the telecentric optical system 150 is emitted as telecentric light and applied to the DMD 50, so that the telecentricity of the laser light applied to the DMD 50 and the DMD 50 are modulated. In addition, it is possible to achieve both the uniformity of the light distribution on the exposed surface of the light beam.
[0076] また、第 1の実施形態と同様に、第 2の実施形態も、 2枚で一組の平凸レンズ 152、 154 (テレセントリック光学系)を有する集光光学系からなる光量分布補正手段であれ ば、上述した光量分布を補正する手段を簡素な構成により実現できる。  [0076] Similarly to the first embodiment, the second embodiment is also a light amount distribution correcting means including a condensing optical system having two pairs of plano-convex lenses 152, 154 (telecentric optical system). If so, the means for correcting the light quantity distribution described above can be realized with a simple configuration.
[0077] また、第 2の実施形態では、テレセントリック光学系 150を用いてレーザ光の周辺部 の光量を増カロさせていることにより、露光における光利用効率の低下が抑えられる。 これによつて、ファイバアレイ光源 112から出射するレーザ光の出力を低ィ匕させること も可能になるため、ファイバアレイ光源 112の長寿命化や、高輝度光による光学系の 汚染 Z劣化の抑制を図ることもできる。さらに、ファイバアレイ光源 112や光学系のメ ンテナンス回数を減少させることも可能となり、露光装置のメンテナンスコストを低減 することちでさる。 [0077] In the second embodiment, the telecentric optical system 150 is used to increase the amount of light in the peripheral portion of the laser light, so that a reduction in light use efficiency in exposure can be suppressed. This also makes it possible to reduce the output of the laser light emitted from the fiber array light source 112, thereby extending the life of the fiber array light source 112 and suppressing contamination of the optical system with high-intensity light. Can also be planned. In addition, fiber array light source 112 and optical system It is also possible to reduce the number of maintenance operations, which reduces the maintenance cost of the exposure equipment.
[0078] 以上、第 1及び第 2の実施形態により露光工程を詳細に説明したが、本発明はそれ らに限定されるものではなぐ本発明の範囲内にて他の種々の形態が実施可能であ る。  As described above, the exposure process has been described in detail according to the first and second embodiments, but the present invention is not limited thereto, and various other modes can be implemented within the scope of the present invention. It is.
[0079] 例えば、前記露光装置では、前記光変調手段として、空間変調素子である DMDを 備えた露光ヘッドについて説明したが、このような反射型空間光変調素子の他に、透 過型空間光変調素子 (LCD)を使用することもできる。例えば、 MEMS (Micro Elect ro Mechanical Systems)タイプの空間光変調素子(SLM ; Special Light Modulato r)や、電気光学効果により透過光を変調する光学素子 (PLZT素子)や、液晶光シャ ッタ (FLC)等の液晶シャッターアレイなど、 MEMSタイプ以外の空間光変調素子を 用いることも可能である。なお、 MEMSとは、 IC製造プロセスを基盤としたマイクロマ シユング技術によるマイクロサイズのセンサ、ァクチユエータ、そして制御回路^^積 化した微細システムの総称であり、 MEMSタイプの空間光変調素子とは、静電気力 を利用した電気機械動作により駆動される空間光変調素子を意味している。さらに、 Grating Light Valve (GLV)を複数ならベて二次元状に構成したものを用いることも できる。  For example, in the exposure apparatus, an exposure head provided with a DMD as a spatial modulation element has been described as the light modulation unit. However, in addition to such a reflective spatial light modulation element, a transparent spatial light is used. A modulation element (LCD) can also be used. For example, MEMS (Micro Electro Mechanical Systems) type Spatial Light Modulator (SLM), optical element (PLZT element) that modulates transmitted light by electro-optic effect, liquid crystal light shutter (FLC) It is also possible to use a spatial light modulator other than the MEMS type, such as a liquid crystal shutter array. MEMS is a collective term for micro-sized sensors, actuators, and control circuits using micro-machining technology based on the IC manufacturing process, and a micro system integrated with a control circuit. It means a spatial light modulator driven by electromechanical action using force. In addition, it is possible to use two or more Grating Light Valves (GLV) configured in two dimensions.
これらの反射型空間光変調素子 (GLV)や透過型空間光変調素子 (LCD)を使用 する構成では、上記したレーザ光源の他に、ランプ等も光源として使用可能である。  In a configuration using these reflective spatial light modulator (GLV) and transmissive spatial light modulator (LCD), a lamp or the like can be used as a light source in addition to the laser light source described above.
[0080] また、前記光変調手段としては、合波レーザ光源を複数備えたファイバアレイ光源 、 1個の発光点を有する単一の半導体レーザ力 入射されたレーザ光を出射する 1 本の光ファイバを備えたファイバ光源をアレイィ匕したファイバアレイ光源、複数の発光 点が二次元状に配列された光源 (たとえば、 LDアレイ、有機 ELアレイ等)、等が適用 可能である。  [0080] Further, as the light modulation means, a fiber array light source having a plurality of combined laser light sources, a single semiconductor laser power having one light emitting point, and a single optical fiber for emitting incident laser light A fiber array light source that is an array of fiber light sources equipped with a light source in which a plurality of light emitting points are arranged in a two-dimensional shape (for example, an LD array, an organic EL array, etc.) can be applied.
[0081] <積層体>  [0081] <Laminate>
前記露光の対象としては、支持体上に感光層を有するパターン形成材料における 該感光層を、被処理基体上に積層してなる積層体における感光層である限り、特に 制限はなぐ目的に応じて適宜選択することができる。前記積層体としては、例えば、 前記パターン形成材料における感光層以外の他の層が積層されてなるものであって ちょい。 The exposure target is not particularly limited as long as it is a photosensitive layer in a laminate formed by laminating the photosensitive layer in a pattern forming material having a photosensitive layer on a support on a substrate to be processed. It can be selected appropriately. As the laminate, for example, A layer other than the photosensitive layer in the pattern forming material is laminated.
[0082] <パターン形成材料 >  [0082] <Pattern forming material>
前記パターン形成材料としては、支持体上に感光層を有する限り、特に制限はなく 、 目的に応じて適宜選択することができる。  The pattern forming material is not particularly limited as long as it has a photosensitive layer on a support, and can be appropriately selected according to the purpose.
[0083] 前記感光層としては、特に制限はなぐ公知のパターン形成材料の中から適宜選 択することができるが、例えば、ノ インダ一と、重合性化合物と、光重合開始剤とを含 み、適宜選択したその他の成分を含むものが好ましい。 [0083] The photosensitive layer can be appropriately selected from known pattern forming materials that are not particularly limited, and includes, for example, a needle, a polymerizable compound, and a photopolymerization initiator. Those containing other appropriately selected components are preferred.
また、感光層の積層数としては、特に制限はなぐ 目的に応じて適宜選択すること ができ、例えば、 1層であってもよぐ 2層以上であってもよい。  Further, the number of laminated photosensitive layers can be appropriately selected according to the purpose without any particular limitation. For example, it may be one layer or two or more layers.
[0084] < <バインダー > > [0084] <<Binder>>
前記ノ インダ一としては、例えば、アルカリ性水溶液に対して膨潤性であることが好 ましぐアルカリ性水溶液に対して可溶性であることがより好ましい。  For example, the noder is preferably swellable in an alkaline aqueous solution, more preferably soluble in an alkaline aqueous solution.
アルカリ性水溶液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、 酸性基を有するものが好適に挙げられる。  As the binder exhibiting swellability or solubility with respect to the alkaline aqueous solution, for example, those having an acidic group are preferably exemplified.
[0085] 前記酸性基としては、特に制限はなぐ 目的に応じて適宜選択することができ、例え ば、カルボキシル基、スルホン酸基、リン酸基などが挙げられ、これらの中でもカルボ キシノレ基が好ましい。 [0085] The acidic group is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a carboxyl group, a sulfonic acid group, and a phosphoric acid group. Among these, a carboxyxenore group is preferable. .
カルボキシル基を有するバインダーとしては、例えば、カルボキシル基を有するビ- ル共重合体、ポリウレタン榭脂、ポリアミド酸榭脂、変性エポキシ榭脂などが挙げられ 、これらの中でも、塗布溶媒への溶解性、アルカリ現像液への溶解性、合成適性、膜 物性の調整の容易さ等の観点力 カルボキシル基を有するビニル共重合体が好まし い。また、現像性の観点から、スチレン及びスチレン誘導体の少なくともいずれかの 共重合体も好ましい。  Examples of the binder having a carboxyl group include a vinyl copolymer having a carboxyl group, polyurethane resin, polyamic acid resin, and modified epoxy resin. Among these, solubility in a coating solvent, Viewpoints such as solubility in alkaline developer, suitability for synthesis, and ease of adjustment of film properties. Vinyl copolymers having a carboxyl group are preferred. From the viewpoint of developability, a copolymer of at least one of styrene and a styrene derivative is also preferable.
[0086] 前記カルボキシル基を有するビニル共重合体は、少なくとも( 1)カルボキシル基を 有するビニルモノマー、及び(2)これらと共重合可能なモノマーとの共重合により得る ことができる。これらのモノマーとしては、具体的には、例えば、特開 2005— 25843 1号公報の段落番号〔0164〕〜〔0205〕に記載されて 、る化合物などが挙げられる。 [0087] 前記感光層における前記バインダーの含有量は、特に制限はなぐ 目的に応じて 適宜選択することができる力 例えば、 10〜90質量%が好ましぐ 20〜80質量%が より好ましぐ 40〜80質量%が特に好ましい。 [0086] The vinyl copolymer having a carboxyl group can be obtained by copolymerization with at least (1) a vinyl monomer having a carboxyl group, and (2) a monomer copolymerizable therewith. Specific examples of these monomers include the compounds described in paragraph numbers [0164] to [0205] of JP-A-2005-258431. [0087] The content of the binder in the photosensitive layer is not particularly limited. A force that can be appropriately selected according to the purpose. For example, 10 to 90% by mass is preferable, and 20 to 80% by mass is more preferable. 40-80 mass% is especially preferable.
前記含有量が 10質量%未満であると、アルカリ現像性やプリント配線板形成用基 板 (例えば、銅張積層板)との密着性が低下することがあり、 90質量%を超えると、現 像時間に対する安定性や、硬化膜 (テント膜)の強度が低下することがある。なお、前 記含有量は、前記バインダーと必要に応じて併用される高分子結合剤との合計の含 有量であってもよい。  If the content is less than 10% by mass, the alkali developability and the adhesion to a printed wiring board forming substrate (for example, a copper-clad laminate) may be deteriorated. The stability against image time and the strength of the cured film (tent film) may be reduced. The above content may be the total content of the binder and the polymer binder used in combination as necessary.
[0088] 前記バインダーがガラス転移温度 (Tg)を有する物質である場合、該ガラス転移温 度としては、特に制限はなぐ 目的に応じて適宜選択することができるが、例えば、前 記パターン形成材料のタック及びエッジフュージョンの抑制、並びに前記支持体の剥 離性向上の、少なくともいずれかの観点から、 80°C以上が好ましぐ 100°C以上がよ り好ましぐ 120°C以上が特に好ましい。  [0088] When the binder is a substance having a glass transition temperature (Tg), the glass transition temperature is not particularly limited and may be appropriately selected depending on the purpose. For example, the pattern forming material 80 ° C or higher is preferable, 100 ° C or higher is more preferable, and 120 ° C or higher is particularly preferable, from the viewpoint of suppressing tack and edge fusion and improving the peelability of the support. preferable.
前記ガラス転移温度が、 80°C未満であると、前記パターン形成材料のタックやエツ ジフュージョンが増加したり、前記支持体の剥離性が悪ィ匕したりすることがある。  When the glass transition temperature is less than 80 ° C., tack and edge fusion of the pattern forming material may increase or the peelability of the support may deteriorate.
[0089] 前記ノインダ一の酸価は、特に制限はなぐ 目的に応じて適宜選択することができ る力 例えば、 70〜250mgKOHZg力 s好ましく、 90〜200mgKOH/gがより好ま しぐ 100〜180mgKOH/gが特に好ましい。 [0089] The Noinda one acid value, especially the force limit Ru can be appropriately selected depending on the Nag purpose for example, preferably 70~250mgKOHZg force s, 90~200mgKOH / g and more preferred signaling 100~180MgKOH / g is particularly preferred.
前記酸価が、 70mgKOHZg未満であると、現像性が不足したり、解像性が劣り、 配線パターン等の永久パターンを高精細に得ることができないことがあり、 250mgK OHZgを超えると、ノ《ターンの耐現像液性及び密着性の少なくとも 、ずれかが悪ィ匕 し、配線パターン等の永久パターンを高精細に得ることができな 、ことがある。  If the acid value is less than 70 mg KOHZg, developability may be insufficient or resolution may be inferior, and permanent patterns such as wiring patterns may not be obtained in high definition. At least the developer resistance and adhesion of the turn may be poor, and a permanent pattern such as a wiring pattern may not be obtained with high definition.
[0090] < <重合性化合物 > >  [0090] <Polymerizable compound>
前記重合性化合物としては、特に制限はなぐ 目的に応じて適宜選択することがで きるが、例えば、ウレタン基及びァリール基の少なくともいずれかを有するモノマー又 はオリゴマーが好適に挙げられる。また、これらは、重合性基を 2種以上有することが 好ましい。  The polymerizable compound is not particularly limited and may be appropriately selected according to the purpose. For example, a monomer or oligomer having at least one of a urethane group and an aryl group is preferably exemplified. These preferably have two or more polymerizable groups.
[0091] 前記重合性基としては、例えば、エチレン性不飽和結合 (例えば、(メタ)アタリロイ ル基、(メタ)アクリルアミド基、スチリル基、ビュルエステルやビュルエーテル等のビ- ル基、ァリルエーテルゃァリルエステル等のァリル基など)、重合可能な環状エーテ ル基 (例えば、エポキシ基、ォキセタン基等)などが挙げられ、これらの中でもェチレ ン性不飽和結合が好まし 、。 [0091] Examples of the polymerizable group include an ethylenically unsaturated bond (for example, (meth) atariloy). Group, (meth) acrylamide group, styryl group, beryl group such as butyl ester and butyl ether, aryl group such as valyl ether gally ester), polymerizable cyclic ether group (for example, epoxy group, oxetane group, etc.) Among these, ethylenically unsaturated bonds are preferred.
[0092] ウレタン基を有するモノマ  [0092] Monomer having urethane group
前記ウレタン基を有するモノマーとしては、ウレタン基を有する限り、特に制限は無 く、 目的に応じて適宜選択することができる力 例えば、特開 2005— 258431号公 報の段落番号〔0210〕〜〔0262〕に記載されて 、る化合物などが挙げられる。  The monomer having a urethane group is not particularly limited as long as it has a urethane group, and can be appropriately selected according to the purpose. For example, paragraph numbers [0210] to [0210] of the publication of JP-A-2005-258431 [0262] and the like.
[0093] ァリール基を有するモノマ  [0093] Monomers having aryl groups
前記ァリール基を有するモノマーとしては、ァリール基を有する限り、特に制限はな く、 目的に応じて適宜選択することができるが、例えば、ァリール基を有する多価アル コール化合物、多価アミンィ匕合物及び多価ァミノアルコールィ匕合物の少なくともいず れカと不飽和カルボン酸とのエステル又はアミドなどが挙げられる。  The monomer having an aryl group is not particularly limited as long as it has an aryl group, and can be appropriately selected according to the purpose. For example, a polyhydric alcohol compound having an aryl group, a polyvalent amine compound. And esters or amides of unsaturated carboxylic acids with at least any of the above compounds and polyamino alcoholic compounds.
具体的には、例えば、特開 2005— 258431号公報の段落番号〔0264〕〜〔0271〕 に記載されて 、る化合物などが挙げられる。  Specific examples include the compounds described in paragraphs [0264] to [0271] of JP-A-2005-258431.
[0094] その他の重合性モノマ  [0094] Other polymerizable monomers
本発明のパターン形成方法には、前記パターン形成材料としての特性を悪化させ ない範囲で、前記ウレタン基を含有するモノマー、ァリール基を有するモノマー以外 の重合性モノマーを併用してもょ 、。  In the pattern forming method of the present invention, a polymerizable monomer other than the monomer containing a urethane group and the monomer having an aryl group may be used in combination as long as the characteristics as the pattern forming material are not deteriorated.
[0095] 前記ウレタン基を含有するモノマー、芳香環を含有するモノマー以外の重合性モノ マーとしては、例えば、不飽和カルボン酸 (例えば、アクリル酸、メタクリル酸、ィタコン 酸、クロトン酸、イソクロトン酸、マレイン酸等)と脂肪族多価アルコール化合物とのェ ステル、不飽和カルボン酸と多価アミンィ匕合物とのアミドなどが挙げられる。 [0095] Examples of the polymerizable monomer other than the monomer containing a urethane group and the monomer containing an aromatic ring include an unsaturated carboxylic acid (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, And an amide of an unsaturated carboxylic acid and a polyvalent amine compound.
具体的には、例えば、特開 2005— 258431号公報の段落番号〔0273〕〜〔0284〕 に記載されて 、る化合物などが挙げられる。  Specific examples include the compounds described in paragraph numbers [0273] to [0284] of JP-A-2005-258431.
[0096] 前記感光層における重合性ィ匕合物の含有量は、例えば、 5〜90質量%が好ましく[0096] The content of the polymerizable compound in the photosensitive layer is preferably, for example, 5 to 90% by mass.
、 15〜60質量%がより好ましぐ 20〜50質量%が特に好ましい。 15 to 60% by mass is more preferable. 20 to 50% by mass is particularly preferable.
前記含有量が、 5質量%となると、テント膜の強度が低下することがあり、 90質量% を超えると、保存時のエッジフュージョン(ロール端部力 のしみだし故障)が悪化す ることがある。 When the content is 5% by mass, the strength of the tent film may be reduced. Exceeding this may cause deterioration of edge fusion during storage (exudation of roll end force).
また、重合性化合物中に前記重合性基を 2個以上有する多官能モノマーの含有量 は、 5〜: LOO質量%が好ましぐ 20〜: LOO質量%がより好ましぐ 40〜: LOO質量%が 特に好ましい。  In addition, the content of the polyfunctional monomer having two or more polymerizable groups in the polymerizable compound is preferably 5 to: LOO mass% is preferable 20 to: LOO mass% is more preferable 40 to: LOO mass % Is particularly preferred.
[0097] < <光重合開始剤 > > [0097] << Photoinitiator >>
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限 り、特に制限はなぐ公知の光重合開始剤の中から適宜選択することができるが、例 えば、紫外線領域力 可視の光線に対して感光性を有するものが好ましぐ光励起さ れた増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよぐ モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。 また、前記光重合開始剤は、波長約 300〜800nmの範囲内に少なくとも約 50の 分子吸光係数を有する成分を少なくとも 1種含有して 、ることが好ま 、。前記波長 ίま 330〜500mn力特に好まし!/、。  The photopolymerization initiator can be appropriately selected from known photopolymerization initiators that are not particularly limited as long as it has the ability to initiate the polymerization of the polymerizable compound. Those that have photosensitivity to visible light may have some effect with photo-excited sensitizers, and may be active agents that generate active radicals. Cationic polymerization is performed depending on the type of monomer. It may be an initiator that initiates. The photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a wavelength range of about 300 to 800 nm. The wavelength ί to 330-500mn force is particularly preferred!
[0098] 前記光重合開始剤としては、例えば、ハロゲンィ匕炭化水素誘導体 (例えば、トリアジ ン骨格を有するもの、ォキサジァゾール骨格を有するもの等)、へキサァリールビイミ ダゾール、ォキシム誘導体、有機過酸化物、チォ化合物、ケトンィ匕合物、芳香族ォニ ゥム塩、メタ口セン類などが挙げられる。これらの中でも、感光層の感度、保存性、及 び感光層とプリント配線板形成用基板との密着性等の観点から、トリァジン骨格を有 するハロゲンィ匕炭化水素、ォキシム誘導体、ケトンィ匕合物、へキサァリールビイミダゾ ール系化合物が好ましい。 [0098] Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton, etc.), hexarylbiimidazole, oxime derivatives, organic peroxides. Products, thio compounds, ketone compounds, aromatic onium salts, meta-octenes, and the like. Among these, from the viewpoints of the sensitivity and storage stability of the photosensitive layer and the adhesion between the photosensitive layer and the printed wiring board forming substrate, a halogenated hydrocarbon having a triazine skeleton, an oxime derivative, a ketone compound, Hexaarylbiimidazole compounds are preferred.
前記好ましい光重合開始剤としては、具体的には、例えば、特開 2005— 258431 号公報の段落番号〔0288〕〜〔0309〕に記載されて 、る化合物などが挙げられる。  Specific examples of the preferable photopolymerization initiator include the compounds described in paragraph numbers [0288] to [0309] of JP-A-2005-258431.
[0099] 前記感光層における光重合開始剤の含有量は、 0. 1〜30質量%が好ましぐ 0. 5[0099] The content of the photopolymerization initiator in the photosensitive layer is preferably 0.1 to 30% by mass.
〜20質量%がより好ましぐ 0. 5〜15質量%が特に好ましい。 -20% by mass is more preferred 0.5-15% by mass is particularly preferred.
[0100] < <その他の成分 > > [0100] <<Other ingredients>>
前記その他の成分としては、例えば、特開 2005— 258431号公報の段落番号〔03 12〕〜〔0336〕に記載されている化合物などが挙げられる。これらの成分を適宜含有 させること〖こより、 目的とするパターン形成材料の安定性、写真性、焼きだし性、膜物 性等の性質を調整することができる。 Examples of the other components include compounds described in paragraph numbers [03 12] to [0336] of JP-A-2005-258431. Contains these ingredients as appropriate From this, it is possible to adjust properties such as stability, photographic properties, print-out properties, and film properties of the target pattern forming material.
[0101] 前記感光層の厚みは、特に制限はなぐ 目的に応じて適宜選択することができるが 、 ί列免ば、、 1〜: LOO μ m力 S好ましく、 2〜50 μ m力 Sより好ましく、 4〜30 μ m力 S特に好ま しい。  [0101] The thickness of the photosensitive layer is not particularly limited, and can be appropriately selected according to the purpose. However, if it is omitted, 1 to: LOO μm force S, preferably 2 to 50 μm force S 4-30 μm force S is particularly preferable.
[0102] [パターン形成材料の製造]  [0102] [Manufacture of pattern forming materials]
前記パターン形成材料は、例えば、次のようにして製造することができる。 まず、上述の各種材料を、水又は溶剤に溶解、乳化又は分散させて感光性榭脂組 成物溶液を調製する。  The pattern forming material can be manufactured, for example, as follows. First, the above-mentioned various materials are dissolved, emulsified or dispersed in water or a solvent to prepare a photosensitive resin composition solution.
[0103] 前記感光性榭脂組成物溶液の溶剤としては、特に制限はなぐ 目的に応じて適宜 選択することができ、例えば、メタノール、エタノール、 n プロパノール、イソプロパノ ール、 n—ブタノール、 sec ブタノール、 n—へキサノール等のアルコール類;ァセト ン、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン、ジイソプチルケト ンなどのケトン類;酢酸ェチル、酢酸ブチル、酢酸 n—ァミル、硫酸メチル、プロピ オン酸ェチル、フタル酸ジメチル、安息香酸ェチル、及びメトキシプロピルアセテート などのエステル類;トルエン、キシレン、ベンゼン、ェチルベンゼンなどの芳香族炭化 水素類;四塩化炭素、トリクロロエチレン、クロ口ホルム、 1, 1, 1—トリクロロェタン、塩 化メチレン、モノクロ口ベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジェ チノレエーテノレ、エチレングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノェチ ルエーテル、 1ーメトキシ 2—プロパノールなどのエーテル類;ジメチルホルムアミド 、ジメチルァセトアミド、ジメチルスルホオキサイド、スルホランなどが挙げられる。これ らは、 1種単独で使用してもよぐ 2種以上を併用してもよい。また、公知の界面活性 剤を添加してもよい。  [0103] The solvent of the photosensitive resin composition solution is not particularly limited and may be appropriately selected according to the purpose. For example, methanol, ethanol, n propanol, isopropanol, n-butanol, sec butanol , Alcohols such as n-hexanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisoptyl ketone; ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, propionic acid Esters such as ethyl, dimethyl phthalate, ethyl benzoate, and methoxypropyl acetate; aromatic hydrocarbons such as toluene, xylene, benzene, ethylbenzene; carbon tetrachloride, trichloroethylene, black mouth form, 1, 1, 1— Trichloroethane, methylene chloride, monochrome benzene, etc. Halogenated hydrocarbons; ethers such as tetrahydrofuran, ethinoreethenole, ethyleneglycololemethylenoleethenole, ethyleneglycololemonoethylether, 1-methoxy-2-propanol; dimethylformamide, dimethylacetamide, dimethylsulfoxide, Examples include sulfolane. These may be used alone or in combination of two or more. In addition, a known surfactant may be added.
[0104] 次に、前記感光性榭脂組成物溶液を支持体上に塗布し、乾燥させることにより感光 層を形成し、パターン形成材料を製造することができる。  Next, the photosensitive resin composition solution is applied on a support and dried to form a photosensitive layer, whereby a pattern forming material can be produced.
前記感光性榭脂組成物溶液の塗布方法としては、特に制限はなぐ 目的に応じて 適宜選択することができる力 例えば、スプレー法、ロールコート法、回転塗布法、ス リットコート法、エタストルージョンコート法、カーテンコート法、ダイコート法、グラビア コート法、ワイヤーバーコート法、ナイフコート法等の各種の塗布方法が挙げられる。 前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、 通常 60〜 110°Cの温度で 30秒間〜 15分間程度である。 The method for applying the photosensitive resin composition solution is not particularly limited, and can be appropriately selected according to the purpose. For example, spray method, roll coating method, spin coating method, slit coating method, etatrusion Coating method, curtain coating method, die coating method, gravure Various coating methods such as a coating method, a wire bar coating method, and a knife coating method may be mentioned. The drying conditions vary depending on each component, the type of solvent, the ratio of use, etc., but are usually 60 to 110 ° C. for 30 seconds to 15 minutes.
[0105] < <支持体 > >  [0105] <<Support>>
前記支持体としては、特に制限はなぐ 目的に応じて適宜選択することができるが、 前記感光層を剥離可能であり、かつ光の透過性が良好であるものが好ましぐ更に表 面の平滑性が良好であることがより好ましい。  The support is not particularly limited, and can be appropriately selected according to the purpose. However, it is preferable that the photosensitive layer is peelable and has good light transmittance. Further, the surface is smooth. It is more preferable that the property is good.
[0106] 前記支持体は、合成樹脂製で、かつ透明であるものが好ましぐ例えば、ポリエチレ ンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、三酢酸セ ルロース、二酢酸セルロース、ポリ(メタ)アクリル酸アルキルエステル、ポリ(メタ)アタリ ル酸エステル共重合体、ポリ塩化ビュル、ポリビュルアルコール、ポリカーボネート、 ポリスチレン、セロファン、ポリ塩ィ匕ビユリデン共重合体、ポリアミド、ポリイミド、塩ィ匕ビ -ル '酢酸ビュル共重合体、ポリテトラフロロエチレン、ポリトリフロロエチレン、セル口 ース系フィルム、ナイロンフィルム等の各種のプラスチックフィルムが挙げられ、これら の中でも、ポリエチレンテレフタレートが特に好ましい。これらは、 1種単独で使用して もよぐ 2種以上を併用してもよい。 [0106] The support is preferably made of a synthetic resin and transparent, for example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, poly (meth) acrylic. Alkyl ester, poly (meth) acrylate ester copolymer, polychlorinated butyl, polybulal alcohol, polycarbonate, polystyrene, cellophane, polysalt-vinylidene copolymer, polyamide, polyimide, salt-vinyl '' Various plastic films such as butyl acetate copolymer, polytetrafluoroethylene, polytrifluoroethylene, cellulose-based film, nylon film and the like can be mentioned, and among these, polyethylene terephthalate is particularly preferable. These may be used alone or in combination of two or more.
[0107] 前記支持体の厚みは、特に制限はなぐ 目的に応じて適宜選択することができるが 、 ί列免ば、、 2〜150 μ m力 S好ましく、 5〜: LOO μ m力 Sより好ましく、 8〜50 μ m力 S特に好 ましい。  [0107] The thickness of the support is not particularly limited, and can be appropriately selected according to the purpose. However, if it is omitted, 2 to 150 μm force S, preferably 5 to: LOO μm force S Preferably, 8 to 50 μm force S is particularly preferable.
[0108] 前記支持体の形状は、特に制限はなぐ 目的に応じて適宜選択することができるが 、長尺状が好ましい。前記長尺状の支持体の長さは、特に制限はなぐ例えば、 10 〜20, OOOmの長さのものが挙げられる。  [0108] The shape of the support is not particularly limited, and can be appropriately selected according to the purpose, but is preferably long. The length of the long support is not particularly limited, and examples thereof include those having a length of 10 to 20, OOOm.
[0109] くく保護フィルム > > [0109] Protective film>>
前記パターン形成材料は、前記感光層上に保護フィルムを形成してもよ 、。  The pattern forming material may form a protective film on the photosensitive layer.
前記保護フィルムとしては、例えば、前記支持体に使用されるもの、紙、ポリエチレ ン、ポリプロピレン力ラミネートされた紙、などが挙げられ、これらの中でも、ポリエチレ ンフィルム、ポリプロピレンフィルムが好ましい。  Examples of the protective film include those used for the support, paper, polyethylene, paper laminated with polypropylene, and the like. Among these, a polyethylene film and a polypropylene film are preferable.
前記保護フィルムの厚みは、特に制限はなぐ 目的に応じて適宜選択することがで きる力 例えば、 5〜: LOO μ m力 S好ましく、 8〜50 μ m力 Sより好ましく、 10〜30 μ m力 S 特に好ましい。 The thickness of the protective film is not particularly limited and can be appropriately selected according to the purpose. For example, 5 to: LOO μm force S is preferable, 8 to 50 μm force S is more preferable, and 10 to 30 μm force S is particularly preferable.
前記保護フィルムを用いる場合、前記感光層及び前記支持体の接着力 Aと、前記 感光層及び保護フィルムの接着力 Bとが、接着力 A>接着力 Bの関係であることが好 ましい。  When the protective film is used, it is preferable that the adhesive force A of the photosensitive layer and the support and the adhesive force B of the photosensitive layer and the protective film satisfy the relationship of adhesive force A> adhesive force B.
[0110] 前記支持体と保護フィルムとの組合せ (支持体 Z保護フィルム)としては、例えば、 ポリエチレンテレフタレート Zポリプロピレン、ポリエチレンテレフタレート Zポリエチレ ン、ポリ塩化ビュル Zセロファン、ポリイミド Zポリプロピレン、ポリエチレンテレフタレ ート zポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルム の少なくとも 、ずれかを表面処理することにより、上述のような接着力の関係を満たす ことができる。前記支持体の表面処理は、前記感光層との接着力を高めるために施 されてもよぐ例えば、下塗層の塗設、コロナ放電処理、火炎処理、紫外線照射処理 、高周波照射処理、グロ一放電照射処理、活性プラズマ照射処理、レーザ光線照射 処理などを挙げることができる。  [0110] Examples of the combination of the support and the protective film (support Z protective film) include, for example, polyethylene terephthalate Z polypropylene, polyethylene terephthalate Z polyethylene, polychlorinated bur Z cellophane, polyimide Z polypropylene, polyethylene terephthalate. z Examples include polyethylene terephthalate. In addition, the above-described adhesive force relationship can be satisfied by surface-treating at least one of the support and the protective film. The surface treatment of the support may be performed in order to increase the adhesive force with the photosensitive layer. For example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glossy treatment, One discharge irradiation treatment, active plasma irradiation treatment, laser beam irradiation treatment and the like can be mentioned.
[0111] また、前記支持体と前記保護フィルムとの静摩擦係数は、 0. 3〜1. 4が好ましぐ 0 . 5〜1. 2力より好まし!/ヽ。  [0111] The coefficient of static friction between the support and the protective film is preferably 0.3 to 1.4, more preferably 0.5 to 1.2 force! / !.
前記静摩擦係数が、 0. 3未満であると、滑り過ぎるため、ロール状にした場合に卷 ズレが発生することがあり、 1. 4を超えると、良好なロール状に巻くことが困難となるこ とがある。  If the coefficient of static friction is less than 0.3, slipping may occur excessively, so that a deviation may occur when the roll is formed, and if it exceeds 1.4, it is difficult to wind in a good roll. Sometimes.
[0112] 前記パターン形成材料は、例えば、円筒状の卷芯に巻き取って、長尺状でロール 状に巻かれて保管されることが好ましい。前記長尺状のパターン形成材料の長さは、 特に制限はなぐ例えば、 10-20, 000mの範囲力も適宜選択することができる。ま た、ユーザーが使いやすいようにスリット加工し、 100〜1, 000mの範囲の長尺体を ロール状にしてもよい。なお、この場合には、前記支持体が一番外側になるように卷 き取られることが好ましい。また、前記ロール状のパターン形成材料をシート状にスリ ットしてもよい。保管の際、端面の保護、エッジフュージョンを防止する観点から、端 面にはセパレーター(特に防湿性のもの、乾燥剤入りのもの)を設置することが好まし く、また梱包も透湿性の低 、素材を用いる事が好ま 、。 [0113] 前記保護フィルムは、前記保護フィルムと前記感光層との接着性を調整するために 表面処理してもよい。前記表面処理は、例えば、前記保護フィルムの表面に、ポリオ ルガノシロキサン、弗素化ポリオレフイン、ポリフルォロエチレン、ポリビュルアルコー ル等のポリマーからなる下塗層を形成させる。該下塗層の形成は、前記ポリマーの塗 布液を前記保護フィルムの表面に塗布した後、 30〜150°C (特に 50〜120°C)で 1 〜30分間乾燥させることにより形成させることができる。また、前記感光層、前記支持 体、前記保護フィルムの他に、剥離層、接着層、光吸収層、表面保護層などの層を 有してちょい。 [0112] The pattern forming material is preferably stored, for example, by winding it around a cylindrical core and winding it into a long roll. The length of the long pattern forming material is not particularly limited. For example, a range force of 10-20,000 m can be appropriately selected. In addition, slitting may be performed to make it easy for the user to use, and a long body in the range of 100 to 1,000 m may be rolled. In this case, it is preferable that the support is scraped off so as to be the outermost side. The roll-shaped pattern forming material may be slit into a sheet shape. From the viewpoint of protecting the end face and preventing edge fusion during storage, it is preferable to install a separator (especially moisture-proof and desiccant-containing) on the end face, and the packaging has low moisture permeability. I prefer to use materials. [0113] The protective film may be surface-treated in order to adjust the adhesion between the protective film and the photosensitive layer. In the surface treatment, for example, an undercoat layer made of a polymer such as polyorganosiloxane, fluorinated polyolefin, polyfluoroethylene, or polybutyl alcohol is formed on the surface of the protective film. The undercoat layer is formed by applying the polymer coating solution to the surface of the protective film and then drying at 30 to 150 ° C (particularly 50 to 120 ° C) for 1 to 30 minutes. Can do. In addition to the photosensitive layer, the support, and the protective film, it may have a layer such as a release layer, an adhesive layer, a light absorption layer, and a surface protective layer.
[0114] <被処理基体 >  [0114] <Substrate to be treated>
前記被処理基体 (以下、「基体」ということがある)としては、特に制限はなぐ公知の 材料の中から表面平滑性の高いものから凸凹のある表面を有するものまで適宜選択 することができるが、板状の基体 (基板)が好ましぐ具体的には、公知のプリント配線 板形成用基板 (例えば、銅張積層板)、ガラス板 (例えば、ソーダガラス板等)、合成 榭脂性のフィルム、紙、金属板などが挙げられる。  The substrate to be treated (hereinafter sometimes referred to as “substrate”) can be appropriately selected from known materials having no particular limitation, from those having high surface smoothness to those having an uneven surface. Specifically, a plate-like substrate (substrate) is preferable. Known printed wiring board forming substrates (for example, copper-clad laminates), glass plates (for example, soda glass plates), synthetic oil-repellent films , Paper, metal plate and the like.
[0115] 前記基体は、該基体上に前記パターン形成材料における感光層が重なるようにし て積層してなる積層体を形成して用いることができる。即ち、前記積層体におけるパ ターン形成材料の前記感光層に対して露光することにより、露光した領域を硬化させ 、後述する現像工程によりパターンを形成することができる。  [0115] The substrate can be used by forming a laminated body in which the photosensitive layer of the pattern forming material is laminated on the substrate. That is, by exposing the photosensitive layer of the pattern forming material in the laminate, the exposed region can be cured, and a pattern can be formed by a development process described later.
[0116] 前記パターン形成材料は、プリント配線板、カラーフィルタや柱材、リブ材、スぺー サー、隔壁などのディスプレイ用部材、ホログラム、マイクロマシン、プルーフなどのパ ターン形成用として広く用いることができ、特に本発明のパターン形成方法に好適に 用!/、ることができる。  [0116] The pattern forming material can be widely used for pattern formation of printed wiring boards, color filters, pillar materials, rib materials, spacers, display members such as partition walls, holograms, micromachines, and proofs. In particular, it can be suitably used in the pattern forming method of the present invention.
[0117] [その他工程]  [0117] [Other processes]
前記その他の工程としては、特に制限はなぐ公知のパターン形成における工程の 中から適宜選択することが挙げられる力 例えば、現像工程、エッチング工程、メツキ 工程などが挙げられる。これらは、 1種単独で使用してもよぐ 2種以上を併用してもよ い。  As the other steps, there is a force that can be appropriately selected from known pattern formation steps without particular limitations. Examples thereof include a development step, an etching step, and a plating step. These may be used alone or in combination of two or more.
前記現像工程は、前記露光工程により前記感光層を露光し、該感光層の露光した 領域を硬化させた後、未硬化領域を除去することにより現像し、パターンを形成する 工程である。 In the development step, the photosensitive layer is exposed by the exposure step, and the photosensitive layer is exposed. After the region is cured, the uncured region is removed and developed to form a pattern.
[0118] 前記未硬化領域の除去方法としては、特に制限はなぐ 目的に応じて適宜選択す ることができ、例えば、現像液を用いて除去する方法などが挙げられる。  [0118] The method for removing the uncured region is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a method for removing using a developer.
[0119] 前記現像液としては、特に制限はなぐ 目的に応じて適宜選択することができるが、 例えば、アルカリ性水溶液、水系現像液、有機溶剤などが挙げられ、これらの中でも 、弱アルカリ性の水溶液が好ましい。該弱アルカリ水溶液の塩基成分としては、例え ば、水酸化リチウム、水酸化ナトリウム、水酸ィ匕カリウム、炭酸リチウム、炭酸ナトリウム 、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナト リウム、リン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、硼砂などが挙げられる  [0119] The developer is not particularly limited and may be appropriately selected according to the purpose. Examples thereof include an alkaline aqueous solution, an aqueous developer, an organic solvent, etc. Among these, a weak alkaline aqueous solution is used. preferable. Examples of the base component of the weak alkaline aqueous solution include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and phosphoric acid. Sodium, potassium phosphate, sodium pyrophosphate, potassium pyrophosphate, borax, etc.
[0120] 前記弱アルカリ性の水溶液の pHは、例えば、約 8〜12が好ましぐ約 9〜: L 1がより 好ましい。前記弱アルカリ性の水溶液としては、例えば、 0. 1〜5質量%の炭酸ナトリ ゥム水溶液又は炭酸カリウム水溶液などが挙げられる。 [0120] The pH of the weakly alkaline aqueous solution is more preferably, for example, about 9 to about 8 to 12, preferably L1. Examples of the weak alkaline aqueous solution include 0.1 to 5% by mass of sodium carbonate aqueous solution or potassium carbonate aqueous solution.
前記現像液の温度は、前記感光層の現像性に合わせて適宜選択することができる 力 例えば、約 25°C〜40°Cが好ましい。  The temperature of the developer may be appropriately selected according to the developability of the photosensitive layer. For example, the temperature is preferably about 25 ° C. to 40 ° C.
[0121] 前記現像液は、界面活性剤、消泡剤、有機塩基 (例えば、エチレンジァミン、エタノ ールァミン、テトラメチルアンモ -ゥムハイドロキサイド、ジエチレントリァミン、トリェチ レンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進させるため有機溶 剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラタトン類 等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を 混合した水系現像液であってもよぐ有機溶剤単独であってもよ 、。  [0121] The developer is a surfactant, an antifoaming agent, an organic base (for example, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, triethanolamine, etc.) In order to accelerate development, an organic solvent (for example, alcohols, ketones, esters, ethers, amides, latatones, etc.) may be used in combination. The developer may be an aqueous developer obtained by mixing water or an alkaline aqueous solution and an organic solvent, or may be an organic solvent alone.
[0122] 前記エッチング工程としては、公知のエッチング処理方法の中力 適宜選択した方 法により行うことができる。  [0122] The etching step can be performed by a method appropriately selected from among known etching methods.
前記エッチング処理に用いられるエッチング液としては、特に制限はなぐ 目的に 応じて適宜選択することができるが、例えば、前記金属層が銅で形成されている場合 には、塩化第二銅溶液、塩化第二鉄溶液、アルカリエッチング溶液、過酸化水素系 エッチング液などが挙げられ、これらの中でも、エッチングファクターの点力 塩ィ匕第 二鉄溶液が好ましい。 The etching solution used for the etching treatment can be appropriately selected according to the purpose without any particular limitation. For example, when the metal layer is formed of copper, a cupric chloride solution, Ferric solution, alkaline etching solution, hydrogen peroxide-based etching solution, etc. A ferric solution is preferred.
前記エッチング工程によりエッチング処理した後に前記パターンを除去することによ り、前記基体の表面に永久パターンを形成することができる。  A permanent pattern can be formed on the surface of the substrate by removing the pattern after performing the etching process in the etching step.
前記永久パターンとしては、特に制限はなぐ 目的に応じて適宜選択することがで き、例えば、配線パターンなどが好適に挙げられる。  The permanent pattern is not particularly limited and can be appropriately selected according to the purpose, and examples thereof include a wiring pattern.
[0123] 前記メツキ工程としては、公知のメツキ処理の中から適宜選択した適宜選択した方 法により行うことができる。  [0123] The plating step can be performed by an appropriately selected method selected from known plating processes.
前記メツキ処理としては、例えば、硫酸銅メツキ、ピロリン酸銅メツキ等の銅メツキ、ハ ィフローはんだメツキ等のはんだメツキ、ワット浴 (硫酸ニッケル—塩ィ匕ニッケル)メツキ Examples of the plating treatment include copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high-flow solder plating, and Watt bath (nickel sulfate-salt nickel nickel) plating.
、スルファミン酸ニッケル等のニッケルメツキ、ハード金メッキ、ソフト金メッキ等の金メッ キなど処理が挙げられる。 And nickel plating such as nickel sulfamate, and gold plating such as hard gold plating and soft gold plating.
前記メツキ工程によりメツキ処理した後に前記パターンを除去することにより、また更 に必要に応じて不要部をエッチング処理等で除去することにより、前記基体の表面に 永久パターンを形成することができる。  A permanent pattern can be formed on the surface of the substrate by removing the pattern after performing a plating process in the plating process, and further removing unnecessary portions by an etching process or the like as necessary.
[0124] 本発明のパターン形成方法は、前記パターン形成材料の被露光面上に形成される 前記パターンの解像度のばらつきや濃度のむらを軽減し、結像させる像の歪みを抑 制することにより、パターンを高精細に、かつ、効率よく形成可能であるため、高精細 な露光が必要とされる各種パターンの形成などに好適に使用することができ、特に高 精細な配線パターンの形成に好適に使用することができる。 [0124] The pattern forming method of the present invention reduces variations in resolution and density unevenness of the pattern formed on the exposed surface of the pattern forming material, and suppresses distortion of an image to be formed. Since the pattern can be formed with high definition and efficiency, it can be suitably used for forming various patterns that require high-definition exposure, and particularly suitable for forming high-definition wiring patterns. Can be used.
[0125] 〔プリント配線板の製造方法〕 [Manufacturing Method of Printed Wiring Board]
本発明のパターン形成方法は、プリント配線板の製造、特にスルーホール又はビア ホールなどのホール部を有するプリント配線板の製造に好適に用いることができる。 以下、本発明のパターン形成方法を利用したプリント配線板の製造方法について説 明する。  The pattern forming method of the present invention can be suitably used for the production of a printed wiring board, particularly for the production of a printed wiring board having a hole portion such as a through hole or a via hole. Hereinafter, a method for producing a printed wiring board using the pattern forming method of the present invention will be described.
[0126] 特に、スルーホール又はビアホールなどのホール部を有するプリント配線板の製造 方法としては、(1)前記基体としてホール部を有するプリント配線板形成用基板上に 、前記パターン形成材料を、その感光層が前記基体側となる位置関係にて積層して 積層体形成し、(2)前記積層体の前記基体とは反対の側から、配線パターン形成領 域及びホール部形成領域に光照射行!ヽ感光層を硬化させ、 (3)前記積層体から前 記パターン形成材料における支持体を除去し、(4)前記積層体における感光層を現 像して、該積層体中の未硬化部分を除去することによりパターンを形成することがで きる。 [0126] In particular, as a method for producing a printed wiring board having a hole portion such as a through hole or a via hole, (1) the pattern forming material is formed on a printed wiring board forming substrate having a hole portion as the base. A photosensitive layer is laminated in a positional relationship to be on the substrate side to form a laminate, and (2) a wiring pattern forming region is formed from the side of the laminate opposite to the substrate. Light irradiation to the area and hole formation area! (3) The photosensitive layer is cured, (3) the support in the pattern forming material is removed from the laminate, and (4) the photosensitive layer in the laminate is developed, and the uncured portion in the laminate is removed. A pattern can be formed by removing.
[0127] なお、前記(3)における前記支持体の除去は、前記(2)と前記 (4)との間で行う代 わりに、前記(1)と前記(2)との間で行ってもよい。  [0127] The removal of the support in (3) may be performed between (1) and (2) instead of between (2) and (4). Good.
[0128] その後、プリント配線板を得るには、前記形成したパターンを用いて、前記プリント 配線板形成用基板をエッチング処理又はメツキ処理する方法 (例えば、公知のサブト ラタティブ法又はアディティブ法 (例えば、セミアディティブ法、フルアディティブ法)) により処理すればよい。これらの中でも、工業的に有利なテンティングでプリント配線 板を形成するためには、前記サブトラクティブ法が好ましい。前記処理後プリント配線 板形成用基板に残存する硬化榭脂は剥離させ、また、前記セミアディティブ法の場 合は、剥離後さらに銅薄膜部をエッチングすることにより、所望のプリント配線板を製 造することができる。また、多層プリント配線板も、前記プリント配線板の製造法と同様 に製造が可能である。  [0128] Thereafter, in order to obtain a printed wiring board, a method of etching or plating the printed wiring board forming substrate using the formed pattern (for example, a known subtractive method or additive method (for example, Semi-additive method and full additive method)). Among these, the subtractive method is preferable in order to form a printed wiring board with industrially advantageous tenting. After the treatment, the cured resin remaining on the printed wiring board forming substrate is peeled off. In the case of the semi-additive method, the copper thin film portion is further etched after the peeling to produce a desired printed wiring board. can do. A multilayer printed wiring board can also be manufactured in the same manner as the printed wiring board manufacturing method.
[0129] 次に、前記パターン形成材料を用いたスルーホールを有するプリント配線板の製造 方法について、更に説明する。  [0129] Next, a method for producing a printed wiring board having through holes using the pattern forming material will be further described.
[0130] まずスルーホールを有し、表面が金属メツキ層で覆われたプリント配線板形成用基 板を用意する。前記プリント配線板形成用基板としては、例えば、銅張積層基板及び ガラス一エポキシなどの絶縁基材に銅メツキ層を形成した基板、又はこれらの基板に 層間絶縁膜を積層し、銅メツキ層を形成した基板 (積層基板)を用いることができる。  [0130] First, a printed wiring board forming substrate having through holes and having a surface covered with a metal plating layer is prepared. As the printed wiring board forming substrate, for example, a copper clad laminated substrate and a substrate in which a copper plating layer is formed on an insulating base material such as glass-epoxy, or an interlayer insulating film is laminated on these substrates, and a copper plating layer is formed. A formed substrate (laminated substrate) can be used.
[0131] 次に、前記パターン形成材料上に保護フィルムを有する場合には、該保護フィルム を剥離して、前記パターン形成材料における感光層が前記プリント配線板形成用基 板の表面に接するようにして加圧ローラを用いて圧着する (積層工程)。これにより、 前記プリント配線板形成用基板と前記積層体とをこの順に有する積層体が得られる。 前記パターン形成材料の積層温度は、特に制限はなぐ例えば、室温(15〜30°C )、又は加熱下(30〜180°C)が挙げられ、これらの中でも、加温下(60〜140°C)が 好ましい。 前記圧着ロールのロール圧は、特に制限はなぐ例えば、 0. l〜lMPaが好ましい 前記圧着の速度は、特に制限はなぐ l〜3mZ分が好ましい。 Next, when a protective film is provided on the pattern forming material, the protective film is peeled off so that the photosensitive layer in the pattern forming material is in contact with the surface of the printed wiring board forming substrate. And press-bonding using a pressure roller (lamination process). Thereby, the laminated body which has the said board | substrate for printed wiring board formation and the said laminated body in this order is obtained. The lamination temperature of the pattern forming material is not particularly limited, and examples thereof include room temperature (15 to 30 ° C.) or under heating (30 to 180 ° C.). Among these, under heating (60 to 140 ° C.) C) is preferred. The roll pressure of the pressure-bonding roll is not particularly limited. For example, 0.1 to 1 MPa is preferable. The speed of the pressure-bonding is particularly preferably 1 to 3 mZ without limitation.
また、前記プリント配線板形成用基板を予備加熱しておいてもよぐまた、減圧下で 積層してちょい。  Alternatively, the printed wiring board forming substrate may be preheated or laminated under reduced pressure.
[0132] 前記積層体の形成は、前記プリント配線板形成用基板上に前記パターン形成材料 における前記感光層を積層して形成する方法以外に、前記パターン形成材料の感 光層を製造するための感光性榭脂組成物溶液を、前記プリント配線板形成用基板の 表面に直接塗布し、乾燥させることにより形成する方法であってもよい。  [0132] In addition to the method of laminating and forming the photosensitive layer in the pattern forming material on the printed wiring board forming substrate, the laminated body is formed for producing a photosensitive layer of the pattern forming material. The method may be such that the photosensitive resin composition solution is directly applied to the surface of the printed wiring board forming substrate and dried.
[0133] 次に、前記積層体の基体とは反対側の面から、光を照射して感光層を硬化させる。  Next, the photosensitive layer is cured by irradiating light from the surface of the laminate opposite to the substrate.
なおこの際、必要に応じて (例えば、支持体の光透過性が不十分な場合など)支持 体を剥離して力 露光を行ってもょ 、。  At this time, if necessary (for example, when the light transmittance of the support is insufficient), the support may be peeled off and force exposure may be performed.
[0134] この時点で、前記支持体を未だ剥離して!/、な 、場合には、前記積層体から該支持 体を剥がす (支持体剥離工程)。  [0134] At this point, the support is still peeled! /. In this case, the support is peeled off from the laminate (support peeling step).
[0135] 次に、前記プリント配線板形成用基板上の感光層の未硬化領域を、適当な現像液 にて溶解除去して、配線パターン形成用の硬化層とスルーホールの金属層保護用 硬化層のパターンを形成し、前記プリント配線板形成用基板の表面に金属層を露出 させる(現像工程)。  [0135] Next, the uncured region of the photosensitive layer on the printed wiring board forming substrate is dissolved and removed with an appropriate developer, and the cured layer for forming the wiring pattern and the curing for protecting the metal layer of the through hole are performed. A layer pattern is formed to expose the metal layer on the surface of the printed wiring board forming substrate (development process).
[0136] また、現像後に必要に応じて後加熱処理や後露光処理によって、硬化部の硬化反 応を更に促進させる処理をおこなってもよ 、。現像は上記のようなウエット現像法であ つてもよく、ドライ現像法であってもよい。  [0136] Further, after development, if necessary, post-heating treatment or post-exposure processing may be performed to further accelerate the curing reaction of the cured portion. The development may be a wet development method as described above or a dry development method.
[0137] 次いで、前記プリント配線板形成用基板の表面に露出した金属層をエッチング液 で溶解除去する(エッチング工程)。スルーホールの開口部は、硬化榭脂組成物 (テ ント膜)で覆われているので、エッチング液がスルーホール内に入り込んでスルーホ ール内の金属メツキを腐食することなぐスルーホールの金属メツキは所定の形状で 残ることになる。これより、前記プリント配線板形成用基板に配線パターンが形成され る。  Next, the metal layer exposed on the surface of the printed wiring board forming substrate is dissolved and removed with an etching solution (etching step). Since the opening of the through hole is covered with a cured resin composition (tent film), the metal coating of the through hole prevents the etching solution from entering the through hole and corroding the metal plating in the through hole. Will remain in the prescribed shape. Thereby, a wiring pattern is formed on the printed wiring board forming substrate.
[0138] 前記エッチング液としては、特に制限はなぐ 目的に応じて適宜選択することができ る力 例えば、前記金属層が銅で形成されている場合には、塩化第二銅溶液、塩ィ匕 第二鉄溶液、アルカリエッチング溶液、過酸ィ匕水素系エッチング液などが挙げられ、 これらの中でも、エッチングファクターの点から塩ィ匕第二鉄溶液が好ましい。 [0138] The etching solution is not particularly limited and may be appropriately selected depending on the purpose. For example, when the metal layer is formed of copper, a cupric chloride solution, a salty ferric solution, an alkaline etching solution, a hydrogen peroxide-based etching solution, and the like can be mentioned. Among these, a salty ferric solution is preferable from the viewpoint of etching factor.
[0139] 次に、強アルカリ水溶液などにて前記硬化層を剥離片として、前記プリント配線板 形成用基板から除去する (硬化物除去工程)。  Next, the cured layer is removed from the printed wiring board forming substrate as a peeled piece with a strong alkaline aqueous solution or the like (cured product removing step).
前記強アルカリ水溶液における塩基成分としては、特に制限はなぐ例えば、水酸 化ナトリウム、水酸ィ匕カリウムなどが挙げられる。  The base component in the strong alkaline aqueous solution is not particularly limited, and examples thereof include sodium hydroxide and potassium hydroxide.
前記強アルカリ水溶液の pHは、例えば、約 12〜14が好ましぐ約 13〜14がより好 ましい。  The pH of the strong alkaline aqueous solution is more preferably about 13-14, for example, preferably about 12-14.
前記強アルカリ水溶液としては、特に制限はなぐ例えば、 1〜10質量%の水酸ィ匕 ナトリウム水溶液又は水酸ィ匕カリウム水溶液などが挙げられる。  The strong alkaline aqueous solution is not particularly limited, and examples thereof include 1 to 10% by mass of sodium hydroxide aqueous solution or potassium hydroxide aqueous solution.
[0140] また、プリント配線板は、多層構成のプリント配線板であってもよい。 [0140] The printed wiring board may be a multilayer printed wiring board.
なお、前記パターン形成材料は上記のエッチングプロセスのみでなぐメツキプロセ スに使用してもよい。前記メツキ法としては、例えば、硫酸銅メツキ、ピロリン酸銅メツキ 等の銅メツキ、ハイフローはんだメツキ等のはんだメツキ、ワット浴 (硫酸ニッケル一塩 ィ匕ニッケル)メツキ、スルファミン酸ニッケル等のニッケルメツキ、ハード金メッキ、ソフト 金メッキ等の金メッキなどが挙げられる。 実施例  Note that the pattern forming material may be used in a Meki process that is performed only by the etching process. Examples of the plating method include copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high-flow solder plating, watt bath (nickel sulfate monochloride-nickel) plating, nickel plating such as nickel sulfamate, Examples include hard gold plating and gold plating such as soft gold plating. Example
[0141] 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定さ れるものではない。  [0141] Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
[0142] (実施例 1) [0142] (Example 1)
パターン形成材料の製造  Manufacturing of pattern forming materials
前記支持体として 20 μ m厚のポリエチレンテレフタレートフィルムに、下記の組成か らなる感光性榭脂組成物溶液を塗布し乾燥させて、 15 m厚の感光層を形成し、前 記パターン形成材料を製造した。  A photosensitive resin composition solution having the following composition is applied to a 20 μm-thick polyethylene terephthalate film as the support and dried to form a 15-m-thick photosensitive layer. Manufactured.
[0143] [感光性榭脂組成物溶液の組成] [Composition of photosensitive resin composition solution]
'メタクリル酸 Zメチルメタタリレート Zスチレン共重合体 (共重合体組成 (質量比): 'Methacrylic acid Z Methyl metatalylate Z Styrene copolymer (Copolymer composition (mass ratio):
29/19/52,質量平均分子量: 60, 000、酸価 189) 11. 8質量部 下記構造式(1)で表される重合性モノマー 5. 6質量 29/19/52, mass average molecular weight: 60,000, acid value 189) 11.8 parts by mass Polymerizable monomer represented by the following structural formula (1) 5.6 mass
へキサメチレンジイソシァネートとペンタエチレンォキシドモノメタアタリレ  Hexamethylene diisocyanate and pentaethylene oxide monometaataryl
1Z2モル比付加物 5. 0質量部  1Z2 molar ratio adduct 5.0 parts by mass
'ドデカプロピレングリコールジァクリレー 0. 56質量部  'Dodecapropylene glycol dialkyl relay 0.56 parts by mass
' N メチルアタリドン 0. 11質量部 'N Methyl Ataridon 0.11 parts by mass
■2, 2 ビス(o クロ口フエ-ル)一 4, A' テトラフエ二ルビイミ ■ 2, 2 screw (o black mouth ferrule) 1, 4, A 'tetraphenyl ruby
ダゾーノレ 2. 17質量部 Dazonole 2. 17 parts by mass
' 2—メルカプトべンズイミダゾール 0. 23質量部  '2-Mercaptobenzimidazole 0.23 parts by mass
'マラカイトグリーンシユウ酸塩 0. 02質量部  'Malachite green oxalate 0.02 parts by mass
'ロイコクリスタルバイオレット 0. 26質量部 'Royco Crystal Violet 0.26 parts by weight
'メチルェチルケトン 40質量部 'Methyl ethyl ketone 40 parts by mass
ーメトキシ 2—プロパノール 20質量部  -Methoxy 2-propanol 20 parts by mass
[化 1] [Chemical 1]
CH3 CH-, CH 3 CH-,
H?OC— CO~iO— CH2CH2 "0- - 0~(C H2C H2 O^CO O C H2 構造式(1 ) H ? OC— CO ~ iO— CH 2 CH 2 "0--0 ~ (CH 2 CH 2 O ^ CO OCH 2 Structural formula (1)
但し、構造式(1)中、 m+nは、 10を表す。  However, in Structural Formula (1), m + n represents 10.
前記パターン形成材料の感光層の上に、前記保護フィルムとして 20 μ m厚のポリ エチレンフイノレムを積層した。  On the photosensitive layer of the pattern forming material, 20 μm-thick polyethylene phenol was laminated as the protective film.
次に、前記基体として、表面を研磨、水洗、乾燥した銅張積層板 (スルーホールな し、銅厚み 12 m)の表面に、前記パターン形成材料の保護フィルムを剥がしながら 、該パターン形成材料の感光層が前記銅張積層板に接するようにしてラミネーター( MODEL8B— 720— PH、大成ラミネーター (株)製)を用いて圧着させ、前記銅張 積層板と、前記感光層と、前記ポリエチレンテレフタレートフィルム (支持体)とがこの 順に積層された積層体を調製した。  Next, while removing the protective film of the pattern forming material from the surface of the copper-clad laminate (no through-hole, copper thickness 12 m) that has been polished, washed with water and dried as the substrate, The photosensitive layer is pressed with a laminator (MODEL8B-720-PH, manufactured by Taisei Laminator Co., Ltd.) so as to be in contact with the copper-clad laminate, and the copper-clad laminate, the photosensitive layer, and the polyethylene terephthalate film A laminate in which (support) was laminated in this order was prepared.
圧着条件は、圧着ロール温度 105°C、圧着ロール圧力 0. 3MPa、ラミネート速 度 lmZ分とした。 [0146] 前記調製した積層体におけるパターン形成材料の感光層に対して下記装置を用 いて露光を行い、(a)解像度、(b)エッジラフネス、及び (c)エッチング性を以下の方 法により評価した。結果を表 3に示す。 The crimping conditions were a crimping roll temperature of 105 ° C, a crimping roll pressure of 0.3 MPa, and a laminating speed of lmZ. [0146] The photosensitive layer of the pattern forming material in the prepared laminate is exposed using the following apparatus, and (a) resolution, (b) edge roughness, and (c) etchability are obtained by the following methods. evaluated. The results are shown in Table 3.
[0147] < (a)解像度 > [0147] <(a) Resolution>
(1)最短現像時間の測定方法  (1) Measuring method of shortest development time
前記積層体力 前記支持体を剥がし取り、銅張積層板上の前記感光層の全面に 3 0°Cの 1質量%炭酸ナトリウム水溶液を 0. 15MPaの圧力にてスプレーし、炭酸ナトリ ゥム水溶液のスプレー開始力 銅張積層板上の感光層が溶解除去されるまでに要し た時間を測定し、これを最短現像時間とした。  The laminate strength is peeled off, and a 1 mass% sodium carbonate aqueous solution at 30 ° C. is sprayed at a pressure of 0.15 MPa over the entire surface of the photosensitive layer on the copper clad laminate, Spray start force The time required for the photosensitive layer on the copper clad laminate to be dissolved and removed was measured, and this was taken as the shortest development time.
この結果、前記最短現像時間は、 10秒であった。  As a result, the shortest development time was 10 seconds.
[0148] (2)感度の測定 [0148] (2) Sensitivity measurement
前記調製した積層体におけるパターン形成材料の感光層に対し、前記支持体側か ら、以下に説明する露光装置を用いて、 0. lmj/cm2から 21/2倍間隔で lOOmj/c m2までの光エネルギー量の異なる光を照射し、前記感光層の一部の領域を硬化さ せた。室温にて 10分間静置した後、前記積層体から前記支持体を剥がし取り、銅張 積層板上の感光層の全面に、 30°Cの 1質量%炭酸ナトリウム水溶液をスプレー圧 0. 15MPaにて前記(1)で求めた最短現像時間の 2倍の時間スプレーし、未硬化の領 域を溶解除去して、残った硬化領域の厚みを測定した。次いで、光の照射量と、硬 化層の厚さとの関係をプロットして感度曲線を得た。該感度曲線から、硬化領域の厚 みが露光前の感光層と同じ 15 mとなった時の光エネルギー量を、感光層を硬化さ せるために必要な光エネルギー量とした。 From the support side to the photosensitive layer of the pattern forming material in the prepared laminate, from the lmj / cm 2 to lOOmj / cm 2 at intervals of 2 1/2 times using the exposure apparatus described below. A part of the photosensitive layer was cured by irradiating light having different light energy amounts. After standing at room temperature for 10 minutes, the support was peeled off from the laminate, and a 1 mass% sodium carbonate aqueous solution at 30 ° C was sprayed to a spray pressure of 0.15 MPa over the entire surface of the photosensitive layer on the copper clad laminate. Then, spraying was performed twice as long as the shortest development time determined in the above (1), and the uncured area was dissolved and removed, and the thickness of the remaining cured area was measured. Next, a sensitivity curve was obtained by plotting the relationship between the light irradiation amount and the thickness of the hardened layer. From the sensitivity curve, the amount of light energy when the thickness of the cured region was 15 m, which was the same as that of the photosensitive layer before exposure, was determined as the amount of light energy necessary for curing the photosensitive layer.
この結果、前記感光層を硬化させるために必要な光エネルギー量は、 3. 5mj/c m (?めった。  As a result, the amount of light energy required to cure the photosensitive layer was 3.5 mj / cm (?).
[0149] < <露光装置 > > [0149] <<Exposure equipment>>
前記光照射手段として図 4A〜図 8に示した合波レーザ光源と、前記光変調手段と して図 2に概略図を示した DMDであって、主走査方向にマイクロミラーが 1024個配 列されたマイクロミラー列力 副走査方向に 768組配列された内、 1024個 X 256列 のみを駆動するように制御した DMDと、図 1に示した光学系とを有する露光ヘッドを 備えた露光装置を用いた。 4A to 8 as the light irradiating means and the DMD schematically shown in FIG. 2 as the light modulating means, in which 1024 micromirrors are arranged in the main scanning direction. Micromirror array force The exposure head having the DMD controlled to drive only 1024 X 256 arrays out of 768 arrays arranged in the sub-scanning direction and the optical system shown in FIG. The exposure apparatus provided was used.
[0150] 前記露光ヘッドでは、集光光学系は、ロッドインテグレータ 118が備える光量分布 補正機能とは別に、ファイバアレイ光源力 入射されるレーザ光に対し、主光線の角 度に所定の分布を持たせたレーザ光を出射して DMDに照射する機能を備えている また、光量分布量の大きさは、マイクロレンズアレイによって生じる周辺部の光量低 下量以上に設定し、図 9Bに示す光軸中心からの所定距離 YAについては、光軸中 心から照明領域の周辺端部(DMDの外周端部)までの距離を YSとすると、 YS >Y A>YSZ2に設定した。  [0150] In the exposure head, the condensing optical system has a predetermined distribution in the angle of the chief ray with respect to the laser light incident on the fiber array light source, separately from the light amount distribution correction function provided in the rod integrator 118. In addition, the light intensity distribution amount is set to be equal to or greater than the peripheral light amount reduction caused by the microlens array, and the optical axis shown in Fig. 9B is provided. The predetermined distance YA from the center was set to YS> YA> YSZ2, where YS is the distance from the center of the optical axis to the peripheral edge of the illumination area (the outer periphery of the DMD).
[0151] (3)解像度の測定 [0151] (3) Resolution measurement
前記(1)の最短現像時間の評価方法と同じ方法及び条件で前記積層体を作製し、 室温(23°C、 55%RH)にて 10分間静置した。得られた積層体のポリエチレンテレフ タレートフィルム(支持体)上から、前記露光装置を用いて、ライン Zスペース = 1Z1 でライン幅 10 μ m〜50 μ mまで 1 μ m刻みで各線幅の露光を行う。この際の露光量 は、前記(2)で測定した前記パターン形成材料の感光層を硬化させるために必要な 光エネルギー量である。室温にて 10分間静置した後、前記積層体からポリエチレン テレフタレートフィルム (支持体)を剥がし取る。銅張積層板上の感光層の全面に 30 °Cの 1質量%炭酸ナトリウム水溶液をスプレー圧 0. 15MPaにて前記(1)で求めた最 短現像時間の 2倍の時間スプレーし、未硬化領域を溶解除去する。この様にして得 られた硬化榭脂パターン付き銅張積層板の表面を光学顕微鏡で観察し、硬化榭脂 パターンのラインにッマリ、ョレ等の異常が無ぐかつスペース形成可能な最小のライ ン幅を測定し、これを解像度とした。該解像度は数値が小さいほど良好である。  The laminate was produced under the same method and conditions as in the method (1) for evaluating the shortest development time, and allowed to stand at room temperature (23 ° C., 55% RH) for 10 minutes. From the polyethylene terephthalate film (support) of the obtained laminate, using the above-mentioned exposure equipment, exposure of each line width in 1 μm increments from 10 μm to 50 μm line width with line Z space = 1Z1 I do. The exposure amount at this time is the amount of light energy necessary for curing the photosensitive layer of the pattern forming material measured in (2). After standing at room temperature for 10 minutes, the polyethylene terephthalate film (support) is peeled off from the laminate. Spray the entire surface of the photosensitive layer on the copper-clad laminate with a 1% by weight sodium carbonate aqueous solution at 30 ° C at a spray pressure of 0.15 MPa for twice the minimum development time determined in (1) above. Dissolve the area. The surface of the copper clad laminate with a cured resin pattern thus obtained is observed with an optical microscope, and there is no abnormality in the cured resin pattern line, such as scumming or misalignment, and the smallest line that can form a space. The width was measured and used as the resolution. The smaller the numerical value, the better the resolution.
[0152] < (b)エッジラフネス > [0152] <(b) Edge roughness>
前記積層体に、前記露光装置を用いて、前記露光ヘッドの走査方向と直交する方 向の横線パターンが形成されるように照射して露光し、前記感光層の一部の領域を 前記解像度の測定における(3)と同様にしてパターンを形成した。得られたパターン のうち、ライン幅 30 /z mのラインの任意の 5箇所について、レーザ顕微鏡 (VK— 950 0、キーエンス (株)製;対物レンズ 50倍)を用いて観察し、視野内のエッジ位置のうち 、最も膨らんだ箇所(山頂部)と、最もくびれた箇所 (谷底部)との差を絶対値として求 め、観察した 5箇所の平均値を算出し、これをエッジラフネスとした。該エッジラフネス は、値が小さい程、良好な性能を示すため好ましい。結果を表 3に示す。 Using the exposure apparatus, the laminated body is irradiated and exposed so that a horizontal line pattern perpendicular to the scanning direction of the exposure head is formed, and a part of the photosensitive layer is exposed to the resolution. A pattern was formed in the same manner as in (3) in the measurement. Of the obtained patterns, any five points on a line with a line width of 30 / zm were observed using a laser microscope (VK-950 0, manufactured by Keyence Corporation; objective lens 50x), and the edges in the field of view were observed. Out of position The absolute value of the difference between the most swollen part (mountain peak) and the most constricted part (valley bottom) was calculated, and the average value of the five observed points was calculated as the edge roughness. The edge roughness is preferably as the value is small, since it exhibits good performance. The results are shown in Table 3.
[0153] < (c)エッチング性 >  [0153] <(c) Etchability>
前記解像度の測定において形成したパターンを有する前記積層体を用いて、該積 層体における露出した銅張積層板の表面に、塩ィ匕鉄エツチャント (塩化第二鉄含有 エッチング溶液、 40° ボーメ、液温 40°C)を 0. 25MPaで、 36秒スプレーして、硬化 層で覆われていない露出した領域の銅層を溶解除去することによりエッチング処理を 行った。次いで、 2質量%の水酸ィ匕ナトリウム水溶液をスプレーすることにより前記形 成したパターンを除去して、表面に前記永久パターンとして銅層の配線パターンを備 えたプリント配線板を作製した。該プリント配線基板上の配線パターンを光学顕微鏡 で観察し、該配線パターンの最小のライン幅を測定した。この最小ライン幅が小さい ほど高精細な配線パターンが得られ、エッチング性に優れていることを意味する。結 果を表 3に示す。  Using the laminate having the pattern formed in the measurement of the resolution, on the surface of the exposed copper-clad laminate in the laminate, a salted pig iron etchant (ferric chloride-containing etching solution, 40 ° Baume, Etching was performed by spraying at a liquid temperature of 40 ° C at 0.25 MPa for 36 seconds to dissolve and remove the exposed copper layer not covered with the hardened layer. Subsequently, the formed pattern was removed by spraying a 2% by mass aqueous solution of sodium hydroxide and sodium hydroxide, and a printed wiring board having a copper layer wiring pattern as the permanent pattern on the surface was prepared. The wiring pattern on the printed wiring board was observed with an optical microscope, and the minimum line width of the wiring pattern was measured. A smaller minimum line width means that a finer wiring pattern can be obtained and the etching property is better. The results are shown in Table 3.
[0154] (実施例 2)  [Example 2]
実施例 1において、露光装置を、下記に説明するものに代えた以外は、実施例 1と 同様にしてパターンを形成し、(a)解像度、(b)エッジラフネス、及び (c)エッチング性 を評価した。結果を表 3に示す。  In Example 1, except that the exposure apparatus was changed to that described below, a pattern was formed in the same manner as in Example 1, and (a) resolution, (b) edge roughness, and (c) etchability were evaluated. The results are shown in Table 3.
[0155] < <露光装置 > > [0155] <<Exposure equipment>>
前記光照射手段として図 4A〜図 8に示した合波レーザ光源と、前記光変調手段と して図 2に概略図を示した DMDであって、主走査方向にマイクロミラーが 1024個配 列されたマイクロミラー列力 副走査方向に 768組配列された内、 1024個 X 256列 のみを駆動するように制御した DMDと、図 1に示した光学系とを有する露光ヘッドを 備えた露光装置を用いた。図 1に示す前記露光ヘッドのロッドインテグレータ 118と 集光レンズ 120の間には、前記光分布補正手段として、図 11Aに示すような 2枚で一 組の平凸レンズ 152、 154により構成されたテレセントリック光学系 150が設けられて いる。  4A to 8 as the light irradiating means and the DMD schematically shown in FIG. 2 as the light modulating means, in which 1024 micromirrors are arranged in the main scanning direction. Micromirror column force An exposure apparatus having an exposure head having a DMD controlled to drive only 1024 X 256 columns out of 768 arrays arranged in the sub-scanning direction and the optical system shown in FIG. Was used. Between the rod integrator 118 and the condenser lens 120 of the exposure head shown in FIG. 1, as a light distribution correcting means, a telecentric lens composed of a pair of plano-convex lenses 152 and 154 as shown in FIG. 11A. An optical system 150 is provided.
[0156] レーザ光の入射側(ファイバアレイ光源 112側)に配置された平凸レンズ 152は、入 射面 S2の面形状が、曲率半径が光軸 (光軸中心) Xから離れるに従い大きくなる非 球面、換言すれば、曲率が光軸 Xから離れるに従い小さくなる非球面とされ、出射面 S3が平面状とされている。 [0156] The plano-convex lens 152 disposed on the laser beam incident side (fiber array light source 112 side) The surface shape of the incident surface S2 is an aspheric surface whose radius of curvature increases as it moves away from the optical axis (optical axis center) X, in other words, an aspheric surface that decreases as the radius of curvature increases away from the optical axis X. It is flat.
また、レーザ光の出射側(DMD50側)に配置された平凸レンズ 154は、入射面 S4 が平面状とされ、出射面 S5の面形状が、曲率半径が光軸 Xから離れるに従い小さく なる非球面、換言すれば、曲率が光軸 Xから離れるに従い大きくなる非球面とされて いる。  In addition, the plano-convex lens 154 arranged on the laser beam emission side (DMD50 side) has an aspheric surface in which the incident surface S4 has a flat surface and the surface shape of the output surface S5 decreases as the radius of curvature increases from the optical axis X In other words, it is an aspheric surface whose curvature increases with distance from the optical axis X.
[0157] この露光装置を用いることにより、前記テレセントリック光学系 150から平行化されて 出射されたレーザビームの光量分布は、光軸中心に対して周辺部の分布密度が高く なり、このレーザビームが照射された DMD50では、レーザ光照射領域の中心部(光 軸中心)よりも周辺部の光量が増加される。その後、レーザビームがマイクロレンズァ レイ 128を透過することで、光軸中心部に対する周辺部の光量低下を生じ、露光面 には光量分布が均一になるよう補正された光ビームが照射される。  [0157] By using this exposure apparatus, the light intensity distribution of the laser beam emitted from the telecentric optical system 150 after being collimated becomes higher in the peripheral density with respect to the center of the optical axis. In the irradiated DMD 50, the amount of light in the peripheral portion is increased from the central portion (optical axis center) of the laser light irradiation region. Thereafter, the laser beam passes through the microlens array 128 to cause a reduction in the amount of light in the peripheral portion with respect to the central portion of the optical axis, and the exposure surface is irradiated with the light beam corrected so that the light amount distribution is uniform.
[0158] (実施例 3)  [Example 3]
実施例 1にお 、て、感光性榭脂組成物溶液のへキサメチレンジイソシァネートとぺ ンタエチレンォキシドモノメタアタリレートの 1Z2モル比付加物を、下記構造式(2)で 表される化合物に代えた以外は実施例 1と同様にしてパターン形成材料、及び積層 体を調製し、パターンを形成し、(a)解像度、(b)エッジラフネス、及び (c)エッチング 性を評価した。結果を表 3に示す。  In Example 1, a 1Z2 molar addition product of hexamethylene diisocyanate and pentaethylene oxide monomethaacrylate in the photosensitive resin composition solution is represented by the following structural formula (2). A pattern forming material and a laminate were prepared in the same manner as in Example 1 except that the compound was replaced with the above compound. A pattern was formed, and (a) resolution, (b) edge roughness, and (c) etching property were evaluated. . The results are shown in Table 3.
なお、最短現像時間は 10秒であり、前記感光層を硬化させるために必要な光エネ ルギー量は 3. 5mjZcm2であった。 The shortest development time was 10 seconds, and the amount of photoenergy required to cure the photosensitive layer was 3.5 mjZcm 2 .
[0159] [化 2] [0159] [Chemical 2]
, ,
Figure imgf000042_0001
構造式 ( 2 )
,,
Figure imgf000042_0001
Structural formula (2)
[0160] (実施例 4) [Example 4]
実施例 1にお 、て、感光性榭脂組成物溶液のへキサメチレンジイソシァネートとテト ラエチレンォキシドモノメタアタリレートの 1Z2モル比付加物を、下記構造式(3)に示 す化合物に代えた以外は実施例 1と同様にしてパターン形成材料、及び積層体を調 製し、ノターンを形成し、(a)解像度、(b)エッジラフネス、及び (c)エッチング性を評 価した。結果を表 3に示す。 In Example 1, a 1Z2 molar ratio adduct of hexamethylene diisocyanate and tetraethylene oxide monomethaacrylate in the photosensitive resin composition solution is represented by the following structural formula (3). A pattern forming material and a laminate were prepared in the same manner as in Example 1 except that the compound was changed to a non-turned material, and (a) resolution, (b) edge roughness, and (c) etching property were evaluated. I was worth it. The results are shown in Table 3.
なお、最短現像時間は 10秒であり、前記感光層を硬化させるために必要な光エネ ルギー量は 3. 5mjZcm2であった。 The shortest development time was 10 seconds, and the amount of photoenergy required to cure the photosensitive layer was 3.5 mjZcm 2 .
[0161] [化 3] [0161] [Chemical 3]
Et— -c c H OC H ?C H , O C O N H- 1 C H , ),·, -N H C O 0-( C H , C H ?0 }(iCO ~ ) 式、3.) Et— -cc H OC H ? CH, OCON H- 1 CH,), -NHCO 0- (CH, CH ? 0} (i CO ~), 3.)
[0162] (実施例 5) [0162] (Example 5)
実施例 1にお 、て、メタクリル酸 Zメチルメタタリレート Zスチレン共重合体 (共重合 体組成(質量比): 29Z19Z52、質量平均分子量: 60, 000、酸価 189)を、メチル メタタリレート Zスチレン Zベンジルメタタリレート Zメタクリル酸共重合体 (共重合体 組成(質量比) : 8/30/37/25,質量平均分子量: 60, 000、酸価 163)に代えた こと以外は実施例 1と同様にしてパターン形成材料、及び積層体を調製し、パターン を形成し、(a)解像度、(b)エッジラフネス、及び (c)エッチング性を評価した。結果を 表 3に示す。  In Example 1, methacrylic acid Z methyl metatalylate Z styrene copolymer (copolymer composition (mass ratio): 29Z19Z52, mass average molecular weight: 60,000, acid value 189) was converted to methyl metatalylate Z styrene. Example 1 except that Z benzyl metatalate Z methacrylic acid copolymer (copolymer composition (mass ratio): 8/30/37/25, mass average molecular weight: 60,000, acid value 163) In the same manner as above, a pattern forming material and a laminate were prepared, a pattern was formed, and (a) resolution, (b) edge roughness, and (c) etching property were evaluated. The results are shown in Table 3.
なお、最短現像時間は 10秒であり、感光層を硬化させるために必要な光エネルギ 一直 ίま 4mj/ cm (?あつ 7こ。  The shortest development time is 10 seconds, and the light energy required to cure the photosensitive layer is approximately 4 mj / cm (?
[0163] (比較例 1) [0163] (Comparative Example 1)
実施例 1の露光装置において、集光光学系に光分布補正手段を備えない構成の 露光ヘッドを用いた以外は、実施例 1と同様にしてパターン形成材料、及び積層体を 調製し、ノターンを形成し、(a)解像度、(b)エッジラフネス、及び (c)エッチング性を 評価した。結果を表 3に示す。  In the exposure apparatus of Example 1, a pattern forming material and a laminate were prepared in the same manner as in Example 1 except that an exposure head having a configuration that does not include a light distribution correction unit in the condensing optical system was prepared. And (a) resolution, (b) edge roughness, and (c) etchability were evaluated. The results are shown in Table 3.
なお、感光層を硬化させるために必要な光エネルギー量は 3. 5miZcm2であった The amount of light energy required to cure the photosensitive layer was 3.5 miZcm 2
[0164] (比較例 2) [0164] (Comparative Example 2)
実施例 2の露光装置にお 、て、集光光学系に光分布補正手段を備えな!/、構成の 露光ヘッドを用いた以外は、実施例 2と同様にしてパターン形成材料、及び積層体を 調製し、ノターンを形成し、(a)解像度、(b)エッジラフネス、及び (c)エッチング性を 評価した。結果を表 3に示す。 In the exposure apparatus of Embodiment 2, the light collecting optical system is not equipped with light distribution correction means! Except for using the exposure head with the configuration, the pattern forming material and the laminate were prepared in the same manner as in Example 2. It was prepared to form a pattern, and (a) resolution, (b) edge roughness, and (c) etching property were evaluated. The results are shown in Table 3.
なお、感光層を硬化させるために必要な光エネルギー量は 3. 5miZcm2であった The amount of light energy required to cure the photosensitive layer was 3.5 miZcm 2
[0165] [表 3] [0165] [Table 3]
Figure imgf000044_0001
Figure imgf000044_0001
[0166] 表 3の結果から、比較例 1及び 2の配線パターンと比較して、光分布補正手段を備 えた露光ヘッドを使用した実施例 1〜5の配線パターンは高精細であり、エッジラフネ スも小さぐまた、エッチング性に優れることがわ力つた。さらに、光分布補正手段を備 えた露光ヘッドを使用することにより、低コストで高精細な露光を実現することができ、 また、効率の良い露光ができることがわ力つた。  [0166] From the results of Table 3, compared to the wiring patterns of Comparative Examples 1 and 2, the wiring patterns of Examples 1 to 5 using the exposure head equipped with the light distribution correcting means are high-definition, and the edge roughness is used. In addition, it was also strong that it was excellent in etching property. Furthermore, by using an exposure head equipped with light distribution correction means, it was possible to realize high-definition exposure at low cost and to perform efficient exposure.
産業上の利用可能性  Industrial applicability
[0167] 本発明のパターン形成方法は、描画単位が 2次元的に分布した露光ヘッドを備え るデジタル露光装置を用いた露光において、コストを抑えつつ、 2次元的に分布した 各描画単位の光量を均一化することにより、微細なパターンを高精度に形成可能な ノターン形成方法を提供することができるため、高精細な露光が必要とされる各種パ ターンの形成などに好適に使用することができ、特に高精細な配線パターンの形成 に好適に使用することができる。 [0167] The pattern forming method of the present invention provides a light amount of each drawing unit that is two-dimensionally distributed while suppressing costs in exposure using a digital exposure apparatus including an exposure head in which drawing units are two-dimensionally distributed. By making the pattern uniform, it is possible to provide a pattern forming method capable of forming a fine pattern with high precision, and therefore, it can be suitably used for forming various patterns that require high-definition exposure. In particular, it can be suitably used for forming a high-definition wiring pattern.

Claims

請求の範囲  The scope of the claims
[1] 支持体上に感光層を有するパターン形成材料における該感光層を、被処理基体 上に積層した後、  [1] After laminating the photosensitive layer in the pattern forming material having the photosensitive layer on the support on the substrate to be processed,
該感光層に対し、 n個(ただし、 nは 1以上の自然数)の 2次元的に配列された描素 部を有し、パターン情報に応じて前記描素部毎に光変調状態を変化させる光変調手 段に、光照射手段から出射した光ビームを光分布補正手段を有する集光光学系を 介して照射し、前記光変調手段により変調された光ビームを照射して露光を行うこと を少なくとも含み、  The photosensitive layer has n (where n is a natural number of 1 or more) two-dimensionally arranged pixel parts, and the light modulation state is changed for each of the pixel parts according to pattern information. The light modulation means is irradiated with a light beam emitted from the light irradiation means via a condensing optical system having a light distribution correction means, and exposure is performed by irradiating the light beam modulated by the light modulation means. Including at least
該露光が、前記光照射手段から前記光変調手段に照射される光ビームの照射領 域内での光量に分布を持たせ、前記光変調手段により変調された光ビームの光量分 布力 前記感光層の被露光面上において均一となるように補正されて行われることを 特徴とするパターン形成方法。  The exposure gives a distribution of the amount of light within the irradiation region of the light beam irradiated from the light irradiation unit to the light modulation unit, and the light amount distribution force of the light beam modulated by the light modulation unit. A pattern forming method, wherein the correction is performed so as to be uniform on the exposed surface.
[2] 光照射手段から出射した光ビームを、集光光学系により、主光線の角度に分布を 有する光ビームとして光変調手段に照射する請求項 1に記載のパターン形成方法。 2. The pattern forming method according to claim 1, wherein the light modulating unit irradiates the light modulating unit with the light beam emitted from the light irradiating unit as a light beam having a distribution in the angle of the principal ray by the condensing optical system.
[3] 光照射手段力 出射された光ビームを、集光光学系により、テレセントリック光として 光変調手段に照射する請求項 1に記載のパターン形成方法。 [3] The pattern forming method according to [1], wherein the emitted light beam is irradiated to the light modulation means as telecentric light by a condensing optical system.
[4] 集光光学系が、光軸中心から離れるに従いレンズパワーが小さくなるような非球面 形状を有する第一の光学レンズと、光軸中心から離れるに従いレンズパワーが大きく なるような非球面形状を有する第二の光学レンズとからなる光分布補正手段を有する 請求項 3に記載のパターン形成方法。 [4] A first optical lens having an aspherical shape in which the condensing optical system decreases in lens power as it moves away from the optical axis center, and an aspherical shape in which the lens power increases as it moves away from the optical axis center The pattern forming method according to claim 3, further comprising: a light distribution correction unit including a second optical lens having
[5] 集光光学系が、光照射手段から光変調手段に照射される光ビームの照射領域内 において、中心部よりも周辺部の光量を増加させる請求項 1から 4のいずれかに記載 のパターン形成方法。 [5] The condensing optical system according to any one of claims 1 to 4, wherein the condensing optical system increases the amount of light in the peripheral portion rather than the central portion in the irradiation region of the light beam irradiated from the light irradiation means to the light modulation means. Pattern forming method.
[6] 光変調手段が、空間光変調素子である請求項 1から 5の 、ずれかに記載のパター ン形成方法。  6. The pattern forming method according to claim 1, wherein the light modulation means is a spatial light modulation element.
[7] 露光が行われた後、感光層の現像を行う請求項 1から 6のいずれかに記載のパタ ーン形成方法。  7. The pattern forming method according to any one of claims 1 to 6, wherein the photosensitive layer is developed after the exposure.
[8] 現像が行われた後、永久パターンの形成を行う請求項 1から 7のいずれかに記載の パターン形成方法。 [8] The permanent pattern is formed after the development is performed. Pattern forming method.
永久パターンが配線パターンであり、該永久パターンの形成がエッチング処理及び メツキ処理の少なくともいずれかにより行われる請求項 8に記載のパターン形成方法 光照射手段が、 2以上の光を合成して照射可能である請求項 1から 9のいずれかに 記載のパターン形成方法。  The pattern forming method according to claim 8, wherein the permanent pattern is a wiring pattern, and the formation of the permanent pattern is performed by at least one of an etching process and a plating process. The pattern forming method according to claim 1, wherein:
光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレーザから それぞれ照射されたレーザビームを平行光化して集光し、前記マルチモード光フアイ バの入射端面に収束させる光源集光光学系とを有する請求項 1から 10のいずれか に記載のパターン形成方法。  A light irradiating means collects a plurality of lasers, a multimode optical fiber, and a laser beam irradiated from each of the plurality of lasers into parallel light and collects the light, and converges it on the incident end face of the multimode optical fiber. The pattern formation method according to claim 1, further comprising: an optical optical system.
感光層が、バインダーと、重合性化合物と、光重合開始剤とを含む請求項 1から 11 の!、ずれかに記載のパターン形成方法。  12. The pattern forming method according to claim 1, wherein the photosensitive layer contains a binder, a polymerizable compound, and a photopolymerization initiator.
バインダーが、酸性基を有する請求項 12に記載のパターン形成方法。  13. The pattern forming method according to claim 12, wherein the binder has an acidic group.
バインダー力 ビュル共重合体である請求項 12から 13のいずれかに記載のパター ン形成方法。  The pattern forming method according to any one of claims 12 to 13, wherein the pattern is a bull copolymer.
バインダーの酸価が、 70〜250mgKOHZgである請求項 12から 14のいずれかに 記載のパターン形成方法。  The pattern forming method according to claim 12, wherein an acid value of the binder is 70 to 250 mg KOHZg.
重合性化合物が、ウレタン基及びァリール基の少なくともいずれかを有するモノマ 一を含む請求項 12から 15のいずれかに記載のパターン形成方法。  16. The pattern forming method according to claim 12, wherein the polymerizable compound contains a monomer having at least one of a urethane group and an aryl group.
光重合開始剤が、ハロゲン化炭化水素誘導体、へキサァリールビイミダゾール、ォ キシム誘導体、有機過酸化物、チォ化合物、ケトンィ匕合物、芳香族ォ-ゥム塩及びメ タロセン類力も選択される少なくとも 1種を含む請求項 12から 16のいずれかに記載 のパターン形成方法。  The photopolymerization initiator is also selected from halogenated hydrocarbon derivatives, hexarylbiimidazole, oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, and metallocenes. The pattern forming method according to claim 12, comprising at least one selected from the group consisting of:
感光層が、バインダーを 10〜90質量%含有し、重合性化合物を 5〜90質量%含 有する請求項 1から 17のいずれかに記載のパターン形成方法。  18. The pattern forming method according to claim 1, wherein the photosensitive layer contains 10 to 90% by mass of a binder and 5 to 90% by mass of a polymerizable compound.
感光層の厚みが、 1〜: LOO mである請求項 1から 18のいずれかに記載のパター ン形成方法。  The pattern forming method according to claim 1, wherein the photosensitive layer has a thickness of 1 to: LOO m.
支持体が、合成樹脂を含み、かつ透明である請求項 1から 19のいずれかに記載の パターン形成方法。 The support according to any one of claims 1 to 19, wherein the support contains a synthetic resin and is transparent. Pattern forming method.
[21] 支持体が、長尺状である請求項 1から 20のいずれかに記載のパターン形成方法。  21. The pattern forming method according to claim 1, wherein the support has a long shape.
[22] ノターン形成材料力 長尺状であり、ロール状に巻かれてなる請求項 1から 21のい ずれかに記載のパターン形成方法。 [22] The pattern forming method according to any one of claims 1 to 21, wherein the pattern forming material has a long shape and is wound in a roll shape.
[23] ノターン形成材料における感光層上に保護フィルムを形成する請求項 1から 22の いずれか〖こ記載のパターン形成方法。 [23] The pattern forming method according to any one of [1] to [22], wherein a protective film is formed on the photosensitive layer in the non-turn forming material.
PCT/JP2006/312095 2005-07-07 2006-06-16 Pattern forming method WO2007007512A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005199461A JP2007017722A (en) 2005-07-07 2005-07-07 Pattern forming method
JP2005-199461 2005-07-07

Publications (1)

Publication Number Publication Date
WO2007007512A1 true WO2007007512A1 (en) 2007-01-18

Family

ID=37636910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312095 WO2007007512A1 (en) 2005-07-07 2006-06-16 Pattern forming method

Country Status (5)

Country Link
JP (1) JP2007017722A (en)
KR (1) KR20080034124A (en)
CN (1) CN101218545A (en)
TW (1) TW200710943A (en)
WO (1) WO2007007512A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951778B1 (en) * 2008-05-28 2010-04-08 연세대학교 산학협력단 Method for patterning thin film by laser printing
JP2016133661A (en) * 2015-01-20 2016-07-25 日立化成株式会社 Photosensitive resin composition, photosensitive element, method for forming resist pattern, and method for manufacturing structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157219A (en) * 2002-11-05 2004-06-03 Fuji Photo Film Co Ltd Exposure head and exposure apparatus
JP2004228343A (en) * 2003-01-23 2004-08-12 Fuji Photo Film Co Ltd Aligner
JP2004335640A (en) * 2003-05-06 2004-11-25 Fuji Photo Film Co Ltd Projection aligner
JP2005032909A (en) * 2003-07-10 2005-02-03 Fuji Photo Film Co Ltd Lighting optical system and aligner using it
JP2005049491A (en) * 2003-07-31 2005-02-24 Fuji Photo Film Co Ltd Illumination optical system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244156B2 (en) * 2003-05-07 2009-03-25 富士フイルム株式会社 Projection exposure equipment
JP2005022249A (en) * 2003-07-02 2005-01-27 Fuji Photo Film Co Ltd Image recording method and image recording apparatus
JP2005022248A (en) * 2003-07-02 2005-01-27 Fuji Photo Film Co Ltd Image recording method and image recording apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157219A (en) * 2002-11-05 2004-06-03 Fuji Photo Film Co Ltd Exposure head and exposure apparatus
JP2004228343A (en) * 2003-01-23 2004-08-12 Fuji Photo Film Co Ltd Aligner
JP2004335640A (en) * 2003-05-06 2004-11-25 Fuji Photo Film Co Ltd Projection aligner
JP2005032909A (en) * 2003-07-10 2005-02-03 Fuji Photo Film Co Ltd Lighting optical system and aligner using it
JP2005049491A (en) * 2003-07-31 2005-02-24 Fuji Photo Film Co Ltd Illumination optical system

Also Published As

Publication number Publication date
CN101218545A (en) 2008-07-09
KR20080034124A (en) 2008-04-18
TW200710943A (en) 2007-03-16
JP2007017722A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP4966528B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2007264483A (en) Pattern forming material and pattern forming method
WO2005116774A1 (en) Pattern formation method
WO2006028060A1 (en) Pattern forming material, and pattern forming device and pattern forming method
WO2006059534A1 (en) Pattern forming material and pattern forming method
JP4646759B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2008020629A (en) Pattern forming material, and pattern forming apparatus and pattern forming method
WO2007010748A1 (en) Patterning method
WO2006059532A1 (en) Material for pattern formation, apparatus for pattern formation, and method for pattern formation
WO2006051761A1 (en) Composition for pattern formation and pattern forming material, and pattern forming apparatus and pattern forming method
JP2006251385A (en) Pattern forming material, pattern forming apparatus and pattern forming method
WO2006112137A1 (en) Pattern forming method
JP2008009404A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2007256832A (en) Pattern forming material and pattern-forming method
WO2006025389A1 (en) Pattern-forming material, pattern-forming apparatus and pattern-forming method
WO2007007512A1 (en) Pattern forming method
JP2006220858A (en) Pattern formation material, pattern formation device, and pattern formation method
JP4468201B2 (en) Pattern forming composition, pattern forming material, pattern forming apparatus, and pattern forming method
JP2006251391A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP4520879B2 (en) Pattern forming material, pattern forming apparatus, and pattern forming method
JP2007165416A (en) Circuit board and manufacturing method thereof
WO2006137241A1 (en) Patterning method
JP2006292889A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006208734A (en) Pattern forming method
WO2006109721A1 (en) Material for pattern formation, apparatus for pattern formation, and method for pattern formation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680024481.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087000936

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06766787

Country of ref document: EP

Kind code of ref document: A1