WO2007005972A1 - Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds - Google Patents

Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds Download PDF

Info

Publication number
WO2007005972A1
WO2007005972A1 PCT/US2006/026210 US2006026210W WO2007005972A1 WO 2007005972 A1 WO2007005972 A1 WO 2007005972A1 US 2006026210 W US2006026210 W US 2006026210W WO 2007005972 A1 WO2007005972 A1 WO 2007005972A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
acid
solvent
reaction
Prior art date
Application number
PCT/US2006/026210
Other languages
French (fr)
Inventor
George W. Muller
Manohar T. Saindane
Chuansheng Ge
Roger Chen
Original Assignee
Celgene Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37305020&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007005972(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to CA2612612A priority Critical patent/CA2612612C/en
Priority to RS20130103A priority patent/RS52704B/en
Priority to SI200631524T priority patent/SI1907373T1/en
Priority to EP06786385A priority patent/EP1907373B1/en
Priority to KR1020087002421A priority patent/KR101299321B1/en
Priority to NZ565309A priority patent/NZ565309A/en
Priority to CN2006800319453A priority patent/CN101253163B/en
Priority to KR1020137003558A priority patent/KR101342241B1/en
Priority to MEP-2013-20A priority patent/ME01513B/en
Application filed by Celgene Corporation filed Critical Celgene Corporation
Priority to PL06786385T priority patent/PL1907373T3/en
Priority to DK06786385.2T priority patent/DK1907373T3/en
Priority to BRPI0612803-3A priority patent/BRPI0612803A2/en
Priority to MX2007016290A priority patent/MX2007016290A/en
Priority to JP2008519728A priority patent/JP5366544B2/en
Priority to AU2006265019A priority patent/AU2006265019B2/en
Priority to ES06786385T priority patent/ES2402204T3/en
Publication of WO2007005972A1 publication Critical patent/WO2007005972A1/en
Priority to IL188330A priority patent/IL188330A/en
Priority to HK09101400.3A priority patent/HK1121447A1/xx
Priority to IL214892A priority patent/IL214892A/en
Priority to HRP20130102TT priority patent/HRP20130102T1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Definitions

  • the present invention provides processes for the preparation of compounds useful for reducing levels or activity of tumor necrosis factor ⁇ in mammals. More specifically, the invention provides processes for the preparation of unsubstituted and substituted 4-amino-2- (2,6-dioxopiperidin-3-yl)isoindoline-l,3-dione compounds.
  • a substituted isoindole-l,3-dione that has demonstrated certain therapeutic values is 2-(2,6-dioxopiperidin-3-yl)isoindole-l,3-dione (THALOMIDTM ).
  • TAALOMIDTM 2-(2,6-dioxopiperidin-3-yl)isoindole-l,3-dione
  • This compound has been shown to be or is believed to be useful in treating or preventing a wide range of diseases and conditions including, but not limited to, inflammatory diseases, autoimmune diseases, cancers, heart diseases, genetic diseases, allergic diseases, osteoporosis and lupus.
  • the present invention provides efficient processes for the preparation of unsubstituted and substituted 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-l,3-dione compounds, particularly the unsubstituted 4-amino-2-(2,6-dioxopiperidin-3-yi)isoindoline- 1,3-dione.
  • the invention provides a process for preparing an unsubstituted or substituted 4-amino-2-(2,6-dioxo-3-piperidinyl)isoindole-l,3-dione compound of Formula
  • R 1 is H, F, benzyl, (CrC 8 )alkyl, (C 2 -C 8 )alkenyl, or (C 2 -C 8 )alkynyl; and each of X and Y is independently an unsubstituted or substituted imidazolyl, benzimidazolyl or benzotriazolyl.
  • R 1 of Formula (I) or (II) is H.
  • the cyclizing agent is a carbonyldiimidazole compound of Formula (VI): where each of R 2 , R 3 , R 4 , R 5 , R 6 and R 7 is independently H, alkyl, halo, nitro, cyano, acyl, alkoxy, aryloxy, alkoxycarbonyl or alkoxymethyl.
  • the carbonyldiimidazole compound is l,l'-carbonyldiimidazole (i.e., where each of R 2 , R 3 , R 4 , R 5 , R 6 and R 7 of Formula (VI) is H).
  • the ratio of the compound of Formula (II) to 1,1 '-carbonyldiimidazole is from about 1:1 to about 1:1.2.
  • the cyclization occurs in acetonitrile. In another embodiment, the cyclization occurs in tetrahydrofuran. In a further embodiment, the cyclization reaction temperature is from about 8O 0 C to about 87 0 C. In another embodiment, the cyclization reaction time is from about 1 hour to about 5 hours.
  • the invention provides a process for preparing an unsubstituted or substituted 4-amino-2-(2,6-dioxo-3-piperidinyl)isoindole-l,3-dione compound of Formula (I) or a pharmaceutically acceptable salt or solvate or polymorph thereof, wherein the process comprises the step of reacting 3-aminophthalic acid or a salt thereof with a 3-aminoglutarimide compound of Formula (X) or a salt thereof:
  • R 1 is H, F, benzyl, (Ci-C 8 )alkyl, (C 2 -C 8 )alkenyl, or (C 2 -C 8 )alkynyl.
  • R 1 of Formula (I) or (X) is H.
  • the reacting step occurs in the presence of a base, an acid or a combination thereof.
  • the reacting step occurs in the presence of a base which, in some instances, can be a trialkylamine, a substituted or unsubstituted imidazole or a mixture thereof.
  • the reacting step occurs in the presence of the base and the acid where the base may be an amine such as triethylamine and the acid may be a carboxylic acid such as acetic acid.
  • the mole ratio of triethylamine to acetic acid is from about 1 : 10 to about 1:1.
  • the solvent is acetonitrile.
  • the reaction temperature is about 85-87 0 C.
  • the reaction time is from about 5 to about 7 hours.
  • halo means -F, -Cl, -Br or -I.
  • alkyl or "alkyl group” means a saturated, monovalent, unbranched or branched hydrocarbon chain.
  • alkyl groups include, but are not limited to, (Ci-Cs)alkyl groups, such as methyl, ethyl, propyl, isopropyl, 2-methyl-l -propyl, 2-methyl-2-propyl, 2-methyl-l -butyl, 3-methyl- 1 -butyl, 2-methy 1-3 -butyl, 2,2-dimethyl-l -propyl, 2-methyl-l -pentyl, 3-methyl-l-pentyl, 4- methyl-1-pentyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2,2-dimethyl-l- butyl, 3,3-dimethyl-l-butyl, 2-ethyl-l -butyl, buty
  • alkenyl or “alkenyl group” means a monovalent, unbranched or branched hydrocarbon chain having one or more double bonds therein.
  • the double bond of an alkenyl group can be unconjugated or conjugated to another unsaturated group.
  • Suitable alkenyl groups include, but are not limited to (C 2 -Cg)alkenyl groups, such as vinyl, allyl, butenyl, pentenyl, hexenyl, butadienyl, pentadienyl, hexadienyl, 2-ethylhexenyl, 2-propyl-2-butenyl, 4-(2-methyl-3-butene)- pentenyl.
  • An alkenyl group can be unsubstituted or substituted with one or two suitable substituents.
  • alkynyl or “alkynyl group” means a monovalent, unbranched or branched hydrocarbon chain having one or more triple bonds therein.
  • the triple bond of an alkynyl group can be unconjugated or conjugated to another unsaturated group.
  • Suitable alkynyl groups include, but are not limited to, (C 2 - C 8 )alkynyl groups, such as ethynyl, propynyl, butynyl, pentynyl, hexynyl, methylpropynyl, 4- methyl-1-butynyl, 4-propyl-2-pentynyl, and 4-butyl-2-hexynyl.
  • An alkynyl group can be unsubstituted or substituted with one or two suitable substituents.
  • substituted as used to describe a compound or chemical moiety means that at least one hydrogen atom of that compound or chemical moiety is replaced with a second chemical moiety.
  • the second chemical moiety can be any suitable substituent that does not nullify the synthetic or pharmaceutical utility of the compounds of the invention or the intermediates useful for preparing them.
  • substituents include, but are not limited to: (C 1 - C 8 )alkyl; (C 2 -C 8 )alkenyl; (C 2 -C 8 )alkynyl; aryl; (C 2 -C 5 )heteroaryl; (d-C ⁇ heterocycloalkyl; (C 3 -C 7 )cycloalkyl; O-(C 1 -C 8 )alkyl; O-(C 2 -C 8 )alkenyl; O-(C 2 -C 8 )alkynyl; O-aryl; CN; OH; oxo; halo, C(O)OH; COhalo; O(CO)halo; CF 3 , N 3 ; NO 2 , NH 2 ; NH((C 1 -C 8 )alkyl); N((d- C 8 )alkyl) 2 ; NH(aryl); N(aryl) 2 ; (COCO)
  • substantially free of a compound means that the composition contains less than about 20% by weight, more preferably less than about 10% by weight, even more preferably less than about 5% by weight, and most preferably less than about 3% by weight of the compound.
  • stereochemically pure means a composition that comprises one stereoisomer of a compound and is substantially free of other stereoisomers of that compound.
  • a stereomerically pure composition of a compound having one chiral center will be substantially free of the opposite enantiomer of the compound.
  • a stereomerically pure composition of a compound having two chiral centers will be substantially free of other diastereomers of the compound.
  • a typical stereomerically pure compound comprises greater than about 80% by weight of one stereoisomer of the compound and less than about 20% by weight of other stereoisomers of the compound, more preferably greater than about 90% by weight of one stereoisomer of the compound and less than about 10% by weight of the other stereoisomers of the compound, even more preferably greater than about 95% by weight of one stereoisomer of the compound and less than about 5% by weight of the other stereoisomers of the compound, and most preferably greater than about 97% by weight of one stereoisomer of the compound and less than about 3% by weight of the other stereoisomers of the compound.
  • enantiomerically pure means a stereomerically pure composition of a compound having one chiral center.
  • racemate means about 50% of one enantiomer and about 50% of the corresponding enantiomer relative to all chiral centers in the molecule.
  • the invention encompasses all enantiomerically pure, enantiomerically enriched, diastereomerically pure, diastereomerically enriched, and racemic mixtures of the compounds of the invention.
  • process(es) of the invention or “process(es) of preparing” or “process(es) for the preparation” refers to the methods disclosed herein which are useful for preparing a compound of the invention. Modifications to the methods disclosed herein (e.g., starting materials, reagents, protecting groups, solvents, temperatures, reaction times, purification) are also encompassed by the present invention.
  • the term “adding”, “reacting” or the like means contacting one reactant, reagent, solvent, catalyst, reactive group or the like with another reactant, reagent, solvent, catalyst, reactive group or the like.
  • Reactants, reagents, solvents, catalysts, reactive group or the like can be added individually, simultaneously or separately and can be added in any order. They can be added in the presence or absence of heat and can optionally be added under an inert atmosphere.
  • “Reacting” can refer to in situ formation or intramolecular reaction where the reactive groups are in the same molecule.
  • reaction that is “substantially complete” or is driven to “substantial completion” means that the reaction contains more than about 80% by percent yield, more preferably more than about 90% by percent yield, even more preferably more than about 95% by percent yield, and most preferably more than about 97% by percent yield of the desired product.
  • the term "pharmaceutically acceptable salt” includes, but is not limited to, salts of acidic or basic groups that may be present in the compounds of the invention.
  • Compounds of the invention that are basic in nature are capable of forming a wide variety of salts with various inorganic and organic acids.
  • acids that may be used to prepare pharmaceutically acceptable salts of such basic compounds are those that form salts comprising pharmacologically acceptable anions including, but not limited to, acetate, benzenesulfonate, benzoate, bicarbonate, bitartrate, bromide, camsylate, carbonate, chloride, bromide, iodide, citrate, dihydrochloride, edetate, edisylate, estolate, esylate, fumarate, gluceptate, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrabamine, hydroxynaphthoate, isethionate, lactate, lactobionate, malate, maleate, mandelate, mesylate, methylsulfate, muscate, napsylate, nitrate, panthothenate, phosphate/diphosphate, polygalacturonate, salicylate, stea
  • Compounds of the invention that include an amino group also can form pharmaceutically acceptable salts with various amino acids, in addition to the acids mentioned above.
  • Compounds of the invention that are acidic in nature are capable of forming base salts with various pharmacologically acceptable cations.
  • Non- limiting examples of such salts include alkali metal or alkaline earth metal salts and, particularly, calcium, magnesium, sodium, lithium, zinc, potassium, and iron salts.
  • hydrate means a compound of the present invention or a salt thereof, that further includes a stoichiometric or non-stoichiometeric amount of water bound by non-covalent intermolecular forces.
  • solvate means a solvate formed from the association of one or more solvent molecules to a compound of the present invention.
  • solvate includes hydrates (e.g., mono-hydrate, dihydrate, trihydrate, tetrahydrate, and the like).
  • polymorph means solid crystalline forms of a compound of the present invention or complex thereof. Different polymorphs of the same compound can exhibit different physical, chemical and /or spectroscopic properties.
  • the phrase "diseases or conditions related to an abnormally high level or activity of TNF- ⁇ ” means diseases or conditions that would not arise, endure or cause symptoms if the level or activity of TNF- ⁇ were lower, or diseases or conditions that can be prevented or treated by a lowering of TNF- ⁇ level or activity.
  • the terms “treat,” “treating” and “treatment” contemplate an action that occurs while a patient is suffering from the specified disease or disorder, which reduces the severity or symptoms of the disease or disorder or retards or slows the progression or symptoms of the disease or disorder.
  • HPLC high performance liquid chromatography
  • CH 3 CN acetonitrile
  • DMF dimethyl formamide
  • DMSO dimethyl sulfoxide
  • THF tetrahydrofuran
  • CH 2 Cl 2 methylene chloride
  • CDI l,l'-carbonyldiimidazole.
  • the present invention provides processes of preparing unsubstituted and substituted 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-l,3-dione compounds.
  • the processes of the present invention may encompass improved or efficient means for the large scale or commercial production of unsubstituted and substituted 4-amino-2-(2,6- dioxopiperidin-3-yl)isoindoline- 1 ,3-dione compounds.
  • the unsubstituted and substituted 4-amino-2-(2,6-dioxopiperidin-3- yl)isoindoline-l,3-dione compounds can be used to prepare pharmaceutical compositions and/or dosage forms for treating a wide range of diseases and conditions including, but not limited to, inflammatory diseases, autoimmune diseases, cancers, heart diseases, genetic diseases, allergic diseases, osteoporosis and lupus.
  • the pharmaceutical compositions can comprise at least one of the 4-amino-2-(2,6-dioxopiperidin-3- yl)isoindoline-l,3-dione compounds or a pharmaceutically acceptable salt, solvate, polymorph or stereoisomer thereof.
  • the pharmaceutical compositions can be administered to patients who are treated for a wide range of diseases and conditions.
  • the pharmaceutical compositions can further comprise at least one carrier, excipient, diluent, a second active agent or a combination thereof.
  • the pharmaceutical compositions are used in the preparation of individual, single unit dosage forms.
  • Single unit dosage forms are suitable for oral, mucosal ⁇ e.g., sublingual, nasal, vaginal, cystic, rectal, preputial, ocular, buccal or aural), parenteral ⁇ e.g., subcutaneous, intravenous, bolus injection, intramuscular or intraarterial), topical (e.g., eye drops or other ophthalmic preparations), transdermal or transcutaneous administration to a patient.
  • Non-limiting examples of dosage forms include tablets, caplets, capsules ⁇ e.g., soft elastic gelatin capsules), cachets, troches, lozenges, dispersions, suppositories, powders, aerosols (e.g., nasal sprays or inhalers), gels, liquid dosage forms suitable for oral or mucosal administration to a patient, including suspensions (e.g., aqueous or non-aqueous liquid suspensions, oil-in-water emulsions or a water-in-oil liquid emulsions), solutions and elixirs, liquid dosage forms suitable for parenteral administration to a patient, eye drops or other ophthalmic preparations suitable for topical administration, and sterile solids (e.g., crystalline or amorphous solids) that can be reconstituted to provide liquid dosage forms suitable for parenteral administration to a patient.
  • suspensions e.g., aqueous or non-aqueous liquid suspensions, oil-in-water e
  • the invention provides processes for preparing 4- amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-l,3-dione compounds of Formula (I):
  • R 1 is H, F, benzyl, (CrC 8 )alkyl, (C 2 -C 8 )alkenyl, or (C 2 - C 8 )alkynyl.
  • R 1 of Formula (I) and/or (II) is H.
  • R 1 of Formula (I) and/or (II) is (CfC 8 )alkyl.
  • R 1 of Formula (I) and/or (II) is methyl.
  • the solvate is a hydrate.
  • the cyclization of the compound of Formula (II) with the cyclizing agent can occur in a solvent such as acetonitrile, ethyl acetate, acetone, methyl ethyl ketone, diethyl ether, tetrahydrofuran, dichloromethane, chloroform, N-methyl pyrrolidinone, dimethyl formamide, dimethyl sulfoxide and combinations thereof.
  • a solvent such as acetonitrile, ethyl acetate, acetone, methyl ethyl ketone, diethyl ether, tetrahydrofuran, dichloromethane, chloroform, N-methyl pyrrolidinone, dimethyl formamide, dimethyl sulfoxide and combinations thereof.
  • the solvent is acetonitrile.
  • the solvent is boiling acetonitrile.
  • the reaction temperature can be any temperature useful for the cyclization reaction according to a person of ordinary skill in the art.
  • the cyclization reaction temperature can vary from about 20 0 C to about 100 0 C.
  • the cyclization reaction temperature is from about 50 0 C to about 90 0 C.
  • the cyclization reaction temperature is from about 80 0 C to about 87 0 C.
  • the cyclization reaction temperature is the boiling point (i.e., 81-82 0 C at 1 atmospheric pressure) of acetonitrile.
  • the cyclization reaction time can be any time period useful for the cyclization reaction according to a person of ordinary skill in the art.
  • the cyclization reaction time can vary from about 1 to about 24 hours, depending on the reaction temperature. In general, the higher the reaction temperature, the shorter is the reaction time.
  • the solvent is acetonitrile
  • the reaction temperature is from about 80 0 C to about 87 0 C
  • the reaction time is from about 1 to about 5 hours.
  • the cyclizing agent can be any chemical that can cause a ring formation reaction between the amide group and the carboxylic group of Formula (II) or (HA).
  • the cyclizing agent can have the following formula:
  • each of X and Y is independently an unsubstituted or substituted imidazolyl, benzimidazolyl or benzotriazolyl.
  • the cyclizing reagent of Formula (V) can be purchased from a commercial supplier or prepared according to any method apparent to a person of ordinary skill in the art.
  • the cyclizing agent of Formula (V) can be prepared by reacting phosgene (COCl 2 ) with an unsubstituted or substituted lH-imidazole compound, IH- benzimidazole or lH-benzotriazole.
  • the cyclizing agent is a carbonyldiimidazole compound having the formula:
  • R 2 , R 3 , R 4 , R 5 , R 6 and R 7 is independently H, alkyl, halo, nitro, cyano, acyl, alkoxy, aryloxy, alkoxycarbonyl or alkoxymethyl.
  • the carbonyldiimidazole compound of Formula (VI) can be purchased from a commercial supplier or prepared according to any method apparent to a person of ordinary skill in the art.
  • the carbonyldiimidazole compound of Formula (VI) can be prepared by reacting phosgene (COCl 2 ) with an unsubstituted or substituted lH-imidazole compound or a combination thereof.
  • lH-imidazole compound suitable for this invention include lH-imidazole, 2-methyl-lH-imidazole, IH- imidazole-5-carbaldehyde, 2-ethyl-lH-imidazole, 2-isopropyl-lH-imidazole, 2-ethyl-5- methyl-lH-imidazole, 2-propyl-lH-imidazole, 2-nitro-lH-imidazole, 5-nitro-lH-imidazole, methyl lH-imidazole-5-carboxylate, 4-(2-methoxyethyl)-lH-imidazole, 2-methyl-5-nitro-lH- imidazole and 5-methyl-4-nitro-lH-imidazole, all of which can be obtained from a commercial supplier such as Aldrich Chemicals, Milwaukee, WI or prepared by methods known to a person of ordinary skill in the art.
  • Non-limiting examples of the carbonyldiimidazole compound include 1,1 '-carbonyldiimidazole, 2,2 '-dimethyl- 1,1'- carbonyldiimidazole, 2,2'-diethyl- 1 , 1 '-carbonyldiimidazole, 2,2'-diisopropyl- 1,1'- carbonyldiimidazole and 2,2'-dinitro-l,l '-carbonyldiimidazole, all of which can be obtained commercially from a supplier such as Aldrich Chemicals, Milwaukee, WI or prepared by the method described above.
  • the carbonyldiimidazole compound is 1,1'- carbonyldiimidazole.
  • the cyclizing agent is selected from Formula (V),
  • the cyclization reaction can be further promoted or catalyzed by using a base in addition to the cyclizing agent.
  • the base can be selected from the group consisiting of organic amines such as triethylamine, pyridine, derivatives of pyridine and combinations thereof.
  • the 4-amino-2-(2,6-dioxopiperidin-3- yl)isoindoline-l,3-dione compound of Formula (I) can be prepared by cyclizing the N-(3- aminophthaloyl)-glutamine compound of Formula (II) or a salt thereof with 1,1'- carbonyldiimidazole (CDI) in refluxing acetonitrile for about 3 hours as depicted in Scheme A below.
  • CDI 1,1'- carbonyldiimidazole
  • the same reaction can occur in N-methyl pyrrolidinone or tetrahydrofuran for a time period from about 13 to about 15 hours at room temperature.
  • R 1 in Scheme A is H.
  • the ratio of the compound of Formula (II) to 1 , 1 ' -carbonyldiimidazole can be any ratio useful for the cyclization reaction according to a person of ordinary skill in the art.
  • the ratio of the compound of Formula (II) to 1,1 '-carbonyldiimidazole can be from about 2:1 to about 1 : 2.
  • the ratio of the compound of Formula (II) to 1,1 '-carbonyldiimidazole is from about 1:1 to about 1:1.5.
  • the ratio of the compound of Formula (II) to 1,1 '-carbonyldiimidazole is from about 1:1 to about 1 :1.2.
  • the cyclization of Formula (II) with 1,1 '-carbonyldiimidazole occurs in acetonitrile for 1 to 24 hours. In another embodiment, the cyclization of Formula (II) occurs in refluxing acetonitrile for 3 hours.
  • 1,3-dione compound of Formula (I) can be prepared by cyclizing the N-(3-aminophthaloyl)- isoglutamine compound of Formula (HA) or a salt thereof with 1,1 '-carbonyldiimidazole (CDI) in a solvent, such as acetonitrile, N-methyl pyrrolidinone and tetrahydrofuran, as depicted in Scheme A' below. The reaction can occur at a temperature ranging from about room temperature to about 150 0 C for about 30 minutes to about 24 hours.
  • a solvent such as acetonitrile, N-methyl pyrrolidinone and tetrahydrofuran
  • the compound of Formula (I) can be a free amine.
  • the free amine of Formula (I) can be converted into an acid salt by reacting the free amine of Formula (I) with the corresponding acid in a mole ratio of about 1:1.
  • suitable acids include methanesulfonic acid, trifluoroacetic acid, 4-(trifluoromethyl)benzoic acid, p-toluenesulfonic acid, hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid.
  • the 4-amino-2-(2,6-dioxo-3- piperidinyl)isoindole-l,3-dione of Formula (I) is converted into a hydrochloride salt with hydrochloric acid at a temperature from about O 0 C to about 22 0 C.
  • a racemic compound of Formula (I) is desired, a racemic N-(3- aminophthaloyl)-glutamine compound of Formula (II) may be used in the cyclization reaction. Conversely, if an enantiomerically pure compound of Formula (I) is desired, an enantiomerically pure N-(3-aminophthaloyl)-glutamine compound of Formula (II) may be used. Alternatively, if an enantiomerically pure compound of Formula (I) is desired, a racemic mixture of Formula (I) may be prepared and then resolved into the enantiomers by conventional resolution techniques such as biological resolution and chemical resolution.
  • the compound of Formula (II) can be prepared by any method known to a person of ordinary skill in the art.
  • the compound of Formula (II) can be prepared by reducing the nitro group of the compound of Formula (III) to an amine group as depicted in Scheme B below:
  • R 1 is H 5 F, benzyl, (CrC 8 )alkyl, (QrC 8 )alkenyl, or (C 2 -C 8 )alkynyl.
  • R 1 in Scheme B is H.
  • the compound of Formula (HA) can be prepared by reducing the nitro group of the compound of Formula (IIIA) to an amine group as depicted in Scheme B' below:
  • the compounds of Formulae (III) and (IIIA) can be reduced to the compounds of Formulae (II) and (HA) respectively by any reducing agent known in the art that can reduce a nitro group to a primary amine.
  • reducing agent include hydrogen plus a catalyst (catalytic hydrogenation), reducing metals in an acid such as hydrochloric acid and acetic acid, sodium sulfide in ammonium hydroxide solution, zinc in ammonium formate solution, magnesium in hydrazinium monoformate solution and tin dichloride in dilute hydrochloric acid.
  • suitable hydrogenation catalyst include palladium metal (Pd), platinum metal (Pt), and derivatives and complexes of Pd and Pt.
  • the hydrogenation catalyst can be dissolved in a solvent; or dispersed or coated on the surface of a catalyst support such as carbon and inorganic particles such as alumina, silica, aluminum silicates and the like.
  • suitable reducing metals include iron, zinc amalgam, zinc and tin.
  • the reducing agent is hydrogen plus a catalyst, hi a further embodiment, the catalyst is a Pd catalyst. In another embodiment, the catalyst is 5% Pd/C. In another embodiment, the catalyst is 10% Pd/C. Further, either wet or dry hydrogenation catalyst can be used.
  • the catalytic hydrogenation is generally carried out at a hydrogen pressure that drives the reaction to substantial completion.
  • the catalytic hydrogenation is carried out at a hydrogen pressure from about 2.76 bars (i.e., 40 psi or 276 kPa) to about 4.14 bars (i.e., 60 psi or 414 kPa).
  • the catalytic hydrogenation is run at ambient temperature.
  • the catalytic hydrogenation is generally performed until the reaction is substantially complete. In a particular embodiment, the catalytic hydrogenation is performed for about 1- 24 hours at a temperature from about 15 0 C to about 30 0 C. In a further embodiment, the catalytic hydrogenation is performed for about 2 to 3 hours at a temperature from about 18 0 C to about 24 0 C.
  • the catalytic hydrogenation occurs at a temperature from about 18 0 C to about 24 0 C for about 2-3 hours in methanol in the presence of 10% Pd/C. Either wet or dry hydrogenation catalyst can be used. In a further embodiment, the catalytic hydrogenation occurs at a pressure from about 40 (2.76 bars or 276 kPa) to about 50 psi (3.45 bars or 345 kPa).
  • the catalytic hydrogenation can occur in a solvent.
  • the catalytic hydrogenation is conducted in a protic solvent, such as alcohols, water, and combinations thereof.
  • the alcohol solvent is selected from the group consisting of methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol and combinations thereof, hi another embodiment, the catalytic hydrogenation is conducted in an apolar, aprotic solvent such as 1,4-dioxane.
  • the catalytic hydrogenation is conducted in a polar, aprotic solvent such as acetone, DMSO, DMF and THF.
  • the solvent is a protic solvent
  • the solvent for catalytic hydrogenation is methanol.
  • solvent mixtures are used.
  • a racemic compound of Formula (II) or (HA) is desired, a racemic compound of Formula (III) or (IIIA) can be used.
  • an enantiomerically pure compound of Formula (II) or (HA) is desired, an enantiomerically pure compound of Formula (III) or (IIIA) can be used.
  • a racemic mixture of Formula (II) or (HA) can be prepared and then resolved into the enantiomers by conventional resolution techniques such as biological resolution and chemical resolution.
  • the compound of Formula (III) can be prepared by any method known to a person of ordinary skill in the art.
  • the compound of Formula (III) can be prepared by reacting 3-nitrophthalic anhydride with a glutamine of Formula (IV) as depicted in Scheme C below.
  • R 1 is as defined above.
  • R 1 in Scheme C is H.
  • the compound of Formula (IIIA) can be prepared by reacting 3- nitrophthalic anhydride with an isoglutamine of Formula (IVA) as depicted in Scheme C below.
  • R 1 is as defined above.
  • R 1 in Scheme C is H.
  • (IV) or the isoglutamine of Formula (IVA) can occur in a solvent such as acetonitrile, ethyl acetate, acetone, methyl ethyl ketone, diethyl ether, tetrahydrofuran, dichloromethane, chloroform, N-methyl pyrrolidinone, dimethyl formamide, dimethyl sulfoxide and combinations thereof.
  • the solvent is dimethyl formamide.
  • the reaction temperature can be any temperature useful for the reaction of
  • the temperature of the reaction between 3-nitrophthalic anhydride and Formula (IV) or (IVA) can be from about 20 0 C to about 90 0 C.
  • the reaction temperature is from about 40 0 C to about 90 0 C.
  • the reaction temperature is from about 60 0 C to about 90 0 C.
  • the reaction temperature is from about 80 0 C to about 90 0 C.
  • the reaction time can be any time useful for the reaction of Scheme C or C according to a person of ordinary skill in the art.
  • the reaction time can vary from about 1 hour to about 24 hours, depending on the reaction temperature. In general, the higher the reaction temperature, the shorter is the reaction time. In a particular embodiment, the reaction time is about 8 hours at a reaction temperature from about 80 0 C to about 90 0 C.
  • a racemic compound of Formula (III) or (IIIA) is desired, a racemic glutamine of Formula (IV) or (IVA) can be used.
  • an enantiomerically pure compound of Formula (III) or (IIIA) is desired, an enantiomerically pure glutamine of Formula (IV) or (IVA) can be used.
  • glutamine of Formula (IV) include D-glutamine and L-glutamine, both of which can be obtained from a commercial supplier such as Aldrich, Milwaukee, WI.
  • a racemic mixture of Formula (III) or (IIIA) can be prepared and then resolved into the enantiomers by conventional resolution techniques such as biological resolution and chemical resolution.
  • the 3-nitrophthalic anhydride can be obtained commercially from a supplier such as Aldrich Chemical or prepared by any known method in the art. Further, the compound of Formula (VII) can be prepared by reacting maleic anhydride with a glutamine of Formula (IV) according to the conditions described above for the reaction between 3- nitrophthalic anhydride with the glutamine compound of Formula (IV).
  • the compound of Formula (III) can be prepared according to the procedure depicted in Scheme D below.
  • R 1 is as defined above and R 8 is alkyl such as t-butyl or aralkyl such as benzyl.
  • R 1 in Scheme D is H and R 8 is t-butyl.
  • R 1 in Scheme D is H and R 8 is benzyl.
  • 3-nitrophthalimide can react with ethyl chloroformate in a solvent in the presence of a catalyst such as triethylamine to form 3-nitro- N-ethoxycarbonyl-phthalimide.
  • suitable solvent include acetonitrile, ethyl acetate, acetone, methyl ethyl ketone, diethyl ether, tetrahydrofuran, dichloromethane, chloroform, N-methyl pyrrolidinone, dimethyl formamide, dimethyl sulfoxide and combinations thereof.
  • the solvent is dimethyl sulfoxide.
  • the reaction temperature can be any temperature useful for the reaction of according to a person of ordinary skill in the art.
  • the reaction temperature can be from about 0 0 C to about 5 0 C.
  • the reaction time can be any time useful for the reaction according to a person of ordinary skill in the art.
  • the reaction time can vary from about 1 hour to about 24 hours, depending on the reaction temperature. In general, the higher the reaction temperature, the shorter is the reaction time. In a particular embodiment, the reaction time is about 4 hours at 0-5 0 C.
  • the t-butyl or benzyl N-(3-nitrophthaloyl)-glutamine of Formula (IX) can be purchased or prepared by reacting 3-nitro-N-ethoxycarbonyl-phthalimide with a glutamine t- butyl or benzyl ester of Formula (VIII) or an acid salt thereof such as a hydrochloride salt, where R 1 is H, F, benzyl, (CrC 8 )alkyl, (C 2 -C 8 )alkenyl, or (C 2 -C 8 )alkynyl; and R 8 is t-butyl or benzyl, in a solvent in the presence of a catalyst such as triethylamine.
  • a catalyst such as triethylamine
  • a racemic mixture of glutamine t-butyl ester hydrochloride is used to prepare of Formula (IX).
  • L-glutamine t-butyl ester hydrochloride is used to prepare of Formula (IX).
  • D-glutamine t-butyl ester hydrochloride is used to prepare of Formula (IX).
  • suitable solvents include acetonitrile, ethyl acetate, acetone, methyl ethyl ketone, diethyl ether, tetrahydrofuran, dichloromethane, chloroform, N-methyl pyrrolidinone, dimethyl formamide, dimethyl sulfoxide and combinations thereof.
  • the solvent is tetrahydrofuran.
  • the reaction temperature can be any temperature useful for the reaction of according to a person of ordinary skill in the art. For instance, in certain embodiments, the reaction temperature can be from about 25 0 C to about 100 0 C.
  • the reaction time can be any time useful for the reaction according to a person of ordinary skill in the art. For instance, the reaction time can vary from about 1 hour to about 48 hours, depending on the reaction temperature. In general, the higher the reaction temperature, the shorter is the reaction time. In a particular embodiment, the reaction time is about 24 hours at about 65-66 0 C.
  • reaction between hydrogen chloride and t-butyl N-(3-nitrophthaloyl)- glutamine of Formula (IX) in a solvent can afford the compound of Formula (III).
  • suitable solvent include acetonitrile, ethyl acetate, acetone, methyl ethyl ketone, diethyl ether, tetrahydrofuran, dichloromethane, chloroform, N-methyl pyrrolidinone, dimethyl formamide, dimethyl sulfoxide and combinations thereof.
  • the solvent is dichloromethane.
  • the reaction temperature can be any temperature useful for the reaction of according to a person of ordinary skill in the art.
  • the reaction temperature can be from about 0 0 C to about 100 0 C.
  • the reaction time can be any time useful for the reaction according to a person of ordinary skill in the art.
  • the reaction time can vary from about 1 hour to about 24 hours, depending on the reaction temperature, hi general, the higher the reaction temperature, the shorter is the reaction time.
  • the reaction time is about 16 hours at about 20- 25 0 C.
  • a racemic compound of Formula (III) a racemic t-butyl N-(3-nitrophthaloyl)-glutamine of Formula (VIII) can be used.
  • an enantiomerically pure compound of Formula (III) an enantiomerically pure t- butyl N-(3-nitrophthaloyl)-glutamine of Formula (VIII) can be used.
  • a racemic mixture of Formula (III) can be prepared and then resolved into the enantiomers by conventional resolution techniques such as biological resolution and chemical resolution.
  • the compound of Formula (IIIA) can be prepared according to the procedures depicted in Scheme D' below, which are similar to the procedures of Scheme D.
  • R 1 and R 8 are as defined above.
  • R 1 in Scheme D' is H and R 8 is t-butyl.
  • R 1 in Scheme D' is H and R 8 is benzyl.
  • Triethylamine R 8 is alkyl or aralkyl
  • the 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-l,3-dione compound of Formula (I), or a pharmaceutically acceptable salt, solvate, polymorph or stereoisomer thereof can be prepared by reacting 3-aminophthalic acid or a salt thereof with a 3-aminoglutarimide compound of Formula (X) or a salt thereof:
  • R 1 is H, F, benzyl, (Ci-Cs)alkyl, (C 2 -C 8 )alkenyl, or (C 2 -C 8 )alkynyl.
  • R 1 of Formula (X) is H.
  • the 3-aminoglutarimide compound can be purchased commercially from a supplier such as Evotec OAI, Hamburg, Germany; or prepared according to methods described in the literature such as Capitosti et ah, Organic Letters, 2003, Vol. 5, No. 16, pp. 2865-2867.
  • the 3-aminoglutarimide compound of Formula (X) is 3- aminoglutarimide (i.e., where R 1 of Formula (X) is H) or its salt.
  • suitable salts of Formula (X) include carboxylic acid salts, methanesulfonic acid salt, trifluoroacetic acid salt, 4-(trifluoromethyl)benzoic acid salt, p-toluenesulfonic acid salt, hydrochloric acid salt, hydrobromic acid salt, nitric acid salt, sulfuric acid salt and phosphoric acid salt.
  • the above condensation or coupling reaction between the 3-aminophthalic acid or a salt thereof and the compound of Formula (X) or a salt thereof may occur in the presence of a catalyst.
  • the catalyst may be a base, an acid such as a carboxylic acid, or a combination thereof.
  • the catalyst is or comprises a base.
  • suitable bases include alkali hydroxides, alkaline hydroxides, alkali carboxylates (e.g., sodium acetate), alkali carbonates or hydrogen carbonates (e.g., sodium hydrogen carbonate), heterocyclic bases (e.g., substituted and unsubstituted pyrrolidine, pyrrolidinone, piperidine, piperidinone, pyrrole, pyridine, imidazole, benzimidazole, benzotriazole, and the like), amines and combinations thereof.
  • the catalyst is or comprises an amine.
  • Suitable amines include alkylamines (e.g., ethylamine), dialkylamines (e.g., diethylamine), trialkyamines (e.g., triethylamine and ⁇ iV-diisopropylethylamine), arylamines (e.g., phenylamine), diarylamines (e.g, diphenylamine), alkylarylamines (e.g., iV-methylaniline), triarylamines (e.g., triphenylamine), dialkylarylamines (e.g., N,iV-dimethylaniline), and alkydiarylamines (e.g., JV-methyldiphenylamine).
  • the catalyst is or comprises triethylamine, unsubstituted imidazole or a combination thereof.
  • the catalyst is or comprises a carboxylic acid having
  • the carboxylic acid is or comprises an aliphatic carboxylic acid such as acetic acid.
  • the catalyst comprises at least one of the amines and at least one of the carboxylic acid of Formula (XI) disclosed herein.
  • the catalyst comprises triethylamine and acetic acid.
  • the solvent for the condensation reaction may be any solvent that can disperse or dissolve both the 3-aminophthalic acid or a salt thereof and the 3-aminoglutarimide compound of Formula (X) or a salt thereof.
  • Non-limiting examples of suitable solvents include acetonitrile, ethyl acetate, acetone, methyl ethyl ketone, diethyl ether, tetrahydrofuran, dichloromethane, chloroform, N-methyl pyrrolidinone, dimethyl formamide, dimethyl sulfoxide, toluene, isopropyl acetate, isopropyl alcohol, n-propanol and combinations thereof.
  • the solvent is acetonitrile.
  • the condensation reaction temperature can be any temperature useful for the reaction of according to a person of ordinary skill in the art.
  • the condensation reaction temperature can be from about 25 0 C to about 100 0 C.
  • the condensation reaction time can be any time useful for the reaction according to a person of ordinary skill in the art.
  • the reaction time can vary from about 1 to about 48 hours, depending on the reaction temperature. In general, the higher the reaction temperature, the shorter is the reaction time. In a particular embodiment, the reaction time is from about 5 hours to about 7 hours at a reaction temperature from about 80 0 C to about 90 0 C.
  • the compound of Formula (I) is 4-amino-2-(2,6- dioxopiperidin-3-yl)isoindoline-l,3-dione (i.e., where R 1 of Formula (I) is H) which is prepared according to Scheme E below.
  • 3-aminophthalic acid hydrochloride i.e., Compound (I)] reacts with 3-aminoglutarimide (i.e., where R 1 of Formula (X) is H) hydrochloride [i.e., Compound (2)] in a solvent such as acetonitrile in the presence of a catalyst comprising triethylamihe and acetic acid.
  • the mole ratio of triethylamine to acetic acid is from about 1:10 to about 10:1. In other embodiments, the mole ratio of triethylamine to acetic acid is from about 1 : 10 to about 1:1. In further embodiments, the mole ratio of triethylamine to acetic acid is about 1 :2.
  • Formula (I) can be purified by any conventional purification techniques such as recrystallization, extraction, chromatography and the like.
  • the compound of Formula (I) is purified by recrystallization.
  • the compound of Formula (I) is 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-l,3-dione (i.e., where R 1 of Formula (I) is H) which can be purified by recrystallization with a solvent mixture comprising dimethyl sulfoxide and water, hi further embodiments, the ratio of dimethyl sulfoxide to water in the solvent mixture is from about 1 :10 to about 10:1 by volume. In a further embodiment, the ratio of dimethyl sulfoxide to water in the solvent mixture is about 1 :4 to about 1 :8 by volume.
  • L-glutamine (3020 g, 20.7 moles) was added to a round bottom flask equipped with a mechanical stirrer, a condenser, a thermometer, a nitrogen inlet and a heating mantel.
  • the reaction mixture was stirred at 80-87 0 C for 8 hours.
  • the temperature of the reaction was kept below 90 0 C at all time.
  • the reaction mixture was allowed to cool to room temperature and then concentrated to an oil (about 90% of DMF was removed) under a reduced pressure (400 mtorr at pump) on a heating bath at 40 0 C.
  • the oil was stirred with water (39.7 L) for 6 hours to produce a slurry.
  • the solid in the slurry was filtered, washed with water (8.8 L), air dried and then dried in a vacuum oven at 60 0 C and ⁇ 1 mm pressure.
  • the yield of the crude product was 4915 g (92.9% purity by HPLC).
  • the crude product was further purified by dispersing it in ethyl acetate in a ratio of 10 mL of ethyl acetate to 1 g of the crude product. After the dispersion was stirred overnight, it was then filtered and the solid filtered out was dried to yield 4780 g (70%) of the product.
  • the melting point of the product was found to be 180-182 0 C.
  • An elemental analysis yielded the following results in weight percent: C, 48.75; H, 3.48; N, 13.07, which compared with calculated values for C 13 H n N 3 O 7 , in weight percent: C, 48.60; H, 3.45; N, 13.08.
  • Example 2 Preparation of N-(3-Aminophthaloyl)-glutamine According to Scheme B [083] A mixture of Example 1 (4780, 14.88 moles), 10% Pd/C (120 g) and methanol
  • the gummy material was stirred with ethyl acetate (22 L) overnight to form a slurry.
  • the slurry was filtered and the yellow solid filtered out was washed with ethyl acetate (10 L).
  • the yellow solid was air dried and then dried in a vacuum oven at 60 0 C and ⁇ 1 mm pressure to yield 4230 g of the product.
  • the melting point of the product was found to be 177- 179 0 C.
  • An elemental analysis yielded the following results in weight percent: C, 53.61; H, 4.47; N, 14.31, which compared with calculated values for C 13 H 13 N 3 Os, in weight percent: C, 53.60; H, 4.50; N, 14.43.
  • Ethyl chloroformate (1.89 g, 19.7 mmol) was added dropwise over 10 minutes to a stirred solution of 3-nitrophthalimide (3.0 g, 15.6 mmol) and triethylamine (1.78 g, 17.6 mmol) in DMF (20 mL) at about 0-5 0 C under nitrogen. The reaction was allowed to warm to room temperature and stirred for 4 hours. The reaction mixture was slowly added to an agitated mixture of ice and water (60 mL).
  • Example 5 Preparation of t-Butyl N-(3-nitrophthaloyl)-L-glutamine [086]
  • a mixture of Example 4 (1.0 g, 3.8 mmol), L-glutamine t-butyl ester hydrochloride (0.9 g, 3.8 mmol) and triethylamine (0.54 g, 5.3 mmol) in THF (30 mL) was refluxed for 24 hours.
  • the THF solvent was removed in vacuo and the residue was dissolved in CH 2 Cl 2 (50 mL).
  • the CH 2 Cl 2 solution was washed with water (2x15 mL) and brine (15 mL) and then dried.
  • Example 7 Preparation of (S)-3-(3'-Nitrophthalimido)-piperidine-2,6-dione [088] A suspension mixture of Example 6 (4.3 g, 13.4 mmol) in anhydrous CH 2 Cl 2
  • Example 11 Preparation of (R)-3-(3'-Nitrophthalimido)-piperidine-2,6-dione [092] A suspension mixture of Example 10 (4.3 g, 13.4 mmol) in anhydrous CH 2 Cl 2
  • Example 12 Preparation of (R)-3-(3'-Ammophthalimido)-piperidine-2,6-dione [093] A mixture of Example 11 (1.0 g, 3.3 mmol) and 10% Pd/C (0.2 g) in acetone
  • reaction mixture was stirred further for 10-15 minutes and then refluxed at about 85 to 87 0 C for about 5 to 7 hours or until the in-process control, i.e., HPLC AP at 240 nm, indicates that ⁇ 2% of the 3-aminophthalic acid remained in the reaction mixture.
  • the in-process control i.e., HPLC AP at 240 nm
  • the resulting mixture was stirred at about 15 to 2O 0 C for about 20 to 30 minutes to provide a yellow solid precipitate, which was filtered, washed with DI water (3 x 1.0 L) and acetonitrile (2 x 500 mL), and then dried at about 35 to 4O 0 C in vacuo to a constant weight at 210.0 g (84 %).
  • Example 14 Preparation of 4-Amino-2-(2,6-dioxo-3-piperidinyI)isoindole-l,3-dione [095]
  • Example 14 was prepared similarly according to the procedure for Example 13 except that there was no acetic acid; the amount of triethylamine was reduced from 4.6 mol to 3.2 mol; and the refluxing time was increased from about 5 to 7 hours to about 47 hours.
  • the amount of 4-Amino-2-(2,6-dioxo-3-piperidinyl)isoindole-l,3-dione in the reaction mixture was found to be 94%.
  • Example 15 Preparation of 4-Amino-2-(2,6-dioxo-3-piperidinyl)isoindole-l,3-dione [096]
  • Example 15 was prepared similarly according to the procedure for Example 13 except that there was no acetic acid and the 4.6 mol of triethylamine was replaced with 9.2 mole of imidazole.
  • the amount of 4-Amino-2-(2,6-dioxo-3-piperidinyl)isoindole-l,3-dione in the reaction mixture was found to be 92%.
  • Example 16 was prepared similarly according to the procedure for Example 13 except that the 4.6 mol of triethylamine was replaced with 9.2 mole of imidazole. The amount of 4-Amino-2-(2,6-dioxo-3-piperidinyl)isoindole-l,3-dione in the reaction mixture was found to be 85%.
  • the solution was added to purified water (7.2 L) at about 75 to 80 0 C over at least 60 minutes.
  • the resulting suspension was cooled to about 15 to 20 0 C over at least 1.5 hours and stirred at the same temperature for about 1.5 to 2 hours.
  • the suspension was filtered and the solid was washed with purified water (2 x 2 L).
  • the purified product was dried under vacuum at about 35 to 40 0 C until constant weight is attained.
  • the yield of the purified product was 196.8 g (98% recovery).
  • the melting point of the purified product was found to be 321-323 0 C.

Abstract

The present invention provides new processes for the preparation of unsubstituted and substituted 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-l,3-dione compounds which are useful, for example, for preventing or treating diseases or conditions related to an abnormally high level or activity of TNF-α. The invention can provide improved and/or efficient processes for the commercial production of unsubstituted and substituted 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-l,3-dione compounds, including, but not limited to, unsubstituted 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-l,3-dione.

Description

PROCESSES FOR THE PREPARATION OF
4-AMINO-2-(2,6-DIOXOPIPERIDIN-3-YLπSOINDOLINE-1.3-DIONE
COMPOUNDS
1. CROSS-REFERENCE TO RELATED APPLICATIONS
[001] This application claims priority to U.S. Provisional Application No.
60/696,224, filed June 30, 2005.
2. FIELD OF THE INVENTION
[002] The present invention provides processes for the preparation of compounds useful for reducing levels or activity of tumor necrosis factor α in mammals. More specifically, the invention provides processes for the preparation of unsubstituted and substituted 4-amino-2- (2,6-dioxopiperidin-3-yl)isoindoline-l,3-dione compounds.
3. BACKGROUND OF THE INVENTION
[003] Excessive or unregulated production of tumor necrosis factor α or TNF-α, has been implicated in a number of disease conditions. These include endotoxemia and/or toxic shock syndrome (Tracey et ah, Nature 330, 662-664 (1987) and Hinshaw et ah, Circ. Shock 30, 279-292 (1990)), cachexia (Dezube et ah, Lancet 335 (8690), 662 (1990)), and Adult Respiratory Distress Syndrome (Millar et ah, Lancet 2 (8665), 712-714 (1989)). Certain substituted 2-(2,6-dioxopiperidin-3-yl)-l-oxoisoindolines have been shown to reduce levels of TNF-α in the literature such as International Publication No. WO 98/03502 and Muller et ah, Bioorg. Med. Chem. Lett. 9, 1625-1630 (1999).
[004] A substituted isoindole-l,3-dione that has demonstrated certain therapeutic values is 2-(2,6-dioxopiperidin-3-yl)isoindole-l,3-dione (THALOMID™ ). This compound has been shown to be or is believed to be useful in treating or preventing a wide range of diseases and conditions including, but not limited to, inflammatory diseases, autoimmune diseases, cancers, heart diseases, genetic diseases, allergic diseases, osteoporosis and lupus.
[005] Existing methods for synthesizing unsubstituted and substituted 4-amino-2-
(2,6-dioxopiperidin-3-yl)isoindole-l,3-dione compounds are described in U.S. Patent Nos. 6,395,754 and 5,635,517. While these methods are enabling and useful for preparing unsubstituted and substituted 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-l,3-dione compounds, alternative or improved methods for their preparation, particularly in manufacturing scale, are still needed. [006] Citation of any reference in Section 2 of this application is not to be construed as an admission that such reference is prior art to the present application.
4. SUMMARY OF THE INVENTION
[007] The present invention provides efficient processes for the preparation of unsubstituted and substituted 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-l,3-dione compounds, particularly the unsubstituted 4-amino-2-(2,6-dioxopiperidin-3-yi)isoindoline- 1,3-dione.
[008] In one aspect, the invention provides a process for preparing an unsubstituted or substituted 4-amino-2-(2,6-dioxo-3-piperidinyl)isoindole-l,3-dione compound of Formula
(I):
Figure imgf000003_0001
or a pharmaceutically acceptable salt, solvate including a hydrate, or polymorph thereof, wherein the process comprises the step of cyclizing an N-(3-aminophthaloyl)-glutamine compound of Formula (II) or an N-(3-aminophthaloyl)-isoglutamine compound of (HA):
Figure imgf000003_0002
or a salt thereof with a cyclizing agent of Formula (V):
Figure imgf000003_0003
wherein R1 is H, F, benzyl, (CrC8)alkyl, (C2-C8)alkenyl, or (C2-C8)alkynyl; and each of X and Y is independently an unsubstituted or substituted imidazolyl, benzimidazolyl or benzotriazolyl. In some embodiments, R1 of Formula (I) or (II) is H.
[009] In some embodiments, the cyclizing agent is a carbonyldiimidazole compound of Formula (VI):
Figure imgf000004_0001
where each of R2, R3, R4, R5, R6 and R7 is independently H, alkyl, halo, nitro, cyano, acyl, alkoxy, aryloxy, alkoxycarbonyl or alkoxymethyl. In a particular embodiment, the carbonyldiimidazole compound is l,l'-carbonyldiimidazole (i.e., where each of R2, R3, R4, R5, R6 and R7 of Formula (VI) is H). In a further embodiment, the ratio of the compound of Formula (II) to 1,1 '-carbonyldiimidazole is from about 1:1 to about 1:1.2.
[010] In another embodiment, the cyclization occurs in acetonitrile. In another embodiment, the cyclization occurs in tetrahydrofuran. In a further embodiment, the cyclization reaction temperature is from about 8O0C to about 870C. In another embodiment, the cyclization reaction time is from about 1 hour to about 5 hours.
[011] In another aspect, the invention provides a process for preparing an unsubstituted or substituted 4-amino-2-(2,6-dioxo-3-piperidinyl)isoindole-l,3-dione compound of Formula (I) or a pharmaceutically acceptable salt or solvate or polymorph thereof, wherein the process comprises the step of reacting 3-aminophthalic acid or a salt thereof with a 3-aminoglutarimide compound of Formula (X) or a salt thereof:
Figure imgf000004_0002
in a solvent, wherein R1 is H, F, benzyl, (Ci-C8)alkyl, (C2-C8)alkenyl, or (C2-C8)alkynyl. In some embodiments, R1 of Formula (I) or (X) is H.
[012] In certain embodiments, the reacting step occurs in the presence of a base, an acid or a combination thereof. In another embodiment, the reacting step occurs in the presence of a base which, in some instances, can be a trialkylamine, a substituted or unsubstituted imidazole or a mixture thereof. In certain embodiments, the reacting step occurs in the presence of the base and the acid where the base may be an amine such as triethylamine and the acid may be a carboxylic acid such as acetic acid. In certain embodiments, the mole ratio of triethylamine to acetic acid is from about 1 : 10 to about 1:1. [013] In another embodiment, the solvent is acetonitrile. In a further embodiment, the reaction temperature is about 85-870C. In a further embodiment, the reaction time is from about 5 to about 7 hours.
5. DETAILED DESCRIPTION OF THE INVENTION 5.1 Terminology
[014] As used herein and unless otherwise indicated, the term "halo", "halogen" or the like means -F, -Cl, -Br or -I.
[015] As used herein and unless otherwise indicated, the term "alkyl" or "alkyl group" means a saturated, monovalent, unbranched or branched hydrocarbon chain. Examples of alkyl groups include, but are not limited to, (Ci-Cs)alkyl groups, such as methyl, ethyl, propyl, isopropyl, 2-methyl-l -propyl, 2-methyl-2-propyl, 2-methyl-l -butyl, 3-methyl- 1 -butyl, 2-methy 1-3 -butyl, 2,2-dimethyl-l -propyl, 2-methyl-l -pentyl, 3-methyl-l-pentyl, 4- methyl-1-pentyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2,2-dimethyl-l- butyl, 3,3-dimethyl-l-butyl, 2-ethyl-l -butyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, and hexyl, heptyl, and octyl. An alkyl group can be unsubstituted or substituted with one or two suitable substituents.
[016] As used herein and unless otherwise indicated, the term "alkenyl" or "alkenyl group" means a monovalent, unbranched or branched hydrocarbon chain having one or more double bonds therein. The double bond of an alkenyl group can be unconjugated or conjugated to another unsaturated group. Suitable alkenyl groups include, but are not limited to (C2-Cg)alkenyl groups, such as vinyl, allyl, butenyl, pentenyl, hexenyl, butadienyl, pentadienyl, hexadienyl, 2-ethylhexenyl, 2-propyl-2-butenyl, 4-(2-methyl-3-butene)- pentenyl. An alkenyl group can be unsubstituted or substituted with one or two suitable substituents.
[017] As used herein and unless otherwise indicated, the term "alkynyl" or "alkynyl group" means a monovalent, unbranched or branched hydrocarbon chain having one or more triple bonds therein. The triple bond of an alkynyl group can be unconjugated or conjugated to another unsaturated group. Suitable alkynyl groups include, but are not limited to, (C2- C8)alkynyl groups, such as ethynyl, propynyl, butynyl, pentynyl, hexynyl, methylpropynyl, 4- methyl-1-butynyl, 4-propyl-2-pentynyl, and 4-butyl-2-hexynyl. An alkynyl group can be unsubstituted or substituted with one or two suitable substituents. [018] As used herein and unless otherwise indicated, the term "substituted" as used to describe a compound or chemical moiety means that at least one hydrogen atom of that compound or chemical moiety is replaced with a second chemical moiety. The second chemical moiety can be any suitable substituent that does not nullify the synthetic or pharmaceutical utility of the compounds of the invention or the intermediates useful for preparing them. Examples of suitable substituents include, but are not limited to: (C1- C8)alkyl; (C2-C8)alkenyl; (C2-C8)alkynyl; aryl; (C2-C5)heteroaryl; (d-C^heterocycloalkyl; (C3-C7)cycloalkyl; O-(C1-C8)alkyl; O-(C2-C8)alkenyl; O-(C2-C8)alkynyl; O-aryl; CN; OH; oxo; halo, C(O)OH; COhalo; O(CO)halo; CF3, N3; NO2, NH2; NH((C1-C8)alkyl); N((d- C8)alkyl)2; NH(aryl); N(aryl)2; (CO)NH2;
Figure imgf000006_0001
(CO)N((C1-C8)alkyl)2; (CO)NH(aryl); (CO)N(aryl)2; 0(CO)NH2; NHOH; NOH((d-C8)alkyl); NOH(aryl);O(CO)NH((C1-C8)alkyl); O(CO)N((Ci-C8)alkyl)2; O(CO)NH(aryl); O(CO)N(aryl)2; CHO; 00((C1-C8)^yI); CO(aryl); C(O)O((C1-C8)alkyl); C(O)O(aryl); 0(C0)(( C1-C8)^yI)- ; O(CO)(aryl); O(CO)O((C rC^alkyl); O(CO)O(aryl); S-( C1- Cβ)alkyl; S-( C!-C8)alkenyl; S-( C1-C8)alkynyl; and S-aryl. One of skill in art can readily choose a suitable substituent based on the stability and pharmacological and synthetic activity of the compound of the invention.
[019] As used herein and unless otherwise indicated, a composition that is
"substantially free" of a compound means that the composition contains less than about 20% by weight, more preferably less than about 10% by weight, even more preferably less than about 5% by weight, and most preferably less than about 3% by weight of the compound.
[020] As used herein and unless otherwise indicated, the term "stereochemically pure" means a composition that comprises one stereoisomer of a compound and is substantially free of other stereoisomers of that compound. For example, a stereomerically pure composition of a compound having one chiral center will be substantially free of the opposite enantiomer of the compound. A stereomerically pure composition of a compound having two chiral centers will be substantially free of other diastereomers of the compound. A typical stereomerically pure compound comprises greater than about 80% by weight of one stereoisomer of the compound and less than about 20% by weight of other stereoisomers of the compound, more preferably greater than about 90% by weight of one stereoisomer of the compound and less than about 10% by weight of the other stereoisomers of the compound, even more preferably greater than about 95% by weight of one stereoisomer of the compound and less than about 5% by weight of the other stereoisomers of the compound, and most preferably greater than about 97% by weight of one stereoisomer of the compound and less than about 3% by weight of the other stereoisomers of the compound.
[021] As used herein and unless otherwise indicated, the term "enantiomerically pure" means a stereomerically pure composition of a compound having one chiral center.
[022] As used herein and unless otherwise indicated, the term "racemic" or
"racemate" means about 50% of one enantiomer and about 50% of the corresponding enantiomer relative to all chiral centers in the molecule. The invention encompasses all enantiomerically pure, enantiomerically enriched, diastereomerically pure, diastereomerically enriched, and racemic mixtures of the compounds of the invention.
[023] As used herein and unless otherwise indicated, the term "process(es) of the invention" or "process(es) of preparing" or "process(es) for the preparation" refers to the methods disclosed herein which are useful for preparing a compound of the invention. Modifications to the methods disclosed herein (e.g., starting materials, reagents, protecting groups, solvents, temperatures, reaction times, purification) are also encompassed by the present invention.
[024] As used herein and unless otherwise indicated, the term "adding", "reacting" or the like means contacting one reactant, reagent, solvent, catalyst, reactive group or the like with another reactant, reagent, solvent, catalyst, reactive group or the like. Reactants, reagents, solvents, catalysts, reactive group or the like can be added individually, simultaneously or separately and can be added in any order. They can be added in the presence or absence of heat and can optionally be added under an inert atmosphere. "Reacting" can refer to in situ formation or intramolecular reaction where the reactive groups are in the same molecule.
[025] As used herein and unless otherwise indicated, a reaction that is "substantially complete" or is driven to "substantial completion" means that the reaction contains more than about 80% by percent yield, more preferably more than about 90% by percent yield, even more preferably more than about 95% by percent yield, and most preferably more than about 97% by percent yield of the desired product.
[026] As used herein and unless otherwise indicated, the term "pharmaceutically acceptable salt" includes, but is not limited to, salts of acidic or basic groups that may be present in the compounds of the invention. Compounds of the invention that are basic in nature are capable of forming a wide variety of salts with various inorganic and organic acids. The acids that may be used to prepare pharmaceutically acceptable salts of such basic compounds are those that form salts comprising pharmacologically acceptable anions including, but not limited to, acetate, benzenesulfonate, benzoate, bicarbonate, bitartrate, bromide, camsylate, carbonate, chloride, bromide, iodide, citrate, dihydrochloride, edetate, edisylate, estolate, esylate, fumarate, gluceptate, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrabamine, hydroxynaphthoate, isethionate, lactate, lactobionate, malate, maleate, mandelate, mesylate, methylsulfate, muscate, napsylate, nitrate, panthothenate, phosphate/diphosphate, polygalacturonate, salicylate, stearate, succinate, sulfate, tannate, tartrate, teoclate, triethiodide, and pamoate. Compounds of the invention that include an amino group also can form pharmaceutically acceptable salts with various amino acids, in addition to the acids mentioned above. Compounds of the invention that are acidic in nature are capable of forming base salts with various pharmacologically acceptable cations. Non- limiting examples of such salts include alkali metal or alkaline earth metal salts and, particularly, calcium, magnesium, sodium, lithium, zinc, potassium, and iron salts.
[027] As used herein and unless otherwise indicated, the term "hydrate" means a compound of the present invention or a salt thereof, that further includes a stoichiometric or non-stoichiometeric amount of water bound by non-covalent intermolecular forces.
[028] As used herein and unless otherwise indicated, the term "solvate" means a solvate formed from the association of one or more solvent molecules to a compound of the present invention. The term "solvate" includes hydrates (e.g., mono-hydrate, dihydrate, trihydrate, tetrahydrate, and the like).
[029] As used herein and unless otherwise indicated, the term "polymorph" means solid crystalline forms of a compound of the present invention or complex thereof. Different polymorphs of the same compound can exhibit different physical, chemical and /or spectroscopic properties.
[030] As used herein and unless otherwise indicated, the phrase "diseases or conditions related to an abnormally high level or activity of TNF-α" means diseases or conditions that would not arise, endure or cause symptoms if the level or activity of TNF-α were lower, or diseases or conditions that can be prevented or treated by a lowering of TNF-α level or activity.
[031] As used herein, and unless otherwise specified, the terms "treat," "treating" and "treatment" contemplate an action that occurs while a patient is suffering from the specified disease or disorder, which reduces the severity or symptoms of the disease or disorder or retards or slows the progression or symptoms of the disease or disorder.
[032] Acronyms or symbols for groups or reagents have the following definition:
HPLC = high performance liquid chromatography, CH3CN = acetonitrile; DMF = dimethyl formamide, DMSO = dimethyl sulfoxide, THF = tetrahydrofuran, CH2Cl2 = methylene chloride and CDI = l,l'-carbonyldiimidazole.
[033] If there is a discrepancy between a depicted structure and a name given that structure, the depicted structure is to be accorded more weight. Furthermore, if the stereochemistry of a structure or a portion thereof is not indicated, e.g., with bold or dashed lines, the structure or portion thereof is to be interpreted as encompassing all stereoisomers of it.
[034] The invention can be understood more fully by reference to the following detailed description and illustrative examples, which are intended to exemplify non-limiting embodiments of the invention.
5.2 Processes of the Invention
[035] The present invention provides processes of preparing unsubstituted and substituted 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-l,3-dione compounds. In general, the processes of the present invention may encompass improved or efficient means for the large scale or commercial production of unsubstituted and substituted 4-amino-2-(2,6- dioxopiperidin-3-yl)isoindoline- 1 ,3-dione compounds.
[036] The unsubstituted and substituted 4-amino-2-(2,6-dioxopiperidin-3- yl)isoindoline-l,3-dione compounds can be used to prepare pharmaceutical compositions and/or dosage forms for treating a wide range of diseases and conditions including, but not limited to, inflammatory diseases, autoimmune diseases, cancers, heart diseases, genetic diseases, allergic diseases, osteoporosis and lupus. In general, the pharmaceutical compositions can comprise at least one of the 4-amino-2-(2,6-dioxopiperidin-3- yl)isoindoline-l,3-dione compounds or a pharmaceutically acceptable salt, solvate, polymorph or stereoisomer thereof. The pharmaceutical compositions can be administered to patients who are treated for a wide range of diseases and conditions. Optionally, the pharmaceutical compositions can further comprise at least one carrier, excipient, diluent, a second active agent or a combination thereof. In some embodiments, the pharmaceutical compositions are used in the preparation of individual, single unit dosage forms. Single unit dosage forms are suitable for oral, mucosal {e.g., sublingual, nasal, vaginal, cystic, rectal, preputial, ocular, buccal or aural), parenteral {e.g., subcutaneous, intravenous, bolus injection, intramuscular or intraarterial), topical (e.g., eye drops or other ophthalmic preparations), transdermal or transcutaneous administration to a patient. Non-limiting examples of dosage forms include tablets, caplets, capsules {e.g., soft elastic gelatin capsules), cachets, troches, lozenges, dispersions, suppositories, powders, aerosols (e.g., nasal sprays or inhalers), gels, liquid dosage forms suitable for oral or mucosal administration to a patient, including suspensions (e.g., aqueous or non-aqueous liquid suspensions, oil-in-water emulsions or a water-in-oil liquid emulsions), solutions and elixirs, liquid dosage forms suitable for parenteral administration to a patient, eye drops or other ophthalmic preparations suitable for topical administration, and sterile solids (e.g., crystalline or amorphous solids) that can be reconstituted to provide liquid dosage forms suitable for parenteral administration to a patient.
[037] In some embodiments, the invention provides processes for preparing 4- amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-l,3-dione compounds of Formula (I):
Figure imgf000010_0001
or a pharmaceutically acceptable salt, solvate, polymorph or stereoisomer thereof, comprising the step of cyclizing anN-(3-aminophthaloyl)-glutamine compound of Formula (II), anN-(3- aminophthaloyl)-isoglutamine compound of (HA) or a salt thereof:
Figure imgf000010_0002
with a cyclizing agent wherein R1 is H, F, benzyl, (CrC8)alkyl, (C2-C8)alkenyl, or (C2- C8)alkynyl.
[038] In one embodiment, R1 of Formula (I) and/or (II) is H. In a particular embodiment, R1 of Formula (I) and/or (II) is (CfC8)alkyl. In a further embodiment, R1 of Formula (I) and/or (II) is methyl. In another embodiment, the solvate is a hydrate. [039] The cyclization of the compound of Formula (II) with the cyclizing agent can occur in a solvent such as acetonitrile, ethyl acetate, acetone, methyl ethyl ketone, diethyl ether, tetrahydrofuran, dichloromethane, chloroform, N-methyl pyrrolidinone, dimethyl formamide, dimethyl sulfoxide and combinations thereof. In one embodiment, the solvent is acetonitrile. In another embodiment, the solvent is boiling acetonitrile.
[040] The reaction temperature can be any temperature useful for the cyclization reaction according to a person of ordinary skill in the art. For instance, in certain embodiments, the cyclization reaction temperature can vary from about 20 0C to about 100 0C. In some embodiments, the cyclization reaction temperature is from about 50 0C to about 90 0C. In other embodiments, the cyclization reaction temperature is from about 80 0C to about 87 0C. In a particular embodiment, the cyclization reaction temperature is the boiling point (i.e., 81-82 0C at 1 atmospheric pressure) of acetonitrile.
[041] The cyclization reaction time can be any time period useful for the cyclization reaction according to a person of ordinary skill in the art. For instance, in certain embodiments, the cyclization reaction time can vary from about 1 to about 24 hours, depending on the reaction temperature. In general, the higher the reaction temperature, the shorter is the reaction time. In one embodiment, the solvent is acetonitrile, the reaction temperature is from about 80 0C to about 87 0C, and the reaction time is from about 1 to about 5 hours.
[042] The cyclizing agent can be any chemical that can cause a ring formation reaction between the amide group and the carboxylic group of Formula (II) or (HA). In some embodiments, the cyclizing agent can have the following formula:
Figure imgf000011_0001
where each of X and Y is independently an unsubstituted or substituted imidazolyl, benzimidazolyl or benzotriazolyl. The cyclizing reagent of Formula (V) can be purchased from a commercial supplier or prepared according to any method apparent to a person of ordinary skill in the art. For instance, the cyclizing agent of Formula (V) can be prepared by reacting phosgene (COCl2) with an unsubstituted or substituted lH-imidazole compound, IH- benzimidazole or lH-benzotriazole. The reaction between phosgene and a lH-imidazole compound is described in Batey et ah, Tetrahedron Lett., 1998, 39, 6267. The reaction between phosgene and a lH-benzotriazole compound is described in Katritzky et al., J. Org. Chem., 1997, 62, 4155.
[043] In some embodiments, the cyclizing agent is a carbonyldiimidazole compound having the formula:
Figure imgf000012_0001
where each of R2, R3, R4, R5, R6 and R7 is independently H, alkyl, halo, nitro, cyano, acyl, alkoxy, aryloxy, alkoxycarbonyl or alkoxymethyl.
[044] The carbonyldiimidazole compound of Formula (VI) can be purchased from a commercial supplier or prepared according to any method apparent to a person of ordinary skill in the art. For instance, the carbonyldiimidazole compound of Formula (VI) can be prepared by reacting phosgene (COCl2) with an unsubstituted or substituted lH-imidazole compound or a combination thereof. Some non-limiting examples of the lH-imidazole compound suitable for this invention include lH-imidazole, 2-methyl-lH-imidazole, IH- imidazole-5-carbaldehyde, 2-ethyl-lH-imidazole, 2-isopropyl-lH-imidazole, 2-ethyl-5- methyl-lH-imidazole, 2-propyl-lH-imidazole, 2-nitro-lH-imidazole, 5-nitro-lH-imidazole, methyl lH-imidazole-5-carboxylate, 4-(2-methoxyethyl)-lH-imidazole, 2-methyl-5-nitro-lH- imidazole and 5-methyl-4-nitro-lH-imidazole, all of which can be obtained from a commercial supplier such as Aldrich Chemicals, Milwaukee, WI or prepared by methods known to a person of ordinary skill in the art. Non-limiting examples of the carbonyldiimidazole compound include 1,1 '-carbonyldiimidazole, 2,2 '-dimethyl- 1,1'- carbonyldiimidazole, 2,2'-diethyl- 1 , 1 '-carbonyldiimidazole, 2,2'-diisopropyl- 1,1'- carbonyldiimidazole and 2,2'-dinitro-l,l '-carbonyldiimidazole, all of which can be obtained commercially from a supplier such as Aldrich Chemicals, Milwaukee, WI or prepared by the method described above. In one embodiment, the carbonyldiimidazole compound is 1,1'- carbonyldiimidazole.
[045] In further embodiments, the cyclizing agent is selected from Formula (V),
SOCl2, POCl3, derivatives Of SOCl2, derivatives of POCl3, and combinations thereof. The cyclization reaction can be further promoted or catalyzed by using a base in addition to the cyclizing agent. The base can be selected from the group consisiting of organic amines such as triethylamine, pyridine, derivatives of pyridine and combinations thereof.
[046] In a particular embodiment, the 4-amino-2-(2,6-dioxopiperidin-3- yl)isoindoline-l,3-dione compound of Formula (I) can be prepared by cyclizing the N-(3- aminophthaloyl)-glutamine compound of Formula (II) or a salt thereof with 1,1'- carbonyldiimidazole (CDI) in refluxing acetonitrile for about 3 hours as depicted in Scheme A below. Alternatively, the same reaction can occur in N-methyl pyrrolidinone or tetrahydrofuran for a time period from about 13 to about 15 hours at room temperature. In some embodiments, R1 in Scheme A is H.
Figure imgf000013_0001
Formula (II)
SCHEME A
[047] The ratio of the compound of Formula (II) to 1 , 1 ' -carbonyldiimidazole can be any ratio useful for the cyclization reaction according to a person of ordinary skill in the art. For instance, the ratio of the compound of Formula (II) to 1,1 '-carbonyldiimidazole can be from about 2:1 to about 1 : 2. In some embodiments, the ratio of the compound of Formula (II) to 1,1 '-carbonyldiimidazole is from about 1:1 to about 1:1.5. hi other embodiments, the ratio of the compound of Formula (II) to 1,1 '-carbonyldiimidazole is from about 1:1 to about 1 :1.2. hi one embodiment, the cyclization of Formula (II) with 1,1 '-carbonyldiimidazole occurs in acetonitrile for 1 to 24 hours. In another embodiment, the cyclization of Formula (II) occurs in refluxing acetonitrile for 3 hours.
[048] In another embodiment, the 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-
1,3-dione compound of Formula (I) can be prepared by cyclizing the N-(3-aminophthaloyl)- isoglutamine compound of Formula (HA) or a salt thereof with 1,1 '-carbonyldiimidazole (CDI) in a solvent, such as acetonitrile, N-methyl pyrrolidinone and tetrahydrofuran, as depicted in Scheme A' below. The reaction can occur at a temperature ranging from about room temperature to about 150 0C for about 30 minutes to about 24 hours.
Figure imgf000014_0001
Formula (HA) Formula (I)
SCHEME A'
[049] In one embodiment, the compound of Formula (I) can be a free amine.
Optionally, the free amine of Formula (I) can be converted into an acid salt by reacting the free amine of Formula (I) with the corresponding acid in a mole ratio of about 1:1. Some non-limiting examples of suitable acids include methanesulfonic acid, trifluoroacetic acid, 4-(trifluoromethyl)benzoic acid, p-toluenesulfonic acid, hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid. In one embodiment, the 4-amino-2-(2,6-dioxo-3- piperidinyl)isoindole-l,3-dione of Formula (I) is converted into a hydrochloride salt with hydrochloric acid at a temperature from about O0C to about 220C.
[050] If a racemic compound of Formula (I) is desired, a racemic N-(3- aminophthaloyl)-glutamine compound of Formula (II) may be used in the cyclization reaction. Conversely, if an enantiomerically pure compound of Formula (I) is desired, an enantiomerically pure N-(3-aminophthaloyl)-glutamine compound of Formula (II) may be used. Alternatively, if an enantiomerically pure compound of Formula (I) is desired, a racemic mixture of Formula (I) may be prepared and then resolved into the enantiomers by conventional resolution techniques such as biological resolution and chemical resolution. In general, biological resolution uses a microbe which metabolizes one specific enantiomer leaving the other alone. In chemical resolution, the racemic mixture is converted into two diastereoisomers that may be separated by conventional techniques such as fractional crystallization and chromatographies. Once separated, the diasteriosomeric forms may be converted separately back to the enantiomers.
[051] The compound of Formula (II) can be prepared by any method known to a person of ordinary skill in the art. For example, the compound of Formula (II) can be prepared by reducing the nitro group of the compound of Formula (III) to an amine group as depicted in Scheme B below:
Figure imgf000015_0001
Formula (III) Formula (II)
SCHEME B
wherein R1 is H5 F, benzyl, (CrC8)alkyl, (QrC8)alkenyl, or (C2-C8)alkynyl. In some embodiments, R1 in Scheme B is H.
[052] Similarly, the compound of Formula (HA) can be prepared by reducing the nitro group of the compound of Formula (IIIA) to an amine group as depicted in Scheme B' below:
reduction
Figure imgf000015_0002
Figure imgf000015_0003
Formula (HA)
SCHEME B1
[053] In Schemes B and B' above, the compounds of Formulae (III) and (IIIA) can be reduced to the compounds of Formulae (II) and (HA) respectively by any reducing agent known in the art that can reduce a nitro group to a primary amine. Some non-limiting examples of such reducing agent include hydrogen plus a catalyst (catalytic hydrogenation), reducing metals in an acid such as hydrochloric acid and acetic acid, sodium sulfide in ammonium hydroxide solution, zinc in ammonium formate solution, magnesium in hydrazinium monoformate solution and tin dichloride in dilute hydrochloric acid. Some non- limiting examples of suitable hydrogenation catalyst include palladium metal (Pd), platinum metal (Pt), and derivatives and complexes of Pd and Pt. The hydrogenation catalyst can be dissolved in a solvent; or dispersed or coated on the surface of a catalyst support such as carbon and inorganic particles such as alumina, silica, aluminum silicates and the like. Some non-limiting examples of suitable reducing metals include iron, zinc amalgam, zinc and tin. In a particular embodiment, the reducing agent is hydrogen plus a catalyst, hi a further embodiment, the catalyst is a Pd catalyst. In another embodiment, the catalyst is 5% Pd/C. In another embodiment, the catalyst is 10% Pd/C. Further, either wet or dry hydrogenation catalyst can be used. [054] The catalytic hydrogenation is generally carried out at a hydrogen pressure that drives the reaction to substantial completion. In a particular embodiment, the catalytic hydrogenation is carried out at a hydrogen pressure from about 2.76 bars (i.e., 40 psi or 276 kPa) to about 4.14 bars (i.e., 60 psi or 414 kPa).
[055] In one embodiment, the catalytic hydrogenation is run at ambient temperature.
The catalytic hydrogenation is generally performed until the reaction is substantially complete. In a particular embodiment, the catalytic hydrogenation is performed for about 1- 24 hours at a temperature from about 15 0C to about 300C. In a further embodiment, the catalytic hydrogenation is performed for about 2 to 3 hours at a temperature from about 18 0C to about 24 0C.
[056] In one embodiment, the catalytic hydrogenation occurs at a temperature from about 18 0C to about 24 0C for about 2-3 hours in methanol in the presence of 10% Pd/C. Either wet or dry hydrogenation catalyst can be used. In a further embodiment, the catalytic hydrogenation occurs at a pressure from about 40 (2.76 bars or 276 kPa) to about 50 psi (3.45 bars or 345 kPa).
[057] The catalytic hydrogenation can occur in a solvent. In one embodiment, the catalytic hydrogenation is conducted in a protic solvent, such as alcohols, water, and combinations thereof. In a further embodiment, the alcohol solvent is selected from the group consisting of methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol and combinations thereof, hi another embodiment, the catalytic hydrogenation is conducted in an apolar, aprotic solvent such as 1,4-dioxane. In yet another embodiment, the catalytic hydrogenation is conducted in a polar, aprotic solvent such as acetone, DMSO, DMF and THF. In one embodiment, the solvent is a protic solvent, hi a further embodiment, the solvent for catalytic hydrogenation is methanol. In further embodiments, solvent mixtures are used.
[058] If a racemic compound of Formula (II) or (HA) is desired, a racemic compound of Formula (III) or (IIIA) can be used. Conversely, if an enantiomerically pure compound of Formula (II) or (HA) is desired, an enantiomerically pure compound of Formula (III) or (IIIA) can be used. Alternatively, if an enantiomerically pure compound of Formula (II) or (IIA) is desired, a racemic mixture of Formula (II) or (HA) can be prepared and then resolved into the enantiomers by conventional resolution techniques such as biological resolution and chemical resolution. [059] The compound of Formula (III) can be prepared by any method known to a person of ordinary skill in the art. For example, the compound of Formula (III) can be prepared by reacting 3-nitrophthalic anhydride with a glutamine of Formula (IV) as depicted in Scheme C below. R1 is as defined above. In some embodiments, R1 in Scheme C is H.
Figure imgf000017_0002
Figure imgf000017_0001
Formula (IV)
Formula (III)
SCHEME C
[060] Similarly, the compound of Formula (IIIA) can be prepared by reacting 3- nitrophthalic anhydride with an isoglutamine of Formula (IVA) as depicted in Scheme C below. R1 is as defined above. In some embodiments, R1 in Scheme C is H.
Figure imgf000017_0004
Figure imgf000017_0003
Formula (IVA)
Formula (IIIA)
SCHEME C
[061] The reaction between 3-nitrophthalic anhydride and the glutamine of Formula
(IV) or the isoglutamine of Formula (IVA) can occur in a solvent such as acetonitrile, ethyl acetate, acetone, methyl ethyl ketone, diethyl ether, tetrahydrofuran, dichloromethane, chloroform, N-methyl pyrrolidinone, dimethyl formamide, dimethyl sulfoxide and combinations thereof. In one embodiment, the solvent is dimethyl formamide.
[062] The reaction temperature can be any temperature useful for the reaction of
Scheme C or C according to a person of ordinary skill in the art. For instance, in certain embodiments, the temperature of the reaction between 3-nitrophthalic anhydride and Formula (IV) or (IVA) can be from about 20 0C to about 90 0C. In some embodiments, the reaction temperature is from about 40 0C to about 90 0C. In other embodiments, the reaction temperature is from about 60 0C to about 90 0C. In further embodiments, the reaction temperature is from about 80 0C to about 90 0C. [063] The reaction time can be any time useful for the reaction of Scheme C or C according to a person of ordinary skill in the art. For instance, the reaction time can vary from about 1 hour to about 24 hours, depending on the reaction temperature. In general, the higher the reaction temperature, the shorter is the reaction time. In a particular embodiment, the reaction time is about 8 hours at a reaction temperature from about 80 0C to about 90 0C.
[064] If a racemic compound of Formula (III) or (IIIA) is desired, a racemic glutamine of Formula (IV) or (IVA) can be used. Conversely, if an enantiomerically pure compound of Formula (III) or (IIIA) is desired, an enantiomerically pure glutamine of Formula (IV) or (IVA) can be used. Non-limiting examples of glutamine of Formula (IV) include D-glutamine and L-glutamine, both of which can be obtained from a commercial supplier such as Aldrich, Milwaukee, WI. Alternatively, if an enantiomerically pure compound of Formula (III) or (IIIA) is desired, a racemic mixture of Formula (III) or (IIIA) can be prepared and then resolved into the enantiomers by conventional resolution techniques such as biological resolution and chemical resolution.
[065] The 3-nitrophthalic anhydride can be obtained commercially from a supplier such as Aldrich Chemical or prepared by any known method in the art. Further, the compound of Formula (VII) can be prepared by reacting maleic anhydride with a glutamine of Formula (IV) according to the conditions described above for the reaction between 3- nitrophthalic anhydride with the glutamine compound of Formula (IV).
[066] Alternatively, the compound of Formula (III) can be prepared according to the procedure depicted in Scheme D below. Referring to Scheme D below, R1 is as defined above and R8 is alkyl such as t-butyl or aralkyl such as benzyl. In some embodiments, R1 in Scheme D is H and R8 is t-butyl. In other embodiments, R1 in Scheme D is H and R8 is benzyl.
Figure imgf000019_0001
Formula (IE)
Scheme D
[067] Referring to Scheme D above, 3-nitrophthalimide can react with ethyl chloroformate in a solvent in the presence of a catalyst such as triethylamine to form 3-nitro- N-ethoxycarbonyl-phthalimide. Some non-limiting examples of suitable solvent include acetonitrile, ethyl acetate, acetone, methyl ethyl ketone, diethyl ether, tetrahydrofuran, dichloromethane, chloroform, N-methyl pyrrolidinone, dimethyl formamide, dimethyl sulfoxide and combinations thereof. In one embodiment, the solvent is dimethyl sulfoxide. The reaction temperature can be any temperature useful for the reaction of according to a person of ordinary skill in the art. For instance, in certain embodiments, the reaction temperature can be from about 0 0C to about 5 0C. The reaction time can be any time useful for the reaction according to a person of ordinary skill in the art. For instance, the reaction time can vary from about 1 hour to about 24 hours, depending on the reaction temperature. In general, the higher the reaction temperature, the shorter is the reaction time. In a particular embodiment, the reaction time is about 4 hours at 0-5 0C.
[068] The t-butyl or benzyl N-(3-nitrophthaloyl)-glutamine of Formula (IX) can be purchased or prepared by reacting 3-nitro-N-ethoxycarbonyl-phthalimide with a glutamine t- butyl or benzyl ester of Formula (VIII) or an acid salt thereof such as a hydrochloride salt, where R1 is H, F, benzyl, (CrC8)alkyl, (C2-C8)alkenyl, or (C2-C8)alkynyl; and R8 is t-butyl or benzyl, in a solvent in the presence of a catalyst such as triethylamine. In some embodiments, a racemic mixture of glutamine t-butyl ester hydrochloride is used to prepare of Formula (IX). In other embodiments, L-glutamine t-butyl ester hydrochloride is used to prepare of Formula (IX). In further embodiments, D-glutamine t-butyl ester hydrochloride is used to prepare of Formula (IX). Some non-limiting examples of suitable solvents include acetonitrile, ethyl acetate, acetone, methyl ethyl ketone, diethyl ether, tetrahydrofuran, dichloromethane, chloroform, N-methyl pyrrolidinone, dimethyl formamide, dimethyl sulfoxide and combinations thereof. In one embodiment, the solvent is tetrahydrofuran. The reaction temperature can be any temperature useful for the reaction of according to a person of ordinary skill in the art. For instance, in certain embodiments, the reaction temperature can be from about 25 0C to about 1000C. The reaction time can be any time useful for the reaction according to a person of ordinary skill in the art. For instance, the reaction time can vary from about 1 hour to about 48 hours, depending on the reaction temperature. In general, the higher the reaction temperature, the shorter is the reaction time. In a particular embodiment, the reaction time is about 24 hours at about 65-66 0C. [069] The reaction between hydrogen chloride and t-butyl N-(3-nitrophthaloyl)- glutamine of Formula (IX) in a solvent can afford the compound of Formula (III). Some non- limiting examples of suitable solvent include acetonitrile, ethyl acetate, acetone, methyl ethyl ketone, diethyl ether, tetrahydrofuran, dichloromethane, chloroform, N-methyl pyrrolidinone, dimethyl formamide, dimethyl sulfoxide and combinations thereof. In one embodiment, the solvent is dichloromethane. The reaction temperature can be any temperature useful for the reaction of according to a person of ordinary skill in the art. For instance, in certain embodiments, the reaction temperature can be from about 0 0C to about 100 0C. The reaction time can be any time useful for the reaction according to a person of ordinary skill in the art. For instance, the reaction time can vary from about 1 hour to about 24 hours, depending on the reaction temperature, hi general, the higher the reaction temperature, the shorter is the reaction time. In a particular embodiment, the reaction time is about 16 hours at about 20- 250C.
[070] Referring to Scheme D, if a racemic compound of Formula (III) is desired, a racemic t-butyl N-(3-nitrophthaloyl)-glutamine of Formula (VIII) can be used. Conversely, if an enantiomerically pure compound of Formula (III) is desired, an enantiomerically pure t- butyl N-(3-nitrophthaloyl)-glutamine of Formula (VIII) can be used. Alternatively, if an enantiomerically pure compound of Formula (III) is desired, a racemic mixture of Formula (III) can be prepared and then resolved into the enantiomers by conventional resolution techniques such as biological resolution and chemical resolution. In general, biological resolution uses a microbe which metabolizes one specific enantiomer leaving the other alone. In chemical resolution, the racemic mixture is converted into two diastereoisomers that can be separated by conventional techniques such as fractional crystallization and chromatographies. Once separated, the diasteriosomeric forms can be converted separately back to the enantiomers.
[071] In some embodiments, the compound of Formula (IIIA) can be prepared according to the procedures depicted in Scheme D' below, which are similar to the procedures of Scheme D. Referring to Formulae (VIIIA), (IXA) and (IIIA), R1 and R8 are as defined above. In some embodiments, R1 in Scheme D' is H and R8 is t-butyl. In other embodiments, R1 in Scheme D' is H and R8 is benzyl.
Figure imgf000021_0001
Formula (VIIIA)
Triethylamine
Figure imgf000021_0002
R8 is alkyl or aralkyl
Figure imgf000021_0004
Figure imgf000021_0003
Formula (IIIA)
Scheme D'
[072] Alternatively, the 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-l,3-dione compound of Formula (I), or a pharmaceutically acceptable salt, solvate, polymorph or stereoisomer thereof, can be prepared by reacting 3-aminophthalic acid or a salt thereof with a 3-aminoglutarimide compound of Formula (X) or a salt thereof:
Figure imgf000021_0005
in a solvent, wherein R1 is H, F, benzyl, (Ci-Cs)alkyl, (C2-C8)alkenyl, or (C2-C8)alkynyl. In some embodiments, R1 of Formula (X) is H.
[073] The 3-aminoglutarimide compound can be purchased commercially from a supplier such as Evotec OAI, Hamburg, Germany; or prepared according to methods described in the literature such as Capitosti et ah, Organic Letters, 2003, Vol. 5, No. 16, pp. 2865-2867. In some embodiments, the 3-aminoglutarimide compound of Formula (X) is 3- aminoglutarimide (i.e., where R1 of Formula (X) is H) or its salt. Some non-limiting examples of suitable salts of Formula (X) include carboxylic acid salts, methanesulfonic acid salt, trifluoroacetic acid salt, 4-(trifluoromethyl)benzoic acid salt, p-toluenesulfonic acid salt, hydrochloric acid salt, hydrobromic acid salt, nitric acid salt, sulfuric acid salt and phosphoric acid salt.
[074] The above condensation or coupling reaction between the 3-aminophthalic acid or a salt thereof and the compound of Formula (X) or a salt thereof may occur in the presence of a catalyst. The catalyst may be a base, an acid such as a carboxylic acid, or a combination thereof. In some embodiments, the catalyst is or comprises a base. Some non- limiting examples of suitable bases include alkali hydroxides, alkaline hydroxides, alkali carboxylates (e.g., sodium acetate), alkali carbonates or hydrogen carbonates (e.g., sodium hydrogen carbonate), heterocyclic bases (e.g., substituted and unsubstituted pyrrolidine, pyrrolidinone, piperidine, piperidinone, pyrrole, pyridine, imidazole, benzimidazole, benzotriazole, and the like), amines and combinations thereof. In some embodiments, the catalyst is or comprises an amine. Some non-limiting examples of suitable amines include alkylamines (e.g., ethylamine), dialkylamines (e.g., diethylamine), trialkyamines (e.g., triethylamine and ΛζiV-diisopropylethylamine), arylamines (e.g., phenylamine), diarylamines (e.g, diphenylamine), alkylarylamines (e.g., iV-methylaniline), triarylamines (e.g., triphenylamine), dialkylarylamines (e.g., N,iV-dimethylaniline), and alkydiarylamines (e.g., JV-methyldiphenylamine). In one embodiment, the catalyst is or comprises triethylamine, unsubstituted imidazole or a combination thereof.
[075] In certain embodiments, the catalyst is or comprises a carboxylic acid having
Formula (XI):
R8-CO2H (XI) wherein R8 is alkyl, aryl, alkaryl, aralkyl, heterocyclyl or a combination thereof. In some embodiments, the carboxylic acid is or comprises an aliphatic carboxylic acid such as acetic acid. In further embodiments, the catalyst comprises at least one of the amines and at least one of the carboxylic acid of Formula (XI) disclosed herein. In a particular embodiment, the catalyst comprises triethylamine and acetic acid. [076] The solvent for the condensation reaction may be any solvent that can disperse or dissolve both the 3-aminophthalic acid or a salt thereof and the 3-aminoglutarimide compound of Formula (X) or a salt thereof. Non-limiting examples of suitable solvents include acetonitrile, ethyl acetate, acetone, methyl ethyl ketone, diethyl ether, tetrahydrofuran, dichloromethane, chloroform, N-methyl pyrrolidinone, dimethyl formamide, dimethyl sulfoxide, toluene, isopropyl acetate, isopropyl alcohol, n-propanol and combinations thereof. In one embodiment, the solvent is acetonitrile.
[077] The condensation reaction temperature can be any temperature useful for the reaction of according to a person of ordinary skill in the art. For instance, in certain embodiments, the condensation reaction temperature can be from about 25 0C to about 100 0C.
[078] The condensation reaction time can be any time useful for the reaction according to a person of ordinary skill in the art. For instance, the reaction time can vary from about 1 to about 48 hours, depending on the reaction temperature. In general, the higher the reaction temperature, the shorter is the reaction time. In a particular embodiment, the reaction time is from about 5 hours to about 7 hours at a reaction temperature from about 80 0C to about 90 0C.
[079] In one embodiment, the compound of Formula (I) is 4-amino-2-(2,6- dioxopiperidin-3-yl)isoindoline-l,3-dione (i.e., where R1 of Formula (I) is H) which is prepared according to Scheme E below. Referring to Scheme E, 3-aminophthalic acid hydrochloride [i.e., Compound (I)] reacts with 3-aminoglutarimide (i.e., where R1 of Formula (X) is H) hydrochloride [i.e., Compound (2)] in a solvent such as acetonitrile in the presence of a catalyst comprising triethylamihe and acetic acid. In some embodiments, the mole ratio of triethylamine to acetic acid is from about 1:10 to about 10:1. In other embodiments, the mole ratio of triethylamine to acetic acid is from about 1 : 10 to about 1:1. In further embodiments, the mole ratio of triethylamine to acetic acid is about 1 :2.
triethy lam ine, acetic acid acetonirile
Figure imgf000023_0002
Figure imgf000023_0001
Scheme E
[080] The 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline- 1 ,3-dione compound of
Formula (I) can be purified by any conventional purification techniques such as recrystallization, extraction, chromatography and the like. In some embodiments, the compound of Formula (I) is purified by recrystallization. In other embodiments, the compound of Formula (I) is 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-l,3-dione (i.e., where R1 of Formula (I) is H) which can be purified by recrystallization with a solvent mixture comprising dimethyl sulfoxide and water, hi further embodiments, the ratio of dimethyl sulfoxide to water in the solvent mixture is from about 1 :10 to about 10:1 by volume. In a further embodiment, the ratio of dimethyl sulfoxide to water in the solvent mixture is about 1 :4 to about 1 :8 by volume.
[081] Particular embodiments of the present invention are illustrated by the syntheses of Examples 1-17 according to Schemes A-E and modifocations thereof. Modifications of variables including, but not limited to, reaction solvents, reaction times, reaction temperatures, reagents, starting materials, and functional groups in the particular embodiments of the synthesis of 4-amino-2-(2,6-dioxo-3-piperidinyl)isoindole-l,3-dione or an acid salt thereof will be apparent to those of ordinary skill in the art.
6. EXAMPLES
Example 1 - Preparation of N-(3-nitrophthaloyl)-glutamine According to Scheme C
[082] A mixture of DMF (37 L), 3-nitroρhthalic anhydride (4080 g, 21.1 moles) and
L-glutamine (3020 g, 20.7 moles) was added to a round bottom flask equipped with a mechanical stirrer, a condenser, a thermometer, a nitrogen inlet and a heating mantel. The reaction mixture was stirred at 80-87 0C for 8 hours. The temperature of the reaction was kept below 90 0C at all time. The progress of the reaction was monitored by HPLC using a Waters Nova-Pak C18 column (3.9x150 mm, particle size = 4 micron, UV wavelength = 240 nm, retention time = 3.64 minutes) and a 10/90 mixture of acetonitrile and 0.1% aqueous H3PO4 by volume as an eluent at a flow rate of 1 mL/min. After the reaction was completed, the reaction mixture was allowed to cool to room temperature and then concentrated to an oil (about 90% of DMF was removed) under a reduced pressure (400 mtorr at pump) on a heating bath at 400C. The oil was stirred with water (39.7 L) for 6 hours to produce a slurry. The solid in the slurry was filtered, washed with water (8.8 L), air dried and then dried in a vacuum oven at 60 0C and <1 mm pressure. The yield of the crude product was 4915 g (92.9% purity by HPLC). The crude product was further purified by dispersing it in ethyl acetate in a ratio of 10 mL of ethyl acetate to 1 g of the crude product. After the dispersion was stirred overnight, it was then filtered and the solid filtered out was dried to yield 4780 g (70%) of the product. The product purity was found to be 99.62% by HPLC using a Waters Nova-Pak/C18 column (3.9x150 mm, particle size = 4 micron, UV wavelength = 240 nm, retention time = 5.0 minutes) and an eluent mixture of acetonitrile and 0.1% aqueous H3PO4 in a ratio of 10:90 by volume at a flow rate of 1 niL/min. The product in DMSO-dβ was characterized by a 1H NMR spectrum showing the following chemical shifts (δ, ppm): 13.32 (b, IH), 8.33 (d, J=7.9Hz, IH), 8.22 (d, J=7.4 Hz, IH), 8.11 (t, J=7.8 Hz, IH), 7.20 (s, IH), 6.47 (s, IH), 4.83-4.77 (dd, J=4.6 and 9.7 Hz, IH), 2.37-2.12 (m, 4H); and by a 13C NMR spectrum showing the following chemical shifts (δ, ppm): 173.24, 170.05, 165.44, 162.77, 144.47, 136.71, 133.00, 128.85, 127.27, 122.55, 51.88, 31.32, 23.89. The melting point of the product was found to be 180-1820C. An elemental analysis yielded the following results in weight percent: C, 48.75; H, 3.48; N, 13.07, which compared with calculated values for C13HnN3O7, in weight percent: C, 48.60; H, 3.45; N, 13.08.
Example 2 - Preparation of N-(3-Aminophthaloyl)-glutamine According to Scheme B [083] A mixture of Example 1 (4780, 14.88 moles), 10% Pd/C (120 g) and methanol
(44 L) was hydrogenated at 50 psi for 2.5 hours in a 100 L hydrogenation reactor. The progress of the reaction was monitored by HPLC using a Waters Nova-Pak Cl 8 column (3.9x150 mm, particle size = 4 micron, UV wavelength = 240 nm, retention time = 3.64 minutes) and an eluent mixture of acetonitrile and 0.1% aqueous H3PO4 in a ratio of 10:90 by volume at a flow rate of 1 mL/min. The mixture was filtered through a pad of celite and the celite pad was washed with methanol (6 L). The filtrate was concentrated in vacuo to a gummy material. The gummy material was stirred with ethyl acetate (22 L) overnight to form a slurry. The slurry was filtered and the yellow solid filtered out was washed with ethyl acetate (10 L). The yellow solid was air dried and then dried in a vacuum oven at 60 0C and <1 mm pressure to yield 4230 g of the product. The product purity was found to be 99.75% by HPLC using a Waters Nova-Pak Cl 8 column (3.9x150 mm, particle size = 4 micron, UV wavelength = 240 nm, retention time = 3.64 minutes) and an eluent mixture of acetonitrile and 0.1% aqueous H3PO4 in a ratio of 10:90 by volume at a flow rate of 1 mL/min. The product in DMSO-d6 was characterized by a 1H NMR spectrum showing the following chemical shifts (δ, ppm): 13.10 (b, IH), 7.50-7.43 (dd, J=7.0 and 8.4 Hz, IH), 7.24 (s, IH), 7.03-6.98 (dd, J=5.0 and 8.4 Hz, 2H), 6.75 (s, IH), 6.52 (s, 2H(, 4.70-4.64 (dd, J=4.5 and 10.5 Hz, IH), 2.41-2.04 (m, 4H); and by a 13C NMR spectrum showing the following chemical shifts (δ, ppm): 173.16, 170.81, 168.94, 167.68, 146.70, 135.41, 132.07, 121.63, 110.93, 108.68, 50.77, 31.38, 24.08. The melting point of the product was found to be 177- 1790C. An elemental analysis yielded the following results in weight percent: C, 53.61; H, 4.47; N, 14.31, which compared with calculated values for C13H13N3Os, in weight percent: C, 53.60; H, 4.50; N, 14.43.
Example 3 - Preparation of 4-Amino-2-(2,6-dioxo-3-piperidinyl)isoindoIe-l,3-dione According to Scheme A
[084] A mixture of acetonitrile (42 L) and Example 2 (2120 g, 7.28 moles) was added to a round bottom flask equipped with a mechanical stirrer, a condenser, a nitrogen inlet and a heating mantel to form a solution. When the solution was stirred and heated to about 40 to 45 0C, l,r-carbonyldiimidazole (1290 g, 7.95 moles) was added. The reaction mixture was stirred and refluxed for 4.5 hours. The progress of the reaction was monitored by HPLC using a Waters Nova-Pak Cl 8 column (3.9x150 mm, particle size = 4 micron, UV wavelength = 240 run, retention time = 3.64 minutes) and an eluent mixture of acetonitrile and 0.1% aqueous H3PO4 in a ratio of 20:80 by volume at a flow rate of 1 mL/min. After cooled to room temperature, the reaction mixture was filtered to yield a yellow solid which was subsequently washed with acetonitrile (6.5 L). The yellow solid was air dried and then dried in a vacuum oven at 6O0C and <1 mm pressure to yield 1760 g (88%) of the product. The product purity was found to be 99.57% by HPLC using a Waters Nova-Pak Cl 8 column (3.9x150 mm, particle size = 4 micron, UV wavelength = 240 nm, retention time = 3.64 minutes) and an eluent mixture of acetonitrile and 0.1% aqueous H3PO4 in a ratio of 20:80 by volume as at a flow rate of 1 mL/min. The product in DMSO-d6 was characterized by a 1H NMR spectrum showing the following chemical shifts (δ, ppm): 11.10 (s, IH), 7.47(t, J=7.9 Hz, IH), 7.03-6.99 (dd, J=4.8 and 8.4 Hz, 2H), 6.52 (s, 2H), 5.09-5.02 (dd, J=5.3 and 12.4 Hz, IH), 2.96-2.82 (m, IH)5 2.62-2.46 (m, 2H), 2.07-2.00 (m, IH); and by a 13C NMR spectrum showing the following chemical shifts (δ, ppm): 172.82, 170.11, 168.57, 167-37, 146.71, 135.46, 131.99, 121.70, 110.97, 108.52, 48.47, 30.97, 22.14. The melting point of the product was found to be 315.5-317.50C. An elemental analysis yielded the following results in weight percent: C, 56.98; H, 3.86; N, 15.35, which compared with calculated values for Ci3H11N3O4, in weight percent: 57.14; H, 4.06; N, 15.38. Example 4 - Preparation of 3-Nitro-N-ethoxycarbonyl-phthalimide According to Scheme D
[085] Ethyl chloroformate (1.89 g, 19.7 mmol) was added dropwise over 10 minutes to a stirred solution of 3-nitrophthalimide (3.0 g, 15.6 mmol) and triethylamine (1.78 g, 17.6 mmol) in DMF (20 mL) at about 0-5 0C under nitrogen. The reaction was allowed to warm to room temperature and stirred for 4 hours. The reaction mixture was slowly added to an agitated mixture of ice and water (60 mL). The slurry was filtered and the solid was crystallized from CHCl3 (15 mL) and petroleum ether (15 mL) to yield 3.1 g (75%) of the product as an off-white solid: mp 100.0-100.50C; 1H NMR (CDCl3) δ 8.25(d, J=7.5 Hz, IH), 8.20(d, J=8.0 Hz, IH), 8.03(t, J=7.9 Hz, IH), 4.49(q, J=7.1 Hz, 2H), 1.44(t, J=7.2 Hz, 3H); 13C NMR (CDCl3) δ 161.45, 158.40, 147.52, 145.65, 136.60, 132.93, 129.65, 128.01, 122.54, 64.64, 13.92; HPLC, Waters Nova-Pak/C18, 3.9x150 mm, 4 micron, 1 mL/min, 240 nm, 30/70 CH3CN/0.1% H3PO4(aq), 5.17 min (98.11%); Anal, calculated for C11H8N2O6 : C, 50.00; H, 3.05; N, 10.60. Found: C, 50.13; H, 2.96; N, 10.54.
Example 5 - Preparation of t-Butyl N-(3-nitrophthaloyl)-L-glutamine [086] A mixture of Example 4 (1.0 g, 3.8 mmol), L-glutamine t-butyl ester hydrochloride (0.9 g, 3.8 mmol) and triethylamine (0.54 g, 5.3 mmol) in THF (30 mL) was refluxed for 24 hours. The THF solvent was removed in vacuo and the residue was dissolved in CH2Cl2 (50 mL). The CH2Cl2 solution was washed with water (2x15 mL) and brine (15 mL) and then dried. The solvent was removed and the residue was purified by flash chromatograph (CH2Cl2 :EtOAc/7: 3) to give 0.9 g (63%) of a glassy material: 1H NMR (CDCl3) δ 8.15(d, J=7.9 Hz, 2H), 7.94(t, J=7.8 Hz, IH), 5.57(b, 2H), 4.84(dd, J=5.1 and 9.7 Hz, IH), 2.53-2.30(m, 4H), 1.43(s, 9H); HPLC, Waters Nova-Pak/C 18, 3.9x150 mm, 4 micron, 1 mL/min, 240 nm, 30/70 CH3CN/0.1% H3PO4(aq), 6.48 min (99.68%); Chiral Analysis, Daicel Chiral Pak AD, 0.4x25 Cm, 1 mL/min, 240 nm, 5.32 min. (99.39%); Anal, calculated for C17H19N3O7 : C, 54.11; H, 5.08; N, 11.14. Found: C, 54.21; H, 5.08; N, 10.85.
Example 6 - Preparation of N-(3-NitrophthaIoyl)-L-glutamine
[087] Hydrogen chloride gas was bubbled into a stirred cold (5 0C) solution of
Example 5 (5.7 g, 15.1 mmol) in CH2Cl2 (100 mL) for 25 minutes. The mixture was then stirred at room temperature for 16 hours. Ether (50 mL) was added and the resulting mixture was stirred for 30 minutes. The slurry was filtered to yield 4.5 g of solid, which was used in the next reaction: 1H NMR (DMSO-d6) δ 8.36(dd, J=0.8 and 8.0 Hz, IH), 8.24(dd, J=0.8 and 7.5 Hz, IH), 8.1 l(t, J=7.9 Hz, IH), 7.19(b, IH), 6.72(b, IH), 4.80(dd, J=3.5 and 8.8 Hz, IH), 2.30-2.10(m, 4H).
Example 7 - Preparation of (S)-3-(3'-Nitrophthalimido)-piperidine-2,6-dione [088] A suspension mixture of Example 6 (4.3 g, 13.4 mmol) in anhydrous CH2Cl2
(170 mL) was cooled to -40 °C with an isopropyl alcohol (IPA)/dry ice bath. Thionyl chloride (1.03 mL, 14.5 mmol) was added dropwise followed by pyridine (1.17 mL, 14.5 mmol). After 30 minutes, triethylamine (2.06 mL, 14.8 mmol) was added and the mixture was stirred at about -30 to -4O0C for 3 hours. The mixture was filtered and washed with CH2Cl2 to yield 2.3 g (57%) of the crude product. The crude product was recrystallized from acetone (300 mL) to yield 2 g of the product as a white solid: mp 259.0-284.00C (dec); 1H NMR (DMSO-d6) δ 11.19(s, IH), 8.34(d, J=7.8 Hz, IH)5 8.23(d, J=7.1 Hz, IH), 8.12(t, J=7.8 Hz, IH), 5.25-5.17(dd, J=5.2 and 12.7 Hz, IH), 2.97-2.82(m, IH), 2.64-2.44(m, 2H), 2.08- 2.05(m, IH); 13C NMR (DMSO-de) δ 172.67, 169.46, 165.15, 162.50, 144.42, 136.78, 132.99, 128.84, 127.27, 122.53, 49.41, 30.84, 21.71; HPLC, Waters Nova-Pak/C 18, 3.9x150 mm, 4 micron, 1 mL/min, 240 nm, 10/90 CH3CN/0.1 %H3PO4(aq), 4.27 min.(99.63%); Anal, calculated for C13H9N3O6 : C, 51.49; H, 2.99; N, 13.86. Found: C, 51.67; H, .2.93; N, 13.57.
Example 8 - Preparation of (S)-3-(3'-Aminophthalimido)-piperidine-2,6-dione
[089] A mixture of (S)-3-(3'-nitrophthalimido)-piperidine-2,6-dione (0.76 g, 2.5 mmol) and 10% Pd/C (0.3 g) in acetone (200 mL) was hydrogenated in a Parr-Shaker apparatus at 50 psi of hydrogen for 24 hours. The mixture was filtered through celite and the filtrate was concentrated in vacuo. The solid was stirred with hot ethyl acetate for 30 minutes to give 0.47 g (69%) of the product as a yellow solid: mp 309-3100C; 1H NMR (DMSOd6) δ 11.10 (s, IH), 7.47(dd, J=7.2 and 8.3 Hz, IH), 7.04-6.99(dd, J=6.9 and 8.3 Hz, 2H), 6.53(s, 2H), 5.09-5.02(dd, J=5.3 and 12.4 Hz, IH), 2.96-2.82(m, IH), 2.62-2.46(m, 2H), 2.09- 1.99(m, IH); 13C NMR (DMSOd6) δ 172.80, 170.10, 168.57, 167.36, 146.71, 135.44, 131.98, 121.69, 110.98, 108.54, 48.48, 30.97, 22.15; HPLC, Waters Nova-Pak/C18, 3.9x150 mm, 4 micron, 1 mL/min, 240 nm, 15/85 CH3CN/0.1 % H3PO4(aq), 4.99 min. (98.77%); Chiral analysis, Daicel Chiral Pak AD, 0.46x25 cm, 1 mL/min, 240 nm, 30/70 Hexane/IPA 9.55 min.(1.32%), 12.55 min(97.66%); Anal, calculated for C13HnN3O4: C, 57.14; H, 4.06; N, 15.38. Found: C, 57.15; H, 4.15; N, 14.99.
Example 9 - Preparation of t-Butyl N-(3-nitrophthaloyl)-D-glutamine
[090] A mixture of Example 4 (5.9 g, 22.3 mmol), D-glutamine t-butyl ester (4.5 g,
22.3 mmol) and triethylamine (0.9 g, 8.9 mmol) in THF (100 mL) was refluxed for 24 hours. The mixture was diluted with CH2Cl2 (100 mL) and washed with water (2x50 mL), brine (50 mL) and dried. The solvent was removed in vacuo and the residue was purified by flash chromatography (2% CH3OH in CH2Cl2) to afford 6.26 g (75%) of the product as a glassy material: 1H NMR (CDCl3) δ 8.12(d, J=7.5 Hz, 2H), 7.94(dd, J=7.9 and 9.1 Hz, IH), 5.50(b, IH), 5.41(b, IH), 4.85(dd, J=5.1 and 9.8 Hz, IH), 2.61-2.50(m, 2H), 2.35-2.27(m,2H), 1.44(s, 9H); 13C NMR (CDCl3) δ 173.77, 167.06, 165.25, 162.51, 145.07, 135.56, 133.78, 128.72, 127.27, 123.45, 83.23, 53.18, 32.27, 27.79, 24.42; HPLC, Waters Nova-Pak/C 18, 3.9x150 mm, 4 micron, 1 mL/min, 240 nm, 25/75 CH3CNA).1 % H3PO4(aq) 4.32 min.(99.74%); Chiral analysis, Daicel Chiral Pak AD, 0.46x25 cm, 1 mL/min, 240 nm, 55/45 Hexane/DPA 5.88 min.(99.68%); Anal, calculated for C17H19N3O7: C, 54.11; H, 5.08; N, 11.14. Found: C, 54.25; H, 5.12; N, 10.85.
Example 10 - Preparation of N-(3-Nitrophthaloyl)-D-glutamine [091] Hydrogen chloride gas was bubbled into a stirred cold (5 0C) solution of
Example 9 (5.9 g, 15.6 mmol) in CH2Cl2 (100 mL) for 1 hour then stirred at room temperature for another hour. Ether (100 mL) was added and stirred for another 30 min. The mixture was filtered, washed with ether (60 mL) and dried (4O0C, <1 mm Hg) to afford 4.7 g (94%) of the product: 1H NMR (DMSO-de) δ 8.33(d, J=7.8 Hz, IH), 8.22(d, J=7.2 Hz, IH), 8.1 l(t, J=7.8 Hz, IH), 7.19(b, IH), 6.72(b, IH), 4.81(dd, J=4.6 and 9.7 Hz, IH), 2.39-2.12(m, 4H); 13C NMR (DMSO-d6) δ 173.21, 169.99, 165.41, 162.73, 144.45, 136.68, 132.98, 128.80, 127.23, 122.52, 51.87, 31.31, 23.87.
Example 11 - Preparation of (R)-3-(3'-Nitrophthalimido)-piperidine-2,6-dione [092] A suspension mixture of Example 10 (4.3 g, 13.4 mmol) in anhydrous CH2Cl2
(170 mL) was cooled to -40 0C with IP A/dry ice bath. Thionyl chloride (1.7 g, 14.5 mmol) was added dropwise followed by pyridine (1.2 g, 14.5 mmol). After 30 minutes, triethylamine (1.5 g, 14.8 mmol) was added and the mixture was stirred at -30 to -40 °C for 3 hours. The mixture was filtered, washed with CH2Cl2 (50 mL) and dried (6O0C, <1 mm Hg) to give 2.93 g of the product. Another 0.6 g of the product was obtained from the methylene chloride filtrate. Both fractions were combined (3.53 g) and recrystallized from acetone (450 mL) to afford 2.89 g (71%) of the product as a white solid: mp 256.5-257.50C; 1H NMR (DMSO-d6) δ 11.18(s, IH), 8.34(dd, J=0.8 and 7.9 Hz, IH), 8.23(dd, J=0.8 and 7.5 Hz, IH), 8.12(t, J=7.8 Hz, IH), 5.22(dd, J=5.3 and 12.8 Hz, IH), 2.97-2.82(m, IH), 2.64-2.47(m, 2H), 2.13-2.04(m, IH); 13C NMR (DMSO-d6) δ 172.66, 169.44, 165.14, 162.48, 144.41, 136.76, 132.98, 128.83, 127.25, 122.52, 49.41, 30.83, 21.70; HPLC, Waters Nova-Pak/C18, 3.9x150 mm, 4 micron, 1 niL/min, 240 nm, 10/90 CH3CN/0.1 % H3PO4(aq) 3.35 min.(100%); Anal, calculated for Ci3H9N3O6: C, 51.49; H, 2.99; N.13.86. Found: C, 51.55; H, 2.82; N, 13.48.
Example 12 - Preparation of (R)-3-(3'-Ammophthalimido)-piperidine-2,6-dione [093] A mixture of Example 11 (1.0 g, 3.3 mmol) and 10% Pd/C (0.2 g) in acetone
(250 mL) was hydrogenated in a Parr-Shaker apparatus at 50 psi of hydrogen for 4 hours. The mixture was filtered through celite and the fitrate was concentrated in vacuo. The yellow solid was slurried in hot EtOAc (20 mL) for 30 minutes to give 0.53 g (59%) of the product as a yellow solid: mp 307.5-309.5°C; 1H NMR (DMSO-de) δ 11.06(s, IH), 7.47(dd, J=7.0 and 8.4 Hz, IH), 7.02(dd, J=4.6 and 8.4 Hz, 2H), 6.53(s, 2H), 5.07(dd, 1=5.4 and 12.5 Hz, lH),2.952.84(m, IH), 2.62-2.46(m, 2H), 2.09-1.99(m, IH); 13C NMR (DMSO-de) δ 172.78, 170.08, 168.56, 167.35, 146.70, 135.43, 131.98, 121.68, 110.95, 108.53, 48.47, 30.96, 22.14; HPLC, Waters Nove-Pak/CI8, 3.9x150 mm, 4 micron, 1 mL/min, 240 nm, 10/90 CH3CN/0.1 % H3PO4(aq), 3.67 min.(99.68%); Chiral analysis, Daicel Chiral Pak AD, 0.46x25 cm, 1 mL/min, 240 nm, 30/70 Hexane/IPA 7.88 min. (97.48%); Anal, calculated for Ci3HnN3O4: C, 57.14; H, 4.06; N, 15.38. Found: C, 57.34; H, 3.91; N, 15.14.
Example 13 - Preparation of 4-Amino-2-(2,6-dioxo-3-piperidinyl)isoindoIe-l,3-dione According to Scheme E
[094] A mixture of 3-aminophthalic acid hydrochloride (200 g, 0.92 mol, from
Prosynth Ltd., Suffolk, UK), 3-aminoglutarimide hydrochloride (159 g, 0.96 mol, from Evotec OAI, Hamburg, Germany), acetonitrile (2.0 L), and acetic acid (577 g, 9.6 mol, from Fisher Scientifc) was charged into a reaction vessel. After the mixture was stirred for 15 minutes, triethylamine (465.0 g, 4.6 mol, from Aldrich, Milwaukee, WI) was added dropwise over 30-35 minutes while the reaction temperature was maintained at 20-25 0C. Next, the reaction mixture was stirred further for 10-15 minutes and then refluxed at about 85 to 87 0C for about 5 to 7 hours or until the in-process control, i.e., HPLC AP at 240 nm, indicates that <2% of the 3-aminophthalic acid remained in the reaction mixture. After the reaction mixture was cooled to about 20 to 25 0C over 1-2 hours, 1.0 L of water was charged over 15- 30 minutes at about 20 to 25 0C. The resulting mixture was stirred at about 15 to 2O0C for about 20 to 30 minutes to provide a yellow solid precipitate, which was filtered, washed with DI water (3 x 1.0 L) and acetonitrile (2 x 500 mL), and then dried at about 35 to 4O0C in vacuo to a constant weight at 210.0 g (84 %). Example 14 - Preparation of 4-Amino-2-(2,6-dioxo-3-piperidinyI)isoindole-l,3-dione [095] Example 14 was prepared similarly according to the procedure for Example 13 except that there was no acetic acid; the amount of triethylamine was reduced from 4.6 mol to 3.2 mol; and the refluxing time was increased from about 5 to 7 hours to about 47 hours. The amount of 4-Amino-2-(2,6-dioxo-3-piperidinyl)isoindole-l,3-dione in the reaction mixture was found to be 94%.
Example 15 - Preparation of 4-Amino-2-(2,6-dioxo-3-piperidinyl)isoindole-l,3-dione [096] Example 15 was prepared similarly according to the procedure for Example 13 except that there was no acetic acid and the 4.6 mol of triethylamine was replaced with 9.2 mole of imidazole. The amount of 4-Amino-2-(2,6-dioxo-3-piperidinyl)isoindole-l,3-dione in the reaction mixture was found to be 92%.
Example 16 - Preparation of 4-Amino-2-(2,6-dioxo-3-piperidinyl)isoindole-l,3-dione
[097] Example 16 was prepared similarly according to the procedure for Example 13 except that the 4.6 mol of triethylamine was replaced with 9.2 mole of imidazole. The amount of 4-Amino-2-(2,6-dioxo-3-piperidinyl)isoindole-l,3-dione in the reaction mixture was found to be 85%.
Example 17 - Recrystallization of 4-Amino-2-(2,6-dioxo-3-piperidinyl)isoindole-l,3- dione
[098] The 4-amino-2-(2,6-dioxo-3-piperidinyl)isoindole-l,3-dione racemates and stereomers such as Examples 3, 8, and 12-16 can be purified by recrystallization as described below. A mixture of crude Example 13 (200 g) and DMSO (800 mL) was charged into a reaction vessel. The resulting slurry was heated to about 45 to 50 0C and then stirred until full dissolution of the solid was achieved (about 10 to 15 minutes). The resulting solution was clarified at about 45 to 50 0C followed by a DMSO (400 mL) line rinse at about 45 to 50 0C. The solution was added to purified water (7.2 L) at about 75 to 80 0C over at least 60 minutes. The resulting suspension was cooled to about 15 to 20 0C over at least 1.5 hours and stirred at the same temperature for about 1.5 to 2 hours. The suspension was filtered and the solid was washed with purified water (2 x 2 L). The purified product was dried under vacuum at about 35 to 40 0C until constant weight is attained. The yield of the purified product was 196.8 g (98% recovery). The melting point of the purified product was found to be 321-323 0C. [099] The present invention is not to be limited in scope by the specific embodiments disclosed in the examples that are intended as illustrations of a few aspects of the invention and any embodiments that are functionally equivalent are within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art and are intended to fall within the appended claims.

Claims

CLAIMSWhat is claimed is:
1. A process for preparing a compound of Formula (I):
Figure imgf000033_0001
or a pharmaceutically acceptable salt, solvate, polymorph or stereoisomer thereof, comprising the step of cyclizing a compound of Formula (II) or (HA):
Figure imgf000033_0002
or a salt thereof with a cyclizing agent of Formula (V):
X 0
Y X (V) wherein R1 is H, F5 benzyl, (CrCg)alkyl, (C2-C8)alkenyl, or (C2-C8)alkynyl; and each of X and Y is independently an unsubstituted or substituted imidazolyl, benzimidazolyl or benzotriazolyl.
2. The process of claim 1, wherein the compound of Formula (II) is cyclized.
3. The process of claim 1, wherein the compound of Formula (HA) is cyclized.
4. The process of claim 1, wherein the compound of Formula (I) is a solvate which is a hydrate.
5. The process of claim 1, wherein the cyclizing agent is a carbonyldiimidazole compound.
6. The process of claim 5, wherein the carbonyldiimidazole compound is 1,1 '- carbonyldiimidazole .
7. The process of claim 6, wherein the ratio of the compound of Formula (II) or (IIA) to l,r-carbonyldiimidazole is from about 1:1 to about 1:1.2.
8. The process of claim 6, wherein the cyclizing step occurs in a solvent.
9. The process of claim 8, wherein the solvent is acetonitrile or N-methyl pyrrolidinone.
10. The process of claim 9, wherein the solvent is acetonitrile and the reaction temperature is from about 80 0C to about 87 0C.
11. The process of claim 10, wherein the reaction time is from about 1 hour to about 5 hours.
12. The process of claim 1, wherein the compound of Formula (II) or (IIA) is prepared by reducing a compound of Formula (III) or (IIIA) respectively:
Figure imgf000034_0001
with a reducing agent, wherein R1 is H, F, benzyl, (CfC8)alkyl, (C2~C8)alkenyl, or (C2" C8)alkynyl.
13. The process of claim 12, wherein the reducing agent is hydrogen and 10% Pd/C.
14. The process of claim 13, wherein the hydrogen is at a pressure from about 2.76 bars to about 3.45 bars.
15. The process of claim 13, wherein the reaction occurs in a solvent.
16. The process of claim 15, wherein the solvent is methanol.
17. The process of claim 12 wherein the compound of Formula (III) or (IIIA) is prepared by reacting 3-nitrophthalic anhydride with a compound of Formula (IV) or (IVA) respectively:
Figure imgf000035_0001
wherein R1 is H5 F3 benzyl, (CrC8)alkyl, (C2-C8)alkenyl, or (C2-C8)alkynyl.
18. The process of claim 17, wherein the reaction occurs in a solvent.
19. The process of claim 18, wherein the solvent is dimethyl formamide.
20. The process of claim 18, wherein the reaction temperature is from about 80 0C to about 87 0C.
21. The process of claim 1, wherein the compound of Formula (I) is a free amine.
22. The process of claim 21, further comprising a step of reacting the free amine with an acid in a mole ratio of about 1 :1 to form an acid salt.
23. The process of claim 22, wherein the acid is hydrochloric acid.
24. The process of claim 12, wherein the compound of Formula (III) is prepared by the steps of:
(a) reacting 3-nitro-N-ethoxycarbonyl-phthalimide with a glutamine ester having Formula (VIII):
Figure imgf000035_0002
or an acid salt thereof in the presence of a first catalyst to form a compound of Formula (IX) or a salt, solvate, polymorph or stereoisomer thereof:
Figure imgf000035_0003
(b) reacting the compound of Formula (IX) or a salt, solvate, polymorph or stereoisomer thereof with hydrogen chloride, wherein R1 is H, F, ben_zyl, (CrC8)alkyl, (C2-
C8)alkenyl, or (C2-C8)alkynyl; and R8 is alkyl or aralkyl.
25. The process of claim 24 further comprising a step of preparing the 3-nitro-N- ethoxycarbonyl-phthalimide by reacting 3-nitrophthalimide with ethyl chloroformate in the presence of a second catalyst.
26. The process of claim 25, wherein the first catalyst and the second catalyst are each triethylamine.
27. The process of claim 26, wherein R1 is H; and R8 is t-butyl or benzyl.
28. The process of claim 27, wherein the compound of Formula (VIII) is L- glutamine t-butyl ester hydrochloride and the compound of Formula (III) is the (S)- enantiomer.
29. The process of claim 27, wherein the compound of Formula (VIII) is D- glutamine t-butyl ester hydrochloride and the compound of Formula (III) is the (R)- enantiomer.
30. The process of claim 27, wherein the compound of Formula (VIII) is a racemic mixture of glutamine t-butyl ester hydrochloride and the compound of Formula (III) is a racemic mixture.
31. A process for preparing a compound of Formula (I) :
Figure imgf000036_0001
or a pharmaceutically acceptable salt, solvate, polymorph or stereoisomer thereof, comprising the step of reacting 3-aminophthalic acid or a salt thereof with a 3-aminoglutarimide compound of Formula (X) or a salt thereof:
Figure imgf000036_0002
in a solvent, wherein R1 is H, F, benzyl, (Ci-C8)alkyl, (C2-Cg)alkenyl, or (C2-C8)alkynyl.
32. The process of claim 1, 12, 17 or 31, wherein R1 is H.
33. The process of claim 1 or 31, wherein the compound of Formula (I) is a racemic mixture, the (+)-enantiomer or the (-)-enantiomer.
34. The process of claim 31 , wherein the reacting step occurs in the presence of a catalyst selected from a base, an acid or a combination thereof.
35. The process of claim 34, wherein the catalyst is the base.
36. The process of claim 35, wherein the base is a trialkylamine, a substituted or unsubstituted imidazole or a mixture thereof.
37. The process of claim 34, wherein the catalyst is a combination of the base and the acid.
38. The process of claim 37, wherein the base is an amine and the acid is a carboxylic acid.
39. The process of claim 38, wherein the amine is triethylamine and the carboxylic acid is acetic acid.
40. The process of claim 39, wherein the mole ratio of triethylamine to acetic acid is from about 1 : 10 to about 1:1.
41. The process of claim 31 , wherein the solvent is acetonitrile.
42. The process of claim 41 , wherein the reaction temperature is from about 800C to about 87 0C.
43. The process of claim 42, wherein the reaction time is from about 5 hours to about 7 hours.
PCT/US2006/026210 2005-06-30 2006-06-29 Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds WO2007005972A1 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
PL06786385T PL1907373T3 (en) 2005-06-30 2006-06-29 Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds
DK06786385.2T DK1907373T3 (en) 2005-06-30 2006-06-29 PROCEDURES FOR THE PREPARATION OF 4-AMINO-2- (2,6-DIOXOPIPERIDIN-3-YL) ISOINDOLIN-1,3-DION COMPOUNDS
RS20130103A RS52704B (en) 2005-06-30 2006-06-29 Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl) isoindoline-1,3-dione compounds
EP06786385A EP1907373B1 (en) 2005-06-30 2006-06-29 Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds
KR1020087002421A KR101299321B1 (en) 2005-06-30 2006-06-29 Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds
NZ565309A NZ565309A (en) 2005-06-30 2006-06-29 Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds
CN2006800319453A CN101253163B (en) 2005-06-30 2006-06-29 Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds
KR1020137003558A KR101342241B1 (en) 2005-06-30 2006-06-29 Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds
BRPI0612803-3A BRPI0612803A2 (en) 2005-06-30 2006-06-29 process for preparing a compound
CA2612612A CA2612612C (en) 2005-06-30 2006-06-29 Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds
ES06786385T ES2402204T3 (en) 2005-06-30 2006-06-29 Procedures for the preparation of 4-amino-2- (2,6-dioxopiperidin-3-yl) isoindoline-1,3-dione compounds
SI200631524T SI1907373T1 (en) 2005-06-30 2006-06-29 Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds
MEP-2013-20A ME01513B (en) 2005-06-30 2006-06-29 Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds
MX2007016290A MX2007016290A (en) 2005-06-30 2006-06-29 Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3- yl)isoindoline-1,3-dione compounds.
JP2008519728A JP5366544B2 (en) 2005-06-30 2006-06-29 Process for preparing 4-amino-2- (2,6-dioxopiperidin-3-yl) isoindoline-1,3-dione compound
AU2006265019A AU2006265019B2 (en) 2005-06-30 2006-06-29 Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds
IL188330A IL188330A (en) 2005-06-30 2007-12-23 Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl) isoindoline-1,3-dione compounds
HK09101400.3A HK1121447A1 (en) 2005-06-30 2009-02-13
IL214892A IL214892A (en) 2005-06-30 2011-08-30 Processes for the preparation of 4 -amino-2-(2,6-dioxopiperidin-3-yl) isoindoline-1,3-dione compounds
HRP20130102TT HRP20130102T1 (en) 2005-06-30 2013-02-06 Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US69622405P 2005-06-30 2005-06-30
US60/696,224 2005-06-30

Publications (1)

Publication Number Publication Date
WO2007005972A1 true WO2007005972A1 (en) 2007-01-11

Family

ID=37305020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/026210 WO2007005972A1 (en) 2005-06-30 2006-06-29 Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds

Country Status (25)

Country Link
US (5) US7994327B2 (en)
EP (2) EP2380887B1 (en)
JP (2) JP5366544B2 (en)
KR (2) KR101299321B1 (en)
CN (2) CN101253163B (en)
AU (1) AU2006265019B2 (en)
BR (1) BRPI0612803A2 (en)
CA (2) CA2612612C (en)
CR (1) CR9697A (en)
DK (2) DK2380887T3 (en)
EC (1) ECSP088154A (en)
ES (2) ES2430545T3 (en)
HK (2) HK1121447A1 (en)
HR (2) HRP20130102T1 (en)
IL (2) IL188330A (en)
ME (1) ME01513B (en)
MX (1) MX2007016290A (en)
NZ (1) NZ565309A (en)
PE (2) PE20070103A1 (en)
PL (2) PL1907373T3 (en)
PT (2) PT2380887E (en)
RS (2) RS53030B (en)
SI (2) SI2380887T1 (en)
WO (1) WO2007005972A1 (en)
ZA (1) ZA200800828B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009111948A1 (en) * 2008-03-13 2009-09-17 天津和美生物技术有限公司 The salts of 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)piperidine-2,6-dione or its derivatives, their polymorphs, preparation methods and uses thereof
WO2014025978A1 (en) * 2012-08-09 2014-02-13 Celgene Corporation Processes for the preparation of (s)-3-4-((4-(morpholinomethyl) benzyl)oxy)-1-oxoisoindolin-2-yl) piperidine-2,6-dione and pharmaceutically acceptable forms thereof
WO2017121530A1 (en) 2016-01-14 2017-07-20 F.I.S. - Fabbrica Italiana Sintetici S.P.A. Crystal forms of immunomodulatory drug pomalidomide and co-crystal with gentisic acid
WO2017134476A1 (en) 2016-02-04 2017-08-10 Egis Gyógyszergyár Zrt. Method for the production of pomalidomide
KR101812356B1 (en) 2010-02-11 2017-12-26 셀진 코포레이션 Arylmethoxy isoindoline derivatives and compositions comprising and methods of using the same
USRE49647E1 (en) 2013-10-08 2023-09-12 Celgene Corporation Formulations of (S)-3-(4-((4-(morpholinomethyl)benzyl)oxy)-1-oxoisoindolin-2-yl)piperidine-2,6-dione

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA200702382B (en) * 2004-09-03 2008-08-27 Celgene Corp Processes for the preparation of substituted 2-(2,6-dioxoplperidin-3-yl)-1-oxoisoindolines
KR101299321B1 (en) * 2005-06-30 2013-08-26 셀진 코포레이션 Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds
US20080064876A1 (en) * 2006-05-16 2008-03-13 Muller George W Process for the preparation of substituted 2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione
TW200819435A (en) * 2006-09-15 2008-05-01 Celgene Corp N-methylaminomethyl isoindole compounds and compositions comprising and methods of using the same
US8288414B2 (en) 2007-09-12 2012-10-16 Deuteria Pharmaceuticals, Inc. Deuterium-enriched lenalidomide
US20110060010A1 (en) * 2008-03-13 2011-03-10 Tianjin Hemay Bio-Tech Co., Ltd Salts of 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)piperidine-2,6-dione and derivatives thereof, or polymorphs of salts, process for preparing same and use thereof
CN101580501B (en) 2009-06-01 2011-03-09 南京卡文迪许生物工程技术有限公司 Synthetic method of 3-(substituted dihydro-isoindolone-2-group)-2,6-dioxopiperidine and intermediate thereof
CN102060746B (en) * 2009-06-01 2013-02-13 南京卡文迪许生物工程技术有限公司 Synthesis method and intermediate of 3-(substituted dihydroisoindolinone-2-group)-2, 6-piperadinedione
CN101817813B (en) * 2010-01-15 2013-04-10 南京卡文迪许生物工程技术有限公司 Crystal IV of 3-(substituted dihydroisoindolinone-2-yl)-2,6-piperidinediketone and medicinal composite thereof
AU2012236655B2 (en) 2011-03-28 2016-09-22 Deuterx, Llc, 2',6'-dioxo-3'-deutero-piperdin-3-yl-isoindoline compounds
US20140221427A1 (en) 2011-06-22 2014-08-07 Celgene Corporation Isotopologues of pomalidomide
WO2013126326A1 (en) * 2012-02-21 2013-08-29 Celgene Corporation Solid forms of 4-amino-2-(2,6-dioxopiperidine-3-yl)isoindoline-1,3-dione, compositions and methods of use thereof
EP2877462B1 (en) * 2012-07-27 2019-09-04 Celgene Corporation Processes for preparing isoindoline-1,3-dione compounds
JP6359563B2 (en) 2013-01-14 2018-07-18 デュートルクス・リミテッド・ライアビリティ・カンパニーDeuteRx, LLC 3- (5-substituted-4-oxoquinazolin-3 (4H) -yl) -3-deuteropiperidine-2,6-dione derivatives
WO2014152833A1 (en) 2013-03-14 2014-09-25 Deuterx, Llc 3-(substituted-4-oxo-quinazolin-3(4h)-yl)-3-deutero-piperidine-2,6-dione derivatives
EP2981532A4 (en) * 2013-04-01 2016-12-14 Hetero Research Foundation Process for pomalidomide
JP6469077B2 (en) 2013-04-02 2019-02-13 セルジーン コーポレイション Methods and compositions for the treatment and management of cancer of the central nervous system using 4-amino-2- (2,6-dioxo-piperidin-3-yl) -isoindoline-1,3-dione
CN103232380A (en) * 2013-05-08 2013-08-07 中国药科大学 Method for preparing pomalidomide key intermediate
CN103288797B (en) * 2013-05-17 2016-03-02 宁波百思佳医药科技有限公司 A kind of method of sulfoxide type solvents purifying Pomalidomide
CN103275062B (en) * 2013-05-17 2016-04-13 宁波百思佳医药科技有限公司 The purification process of a kind of Pomalidomide
EP2815749A1 (en) 2013-06-20 2014-12-24 IP Gesellschaft für Management mbH Solid form of 4-amino-2-(2,6-dioxopiperidine-3-yl)isoindoline-1,3-dione having specified X-ray diffraction pattern
CN104557858B (en) * 2013-10-29 2018-06-01 上海医药工业研究院 A kind of preparation method of pomalidomide
US20160362391A1 (en) 2013-11-25 2016-12-15 Mylan Laboratories Ltd. Improved Process for the Preparation of Pomalidomide and its Purification
CN103724323B (en) * 2014-01-20 2016-08-17 上海医药工业研究院 The preparation method of pomalidomide
CN104016967A (en) * 2014-04-04 2014-09-03 南京工业大学 Synthetic method of pomalidomide
CN105440013B (en) * 2014-08-29 2018-10-09 杭州和泽医药科技有限公司 A kind of preparation method of pomalidomide
WO2016138962A1 (en) 2015-03-05 2016-09-09 Otis Elevator Company Elevator car
US9809603B1 (en) 2015-08-18 2017-11-07 Deuterx, Llc Deuterium-enriched isoindolinonyl-piperidinonyl conjugates and oxoquinazolin-3(4H)-yl-piperidinonyl conjugates and methods of treating medical disorders using same
CN106432045B (en) * 2016-06-29 2018-12-18 深圳海王医药科技研究院有限公司 A kind of synthetic method of pomalidomide impurity
WO2018013689A1 (en) 2016-07-13 2018-01-18 Celgene Corporation Solid dispersions and solid forms comprising 4-amino-2-(2,6-dioxopiperidine-3-yl)isoindoline-1,3-dione, method of preparation and use thereof
WO2018154516A1 (en) * 2017-02-23 2018-08-30 Sun Pharmaceutical Industries Limited Process for the preparation of pomalidomide
US10093647B1 (en) 2017-05-26 2018-10-09 Celgene Corporation Crystalline 4-amino-2-(2,6-dioxopiperidine-3-yl)isoindoline-1,3-dione dihydrate, compositions and methods of use thereof
GEP20227354B (en) * 2017-09-07 2022-02-25 Obschestvo S Ogranichennoi Otvetstvennostiyu Pharmenterprises Use of a glutarimide derivative to treat diseases related to the aberrant activity of cytokines
US10093648B1 (en) 2017-09-22 2018-10-09 Celgene Corporation Crystalline 4-amino-2-(2,6-dioxopiperidine-3-yl)isoindoline-1,3-dione hemihydrate, compositions and methods of use thereof
US10093649B1 (en) 2017-09-22 2018-10-09 Celgene Corporation Crystalline 4-amino-2-(2,6-dioxopiperidine-3-yl)isoindoline-1,3-dione monohydrate, compositions and methods of use thereof
EA202092248A1 (en) 2018-04-23 2021-02-04 Селджин Корпорейшн SUBSTITUTED COMPOUNDS OF 4-AMINOISOINDOLINE-1,3-DIONE, THEIR COMPOSITIONS AND METHODS OF THEM TREATMENT
CN110343063A (en) * 2019-08-09 2019-10-18 新乡双鹭药业有限公司 The preparation method of impurity in a kind of synthesis of pomalidomide
CN114605381A (en) * 2020-12-03 2022-06-10 南京海辰药业股份有限公司 Preparation method of pomalidomide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB858086A (en) * 1958-09-16 1961-01-04 American Cyanamid Co Method for synthesis of amides of imidazoles or benzimidazoles
WO2002059106A1 (en) * 2000-12-27 2002-08-01 Celgene Corporation Isoindole-imide compounds, compositions, and uses thereof

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979416A (en) * 1973-06-15 1976-09-07 Alelio Gaetano F D Preparation of aminophthalic anhydrides
KR0166088B1 (en) 1990-01-23 1999-01-15 . Derivatives of cyclodextrins exhibiting enhanced aqueous solubility and the use thereof
US5629327A (en) 1993-03-01 1997-05-13 Childrens Hospital Medical Center Corp. Methods and compositions for inhibition of angiogenesis
US6114355A (en) 1993-03-01 2000-09-05 D'amato; Robert Methods and compositions for inhibition of angiogenesis
US5463063A (en) 1993-07-02 1995-10-31 Celgene Corporation Ring closure of N-phthaloylglutamines
US5698579A (en) 1993-07-02 1997-12-16 Celgene Corporation Cyclic amides
US5637517A (en) * 1995-05-26 1997-06-10 Daewoo Electronics Co., Ltd. Method for forming array of thin film actuated mirrors
DE19601303A1 (en) * 1996-01-16 1997-07-17 Boehringer Ingelheim Kg Novel benzoylguanidine derivatives, process for their preparation and their use in the manufacture of medicaments
DE69717831T3 (en) * 1996-07-24 2018-08-30 Celgene Corp. SUBSTITUTED 2- (2,6-DIOXOPIPERIDIN-3-YL) -PHTHALIMIDES AND -1-OXOISOINDOLINES AND METHOD FOR REDUCING THE TNF-ALPHA MIRROR
US5798368A (en) 1996-08-22 1998-08-25 Celgene Corporation Tetrasubstituted 2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolines and method of reducing TNFα levels
HU228769B1 (en) 1996-07-24 2013-05-28 Celgene Corp Substituted 2(2,6-dioxopiperidin-3-yl)phthalimides and -1-oxoisoindolines and their use for production of pharmaceutical compositions for mammals to reduce the level of tnf-alpha
US6281230B1 (en) 1996-07-24 2001-08-28 Celgene Corporation Isoindolines, method of use, and pharmaceutical compositions
US5635517B1 (en) * 1996-07-24 1999-06-29 Celgene Corp Method of reducing TNFalpha levels with amino substituted 2-(2,6-dioxopiperidin-3-YL)-1-oxo-and 1,3-dioxoisoindolines
ATE418536T1 (en) 1996-08-12 2009-01-15 Celgene Corp NEW IMMUNOTHERAPEUTIC AGENTS AND THEIR USE IN REDUCING CYTOKINE LEVELS
US5955476A (en) 1997-11-18 1999-09-21 Celgene Corporation Substituted 2-(2,6-dioxo-3-fluoropiperidin-3-yl)-isoindolines and method of reducing inflammatory cytokine levels
US5874448A (en) 1997-11-18 1999-02-23 Celgene Corporation Substituted 2-(2,6 dioxo-3-fluoropiperidin-3-yl)-isoindolines and method of reducing TNFα levels
TR200002681T2 (en) 1998-03-16 2000-12-21 Celgene Corporation 2- (2,6-Dioxopiperidin-3-yl) isoindoline derivatives, their preparation and use as inhibitors of inflammatory cytokines
TR200102688T2 (en) * 1999-03-18 2002-01-21 Celgene Corporation Substituted 1-oxo and 1,3-dioxoisoindolins and their use in pharmaceutical compositions for reducing inflammatory cytokine levels.
DE19942700C1 (en) * 1999-09-07 2001-04-05 Consortium Elektrochem Ind Process for the preparation of cyclic N-hydroxydicarboximides
US7182953B2 (en) 1999-12-15 2007-02-27 Celgene Corporation Methods and compositions for the prevention and treatment of atherosclerosis restenosis and related disorders
JP4622016B2 (en) * 1999-12-20 2011-02-02 東洋インキ製造株式会社 Pigment dispersant, pigment composition and pigment dispersion
US6458810B1 (en) 2000-11-14 2002-10-01 George Muller Pharmaceutically active isoindoline derivatives
ES2290091T3 (en) * 2000-11-30 2008-02-16 The Children's Medical Center Corporation SYNTHESIS OF ENANTIOMERS OF 4-AMINO-TALIDOMIDE.
US7091353B2 (en) 2000-12-27 2006-08-15 Celgene Corporation Isoindole-imide compounds, compositions, and uses thereof
NZ531294A (en) * 2001-08-06 2005-11-25 Childrens Medical Center Synthesis and anti-tumor activity of nitrogen substituted thalidomide analogs
JP3578752B2 (en) * 2001-09-28 2004-10-20 三井化学株式会社 Water-based ink
WO2003077921A1 (en) 2002-03-15 2003-09-25 Vertex Pharmaceuticals, Inc. Azinylaminoazoles as inhibitors of protein kinases
US6962940B2 (en) * 2002-03-20 2005-11-08 Celgene Corporation (+)-2-[1-(3-Ethoxy-4-methoxyphenyl)-2-methylsulfonylethyl]-4-acetylaminoisoindoline-1,3-dione: methods of using and compositions thereof
US7968569B2 (en) 2002-05-17 2011-06-28 Celgene Corporation Methods for treatment of multiple myeloma using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione
US7189740B2 (en) 2002-10-15 2007-03-13 Celgene Corporation Methods of using 3-(4-amino-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for the treatment and management of myelodysplastic syndromes
US20050203142A1 (en) 2002-10-24 2005-09-15 Zeldis Jerome B. Methods of using and compositions comprising immunomodulatory compounds for treatment, modification and management of pain
US20040091455A1 (en) 2002-10-31 2004-05-13 Zeldis Jerome B. Methods of using and compositions comprising immunomodulatory compounds for treatment and management of macular degeneration
US7563810B2 (en) 2002-11-06 2009-07-21 Celgene Corporation Methods of using 3-(4-amino-1-oxo-1,3-dihydroisoindol-2-yl)-piperidine-2,6-dione for the treatment and management of myeloproliferative diseases
CH696542A5 (en) 2003-07-09 2007-07-31 Siegfried Ltd A process for the preparation of substituted 2,6-dioxopiperidin-3-yl compounds.
UA83504C2 (en) 2003-09-04 2008-07-25 Селджин Корпорейшн Polymorphic forms of 3-(4-amino-1-oxo-1,3 dihydro-isoindol-2-yl)-piperidine-2,6-dione
US20050100529A1 (en) 2003-11-06 2005-05-12 Zeldis Jerome B. Methods of using and compositions comprising immunomodulatory compounds for the treatment and management of asbestos-related diseases and disorders
EP1737453A4 (en) 2004-03-22 2008-11-26 Celgene Corp Methods of using and compositions comprising immunomodulatory compounds for the treatment and management of skin diseases or disorders
ITMI20041113A1 (en) * 2004-06-01 2004-09-01 Antibioticos Spa PROCESS FOR THE SYNTHESIS OF THE THALIDOMIDE
US7405237B2 (en) 2004-07-28 2008-07-29 Celgene Corporation Isoindoline compounds and methods of their use
US7244759B2 (en) 2004-07-28 2007-07-17 Celgene Corporation Isoindoline compounds and methods of making and using the same
ZA200702382B (en) 2004-09-03 2008-08-27 Celgene Corp Processes for the preparation of substituted 2-(2,6-dioxoplperidin-3-yl)-1-oxoisoindolines
KR101299321B1 (en) * 2005-06-30 2013-08-26 셀진 코포레이션 Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds
ES2434946T3 (en) 2005-08-31 2013-12-18 Celgene Corporation Isoindol imide compounds and compositions comprising them and methods for using it
TW200819435A (en) 2006-09-15 2008-05-01 Celgene Corp N-methylaminomethyl isoindole compounds and compositions comprising and methods of using the same
JP2011513497A (en) 2008-03-11 2011-04-28 ドクター・レディーズ・ラボラトリーズ・リミテッド Preparation of lenalidomide
WO2009111948A1 (en) 2008-03-13 2009-09-17 天津和美生物技术有限公司 The salts of 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)piperidine-2,6-dione or its derivatives, their polymorphs, preparation methods and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB858086A (en) * 1958-09-16 1961-01-04 American Cyanamid Co Method for synthesis of amides of imidazoles or benzimidazoles
WO2002059106A1 (en) * 2000-12-27 2002-08-01 Celgene Corporation Isoindole-imide compounds, compositions, and uses thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUZZIO F A ET AL: "THALIDOMIDE METABOLITES AND ANALOGUES. 3. SYNTHESIS AND ANTIANGIOGENIC ACTIVITY OF THE TERATOGENIC AND TNFALPHA-MODULATORY THALIDOMIDE ANALOGUE 2-(2,6-DIOXOPIPERIDINE-3-YL)PHTHALIMIDINE", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 46, no. 18, 30 July 2003 (2003-07-30), pages 3793 - 3799, XP001202655, ISSN: 0022-2623 *
MULLER G W ET AL: "Amino-substituted thalidomide analogs: Potent inhibitors of TNF-alpha production", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 9, no. 11, 7 June 1999 (1999-06-07), pages 1625 - 1630, XP002222981, ISSN: 0960-894X *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009111948A1 (en) * 2008-03-13 2009-09-17 天津和美生物技术有限公司 The salts of 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)piperidine-2,6-dione or its derivatives, their polymorphs, preparation methods and uses thereof
KR101931468B1 (en) 2010-02-11 2018-12-20 셀진 코포레이션 Arylmethoxy isoindoline derivatives and compositions comprising and methods of using the same
KR101812356B1 (en) 2010-02-11 2017-12-26 셀진 코포레이션 Arylmethoxy isoindoline derivatives and compositions comprising and methods of using the same
US10189814B2 (en) 2010-02-11 2019-01-29 Celgene Corporation Arylmethoxy isoindoline derivatives and compositions comprising and methods of using the same
US10669257B2 (en) 2010-02-11 2020-06-02 Celgene Corporation Arylmethoxy isoindoline derivatives and compositions comprising and methods of using the same
US11414399B2 (en) 2010-02-11 2022-08-16 Celgene Corporation Arylmethoxy isoindoline derivatives and compositions comprising and methods of using the same
US9309220B2 (en) 2012-08-09 2016-04-12 Celgene Corporation Processes for the preparation of (S)-3-(4- (4-(morpholinomethyl)benzyl)oxy)-1-oxoisoindolin-2-yl)piperidine-2,6-dione and pharmaceutically acceptable forms thereof
AU2013299559B2 (en) * 2012-08-09 2017-08-17 Celgene Corporation Processes for the preparation of (S)-3-4-((4-(morpholinomethyl) benzyl)oxy)-1-oxoisoindolin-2-yl) piperidine-2,6-dione and pharmaceutically acceptable forms thereof
US9975872B2 (en) 2012-08-09 2018-05-22 Celgene Corporation Processes for the preparation of (s)-3-(4-((4-(morpholinomethyl)benzyl)oxy)-1-oxoisoindolin-2-yl)piperidine-2,6-dione and pharmaceutically acceptable forms thereof
WO2014025978A1 (en) * 2012-08-09 2014-02-13 Celgene Corporation Processes for the preparation of (s)-3-4-((4-(morpholinomethyl) benzyl)oxy)-1-oxoisoindolin-2-yl) piperidine-2,6-dione and pharmaceutically acceptable forms thereof
USRE49647E1 (en) 2013-10-08 2023-09-12 Celgene Corporation Formulations of (S)-3-(4-((4-(morpholinomethyl)benzyl)oxy)-1-oxoisoindolin-2-yl)piperidine-2,6-dione
WO2017121530A1 (en) 2016-01-14 2017-07-20 F.I.S. - Fabbrica Italiana Sintetici S.P.A. Crystal forms of immunomodulatory drug pomalidomide and co-crystal with gentisic acid
US10155740B2 (en) 2016-01-14 2018-12-18 F.I.S.—Fabbrica Italiana Sintetici S.P.A Crystal forms of immunomodulatory drug pomalidomide and co-crystal with gentisic acid
WO2017134476A1 (en) 2016-02-04 2017-08-10 Egis Gyógyszergyár Zrt. Method for the production of pomalidomide

Also Published As

Publication number Publication date
MX2007016290A (en) 2008-03-10
ES2402204T3 (en) 2013-04-29
US8785644B2 (en) 2014-07-22
ME01513B (en) 2014-04-20
HRP20130102T1 (en) 2013-03-31
JP2013014599A (en) 2013-01-24
ECSP088154A (en) 2008-03-26
DK1907373T3 (en) 2013-02-04
HRP20130966T1 (en) 2013-11-22
HK1168851A1 (en) 2013-01-11
CA2612612C (en) 2014-03-11
BRPI0612803A2 (en) 2012-10-02
IL188330A0 (en) 2008-04-13
NZ565309A (en) 2011-03-31
JP2008544993A (en) 2008-12-11
US20070004920A1 (en) 2007-01-04
KR20080039392A (en) 2008-05-07
JP5543555B2 (en) 2014-07-09
EP2380887A1 (en) 2011-10-26
US20110224440A1 (en) 2011-09-15
DK2380887T3 (en) 2013-10-07
PE20100151A1 (en) 2010-03-05
CA2823088A1 (en) 2007-01-11
US20180044318A1 (en) 2018-02-15
AU2006265019B2 (en) 2011-10-13
PL2380887T3 (en) 2014-01-31
PT2380887E (en) 2013-09-18
PL1907373T3 (en) 2013-05-31
RS53030B (en) 2014-04-30
CR9697A (en) 2008-06-26
SI2380887T1 (en) 2013-12-31
KR20130029442A (en) 2013-03-22
EP1907373B1 (en) 2013-01-09
ZA200800828B (en) 2009-08-26
CA2612612A1 (en) 2007-01-11
US10266514B2 (en) 2019-04-23
US20140256950A1 (en) 2014-09-11
CN101253163A (en) 2008-08-27
PE20070103A1 (en) 2007-02-06
RS52704B (en) 2013-08-30
CN102643267A (en) 2012-08-22
IL214892A0 (en) 2011-10-31
US9822093B2 (en) 2017-11-21
CA2823088C (en) 2015-10-06
CN101253163B (en) 2012-05-02
KR101299321B1 (en) 2013-08-26
AU2006265019A1 (en) 2007-01-11
ES2430545T3 (en) 2013-11-21
EP1907373A1 (en) 2008-04-09
HK1121447A1 (en) 2009-04-24
KR101342241B1 (en) 2013-12-16
US7994327B2 (en) 2011-08-09
SI1907373T1 (en) 2013-03-29
IL188330A (en) 2013-09-30
IL214892A (en) 2013-11-28
CN102643267B (en) 2015-09-16
US9394274B2 (en) 2016-07-19
JP5366544B2 (en) 2013-12-11
PT1907373E (en) 2013-02-18
EP2380887B1 (en) 2013-08-07
US20160297791A1 (en) 2016-10-13

Similar Documents

Publication Publication Date Title
US10266514B2 (en) Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds
JP5701824B2 (en) Process for the preparation of substituted 2- (2,6-dioxopiperidin-3-yl) -1-oxoisoindolines
JP4172717B2 (en) Process for producing substituted 2,5-diamino-3-hydroxyhexane
WO2007136640A2 (en) Processes for the preparation of substituted 2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione
AU2011221383B2 (en) Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds
JPWO2006123767A1 (en) Preparation of asymmetric tetrasubstituted carbon atom-containing compounds

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680031945.3

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2612612

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/016290

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 188330

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2008519728

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006265019

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2006786385

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 565309

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 08007822A

Country of ref document: CO

Ref document number: 08007822

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 1020087002421

Country of ref document: KR

Ref document number: CR2008-009697

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 502/CHENP/2008

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2006265019

Country of ref document: AU

Date of ref document: 20060629

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 214892

Country of ref document: IL

ENP Entry into the national phase

Ref document number: PI0612803

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071228

WWE Wipo information: entry into national phase

Ref document number: 1020137003558

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: P-2013/0103

Country of ref document: RS