WO2007004972A1 - Chemical process - Google Patents

Chemical process Download PDF

Info

Publication number
WO2007004972A1
WO2007004972A1 PCT/SE2006/050188 SE2006050188W WO2007004972A1 WO 2007004972 A1 WO2007004972 A1 WO 2007004972A1 SE 2006050188 W SE2006050188 W SE 2006050188W WO 2007004972 A1 WO2007004972 A1 WO 2007004972A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
epihalohydrin
fluid
polymer
epihalohydrin polymer
Prior art date
Application number
PCT/SE2006/050188
Other languages
French (fr)
Inventor
Oliver Struck
Andreas Pingel-Keuth
Christian Przybyla
Ulrich Fehrenbacher
Thomas Hirth
Steffen Unser
Original Assignee
Akzo Nobel N.V.
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Eka Chemicals Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akzo Nobel N.V., Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Eka Chemicals Ab filed Critical Akzo Nobel N.V.
Priority to EP06748028A priority Critical patent/EP1902086A1/en
Priority to AU2006266498A priority patent/AU2006266498B2/en
Priority to JP2008519231A priority patent/JP2008545041A/en
Priority to NZ564123A priority patent/NZ564123A/en
Priority to CA2612134A priority patent/CA2612134C/en
Priority to BRPI0613479-3A priority patent/BRPI0613479A2/en
Publication of WO2007004972A1 publication Critical patent/WO2007004972A1/en
Priority to NO20080520A priority patent/NO20080520L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/028Polyamidoamines
    • C08G73/0286Preparatory process from polyamidoamines and epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0403Solvent extraction of solutions which are liquid with a supercritical fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0403Solvent extraction of solutions which are liquid with a supercritical fluid
    • B01D11/0407Solvent extraction of solutions which are liquid with a supercritical fluid the supercritical fluid acting as solvent for the solute
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0426Counter-current multistage extraction towers in a vertical or sloping position
    • B01D11/043Counter-current multistage extraction towers in a vertical or sloping position with stationary contacting elements, sieve plates or loose contacting elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0488Flow sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • C08G73/0213Preparatory process
    • C08G73/022Preparatory process from polyamines and epihalohydrins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a process for the production of an nitrogen containing epihalohydrin polymer from a nitrogen-containing precursor comprising a purification step to remove organic impurities, particularly reaction products of epihalohydrin.
  • the invention further relates to a process for purifying a solution of a nitrogen containing epihalohydrin polymer made from nitrogen-containing precursor from organic impurities.
  • organic by-products may be obtained, some of which frequently are halogenated. Further, unreacted epihalohydrin may also remain in the final product.
  • a typical example is the preparation of polyaminoamide epichlorohydrin polymers that are useful as wet strength resins in paper making.
  • many halogenated organic compounds are toxic and/or questionable from an environmental point of view and for many applications, such as paper making, it is desirable to decrease the content thereof.
  • CN 1350795 discloses removal of DCP and MCP from a hydrolytic liquid of plant protein by treating with liquefied or supercritical carbon dioxide.
  • US 2005/0037932 discloses a perfluoropolyether lubricant, the preparation of which includes a supercritical fluid extraction purification step.
  • One aspect of the invention concerns a process for the production of a nitrogen containing epihalohydrin polymer involving reaction of a nitrogen-containing precursor selected from the group consisting of amines, poly-amines, polyaminoamides, polyurethanes and mixtures thereof with epihalohydrin to form of a solution of said epihalohydrin polymer, the process comprising a purification step to remove organic impurities from the formed solution of the epihalohydrin polymer, said purification step comprising contacting the solution of the epihalohydrin polymer with a fluid under liquid, supercritical or near supercritical conditions to effect extraction of organic impurities from the solution of the epihalohydrin polymer to the fluid, withdrawing fluid enriched in organic impurities from the solution of the epihalohydrin polymer, and separating extracted impurities from the withdrawn fluid, wherein the fluid comprises a substance that at atmospheric pressure and room temperature (about 25°C) is gaseous.
  • Another aspect of the invention concerns a process for purifying a solution of a nitrogen containing epihalohydrin polymer formed by reaction of a nitrogen-containing precursor selected from the group consisting of amines, poly-amines, polyaminoamides, polyurethanes and mixtures thereof with epihalohydrin comprising the steps of contacting the solution of the epihalohydrin polymer with a fluid under liquid, supercritical or near supercritical conditions to effect extraction of organic impurities from the solution of the epihalohydrin polymer to the fluid, withdrawing fluid enriched in organic impurities from the solution of the epihalohydrin polymer, and separating extracted impurities from the withdrawn fluid, wherein the fluid comprises a substance that at atmospheric pressure and room temperature (about 25°C) is gaseous.
  • Extracting with a fluid under supercritical or near supercritical conditions has been found to efficiently remove unwanted organic compounds, particularly halogen containing compounds, from the polymer in a comparatively simple procedure without significantly negatively affecting its desired properties, for example as additive in paper making and particularly as wet strength resin.
  • Normally such fluid may also be re-used after separation of the extracted impurities.
  • Preferred fluids are those that have a critical temperature (T cr ) from about 20°C to about 100°C, most preferably from about 30°C to about 60°C, and a critical pressure (P cr ) from about 30 bar to about 500 bar, most preferably from about 70 bar to about 300 bar.
  • T cr critical temperature
  • P cr critical pressure
  • fluids include carbon dioxide, nitrous oxide, ethane, ethane and propane.
  • Carbon dioxide is particularly preferred as it is readily available, non-toxic and non-flammable. Further, carbon dioxide has been found not to give any negative impact to the treated polymer.
  • the fluid may by used in substantially pure form or mixed with small amounts of one or more co-solvents, surfactants, complexing agents or the like.
  • Nitrogen containing epihalohydrin polymers in the process of the present invention include those that have been prepared with epihalohydrin, e.g. epichlorohydrin, as a reactant, either during the polymerisation or in the modification of an existing polymer.
  • the invention is particularly advantageous for nitrogen containing epihalodydrin polymers that are water soluble.
  • Nitrogen containing epihalohydrin polymers include those formed by reactions of nitrogen containing precursors selected from amines, poly-amines, polyaminoamides, polyurethanes and mixtures thereof. Most preferably, the polymers are polyaminoamide- epihalohydrin polymers, which also may be referred to as polyamidoamine-epihalohydrin polymers, and are useful as wet strength resins in paper making.
  • Epihalohydrins that can be used include epibromohydrin and epichlorohydrin, preferably epichlorohydrin.
  • the polymers are produced using from about 0.5 to about 2 moles of epihalohydrin per mole of basic nitrogen in the nitrogen-containing precursor.
  • the nitrogen-containing precursor is preferably the polyaminoamide reaction product of a polycarboxylic acid or a derivative thereof, suitably a dicarboxylic acid or derivative thereof, and a polyamine.
  • carboxylic acids include e.g. anhydrides, esters and half esters.
  • Suitable poly-carboxylic acids include saturated or unsaturated aliphatic or aromatic dicarboxylic acids.
  • the polycarboxylic acids contains less than 10 carbon atoms.
  • Preferred polycarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid and derivatives and mixtures thereof, of which adipic acid is particularly preferred.
  • Preferred polyamines include polyalkylene polyamines, or mixtures thereof, having the following formula:
  • Preferred polyalkylene polyamines include diethylene triamine, tri- ethylene tetra amine, tetraethylene penta amine, dipropylene triamine, and mixtures thereof.
  • the polyamines of formula (I) can be combined with other polyamines or mixtures of other amines.
  • these amines have any of the following formulae N-VII: H-(-NH-(CH 2 ) ⁇ -CR 6 H-)rNCH 2 CH 2 NH (II)
  • the polycarboxylic acid and the polyamine may, for example, be applied in a molar ratio from about 1 :0.5 to about 1 :1.5.
  • the nitrogen-containing epihalohydrin-based polymer is preferably present in an aqueous solution, that further may comprise a water-miscible solvent such as methanol, ethanol or dimethyl formamide.
  • the aqueous polymer solution is preferably prepared from an aqueous solution of a nitrogen-containing precursor.
  • the molecular weights of the polymers are not critical and may, for example, be within the range of from about 50000 to about 1000000 or higher.
  • Preparation of epihalodydrin polymers can be performed by any known process, such as those disclosed in any one of US 4450045, US 331 1594, US 4336835,
  • the solution of the epihalohydrin polymer is preferably an aqueous solution and it has been found that only small amount of water are withdrawn in the purification step.
  • the solids content of the solution to be purified is preferably as high as possible without causing handling problems and can in many cases be as high as about 35 wt% or more, but is preferably from about 5 to about 30 wt%, most preferably from about 10 to about 25 wt%.
  • the viscosity of the solution is preferably from about 1 to about 250 mPas, most preferably from about 5 to about 200 mPas.
  • the viscosity may be from about 1 to about 100 mPas or from about 5 to about 60 mPas.
  • the invention is particularly advantageous for removing halogen containing organic impurities.
  • Halogen containing impurities that can be removed include epihalohydrin as such, particularly epichlorohydrin, and reactions products thereof such as 1 ,2- and 1 ,3-dihalo-2-propanol (DXP) and 3-halo-1 ,2-propanediol (XPD), particularly
  • DCP 1,2- and 1 ,3-dichloro-2-propanol
  • CPD 3-chloro-1 ,2-propanediol
  • DXP and XPD as well as any remaining epihalohydrin can be removed and eventually destructed.
  • polyaminoamide epichlorohydrin polymers with a content of organic chlorines below about 0.01 wt% and even below about 0.0001 wt% or less.
  • the extraction takes place under conditions in which the fluid is in a liquid, supercritical or near supercritical state.
  • the temperature in K is preferably at least about 0.9 x T ⁇ most preferably at least 0.95 x T CT .
  • the pressure is preferably at least about 0.9 x P c -, most preferably at least 0.95 x P a .
  • DCP is efficiently removed from polyaminoamide epichlorohydrin at a preferred temperature from about 30°C to about 180°C, most preferably from about 40 0 C to about 100°C and a preferred pressure from about 60 bar to about 500 bar, most preferably from about 75 bar to about 300 bar
  • CPD is efficiently removed from polyaminoamide epichlorohydrin at a preferred temperature from about 30°C to about 180 0 C, most preferably from about 50°C to about 100 0 C and a preferred pressure from about 60 bar to about 500 bar, most preferably from about 150 bar to about 400 bar
  • the extraction may be a one stage process, but can also be performed in two or more stages with the same or different conditions, the latter being of interest if different optimal conditions for extracting different kinds of halogen containing impurities apply.
  • the average residence time for the solution of the epihalohydrin polymer in contact with fluid under supercritical or near supercritical conditions is preferably from about 5 minutes to about 120 minutes, most preferably from about 15 minutes to about 60 minutes.
  • the purification through an extraction may be performed batchwise, continuously or a combination thereof.
  • the extraction is performed by maintaining a solution of the epihalohydrin polymer in vessel, preferably under agitation, and contacting it with a continuous flow of fluid under liquid, supercritical or near supercritical conditions during a time sufficient to achieve removal of halogen containing impurities to a satisfactory degree.
  • the temperature and pressure may remain substantially constant during the entire time but may also be changed stepwise or continuously.
  • the purified solution of the polymer can then withdrawn as a product or be transferred to a further extraction step or any other treatment.
  • the extraction is performed by contacting the solution of the epihalohydrin polymer with the fluid under liquid, supercritical or near supercritical conditions in a through-flow vessel or column, in each case with or without a packaging.
  • Both the solution of the polymer and the fluid flow continuously through the vessel or column, preferably counter-currently, but also co-current flow could come into question.
  • part of the purified polymer solution may be recirculated.
  • the temperature and pressure may be the same or different in various parts of the vessel or column. Any kind of vessels or columns commonly used for extraction can be used, such as tray-type columns or packed columns with structured or non-structured packings made of e.g. glass, metal or ceramic materials.
  • the separation of extracted impurities from the withdrawn fluid is suitably done by altering the temperature and/or pressure thereof to change the solubility properties so the impurities are precipitated. Usually this is easiest done by lowering the pressure to a level below P cr . If necessary the extracted impurities can removed from the carbon dioxide by purification with water or active carbon. After the separation the fluid can be reused after restoring the temperature and pressure to conditions suitable for the extraction.
  • the separated impurities may be destructed by any suitable means.
  • Figure 1 is a flow sheet for batchwise extraction while Figure 2 is a flow sheet for continuous extraction.
  • Example 1 An aqueous solution of polyaminoamide epichlorohydrin polymer
  • PAAE PAAE having a dry content of 20.7 wt%
  • concentrations of DCP was 267 ⁇ g/g and of CPD 289 ⁇ g/g.
  • the solution of PAAE was maintained under agitation in a 250 ml extraction vessel 4 and subjected to a continuous flow of supercritical carbon dioxide CO 2 brought from a vessel via a cooler 1 , a pump 2 and a heat exchanger 3 under various conditions in respect of temperature, pressure and time. In a separator 5 the pressure was released, resulting in precipitation of the extracted components from the carbon dioxide.
  • the content of DCP and CPD in the purified PAAE solution was determined by gas chromatography. The results are shown in Table 1 : Table 1 Batch extraction
  • Examples 2-4 An aqueous solution of polyaminoamide epichlorohydrin polymer (PAAE) having a dry content of 21.2 wt% was purified by continuous extraction with supercritical carbon dioxide in an experimental setup according to Fig. 2. Before the purification the concentrations of DCP was 269.7 ⁇ g/g and of CPD 308.1 ⁇ g/g.
  • the polymer solution F was brought via a pump 6, and a pre-heater 7 to a packed column 4 where it was contacted by a counter-current flow of carbon dioxide circulating via a cooler 1 , a pump 2 a heat exchanger 3 and, after the column 4, a separator 5.
  • the purified polymer solution was brought from the column 4 to a raffinate vessel R.
  • Example 2 In a separator 5 the pressure was released and after purification with active carbon the carbon dioxide was recycled.
  • Examples 2 and 3 were run as bubble extraction with the column 4 filled with polymer solution, while Example 4 was run as film extraction with the polymer solution flowing as a film on the packings in the column 4. The results are shown in Table 2.
  • Example 5 The treated polymers obtained in Examples 3 and 4 as well as the commercially available polyaminoamide epichlorohydrin polymer solution Eka WS 320 were tested as wet strength agents in paper making on a pilot paper machine. The following conditions were applied:
  • Pulp 40 wt% eucalyptus, 40 wt% birch, 20 wt% pine sulfate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Paper (AREA)

Abstract

The invention relates to a process for the production of a nitrogen containing epihalohydrin polymer involving reaction of a nitrogen-containing precursor selected from the group consisting of amines, poly-amines, polyaminoamides, polyurethanes and mixtures thereof with epihalohydrin to form of a solution of said epihalohydrin polymer, the process comprising a purification step to remove organic impurities from the formed solution of the epihalohydrin polymer, said purification step comprising contacting the solution of the epihalohydrin polymer with a fluid under liquid, supercritical or near supercritical conditions to effect extraction of organic impurities from the solution of the epihalohydrin polymer to the fluid, withdrawing fluid enriched in organic impurities from the solution of the epihalohydrin polymer, and separating extracted impurities from the withdrawn fluid, wherein the fluid comprises a substance that at atmospheric pressure and room temperature (about 25°C) is gaseous. The invention also relates to a process for purifying a solution of a nitrogen containing epihalohydrin polymer.

Description

CHEMICAL PROCESS
The present invention relates to a process for the production of an nitrogen containing epihalohydrin polymer from a nitrogen-containing precursor comprising a purification step to remove organic impurities, particularly reaction products of epihalohydrin. The invention further relates to a process for purifying a solution of a nitrogen containing epihalohydrin polymer made from nitrogen-containing precursor from organic impurities.
At preparation of epihalohydrin polymers from nitrogen-containing precursors organic by-products may be obtained, some of which frequently are halogenated. Further, unreacted epihalohydrin may also remain in the final product. A typical example is the preparation of polyaminoamide epichlorohydrin polymers that are useful as wet strength resins in paper making. However, many halogenated organic compounds are toxic and/or questionable from an environmental point of view and for many applications, such as paper making, it is desirable to decrease the content thereof. Various purifications methods for removing chlorinated contaminants from polyaminoamide epihalohydrin polymers have been disclosed, for example ion exchange in US 5516885, electrodialysis in US 5643430, ultra-filtration in WO 00/34358, treatment with activated carbon in WO 01/18093, treatment with a base in WO 99/33901 and enzymatic action in WO 02/50163. US 6576687 discloses a method of producing polycondensate solutions based on polyamide amine epichlorohydrin resins claimed to have a very low content of organic chlorine compounds. However, these preparation and purification methods are either complicated to operate or insufficiently effective.
It has been disclosed to remove impurities or residual monomers from polymers by extracting with carbon dioxide, see e.g. US 5034132 and US 6180755. It has also been disclosed to extract impurities with carbon dioxide from polymer dispersions, as described in EP 374879.
CN 1350795 discloses removal of DCP and MCP from a hydrolytic liquid of plant protein by treating with liquefied or supercritical carbon dioxide.
US 2005/0037932 discloses a perfluoropolyether lubricant, the preparation of which includes a supercritical fluid extraction purification step.
It is an object of the invention to provide a process for the production of a nitrogen containing epihalohydrin polymer from a nitrogen-containing precursor comprising an effective purification step for removing organic impurities, particularly halogen containing impurities. It is another object of the invention to provide a process for efficiently removing organic impurities, particularly halogen containing impurities, from a solution of a nitrogen containing epihalohydrin polymer made from a nitrogen-containing precursor. It is still another object of the invention to provide for efficient removal of epihalohydrin or reaction products thereof from a solution of a nitrogen containing epihalohydrin polymer without significantly negatively affecting its desired properties.
It is a further object of the invention to provide for efficient removal of 1 ,2-, or 1 ,3- dihalo-2-propanol or 3-halo-1 ,2-propanediol from a polyaminoamide epihalohydrin polymer without significantly negatively affecting its desired properties.
Through the present invention it has been found possible to achieve these objects.
One aspect of the invention concerns a process for the production of a nitrogen containing epihalohydrin polymer involving reaction of a nitrogen-containing precursor selected from the group consisting of amines, poly-amines, polyaminoamides, polyurethanes and mixtures thereof with epihalohydrin to form of a solution of said epihalohydrin polymer, the process comprising a purification step to remove organic impurities from the formed solution of the epihalohydrin polymer, said purification step comprising contacting the solution of the epihalohydrin polymer with a fluid under liquid, supercritical or near supercritical conditions to effect extraction of organic impurities from the solution of the epihalohydrin polymer to the fluid, withdrawing fluid enriched in organic impurities from the solution of the epihalohydrin polymer, and separating extracted impurities from the withdrawn fluid, wherein the fluid comprises a substance that at atmospheric pressure and room temperature (about 25°C) is gaseous.
Another aspect of the invention concerns a process for purifying a solution of a nitrogen containing epihalohydrin polymer formed by reaction of a nitrogen-containing precursor selected from the group consisting of amines, poly-amines, polyaminoamides, polyurethanes and mixtures thereof with epihalohydrin comprising the steps of contacting the solution of the epihalohydrin polymer with a fluid under liquid, supercritical or near supercritical conditions to effect extraction of organic impurities from the solution of the epihalohydrin polymer to the fluid, withdrawing fluid enriched in organic impurities from the solution of the epihalohydrin polymer, and separating extracted impurities from the withdrawn fluid, wherein the fluid comprises a substance that at atmospheric pressure and room temperature (about 25°C) is gaseous.
Extracting with a fluid under supercritical or near supercritical conditions has been found to efficiently remove unwanted organic compounds, particularly halogen containing compounds, from the polymer in a comparatively simple procedure without significantly negatively affecting its desired properties, for example as additive in paper making and particularly as wet strength resin. Normally such fluid may also be re-used after separation of the extracted impurities. Preferred fluids are those that have a critical temperature (Tcr) from about 20°C to about 100°C, most preferably from about 30°C to about 60°C, and a critical pressure (Pcr) from about 30 bar to about 500 bar, most preferably from about 70 bar to about 300 bar. Examples of fluids include carbon dioxide, nitrous oxide, ethane, ethane and propane. Carbon dioxide is particularly preferred as it is readily available, non-toxic and non-flammable. Further, carbon dioxide has been found not to give any negative impact to the treated polymer. The fluid may by used in substantially pure form or mixed with small amounts of one or more co-solvents, surfactants, complexing agents or the like.
Nitrogen containing epihalohydrin polymers in the process of the present invention include those that have been prepared with epihalohydrin, e.g. epichlorohydrin, as a reactant, either during the polymerisation or in the modification of an existing polymer. The invention is particularly advantageous for nitrogen containing epihalodydrin polymers that are water soluble.
Nitrogen containing epihalohydrin polymers include those formed by reactions of nitrogen containing precursors selected from amines, poly-amines, polyaminoamides, polyurethanes and mixtures thereof. Most preferably, the polymers are polyaminoamide- epihalohydrin polymers, which also may be referred to as polyamidoamine-epihalohydrin polymers, and are useful as wet strength resins in paper making. Epihalohydrins that can be used include epibromohydrin and epichlorohydrin, preferably epichlorohydrin. Suitably, the polymers are produced using from about 0.5 to about 2 moles of epihalohydrin per mole of basic nitrogen in the nitrogen-containing precursor.
The nitrogen-containing precursor is preferably the polyaminoamide reaction product of a polycarboxylic acid or a derivative thereof, suitably a dicarboxylic acid or derivative thereof, and a polyamine. Derivatives of carboxylic acids include e.g. anhydrides, esters and half esters. Suitable poly-carboxylic acids include saturated or unsaturated aliphatic or aromatic dicarboxylic acids. Preferably, the polycarboxylic acids contains less than 10 carbon atoms.
Preferred polycarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid and derivatives and mixtures thereof, of which adipic acid is particularly preferred. Preferred polyamines include polyalkylene polyamines, or mixtures thereof, having the following formula:
H2N-(CR1 H)a-(CR2H)b-N(R3)-(CR4H)c-(CR5H)d-NH2 (I) in which R1-R5 represent hydrogen or lower alkyl, preferably up to C3 and a-d represent integers of from 0 to 4. Preferred polyalkylene polyamines include diethylene triamine, tri- ethylene tetra amine, tetraethylene penta amine, dipropylene triamine, and mixtures thereof. The polyamines of formula (I) can be combined with other polyamines or mixtures of other amines. Preferably, these amines have any of the following formulae N-VII: H-(-NH-(CH2)Θ-CR6H-)rNCH2CH2NH (II)
R7R8N-(-(CH2)g-CR9H-(CH2)h-N(R10)-)i-H (III) HR11 N-(CH2)J-CR12H-(CH2X-OH (IV)
HNR13R14 (V)
H2N-(CH2)I-COOH (Vl)
(CH2)m-NH-CO (VII) in which R6-R14 represent hydrogen or lower alkyl, preferably up to C3, e-l represent integers of from 0 to 4, and m represents an integer of from 0 to 5.
The polycarboxylic acid and the polyamine may, for example, be applied in a molar ratio from about 1 :0.5 to about 1 :1.5.
The nitrogen-containing epihalohydrin-based polymer is preferably present in an aqueous solution, that further may comprise a water-miscible solvent such as methanol, ethanol or dimethyl formamide. The aqueous polymer solution is preferably prepared from an aqueous solution of a nitrogen-containing precursor. The molecular weights of the polymers are not critical and may, for example, be within the range of from about 50000 to about 1000000 or higher.
Preparation of epihalodydrin polymers can be performed by any known process, such as those disclosed in any one of US 4450045, US 331 1594, US 4336835,
US 3891589, US 2926154, US4857586, US4975499, US5017642, US 5019606
US 5093470 and US 5516885, but additionally including a purification step comprising extraction with a fluid under supercritical or near supercritical conditions as described herein. According to the invention it is also possible to subject commercially or otherwise readily available nitrogen containing epihalohydrin polymers to such a purification step.
The solution of the epihalohydrin polymer is preferably an aqueous solution and it has been found that only small amount of water are withdrawn in the purification step.
The solids content of the solution to be purified is preferably as high as possible without causing handling problems and can in many cases be as high as about 35 wt% or more, but is preferably from about 5 to about 30 wt%, most preferably from about 10 to about 25 wt%. The viscosity of the solution is preferably from about 1 to about 250 mPas, most preferably from about 5 to about 200 mPas. For example, the viscosity may be from about 1 to about 100 mPas or from about 5 to about 60 mPas.
The invention is particularly advantageous for removing halogen containing organic impurities. Halogen containing impurities that can be removed include epihalohydrin as such, particularly epichlorohydrin, and reactions products thereof such as 1 ,2- and 1 ,3-dihalo-2-propanol (DXP) and 3-halo-1 ,2-propanediol (XPD), particularly
1 ,2- and 1 ,3-dichloro-2-propanol (DCP) and 3-chloro-1 ,2-propanediol (CPD). By the purification according to the present invention, DXP and XPD as well as any remaining epihalohydrin can be removed and eventually destructed. For example, it is possible to obtain polyaminoamide epichlorohydrin polymers with a content of organic chlorines below about 0.01 wt% and even below about 0.0001 wt% or less. The extraction takes place under conditions in which the fluid is in a liquid, supercritical or near supercritical state. Near supercritical means that the temperature is slightly below T0T and/or the pressure is slightly below P^ but the properties of the fluid are substantially equivalent to the case when the temperature and the pressure exceeds Tcr and Per. respectively. The temperature in K is preferably at least about 0.9 x T^ most preferably at least 0.95 x TCT. The pressure is preferably at least about 0.9 x Pc-, most preferably at least 0.95 x Pa. For practical reasons and to avoid decomposition of the epihalohydrin polymer it is usually preferred to operate at a temperature from about 10°C to about 200°C most preferably from about 400C to about 1200C. For the same reasons it is usually preferred to operate at a pressure from about 40 bar to about 500 bar, most preferably from about 75 bar to about 400 bar. The optimal conditions may vary depending on which epihalohydrin polymer that is purified and which impurities that are most desirable to remove. For example, it has been found that DCP is efficiently removed from polyaminoamide epichlorohydrin at a preferred temperature from about 30°C to about 180°C, most preferably from about 400C to about 100°C and a preferred pressure from about 60 bar to about 500 bar, most preferably from about 75 bar to about 300 bar, while CPD is efficiently removed from polyaminoamide epichlorohydrin at a preferred temperature from about 30°C to about 1800C, most preferably from about 50°C to about 1000C and a preferred pressure from about 60 bar to about 500 bar, most preferably from about 150 bar to about 400 bar
The extraction may be a one stage process, but can also be performed in two or more stages with the same or different conditions, the latter being of interest if different optimal conditions for extracting different kinds of halogen containing impurities apply. The average residence time for the solution of the epihalohydrin polymer in contact with fluid under supercritical or near supercritical conditions is preferably from about 5 minutes to about 120 minutes, most preferably from about 15 minutes to about 60 minutes. The purification through an extraction may be performed batchwise, continuously or a combination thereof.
In one embodiment the extraction is performed by maintaining a solution of the epihalohydrin polymer in vessel, preferably under agitation, and contacting it with a continuous flow of fluid under liquid, supercritical or near supercritical conditions during a time sufficient to achieve removal of halogen containing impurities to a satisfactory degree. The temperature and pressure may remain substantially constant during the entire time but may also be changed stepwise or continuously. The purified solution of the polymer can then withdrawn as a product or be transferred to a further extraction step or any other treatment.
In another embodiment the extraction is performed by contacting the solution of the epihalohydrin polymer with the fluid under liquid, supercritical or near supercritical conditions in a through-flow vessel or column, in each case with or without a packaging. Both the solution of the polymer and the fluid flow continuously through the vessel or column, preferably counter-currently, but also co-current flow could come into question. If appropriate, part of the purified polymer solution may be recirculated. The temperature and pressure may be the same or different in various parts of the vessel or column. Any kind of vessels or columns commonly used for extraction can be used, such as tray-type columns or packed columns with structured or non-structured packings made of e.g. glass, metal or ceramic materials.
The separation of extracted impurities from the withdrawn fluid is suitably done by altering the temperature and/or pressure thereof to change the solubility properties so the impurities are precipitated. Usually this is easiest done by lowering the pressure to a level below Pcr. If necessary the extracted impurities can removed from the carbon dioxide by purification with water or active carbon. After the separation the fluid can be reused after restoring the temperature and pressure to conditions suitable for the extraction. The separated impurities may be destructed by any suitable means. The invention will be further described in connection with the following examples, which, however, are not intended to limit the scope thereof. Unless otherwise stated, all parts and percentages refer to parts and percent by weight.
Figure 1 is a flow sheet for batchwise extraction while Figure 2 is a flow sheet for continuous extraction. Example 1 : An aqueous solution of polyaminoamide epichlorohydrin polymer
(PAAE) having a dry content of 20.7 wt% was purified by batch-wise extraction with supercritical carbon dioxide in an experimental setup according to Fig. 1. Before the purification the concentrations of DCP was 267 μg/g and of CPD 289 μg/g. The solution of PAAE was maintained under agitation in a 250 ml extraction vessel 4 and subjected to a continuous flow of supercritical carbon dioxide CO2 brought from a vessel via a cooler 1 , a pump 2 and a heat exchanger 3 under various conditions in respect of temperature, pressure and time. In a separator 5 the pressure was released, resulting in precipitation of the extracted components from the carbon dioxide. After the extraction the content of DCP and CPD in the purified PAAE solution was determined by gas chromatography. The results are shown in Table 1 : Table 1 Batch extraction
Figure imgf000008_0001
Examples 2-4: An aqueous solution of polyaminoamide epichlorohydrin polymer (PAAE) having a dry content of 21.2 wt% was purified by continuous extraction with supercritical carbon dioxide in an experimental setup according to Fig. 2. Before the purification the concentrations of DCP was 269.7 μg/g and of CPD 308.1 μg/g. The polymer solution F was brought via a pump 6, and a pre-heater 7 to a packed column 4 where it was contacted by a counter-current flow of carbon dioxide circulating via a cooler 1 , a pump 2 a heat exchanger 3 and, after the column 4, a separator 5. The purified polymer solution was brought from the column 4 to a raffinate vessel R. In a separator 5 the pressure was released and after purification with active carbon the carbon dioxide was recycled. In Examples 2 and 3 were run as bubble extraction with the column 4 filled with polymer solution, while Example 4 was run as film extraction with the polymer solution flowing as a film on the packings in the column 4. The results are shown in Table 2.
Table 2 Continuous extraction
Figure imgf000008_0002
Example 5: The treated polymers obtained in Examples 3 and 4 as well as the commercially available polyaminoamide epichlorohydrin polymer solution Eka WS 320 were tested as wet strength agents in paper making on a pilot paper machine. The following conditions were applied:
Pulp: 40 wt% eucalyptus, 40 wt% birch, 20 wt% pine sulfate
Paper density: 70 g/m2
Freeness: about 34° SR
Consistency (chest): 1.5% Addition levels: 6, 9 and 12 kg/ tonne paper pH (head box): 7.2-7.5
Stock temperature: 300C
After curing for 30 minutes at 1000C the wet strength of the different papers made were tested and no differences could be found between the wet strength agents. Thus, it was found that the content of DCP and CPD in a polyaminoamide epichlorohydrin polymer solution could be significantly reduced without affecting its performance as wet strength agent in paper making.

Claims

1. A process for the production of a nitrogen containing epihalohydrin polymer involving reaction of a nitrogen-containing precursor selected from the group consisting of amines, poly-amines, polyaminoamides, polyurethanes and mixtures thereof with epihalohydrin to form of a solution of said epihalohydrin polymer, the process comprising a purification step to remove organic impurities from the formed solution of the epihalohydrin polymer, said purification step comprising contacting the solution of the epihalohydrin polymer with a fluid under liquid, supercritical or near supercritical conditions to effect extraction of organic impurities from the solution of the epihalohydrin polymer to the fluid, withdrawing fluid enriched in organic impurities from the solution of the epihalohydrin polymer, and separating extracted impurities from the withdrawn fluid, wherein the fluid comprises a substance that at atmospheric pressure and room temperature (about 25°C) is gaseous.
2. A process for purifying a solution of a nitrogen containing epihalohydrin polymer formed by reaction of a nitrogen-containing precursor selected from the group consisting of amines, poly-amines, polyaminoamides, polyurethanes and mixtures thereof with epihalohydrin comprising the steps of contacting the solution of the epihalohydrin polymer with a fluid under liquid, supercritical or near supercritical conditions to effect extraction of organic impurities from the solution of the epihalohydrin polymer to the fluid, withdrawing fluid enriched in organic impurities from the solution of the epihalohydrin polymer, and separating extracted impurities from the withdrawn fluid, wherein the fluid comprises a substance that at atmospheric pressure and room temperature (about 25°C) is gaseous.
3. A process as claimed in any one of the claims 1-2, wherein the fluid is carbon dioxide.
4. A process as claimed in claim 3, wherein the epihalohydrin polymer is a polyaminoamide-epihalohydrin polymer.
5. A process as claimed in any one of the claims 1-4, wherein the organic impurities comprise organic halogen containing impurities.
6. A process as claimed in claim 5, wherein the halogen containing impurities comprise at least one of epihalohydrin and reaction products thereof.
7. A process as claimed in any one of the claims 5-6, wherein the reaction products of epihalohydrin comprise at least one of 1,2- and 1,3-dichloro-2-propanol and
3-chloro-1 ,2-propanediol.
8. A process as claimed in any one of the claims 1-7, wherein the solution of the epihalohydrin polymer is an aqueous solution.
9. A process as claimed in any one of the claims 1-8, wherein the extraction takes place at a temperature from about 10 to about 2000C.
10. A process as claimed in any one of the claims 1-9, wherein the extraction takes place at a pressure from about 40 to about 500 bar.
PCT/SE2006/050188 2005-06-30 2006-06-09 Chemical process WO2007004972A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP06748028A EP1902086A1 (en) 2005-06-30 2006-06-09 Chemical process
AU2006266498A AU2006266498B2 (en) 2005-06-30 2006-06-09 Chemical process
JP2008519231A JP2008545041A (en) 2005-06-30 2006-06-09 Chemical method
NZ564123A NZ564123A (en) 2005-06-30 2006-06-09 Process for production of a nitrogen containing epihalohydrin polymer
CA2612134A CA2612134C (en) 2005-06-30 2006-06-09 Chemical process
BRPI0613479-3A BRPI0613479A2 (en) 2005-06-30 2006-06-09 chemical process
NO20080520A NO20080520L (en) 2005-06-30 2008-01-28 Chemical process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05105860.0 2005-06-30
EP05105860 2005-06-30

Publications (1)

Publication Number Publication Date
WO2007004972A1 true WO2007004972A1 (en) 2007-01-11

Family

ID=34940252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2006/050188 WO2007004972A1 (en) 2005-06-30 2006-06-09 Chemical process

Country Status (11)

Country Link
EP (1) EP1902086A1 (en)
JP (1) JP2008545041A (en)
KR (1) KR20080028446A (en)
CN (1) CN101213242A (en)
AU (1) AU2006266498B2 (en)
BR (1) BRPI0613479A2 (en)
CA (1) CA2612134C (en)
NO (1) NO20080520L (en)
NZ (1) NZ564123A (en)
RU (1) RU2399633C2 (en)
WO (1) WO2007004972A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2504396B1 (en) * 2009-11-27 2021-02-24 Basf Se Composition for copper electroplating comprising leveling agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374879A2 (en) * 1988-12-23 1990-06-27 Toyo Engineering Corporation Method for extraction of impurities in polymer
WO1997040081A1 (en) * 1996-04-23 1997-10-30 Joachim Brimmer Ingenieurbüro Anlagenbau Gmbh Process for separating organic monomers or auxiliaries
WO1999033901A1 (en) * 1997-12-31 1999-07-08 Hercules Incorporated Process to reduce the aox level of wet-strength resins by treatment with base
WO2000040639A1 (en) * 1997-07-05 2000-07-13 Bayer Aktiengesellschaft Wet-strength agent with low dcp content
US20050037932A1 (en) * 2003-08-15 2005-02-17 Jianwei Liu Ultra-thin lubricant film for advanced tribological performance of magnetic storage media

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2629086B1 (en) * 1988-03-22 1990-12-07 Rhone Poulenc Chimie PROCESS FOR THE PURIFICATION AND ISOLATION OF ISOCYANATE CONDENSATES BY LIQUID OR SUPERCRITIC CO2 EXTRACTION
US5516885A (en) * 1991-06-19 1996-05-14 Akzo Nobel N.V. Epihalohydrin-based resins having a reduced halogen content
JPH11140223A (en) * 1997-11-07 1999-05-25 Hitachi Ltd Treatment of halogen-containing plastic and apparatus therefor
JP2002201267A (en) * 2001-01-05 2002-07-19 Sumitomo Chem Co Ltd Preparation process of aqueous polyamideamine- epichlorohydrin resin
JP2003002972A (en) * 2001-06-25 2003-01-08 Mitsui Chemicals Inc Method for producing highly pure polyamino acid derivative
JP2003003395A (en) * 2001-06-25 2003-01-08 Sumitomo Chem Co Ltd Strength enhancer for wet paper, and method for reducing amount of absorbent organic halogen in waste water at papermaking step

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374879A2 (en) * 1988-12-23 1990-06-27 Toyo Engineering Corporation Method for extraction of impurities in polymer
WO1997040081A1 (en) * 1996-04-23 1997-10-30 Joachim Brimmer Ingenieurbüro Anlagenbau Gmbh Process for separating organic monomers or auxiliaries
WO2000040639A1 (en) * 1997-07-05 2000-07-13 Bayer Aktiengesellschaft Wet-strength agent with low dcp content
WO1999033901A1 (en) * 1997-12-31 1999-07-08 Hercules Incorporated Process to reduce the aox level of wet-strength resins by treatment with base
US20050037932A1 (en) * 2003-08-15 2005-02-17 Jianwei Liu Ultra-thin lubricant film for advanced tribological performance of magnetic storage media

Also Published As

Publication number Publication date
BRPI0613479A2 (en) 2011-01-11
KR20080028446A (en) 2008-03-31
EP1902086A1 (en) 2008-03-26
CA2612134A1 (en) 2007-01-11
JP2008545041A (en) 2008-12-11
CN101213242A (en) 2008-07-02
RU2008103316A (en) 2009-08-10
NO20080520L (en) 2008-03-31
RU2399633C2 (en) 2010-09-20
AU2006266498A1 (en) 2007-01-11
NZ564123A (en) 2010-10-29
AU2006266498B2 (en) 2010-08-26
CA2612134C (en) 2010-03-30

Similar Documents

Publication Publication Date Title
EP0589917B1 (en) Process for preparing epihalohydrin-based resins having a reduced halogen content
US7576162B2 (en) Chemical process
DE4244194A1 (en) Water-soluble condensation products from compounds containing amino groups and crosslinking agents, processes for their preparation and their use
TW200911773A (en) Epichlorohydrin, manufacturing process and use
PT1189972E (en) Process for preparing reduced byproduct polyamine-epihalohydrin resins
US5876579A (en) Electrodialysis treatment
CA2612134C (en) Chemical process
TW416930B (en) Process for the purification of hydrogen peroxide, and the process and the plant for manufacture thereof
EP0335157A1 (en) Nitrogen containing, water soluble, polymeric compounds
US11912594B2 (en) Carbon disulfide-modified amine additives for separation of oil from water
US3937686A (en) Process of preparing high molecular weight polyamide with recovery of diamine and return of same to polymerization system
EP2294112A1 (en) Resin precursor
EP0099198B1 (en) Improvements in or relating to the curing of epoxide resins
US20230203248A1 (en) Process for manufacturing wet strength resins
US4185150A (en) Production of polyamides from dicarboxylic acids produced by nitric acid oxidation of organic material
US3452097A (en) Fractionation of polyamines
WO2000034358A1 (en) Method for producing cross-linked cation polymers with a reduced aox content
CH680291A5 (en) Di:chloro:propanol extn. from aq. soln. with di:alkyl ketone - used for purifying soln. of di:allyl amine polymer quaternised with epichlorohydrin
DE19600366A1 (en) Narrowing molecular weight distribution of ethyleneimine polymer]
HU180488B (en) Method for producing liquid epoxy resins improved feature

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680023571.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006748028

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006266498

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 564123

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2612134

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2006266498

Country of ref document: AU

Date of ref document: 20060609

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006266498

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2008519231

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087001805

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008103316

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0613479

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071228