WO2007007434A1 - 量子カスケードレーザ - Google Patents

量子カスケードレーザ Download PDF

Info

Publication number
WO2007007434A1
WO2007007434A1 PCT/JP2006/300385 JP2006300385W WO2007007434A1 WO 2007007434 A1 WO2007007434 A1 WO 2007007434A1 JP 2006300385 W JP2006300385 W JP 2006300385W WO 2007007434 A1 WO2007007434 A1 WO 2007007434A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
layer
quantum
cascade
semiconductor
Prior art date
Application number
PCT/JP2006/300385
Other languages
English (en)
French (fr)
Inventor
Masamichi Yamanishi
Tadataka Edamura
Naota Akikusa
Atsushi Sugiyama
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Publication of WO2007007434A1 publication Critical patent/WO2007007434A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Definitions

  • the present invention relates to a quantum cascade laser using intersubband transition in a quantum well structure.
  • Light in the mid-infrared wavelength region corresponds to the energy region of vibration of various molecules, and can identify individual molecules. Wavelength range. Accordingly, there is an increasing need for a high-performance coherent light source in such a wavelength region.
  • a quantum cascade laser is a monopolar type laser element that generates light by utilizing electron transition between subbands in a semiconductor quantum well structure.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-279647
  • Patent Document 2 JP 2004-200375 A
  • quantum cascade laser high-efficiency and high-power operation can be realized by cascading quantum well light-emitting layers that are configured with a quantum well structure and serve as an active region in multiple stages.
  • the characteristics are superior to those of conventional bipolar laser elements including pn junctions.
  • the spectral line width for example, in Non-Patent Document 1, the spectral line width in the quantum cascade laser is extremely small, 12 kHz. The threshold has been reported.
  • quantum cascade lasers are applied to various fields, it is hoped to develop laser elements that can operate with lower threshold and higher output while maintaining such narrow linewidth characteristics. It is rare.
  • the present invention has been made to solve the above problems, and provides a quantum cascade laser having a narrow linewidth characteristic and capable of operating at a low threshold and a high output. With the goal.
  • the inventor of the present application has conducted a detailed examination on the above characteristics of the quantum cascade laser. As a result of faithfully reproducing the structure of the laser element in which the light-emitting layers having a quantum well structure are cascade-connected in multiple stages in the rate equation and analyzing the oscillation characteristics, the number of stages m in the cascade structure is increased. As a result, the present inventors have found that operation at a low threshold and high output becomes possible.
  • the quantum cascade laser according to the present invention has (1) ml-stage cascade structure in which quantum well light-emitting layers and injection layers are alternately stacked in the first direction (ml is an integer of 2 or more). And a semiconductor stack including at least an active layer that generates light by intersubband transition in a quantum well structure. (2) The semiconductor stack is separated from each other in a second direction different from the first direction. In this state, m2 pieces (m2 is an integer of 2 or more) are arranged, and by connecting them in series, it is possible to effectively form a two-dimensional cascade structure of ml x m2 stages. It is characterized by being.
  • the active layer cascade structure in which the quantum well light-emitting layers and the injection layers are alternately stacked in a predetermined direction is an element portion configured to include such a cascade structure.
  • a semiconductor laminate is used.
  • a plurality of semiconductor products are arranged in an arrangement direction (second direction) set in a direction different from the stacking direction (first direction).
  • a two-dimensional cascade structure is realized by arranging layered bodies and cascading them in series. According to such a configuration, the number of stages m of the cascade structure constituting the laser element can be sufficiently increased as a whole. Therefore, a quantum cascade laser having a narrow linewidth characteristic and capable of operating at a low threshold and high output is realized.
  • various configurations may be used for a wiring structure for cascade-connecting m 2 semiconductor stacked bodies (laser element portions) arranged in the second direction.
  • a wiring structure for example, there is a wiring structure formed by using a wiring pattern formed on a laser chip of a quantum cascade laser and a wire wiring.
  • a wiring structure in which a wiring pattern necessary for the submount on which the laser chip is placed is formed. The invention's effect
  • the quantum cascade laser of the present invention a plurality of semiconductor stacks including active layers having a cascade structure in which quantum well light-emitting layers and injection layers are alternately stacked are used, and a plurality of stacks are arranged in an arrangement direction different from the stacking direction.
  • semiconductor stacks and cascading them By arranging semiconductor stacks and cascading them in series to realize a multistage, two-dimensional cascade structure, it has narrow linewidth characteristics, low threshold, high output, and high temperature. Operation is possible.
  • FIG. 1 is a diagram schematically showing a basic configuration of a quantum cascade laser.
  • FIG. 2 is a schematic diagram showing the configuration of the active layer in the quantum cascade laser and the intersubband transition in the quantum well structure.
  • FIG. 3 is a schematic diagram showing a cascade structure of an active layer in a quantum cascade laser.
  • FIG. 4 is a graph schematically showing the current-light output characteristics of a laser element.
  • FIG. 5 is a cross-sectional view showing a semiconductor laminated structure used in a quantum cascade laser.
  • FIG. 6 is a table showing a specific configuration example of an active layer having a cascade structure.
  • FIG. 7 is a cross-sectional view showing a cross-sectional configuration of the quantum cascade laser of the first example.
  • FIG. 8 is a top view showing a planar configuration of the laser of the first embodiment.
  • FIG. 9 is a perspective view showing a three-dimensional configuration of the laser of the first embodiment.
  • FIG. 10 is a cross-sectional view showing a semiconductor laminated structure used in a quantum cascade laser.
  • FIG. 11 is a cross-sectional view showing a cross-sectional configuration of the quantum cascade laser according to the second embodiment.
  • FIG. 12 is a top view showing a planar configuration of a laser according to a second embodiment.
  • FIG. 13 is a side sectional view showing a three-dimensional configuration of a laser according to a second embodiment.
  • FIG. 14 is a cross-sectional view showing a cross-sectional configuration of the quantum cascade laser according to the third embodiment.
  • FIG. 15 is a cross-sectional view showing a cross-sectional configuration of the quantum cascade laser of the fourth embodiment.
  • FIG. 16 is a top view showing a planar configuration of the quantum cascade laser according to the fifth embodiment.
  • Laser element section 110 Semiconductor substrate 21 ... Active layer 410, 415 ... Core layer 411 ... Cladding layer 412 ... Highly doped layer 51, 56 ... Electrode 71 ... High Resistive layer, 111... Electrode node, 112... Submount,
  • Electrode 72 High resistance layer 121 121 Electrode pad
  • Laser element part 140 Semiconductor substrate 24 ... Active layer 54 . Electrode 74 ... Air gap part 79 ... High resistance layer 15 ⁇ Laser element.
  • FIG. 1 is a diagram schematically showing a basic configuration of a quantum cascade laser according to the present invention.
  • the quantum cascade laser 1 is a monopolar type laser element that generates light using electronic transition between subbands in a semiconductor quantum well structure. As described later, a plurality of (m2, m2 Is an integer greater than or equal to 2), and is configured to include a laser element portion 10 ⁇ : L0.
  • the “vertical direction” indicates a direction perpendicular to the crystal growth surface of the semiconductor layer. This vertical direction corresponds to the stacking direction of the semiconductor layers in the laser 1.
  • the “horizontal direction” indicates a direction horizontal to the crystal growth surface of the semiconductor layer. This horizontal direction corresponds to the arrangement direction of the laser element portions in the present laser 1 and the resonator axial direction in the optical resonator that oscillates the laser light. In such a configuration, the arrangement direction of the laser element portions in the quantum cascade laser 1 is orthogonal to the stacking direction of the semiconductor layers.
  • m2 laser element units 10 to 10 constituting the quantum cascade laser 1 of FIG.
  • the first laser element unit 10 located on the leftmost side as an example, the first laser element unit 10 includes an active layer 20, cladding layers 40 and 45, and electrodes 50 and 55.
  • the active layer 20 has a multi-stage cascade structure (ml stage, ml is an integer of 2 or more) in which the quantum well light-emitting layers and the injection layers are alternately stacked with the vertical direction (first direction) being the stacking direction.
  • ml stage ml is an integer of 2 or more
  • the laser element unit 10 is a semiconductor multilayer body including at least the active layer 20 having a cascade structure of ml steps.
  • the active layer generates light of a predetermined wavelength (for example, light in the mid-infrared wavelength region) in a cascade manner by the intersubband transition in the quantum well structure by the cascade structure described above.
  • Quantum well light-emitting layer in active layer 20 The number of injection layers stacked is set as appropriate.
  • FIG. 2 is a schematic diagram showing the configuration of the active layer 20 in the laser element section 10 of the quantum cascade laser 1 shown in FIG. 1 and the intersubband transition in the quantum well structure.
  • the adjacent quantum well light emitting layer 201 and injection layer 206 are adjacent to each other.
  • the laminated structure is shown.
  • the quantum well light-emitting layer 201 is composed of a quantum well layer 202 and a quantum barrier layer 203.
  • the light emitting layer 201 is a portion that functions as an active region for generating light h v in the semiconductor stacked structure of the active layer 20.
  • three quantum well layers having different thicknesses are shown as the quantum well layers 202 of the light-emitting layer 201.
  • the quantum well layer 202 and the quantum barrier layer 203 form three quantum levels of level 1, level 2, and level 3 in order. Yes.
  • an electron injection layer 206 is provided between the light emitting layer 201 and the next light emitting layer. This injection layer 206 is composed of a quantum well layer 207 and a quantum barrier layer 208.
  • injection is performed in a state where a bias voltage is applied to the laser element portion 10 which is a semiconductor stacked body having the active layer 20 having such a quantum level structure.
  • the electrons 200 from the layer 206 are injected into level 3 of the light emitting layer 201.
  • the electron 200 injected into level 3 emits a transition to level 2.
  • light h V having a wavelength corresponding to the energy level difference between the level 3 and level 2 quantum levels is generated.
  • the electrons 200 that have transitioned to level 2 are relaxed to level 1 at high speed, and are cascade-injected to level 3 of the next light-emitting layer through injection layer 206.
  • force-scale light is generated in the active layer 20. That is, by stacking a large number of quantum well light-emitting layers 201 and injection layers 206 as shown in FIG. 2, electrons 200 move one after another in a cascade manner in the light-emitting layers 201, and in each light-emitting layer 201.
  • Light hv is generated during the intersubband transition. Further, by resonating such light in the optical resonator of the laser 1, laser light having a predetermined wavelength is generated.
  • the cascaded stacked structure shown in FIG. As a waveguide structure for the light generated in the active layer 20 ⁇ to be guided in the direction of the resonator in the laser 1 with respect to the active layer 20 ⁇ having the structure, the active layer 20 is sandwiched therebetween. Cladding layers 40 and 45 are provided. Furthermore, an electrode 50 is formed on the side of the cladding layer 40 opposite to the active layer 20 (upper side in the figure), and an electrode 55 is formed on the side of the cladding layer 45 opposite to the active layer 20 (lower side in the figure). As a result, the laser element section 10 in the quantum cascade laser 1 of the present embodiment is configured.
  • the quantum cascade laser 1 of the present embodiment is also configured with m2 laser element units 10 to 10.
  • the second to m2th laser element units 10 to 10 are also configured with m2 laser element units 10 to 10.
  • the structure of 1 m2 2 is the same as that of the first laser element unit 10 described above, and m2 1
  • the m2 laser element portions 10 to 10 constituting the laser 1 are arranged in a horizontal direction (second direction) perpendicular to the stacking direction of the semiconductor layers.
  • Direction is arranged one-dimensionally in a state of being electrically separated from each other.
  • m2 laser element units 10 to 10 constituting the laser 1 are transferred from the first laser element unit 10 to the m2th laser element unit 10.
  • the upper electrode 50 of the first laser element unit 10 and the lower electrode 55 of the m2 laser element unit 10 are connected to an external power supply device. Connection wiring 60 and wiring 60 are connected.
  • m2 2 to 10 are connected m2 to realize the above-described two-dimensional cascade structure.
  • Active layer from 1 to 10 20
  • optically they are optically connected to each other in the wavelength band of the laser light.
  • an optical waveguide extending in the horizontal direction in the laser 1 is configured.
  • mirror surfaces are respectively formed on the left end surface of the first laser element unit 10 and the right end surface of the m2 laser element unit 10 corresponding to both end surfaces of the laser 1 in the horizontal direction.
  • An optical resonator as a whole of the laser 1 is configured.
  • the separation boundaries of the laser element portions 10 to: L0 that are electrically separated from each other are perpendicular to each other in the figure.
  • the cascade structure of the ml layer of the active layer 20 in which the quantum well light emitting layers 201 and the injection layers 206 are alternately stacked in the vertical direction is used.
  • a plurality of semiconductor laminates that are element parts configured to be used are used.
  • laser element units 10 to 10 which are a plurality of semiconductor stacked bodies including active layers 20 to 20 are arranged in an arrangement direction set as a direction different from the lamination direction, and m2 1 m2
  • Cascade connection in series realizes a two-dimensional cascade structure that has a cascade structure in both the vertical and horizontal directions, and the number of stages m is effectively ml x m2. Yes.
  • the number of stages m of the cascade structure constituting the laser element can be sufficiently increased as a whole of the laser 1. Therefore, the quantum cascade laser 1 having a narrow linewidth characteristic and capable of operating at a low threshold and a high output is realized for the obtained laser beam. Further, in the above configuration, by increasing the number m2 of cascade connections in the arrangement direction of the laser element portions, it is possible to reduce the number of cascade structure stages ml in the stacking direction in the laser element portions. This makes it possible to shorten the growth time of the semiconductor multilayer structure constituting the laser element. This also makes it possible to improve the quality of the crystal obtained and to reduce the cost of the device.
  • the stacking direction of the semiconductor layers in the laser element portion and the arrangement direction of the laser element portions is perpendicular to the crystal growth surface of the semiconductor layer in the configuration shown in FIG.
  • the arrangement direction is a horizontal direction with respect to the crystal growth surface.
  • the entire semiconductor stacked structure of the laser 1 is the same as the device structure of a normal quantum cascade laser. Therefore, according to such a cascade connection structure, it is possible to use a configuration in which the grown semiconductor stacked structure is divided into a plurality of semiconductor stacked bodies in the horizontal direction, and the low crystal A high-power laser 1 can be easily realized.
  • composition a configuration in which adjacent semiconductor stacked bodies (adjacent laser element portions) among m2 arranged semiconductor stacked bodies are separated from each other by a high resistance layer formed therebetween is used. Can do. Alternatively, it is possible to use a configuration in which adjacent semiconductor stacked bodies (adjacent laser element portions) among m 2 arranged semiconductor stacked bodies are separated from each other by a gap portion formed therebetween. Alternatively, the high resistance layer and the gap may be used in combination. The separation structure of these semiconductor laminates will be further described later.
  • m2 laser element units 10 to: LO arranged in a horizontal direction are cascade-connected.
  • a wiring structure for realizing a two-dimensional cascade structure various configurations may be used.
  • a wiring structure for example, there is a wiring structure formed using a wiring pattern formed on a laser chip of a quantum cascade laser and an additional wiring such as a wire wiring if necessary.
  • m2 arrayed laser elements 10 ⁇ : LO is effectively connected by connecting them in series, and ml x m
  • FIG. 3 is a schematic diagram showing a cascade structure of the active layer 20 in the quantum cascade laser 1.
  • the cascade structure of the active layer 20 is shown by cascaded quantum levels.
  • electrons injected into level 3 of the light-emitting layer undergo a light-emitting transition with level 2 and then relax to level 1 at a high speed through the injection layer. Then, it is injected again into the next light emitting layer.
  • N Number of electrons occupying level 3
  • n Number of photons present in the optical resonator
  • the photon number n can be expressed as follows.
  • Equations (3) are as follows.
  • m is the number of stages of the cascade structure in the active layer of the quantum cascade laser.
  • is a rate at which the number of photons decreases due to emission outside the optical resonator.
  • the number of photons after oscillation is a huge value (eg> 10 6 ).
  • OC is the line width increase coefficient due to the refractive index change caused by the fluctuation of inversion distribution.
  • the threshold is essentially high.
  • equation (9) it is possible to reduce the threshold by reducing the effect of ⁇ «1 by increasing the number of stages m of the cascade structure.
  • the threshold reduction effect is not sufficient.
  • the thickness of the active layer alone is several tens of meters, which is not realistic.
  • the active region in the region near the center of the waveguide does not contribute to laser oscillation. Therefore, the threshold does not decrease in inverse proportion to the number of steps.
  • the layer 20 a plurality of active layers 20 to 20 (a plurality of laser element portions 10 in the horizontal direction (arrangement direction)).
  • the two-dimensional structure can effectively increase the total number of stages m of the cascade structure that constitutes the laser element without making 1 too large.
  • the effective number of stages of the laser element as a whole is m m X m.
  • Narrow line width is maintained by the effect of eff ⁇ 1.
  • the threshold is reduced by lZ (m Xm) in equation (9).
  • the output efficiency is (m Xm) times from equation (12).
  • N (2) is the number of electrons that are thermally distributed, n (2) has been thermally distributed therm therm
  • the threshold is
  • the cavity length is L
  • the gap length between the laser element portions as segments is L
  • the threshold value P is expressed as follows.
  • the cascade structure is overwhelmingly advantageous compared to the conventional structure when operating at high temperatures above room temperature, and is very effective in applying and deploying quantum cascade lasers in various fields.
  • the current density becomes lOAZcm 2. If such a drive current element 10 divides the horizontally thought laser portion is a force one segment to be 1A, the area is 0. lcm 2, the current density itself of 1 OAZcm 2 It remains constant. At this time, considering the ideal case, the current-to-light output characteristics are as shown in Fig. 4. That is, according to the above structure in which the element is divided in the horizontal direction, the efficiency is increased and the threshold current is decreased.
  • quantum cascade laser a configuration of a laser element unit including an active layer having a cascade structure, a separation structure for separating a plurality of laser element units from each other, and cascade connection thereof
  • a configuration example of a quantum cascade laser including a wiring structure for the purpose will be described.
  • FIGS. 5 to 9 are diagrams showing a first example of the quantum cascade laser
  • FIG. 5 is a cross-sectional view showing a semiconductor stacked structure used in the quantum cascade laser
  • FIG. 6 is a force scale. It is a table
  • FIG. 7 is a cross-sectional view showing the cross-sectional configuration of the quantum cascade laser of the first embodiment
  • FIG. 8 is a top view showing the flat configuration of the laser
  • FIG. 9 shows the three-dimensional configuration of the laser. It is a perspective view.
  • An InGaAs core layer 410, an InAlAs cladding layer 411, and a highly doped InGaAs layer 412 are sequentially formed by epitaxial growth.
  • each composition of In Ga As and In Al As is lattice matched to the InP substrate.
  • High concentration layer 412 0.5 m, 3 X 10 18 cm_ 3
  • Cladding layer 411 2 / ⁇ ⁇ , 2 X 10 cm
  • Core layer 410 0. 65 ⁇ m, 5 X 10 16 cm " 3
  • Core layer 415 0.65 ⁇ m, 5 X 10 16 cm " 3
  • the active layer 21 is a general one as disclosed in, for example, JP-A-8-279647 or the document A ppl. Phys. Lett, vol.75 (1999) p.665. Similar to the structure of the quantum cascade laser, the quantum well light emitting layer and the electron injection layer are alternately stacked. As an example of the specific configuration, the thickness of each semiconductor layer constituting the active layer is as shown in the table of FIG. 6, for example, where the oscillation wavelength is 10 / z m. In FIG. 6, Table (a) shows a configuration example of a semiconductor multilayer structure of a quantum well light-emitting layer, and Table (b) shows a configuration example of a semiconductor multilayer structure of an electron injection layer.
  • a ridge stripe type laser element structure is fabricated for the semiconductor laminate having such a structure by a normal lithography technique, a wet etching technique, etc., and as shown in FIG. Forming divided electrode 51, m2 laser elements
  • the element structure is segmented into parts 11-11.
  • Au electrode As an example of the electrode, Au electrode
  • a high resistance layer is formed between adjacent laser element portions (adjacent semiconductor laminates). It is possible to use a structure separated by As an example of such a high resistance layer, as shown in FIG. 7, between each of the divided laser element portions 11 to 11
  • the semiconductor layer is raised by proton implantation using the electrodes 51 to 51 as a metal mask.
  • High resistance layers 71-71 are formed to resist and separate element parts 11-11 from each other
  • electrodes 56 to 56 similarly divided in the direction of the resonator are formed to separate the element portion.
  • the electrode pad 111 is formed in a predetermined pattern.
  • FIGS. 10 to 13 are diagrams showing a second example of the quantum cascade laser
  • FIG. 10 is a cross-sectional view showing a semiconductor multilayer structure used in the quantum cascade laser
  • FIG. 11 is a cross-sectional view showing a cross-sectional configuration of the quantum cascade laser according to the second embodiment
  • FIG. 12 is a top view showing the planar configuration of the laser
  • FIG. 13 is a side view showing the three-dimensional configuration of the laser. It is sectional drawing.
  • a heavily doped In x Ga As layer 422 are sequentially formed by epitaxy.
  • the specific structure and the like of the active layer 22 are the same as in the first embodiment. Examples of the film thickness and doping concentration of these semiconductor layers are as follows.
  • High concentration layer 422 0.5 m, 3 X 10 18 cm " 3
  • Cladding layer 421 2 m, 2 X 10 17 cm "3
  • Core layer 420 0.65 m, 5 X 10 16 cm " 3
  • Cladding layer 426 2 m, 2 X 10 17 cm " 3
  • the high concentration layer 427 0. 5 m, 3 X 10 18 cm "3 InP substrate 120
  • a ridge stripe type laser element structure is fabricated for the semiconductor laminated body having such a structure by a normal lithography technique, a wet etching technique, etc., and as shown in FIG. Forming divided electrode 52 2, m2 laser elements
  • the element structure is segmented into 1-12.
  • an electrode 52 is provided between each of the divided laser element portions 12 to 12.
  • an epitaxial formed on the InP substrate 120 is used.
  • a heavily doped In Ga As layer 427 located below the growth layer is used as a contact layer, and this contact layer is exposed by etching or the like to form an electrode pad 121 having a predetermined pattern. Then, by bonding the electrode on the chip and the electrode pad on the contact layer as shown in the figure, the cascade in the divided laser element section 12 is obtained.
  • m2 node connection can be realized.
  • FIG. 14 is a diagram showing a third example of the quantum cascade laser, and is a sectional view showing a sectional configuration of the quantum cascade laser of the third example.
  • the semiconductor multilayer structure used for the quantum cascade laser in this example is the same as that of the second example, for example.
  • a structure is used in which separation is performed by forming a gap portion between adjacent laser element portions that is not a high resistance layer.
  • a gap portion as shown in FIG. 14, between the divided laser element portions 13 to 13, the electrodes 53 to 53 are used as a metal mask, and RIBE or the like is used.
  • Gap m2 to separate 1-13 from each other
  • the configuration including the quantum cascade laser wiring structure using the laser chip shown in FIG. 14 is the same as that of the second embodiment, for example.
  • a plurality of laser element parts each of which is a semiconductor stacked body including an active layer are arranged in a quantum cascade laser having a two-dimensional cascade structure.
  • a structure for separating each other in the direction adjacent semiconductor stacked bodies are separated from each other by a high resistance layer formed between them, or adjacent semiconductor stacked bodies are formed between them.
  • Various configurations can be used, such as configurations separated from each other by a gap.
  • the laser element portions are optically connected to each other, and an optical resonator structure as a whole of the laser is realized.
  • FIG. 15 is a diagram showing a fourth example of the quantum cascade laser, and is a sectional view showing a sectional configuration of the quantum cascade laser of the fourth example.
  • the semiconductor multilayer structure used for the quantum cascade laser in this example is the same as that of the second example, for example.
  • a hybrid structure is used in which the high resistance layer by proton injection described above and the gap portion by RIBE are used together.
  • the cladding layer is set to be sufficiently thick in order to strengthen the optical confinement structure with a long oscillation wavelength in the laser element, the high density by proton injection over the entire area of the epitaxial growth layer. It becomes difficult to perform resistance.
  • each of the divided laser element portions 14 to 14 is provided.
  • High resistance layers 79 to 79 are formed by applying high resistance by proton implantation to the lower part from the active layer. As a result, a gap for separating the element portions 14 to 14 from each other is obtained.
  • a hybrid separation structure combining the part and the high resistance layer is obtained. High Prix like this In general, it is preferable to form a high resistance layer by forming a gap portion in a predetermined range in the upper part of the element structure and further injecting protons in the lower part in the head isolation structure.
  • FIG. 16 is a diagram showing a fifth example of the quantum cascade laser, and is a top view showing a planar configuration of the quantum cascade laser of the fifth example. Note that the semiconductor multilayer structure used for the quantum cascade laser in this embodiment is the same as in the second and third embodiments, for example.
  • the quantum cascade laser operates even when a force current flows up and down.
  • the laser element portions 15 to 15 having such a structure are shown in FIG.
  • the wiring is such that the direction in which the current flows is alternately changed for each laser element portion.
  • the wiring structure can be simplified.
  • the quantum cascade laser according to the present invention is not limited to the above-described embodiments and examples, and various modifications are possible.
  • an example in which the cascade structure of the active layer is configured by InGaAsZlnAlAs that is lattice-matched to the ⁇ substrate, but a strain system that deviates from the lattice matching condition may be used.
  • the force shown in the In GaAs / lnAlAs system for example, GaAs system, GaSb system, GaN system, SiZSiGe system, etc., which can form a quantum cascade structure using electronic transition between subbands. If so, any material may be used.
  • the semiconductor crystal growth method is not limited to the solid source MBE method described above, and various methods such as a gas source MBE method and a MOCVD method may be used.
  • the quantum cascade laser has (1) ml-stage cascade structure in which quantum well light-emitting layers and injection layers are alternately stacked in the first direction (ml is an integer of 2 or more)
  • m2 pieces m2 is an integer of 2 or more
  • the first direction is the direction perpendicular to the crystal growth surface of the semiconductor layer including the quantum well light emitting layer and the injection layer
  • the second direction as the arrangement direction is the horizontal direction to the crystal growth surface. It is preferable that Accordingly, the above-described two-dimensional cascade structure can be suitably realized by using a configuration in which the grown semiconductor stacked structure is divided in the horizontal direction to form a plurality of semiconductor stacked bodies.
  • adjacent semiconductor stacked bodies among m2 arranged semiconductor stacked bodies are separated from each other by a high resistance layer formed therebetween.
  • the structure which is made can be used.
  • adjacent semiconductor stacks can be separated from each other by a gap formed between them.
  • the present invention can be used as a quantum cascade laser having a narrow line width characteristic and capable of operating at a low threshold and a high output.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 量子井戸発光層及び注入層が交互に、垂直方向に積層されたm1段のカスケード構造を有し、量子井戸構造でのサブバンド間遷移によって光を生成する活性層20を含む半導体積層体のレーザ素子部10を用いて、量子カスケードレーザ1を構成する。さらに、本レーザ1においては、この活性層20を含むレーザ素子部10を、水平方向に互いに分離された状態でm2個配列する。そして、これらのレーザ素子部101~10m2を直列に接続することにより、実効的な段数がm1×m2段となる2次元状のカスケード構造を実現する。これにより、狭線幅特性を有するとともに、低閾値、高出力での動作が可能な量子カスケードレーザが実現される。

Description

明 細 書
量子カスケードレーザ
技術分野
[0001] 本発明は、量子井戸構造でのサブバンド間遷移を利用した量子カスケードレーザ に関するものである。
背景技術
[0002] 中赤外の波長領域 (例えば波長 3〜: LO m)の光は、様々な分子の振動のエネル ギー領域に相当しており、個々の分子を識別できることから、分光分析分野において 重要な波長領域となっている。これに伴い、このような波長領域における高性能なコ ヒーレント光源の必要性が高まってきて 、る。
[0003] 一般に、分光分析用の光源としては、高分解能で計測を行うために kHzオーダー の狭スペクトル線幅が求められている。これに対し、上記波長領域の光源として、近 年、量子カスケードレーザが注目を集めている(例えば、特許文献 1、 2、非特許文献 1参照)。量子カスケードレーザは、半導体量子井戸構造でのサブバンド間の電子遷 移を利用して光を生成するモノポーラタイプのレーザ素子である。
特許文献 1:特開平 8 - 279647号公報
特許文献 2:特開 2004 - 200375号公報
特干文献 1: R.M.Williams et al., "Kilohertz linewidth from frequency— staDilizea mi d— infrared quantum cascade lasers", OPTICS LETTERS Vol.24 (1999) pp.1844— 184 6
発明の開示
発明が解決しょうとする課題
[0004] 上記した量子カスケードレーザでは、量子井戸構造で構成され活性領域となる量 子井戸発光層を多段にカスケード結合することによって、高効率、高出力動作を実 現することが可能であり、 pn接合を含む従来型のバイポーラレーザ素子を凌駕する 特性が得られている。また、そのスペクトル線幅については、例えば、非特許文献 1 においては、量子カスケードレーザでのスペクトル線幅として、 12kHzという極めて小 さい値が報告されている。一方で、量子カスケードレーザを様々な分野に対して応用 していく上で、このような狭線幅特性を保持しつつ、さらに低閾値、高出力での動作 が可能なレーザ素子の開発が望まれている。
[0005] 本発明は、以上の問題点を解決するためになされたものであり、狭線幅特性を有す るとともに、低閾値、高出力での動作が可能な量子カスケードレーザを提供すること を目的とする。
課題を解決するための手段
[0006] 量子カスケードレーザの狭線幅特性にっ 、て、上記非特許文献 1では、反転分布 の変動によって生じる屈折率変化による線幅増大係数を αとして、線幅は(1 + α 2 )に比例し、また、量子カスケードレーザではその遷移機構より (Xがほとんど 0となる ために線幅が狭くなると結論している。し力しながら、この α〜0という条件だけでは 、上記した 12kHzと 、うような非常に狭 、スペクトル線幅を説明することはできな!、。
[0007] これに対し、本願発明者は、量子カスケードレーザの上記特性にっ 、て詳細な検 討を行った。そして、量子井戸構造を有する発光層が多段にカスケード結合されたレ 一ザ素子の構造をレート方程式において忠実に再現して発振特性の解析を行った 結果、そのカスケード構造での段数 mを増やすことによって低閾値、高出力での動作 が可能となることを見出し、本発明に到達した。
[0008] すなわち、本発明による量子カスケードレーザは、(1)量子井戸発光層及び注入層 が交互に、第 1の方向に積層された ml段のカスケード構造 (mlは 2以上の整数)を 有し、量子井戸構造でのサブバンド間遷移によって光を生成する活性層を少なくとも 含む半導体積層体を備え、(2)半導体積層体は、第 1の方向とは異なる第 2の方向 に、互いに分離された状態で m2個(m2は 2以上の整数)配列されるとともに、それら を直列に接続することで、実効的に ml X m2段の 2次元状のカスケード構造とするこ とが可能に構成されていることを特徴とする。
[0009] 上記した量子カスケードレーザにおいては、所定の方向に量子井戸発光層及び注 入層が交互に積層される活性層のカスケード構造について、そのようなカスケード構 造を含んで構成された素子部分である半導体積層体を用いる。そして、積層方向( 第 1の方向)とは異なる方向で設定された配列方向(第 2の方向)に複数の半導体積 層体を配列し、それらを直列にカスケード接続することにより、 2次元状のカスケード 構造を実現している。このような構成によれば、レーザ素子を構成するカスケード構 造の段数 mを全体として充分に増やすことが可能となる。したがって、狭線幅特性を 有するとともに、低閾値、高出力での動作が可能な量子カスケードレーザが実現され る。
[0010] ここで、第 2の方向に配列された m2個の半導体積層体 (レーザ素子部)をカスケ一 ド接続するための配線構造については、様々な構成を用いて良い。そのような配線 構造としては、例えば、量子カスケードレーザのレーザチップ上に形成された配線パ ターン、及びワイヤ配線を用いて構成される配線構造がある。あるいは、レーザチッ プを載置するサブマウントに必要な配線パターンを形成しておく配線構造がある。 発明の効果
[0011] 本発明の量子カスケードレーザによれば、量子井戸発光層及び注入層が交互に 積層されるカスケード構造の活性層を含む半導体積層体を複数用い、積層方向とは 異なる配列方向に複数の半導体積層体を配列し、さらに、それらを直列にカスケード 接続して多段で 2次元状のカスケード構造を実現することにより、狭線幅特性を有す るとともに、低閾値、高出力、高温での動作が可能となる。
図面の簡単な説明
[0012] [図 1]図 1は、量子カスケードレーザの基本構成を概略的に示す図である。
[図 2]図 2は、量子カスケードレーザにおける活性層の構成、及びその量子井戸構造 でのサブバンド間遷移について示す模式図である。
[図 3]図 3は、量子カスケードレーザにおける活性層のカスケード構造について示す 模式図である。
[図 4]図 4は、レーザ素子の電流一光出力特性を模式的に示すグラフである。
[図 5]図 5は、量子カスケードレーザに用いられる半導体積層構造を示す断面図であ る。
[図 6]図 6は、カスケード構造を有する活性層の具体的な構成例を示す表である。
[図 7]図 7は、第 1実施例の量子カスケードレーザの断面構成を示す断面図である。
[図 8]図 8は、第 1実施例のレーザの平面構成を示す上面図である。 圆 9]図 9は、第 1実施例のレーザの立体構成を示す斜視図である。
[図 10]図 10は、量子カスケードレーザに用いられる半導体積層構造を示す断面図で ある。
[図 11]図 11は、第 2実施例の量子カスケードレーザの断面構成を示す断面図である
[図 12]図 12は、第 2実施例のレーザの平面構成を示す上面図である。
[図 13]図 13は、第 2実施例のレーザの立体構成を示す側面断面図である。
[図 14]図 14は、第 3実施例の量子カスケードレーザの断面構成を示す断面図である
[図 15]図 15は、第 4実施例の量子カスケードレーザの断面構成を示す断面図である
[図 16]図 16は、第 5実施例の量子カスケードレーザの平面構成を示す上面図である 符号の説明
1···量子カスケードレーザ、 10···レーザ素子部、 20···活性層、 200···電子、 201 …量子井戸発光層、 202…量子井戸層、 203…量子障壁層、 206···注入層、 207 …量子井戸層、 208···量子障壁層、 40、 45···クラッド層、 50、 55···電極、 60···配 線、
11···レーザ素子部、 110…半導体基板、 21···活性層、 410、 415…コア層、 411 …クラッド層、 412…高濃度ドープ層、 51、 56…電極、 71···高抵抗層、 111…電極 ノッド、 112…サブマウント、
12···レーザ素子部、 120···半導体基板、 22···活性層、 420、 425···コア層、 421 、 426···クラッド層、 422、 427···高濃度ドープ層、 52···電極、 72···高抵抗層、 121 …電極パッド、
13···レーザ素子部、 130…半導体基板、 23···活性層、 53…電極、 73···エアギヤ ップ部、
14…レーザ素子部、 140…半導体基板、 24···活性層、 54···電極、 74···エアギヤ ップ部、 79···高抵抗層、 15· ··レーザ素子部。
発明を実施するための最良の形態
[0014] 以下、図面とともに本発明による量子カスケードレーザの好適な実施形態について 詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複 する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していな い。
[0015] 図 1は、本発明による量子カスケードレーザの基本構成を概略的に示す図である。
本実施形態の量子カスケードレーザ 1は、半導体量子井戸構造におけるサブバンド 間の電子遷移を利用して光を生成するモノポーラタイプのレーザ素子であり、後述す るように、複数個(m2個、 m2は 2以上の整数)の半導体積層体であるレーザ素子部 10 〜: L0 を備えて構成されている。
1 m2
[0016] ここで、図 1において、「垂直方向」とは半導体層の結晶成長面に対して垂直な方 向を示している。この垂直方向は、本レーザ 1における半導体層の積層方向に対応 している。一方、「水平方向」とは半導体層の結晶成長面に対して水平な方向を示し ている。この水平方向は、本レーザ 1におけるレーザ素子部の配列方向、及びレーザ 光を発振させる光共振器での共振器軸方向に対応している。また、このような構成に おいて、量子カスケードレーザ 1でのレーザ素子部の配列方向は、半導体層の積層 方向に対して直交している。
[0017] まず、図 1の量子カスケードレーザ 1を構成する m2個のレーザ素子部 10〜10
1 m2 の個々の構成について説明する。これらのレーザ素子部 10〜10 のうちで図中の
1 m2
最も左側に位置する第 1レーザ素子部 10を例にとると、第 1レーザ素子部 10は、活 性層 20と、クラッド層 40、 45と、電極 50、 55とを有している。また、活性層 20は 、量子井戸発光層及び注入層が交互に、垂直方向(第 1の方向)を積層方向として 積層された複数段のカスケード構造 (ml段、 mlは 2以上の整数)を有する。
[0018] これにより、レーザ素子部 10は、 ml段のカスケード構造を有する活性層 20を少 なくとも含む半導体積層体となっている。活性層 は、上記したカスケード構造によ り、量子井戸構造でのサブバンド間遷移によってカスケード的に所定波長の光 (例え ば中赤外の波長領域内にある光)を生成する。活性層 20における量子井戸発光層 及び注入層の積層数は適宜設定される。
[0019] 図 2は、図 1に示した量子カスケードレーザ 1のレーザ素子部 10における活性層 20 の構成、及びその量子井戸構造でのサブバンド間遷移にっ 、て示す模式図である。 なお、図 2においては、説明のため、活性層 20を構成している量子井戸発光層及び 注入層による多段の繰返し構造のうち、隣合う 1層ずつの量子井戸発光層 201及び 注入層 206によってその積層構造を示して 、る。
[0020] 図 2に示すように、量子井戸発光層 201は、量子井戸層 202と量子障壁層 203とか ら構成されている。この発光層 201は、活性層 20の半導体積層構造において光 h v を生成する活性領域として機能する部分である。図 2中においては、発光層 201の 量子井戸層 202として、それぞれ厚さが異なる 3つの量子井戸層を示している。また 、この量子井戸発光層 201では、これらの量子井戸層 202及び量子障壁層 203によ り、下力も順に準位 1、準位 2、及び準位 3の 3つの量子準位が形成されている。また 、発光層 201と、次の発光層との間には、電子注入層 206が設けられている。この注 入層 206は、量子井戸層 207と量子障壁層 208とから構成されて 、る。
[0021] 図 1に示す量子カスケードレーザ 1では、このような量子準位構造の活性層 20を有 する半導体積層体であるレーザ素子部 10に対してバイアス電圧を印加した状態に おいて、注入層 206からの電子 200は発光層 201の準位 3へと注入される。この準位 3に注入された電子 200は準位 2へ発光遷移し、このとき、準位 3及び準位 2の量子 準位間のエネルギー準位差に相当する波長の光 h Vが生成される。
[0022] また、この準位 2へと遷移した電子 200は準位 1へと高速で緩和し、注入層 206を 介して次の発光層の準位 3へとカスケード的に注入される。このような電子の注入、及 び発光遷移を活性層 20の積層構造中で繰り返すことにより、活性層 20において、力 スケード的な光の生成が起こる。すなわち、図 2に示したような量子井戸発光層 201 及び注入層 206を多数交互に積層することにより、電子 200は発光層 201をカスケ ード的に次々に移動するとともに、各発光層 201でのサブバンド間遷移の際に光 h v が生成される。また、このような光がレーザ 1の光共振器において共振されることによ り、所定波長のレーザ光が生成される。
[0023] 図 1に示すレーザ 1のレーザ素子部 10では、図 2に示したカスケード的な積層構 造を有する活性層 20ιに対し、活性層 20ιにお ヽて生成された光がレーザ 1内で共 振器方向に導波されるための導波路構造として、活性層 20を間に挟むクラッド層 40 、 45が設けられている。さらに、クラッド層 40の活性層 20とは反対側(図中の上側 )に電極 50が形成され、クラッド層 45の活性層 20とは反対側(図中の下側)に電 極 55が形成されることにより、本実施形態の量子カスケードレーザ 1におけるレーザ 素子部 10が構成されている。
[0024] また、本実施形態の量子カスケードレーザ 1は、上述したように m2個のレーザ素子 部 10〜10 力も構成されている。これらのうち、第 2〜第 m2レーザ素子部 10〜10
1 m2 2 の構造については、上記した第 1レーザ素子部 10の構造と同様であり、それぞれ m2 1
活'性層 20〜20 、クラッド層 40
2〜40
m2、 45
2〜45 、及び電極 50
2 m2 m2 2〜50
m2、 55 2
〜55 を有して構成されている。
[0025] 次に、量子カスケードレーザ 1における複数のレーザ素子部(半導体積層体) 10 〜10 の配列構成について説明する。レーザ 1を構成する m2個のレーザ素子部 10 〜10 は、図 1に示すように、半導体層の積層方向に直交する水平方向(第 2の方
1 m2
向)を配列方向とし、互いに電気的に分離された状態で 1次元的に配列されている。
[0026] また、このようなレーザ素子部の配列構造において、レーザ 1を構成する m2個のレ 一ザ素子部 10〜10 は、第 1レーザ素子部 10から第 m2レーザ素子部 10 へと
1 m2 1 m2 順に、配線 60〜60 によって直列に接続されている。これにより、活性層 20
2 m2 1〜20 m を含む半導体積層体である m2個のレーザ素子部 10〜: LO 1S 必要な電極及び
2 1 m2
配線等を含む配線構造によって直列に接続され、実効的に ml X m2段の 2次元状 のカスケード構造が得られる。
[0027] 図 1に示した構成例では、具体的には、第 1レーザ素子部 10の上側の電極 50、 及び第 m2レーザ素子部 10 の下側の電極 55 に対し、外部の電源装置に対する 接続用の配線 60、及び配線 60 が接続されている。また、第 1レーザ素子部 10
1 1112 + 1 1 の下側の電極 55と、第 2レーザ素子部 10の上側の電極 50と力 配線 60によって
1 2 2 2 接続されている。同様に、配線 60
3〜60 によってレーザ素子部 10
m2 2〜10 が接続 m2 されて、上記した 2次元カスケード構造が実現されて 、る。
[0028] また、 m2個のレーザ素子部 10
1〜10 での活性層 20
m2 1〜20 、クラッド層 40
m2 1〜4 0 、及びクラッド層 45〜45 は、それぞれ上記したように互いに電気的に分離され m2 1 m2
る一方、光学的には、レーザ光の波長帯域において互いに光学的に接続されている 。これにより、レーザ 1において水平方向に延びる光導波路が構成されている。
[0029] また、レーザ 1の水平方向の両端面に相当する第 1レーザ素子部 10の左端面、及 び第 m2レーザ素子部 10 の右端面には、それぞれ鏡面が形成されている。そして 、これらのレーザ素子部 10
1〜10 での光導波路構造、及び両端面での鏡面により m2
、本レーザ 1の全体としての光共振器が構成されている。なお、図 1においては、互い に電気的に分離されたレーザ素子部 10〜: L0 の分離境界について、図中で垂直
1 m2
方向に延びる点線によって模式的に示して 、る。
[0030] 本実施形態による量子カスケードレーザ 1の効果について説明する。
[0031] 図 1に示した量子カスケードレーザ 1においては、垂直方向に量子井戸発光層 201 及び注入層 206が交互に積層される活性層 20の ml段のカスケード構造について、 そのようなカスケード構造を含んで構成された素子部分である半導体積層体を複数 用いる。そして、積層方向とは異なる方向として設定された配列方向に活性層 20〜 20 を含む複数の半導体積層体であるレーザ素子部 10〜10 を配列し、それらを m2 1 m2
直列にカスケード接続することにより、垂直方向及び水平方向の 2方向についてそれ ぞれカスケード構造を有し、その段数 mが実効的に ml X m2段となる 2次元状のカス ケード構造を実現している。
[0032] このような構成によれば、レーザ素子を構成するカスケード構造の段数 mを、レーザ 1の全体として充分に増やすことが可能となる。したがって、得られるレーザ光につい て狭線幅特性を有するとともに、低閾値、高出力での動作が可能な量子カスケ一ドレ 一ザ 1が実現される。また、上記構成では、レーザ素子部の配列方向でのカスケード 接続の接続数 m2を稼ぐことにより、レーザ素子部内における積層方向でのカスケ一 ド構造の段数 mlを減らすことが可能である。これにより、レーザ素子を構成する半導 体積層構造の成長時間の短縮が可能となる。また、これにより、得られる結晶品質の 向上、及び素子の低コスト化が実現できる。
[0033] ここで、レーザ素子部内での半導体層の積層方向、及びレーザ素子部の配列方向 については、図 1に示した構成では、積層方向を半導体層の結晶成長面に対して垂 直方向とするとともに、配列方向を結晶成長面に対して水平方向としている。これに より、複数のレーザ素子部を含む 2次元カスケード構造を好適に実現することができ る。特に、このような構成では、図 1からわ力るように、レーザ素子部 10
1〜10 の分 m2 割構造を除けば、レーザ 1の全体での半導体積層構造は、通常の量子カスケ一ドレ 一ザの素子構造と同様となっている。したがって、このようなカスケード接続構造によ れば、成長された半導体積層構造を水平方向に分割して複数の半導体積層体とし た構成を用いることができ、結晶構造自体はそのままで、低閾値、高出力のレーザ 1 を容易に実現することができる。
[0034] また、複数の半導体積層体 (レーザ素子部 10〜10 )を互いに分離するための構
1 m2
成としては、 m2個配列された半導体積層体のうちで隣合う半導体積層体 (隣合うレ 一ザ素子部)同士が、その間に形成された高抵抗層によって互いに分離されている 構成を用いることができる。あるいは、 m2個配列された半導体積層体のうちで隣合う 半導体積層体 (隣合うレーザ素子部)同士が、その間に形成された間隙部によって 互いに分離されている構成を用いることができる。あるいは、高抵抗層と間隙部とを 併用する構成としても良い。これらの半導体積層体の分離構造等については、さらに 後述する。
[0035] また、水平方向に配列された m2個のレーザ素子部 10〜: LO をカスケード接続し
1 m2
て 2次元状のカスケード構造を実現するための配線構造にっ 、ては、様々な構成を 用いて良い。そのような配線構造としては、例えば、量子カスケードレーザのレーザ チップ上に形成された配線パターン、及び必要に応じてワイヤ配線等の追カ卩的な配 線を用いて構成される配線構造がある。あるいは、レーザチップを載置するサブマウ ントに必要な配線パターンを形成しておく配線構造がある。一般には、 m2個配列さ れたレーザ素子部 10〜: LO は、それらを直列に接続することで、実効的に ml X m
1 m2
2段の 2次元状のカスケード構造とすることが可能に構成されて 、れば良 、。
[0036] 上記構成の量子カスケードレーザによるレーザ動作の低閾値化、高出力化の効果 について、本願発明者が得た知見に基づいて、詳細に説明する。図 3は、量子カス ケードレーザ 1における活性層 20のカスケード構造について示す模式図である。ここ では、カスケード的な量子準位によって、活性層 20のカスケード構造を示している。 このような量子準位構造において、発光層の準位 3に注入された電子は、準位 2との 間で発光遷移を起こした後、準位 1へと高速で緩和して注入層を介して次の発光層 へと再び注入される。
[0037] このとき、活性層のカスケード構造での i番目の活性領域である量子井戸発光層に おける電子数のレート方程式は、以下の(1)式
[数 1]
dNci l dt = Pi - Nci I τΓί - Nci I rnr - (E32i - E23i )n …(1 )
となる。ここで、
N :準位 3を占有している電子数
P :ポンプレート
N Ζ τ :自然放出レート
Ν
ci Ζ τ :非発光レート
nr
E :光子数当たりの誘導放出レート
32i
E :光子数当たりの吸収レート
23i
n:光共振器内に存在する光子数
である。また、以降の式は、すべて「i」を「 」として 2次元カスケード構造に拡張した場 合にも成立する力 ここでは、簡単のため単に「i」と表記する。
[0038] また、自然放出光結合係数を β iとすると、アインシユタインの関係より、
[数 2]
(A Z )W„ = £32, - -(2)
が成り立つ。また、準位 2→準位 1の緩和が充分に速ぐかつ準位 2の熱平衡状態で の電子の存在が無視できるとすれば、 E =0
23i とおくことができる。
[0039] 一方、光子数 nにつ 、ては、以下のように表すことができる。
[数 3]
dn l dt = -[γ -∑ ( 2, - 3, )]" +∑ (A I τη )NCI
= -[ -∑ (A I τπ )Na +∑ (β, Iて具 -(3) ここで、 yは光の吸収や光共振器外部への放出により光子数が減少するレートであ る。
[0040] また、 dZdt→0、 p =p =〜 = p=〜 = pとして定常状態を考えると、上記の(1)
1 2 i 0
式、(3)式は、以下のようになる。
0 = Ρ0 -(]/τη +\/τη,. +βιη/τηα ...(4)
0 = -7n + {n +
Figure imgf000013_0001
lTri)Nci '..(5) さらに、(4)式において光子数 n=0、(5)式において n》lとすると、発振閾値ポンプ レート P は
th
[数 5]
Figure imgf000013_0002
と求められる。ただし、 1Ζ τ =ΐ/τ +ΐ/τ である。
ti ri nr
[0041] ポンプレートを規格ィ匕した形に書き、 r=P ZP として、 rの全領域に対して成立す
0 th
る関係を得るために
[数 6]
[τ Iて,! ]A = [½
Figure imgf000013_0003
- = [rtm Iて ,,„ W„, = [τ( I τ,. W
と仮定する。さらに、新たに実効結合係数として、次式で表される β
eff
[数 7]
^r = [ ,.] …(フ)
を導入すると、光子数 ηは
[数 8]
" = (1 / 2β ){(ν -l) + [(r-l)2 + 4fieffr]U2 } … (8) となる。また、閾値は
[数 9]
P,h =rKm eff) --(9) となる。ここで、 mは量子カスケードレーザの活性層におけるカスケード構造の段数で ある。
[0042] 今、ポンプレートが閾値より小さい、すなわち r< 1で、条件 [数 10]
4 -/(厂- 1)2 《1 が成り立つならば、光子数 nは
[数 11]
n = r/ \-r) ---(10)
となる。一方、ポンプレートが閾値より大きい、すなわち r>lで、条件
[数 12]
(r- 1)2 》 4 ,
が成り立つならば、光子数 nは
[数 13]
« = (1 / β )(r - 1) = (1 / eff ) { (P0 IP -X) …ひ
となる。また、このとき、出力効率は
[数 14]
Figure imgf000014_0001
となる。ここで、 γ は光共振器外部への放出により光子数が減少するレートである。
0
[0043] これらの(10)式、(11)式より、閾値 Ρ =Ρ 付近において、光子数 ηは急激に 1Z
0 th
β 倍に上昇することがわかる。ここで、量子カスケードレーザにおいては、通常 τ eff r
》 て - て ( て 〜10_8secゝ τ 〜10_12secゝ j8〜10_3)であるので、 β は例えば t nr r nr eff
io_7程度と非常に小さい値となる。また、発振後の光子数は巨大な値 (例えば〉 106 個)となる。
[0044] また、スペクトル線幅 (角周波数で表した半値全幅)は
[数 15]
δθ) = [ Ι 2](1 + ) βφ (Nci lTti)ln ---(13) となる。ここで、 OC は反転分布の変動によって生じる屈折率変化による線幅増大係 数である。
[0045] β = β として、 r>lでの関係
effi eff
[数 16] (Νεί / τιί ) = (γ/ ηιβείί ) 及び(11)式を用いると、スペクトル線幅は
[数 17]
= [1 /2](1 + « ) ? ,/ - 1) ...(14)
となる。ただし、 r > lである。上記式で示されるように、線幅はカスケード構造の段数 mとは無関係に決定される。
[0046] 量子カスケードレーザでは、伝導帯におけるサブバンド間の電子遷移を利用してい ることから a はほぼ 0であり、さらに 13 《 1である。したがって、スペクトル線幅は原 c eff
理的に非常に狭くなり、し力も、上記式より、量子カスケードレーザに特徴的である発 光層の段数 mには独立であることがわかる。ここで、例として a r
Figure imgf000015_0001
= 1. 5、 γ = 5 X 10UZsecとし、 δ f ( = δ ω Z2 π )を求めると約 8kHzとなり、上述 した非特許文献 1に示された線幅を良く説明することができる。
[0047] ここで、量子カスケードレーザでは、上記したように j8 < 1であるため、(9)式から eff
明らかなように、本質的に閾値は高くならざるを得ない。一方、(9)式より、カスケード 構造の段数 mを増やすことにより β « 1の効果を緩和して、閾値を低減することが eff
可能である。ただし、この実効結合係数 j8 は、(7)式に示されているように、 [ て /
eff t て 〜10_4に起因して非常に小さ ヽ値となって ヽる。
[0048] このため、例えばカスケード構造の段数が m=40〜50程度では、その閾値低減効 果は充分ではない。一方、従来構造の量子カスケードレーザにおいて段数を m= 10 00程度とするには、活性層の厚さだけで数 10 mにも及ぶこととなり、現実的ではな い。また、結晶成長により垂直方向に高品質に ml = 100段以上を実現できたとして も導波路中心付近力 離れた部分の活性領域はレーザ発振に寄与しない。したがつ て、閾値は段数に逆比例して低下することにはならない。これに対し、図 1に示した量 子カスケードレーザ 1では、上記したように、垂直方向(積層方向)に量子井戸発光層 201及び注入層 206が交互に積層される ml段のカスケード構造の活性層 20につ いて、水平方向(配列方向)に複数の活性層 20〜20 (複数のレーザ素子部 10
1 m2 1
〜10 )を配列し、それらを直列にカスケード接続して 2次元状のカスケード構造を 構成している。このような構成によれば、単一の活性層でのカスケード構造の段数 m 1を過度に大きくすることなぐレーザ素子を構成するカスケード構造の全体での段数 mを 2次元構造によって実効的に増やすことが可能となる。
[0049] この場合、実効結合係数 |8 の値は、電極が分割された状態でセグメント化された
eff
個々のレーザ素子部における配列方向(共振器方向)での寸法 L に依存しない。ま
A
た、積層方向である垂直方向でのカスケード構造の段数を ml =m (=m )、配
vertical v 列方向である水平方向でのカスケード接続の接続数を m2=m (=m)とすると、
lateral 1
全体としてのレーザ素子の実効的な段数は m m X mとなる。
1
[0050] 例えば、結晶成長によって形成される垂直方向の段数を m =40とし、水平方向に ついては共振器長 3mmに 100 μ mの電極が 20 μ m間隔で配置されるセグメント構 造によって m =25とする。この構成例では、全体としての 2次元カスケード構造の段
1
数は m= 1000となる。このような段数であれば、量子カスケードレーザでの閾値を充 分に効果的に低減することが可能である。このとき、スペクトル線幅は、(14)式にお いて 13
eff《1の効果により狭い線幅が維持される。また、閾値に関しては、(9)式にお いて lZ(m Xm)によって減少する。また、出力効率は(12)式より(m Xm)倍とな
1 1 る。
[0051] また、これまでの量子カスケードレーザと同等の閾値、効率を有するレーザ素子で あれば、垂直方向の段数を ml =m =10、水平方向の接続数を m2=m =3 4程
1
度とした構成で実現が可能である。この場合、垂直方向でのカスケード構造の段数 力 S10と少なくなり、半導体積層構造を作製する際の成長時間を大幅に短縮できるこ とから、その結晶品質の向上、低コストィ匕が実現可能である。
[0052] 次に、上記においては、準位 2の熱平衡状態での電子の存在が無視できるとしたが 、ここで、例えば室温動作時のように準位 2に熱的にキャリアが分布している場合に ついて考える。一般には、準位 2から準位 1への緩和が高速であっても、準位 2にお Vヽては熱平衡分布 N(2) が存在する。なお、素子の安定動作のために電子注入層
therm
への不純物ドーピングが必要とされているので、室温動作時には、準位 2には必ず電 子が存在することになる。この場合、反転分布に必要な最小ポンプレートは、
[数 18]
Pmin = N(2) tlierm Iて t = n{2) iherm(wALA)lTt ---(15) となる。ここで、 N(2) は熱的に分布している電子数、 n(2) は熱的に分布してい therm therm
る電子数の面密度、 Lはセグメントであるレーザ素子部の共振器方向の寸法、 wは
A A
レーザ素子部の Lと直交する方向の寸法である。
A
[0053] したがって、この場合、閾値は
[数 19]
Figure imgf000017_0001
となる。た し、上記したよつに m=ml Xm2=m Xmである。
v 1
[0054] また、ここで、共振器長を L、セグメントであるレーザ素子部間のギャップ長を Lとす
G
ると、
[数 20]
LA =(L/mlateral)[LA/(LA+LG)] -(17)
である。この(17)式を(15)式に代入すると、
[数 21]
Pmin = \n{1 hernwA /T,][L/ fnLATERAL][LA l(LA + LG )] --(18)
となる。これにより、閾値 P は以下のように表される。
th
[数 22]
= (1 »klleral ){Υ /(mverlica^ff ) + [n{1 hermwALI τ, ] [LA /(LA + LG)]} ·'·(19) したがって、準位 2における熱平衡分布の影響が顕著に現れる場合であっても、閾値 は、 mによって効果的に低減させることが可能である。すなわち、上記した 2次元カス
1
ケード構造では、室温以上の高温動作時において、従来構造に比べて圧倒的に有 利であり、量子カスケードレーザを様々な分野に応用展開していく上で非常に有効 である。
[0055] なお、レーザ素子を構成するウェハの結晶構造、共振器長などのデバイスサイズが 同一の場合に、従来構造と、複数のレーザ素子部に分割された上記構造とを比較す ると、素子を動作させるのに必要な電流は、単純に水平方向の分割数分の 1である 1 Zmとなる。このとき、 1つのレーザ素子部当たりの電流密度は同じである。すなわち
1
、結晶構造は同一であるので、発振に必要な電流密度自体は変化せずに一定とな る。
[0056] 例えば、面積 lcm2の素子で駆動電流 10Aの場合、電流密度は lOAZcm2となる 。このような素子を水平方向に 10分割すると駆動電流は 1Aとなる力 1つのセグメン トであるレーザ素子部を考えた場合、その面積は 0. lcm2であり、電流密度自体は 1 OAZcm2のままで一定となる。このとき、理想的な場合を考えると、その電流一光出 力特性は図 4のようになる。すなわち、素子を水平方向で分割する上記構造によれ ば、その効率が上がって閾値電流は下がる。
[0057] ここで、垂直方向での段数 mを増やすと電流密度そのものが減るが、閾値電流密 度が低くなると準位 2に熱的に分布している電子の影響が大きくなり、室温以上での 動作を考えた場合に、ある値以下にはなり得ない。これに対し、水平方向の分割数( 配列数) mを増やすことによって、上記した限界を突破することが可能となる。
1
[0058] 以下、量子カスケードレーザの具体的な実施形態により、カスケード構造の活性層 を含むレーザ素子部の構成、複数のレーザ素子部を互いに分離するための分離構 造、及びそれらをカスケード接続するための配線構造等を含めた量子カスケードレー ザの構成例にっ 、て説明する。
[0059] 図 5〜図 9は、量子カスケードレーザの第 1実施例について示す図であり、図 5は、 量子カスケードレーザに用いられる半導体積層構造を示す断面図であり、図 6は、力 スケード構造を有する活性層の具体的な構成例を示す表である。また、図 7は、第 1 実施例の量子カスケードレーザの断面構成を示す断面図であり、図 8は、レーザの平 面構成を示す上面図であり、図 9は、レーザの立体構成を示す斜視図である。
[0060] 図 5に示す半導体積層構造では、固体ソース MBE法にて、 n型の InP基板 110上 に、 In Ga Asコア層 415、 In Ga _ As/In Al _ As量子井戸活性層 21、 In Ga Asコア層 410、 In Al Asクラッド層 411、及び高濃度ドープ In Ga As層 412 を順次ェピタキシャル成長によって形成する。ここで、 In Ga As、及び In Al As のそれぞれの組成は、 InP基板と格子整合するように In Ga As, In Al A
0. 53 0. 47 0. 52 0. 48
Sとなっている。また、これらの半導体層の膜厚及びドーピング濃度の一例は、以下の 通りである。
高濃度層 412 : 0. 5 m、 3 X 1018cm_3 クラッド層 411 : 2 /ζ πι、 2 X 10 cm
コア層 410 : 0. 65 ^ m, 5 X 1016cm"3
活性層 21
コア層 415 : 0. 65 ^ m, 5 X 1016cm"3
InP基板 110
[0061] また、活性層 21については、例えば、特開平 8— 279647号公報、あるいは文献 A ppl. Phys. Lett, vol.75 (1999) p.665などに示されているような一般的な量子カスケ 一ドレーザの構造と同様に、量子井戸発光層と電子注入層とが交互に積層されるこ とで構成されている。その具体的な構成の一例としては、発振波長え = 10 /z mとして 、活性層を構成する各半導体層の厚さは、例えば図 6の表に示すようになる。図 6に おいて、表 (a)は量子井戸発光層の半導体積層構造の構成例を、また、表 (b)は電 子注入層の半導体積層構造の構成例を示して ヽる。
[0062] このような構造の半導体積層体に対し、通常のリソグラフィー技術、ウエットエツチン グ技術等によってリッジストライプ型のレーザ素子構造を作製するとともに、図 7に示 すように、共振器方向に分割された電極 51 を形成して、 m2個のレーザ素子
1〜51
m2
部 11〜11 にセグメント化された素子構造とする。電極の一例としては、 Au電極を
1 m2
用!、ることができる。
[0063] また、電極の分割数は、素子の共振器長、電極幅、電極間隔等に応じて任意に決 定可能である。例えば、リッジ幅 10 m、共振器長 3mmの素子では、電極幅を 100 μ m、電極間隔を 50 mとすることで、最大 20分割、すなわち m = 20とすることが可
1
能である。この場合、ェピタキシャル成長によって形成される活性層でのカスケード 構造の段数を 20段、すなわち m = 20とすると、 2次元状のカスケード構造での実効 的な段数は 20 X 20=400となり、従来の構造では困難であった非常に多い段数の カスケード構造を実現できる。
[0064] レーザの共振器方向となる水平方向での複数のレーザ素子部の分離構造につい ては、隣合うレーザ素子部同士 (隣合う半導体積層体同士)の間に高抵抗層を形成 することによって分離する構造を用いることができる。このような高抵抗層の例として は、図 7に示すように、分割されるレーザ素子部 11〜11 のそれぞれの間に対して 、電極 51〜51 をメタルマスクとしてプロトン注入を行うことによって半導体層を高
1 m2
抵抗化し、素子部 11〜11 を互いに分離するための高抵抗層 71〜71 を形成
1 m2 2 m2 する。また、素子の裏面側については、研磨によって薄片化した後、同様に共振器 方向に分割された電極 56〜56 を形成して素子部を分離する。
1 m2
[0065] 図 7に示すレーザチップを用いた量子カスケードレーザの配線構造等を含めた構 成としては、例えば、図 8及び図 9に示すように、電極パッド 111が所定のパターンで 形成された絶縁性 A1Nサブマウント 112上にレーザチップをマウントする。そして、チ ップ上の電極とサブマウント上の電極パッドとを図示のようにボンディングすることで、 分割されたレーザ素子部 11〜11 の水平方向でのカスケード接続を実現すること
1 m2
ができる。
[0066] 図 10〜図 13は、量子カスケードレーザの第 2実施例について示す図であり、図 10 は、量子カスケードレーザに用いられる半導体積層構造を示す断面図である。また、 図 11は、第 2実施例の量子カスケードレーザの断面構成を示す断面図であり、図 12 は、レーザの平面構成を示す上面図であり、図 13は、レーザの立体構成を示す側面 断面図である。
[0067] 図 10に示す半導体積層構造では、半絶縁性の ΙηΡ基板 120上に、高濃度ドープ I n Ga As層 427、 In Al Asクラッド層 426、 In Ga Asコア層 425、 In Ga A s/ln Al As量子井戸活性層 22、 In Ga Asコア層 420、 In Al Asクラッド層 l -y x l -x l -y
421、及び高濃度ドープ InxGa As層 422を順次ェピタキシャル成長によって形成 する。活性層 22の具体的な構造等については、第 1実施例と同様である。また、これ らの半導体層の膜厚及びドーピング濃度の一例は、以下の通りである。
高濃度層 422 : 0. 5 m、 3 X 1018cm"3
クラッド層 421: 2 m、 2 X 1017cm"3
コア層 420 : 0. 65 m、 5 X 1016cm"3
活性層 22
コア層 425 : 0. 65 ^ m, 5 X 1016cm"3
クラッド層 426: 2 m、 2 X 1017cm"3
高濃度層 427 : 0. 5 m、 3 X 1018cm"3 InP基板 120
[0068] このような構造の半導体積層体に対し、通常のリソグラフィー技術、ウエットエツチン グ技術等によってリッジストライプ型のレーザ素子構造を作製するとともに、図 11に示 すように、共振器方向に分割された電極 52 2 を形成して、 m2個のレーザ素子
1〜5
m2
部 12
1〜12 にセグメント化された素子構造とする。
m2
[0069] レーザ素子部の分離構造については、第 1実施例と同様に、図 11に示すように、 分割されるレーザ素子部 12〜12 のそれぞれの間に対して、電極 52
1〜52 をメ
1 m2 m2 タルマスクとして基板部分までプロトン注入を行うことによって半導体層を高抵抗ィ匕し 、素子部 12〜12 を互いに分離するための高抵抗層 72
1 m2 2〜72 を形成する。
m2
[0070] 図 11に示すレーザチップを用いた量子カスケードレーザの配線構造等を含めた構 成としては、例えば、図 12及び図 13に示すように、 InP基板 120上に形成されたェピ タキシャル成長層で下側に位置する高濃度ドープ In Ga As層 427をコンタクト層 とし、このコンタクト層をエッチング等で露出させて所定のパターンの電極パッド 121 を形成する。そして、チップ上の電極とコンタクト層上の電極パッドとを図示のようにボ ンデイングすることで、分割されたレーザ素子部 12 でのカスケ
1〜12 の水平方向
m2 一 ド接続を実現することができる。
[0071] 図 14は、量子カスケードレーザの第 3実施例について示す図であり、第 3実施例の 量子カスケードレーザの断面構成を示す断面図である。なお、本実施例で量子カス ケードレーザに用いられる半導体積層構造については、例えば第 2実施例と同様で ある。
[0072] レーザ素子部の分離構造については、本実施例においては高抵抗層ではなぐ隣 合うレーザ素子部同士の間に間隙部を形成することによって分離する構造を用いて いる。このような間隙部の例としては、図 14に示すように、分割されるレーザ素子部 1 3〜13 のそれぞれの間に対して、電極 53〜53 をメタルマスクとし、 RIBEなど
1 m2 1 m2
のドライプロセスの手法を利用して、素子部 13
1〜13 を互いに分離するための間隙 m2
部である発振波長間隔以下のエアギャップ部 73
2〜73 を基板まで形成する。なお m2
、図 14に示すレーザチップを用いた量子カスケードレーザの配線構造等を含めた構 成は、例えば第 2実施例と同様である。 [0073] これらの第 1〜第 3実施例に示したように、 2次元カスケード構造を有する量子カス ケードレーザにぉ ヽて、それぞれ活性層を含む半導体積層体である複数のレーザ素 子部を配列方向で互いに分離するための構成としては、隣合う半導体積層体同士が 、その間に形成された高抵抗層によって互いに分離されている構成、あるいは、隣合 う半導体積層体同士が、その間に形成された間隙部によって互いに分離されている 構成など、様々な構成を用いることができる。
[0074] なお、図 14に示した構成においては、共振器方向に並ぶレーザ素子部 13〜13
1 m の間にギャップが存在することとなるが、上記したようにその間隔を発振波長間隔以
2
下に設定するなど、充分に狭い間隔で間隙部を形成することが好ましい。これにより
、発振波長においてはレーザ素子部が互いに光学的に接続されることとなり、レーザ の全体としての光共振器構造が実現される。
[0075] 図 15は、量子カスケードレーザの第 4実施例について示す図であり、第 4実施例の 量子カスケードレーザの断面構成を示す断面図である。なお、本実施例で量子カス ケードレーザに用いられる半導体積層構造については、例えば第 2実施例と同様で ある。
[0076] レーザ素子部の分離構造については、本実施例においては、上記したプロトン注 入による高抵抗層、及び RIBEによる間隙部を併用するハイブリッド構造を用いてい る。ここで、例えば、レーザ素子での発振波長が長ぐ光閉じ込め構造を強固にする ためにクラッド層を充分に厚く設定しているような場合、ェピタキシャル成長層の全域 にわたつてプロトン注入による高抵抗ィ匕を行うことが困難となる。
[0077] このような場合には、上記したように、プロトン注入と、 RIBEなどのドライプロセスと を組み合わせて素子の分離構造を形成することが有効である。このような分離構造の 例としては、図 15に示すように、分割されるレーザ素子部 14〜14 のそれぞれの
1 m2
間に対して、電極 54〜54 をメタルマスクとし、 RIBEなどによってエアギャップ部 7
1 m2
4〜74 を上部クラッド層まで形成する。さらに、同様に電極 54〜54 をメタルマ
2 m2 1 m2 スクとし、活性層から下の部分に対してプロトン注入での高抵抗ィ匕を行って高抵抗層 79〜79 を形成する。これにより、素子部 14〜14 を互いに分離するための間隙
2 m2 1 m2
部及び高抵抗層を組み合わせたハイブリッド分離構造が得られる。このようなハイプリ ッド分離構造では、一般には、素子構造の上部の所定範囲について間隙部を形成し 、さらに下部についてプロトン注入を行って高抵抗層を形成することが好ましい。
[0078] 図 16は、量子カスケードレーザの第 5実施例について示す図であり、第 5実施例の 量子カスケードレーザの平面構成を示す上面図である。なお、本実施例で量子カス ケードレーザに用いられる半導体積層構造については、例えば第 2、第 3実施例と同 様である。
[0079] 例えば文献 SCIENCE vol.286 (1999) p.749に示されて!/、るような上下対称なバン ド構造であれば、量子カスケードレーザは上下どちら力 電流を流しても動作する。 本実施例では、このような構造のレーザ素子部 15〜15 において、図 16に示すよ
1 m2
うに、電流を流す方向がレーザ素子部ごとに交互に変わるような配線としている。この 場合、その配線構造を簡素化することができる。
[0080] 本発明による量子カスケードレーザは、上記した実施形態及び実施例に限られるも のではなぐ様々な変形が可能である。例えば、上記した実施例では、 ΙηΡ基板に格 子整合する InGaAsZlnAlAsによって活性層のカスケード構造を構成した例を示し たが、格子整合条件からずれた歪系であっても良い。また、上記した実施例では、 In GaAs/lnAlAs系のものを示した力 例えば GaAs系、 GaSb系、 GaN系、 SiZSiG e系など、サブバンド間の電子遷移を利用した量子カスケード構造が可能なものであ れば、いずれの材料を用いても良い。また、半導体の結晶成長方法についても、上 記した固体ソース MBE法に限らず、例えばガスソース MBE法や、 MOCVD法など 、様々な方法を用いて良い。
[0081] ここで、量子カスケードレーザは、(1)量子井戸発光層及び注入層が交互に、第 1 の方向に積層された ml段のカスケード構造 (mlは 2以上の整数)を有し、量子井戸 構造でのサブバンド間遷移によって光を生成する活性層を少なくとも含む半導体積 層体を備え、(2)半導体積層体は、第 1の方向とは異なる第 2の方向に、互いに分離 された状態で m2個 (m2は 2以上の整数)配列されるとともに、それらを直列に接続す ることで、実効的に ml X m2段の 2次元状のカスケード構造とすることが可能に構成 されていることが好ましい。
[0082] また、半導体層の積層方向、及び半導体積層体の配列方向については、積層方 向である第 1の方向は、量子井戸発光層及び注入層を含む半導体層の結晶成長面 に対して垂直方向であり、配列方向である第 2の方向は、結晶成長面に対して水平 方向であることが好ましい。これにより、成長された半導体積層構造を水平方向に分 割して複数の半導体積層体とした構成を用いて、上記した 2次元カスケード構造を好 適に実現することができる。
[0083] また、複数の半導体積層体を互いに分離するための構成としては、 m2個配列され た半導体積層体のうちで隣合う半導体積層体同士が、その間に形成された高抵抗 層によって互いに分離されている構成を用いることができる。あるいは、 m2個配列さ れた半導体積層体のうちで隣合う半導体積層体同士が、その間に形成された間隙 部によって互 、に分離されて!、る構成を用 V、ることができる。
産業上の利用可能性
[0084] 本発明は、狭線幅特性を有するとともに、低閾値、高出力での動作が可能な量子 カスケードレーザとして利用可能である。

Claims

請求の範囲
[1] 量子井戸発光層及び注入層が交互に、第 1の方向に積層された ml段のカスケ一 ド構造 (mlは 2以上の整数)を有し、量子井戸構造でのサブバンド間遷移によって光 を生成する活性層を少なくとも含む半導体積層体を備え、
前記半導体積層体は、前記第 1の方向とは異なる第 2の方向に、互いに分離された 状態で m2個 (m2は 2以上の整数)配列されるとともに、それらを直列に接続すること で、実効的に ml X m2段の 2次元状のカスケード構造とすることが可能に構成されて
V、ることを特徴とする量子カスケードレーザ。
[2] 前記第 1の方向は、前記量子井戸発光層及び前記注入層を含む半導体層の結晶 成長面に対して垂直方向であり、前記第 2の方向は、前記結晶成長面に対して水平 方向であることを特徴とする請求項 1記載の量子カスケードレーザ。
[3] m2個配列された前記半導体積層体のうちで隣合う半導体積層体同士は、その間 に形成された高抵抗層によって互いに分離されて!ヽることを特徴とする請求項 1また は 2記載の量子カスケードレーザ。
[4] m2個配列された前記半導体積層体のうちで隣合う半導体積層体同士は、その間 に形成された間隙部によって互いに分離されていることを特徴とする請求項 1〜3の
V、ずれか一項記載の量子カスケードレーザ。
PCT/JP2006/300385 2005-07-08 2006-01-13 量子カスケードレーザ WO2007007434A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-200721 2005-07-08
JP2005200721A JP2007019339A (ja) 2005-07-08 2005-07-08 量子カスケードレーザ

Publications (1)

Publication Number Publication Date
WO2007007434A1 true WO2007007434A1 (ja) 2007-01-18

Family

ID=37636835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300385 WO2007007434A1 (ja) 2005-07-08 2006-01-13 量子カスケードレーザ

Country Status (2)

Country Link
JP (1) JP2007019339A (ja)
WO (1) WO2007007434A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012125398A1 (en) * 2011-03-17 2012-09-20 Corning Incorporated Multi - section quantum cascade laser with p-type isolation regions
CN112636179A (zh) * 2020-12-30 2021-04-09 芯思杰技术(深圳)股份有限公司 量子阱结构、芯片加工方法、芯片及激光器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6259325B2 (ja) * 2014-03-12 2018-01-10 浜松ホトニクス株式会社 量子カスケードレーザ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275956A (ja) * 1997-03-27 1998-10-13 Lucent Technol Inc 電界で変調可能な半導体レーザを含む物品
JPH1174608A (ja) * 1997-06-30 1999-03-16 Nec Corp 量子ドットカスケードレーザ装置
JP2003101149A (ja) * 2001-09-19 2003-04-04 Toshiba Corp 半導体素子及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275956A (ja) * 1997-03-27 1998-10-13 Lucent Technol Inc 電界で変調可能な半導体レーザを含む物品
JPH1174608A (ja) * 1997-06-30 1999-03-16 Nec Corp 量子ドットカスケードレーザ装置
JP2003101149A (ja) * 2001-09-19 2003-04-04 Toshiba Corp 半導体素子及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHOQUETTE K.D. ET AL.: "Cascade Vertical Cavity Surface Emitting Laser Arrays", CONFERENCE PROCEEDINGS. IEEE LEOS ANNUAL MEETING (IEEE LASERS AND ELECTRO-OPTICS SOCIETY, vol. 1 OF 2, 11 November 2002 (2002-11-11), pages 327 - 328, XP010620544 *
GMACHL C. ET AL.: "Dependence pf the Device Performance on the Number of Stages in Quantum-Cascade Lasers", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 5, no. 3, May 1999 (1999-05-01), pages 808 - 816, XP000941372 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012125398A1 (en) * 2011-03-17 2012-09-20 Corning Incorporated Multi - section quantum cascade laser with p-type isolation regions
US8514902B2 (en) 2011-03-17 2013-08-20 Corning Incorporated P-type isolation between QCL regions
CN103430406A (zh) * 2011-03-17 2013-12-04 康宁股份有限公司 具有p型隔离区的多段量子级联激光器
CN112636179A (zh) * 2020-12-30 2021-04-09 芯思杰技术(深圳)股份有限公司 量子阱结构、芯片加工方法、芯片及激光器

Also Published As

Publication number Publication date
JP2007019339A (ja) 2007-01-25

Similar Documents

Publication Publication Date Title
US9276381B2 (en) Quantum cascade laser
Blood Quantum Confined Laser Devices: Optical gain and recombination in semiconductors
US8993999B2 (en) Semiconductor light emitting device and method for manufacturing same
JP2008218915A (ja) 量子カスケードレーザ素子
JP4790202B2 (ja) 量子カスケードレーザー
JP2004200375A (ja) 半導体レーザ装置およびその製造方法
US20040009681A1 (en) Quantum dot tunable external cavity laser (QD-TEC laser)
Lyakh et al. Progress in high-performance quantum cascade lasers
JP2017033981A (ja) 量子カスケードレーザ
Yang et al. Recent progress in development of InAs-based interband cascade lasers
Crump et al. Efficient, high power 780 nm pumps for high energy class mid-infrared solid state lasers
WO2007007434A1 (ja) 量子カスケードレーザ
US10312666B2 (en) Semiconductor laser
US20180261981A1 (en) Semiconductor laser
JPS61218192A (ja) 半導体発光素子
JP6613747B2 (ja) 半導体レーザ
US7646797B1 (en) Use of current channeling in multiple node laser systems and methods thereof
US20180131154A1 (en) Solid-state optical amplifier having an active core and doped cladding in a single chip
JP2002009401A (ja) 半導体レーザ素子
JP2004247492A (ja) 量子カスケードレーザ
Moench et al. High power electrically pumped VECSELs and arrays
WO2003034559A1 (en) Vertically integrated high power surface emitting semiconductor laser device and method of producing the same
JP2013229568A (ja) 半導体光装置
CN113629491A (zh) 量子级联激光器元件
JP2004119768A (ja) 半導体光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711670

Country of ref document: EP

Kind code of ref document: A1