WO2007004694A1 - Novel gene involved in biosynthesis of petroselinic acid and process for production of petroselinic acid - Google Patents

Novel gene involved in biosynthesis of petroselinic acid and process for production of petroselinic acid Download PDF

Info

Publication number
WO2007004694A1
WO2007004694A1 PCT/JP2006/313449 JP2006313449W WO2007004694A1 WO 2007004694 A1 WO2007004694 A1 WO 2007004694A1 JP 2006313449 W JP2006313449 W JP 2006313449W WO 2007004694 A1 WO2007004694 A1 WO 2007004694A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
acid
seq
protein
amino acid
Prior art date
Application number
PCT/JP2006/313449
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Okamura
Yoko Yamanaka
Nobuhiko Muramoto
Ikuo Nishida
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to AU2006266760A priority Critical patent/AU2006266760B2/en
Priority to JP2007523443A priority patent/JP4840360B2/en
Priority to CA2614062A priority patent/CA2614062C/en
Priority to CN2006800241478A priority patent/CN101213298B/en
Publication of WO2007004694A1 publication Critical patent/WO2007004694A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids

Definitions

  • a novel gene involved in petrothelinic acid biosynthesis a method for producing petrothelic acid
  • the present invention relates to novel genes involved in biosynthesis of petrothelinic acid, in particular, ⁇ 4 -palmitoinole-ACP desaturase gene derived from carrot, and petrocerinoyl-ACP thioesterase gene derived from plant.
  • the present invention relates to a process for producing petrothelic acid using
  • Nylon a type of engineering plastic, is synthesized by polymerizing aminocarboxylic acid or diamine and dicarboxylic acid as raw materials, but most of the raw monomers are produced from fossil resources in the chemical industry.
  • Sebacic acid (1, 10-decanedioic acid) is used as a biomass-derived nylon raw material, which is produced by cleaving castor oil extracted from castor with a caustic alkali. It becomes a raw material.
  • nylon 6 and 10 is limited, and it is not widely used as a resin material.
  • Non-Patent Documents 1 to 8 The production technology of cis-6-octadecenoic ac id has been studied.
  • Coriander and carrots of the Apiaceae plants contain more than 80% of petroceric acid in the oil components of seeds, but they are not suitable for the production of betrothelic acid due to low seed yield.
  • Plant fatty acids are newly synthesized in plastids (chloroplasts).
  • chloroplasts the precursor palmitoyl ACP was converted to ci s-4-hexadecenoil ACP by ⁇ 4-palmitoyl-ACP desaturase (hereinafter referred to as 4DES). Later, the chain length was extended by the prokaryotic fatty acid synthase complex to be petrocellinoyl-ACP.
  • PTE petrocellinol-ACP thioesterase
  • Plants that synthesize petroceric acid are thought to contain a series of biosynthetic enzymes specific to petroceric acid synthesis and their genes.
  • ⁇ 4-palmitoyl-ACP desaturase derived from coriander The gene was cloned, and originally a transgenic plant was introduced in which the gene was introduced into Arabidopsis thaliana, which does not produce petrothelinic acid. Accumulated amount was only about 1% in seed oil.
  • Non-patent Document 8 Although PTE has been shown to have enzyme activity (Non-patent Document 8), the gene has not yet been cloned.
  • Plant fat production and its constituent fatty acid composition involve not only fatty acid biosynthesis in plastids, but also transport of fatty acid derivatives in the cytoplasm and triacylglycerol synthesis in the endoplasmic reticulum membrane.
  • fatty acid derivatives in the cytoplasm and triacylglycerol synthesis in the endoplasmic reticulum membrane.
  • Patent Literature 1 United States Patent 5, 430, 134
  • Patent Document 2 International Publication No. 94/01565
  • Non-Patent Document 1 Proc. Natl. Acad. Sci. USA, 89, 11184-11188,
  • Non-Patent Document 2 Plant J., 17 (6), 679-688, 1999.
  • Non-Patent Document 3 Prog. Lipid Res., 33 (1/2), 155-163, 1994
  • Non-Patent Document 4 Plant Phys iol., 124, 681-692, 2000
  • Non-Patent Document 5 Plant Mol. Biol., 47, 507-518, 2001
  • Non-Patent Document 8 Plant Phys iol., 104, 839-844, 1994
  • Non-Patent Document 9 Planta 215: 584-595 2002. Disclosure of the Invention
  • the present invention can promote the accumulation of petrothelic acid. It is an object of the present invention to provide a novel gene and a method for producing petrothelic acid using the gene.
  • ⁇ 4 -panoremitoinole-ACP desaturase derived from cindu (aucus caro a) belonging to the family Aceraceae is a ⁇ 4-palmitoyl-ACP desaturase derived from Korean.
  • cindu aucus caro a
  • Aceraceae is a ⁇ 4-palmitoyl-ACP desaturase derived from Korean.
  • the present inventor has succeeded in isolating a petroselinol-ACP thioesterase gene newly, and when this gene is used in combination with a ⁇ 4-palmitoyl-ACP desaturase gene, the inventor has the ability to synthesize petrocellinic acid.
  • the present invention includes the following.
  • a protein having ⁇ 4-palmitoyl-ACP desaturase activity including an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2
  • a protein having ⁇ 4 ”palmitoyl-ACP desaturase activity is expressed by cis-4-hexadecenoic acid ( Can increase the accumulation of cis-4-Hexadecenoic aci d) or petroselinic acid (cis-6-octadecenoic acid) or cis_8-icosenoic acid It can be paraphrased as protein.
  • a protein having an amino acid sequence in which one or more amino acids are deleted, substituted, or added in the amino acid sequence shown in SEQ ID NO: 4 or 6, and having petrocellinol-ACP tiosterase activity (c) A protein having a petro-cerinoyl-ACP thioesterase activity, encoded by DNA that is hybridized under stringent conditions to DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 3 or 5.
  • the protein having petroselinol-ACP thioesterase activity is expressed simultaneously with a protein having ⁇ 4-palmitole-ACP desaturase activity in plant cultured cells or individual plants.
  • Ci s_4-hexadecenoic acid ci s-4-Hexadecenoic acid
  • petroselinic acid ci s_6 -octadecenoic acid (cis -6-octadecenoic acid)
  • cis-8-icosenoic acid It can be rephrased as a protein capable of increasing the amount.
  • FIG. 1 is a diagram comparing the homology (%) of the amino acid sequences of various petrocellinol-ACP thioesterases and oleoyl-ACP thioesterases.
  • DcPTE means petroselinol-ACP thioesterase derived from carrot Da s carota
  • CsPTE means coriander coriand sa ti vwn, derived from petrocellino.il-ACP thioesterase
  • AgPTE stands for dinore ne thum gra veolens.
  • CsOTE means oleoinole-ACP thioesterase from coriandrum (Coriandrum sa ti vum)
  • DcOTE means reoil-ACP thioesterase from carrot Daucus car ota) .
  • FIG. 2-1 shows the alignment of the amino acid sequences of various betacellinoyl-ACP thioesterases and oleoyl-ACP thioesterases.
  • Fig. 2-2 shows the alignment of amino acid sequences of various betacellinoyl-ACP thioesterases and oleoreyl-ACP thioesterases.
  • FIG. 2 is a diagram showing alignment of amino acid sequences of ⁇ 4-palmitoyl-ACP desaturase (referred to as Cs4DES) derived from the amino acid ⁇ S ⁇ ⁇ and coriander (referred to as Dc4DES) of Corse.
  • Cs4DES ⁇ 4-palmitoyl-ACP desaturase
  • Dc4DES coriander
  • FIG. 4 shows purified petroselinol-derived ACP thioesterase from carrot Daucus carot (referred to as DcPTE), oleoyl-ACP thioesterase from coriandrum sa ti vum (referred to as CsOTE) and carrot Daucus carota)
  • DcPTE oleoyl-ACP thioesterase from coriandrum sa ti vum
  • CsOTE oleoyl-ACP thioesterase from coriandrum sa ti vum
  • DcOTE oleoyl-ACP thioesterase from coriandrum sa ti vum
  • FIG. 5 is a photograph showing the results of SDS-PAGE after reacting purified ATP with DcPTE and DcOTE histidine-labeled protein eluate using asil ACP as a substrate.
  • FIG. 6 is a characteristic diagram showing the results of quantifying the bands included in the photograph shown in FIG. 5 using image analysis software.
  • FIG. 7 is a block diagram schematically showing the constant systemic expression vector prepared in the example.
  • FIG. 8 is a block diagram schematically showing the seed-specific development vector prepared in the example.
  • FIG. 9 shows the results of fatty acid composition analysis in the seeds of the transformed plant.
  • the Dc4DES gene encodes a protein (Dc4DES) containing the amino acid sequence shown in SEQ ID NO: 2.
  • Dc4DES is a protein with active individuals that does not contain the ⁇ 4 position in palmitoyl-ACP (palmitoyl-acyl carrier protein), which is a saturated fatty acid having 16 carbon atoms.
  • a gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 2 is shown in SEQ ID NO: 1.
  • the Dc4DES gene comprises an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2, and has ⁇ 4 -palmitoyl-ACP desaturase activity It may be one that encodes a protein.
  • “a plurality of amino acids” means 2 to 150, preferably 2 to 80, more preferably 2 to 40.
  • the region to be deleted, substituted or added is not particularly limited. For example, the region from 1 to 99 or 270 to 386, preferably from 1 to 99 or 301 to 386 in the amino acid sequence shown in SEQ ID NO: 2. The region is more preferably the 1st to 53rd region or the 381st to 386th region.
  • the Dc4DES gene is composed of an amino acid sequence having a homology of 50% or more, preferably 70% or more, more preferably 90% or more in the amino acid sequence represented by SEQ ID NO: 2, and ⁇ 4 -A gene encoding a protein having palmitoyl-ACP desaturase activity.
  • the numerical value of the above homology is obtained by executing a command of the Maxim matching method, for example, using DNA analysis (Hitachi Software Engineering), which is sequence analysis software.
  • the parameters at that time are the default settings (initial settings). '
  • the Dc4DES gene is encoded by DNA that hybridizes under stringent conditions to DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1, and ⁇ 4-palmitoyl- It may be a gene encoding a protein having ACP desaturase activity.
  • “hyperpridation under stringent conditions” means, for example, that after heating at 42 ° C. in a solution of 6 XSSC, 0.5% SDS, and 50% formamide, 0. 1 Indicates that a positive hybridization signal is still observed even under conditions of washing at 68 ° C in a solution of 1 XSSC and 0.5% SDS.
  • ⁇ 4 -palmitoyl-ACP desaturase activity is a function of palmitoyl-ACP.
  • the presence or absence of this activity can be determined by analyzing the DNA fragment encoding the protein to be assayed without ac is 4-hexadecenoic acid, petroceric acid, ci S-8-icosenoic acid such as Arabidopsis thaliana. Cis-4-hexadecenoic acid, petroceric acid, cis-8- in the lipids of the introduced plant. It can be assayed by measuring the presence or absence of icosenoic acid.
  • ci s- Transform plant cells that do not accumulate 4-hexadecenoic acid, petroceric acid, or cis-8-icosenoic acid extract the lipids of the produced transformed plant cells or the seeds of the regenerated plants.
  • Fatty acid methyl ester is obtained by treating the extracted lipids with methanolic hydrochloric acid, etc., and the amount of methyl ester of petrocelic acid, the amount of fatty acid methyl ester of cis-4-hexadecenoic acid, the amount of fatty acid methyl ester of cis-8-icosenoic acid Is measured by gas chromatography or the like. If these fatty acid methyl esters can be detected, the protein to be assayed has ⁇ 4-palmitoyl-ACP desaturase activity, and if these fatty acid methyl esters cannot be detected, it has ⁇ 4-palmitoyl-ACP desaturase activity. I can say no.
  • the Dc4DES gene has a function of promoting the synthesis of petroselinic acid in the cell by being introduced into the host plant cell in a functional manner.
  • a plant cell is transformed using an expression vector in which the Dc4DES gene is arranged downstream of a constitutive expression promoter or a specific expression promoter, that is, at a position controllable by the promoter. To do.
  • the specific expression promoter it is preferable to use a seed specific expression promoter.
  • petroselinic acid can be accumulated in the seed.
  • petroseric acid is pulverized in tissues such as seeds and mixed with a hydrochloric acid-methanol solution to methyl esterize petroceric acid.
  • Hexane extraction can be performed and the hexane extract can be detected with a gas chromatograph-mass spectrometer (GC-MS) instrument. Based on the results of detection using a GC-MS instrument, the ability to promote the synthesis of petrothelic acid can be analyzed. .
  • GC-MS gas chromatograph-mass spectrometer
  • PTE gene is indicated in coriander (Gofiandrum sa ti vium). What has been excised but not isolated and cloned is a newly isolated and cloned gene in the present invention.
  • the PTE gene is a gene that encodes thioesterase (PTE), which is highly specific for the acyl ACP (acyl carrier protein) having a double bond at the ⁇ 6-position such as petrocellinol-ACP. PTE is involved in the production of free petrothelic acid.
  • Examples of the PTE gene include a gene encoding a carrot-derived PTE containing the amino acid sequence shown in SEQ ID NO: 4 or 6.
  • the gene encoding the protein consisting of the amino acid sequence shown in SEQ ID NO: 4 is shown in SEQ ID NO: 3, and the gene encoding the protein consisting of the amino acid sequence shown in SEQ ID NO: 6 is shown in SEQ ID NO: 5.
  • Carrot-derived PTE gene and PTE are referred to as DcPTE gene and DcPTE, respectively.
  • the DcPTE gene includes an amino acid sequence in which one or more amino acids are deleted, substituted, or added in the amino acid sequence shown in SEQ ID NO: 4 or 6, and may encode a protein having activity.
  • a plurality of amino acids means 2 to 188, preferably 2 to 64, more preferably 2 to 44.
  • the region to be deleted, substituted or added is not particularly limited. For example, the region of 1 to 70 ′ or 311 to 375 in the amino acid sequence shown in SEQ ID NO: 4, preferably 1 to 57 or 368 to 375. Area, more preferably the 1st to 32nd areas.
  • the PTE gene encoding a protein containing an amino acid sequence into which the amino acid sequence shown in SEQ ID NO: 4 or 6 is substituted, deleted or inserted is a known technique such as the Kunkel method or the Gapped duplex method or the like. It can be obtained by adopting a method according to this and introducing a desired mutation into the nucleotide sequence shown in SEQ ID NO: 3 or 5.
  • a mutagenesis kit for example, Mutan-K (TAKARA) or Mutan-G (TAKARA)
  • LA PCR in by TAKARA Mutation is introduced using the in vitro Mutagenesis series kit.
  • the DcPTE gene is composed of an amino acid sequence having a homology of 50% or more, preferably 70% or more, more preferably 90% or more in the amino acid sequence represented by SEQ ID NO: 4 sentence 6; And Petrocellinoir -ACP It may be a gene encoding a protein having sterase activity.
  • the numerical value of the homology is obtained, for example, by executing a command of the Maxim matching method using DNASIS (Hitachi Soft-to-Air Engineering) which is a sequence analysis software. In this case, the parameters are set to the default settings (initial settings).
  • the DcPTE gene is encoded by DNA that hybridizes under stringent conditions to DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 3 or 5, and Petrocellinol-ACP It may be a gene encoding a protein having esterase activity.
  • “hybridizes under stringent conditions” means, for example, 0.1% after heating at 42 ° C. in a solution of 6 XSSC, 0.5% SDS and 50% formamide. This indicates that a positive hypritized signal is still observed even under conditions of washing at 68 ° C. in a solution of XSSC, 0.5% SDS.
  • Petrocellinol-ACP thioesterase activity refers to the activity of degrading petroselinol-ACP into petroselinic acid and ACP. The activity is 25 mM
  • Tris-HCl (pH 8.0), ImM DTT, Petrocerinol-ACP and water are mixed, preincubated for 5 minutes at 25 ° C, and the reaction solution containing 15 / _ig protein to be assayed 100 ⁇ 1 For 30 minutes at 25 ° C.
  • unreacted petrolinoyl-ACP and reaction product free ACP are separated by SDS-PAGE.
  • the gel after electrophoresis is stained with CBB, and then the amount of free ACP, which is the reaction product, is quantified with a densitometer by SDS-PAGE, and the thiesterase activity of the added protein to be assayed is measured.
  • the PTE gene is a gene encoding a carrot-derived PTE.
  • a plant-derived PTE gene that biosynthesizes petroceric acid.
  • plants that biosynthesize petroceric acid include Corianda-"" y Corian drum sa tivium), /, Seri Petroseli um crispurn) "Inore ⁇ Anethum graveolens), etc., Ivy, Hedera helix, ralia ela td), and the like.
  • all or part of the 187th to 1128th region in the base sequence of the DcPTE gene shown in SEQ ID NO: 3 or 5 can be used as a probe.
  • long nucleic acid sequences > lOObp
  • they can also be screened by moderate stringency to obtain signals from target samples that are more than 80% homologous. it can.
  • the probe can be quite short.
  • oligonucleotides may be used, but should be at least about 10, preferably at least about 15, and more preferably 20 nucleotides. When short regions are used for probes, a higher degree of sequence identity is required than for longer probes.
  • the PTE gene can be isolated and identified from the genomic DNA of the plant.
  • genomic DNA mRNA extracted from the plant was synthesized as a cocoon.
  • the cDNA can also be used to isolate and identify the PTE gene of the plant. Based on the nucleotide sequence of the DcPTE gene shown in SEQ ID NO: 3 or 5, isolated from coriander (Cor Ian drum sativium) and vinore, Arw thwn graveolens), the sequences of the 7 DcPTE homologous genes were sequenced respectively. The numbers 7 and 9 are shown.
  • the amino acid sequence (CsPTE) deduced from the coriander-derived PTE gene shown in SEQ ID NO: 7 is shown in SEQ ID NO: 8, and the amino acid sequence (AgPTE) deduced from the dill-derived PTE gene shown in SEQ ID NO: 9 is sequenced The number 10 is shown.
  • Figure 1 shows the amino acid homology (%) between proteins in the thioesterase of various plants.
  • Fig. 1 shows high similarity in the PTE group including DcPTE, CsPTE and AgPTE. It also shows high homology between DcOTE and CsOTE. In contrast, the PTE group and the 0TE group show relatively low homology. Therefore, this It can be said that a novel protein whose amino acid homology with PTE proteins included in these PTE groups exceeds 80% has a very high probability of being included in PTE groups. That is, the PTE gene according to the present invention has a homology of 80 ° / with the amino acid sequence shown in SEQ ID NO: 4, 6, 8 or 10. DNA encoding a protein containing an amino acid sequence exceeding the above will also be included.
  • Figure 2 shows the alignment of the amino acid sequences of DcPTE, CsPTE, AgPTE, DcOTE, and CsOTE.
  • 0TE and PTE There is about 30% amino acid difference between 0TE and PTE.
  • “common array number X (X is a natural number)” 'means the number given to the top of the alignment in FIG.
  • the amino acids of consensus sequences 120, 125, and 373 are non-polar, while in the 0TE group, the amino acid is polar.
  • the amino acids of the common sequences Nos. 140 and 195 are polar, and in the 0TE group, the amino acid is nonpolar.
  • the amino acids of the common sequences Nos. 149 and 246 are uncharged amino acids, while in the 0TE group, the amino acids are positively charged.
  • the amino acid of the common sequence No. 244 is negatively charged, while in the 0TE group, the amino acid is an uncharged amino acid.
  • the amino acid of the 270th common sequence is positively charged, while in the 0TE group, the amino acid is an amino acid having no charge.
  • the PTE gene is a host plant along with the ⁇ 4 -palmitoyl-ACP desaturase gene.
  • an expression vector is constructed in which the PTE gene is arranged downstream of a constitutive expression promoter or a specific expression promoter, that is, at a position controllable by the promoter.
  • the expression vector is used to transform plant cells (see 1. above) obtained by transforming the ⁇ 4-palmitoyl-ACP desaturase gene.
  • plant cells may be transformed using an expression vector comprising a PTE gene and a ⁇ 4-palmitoyl-ACP desaturase gene arranged downstream of a constitutive expression promoter or a specific expression promonitor. In any case, by cultivating the resulting transformed plant to give a plant body, it is possible to promote the synthesis of petolic acid and serine acid in the plant body.
  • petrothelic acid is pulverized in tissue such as seeds and mixed with a hydrochloric acid-methanol solution to methyl esterize petrothelic acid, Extract with hexane and detect the hexane extract with a gas chromatograph-mass spectrometer (GC-MS) instrument. Based on the results of detection by GC-MS, the ability to promote the synthesis of petrothelic acid can be analyzed.
  • tissue such as seeds
  • a hydrochloric acid-methanol solution to methyl esterize petrothelic acid
  • Extract with hexane Extract with hexane and detect the hexane extract with a gas chromatograph-mass spectrometer (GC-MS) instrument.
  • GC-MS gas chromatograph-mass spectrometer
  • the expression vector has the Dc4DES gene and / or the PTE gene described in 1 and 2 above.
  • the expression vector is not particularly limited as long as it is a plasmid vector, or a chromosomal transfer type vector that can be integrated into the genome of the host organism, for example, plasmid DNA, butteriophage DNA, retrotransposon. DNA and artificial chromosome DNA (YAC).
  • plasmid DNA examples include pRS413, pRS414, pRS415, pRS416, YCp50,
  • YCp-type E. coli-yeast shuttle vectors such as PAUR112 or pAUR123, pYES2 or
  • E. coli-yeast shuttle vector such as YEpl3, Yip type E. coli-yeast shuttle vector such as pRS403, pRS404, pRS405, pRS406 pAURlOl or pAUR135, plasmid derived from E.
  • coli pBR322, pBR325, pUC18, pUC19, pUC118, pUC119, pTVl
  • Wind pTV119N pBluescript, pHSG298, pHSG396 or ColE-based plasmids such as Trc99A, pACYC177 Or pl 5A-based plasmids such as pACYC184, pSClOl-based plasmids such as pMW118, pMW119, pMW218 or pMW219), agrobacterium-derived plasmids (eg, ⁇ ⁇ ⁇ ⁇ ), derived from Bacillus subtilis Plasmids (eg, pUB 110, pTP5, etc.), and phage DNA (Charon4A, Charon21A, EMBL3, EMBL4, gt10, Agtll, ⁇ ZAP), ⁇ ⁇ 174, M13mpl 8 or M13mpl 9 and so on.
  • Retrotransposons include Ty factors.
  • Examples of YAC vectors include pYACC2.
  • animal viruses such as retrovirus or vaccinia virus, and insect virus vectors such as baculovirus can also be used.
  • the Dc4DES gene and / or the PTE gene must be incorporated into the vector in such a state that they can be expressed.
  • the expressible state means that these Dc4DES gene and / or PTE gene and promoter are linked so that the host organism into which the Dc4DES gene and / or PTE gene is introduced is expressed under the control of a predetermined promoter. Means to be incorporated into a vector.
  • the vector in addition to the Dc4DES gene and / or PTE gene, the vector includes a promoter and terminator, a cis-element such as an enhancer if necessary, a splicing signal, a poly A addition signal, a selection marker, a ribosome binding sequence (SD sequence) Etc. can be connected.
  • the selection marker include an ampicillin resistance gene, an antibiotic resistance gene such as a kanamycin resistance gene and a hygromycin resistance gene, and a herbicide resistance gene such as a bialaphos resistance gene.
  • the promoter contained in the expression vector is not particularly limited, and examples thereof include a constitutive expression promoter, a tissue-specific expression promoter, and a stimulus-inducible promoter.
  • seed-specific expression promoters include rapeseed napin A promoter, Arabidopsis FAE1 promoter, oleosin promoter 1, soybean-derived glutelin B 1 promoter, ama stearoyl-ACP desaturase (SAD) promoter, etc. be able to.
  • Transformants-Transformants can be produced using the expression vectors described above. That is, A transformant can be prepared by introducing the above-described expression vector into a host so that the Dc4DES gene and / or the PTE gene contained in the vector can be expressed.
  • the host is not particularly limited. For example, there are plants belonging to celery family, eggplant family, Brassicaceae family, Gramineae family, legume family, rose family, chrysanthemum family, lily family, dianthus family, cucurbitaceae family, convolvulaceae family, akaza family. In particular, it is desirable to use plants of the family Apiaceae or Aphranaceae. '
  • the transformed plant can be obtained as follows.
  • Plants to be transformed in the present invention include whole plants, plant organs (eg, leaves, petals, stems, roots, seeds, etc.), plant tissues (eg, epidermis, phloem, soft tissue, xylem, vascular bundle, It means any of a palisade tissue, a spongy tissue, etc.) or a plant cultured cell.
  • the expression vector can be introduced into a plant by a usual transformation method, for example, a reduced pressure infiltration method (agro-acterium method), a particle gun method, a PEG method, an electroporation method, or the like.
  • the reduced pressure infiltration method can be performed according to a known method (Shujunsha, Model Plant Experiment Protocol, 2001, 109-113 pp.).
  • the expression vector is introduced into an appropriate agrobacterium, for example, Agrobac teriwn twnefacien LBA4404 strain, and this strain is introduced into the leaf disk method (inner shrine).
  • Hirofumi Plant Genetic Manipulation Manual, 1990, 27-31pp, Kodansha Scientific, Tokyo), etc., it is possible to infect a sterile cultured leaf of a host (for example, tobacco) to obtain a transformed plant.
  • the plant body, the plant organ, and the plant tissue itself may be used as they are, or may be used after preparing a section, or may be used after preparing a protoplast.
  • the sample thus prepared can be processed using a gene transfer apparatus (eg, PDS-1000 (BI0-RAD)). Treatment conditions are different from plants or samples (normally, but at a pressure of about 450 to 2000 psi and a distance of about 3 to 12 cm.
  • Tumor tissues, shoots, hairy roots, etc. obtained as a result of transformation can be used as they are for cell culture, tissue culture or organ culture, and can be appropriately used by using conventionally known plant tissue culture methods. Concentration of plant hormones (auxin, site power Inine, gibberellin, abscisic acid, ethylene, brassinolide, etc.) can be regenerated into plants.
  • telomere length is a region of DNA sequence.
  • DNA is prepared from transformants and PCR is performed by designing DNA-specific primers. PCR can be performed under the same conditions as those used to prepare the plasmid. After that, the amplified product is subjected to agarose gel electrophoresis, polyacrylamide gel electrophoresis, capillary electrophoresis, etc., stained with bromide zyme, SYBR Green solution, etc., and the amplified product is detected as a single band. It can be confirmed that it has been transformed.
  • amplification products can be detected by performing PCR using primers previously labeled with a fluorescent dye or the like. Furthermore, it is possible to adopt a method in which the amplification product is bound to a solid phase such as a microplate and the amplification product is confirmed by fluorescence or enzyme reaction.
  • Escherichia coli such as Escherichia coli
  • Bacillus subtilis Bacillus subtilis
  • Belonging to the genus Rhizobium, Saccharomyces cerevisiae, Nzo Saccharose honobe animal cells such as COS cells and CH0 cells, and insect cells such as Sf9.
  • the recombinant vector is capable of autonomous replication in the bacterium, and at the same time is composed of a ribosome binding sequence, the gene of the present invention, and a transcription termination sequence.
  • Escherichia coli a bacterium such as Escherichia coli
  • Bacillus subtilis examples include, but are not limited to, Bacillus subtilis 03 ⁇ 4cj'JZ).
  • the method for introducing a recombinant vector into bacteria is not particularly limited as long as it is a method for introducing DNA into bacteria.
  • a method using calcium ions [Cohen, SN et al .: Proc. Natl. Acad. Sci., USA, 69: 2110 (1972)], electroporation method and the like can be mentioned.
  • yeast for example, Saccharomyces cerevisiae
  • Schizosaccharomyces ⁇ ⁇ , Nobe, Schizosaccharomyces pombe) H. pastoris ( ⁇ ioris) and the like are used.
  • the method for introducing a recombinant vector into yeast is not particularly limited as long as it is a method for introducing DNA into yeast.
  • the Electroporation Yoshi method [Becker, DM et al .: Methods. Enzymol., 194: 182 (1990)]
  • Spheroplast method [Hinnen, A. et al .: Proc. Natl. Acad. Sci., USA, 75: 1929 (1978)]
  • lithium acetate method [Itoh, H .: J. Bacteriol., 153: 163 (1983)].
  • monkey cells COS-7, Vero, Chinese hamster ovary cells (CH0 cells), mouse L cells, rat GH3, and human FL cells are used.
  • Examples of the method for introducing a recombinant vector into an animal cell include an electro-poration method, a calcium phosphate method, and a ribofunction method.
  • Sf9 cells When insect cells are used as hosts, Sf9 cells are used.
  • methods for introducing the recombinant vector into insect cells include the calcium phosphate method, the lipofussion method, and the electroporation method.
  • the synthesis of petroselinic acid can be promoted by the function of the introduced Dc4DES gene and / or PTE gene.
  • Petroselinic acid synthesized and accumulated in the transformed plant can be extracted using a conventionally known method. .
  • the fats and oils produced by these processes are a mixture of fatty acids (including petrothelic acid) and esters such as glycerin, and include triacylglycerol, diacylglycerol, monoacylglycerol, phospholipids, and the like.
  • fatty acids can be obtained by hydrolyzing these fats and oils. Obtained fatty acids By separating and purifying the mixture, it is possible to obtain highly pure petroceric acid.
  • an alcohol ester such as petroleum acid methyl ester can be obtained by adding and reacting an alcohol such as methanol to the oil.
  • carrot Daucus car ota L.) summer sowing fresh red 5 inch (F1 variety) was used as an experimental sample.
  • F1 variety a fixed species having the same homologous gene sequence is desirable, but F1 varieties were used for the convenience of experiments (prepared samples that flowered early).
  • Carrot seeds were purchased from Ota seedlings.
  • a sample of a ginjin plant was cultivated under conditions of 25 ° C, 16 hours of sunshine, and 60% humidity in an artificial meteorological device (Kitotron, manufactured by Koito Manufacturing Co., Ltd.).
  • Corlasta one (Coriandrum sa ti vum L.) ⁇ 4 palmitoyl— ACP desaturase (Cs4DES) at BLAST (htt P : // w w. Ncbi. Nlra. Nih. Gov / BLAST /) in NCBI site ) Homologous genes of), and the polypeptides encoded by the obtained Cs4DES gene (GenBank accession number M93115) and the ⁇ 9 stearoyl-ACP desaturase gene of various plants registered on GenBank.
  • the amino acid sequence of Genetyx-Win Ver The amino acid sequence of Genetyx-Win Ver,
  • PR2 5 'GCN GYY KCR TGN C Y TTY TCR TC 3' (SEQ ID NO: 13)
  • NR2 5 'GGC ATN DVD AYY TTB WTY YTC ATC AT 3' (SEQ ID NO: 16)
  • R represents A or G
  • Y represents C or T
  • M represents A or C
  • K represents G or T
  • S represents G or C
  • W represents A or T H represents A or T or C
  • B represents G or T or C
  • V represents G or A or C
  • D represents G or A or T
  • N represents A or C or G or T Indicates.
  • RT-PCR was performed using the PCR primer pairs shown in Table 1.
  • QIAGEN's One-step RT-PCR kit was used. The reaction solution composition was carried out using an Eppendorf thermal cycler (master cycler's gradient) according to the protocol attached to the kit. The firing temperature was 50 ° C to 70 ° C (5 steps every 5 ° C).
  • RT-PCR was performed at 50 ° C for 30 minutes, 94 ° C for 15 minutes, followed by a cycle of 94 ° C for 1 minute, 50-70 ° C for 1 minute, and 72 ° C for 1 minute 30 seconds. The treatment was performed for 40 cycles, followed by treatment at 72 ° C for 15 minutes. After the reaction, 4 ° C was maintained.
  • the reaction solution after PCR was electrophoresed with TAE buffer using agarose gel. After electrophoresis, the agarose gel was stained with ethimumubu amide to confirm the target fragment. The target fragment was cut out with a scalpel together with the gel, and eluted and purified from the gel using a QIAGEN QIAquick Gel extract ion kit. The base sequence of the purified PCR product was confirmed using an ABI DNA sequencer (3100 Genetic Analyzer). For the sequence reaction, ABI BigDye Terminator Cycle Sequencing, FS kit (ver. 3.0) was used. The experimental procedure was performed according to the ABI manual. The primers listed in Table 1 were used for determining the base sequence.
  • D2-R2 5 'GCG GTT CTC CTC AGC AGT C 3' (SEQ ID NO: 17)
  • D2-R3 5 'GTT GGC ATG GGA GAT GAA TG 3' (SEQ ID NO: 1 8)
  • D2-F5 5 'CAG CAG ATT GGA GTC TAC TC 3' (SEQ ID NO: 20)
  • the 5 ′ RACE method and the 3 ′ RACE method were performed using Roche ⁇ / 3 ′ RACE Kit. PCR was performed using Ex Taq Hot Start Version manufactured by Takara Bio. The composition of the reaction solution was in accordance with the protocol attached to the kit. An Eppendorf thermal cycler (Master Ikura I. Gradient) was used. Annealing temperature from 50 ° C
  • PCR conditions were 94 ° C for 15 minutes, followed by 30 cycles of 94 ° C for 1 minute, 50-70 ° C for 1 minute and 72 ° C for 1 minute 30 seconds, and then 72 ° C. Treated with C for 15 minutes. After the reaction, 4 ° C was maintained.
  • the PCR product was purified and the nucleotide sequence was determined in the same manner as described above.
  • the following primers were designed to amplify and clone the entire polypeptide coding region based on the sequence information determined by the RACE method.
  • Polypeptide coding region Amplification PCR primers with the following restriction enzyme sites (BamHI and SacI) for introduction into the plant expression vector pBI121 were also prepared.
  • Sac- 4DS- R-0R1 5 'TCT AGA CGA GCT CTC ATA TCA TGA TCT GAC GGT TG 3' (Column number 2 4)
  • PCR was performed using these primers to amplify the entire polypeptide coding region.
  • DNA Ligat ion kit ver. 2 from Takara Bio
  • the DNA fragment of the polypeptide coding region and the TA-Cloning (for cloning PCR products) vector (Novagen pSTBlue) ligation (16 ° C, ⁇ reaction).
  • a T0Y0B0 cell (.co'DH5) was transformed according to the attached protocol, cultured in LB medium supplemented with IPTG, X-gal, and 50 g / ral kanamycin, and a transformant was selected.
  • Plasmid DNA was prepared using QIAGEN's Plasmid mini kit from the cells obtained by liquid culture in LB medium supplemented with 50 / g / ml kanamycin. The inserted fragment was confirmed by gel electrophoresis to obtain a plasmid DNA in which the target fragment was expected to be subcloned.
  • Sequencing primers are primers targeting the T7 and Ml3 sequences present at both ends of the pSTBlue vector cloning site (Takara Bio BcaBEST Sequencing Primer T7; 5 'TAC TAC GAC TCA CTA TAG GG 3 '(SEQ ID NO: 2 5) and M13 Primer M4; 5' GTT TTC CCA GTC ACG AC 3 ', (SEQ ID NO: 2 6)) were used.
  • the nucleotide sequence of the Dc4DES gene isolated in this Example and the amino acid sequence of Dc4DES are shown in SEQ ID NOs: 1 and 2, respectively.
  • the obtained base sequence was analyzed and edited using Genetyx-Win Ver. 4.0 / ATGC ver. 2 (manufactured by Software Development Co., Ltd.). '.
  • the nucleotide sequence homology (i dent i ty) between the Dc4DES gene and the previously reported coriander-derived gene (Cs4DES) is 88. 0 in the polypeptide coding region (presumed) sequence (Dc4DES gene ⁇ ⁇ ⁇ bp, Cs4DES gene 1158 bp). %Met. Amino acid sequence homology
  • the (identity) was 90.2% in the polypeptide coding region predicted amino acid sequence (Dc4DES gene 386aa, Cs4DES gene 385aa).
  • the alignment of the Dc4DES amino acid sequence and the Cs4DES amino acid sequence is shown in FIG. In FIG. 3, the upper row is the Dc4DES amino acid sequence and the lower row is the Cs4DES amino acid sequence.
  • Example 2 an F1 variety of carrot Daucus caro ta was used as an experimental sample. We used summer sowing fresh red 5 inch, Yangshu 5 inch, and fixed Kuroda 5 inch. Nin. Gin seeds were purchased from Ota seedlings. As a gene cloning source, a fixed species with the same homologous gene sequence is desirable, but F1 varieties were also used for the convenience of the experiment (a sample that had flowered early) was prepared. The same celery family plants, coriander (Corianirum sa ti vi um) and ai / grass (Anetnum gra veolens cv. Mammo th) were cultivated and used.
  • Plants grown at 25 ° C, 16 hours of sunshine, and 50% humidity in an artificial meteorological instrument were used as samples.
  • RNA was prepared according to the method of Example 1.
  • TE-PF3 (515-536): 5 '-RTG GNA CNM GRG KRR ATT GGA T —3' (SEQ ID NO: 2 7)
  • TE-PF2 (415-438): 5 '— CTB ATW TGG GTB ACD DMN MGN ATG -3 "(SEQ ID NO: 2 8)
  • TE-PF1 (235-257): 5 '— GAR RAY GGN YWN TCB TAY AMR GA -3' (SEQ ID NO: 2 9)
  • TE-PR1 (886-915): 5-TGR CAY TCN CKY CKR TAR TC -3 "(SEQ ID NO: 30)
  • TE-PR2 (787-809): 5 '-ACR TTR TTN ACR TGY TKR TTC AT-3' (SEQ ID NO: 3 1)
  • TE-PRO 1041-1061: 5 '-GTD SKN CMV CKR TTK AKY TC -3 "(SEQ ID NO: 3 2)
  • the above primers were used using the QIAGEN One-step RT-PCR kit. set RT-PCR amplification was performed using the mated pair.
  • the reaction solution composition was carried out using an Eppendorf thermal cycler (master cycler gradient) according to the standard protocol attached to the kit. Since this device can perform reactions with any temperature gradient (up to 12 steps) on the heat block, the annealing temperature, which is important for amplification efficiency and specificity, ranges from 50 ° C to 70 ° C (5 This was done in 5 steps per ° C).
  • PCR conditions were 30 minutes at 50 ° C, 15 minutes at 94 ° C, then 40 cycles of 94 ° C for 1 minute, 50-70 ° C for 1 minute and 72 ° C for 1 minute 30 seconds. Then, it was treated at 72 ° C for 15 minutes. After the reaction, 4 ° C was maintained.
  • a specific amplification product (about 500 bp) was obtained by combining TE-PF2 and TE-PR1.
  • the base sequence of this amplified product was decoded, and molecular phylogenetic analysis was performed using the partial sequence. As a result, it was found to belong to the 0TE cluster.
  • the database was searched again for the partial sequences obtained as a result of RT-PCR, and highly homologous genes were re-extracted.
  • a multiple alignment analysis was performed in the same manner, and a region with low conservation at the amino acid level was selected.
  • a primer capable of specific amplification of the target gene was designed and used in the RACE method.
  • TE-D1F 5 '-TAG CAA GTG GGT GAT GAT-3' (SEQ ID NO: 3 3)
  • TE-D3F 5 '-GTT TTC TGC CCC AAA ACA CC 1 3' (SEQ ID NO: 3 4)
  • TE-D2R 5 '-TAT TCA TCT CGA ACA TCA T-3' (SEQ ID NO: 3 5)
  • TE-D1R 5 '-ATC ATC ACC CAC TTG CTA -3' (SEQ ID NO: 3 6)
  • Example 2 determination of the base sequence and analysis / editing of the obtained base sequence were performed in the same manner as in Example 1. Furthermore, molecular phylogenetic tree analysis Using the DNA data bank gene analysis service (http://www.ddbj.nig.ac.jp/Wel come-j.html), the Clustal W program (base Sequence ⁇ Multiple alignment of amino acid sequences and phylogenetic tree creation program).
  • 0TE-2F 5 '-GCA TTC TAG GCT AGG ATT GT-3' (SEQ ID NO: 3 7)
  • OTE-ralR 5 '-GGC GAA TCG AGA TCG AAT CT -3' (SEQ ID NO: 3 9)
  • 0TE-m3R 5 '-CTC AAT TTC TCC GCC AAG CT-3' (SEQ ID NO: 4 1)
  • PTE-2F 5'-CTT TTC CAG TCT CGG GCT TG-3 '(SEQ ID NO: 4 2)
  • PTE-4R 5 '-GGA AGC AAC TCA TCG TCG TCT GT -3' (SEQ ID NO: 4 3)
  • PTE-2R 5 '-CAA GCC CGA GAC TGG AAA AG-3' (SEQ ID NO: 4 4)
  • Sac-DcPTE-6R 5 '-TCT AGA CGA GCT CCT AGT TTA AAC AGT ACA CTG-3' (Urban U number 4 7)
  • DcPTE-6R 5'-CTA GTT TAA ACA GTA CAC TG-3 '(SEQ ID NO: 4 8)
  • carrot RNA was converted into a saddle shape and RT-PCR was performed to amplify the entire polypeptide coding region.
  • PCR amplified fragment and TA-Cloning PC.R product cloning
  • Transformants were selected by culturing in LB medium supplemented with X-gal and 50 ⁇ g / ml kanamycin. Plasmid DNA was prepared from the cells obtained by liquid culture in LB medium supplemented with 50; g / ml kanamycin using the QIAGEN Plasmid mini kit. The inserted fragment was confirmed by gel electrophoresis to obtain a plasmid DNA in which the target fragment was expected to be subcloned. In this example, two types of Dc4PTE genes were isolated. The two isolated Dc4PTE genes are identified as Dc4PTEa,
  • Dc4PTEb their base sequences are shown in SEQ ID NOs: 3 and 5, respectively, and the two amino acid sequences of Dc4PTE are shown in SEQ ID NOs: 4 and 6, respectively.
  • the DcPTE gene was cloned as described above. Similar to the cloning of the DcPTE gene, cloning of the PTE gene was also performed for coriander and dill.
  • AgPTE gene was isolated. Their base sequences are shown in SEQ ID NOs: 7 and 9, respectively, and the amino acid sequences of two types of Dc4PTE are shown in SEQ ID NOs: 8 and 10, respectively. next,
  • the activity of the petroselinol-ACP thioesterase of the enzyme encoded by the DcPTE gene was examined. Specifically, as shown below, histidine-labeled recombinant protein was prepared using E. coli and the enzyme activity was analyzed.
  • Oleoyl- ACP thi-oest erase ⁇ Plant Physio ⁇ ., 100,
  • the DcPTEa gene a mature peptide cl eavage site was estimated between the base sequence encoding the 32nd amino acid and the base sequence encoding the 33rd amino acid.
  • the DcOTE gene and the CsOTE gene were estimated as the mature peptide cleavage site between the base sequence encoding the 51st amino acid and the base sequence encoding the 52nd amino acid.
  • DcPTEa, DcOTE, and CsOTE cDNAs cloned into Bluel were amplified by PCR using a vertical type, and the product was mixed with the expression vector for histidine-tagged protein PQE-30 UA (QIAGEN)
  • the amount of TaKaRa Ligat ion kit ver. 2 was added and subcloned by ligation reaction for 30 minutes at 16 ° C.When subcloning this vector, the recombinant protein with 6XHis added to the N-terminus was transferred in E. coli. preparation can.
  • the reaction mixture JM109 strain having lacl q mutation, Takara Bio Inc.
  • E. coli combination competent cells the total amount of and added pressure, the manufacturer specifies protocol Thus it was transformed operation.
  • Resulting transformants from grown in 50 zg / ml ampicillin containing LB agar medium) was prepared plasmid.
  • the prepared histidine-tagged protein expression DNA construct was transformed into E. coli (JM109 strain) (or stored before plasmin preparation. Use glycerol stock for IJ) and Overnight Express Autoinduction System 1 (Merck). Expression was induced by culturing overnight in LB medium supplemented with 50 ig / ral ampicillin.
  • Facil ACP used as a substrate was prepared as follows. First, a hexane solution (lOOmM) of fatty acid (oleic acid, petrothelic acid) was prepared, and 6.2 was put into a 10 ml glass test tube and dried with a nitrogen gas. Then, the reaction liquid of the following Table 2 was added, and it was made to react for 60 minutes at 37 degreeC on a heat block.
  • Buffer B Add bis Tris-HCl pH 6.0 (referred to as Buffer B) about 10 times the amount in (A) to equilibrate.
  • ⁇ and Buffer B are used by mixing them individually deaerated with an ultrasonic cleaner
  • the histidine-labeled protein purified by the above procedure was assayed for thioesterase activity using isyl ACP (oleoyl ACP, petroselinol-ACP) as a substrate. Prior to the reaction, the protein concentration of both solutions was measured by the Lowry method (RCDC protein assembly kit, manufactured by BIO-RAD).
  • a transformed plant into which the Dc4DES gene cloned in Example 1 and the DcPTE gene cloned in Example 2 were introduced was prepared, and the ability to synthesize petroceric acid in the transformed plant was examined. That is, a transformed plant into which the Dc4DES gene was introduced alone, a transformed plant into which the DcPTE gene was introduced alone, and a transformed plant into which both the Dc4DES gene and the DcPTE gene were introduced were prepared.
  • Fig. 7 shows vectors for constant whole body expression.
  • Pnos means Agrobacterium-derived nopaline synthase promoter
  • Tnos means Agrobacterium-derived nopaline synthase terminator
  • P35S means CaMV35S promoter
  • NPT II means neomycin. Phosphotransferase This refers to the sputum gene.
  • the GUS gene contained in the plant expression vector pBI121 (Clontech) was replaced with the cDNA sequence of the Dc4DES gene.
  • the DNA fragment encoding the 0RF region of the Dc4DES gene was amplified by PCR using primers designed to add Bam HI at the 5 ′ end and Sac I sequence at the 3 ′ end.
  • This PCR product was mixed with pSTBluel (Novagen cloning vector), an equal amount of TaKaRa Ligation kit ver. 2 was added, and a ligation reaction was performed at 16 ° C for 30 minutes. The total amount of the reaction solution was added to a 50 ⁇ 1 competent cell (co i DH5, manufactured by TOYOBO), and the transformation was performed according to the protocol specified by the manufacturer.
  • a plasmid was prepared from the obtained transformant (50; grown on LB agar medium containing g / ml kanamycin). The obtained plasmid was treated with restriction enzymes (Bam HI and Sac I). Next, restriction enzyme treatment (Bam HI and Sac I) was similarly performed to excise the GUS gene linked to the downstream of the CaMV35S promoter in PBI 121. These restriction enzyme digests The product was subjected to 0.8% agarose gel electrophoresis, and the QIAquick gel extraction kit and Geneclean II (BIO 101) manufactured by QIAGEN were used. Each was separated and purified.
  • the vector for co-expression of the Dc4DES gene and the DcPTE gene (Fig. 6 (D)) is located near the LB of the T-DNA in the expression vector for Dc4DES expression shown in Fig. 6 (A).
  • DcPTE gene expression unit between unique Eco RI and Dra III sites is located near the LB of the T-DNA in the expression vector for Dc4DES expression shown in Fig. 6 (A).
  • the DcPTE gene generation unit was amplified by PCR using primers designed to add Eco RI and Dra III sites at both ends.
  • FIGS. 8 (A) to (D) seed-specific expression vectors are shown in FIGS. 8 (A) to (D).
  • “Pnap” means the napin A promoter derived from rapeseed (B. campestris cv. Kizakinona tane). The promoter is known to be used by Monsanto to control rapeseed oil content.
  • a seed-specific expression vector was prepared by replacing the CaMV35S promoter in the vector shown in FIG. 7 with a rapeseed napin A promoter.
  • the GUS gene was replaced with the cDNA sequence of Dc4DES gene, DcPTE gene or Cs4DES.
  • the vector for co-expression of the Dc4DES gene and the DcPTE gene (Fig. 8 (D)) is a unique protein near the LB of T-DNA in the expression vector for Dc4DES expression shown in Fig. 8 (A).
  • DcPTE gene expression unit between the Eco RI site and Dra III site is a unique protein near the LB of T-DNA in the expression vector for Dc4DES expression shown in Fig. 8 (A).
  • the DcPTE gene expression unit was amplified by PCR using primers designed to add Eco RI and Dra II I sites at both ends.
  • the prepared plasmid was used to transform agrobacterium by electroporation (electroporation).
  • 40 ⁇ 1 of ⁇ robac erii ⁇ tumefaciens (LBA4404 strain) prepared by a conventional method was dissolved, 5 1 (25 ⁇ g) of DNA solution was added, and the mixture was allowed to stand on ice for 1-2 minutes. Subsequently, it was placed in an ice-cooled BI0-RAD cuvette (0.2 cm) and a pulse current of 1.25 kV and 10 F was applied using a Shimadzu gene introduction device. Immediately after cooling, the S0C medium was incubated at 28 ° C for 1 hour with 460 ⁇ 1 force.
  • Arabidopsis thaliana et al. (Colombia) was transformed by the vacuum infiltration method.
  • the vacuum infiltration method was carried out according to Shujunsha, model plant experimental protocol, 2001, 109-113 pp.
  • T1 seeds transformed first generation seeds
  • kanamycin-containing medium Morashige & Skoog basic medium with 0.5g / L MES, 10g / L sucrose, 8g / L Agar, lOOmg / L carbenicin, 50mg / L kanamycin
  • a transformed individual having kanamycin resistance and growing normally
  • Individuals whose true leaves were normally developed were transplanted again to the same medium, grown for about 1 to 2 weeks, and reselected.
  • the obtained line was used as a transformed first generation plant (T1 plant). Force Namicin resistant strains were transplanted to non-sterile vermiculites and cultivated in a non-sterile environment. .
  • DNA was prepared using the QIAGEN DNA preparation kit (DNeasy plant mini kit) according to the standard protocol attached to the kit.
  • PCR amplification was performed using Ex Taq DNA polymerase manufactured by Takara Bio, using PCR primers targeting the drug resistance gene ( ⁇ ) in T-DNA and the introduced fatty acid synthesis system gene.
  • the obtained PCR amplification product fragment was electrophoresed in a TAE buffer using a 0.8% agarose gel and then stained with ethidium promide to confirm the amplification of the target fragment. The presence or absence of gene transfer was determined by the presence or absence of amplification.
  • T2 seed More than 15 T2 seeds were harvested from each construct and used for the following fatty acid composition analysis.
  • seed fatty acids were methyl esterified with monomethanol hydrochloride and the n-hexane extract was analyzed by GC-MS.
  • BHT Butylated hydroxytoluene
  • a methanol solution of methyl ester (SIGMA) of pentadecanoic acid (C15: 0) not contained in vegetable oil as an internal standard is added directly to the seed after weighing and used to correct experimental errors when preparing samples for analysis. did.
  • n-hexane used for the extraction was phthalate analytical grade n-hexane (Tokyo Kasei). This eliminates the effects of phthalates that behave like fatty acids during GC analysis.
  • Table 3 shows the protocol for qualitative analysis and Table 4 shows the protocol for quantitative analysis.
  • Carrier gas Helium flow rate 1 mL / min
  • the mole fraction (mol -%) Shows the composition of each fatty acid.
  • the intensity of fragments detected by a mass spectrometer differs depending on the quality of the substance and does not simply reflect the molecular weight.
  • the reproducibility when analyzed under the same conditions is very high and relative. Such a comparison is sufficiently possible.
  • a transformed plant with a constant systemic expression was produced using a pB-4DES construct that expresses the Dc4DES gene under the control of the CaMV35S promoter. Leaves were collected from this transformed plant, oil and fat components were extracted, and fatty acid composition analysis was performed by the method described above.
  • fatty acid components we analyzed petroceric acid and cis-4-hexadecenoic acid (16: 1 ⁇ 4), which is a precursor of petroceric acid. Table 6 shows the analysis results of these monoene unsaturated fatty acids.
  • transgenic plants expressing Dc4DES gene, Cs4DES gene, and DcPTE gene that express seeds specifically are prepared, and the oil and fat components are extracted from these seeds and fatty acids are extracted by the method described above.
  • a compositional analysis was performed. Table 7 shows the analysis results of monoene unsaturated fatty acids. In Table 7, “NT” stands for not tested.
  • the content of stearic acid (C18: 0), icosanoic acid (C20: 0), and docosanoic acid (C22: 0) in plant seeds with the DcPTE gene introduced is the same as the content in plant seeds without the DcPTE gene introduced.
  • the DcPTE genes are classified as a group of tioesterase genes called Fat A, which has specificity for unsaturated fatty acids-ACP, based on a molecular phylogenetic analysis based on the deduced amino acid sequence.
  • Fat A tioesterase genes
  • Example 2 it can be expected that the effect of increasing unsaturated fatty acid content can be expected from the results of showing substrate specificity for betacellinoyl ACP, but it is difficult to predict the production effect of saturated fatty acid. This It turned out to be a gene that had an exceptionally remarkable effect that could not be predicted by a vendor.
  • nylon material dicarboxylic acid
  • the effect of increasing the saturated fatty acid content of C1 8 or more in addition to petroselinic acid accumulation promoting effect is very advantageous It is considered to be a property. That is, by increasing the saturated fatty acid content, the content of unsaturated fatty acids other than petroceric acid (causing oxidative degradation and causing impurities to be generated) will be lowered.
  • combination in manufacture of petroselinic acid can be provided, and the manufacturing method of the novel petroselinic acid using the said gene can be provided. If a gene involved in the production of petrothelic acid according to the present invention is used, for example, petroselinic acid can be accumulated in large amounts in plant seeds.

Abstract

Disclosed are a novel gene capable of promoting the accumulation of petroselinic acid and a process for producing petroselinic acid using the gene. A gene encoding any one of the following proteins (a), (b) and (c): (a) a protein comprising the amino acid sequence depicted in SEQ ID NO:4 or 6; (b) a protein which comprises an amino acid sequence having the deletion, substitution or addition of one or more amino acid residues in the amino acid sequence depicted in SEQ ID NO:4 or 6 and which has a petroselinoyl-ACP thioesterase activity; and (c) a protein which is encoded by DNA capable of hybridizing with DNA comprising a nucleotide sequence complementary to the nucleotide sequence depicted in SEQ ID NO:3 or 5 under stringent conditions and which has a petroselinoyl-ACP thioesterase activity.

Description

ペトロセリン酸生合成に関与する新規遺伝子、 ペトロセリン酸の製造方法  A novel gene involved in petrothelinic acid biosynthesis, a method for producing petrothelic acid
技術分野 Technical field
本発明は、 ペトロセリン酸生合成に関与する新規遺伝子、 特に、 ニンジン由来 の Δ 4 -パルミ トイノレ- ACPデサチュラーゼ遺伝子、及ぴ植物由来のぺトロセリノィ ル- ACPチォエステラーゼ遺伝子に関明し、 これら新規遺伝子を用いたぺトロセリン 酸の製造方法に関する。  The present invention relates to novel genes involved in biosynthesis of petrothelinic acid, in particular, Δ 4 -palmitoinole-ACP desaturase gene derived from carrot, and petrocerinoyl-ACP thioesterase gene derived from plant. The present invention relates to a process for producing petrothelic acid using
田 背景技術 .  Field background technology.
近年、 樹脂材料においても、 脱石油資源、 循環型社会の構築の観点から、 パイ ォマス由来の樹脂を生産する技術開発が進められている。 .  In recent years, in the field of resin materials as well, technological developments have been undertaken to produce pi-mass-derived resins from the perspective of deoiling resources and building a recycling society. .
エンジニアリングプラスチックの一種であるナイロンは、 原料としてアミノカ ルボン酸、 またはジァミンとジカルボン酸を重合することにより合成されている が、 原科モノマーのほとんどは、 化学工業的に化石資源から生産されている。 バ ィォマス由来のナイロン原料としては、 セバシン酸 (1, 10- Decanedioic Ac id) が 用いられており、 これは、 ヒマから抽出したヒマシ油を苛性アルカリにより開裂 して製造され、 ナイロン 6, 10の原料となる。 しかしながら、 ナイロン 6, 10の用 途は限定されており、 樹脂材料としては広範に利用されていない。  Nylon, a type of engineering plastic, is synthesized by polymerizing aminocarboxylic acid or diamine and dicarboxylic acid as raw materials, but most of the raw monomers are produced from fossil resources in the chemical industry. Sebacic acid (1, 10-decanedioic acid) is used as a biomass-derived nylon raw material, which is produced by cleaving castor oil extracted from castor with a caustic alkali. It becomes a raw material. However, the use of nylon 6 and 10 is limited, and it is not widely used as a resin material.
不飽和脂肪酸を酸化分解することにより、 ジカルボン酸を製造できることが既 に知られており、 これまでにナイロン 6, 6 の原料モノマーであるアジピン酸 (hexanedioic acid) の原科と るへトロセリン酸 (cis - 6- octadecenoic ac id) の製造技術が検討されてきた。 (非特許文献 1 〜 8 )。  It is already known that dicarboxylic acids can be produced by oxidative degradation of unsaturated fatty acids, and so far hetroceric acid (the raw material of adipic acid (hexanedioic acid), the raw material monomer of nylon 6 and 6) The production technology of cis-6-octadecenoic ac id) has been studied. (Non-Patent Documents 1 to 8).
セリ科植物のコリアンダーやニンジンなどは、種子の油脂成分中に 80%以上の ペトロセリン酸を含むが、 種子の収量が低いためにべトロセリン酸の生産には適 していない。 植物の脂肪酸はプラスチド (葉緑体) 中で新規合成される。 ペトロ セリン酸の合成は、前駆体であるパルミ トイル ACPが Δ 4-パルミ トイル- ACPデサ チュラーゼ (以下、 4 DESと称す) により c i s- 4-hexadecenoil ACPへ変換された 後に、 原核型脂肪酸シンターゼ複合体によって鎖長が伸長され、 ペトロセリ ノィ ル- ACPとなる。 さらにこれが、 ペトロセリノィル -ACPチォエステラーゼ (以下、 PTE と称す) により遊離のペトロセリン酸が合成されて細胞質へ移行する。 ぺト ロセリン酸を合成する植物にはペトロセリン酸合成に特異的な一連の生合成系酵 素とその遺伝子が存在すると考えられており、 これらのうちコリアンダー由来の Δ 4-パルミ トイル- ACPデサチユラーゼの遺伝子がクローニングされ、 元来、 ぺト ロセリン酸を生産しなレ、植物であるシロイヌナズナ Arabidopsis thaliana) に 遺伝子を導入した形質転換植物が作製されたが、 ペトロセリン酸の蓄積は確認で きたものの、 その蓄積量は種子油脂中のわずか 1 %程度であった。 Coriander and carrots of the Apiaceae plants contain more than 80% of petroceric acid in the oil components of seeds, but they are not suitable for the production of betrothelic acid due to low seed yield. Plant fatty acids are newly synthesized in plastids (chloroplasts). In the synthesis of petroceric acid, the precursor palmitoyl ACP was converted to ci s-4-hexadecenoil ACP by Δ 4-palmitoyl-ACP desaturase (hereinafter referred to as 4DES). Later, the chain length was extended by the prokaryotic fatty acid synthase complex to be petrocellinoyl-ACP. Furthermore, free petrothelinic acid is synthesized by the petrocellinol-ACP thioesterase (hereinafter referred to as PTE) and transferred to the cytoplasm. Plants that synthesize petroceric acid are thought to contain a series of biosynthetic enzymes specific to petroceric acid synthesis and their genes. Among these, Δ4-palmitoyl-ACP desaturase derived from coriander The gene was cloned, and originally a transgenic plant was introduced in which the gene was introduced into Arabidopsis thaliana, which does not produce petrothelinic acid. Accumulated amount was only about 1% in seed oil.
また、 PTEについては、 酵素活性の存在は示されているが (非特許文献 8 )、 そ の遺伝子は、 未だにクローニングされていない。  Although PTE has been shown to have enzyme activity (Non-patent Document 8), the gene has not yet been cloned.
植物の油脂生産とその構成脂肪酸組成は、 プラスチド中の脂肪酸生合成系だけ でなく、 細胞質内での脂肪酸誘導体の輸送、 小胞体膜中でのトリァシルグリセ口 ール合成系が関与しており、 遺伝子組換え技術を用いてペトロセリン酸生産を行 うためには、 多くの課題を解決しなければならないと考えられる。  Plant fat production and its constituent fatty acid composition involve not only fatty acid biosynthesis in plastids, but also transport of fatty acid derivatives in the cytoplasm and triacylglycerol synthesis in the endoplasmic reticulum membrane. In order to produce petrothelic acid using recombinant technology, it is thought that many problems must be solved.
特許文献 1 United States Patent 5, 430, 134  Patent Literature 1 United States Patent 5, 430, 134
特許文献 2 国際公開公報第 94/01565  Patent Document 2 International Publication No. 94/01565
非特許文献 1 Proc. Natl. Acad. Sc i . USA, 89, 11184—11188,  Non-Patent Document 1 Proc. Natl. Acad. Sci. USA, 89, 11184-11188,
非特許文献 2 Plant J. , 17 (6), 679-688, 1999.  Non-Patent Document 2 Plant J., 17 (6), 679-688, 1999.
非特許文献 3 Prog. Lipid Res. , 33 (1/2), 155—163, 1994  Non-Patent Document 3 Prog. Lipid Res., 33 (1/2), 155-163, 1994
非特許文献 4 Plant Phys iol . , 124, 681—692, 2000  Non-Patent Document 4 Plant Phys iol., 124, 681-692, 2000
非特許文献 5 Plant Mol . Bi ol. , 47, 507—518, 2001  Non-Patent Document 5 Plant Mol. Biol., 47, 507-518, 2001
非特許文献 6 Metab. Eng. , 4, 12-21, 2002  Non-Patent Document 6 Metab. Eng., 4, 12-21, 2002
—非特許文献 7 Biochira. Biophys. Acta. , 1212, 134-136, 1994  —Non-patent literature 7 Biochira. Biophys. Acta., 1212, 134-136, 1994
非特許文献 8 Plant Phys iol . , 104, 839-844, 1994  Non-Patent Document 8 Plant Phys iol., 104, 839-844, 1994
非特許文献 9 Planta 215 : 584—595 2002. 発明の開示  Non-Patent Document 9 Planta 215: 584-595 2002. Disclosure of the Invention
本発明は、 上述した実状に鑑み、 ペトロセリン酸の蓄積を促進することができ る新規な遺伝子、 及び当該遺伝子を用いたペトロセリン酸の製造方法を提供する ことを目的としている。 In view of the above-described situation, the present invention can promote the accumulation of petrothelic acid. It is an object of the present invention to provide a novel gene and a method for producing petrothelic acid using the gene.
上述した目的を達成するため本発明者が鋭意検討した結果、 セリ科に属する二 ンジン ( aucus caro a)由来の Δ 4 -パノレミ トイノレ- ACP デサチユラーゼがコリアン ダー由来の Δ 4-パルミ トイル- ACPデサチユラーゼと比較してペトロセリン酸合 成能に優れているといった新たな知見が得られた。 また、 本発明者は、 ペトロセ リノィル -ACPチォエステラーゼ遺伝子を新規に単離することに成功し、当該遺伝 子を Δ 4 -パルミ トイル- ACP デサチユラーゼ遺伝子と併用した場合にペトロセリ ン酸の合成能を約 2倍にさせる技術を発明した。  As a result of intensive studies by the inventor in order to achieve the above-described object, Δ 4 -panoremitoinole-ACP desaturase derived from cindu (aucus caro a) belonging to the family Aceraceae is a Δ4-palmitoyl-ACP desaturase derived from Korean. As a result, a new finding was obtained that the ability to synthesize petrothelic acid was superior. In addition, the present inventor has succeeded in isolating a petroselinol-ACP thioesterase gene newly, and when this gene is used in combination with a Δ4-palmitoyl-ACP desaturase gene, the inventor has the ability to synthesize petrocellinic acid. We invented a technology that makes it approximately double.
すなわち、 本発明は以下を包含する。  That is, the present invention includes the following.
( 1 ) 以下の(a)、 (b)又は(c)のタンパク質をコードする遺伝子。  (1) A gene encoding the following protein (a), (b) or (c).
(a)配列番号 2 .に示すアミノ酸配列を含むタンパク質 - (a) a protein comprising the amino acid sequence shown in SEQ ID NO: 2-
(b)配列番号 2に示すアミノ酸配列において 1又は複数のアミノ酸が欠失、置換又 は付加されたアミノ酸配列を含み、 Δ 4-パルミ トイル- ACPデサチユラーゼ活性を 有するタンパク質 (b) a protein having Δ 4-palmitoyl-ACP desaturase activity, including an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2
(c)配列番号 1に示す塩基配列と相補的な塩基配列からなる DNAに対して、ストリ ンジェントな条件下でハイブリダイズする DNAによりコードされ、 Δ 4-パルミ ト ィル- ACPデサチユラーゼ活性を有するタンパク質 .  (c) It is encoded by DNA that hybridizes under stringent conditions to DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1, and has Δ4-palmityl-ACP desaturase activity Protein.
ここで、 上記 (b) 及び(c)において、 Δ 4」パルミ トイル- ACPデサチユラーゼ活 性を有するタンパク質とは、 植物培養細胞もしくは植物個体中で発現することに より c i s - 4 -へキサデセン酸 ( cis-4-Hexadecenoic aci d) 又はペトロセリン酸 (cis - 6-ォクタテセン酸 (cis - 6- octadecenoic acid) )又は cis_8 -ィコセン酸 (cis-8-icosenoic acid) の蓄積量を増加することが可能なタンパク質と言い換 えることができる。  Here, in the above (b) and (c), a protein having Δ4 ”palmitoyl-ACP desaturase activity is expressed by cis-4-hexadecenoic acid ( Can increase the accumulation of cis-4-Hexadecenoic aci d) or petroselinic acid (cis-6-octadecenoic acid) or cis_8-icosenoic acid It can be paraphrased as protein.
( 2 ) 以下の(a)、 (b)又は(c)のタンパク質をコードする遺伝子。  (2) A gene encoding the following protein (a), (b) or (c).
(a)配列番号 4又は 6に示すアミノ酸配列を含むタンパク質  (a) a protein comprising the amino acid sequence shown in SEQ ID NO: 4 or 6
(b)配列番号 4又は 6に示すァミノ酸配列において 1又は複数のアミノ酸が欠失、 置換又は付加されたアミノ酸配列を含み、ぺトロセリノィル- ACP チォエステラー ゼ活性を有するタンパク質 (c),配列番号 3又は 5に示す塩基配列と相補的な塩基配列からなる DNAに対して、 ストリンジェントな条件下でハイプリダイズする DNAによりコードされ、 ペトロ セリノィル -ACP チォエステラーゼ活性を有するタンパク質 (b) a protein having an amino acid sequence in which one or more amino acids are deleted, substituted, or added in the amino acid sequence shown in SEQ ID NO: 4 or 6, and having petrocellinol-ACP tiosterase activity (c) A protein having a petro-cerinoyl-ACP thioesterase activity, encoded by DNA that is hybridized under stringent conditions to DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 3 or 5.
ここで、上記(b)及び(c)において、ペトロセリノィル- ACP チォエステラーゼ活 性を有するタンパク質とは、 植物培養細胞もしくは植物個体中で Δ 4-パルミ トイ ル- ACPデサチユラーゼ活性を有するタンパク質と同時に発現することにより、 Δ 4 -パルミ トイル- ACP デサチユラーゼ活性を有するタンパク質単独で発現した時 より、 ci s_4-へキサデセン酉矣 (c i s-4-Hexadecenoic acid) 又はペトロセリン酸 (ci s_6 -ォクタデセン酸 (cis- 6 - octadecenoic acid) )又は cis - 8-ィコセン酸 (c is-8-icosenoic acid) 量を増加することが可能なタンパク質と言い換えるこ とができる。  Here, in the above (b) and (c), the protein having petroselinol-ACP thioesterase activity is expressed simultaneously with a protein having Δ4-palmitole-ACP desaturase activity in plant cultured cells or individual plants. Ci s_4-hexadecenoic acid (ci s-4-Hexadecenoic acid) or petroselinic acid (ci s_6 -octadecenoic acid (cis -6-octadecenoic acid)) or cis-8-icosenoic acid It can be rephrased as a protein capable of increasing the amount.
本明細書は本願の優先権の基礎である日本国特許出願 2005- 191775 ·号の明細書 および/または図面に記載される内容を包含する。 図面の簡単な説明  This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2005-191775 · · which is the basis of the priority of the present application. Brief Description of Drawings
図 1は、 各種ペトロセリノィル- ACP チォエステラーゼ及びォレオイル- ACP チ ォエステラーゼのアミノ酸配列の相同性 (%) を比較した図である。 なお図中、 DcPTEはニンジン Da s carota 由来のペトロセリノィル- ACPチォエステラー ゼを意味し、 CsPTE はコリアンダー Coriand sa ti vwn、 由来のペトロセリノ. ィル- ACPチォエステラーゼを意味し、 AgPTEはディノレ ne thum gra veolens 由 来のペトロセリノィル- ACP チォエステラーゼを意味し、 CsOTE はコリアンダー ( Coriandrum sa ti vum) 由来のォレオイノレ- ACPチォエステラーゼを意味し、 DcOTE はニンジン Daucus car ota) 由来の レオイル- ACP チォエステラーゼを意味す る。  FIG. 1 is a diagram comparing the homology (%) of the amino acid sequences of various petrocellinol-ACP thioesterases and oleoyl-ACP thioesterases. In the figure, DcPTE means petroselinol-ACP thioesterase derived from carrot Da s carota, CsPTE means coriander coriand sa ti vwn, derived from petrocellino.il-ACP thioesterase, and AgPTE stands for dinore ne thum gra veolens. Original petrocellinol-ACP thioesterase, CsOTE means oleoinole-ACP thioesterase from coriandrum (Coriandrum sa ti vum), DcOTE means reoil-ACP thioesterase from carrot Daucus car ota) .
図 2— 1は、各種べトロセリノィル- ACP チォエステラーゼ及びォレオイル- ACP チォエステラーゼのアミノ酸配列のァライメントを示す図である。  FIG. 2-1 shows the alignment of the amino acid sequences of various betacellinoyl-ACP thioesterases and oleoyl-ACP thioesterases.
図 2— 2は、各種べトロセリノィル- ACP チォエステラーゼ及ぴォレオイル- ACP チォエステラーゼのアミノ酸配列のァライメントを示す図である。  Fig. 2-2 shows the alignment of amino acid sequences of various betacellinoyl-ACP thioesterases and oleoreyl-ACP thioesterases.
図 3は、 ニンジン Da s car o ta) 由来の Δ 4-パルミ トイル- ACP デサチユラ ーゼ (Dc4DESと称す) のアミノ酸酉 S歹 ίΐとコリアンダー ( Coriandru sa ti vum) 由 来の Δ 4-パルミ トイル -ACPデサチユラーゼ(Cs4DESと称す) のアミノ酸配列のァ ライメントを示す図である。 Figure 3 shows Δ 4-palmitoyl-ACP desatura from carrot Da s car o ta) FIG. 2 is a diagram showing alignment of amino acid sequences of Δ4-palmitoyl-ACP desaturase (referred to as Cs4DES) derived from the amino acid 酉 S 歹 ίΐ and coriander (referred to as Dc4DES) of Corse.
図 4は、 精製した、 ニンジン Daucus carot ) 由来のペトロセリノィル- ACP チォエステラーゼ (DcPTEと称す)、 コリアンダー ( Coriandrum sa ti vum) 由来の ォレオイル- ACPチォエステラーゼ(CsOTEと称す)及びニンジン Daucus carota) 由来のォレオイル - ACPチォエステラーゼ (DcOTEと称す) の大腸菌からのヒスチ ジン標識タンパク質溶出液について 1画分づつ SDS - PAGEを行った結果を示す写真 である。  Figure 4 shows purified petroselinol-derived ACP thioesterase from carrot Daucus carot (referred to as DcPTE), oleoyl-ACP thioesterase from coriandrum sa ti vum (referred to as CsOTE) and carrot Daucus carota) This is a photograph showing the results of SDS-PAGE of oleidine-ACP thioesterase (referred to as DcOTE) histidine-labeled protein eluate from Escherichia coli one fraction at a time.
図 5は、 精製した DcPTE、 DcOTE のヒスチジン標識タンパク質溶出液でァシル ACPを基質として反応させた後、 SDS - PAGEを行った結果を示す写真である。  FIG. 5 is a photograph showing the results of SDS-PAGE after reacting purified ATP with DcPTE and DcOTE histidine-labeled protein eluate using asil ACP as a substrate.
図 6は、 図 5に示した写真に含まれるバンドを画像解析ソフトを用いて定量化 した結果を示す特性図である。  FIG. 6 is a characteristic diagram showing the results of quantifying the bands included in the photograph shown in FIG. 5 using image analysis software.
図 7は、 実施例で作製した常時全身発現用ベクターを模式的に示す構成図であ る。  FIG. 7 is a block diagram schematically showing the constant systemic expression vector prepared in the example.
図 8は、 実施例で作製した種子特異的発^ i用ベクターを模式的に示す構成図で める。  FIG. 8 is a block diagram schematically showing the seed-specific development vector prepared in the example.
図 9は、 形質転換植物の種子での脂肪酸組成分析結果を示す図である。 発明を実施するための最良の形態  FIG. 9 shows the results of fatty acid composition analysis in the seeds of the transformed plant. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る新規遺伝子及ぴペトロセリン酸の製造方法を、 図面を参照 して詳細に説明する。  Hereinafter, the novel gene and the method for producing petrothelic acid according to the present invention will be described in detail with reference to the drawings.
1 . ニンジン(Daucus carota)由来 Δ 4-パルミ トイル- ACP デサチユラーゼ遺伝子 (Dc4DES遺伝子) の取得  1. Acquisition of Δ 4-palmitoyl-ACP desaturase gene (Dc4DES gene) from carrot (Daucus carota)
Dc4DES遺伝子は、 配列番号 2に示すアミノ酸配列を含むタンパク質 (Dc4DES) をコードしている。 Dc4DESは、 炭素数 16 の飽和脂肪酸であるパルミ トイル -ACP (palmitoyl-acyl carrier protein) における Δ 4位を不:!包和ィ匕する活个生を有す るタンパク質である。 Dc4DES遺伝子の一例として、 配列番号 2に示すアミノ酸配 列からなるタンパク質をコードする遺伝子を配列番号 1に示す。 まナこ、本発明において Dc4DES遺伝子は、配列番号 2に示すアミノ酸配列におい て 1又は複数のアミノ酸が欠失、 置換又は付加されたアミノ酸配列を含み、 Δ 4 - パルミ トイル- ACP デサチユラーゼ活性を有するタンパク質をコードするもので あっても良い。 ここで、 「複数のアミノ酸」 とは、 2〜150 個、 好ましくは 2〜80 個、 より好ましくは 2〜40個を意味する。 欠失、 置換又は付加する領域は、 特に 限定されないが、 例えば配列番号 2に示すアミノ酸配列における 1〜99番目もし くは 270〜386番目の領域、好ましくは 1〜99番目もしくは 301〜386番目の領域、 より好ましくは 1〜53番目もしくは 381〜386番目の領域である。 The Dc4DES gene encodes a protein (Dc4DES) containing the amino acid sequence shown in SEQ ID NO: 2. Dc4DES is a protein with active individuals that does not contain the Δ4 position in palmitoyl-ACP (palmitoyl-acyl carrier protein), which is a saturated fatty acid having 16 carbon atoms. As an example of the Dc4DES gene, a gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 2 is shown in SEQ ID NO: 1. Manako, in the present invention, the Dc4DES gene comprises an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2, and has Δ 4 -palmitoyl-ACP desaturase activity It may be one that encodes a protein. Here, “a plurality of amino acids” means 2 to 150, preferably 2 to 80, more preferably 2 to 40. The region to be deleted, substituted or added is not particularly limited. For example, the region from 1 to 99 or 270 to 386, preferably from 1 to 99 or 301 to 386 in the amino acid sequence shown in SEQ ID NO: 2. The region is more preferably the 1st to 53rd region or the 381st to 386th region.
さらにまた、本発明において Dc4DES遺伝子は、配列番号 2に表すアミノ酸配列 において、 50%以上、好ましくは 70%以上、 さらに好ましくは 90%以上の相同性 を有するアミノ酸配列から構成され、 且つ、 Δ 4 -パルミ トイル- ACPデサチユラ一 ゼ活性を有するタンパク質をコードする遺伝子であっても良い。 ここで、 上記相 同性の数値は、 配列解析ソフトウェアである D N A S I S (日立ソフトウェアェ ンジニアリング) を用いて、 例えば、 マキシムマッチング法のコマンドを実行す ることにより求められる。 その際のパラメータは、デフォルトの設定 (初期設定) とする。'  Furthermore, in the present invention, the Dc4DES gene is composed of an amino acid sequence having a homology of 50% or more, preferably 70% or more, more preferably 90% or more in the amino acid sequence represented by SEQ ID NO: 2, and Δ 4 -A gene encoding a protein having palmitoyl-ACP desaturase activity. Here, the numerical value of the above homology is obtained by executing a command of the Maxim matching method, for example, using DNA analysis (Hitachi Software Engineering), which is sequence analysis software. The parameters at that time are the default settings (initial settings). '
さらに、本発明において Dc4DES遺伝子は、配列番号 1に示す塩基配列と相補的 な塩基配列からなる DNAに対して、 ス トリ ンジェントな条件下でハイブリダイズ する DNAによりコードされ、 Δ 4-パルミ トイル- ACPデサチユラーゼ活性を有する タンパク質をコードする遺伝子であってもよい。 ここで、 「ストリンジェントな条 件でハイプリダイズする」 とは、例えば、 6 X S S C、 0 . 5 % S D S及び 5 0 % ホルムアミ ドの溶液中で 4 2 °Cにて加温した後、 0 . 1 X S S C、 0 . 5 % S D Sの溶液中で 6 8 °Cにて洗浄する条件でも依然として陽性のハイブリタイズの シグナルが観察され.ることを表す。  Furthermore, in the present invention, the Dc4DES gene is encoded by DNA that hybridizes under stringent conditions to DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1, and Δ 4-palmitoyl- It may be a gene encoding a protein having ACP desaturase activity. Here, “hyperpridation under stringent conditions” means, for example, that after heating at 42 ° C. in a solution of 6 XSSC, 0.5% SDS, and 50% formamide, 0. 1 Indicates that a positive hybridization signal is still observed even under conditions of washing at 68 ° C in a solution of 1 XSSC and 0.5% SDS.
Δ 4 -パルミ トイル- ACPデサチュラーゼ活性とは、パルミ トイル- ACPにおける厶 Δ 4 -palmitoyl-ACP desaturase activity is a function of palmitoyl-ACP.
4位を不飽和化する活性を意味する。 当該活性の有無は、 検定対象タンパク質を コードする DNA断片をタバコゃシロイヌナズナ等の c is- 4-へキサデセン酸、ぺト ロセリン酸、 ci S- 8 -ィコセン酸を蓄積しなレ、宿主植物細胞に機能しうる形で導入 し、 導入した植物体の脂質中の cis - 4-へキサデセン酸、 ペトロセリン酸、 cis - 8 - ィコセン酸の有無を測定することによって検定できる。 例えば、 Dc4DES遺伝子を 恒常的発現プロモーター或いは特異的発現プロモーターの下流に、 すなわち、 当 該プロモーターにより制御可能な位置に配してなる発現べクタ一を用いて、 タバ コゃシロイヌナズナ等の ci s- 4-へキサデセン酸、 ペトロセリン酸、 c is- 8-ィコセ ン酸を蓄積しない植物細胞を形質転換する。 作製した形質転換植物細胞もしくは これより再生した植物体の種子の脂質を抽出する。 抽出した脂質をメタノール塩 酸等で処理することにより脂肪酸メチルエステルとし、 これに含まれるペトロセ リン酸メチルェステル量、 cis - 4 -へキサデセン酸脂肪酸メチルエステル量、 cis-8- ィコセン酸脂肪酸メチルエステル量をガスクロマトグラフィ一等で測定する。 こ れらの脂肪酸メチルエステルが検出できれば、 検定対象タンパク質は Δ 4-パルミ トィル- ACPデサチユラーゼ活性を有し、これらの脂肪酸メチルエステルが検出で きなければ Δ 4-パルミ トイル- ACPデサチユラーゼ活性を持たないといえる。 It means activity to desaturate the 4th position. The presence or absence of this activity can be determined by analyzing the DNA fragment encoding the protein to be assayed without ac is 4-hexadecenoic acid, petroceric acid, ci S-8-icosenoic acid such as Arabidopsis thaliana. Cis-4-hexadecenoic acid, petroceric acid, cis-8- in the lipids of the introduced plant. It can be assayed by measuring the presence or absence of icosenoic acid. For example, by using an expression vector in which the Dc4DES gene is arranged downstream of a constitutive expression promoter or a specific expression promoter, that is, at a position controllable by the promoter, ci s- Transform plant cells that do not accumulate 4-hexadecenoic acid, petroceric acid, or cis-8-icosenoic acid. Extract the lipids of the produced transformed plant cells or the seeds of the regenerated plants. Fatty acid methyl ester is obtained by treating the extracted lipids with methanolic hydrochloric acid, etc., and the amount of methyl ester of petrocelic acid, the amount of fatty acid methyl ester of cis-4-hexadecenoic acid, the amount of fatty acid methyl ester of cis-8-icosenoic acid Is measured by gas chromatography or the like. If these fatty acid methyl esters can be detected, the protein to be assayed has Δ 4-palmitoyl-ACP desaturase activity, and if these fatty acid methyl esters cannot be detected, it has Δ 4-palmitoyl-ACP desaturase activity. I can say no.
Dc4DES遺伝子は、 宿主植物細胞に機能しうる形で導入することによって、 当該 細胞内におけるぺトロセリン酸合成を促進する機能を有している。例えば、 Dc4DES 遺伝子を恒常的発現プ口モーター或いは特異的発現プロモーターの下流に、 すな わち、 当該プロモーターにより制御可能な位置に配してなる発現べクタ一を用い て、 植物細胞を形質転換する。 得られた形質転換植物を育成して植物体とするこ とによって、 当該植物体におけるペトロセリン酸合成を促進することができる。 特異的発現プロモーターとしては、 種子特異的発現プロモーターを使用すること が好ましい。 種子特異的発現プロモーターを使用することによ'つて、 ペトロセリ ン酸を種子に蓄積することができる。  The Dc4DES gene has a function of promoting the synthesis of petroselinic acid in the cell by being introduced into the host plant cell in a functional manner. For example, a plant cell is transformed using an expression vector in which the Dc4DES gene is arranged downstream of a constitutive expression promoter or a specific expression promoter, that is, at a position controllable by the promoter. To do. By growing the resulting transformed plant into a plant body, the synthesis of petroselinic acid in the plant body can be promoted. As the specific expression promoter, it is preferable to use a seed specific expression promoter. By using a seed-specific expression promoter, petroselinic acid can be accumulated in the seed.
ペトロセリン酸は、 例えば、 形質転換植物を育成して植物体とした後、 種子等 の組織を粉砕し、塩酸-メタノール溶液と混合することによって当該組織に含まれ るぺトロセリン酸をメチルエステル化し、 へキサン抽出し、 へキサン抽出物をガ スクロマトグラフ-質量分析 (GC - MS) 装置により検出することができる。 GC- MS 装置による検出の結果から、 ペトロセリン酸の合成促進能を解析することができ る。 . For example, after growing a transformed plant into a plant body, petroseric acid is pulverized in tissues such as seeds and mixed with a hydrochloric acid-methanol solution to methyl esterize petroceric acid. Hexane extraction can be performed and the hexane extract can be detected with a gas chromatograph-mass spectrometer (GC-MS) instrument. Based on the results of detection using a GC-MS instrument, the ability to promote the synthesis of petrothelic acid can be analyzed. .
2 . ペトロセリノィル- ACP チォエステラーゼ酵素遺伝子 (PTE遺伝子) 2. Petrocellinol-ACP thioesterase enzyme gene (PTE gene)
PTE遺伝子は、 コリアンダー ( Gofiandrum sa ti vium) において、 その存在が指 摘されていたものの単離及びクローニングされていなかつたところ、 本発明にお いて新規に単離 ·クローニングされた遺伝子である。 PTE 遺伝子は、 ペトロセリ ノィル - ACP等の Δ 6位に二重結合を有するァシル ACP (acyl carrier protein) に特異性が高いチォエステラーゼ (PTE) をコードする遺伝子である。 PTEは、 遊 離のペトロセリン酸の生成に関与している。 The presence of PTE gene is indicated in coriander (Gofiandrum sa ti vium). What has been excised but not isolated and cloned is a newly isolated and cloned gene in the present invention. The PTE gene is a gene that encodes thioesterase (PTE), which is highly specific for the acyl ACP (acyl carrier protein) having a double bond at the Δ6-position such as petrocellinol-ACP. PTE is involved in the production of free petrothelic acid.
PTE 遺伝子としては、 配列番号 4又は 6に示すアミノ酸配列を含むニンジン由 来の PTEをコードする遺伝子を挙げることができる。 なお、 配列番号 4に示すァ ミノ酸配列からなるタンパク質をコードする遺伝子を配列番号 3に示し、 配列番 号 6に示すァミノ酸配列からなるタンパク質をコードする遺伝子を配列番号 5に 示す。 なお、 ニンジン由来の PTE遺伝子及び PTEを、 それぞれ DcPTE遺伝子及び DcPTEと称する。  Examples of the PTE gene include a gene encoding a carrot-derived PTE containing the amino acid sequence shown in SEQ ID NO: 4 or 6. The gene encoding the protein consisting of the amino acid sequence shown in SEQ ID NO: 4 is shown in SEQ ID NO: 3, and the gene encoding the protein consisting of the amino acid sequence shown in SEQ ID NO: 6 is shown in SEQ ID NO: 5. Carrot-derived PTE gene and PTE are referred to as DcPTE gene and DcPTE, respectively.
本発明において DcPTE遺伝子は、 配列番号 4又は 6に示すアミノ酸配列におい て 1又は複数のアミノ酸が欠失、 置換又は付加されたアミノ酸配列を含み、 活性 を有するタンパク質をコードするものであっても良い。ここで、「複数のアミノ酸」 とは、 2〜188個、 好ましくは 2〜64個、 より好ましくは 2〜44個を意味する。 欠 失、 置換又は付加する領域は、 特に限定されないが、 例えば配列番号 4に示すァ ミノ酸配列における 1〜70'番目もしくは 311〜375番目の領域、好ましくは 1〜57 番目もしくは 368〜375番目の領域、 より好ましくは 1〜32番目の領域である。 なお、 配列番号 4又は 6に示すアミノ酸配列に対して置換、 欠失及ぴ揷入を導 入したアミノ酸配列を含むタンパク質をコードする PTE 遺伝子は、 Kunkel 法、 Gapped duplex 法等の公知の手法又はこれに準ずる 法を採用して、 配列番号 3 又は 5に示す塩基配列に所望の変異を導入することで取得することができる。 例 えば部位特異的突然変異誘発法を利用した変異導入用キッ ト (例えば Mutan-K (TAKARA社製)や Mutan- G (TAKARA社製)) などを用いて、 あるいは、 TAKARA 社の LA PCR in vitro Mutagenesis シリーズキットを用いて変異の導入が行われ る。  In the present invention, the DcPTE gene includes an amino acid sequence in which one or more amino acids are deleted, substituted, or added in the amino acid sequence shown in SEQ ID NO: 4 or 6, and may encode a protein having activity. . Here, “a plurality of amino acids” means 2 to 188, preferably 2 to 64, more preferably 2 to 44. The region to be deleted, substituted or added is not particularly limited. For example, the region of 1 to 70 ′ or 311 to 375 in the amino acid sequence shown in SEQ ID NO: 4, preferably 1 to 57 or 368 to 375. Area, more preferably the 1st to 32nd areas. The PTE gene encoding a protein containing an amino acid sequence into which the amino acid sequence shown in SEQ ID NO: 4 or 6 is substituted, deleted or inserted is a known technique such as the Kunkel method or the Gapped duplex method or the like. It can be obtained by adopting a method according to this and introducing a desired mutation into the nucleotide sequence shown in SEQ ID NO: 3 or 5. For example, using a mutagenesis kit (for example, Mutan-K (TAKARA) or Mutan-G (TAKARA)) using site-directed mutagenesis, or LA PCR in by TAKARA Mutation is introduced using the in vitro Mutagenesis series kit.
さらにまた、 本発明において DcPTE遺伝子は、 配列番号 4文は 6に表すアミノ 酸配列において、 50%以上、好ましくは 70%以上、 さらに好ましくは 90%以上の 相同性を有するアミノ酸配列から構成され、 且つ、 ペトロセリノィル -ACPチォェ ステラーゼ活性を有するタンパク質をコードする遺伝子であっても良い。ここで、 上記相同性の数値は、 配列解析ソフ トゥヱァである D N A S I S (日立ソフ トゥ エアエンジニアリング) を用いて、 例えば、 マキシムマッチング法のコマンドを 実行することにより求められる。 その際のパラメータは、 デフォルトの設定 (初 期設定) とする。 Furthermore, in the present invention, the DcPTE gene is composed of an amino acid sequence having a homology of 50% or more, preferably 70% or more, more preferably 90% or more in the amino acid sequence represented by SEQ ID NO: 4 sentence 6; And Petrocellinoir -ACP It may be a gene encoding a protein having sterase activity. Here, the numerical value of the homology is obtained, for example, by executing a command of the Maxim matching method using DNASIS (Hitachi Soft-to-Air Engineering) which is a sequence analysis software. In this case, the parameters are set to the default settings (initial settings).
さらに、 本発明において DcPTE遺伝子は、 配列番号 3又は 5に示ザ塩基配列と 相補的な塩基配列からなる DNAに対して、 ストリンジヱントな条件下でハイブリ ダイズする DNAによりコードされ、ぺトロセリノィル - ACP チォエステラーゼ活性 を有するタンパク質をコードする遺伝子であってもよい。 ここで、 「ストリンジェ ントな条件でハイブリダイズする」 とは、 例えば、 6 X S S C、 0 . 5 % S D S 及び 5 0 %ホルムアミ ドの溶液中で 4 2 °Cにて加温した後、 0 . 1 X S S C、 0 . 5 % S D Sの溶液中で 6 8 °Cにて洗浄する条件でも依然として陽性のハイプリ タイズのシグナルが観察されることを表す。  Further, in the present invention, the DcPTE gene is encoded by DNA that hybridizes under stringent conditions to DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 3 or 5, and Petrocellinol-ACP It may be a gene encoding a protein having esterase activity. Here, “hybridizes under stringent conditions” means, for example, 0.1% after heating at 42 ° C. in a solution of 6 XSSC, 0.5% SDS and 50% formamide. This indicates that a positive hypritized signal is still observed even under conditions of washing at 68 ° C. in a solution of XSSC, 0.5% SDS.
ペトロセリノィル- ACPチォエステラーゼ活性とは、ぺトロセリノィル - ACPをぺ トロセ リ ン酸と ACP に分解する活性を意味する。 当該活性は、 25mM Petrocellinol-ACP thioesterase activity refers to the activity of degrading petroselinol-ACP into petroselinic acid and ACP. The activity is 25 mM
Tris-HCl (pH8. 0)、 ImM DTT、 ペトロセリノィル- ACPと水を混合後、 25°Cで 5分間 のプレ 'インキュベーションを施し、 15 /_i g の検定対象タンパク質を加えた反応 液 100 μ 1を 25°Cで 30分間反応させる。反応液後、 SDS - PAGEにより未反応のぺト ロセリノィル -ACPおよび反応生成物である遊離 ACPを分離する。電気泳動後のゲ ルを CBB染色後、 SDS - PAGEにより反応生成物である遊離 ACP量をデンシトメータ 一により定量化することにより、 添加した検定対象タンパク質のチォエステラー ゼ活性を測定する。 もしくは 25mM Tri s- HCl (pH8. 0)、 ImM DTT、 トリチウムでぺ トロセリノィル基をラベルしたペトロセリノィル- ACPと水を混合後、 25°Cで 5分 間のプレ ' インキュベーションを施し、 検定対象タンパク質を加えた反応液 100 β ΐを 25°Cで 30分間反応させる。反応後 50 μ 1のィソプロパノールを加え反応を 停止し, その後酵素反応により生じたぺトロセリン酸を薄層クロマトグラフィー で分離し、 シンチレーションカウンターで生じたペトロセリン酸量を定量するこ とにより添加した検定対象タンパク質のチォエステラーゼ活性を測定する。 Tris-HCl (pH 8.0), ImM DTT, Petrocerinol-ACP and water are mixed, preincubated for 5 minutes at 25 ° C, and the reaction solution containing 15 / _ig protein to be assayed 100 μ1 For 30 minutes at 25 ° C. After the reaction solution, unreacted petrolinoyl-ACP and reaction product free ACP are separated by SDS-PAGE. The gel after electrophoresis is stained with CBB, and then the amount of free ACP, which is the reaction product, is quantified with a densitometer by SDS-PAGE, and the thiesterase activity of the added protein to be assayed is measured. Alternatively, mix 25 mM Tris-HCl (pH 8.0), ImM DTT, and Petrocelinol-labeled with a tritium-based Petrocelinol-ACP and water, and then pre-incubate for 5 minutes at 25 ° C. Incubate the added reaction solution 100 βΐ at 25 ° C for 30 minutes. After the reaction, 50 μ 1 isopropanol was added to stop the reaction, and then the petroceric acid produced by the enzyme reaction was separated by thin layer chromatography and added by quantifying the amount of petrothelic acid produced by a scintillation counter. The thioesterase activity of the protein to be assayed is measured.
また、 本発明において PTE遺伝子は、 ニンジン由来の PTEをコードする遺伝子 に限定されず、 ペトロセリン酸を生合成する植物由来の PTE遺伝子を含む意味で ある。 ペトロセリン酸を生合成する植物として、 ニンジン以外には、 コリアンダ -"" y Cor i an drum sa tivium)、 /、セリ Petroseli um cri spurn) " ィノレ \Anethum graveolens) 等のセリ科植物、 キヅタ 、Hedera helix、 タラノキ ralia ela td) 等のゥコギ科植物等を挙げることができる。 In the present invention, the PTE gene is a gene encoding a carrot-derived PTE. However, it is meant to include a plant-derived PTE gene that biosynthesizes petroceric acid. Other than carrots, plants that biosynthesize petroceric acid include Corianda-"" y Corian drum sa tivium), /, Seri Petroseli um crispurn) "Inore \ Anethum graveolens), etc., Ivy, Hedera helix, ralia ela td), and the like.
ニンジン以外の植物から、 PTE遺伝子を取得する際には、 配列番号 3又は 5に 示す DcPTE遺伝子の塩基配列における、 例えば 187〜 1128番目の領域の全部また は一部をプローブとして使用することができる。プローブとして長い核酸配列(> lOObp) を使用する場合には、 80%以上の相同的配列である標的サンプルからシグ ナルを得るために、 中高度のストリンジエンシーによってもスクリ一二ングする ことができる。 また、 プローブは相当短くてもよい。 例えば、 オリゴヌクレオチ ドを使用してもよいが、少なくとも約 10、好ましくは少なくとも約 15、 より好ま しくは 20のヌクレオチドとすべきである。短い領域をプローブに使用する場合に は、 より長いプローブの場合よりも高度の配列同一性が要求される。  When obtaining a PTE gene from a plant other than carrots, for example, all or part of the 187th to 1128th region in the base sequence of the DcPTE gene shown in SEQ ID NO: 3 or 5 can be used as a probe. . If long nucleic acid sequences (> lOObp) are used as probes, they can also be screened by moderate stringency to obtain signals from target samples that are more than 80% homologous. it can. Also, the probe can be quite short. For example, oligonucleotides may be used, but should be at least about 10, preferably at least about 15, and more preferably 20 nucleotides. When short regions are used for probes, a higher degree of sequence identity is required than for longer probes.
すなわち、 当該プローブ及びニンジン以外の植物から抽出したゲノム DNAを用 いたサザンハイブリダイゼーションを実行することによって、 当該植物のゲノム DNAから PTE遺伝子を単離'同定することができる。なお、ゲノム DNAに代えて、 当該植物から抽出した mRNA を铸型として合成した. cDNA を用いても当該植物の PTE遺伝子を単離 ·同定することができる。 . ■ . . 配列番号 3又は 5に示す DcPTE遺伝子の塩基配列に基づいて、 コリアンダー { Cor Ian drum sa ti vium) 及びァィノレ 、Arw thwn graveolens) より単離し 7こ DcPTE 相同遺伝子の塩基配列をそれぞれ配列番号 7及び 9に示す。 なお、 配列番号 7に 示すコリアンダー由来の PTE遺伝子から推定されるアミノ酸配列(CsPTE) を配列 番号 8に示し、 配列番号 9に示すディル由来の PTE遺伝子から推定されるァミノ 酸配列 (AgPTE) を配列番号 1 0に示す。 また、 各種植物のチォエステラーゼにお ける各タンパク質間のアミノ酸相同性 (%) を、 図 1に示す。  That is, by performing Southern hybridization using genomic DNA extracted from plants other than the probe and carrot, the PTE gene can be isolated and identified from the genomic DNA of the plant. In addition, instead of genomic DNA, mRNA extracted from the plant was synthesized as a cocoon. The cDNA can also be used to isolate and identify the PTE gene of the plant. Based on the nucleotide sequence of the DcPTE gene shown in SEQ ID NO: 3 or 5, isolated from coriander (Cor Ian drum sativium) and vinore, Arw thwn graveolens), the sequences of the 7 DcPTE homologous genes were sequenced respectively. The numbers 7 and 9 are shown. The amino acid sequence (CsPTE) deduced from the coriander-derived PTE gene shown in SEQ ID NO: 7 is shown in SEQ ID NO: 8, and the amino acid sequence (AgPTE) deduced from the dill-derived PTE gene shown in SEQ ID NO: 9 is sequenced The number 10 is shown. Figure 1 shows the amino acid homology (%) between proteins in the thioesterase of various plants.
図 1に示すように、 DcPTE、 CsPTE及び AgPTEを含む PTE群内においては高い相 同性を示している。 また、 DcOTE及び. CsOTE間も高い相同性を示している。 これ に対して、 PTE群と 0TE群の間は比較的に低い相同性を示している。 従って、 こ れら PTE群に含まれる PTEタンパク質とのァミノ酸相同性が 80%を超えるような 新規タンパク質は、 PTE群に含まれる蓋然性が非常に高いと言える。 すなわち、 本発明に係る PTE遺伝子には、 配列番号 4、 6又は 8、 1 0に示すアミノ酸配列 との相同性が 80°/。を超えるようなアミノ酸配列を含むタンパク質をコードする DNAも含まれることとなる。 As shown in Fig. 1, it shows high similarity in the PTE group including DcPTE, CsPTE and AgPTE. It also shows high homology between DcOTE and CsOTE. In contrast, the PTE group and the 0TE group show relatively low homology. Therefore, this It can be said that a novel protein whose amino acid homology with PTE proteins included in these PTE groups exceeds 80% has a very high probability of being included in PTE groups. That is, the PTE gene according to the present invention has a homology of 80 ° / with the amino acid sequence shown in SEQ ID NO: 4, 6, 8 or 10. DNA encoding a protein containing an amino acid sequence exceeding the above will also be included.
また、 DcPTE、 CsPTE、 AgPTE、 DcOTE、 CsOTE のアミノ酸配列の整列図を図 2に 示す。 0TEと PTEとの間に、 約 30%のアミノ酸の相違がある。 その中で、 PTE群と 比較して 0TE群において、 いくつかのアミノ酸の極性が異なっていることが示さ れる。 以下の説明において 「共通配列第 X (Xは自然数)」' とは、 図 2におけるァ ライメントの上部に付した番号を意味する。 PTE群において、共通配列第 120、125、 373 のァミノ酸が非極性であり、 一方 0TE群においては、 上記ァミノ酸は極性で ある。 また、 PTE群において、 共通配列第 140、 195のアミノ酸が極性であり、 一 方 0TE群においては、 上記アミノ酸は非極性である。  Figure 2 shows the alignment of the amino acid sequences of DcPTE, CsPTE, AgPTE, DcOTE, and CsOTE. There is about 30% amino acid difference between 0TE and PTE. Among them, it is shown that the polarity of some amino acids is different in the 0TE group compared to the PTE group. In the following description, “common array number X (X is a natural number)” 'means the number given to the top of the alignment in FIG. In the PTE group, the amino acids of consensus sequences 120, 125, and 373 are non-polar, while in the 0TE group, the amino acid is polar. In the PTE group, the amino acids of the common sequences Nos. 140 and 195 are polar, and in the 0TE group, the amino acid is nonpolar.
さらに、 PTE群に比較して 0TE群において、 いくつかの荷電アミノ酸が異なつ ていることが示される。 PTE群において、 共通配列第 149、 246のアミノ酸が荷電 を持たないアミノ酸であり、 一方 0TE群においては、 上記アミノ酸は陽性荷電で ある。 また、 PTE群において、 共通配列第 244のアミノ酸が陰性荷電しており、 一方、 0TE群においては、上記アミノ酸は荷電を持たないアミノ酸である。また、 PTE群において、 共通配列第 270のアミノ酸が陽性荷電しており、 一方 0TE群に おいては、 上記アミノ酸は荷電を持たないアミノ酸である。  Furthermore, it is shown that some charged amino acids are different in the 0TE group compared to the PTE group. In the PTE group, the amino acids of the common sequences Nos. 149 and 246 are uncharged amino acids, while in the 0TE group, the amino acids are positively charged. In the PTE group, the amino acid of the common sequence No. 244 is negatively charged, while in the 0TE group, the amino acid is an uncharged amino acid. In the PTE group, the amino acid of the 270th common sequence is positively charged, while in the 0TE group, the amino acid is an amino acid having no charge.
これらの位置におけるアミノ酸の極性の有無及び荷電の変化が基質選択性の変 化を導くと考えられる。 さらに、 基質結合部位のアミノ酸の側鎖構造の違いが基 質選択性の変化を導くことが知られている。 PTE群において、共通配列第 89、147、 161、 177、 192、 196、 214、 217、 223、 238、 270、 287、 338のアミノ酸と 0TEの アミノ酸では、 アミノ酸の側鎖構造の違いがある。 0TE群と PTE群との間で相違 するこれらのアミノ酸を置換することによりァシル ACPに対する基質特異性を改 変できる可能性がある。  The presence or absence of amino acid polarity and changes in charge at these positions are thought to lead to changes in substrate selectivity. Furthermore, it is known that differences in the side chain structure of amino acids at the substrate binding site lead to changes in substrate selectivity. In the PTE group, there are differences in the side chain structure of amino acids between amino acids of consensus sequences Nos. 89, 147, 161, 177, 192, 196, 214, 217, 223, 238, 270, 287, 338 and 0 TE amino acids. Substitution of these amino acids, which differ between the 0TE and PTE groups, may alter the substrate specificity for acyl ACP.
PTE遺伝子は、 Δ 4 -パルミ トイル- ACPデサチユラーゼ遺伝子とともに宿主植物 The PTE gene is a host plant along with the Δ 4 -palmitoyl-ACP desaturase gene.
'細胞に機能しうる开で導入することによって、 当該細胞内におけるぺトロセリン 酸合成を大幅に促進する機能を有している。 'By introducing a functionally open cell into the cell, It has the function of greatly promoting acid synthesis.
例えば、 PTE遺伝子を恒常的発現プロモーター或いは特異的発現プロモーター の下流に、 すなわち、 当該プロモーターにより制御可能な位置に配してなる発現 ベクターを構築する。 当該発現ベクターを用いて、 Δ 4-パルミ トイル- ACPデサチ ユラ一ゼ遺伝子を形質転換してなる植物細胞 (上述 1 . 参照) に形質転換する。 或いは、 PTE遺伝子及び Δ 4-パルミ トイル- ACPデサチユラーゼ遺伝子を恒常的発 現プロモーター或いは特異的発現プロモニターの下流に配してなる発現ベクター を用いて、 植物細胞を形質転換しても良い。 いずれの場合であっても.、 得られた 形質転換植物を育成して植物体とすることによって、 当該植物体におけるぺト口 セリン酸合成を促進することができる。  For example, an expression vector is constructed in which the PTE gene is arranged downstream of a constitutive expression promoter or a specific expression promoter, that is, at a position controllable by the promoter. The expression vector is used to transform plant cells (see 1. above) obtained by transforming the Δ4-palmitoyl-ACP desaturase gene. Alternatively, plant cells may be transformed using an expression vector comprising a PTE gene and a Δ4-palmitoyl-ACP desaturase gene arranged downstream of a constitutive expression promoter or a specific expression promonitor. In any case, by cultivating the resulting transformed plant to give a plant body, it is possible to promote the synthesis of petolic acid and serine acid in the plant body.
ペトロセリン酸は、 例えば、 形質転換植物を育成して植物体とした後、 種子等 の組織を粉砕し、塩酸 -メタノール溶液と混合することによって当該組織に含まれ るペトロセリン酸をメチルエステル化し、 へキサン抽出し、 へキサン抽出物をガ スクロマトグラフ-質量分析 (GC- MS) 装置により検出することができる。 GC-MS 装置による検出の結果から、 ペトロセリン酸の合成促進能を解析することができ る。  For example, after growing a transformed plant to produce a plant body, petrothelic acid is pulverized in tissue such as seeds and mixed with a hydrochloric acid-methanol solution to methyl esterize petrothelic acid, Extract with hexane and detect the hexane extract with a gas chromatograph-mass spectrometer (GC-MS) instrument. Based on the results of detection by GC-MS, the ability to promote the synthesis of petrothelic acid can be analyzed.
発現ベクター Expression vector
本発明において、 発現ベクターは、 上記 1 . 及び 2 で説明した Dc4DES遺伝子 及び/又は PTE遺伝子を有するものである。発現べクタ一は、プラスミ ド型ベクタ 一、 又は宿主生物中のゲノムに組み込み可能な染色体導入型,ベクターであれば特 に限定されず、例えば、 プラスミ ド DNA、 バタテリオファージ DNA、 レトロトラン スポゾン DNA、 人工染色体 DNA (YAC: yeast artificial chromosome) などが挙げ られる。  In the present invention, the expression vector has the Dc4DES gene and / or the PTE gene described in 1 and 2 above. The expression vector is not particularly limited as long as it is a plasmid vector, or a chromosomal transfer type vector that can be integrated into the genome of the host organism, for example, plasmid DNA, butteriophage DNA, retrotransposon. DNA and artificial chromosome DNA (YAC).
プラスミ ド DNAとしては、 例えば pRS413、 pRS414、 pRS415、 pRS416、 YCp50、 Examples of plasmid DNA include pRS413, pRS414, pRS415, pRS416, YCp50,
PAUR112又は pAUR123 などの YCp型大腸菌-酵母シャトルベクター、 pYES2又はYCp-type E. coli-yeast shuttle vectors such as PAUR112 or pAUR123, pYES2 or
YEpl3などの YEp型大腸菌-酵母シャトルベクター、 pRS403、pRS404、pRS405、pRS406 pAURlOl又は pAUR135などの Yip型大腸菌-酵母シャトルベクター、大腸菌由来の プラスミ ド (pBR322、 pBR325、 pUC18、 pUC19、 pUC118、 pUC119、 pTVl風 pTV119N、 pBluescript, pHSG298, pHSG396又は Trc99Aなどの ColE系プラスミ ド、 pACYC177 又は pACYC184などの p l 5A系プラスミ ド、 pMW118、 pMW119、 pMW218又は pMW219 などの pSC l O l系プラスミ ド等)、 ァグロパクテリゥム由来のプラスミ ド (例えば ρΒΙ Ι Ο Ι等)、枯草菌由来のプラスミ ド(例えば pUB 110、 pTP5等)などが挙げられ、 ファージ DNAとしてはえファージ(Charon4A、 Charon21A、 EMBL3、 EMBL4、 gt l 0、 A gt l l , λ ZAP) , ψ Χ174、 M13mpl 8又は M13mpl 9などが挙げられる。 レトロ トラ ンスポゾンとしては、 Ty因子などが挙げられる。 YAC用ベクターとしては pYACC2 などが挙げられる。 さらに、 レトロウイルス又はワクシニアウィルスなどの動物 ウィルス、バキュ口ウィルスなどの昆虫ウィルスベクターを用いることもできる。 発現ベクターにおいて、 Dc4DES遺伝子及び/又は PTE遺伝子は、 それぞれ発現 可能な状態でベクターに組み込まれることが必要である。 発現可能な状態とは、 Dc4DES遺伝子及び/又は PTE遺伝子が導入される宿主生物において所定のプロモ 一ターの制御下に発現されるように、 これら Dc4DES遺伝子及び/又は PTE遺伝子 とプロモーターとを連結してベクターに組み込むことを意味する。 そこで、 べク ターには、 Dc4DES遺伝子及び/又は PTE遺伝子のほか、 プロモーター及びターミ ネータ、所望によりェンハンサ一等のシスエレメント、スプライシングシグナル、 ポリ A付加シグナル、 選択マーカー、 リボソーム結合配列 (SD配列) 等を連結す ることができる。 なお、 選択マーカーとしては、 例えば、 アンピシリン耐性遺伝 子やカナマイシン耐性遺伝子やハイグロマイシン耐性遺伝子などの抗生物質耐性 遺伝子、 ビアラフォス耐性遺伝子などの除草剤耐性遺伝子などが挙げられる。 本発明において発現ベクターに含まれるプロモーターとしては、 特に限定され ないが、 恒常的発現プロモーター、 組織特異的発現プロモーター及び刺激誘導性 プロモーター等を挙げることができる。 中でも、 合成されたペトロセリン酸を種 子内で蓄積することを目的とする場合、 種子特異的発現プロモーターを使用する ことが好ましい。 種子特異的発現プロモーターとしては、 ナタネ由来のナピン A プロモーター、 シロイヌナズナ由来の FAE1プロモーター、ォレオシンプロモータ 一、 ダイズ由来のグルテリン B 1プロモーター、 アマのステアロイル- ACPデサチ ユラーゼ (SAD) プロモーター等を使用することができる。 YEp type E. coli-yeast shuttle vector such as YEpl3, Yip type E. coli-yeast shuttle vector such as pRS403, pRS404, pRS405, pRS406 pAURlOl or pAUR135, plasmid derived from E. coli (pBR322, pBR325, pUC18, pUC19, pUC118, pUC119, pTVl) Wind pTV119N, pBluescript, pHSG298, pHSG396 or ColE-based plasmids such as Trc99A, pACYC177 Or pl 5A-based plasmids such as pACYC184, pSClOl-based plasmids such as pMW118, pMW119, pMW218 or pMW219), agrobacterium-derived plasmids (eg, ρΒΙ Ι Ο Ι), derived from Bacillus subtilis Plasmids (eg, pUB 110, pTP5, etc.), and phage DNA (Charon4A, Charon21A, EMBL3, EMBL4, gt10, Agtll, λZAP), ψ Χ174, M13mpl 8 or M13mpl 9 and so on. Retrotransposons include Ty factors. Examples of YAC vectors include pYACC2. Furthermore, animal viruses such as retrovirus or vaccinia virus, and insect virus vectors such as baculovirus can also be used. In the expression vector, the Dc4DES gene and / or the PTE gene must be incorporated into the vector in such a state that they can be expressed. The expressible state means that these Dc4DES gene and / or PTE gene and promoter are linked so that the host organism into which the Dc4DES gene and / or PTE gene is introduced is expressed under the control of a predetermined promoter. Means to be incorporated into a vector. Therefore, in addition to the Dc4DES gene and / or PTE gene, the vector includes a promoter and terminator, a cis-element such as an enhancer if necessary, a splicing signal, a poly A addition signal, a selection marker, a ribosome binding sequence (SD sequence) Etc. can be connected. Examples of the selection marker include an ampicillin resistance gene, an antibiotic resistance gene such as a kanamycin resistance gene and a hygromycin resistance gene, and a herbicide resistance gene such as a bialaphos resistance gene. In the present invention, the promoter contained in the expression vector is not particularly limited, and examples thereof include a constitutive expression promoter, a tissue-specific expression promoter, and a stimulus-inducible promoter. In particular, when the purpose is to accumulate synthesized petrothelic acid in the seed, it is preferable to use a seed-specific expression promoter. Seed-specific expression promoters include rapeseed napin A promoter, Arabidopsis FAE1 promoter, oleosin promoter 1, soybean-derived glutelin B 1 promoter, ama stearoyl-ACP desaturase (SAD) promoter, etc. be able to.
形質転換体 - 上述した発現ベクターを用いて形質転換体を作製することができる。すなわち、 形質転換体は、上述した発現ベクターを、当該ベクターに含まれる Dc4DES遺伝子 及び/又は PTE遺伝子が発現しうるように宿主に導入することによって作製する ことができる。 宿主としては、 特に限定されるものではない。 例えば、 セリ科、 ナス科、 アブラナ科、 イネ科、.マメ科、 バラ科、 キク科、 ユリ科、 ナデシコ科、 ゥリ科、 ヒルガオ科、 ァカザ科等に属する植物が挙げられる。 特にセリ科やアブ ラナ科の植物を宿主とすることが望ましい。' Transformants-Transformants can be produced using the expression vectors described above. That is, A transformant can be prepared by introducing the above-described expression vector into a host so that the Dc4DES gene and / or the PTE gene contained in the vector can be expressed. The host is not particularly limited. For example, there are plants belonging to celery family, eggplant family, Brassicaceae family, Gramineae family, legume family, rose family, chrysanthemum family, lily family, dianthus family, cucurbitaceae family, convolvulaceae family, akaza family. In particular, it is desirable to use plants of the family Apiaceae or Aphranaceae. '
宿主が植物である場合は、形質転換植物は以下のようにして得ることができる。 本発明において形質転換の対象となる植物は、 植物体全体、 植物器官(例えば葉、 花弁、 茎、 根、 種子等)、 植物組織(例えば表皮、 師部、 柔組織、 木部、 維管束、 柵状組織、 海綿状組織等)又は植物培養細胞のいずれをも意味するものである。 発現ベクターは、 通常の形質転換方法、 例えば、 減圧浸潤法 (ァグロパクテリ ゥム法)、 パーティクルガン法、 PEG法、 エレクトロポレーシヨン法等によって植 物中に導入することができる。  When the host is a plant, the transformed plant can be obtained as follows. Plants to be transformed in the present invention include whole plants, plant organs (eg, leaves, petals, stems, roots, seeds, etc.), plant tissues (eg, epidermis, phloem, soft tissue, xylem, vascular bundle, It means any of a palisade tissue, a spongy tissue, etc.) or a plant cultured cell. The expression vector can be introduced into a plant by a usual transformation method, for example, a reduced pressure infiltration method (agro-acterium method), a particle gun method, a PEG method, an electroporation method, or the like.
例えば、 減圧浸潤法は、 公知の手法 (秀潤社、 モデル植物の実験プロ トコル、 2001、 109 - 113pp. ) に従って行うことができる。 ァグロパクテリゥムを用いる場 合は、 発現ベクターを適当なァグロバタテリゥム、 例えばァグロバタテリゥム · チュ フ了シエンス Agrobac teriwn twnefacien ) LBA4404株に導入し、 この株 をリーフディスク法(内宮博文著,植物遺伝子操作マニュアル, 1990, 27-31pp,講談 社サイエンティフィック,.東京) 等に従って宿主 (例えばタバコ) の無菌培養葉片 に感染させ、.形質転換植物を得ることもできる。  For example, the reduced pressure infiltration method can be performed according to a known method (Shujunsha, Model Plant Experiment Protocol, 2001, 109-113 pp.). In the case of using agrobacterium, the expression vector is introduced into an appropriate agrobacterium, for example, Agrobac teriwn twnefacien LBA4404 strain, and this strain is introduced into the leaf disk method (inner shrine). According to Hirofumi, Plant Genetic Manipulation Manual, 1990, 27-31pp, Kodansha Scientific, Tokyo), etc., it is possible to infect a sterile cultured leaf of a host (for example, tobacco) to obtain a transformed plant.
また、 パーティクルガン法を用いる場合は、 植物体、 植物器官、 植物組織自体 をそのまま使用してもよく、 切片を調製した後に使用してもよく、 プロ トプラス トを調製して使用してもよい。 このように調製した試料を遺伝子導入装置 (例え ば PDS - 1000 (BI0 - RAD社)等) を用いて処理することができる。 処理条件は植物又 は試料 (こよ り異なるが、 通常は 450〜2000ps i程度の圧力、 3〜12cm程度の距離で 行う。  When the particle gun method is used, the plant body, the plant organ, and the plant tissue itself may be used as they are, or may be used after preparing a section, or may be used after preparing a protoplast. . The sample thus prepared can be processed using a gene transfer apparatus (eg, PDS-1000 (BI0-RAD)). Treatment conditions are different from plants or samples (normally, but at a pressure of about 450 to 2000 psi and a distance of about 3 to 12 cm.
形質転換の結果として得られる腫瘍組織やシュート、 毛状根などは、 そのまま 細胞培養、 組織培養又は器官培養に用いることが可能であり、 また従来知られて いる植物組織培養法を用い、 適当な濃度の植物ホルモン (オーキシン、 サイ ト力 ィニン、 ジベレリン、 アブシジン酸、 エチレン、 ブラシノライ ド等) の投与など により植物体に再生させることができる。 Tumor tissues, shoots, hairy roots, etc. obtained as a result of transformation can be used as they are for cell culture, tissue culture or organ culture, and can be appropriately used by using conventionally known plant tissue culture methods. Concentration of plant hormones (auxin, site power Inine, gibberellin, abscisic acid, ethylene, brassinolide, etc.) can be regenerated into plants.
遺伝子が宿主に組み込まれたか否かの確認は、 PCR 法、 サザンハイブリダィゼ ーシヨン法、 ノーザンハイブリダィゼーシヨン法等により行うことができる。 例 えば、 形質転換体から DNAを調製し、 DNA特異的プライマーを設計して PCRを行 う。 PCR は、.前記プラスミ ドを調製するために使用した条件と同様の条件で行う ことができる。 その後は、 增幅産物についてァガロースゲル電気泳動、 ポリアク リルアミ ドゲル電気泳動又はキヤピラリー電気泳動等を行い、 臭化工チジゥム、 SYBR Green液等により染色し、 そして増幅産物を 1本のバンドとして検出するこ とにより、 形質転換されたことを確認することができる。 また、 予め蛍光色素等 により標識したプライマーを用いて PCRを行い、 増幅産物を検出することもでき る。 さらに、 マイクロプレート等の固相に增幅産物を結合させ、 蛍光又は酵素反 応等により増幅産物を確認する方法も採用することができる。  Whether or not the gene has been integrated into the host can be confirmed by PCR, Southern hybridization, Northern hybridization, or the like. For example, DNA is prepared from transformants and PCR is performed by designing DNA-specific primers. PCR can be performed under the same conditions as those used to prepare the plasmid. After that, the amplified product is subjected to agarose gel electrophoresis, polyacrylamide gel electrophoresis, capillary electrophoresis, etc., stained with bromide zyme, SYBR Green solution, etc., and the amplified product is detected as a single band. It can be confirmed that it has been transformed. In addition, amplification products can be detected by performing PCR using primers previously labeled with a fluorescent dye or the like. Furthermore, it is possible to adopt a method in which the amplification product is bound to a solid phase such as a microplate and the amplification product is confirmed by fluorescence or enzyme reaction.
一方、 宿主としては、 大腸菌 Escherichia coli)等のエッシェリ ヒァ属、 バチ ルス ·ズブチリス acillus sub tilis)等の/ チ ス^、 シユードモナス 'プチダ Pseudomonas putida、等のシユードモナス属、 リゾビゥム'メ リ ロティ Rhizobium melilo ti) のリゾビゥム属に属する細菌が挙げられ、サッカロミセス 'セレビシ ェ {Sac charomyc es cerevisiae) 、 ン ゾ サ ッ カ ロ セ ス · ホ ノ ベ
Figure imgf000016_0001
)等の酵母が挙げられ、 COS細胞、 CH0細胞等の動物 細胞が挙げられ、 あるいは Sf9等の昆虫細胞が挙げられる。
On the other hand, as hosts, Escherichia coli (such as Escherichia coli), Bacillus subtilis), etc. ), Belonging to the genus Rhizobium, Saccharomyces cerevisiae, Nzo Saccharose honobe
Figure imgf000016_0001
) And the like, animal cells such as COS cells and CH0 cells, and insect cells such as Sf9.
大腸菌等の細菌を宿主とする場合は、 組換えベクターが該細菌中で自律複製可 能であると同時に、 リボゾーム結合配列、 本発明の遺伝子、 転写終結配列により 構成されていることが好ましい。 大腸菌としては、 例えばエッシェリ ヒァ ' コリ When a bacterium such as Escherichia coli is used as a host, it is preferable that the recombinant vector is capable of autonomous replication in the bacterium, and at the same time is composed of a ribosome binding sequence, the gene of the present invention, and a transcription termination sequence. For example, Escherichia coli
{Escherichia coli) DH5ひ、 Y1090 などが挙げられ、 枯草菌としては、 例えばバ チルス ·ズブチリス 0¾cj'JZ )などが挙げられるが、 これらに限定され るものではない。 細菌への組換えベクターの導入方法は、 細菌に DNAを導入する 方法であれば特に限定されるものではない。 例えばカルシウムイオンを用いる方 法 [Cohen, S. N. et al. : Proc. Natl. Acad. Sci. , USA, 69: 2110 (1972) ] 、 ェ レク トロポレーシヨン法等が挙げられる。 酵母を宿主とする場合は、 例えばサッカロミセス ' セレピシェ Saccharotnyces cerevisiae) シゾサッカロミセス · τ ^、ノベ、 Schizosaccharomyces pombe) ヒ ヒ ァ ·パス トリス(尸 ioris)などが用いられる。 酵母への組換えベクターの 導入方法は、 酵母に DNAを導入する方法であれば特に限定されず、 例えばエレク トロポレーシヨシ法 [Becker, D. M. et al. : Methods. Enzymol . , 194 : 182 (1990) ]、 スフエロプラス ト法 [Hinnen, A. et al . : Proc. Natl. Acad. Sc i. , USA, 75 : 1929 (1978) ]、 酢酸リチウム法 [Itoh, H. : J. Bacteriol., 153: 163 (1983) ]等が 挙げられる。 (Escherichia coli) DH5, Y1090, and the like. Examples of Bacillus subtilis include, but are not limited to, Bacillus subtilis 0¾cj'JZ). The method for introducing a recombinant vector into bacteria is not particularly limited as long as it is a method for introducing DNA into bacteria. For example, a method using calcium ions [Cohen, SN et al .: Proc. Natl. Acad. Sci., USA, 69: 2110 (1972)], electroporation method and the like can be mentioned. In the case of using yeast as a host, for example, Saccharomyces cerevisiae) Schizosaccharomyces τ ^, Nobe, Schizosaccharomyces pombe) H. pastoris (尸 ioris) and the like are used. The method for introducing a recombinant vector into yeast is not particularly limited as long as it is a method for introducing DNA into yeast. For example, the Electroporation Yoshi method [Becker, DM et al .: Methods. Enzymol., 194: 182 (1990)] Spheroplast method [Hinnen, A. et al .: Proc. Natl. Acad. Sci., USA, 75: 1929 (1978)], lithium acetate method [Itoh, H .: J. Bacteriol., 153: 163 (1983)].
動物細胞を宿主とする場合は、 サル細胞 COS- 7、 Vero、 チャイニーズハムスタ 一卵巣細胞 (CH0細胞)、 マウス L細胞、 ラット GH3、 ヒ ト FL細胞などが用いられ る。 動物細胞への組換えベクターの導入方法としては、 例えばエレク ト口ポレー シヨン法、 リン酸カルシウム法、 リボフヱクシヨン法等が挙げられる。  When animal cells are used as hosts, monkey cells COS-7, Vero, Chinese hamster ovary cells (CH0 cells), mouse L cells, rat GH3, and human FL cells are used. Examples of the method for introducing a recombinant vector into an animal cell include an electro-poration method, a calcium phosphate method, and a ribofunction method.
昆虫細胞を宿主とする場合は、 Sf9 細胞などが用いられる。 昆虫細胞への組換 えベクターの導入方法としては、 例えばリン酸カルシウム法、 リポフエクシヨン 法、 エレク ト口ポレーション法などが挙げられる。  When insect cells are used as hosts, Sf9 cells are used. Examples of methods for introducing the recombinant vector into insect cells include the calcium phosphate method, the lipofussion method, and the electroporation method.
ペトロセリン酸の製造方法 Method for producing petroceric acid
上述した形質転換植物においては、 導入した Dc4DES遺伝子及び/又は PTE遺伝 子の機能によりペトロセリン酸合成を促進することができる。 形質転換植物にお いて合成され蓄積されたペトロセリン酸は、 従来公知の手法を用いて抽出するこ とができる。 .  In the transformed plant described above, the synthesis of petroselinic acid can be promoted by the function of the introduced Dc4DES gene and / or PTE gene. Petroselinic acid synthesized and accumulated in the transformed plant can be extracted using a conventionally known method. .
油生産型植物の種子や果実などの植物組織から油脂を搾油する方法は圧搾法と 抽出法の二つに大別される。 例えばナタネの種子などの油脂含量が多い組織より 油脂を得る方法は組織をロールミルなどで粗碎 ·圧扁して 75- 85°Cに加熱した後、 エキスペラ一などの圧搾機で圧搾し油脂を取り出す (圧搾法)。 一方、 大豆などの 低油脂含量の原料に対しては、へキサンなどの溶媒を用いて組織より抽出する(抽 出法)。 これらの工程により製造される油脂は、 脂肪酸 (ペトロセリン酸を含む) とグリセリン等のエステルの混合物であり、 トリァシルグリセロール、 ジァシル グリセロール、 モノァシルグリセロール、 リン脂質等が含まれている。 次にこれ らの油脂を加水分解することにより脂肪酸を得ることができる。 得られた脂肪酸 混合物を分離精製することにより純度の高いぺトロセリン酸を得ることが可能で ある。 また、 油脂にメタノール等のアルコールを添加、 反応することにより、 ぺ トロセリン酸メチルエステル等のアルコールエステルを得ることができる。 There are two main methods of squeezing oil from plant tissues such as seeds and fruits of oil-producing plants. For example, to obtain fat from tissues with high fat content, such as rapeseed seeds, the tissue is coarsely crushed with a roll mill, heated to 75-85 ° C, and then compressed with an expeller or other pressing machine. Take out (squeezing method). On the other hand, raw materials with low fat content such as soybeans are extracted from tissues using a solvent such as hexane (extraction method). The fats and oils produced by these processes are a mixture of fatty acids (including petrothelic acid) and esters such as glycerin, and include triacylglycerol, diacylglycerol, monoacylglycerol, phospholipids, and the like. Next, fatty acids can be obtained by hydrolyzing these fats and oils. Obtained fatty acids By separating and purifying the mixture, it is possible to obtain highly pure petroceric acid. In addition, an alcohol ester such as petroleum acid methyl ester can be obtained by adding and reacting an alcohol such as methanol to the oil.
以下、 実施例を用いて本発明をより詳細に説明するが、 本発明の技術的範囲は 以下の実施例によって限定的に解釈されるものではない。  EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, the technical scope of this invention is not limitedly interpreted by the following examples.
〔実施例 1〕 Dc4DES遺伝子のク口一二ング [Example 1] Dc 4 DES gene
植物試料 Plant sample
本実施例では、 実験試料としてニンジン Daucus car ota L. ) 夏播き鮮紅五寸 (F1品種) を使用した。 遺伝子クローニング源としては相同遺伝子の配列が同一 である固定種が望ましいが、 実験の都合上 (早期に開花した試料が準備できた)、 F1品種を使用した。ニンジン種子は太田種苗から購入した。種子を人工気象器(コ イトトロン、 小糸製作所社製) 中で 25°C、 日照 16時間、 湿度 60%の条件下で栽 培した二ンジン植物体を試料とした。  In this example, carrot Daucus car ota L.) summer sowing fresh red 5 inch (F1 variety) was used as an experimental sample. As a gene cloning source, a fixed species having the same homologous gene sequence is desirable, but F1 varieties were used for the convenience of experiments (prepared samples that flowered early). Carrot seeds were purchased from Ota seedlings. A sample of a ginjin plant was cultivated under conditions of 25 ° C, 16 hours of sunshine, and 60% humidity in an artificial meteorological device (Kitotron, manufactured by Koito Manufacturing Co., Ltd.).
ニンジン RNAの調製 Carrot RNA preparation
ニンジン植物体から、 種子発達段階の異なる未熟種子約 lOOmgと葉約 lOOmgを 採取し、 液体窒素凍結下でそれぞれ粉砕した。 得られた粉碎物から、 QIAGEN製 RNeasy plant mini ki tを用いてキット添付のプロトコルに従って RNAを調製し た。 . . . About lOOmg of immature seeds and about lOOmg of leaves with different seed development stages were collected from carrot plants and ground under liquid nitrogen freezing. RNA was prepared from the obtained powdery cake using RNeasy plant mini kit manufactured by QIAGEN according to the protocol attached to the kit. ..
DNA断片増幅用 PCRプライマーの設計及び RT - PCR PCR primer design and RT-PCR for DNA fragment amplification
NCBIサイ ト内の BLAST (httP : //w w. ncbi . nlra. nih. gov/BLAST/) にてコリアン タ、、一 { Coriandrum sa ti vum L. ) の Δ 4 palmitoyl— ACP desaturase (Cs4DES) の 相同遺伝子を探索して収集した後、 得られた Cs4DES遺伝子 (GenBank access ion number M93115) と、 Gen Bank上に登録されている各種植物の Δ 9 stearoyl- ACP desaturase遺伝子がコードするポリぺプチドのアミノ酸配列を Genetyx - Win Ver,Corlasta, one (Coriandrum sa ti vum L.) Δ 4 palmitoyl— ACP desaturase (Cs4DES) at BLAST (htt P : // w w. Ncbi. Nlra. Nih. Gov / BLAST /) in NCBI site ) Homologous genes of), and the polypeptides encoded by the obtained Cs4DES gene (GenBank accession number M93115) and the Δ 9 stearoyl-ACP desaturase gene of various plants registered on GenBank. The amino acid sequence of Genetyx-Win Ver,
4. 0/ATGC ver. 2· 0 (ソフトウエア開発社製)でマルチプルァライメント解析した。 解析の結果、 得られた保存性の高い領域に相当する DNA断片を増幅するために、 下記の PCRプライマー (degenerateプライマー) を設計し、 RT-PCRに使用した。4. Multiple alignment analysis was performed with 0 / ATGC ver. 2.0 (manufactured by Software Development Co., Ltd.). As a result of the analysis, the following PCR primers (degenerate primers) were designed and used for RT-PCR in order to amplify the DNA fragment corresponding to the highly conserved region obtained.
PF1 : 5' CAN GAR GAR GCN CTB CCN CAN TA 3' (配列番号 1 1 ) PF1: 5 'CAN GAR GAR GCN CTB CCN CAN TA 3' (SEQ ID NO: 1 1)
PR1 : 5' TCV RVD AGY TTY TCN ACD ATY TT 3' (配列番号 1 2 ) 9 PR1: 5 'TCV RVD AGY TTY TCN ACD ATY TT 3' (SEQ ID NO: 1 2) 9
PR2 : 5' GCN GYY KCR TGN C Y TTY TCR TC 3' (配列番号 1 3 ) PR2: 5 'GCN GYY KCR TGN C Y TTY TCR TC 3' (SEQ ID NO: 13)
NFO : 5' GAN MTB CCN GAT GAN TAY TTH RTT G 3' (配列番号 1 4 ) NFO: 5 'GAN MTB CCN GAT GAN TAY TTH RTT G 3' (SEQ ID NO: 14)
NR1 : 5' CCY TCN SCN SWM AGH CCN GT 3' (配列番号 1 5 ) NR1: 5 'CCY TCN SCN SWM AGH CCN GT 3' (SEQ ID NO: 15)
NR2 : 5' GGC ATN DVD AYY TTB WTY YTC ATC AT 3' (配列番号 1 6 ) NR2: 5 'GGC ATN DVD AYY TTB WTY YTC ATC AT 3' (SEQ ID NO: 16)
なお、 これら塩基配列は、以下の各国共通混合塩基配列(IUB)の表記法で記載し ている。 すなわち、 Rは A又は Gを示し; Yは C又は Tを示し; Mは A又は Cを示 し; Kは G又は Tを示し ; Sは G又は Cを示し; Wは A又は Tを示し ; Hは A又は T又は Cを示し ; Bは G又は T又は Cを示し; Vは G又は A又は Cを示し ; Dは G 又は A又は Tを示し ; Nは A又は C又は G又は Tを示す。  These base sequences are described in the following common mixed base sequence (IUB) notation in each country. That is, R represents A or G; Y represents C or T; M represents A or C; K represents G or T; S represents G or C; W represents A or T H represents A or T or C; B represents G or T or C; V represents G or A or C; D represents G or A or T; N represents A or C or G or T Indicates.
RT-PCRは、表 1に示した PCRプライマー対を用いて行った。 RT- PCRには QIAGEN 製 One- step RT- PCR kitを使用した。 反応液組成はキット添付のプロトコルに従 い、 Eppendorf 製サーマルサイクラー (マスターサイクラ一' グラディエント) を用いて実施した。 ァエーリング温度は 50°Cから 70°C (5°C毎に 5段階) で行つ た。 RT-PCRの条件は 50°Cで 30分、 94°Cで 15分処理した後、 94°Cで 1分、 50- 70°C で 1分及び 72°Cで 1分 30秒のサイクルを 40サイクル処理し、 その後、 72°Cで 15 分処理した。 反応後は 4°Cを維持した。  RT-PCR was performed using the PCR primer pairs shown in Table 1. For RT-PCR, QIAGEN's One-step RT-PCR kit was used. The reaction solution composition was carried out using an Eppendorf thermal cycler (master cycler's gradient) according to the protocol attached to the kit. The firing temperature was 50 ° C to 70 ° C (5 steps every 5 ° C). RT-PCR was performed at 50 ° C for 30 minutes, 94 ° C for 15 minutes, followed by a cycle of 94 ° C for 1 minute, 50-70 ° C for 1 minute, and 72 ° C for 1 minute 30 seconds. The treatment was performed for 40 cycles, followed by treatment at 72 ° C for 15 minutes. After the reaction, 4 ° C was maintained.
表 1  table 1
RT-PCR No. < Forward primer > < reverse primer > RT-PCR No. <Forward primer> <reverse primer>
1 PF1 PR2 .  1 PF1 PR2.
2 PF1 PR1  2 PF1 PR1
3 NFO R2  3 NFO R2
4 NFO NR1  4 NFO NR1
PCR後の反応液を、 ァガロースゲルを用いて TAEバッファで電気泳動した。 電 気泳動後のァガロースゲルをェチジゥムブ口マイ ドで染色し、 目的断片を確認し た。目的断片部分をゲルごとメスで切出し、 QIAGEN製 QIAquick Gel extract ion kit を用いてゲルより溶出 ·精製した。 精製した PCR産物の塩基配列は、 ABI製 DNA シークェンサ一 (3100 Genetic Analyzer) を用いて確認した。 シークェンス反応 は、 ABI製 BigDye Terminator Cycle Sequencing, FSキッ ト(ver. 3· 0)を用いた。 実験手順は ABI製のマニュアルにしたがって実施した。なお塩基配列の決定には、 表 1記載のプライマーを用いた。 The reaction solution after PCR was electrophoresed with TAE buffer using agarose gel. After electrophoresis, the agarose gel was stained with ethimumubu amide to confirm the target fragment. The target fragment was cut out with a scalpel together with the gel, and eluted and purified from the gel using a QIAGEN QIAquick Gel extract ion kit. The base sequence of the purified PCR product was confirmed using an ABI DNA sequencer (3100 Genetic Analyzer). For the sequence reaction, ABI BigDye Terminator Cycle Sequencing, FS kit (ver. 3.0) was used. The experimental procedure was performed according to the ABI manual. The primers listed in Table 1 were used for determining the base sequence.
5 及ぴ 3' RACE法及び PCR 5 and 3 'RACE method and PCR
RT-PCRにより得られた DNA断片の配列情報に基づき下記のプライマーを設計し、 5' 及び 3' RACE法に使用した。  Based on the sequence information of the DNA fragment obtained by RT-PCR, the following primers were designed and used for the 5 ′ and 3 ′ RACE methods.
RACE用プライマー〕  (RACE primer)
D2-R2 : 5' GCG GTT CTC CTC AGC AGT C 3' (配列番号 1 7 ) D2-R2: 5 'GCG GTT CTC CTC AGC AGT C 3' (SEQ ID NO: 17)
D2-R3 : 5' GTT GGC ATG GGA GAT GAA TG 3' (配列番号 1 8 ) D2-R3: 5 'GTT GGC ATG GGA GAT GAA TG 3' (SEQ ID NO: 1 8)
[3' RACE用プライマー〕  [Primers for 3 'RACE]
D2-F4 : 5' CAA ATG CCA GCT CAT GCA ATG 3' (酉己列番号 1 9 ) D2-F4: 5 'CAA ATG CCA GCT CAT GCA ATG 3'
D2-F5 : 5' CAG CAG ATT GGA GTC TAC TC 3' (配列番号 2 0 ) D2-F5: 5 'CAG CAG ATT GGA GTC TAC TC 3' (SEQ ID NO: 20)
5' RACE法及び 3' RACE法は、 Roche製^ /3' RACE Ki tを用いて行った。 ま た、 PCRはタカラバイオ製 Ex Taq Hot Start Versionを使用して行った。 反応液 組成はキッ ト添付のプロ トコルに従った。 Eppendorf 製サーマルサイクラ一 (マ スター イクラ一 . グラディエント) を使用した。 アニーリング温度は 50°Cから The 5 ′ RACE method and the 3 ′ RACE method were performed using Roche ^ / 3 ′ RACE Kit. PCR was performed using Ex Taq Hot Start Version manufactured by Takara Bio. The composition of the reaction solution was in accordance with the protocol attached to the kit. An Eppendorf thermal cycler (Master Ikura I. Gradient) was used. Annealing temperature from 50 ° C
70°C (5°C毎に 5段階) で行った。 PCR条件は 94°Cで 15分処理した後、 94°Cで 1 分、 50-70°Cで 1分及び 72°Cで 1分 30秒のサイクルを 30サイクル処理し、 その 後、 72°Cで 15分処理した。 反応後は 4°Cを維持した。 It was performed at 70 ° C (5 steps every 5 ° C). PCR conditions were 94 ° C for 15 minutes, followed by 30 cycles of 94 ° C for 1 minute, 50-70 ° C for 1 minute and 72 ° C for 1 minute 30 seconds, and then 72 ° C. Treated with C for 15 minutes. After the reaction, 4 ° C was maintained.
PCR産物の精製及び塩基配列の決定は、 上述した方法と同様に行った。  The PCR product was purified and the nucleotide sequence was determined in the same manner as described above.
ポリぺプチド.コード領域増幅用 PCRプライマーの設計 Design of PCR primers for amplification of polypeptide coding region
RACE 法で決定した配列情報に基づきポリぺプチドコード全領域.を増幅およぴ クローユングするために下記のプライマーを設計した。 ポリべプチドコード領域 増幅用 PCRプライマーには植物用発現ベクター pBI 121へ導入するための制限酵素 サイ ト (BamH Iおよび Sac I) を付加した下記のプライマーも作成した。  The following primers were designed to amplify and clone the entire polypeptide coding region based on the sequence information determined by the RACE method. Polypeptide coding region Amplification PCR primers with the following restriction enzyme sites (BamHI and SacI) for introduction into the plant expression vector pBI121 were also prepared.
4DS-F-0R1 : 5; ATG GCT ATG AAA TTG AAC GCC 3' (配列番号 2 1 ) 4DS-F-0R1: 5 ; ATG GCT ATG AAA TTG AAC GCC 3 '(SEQ ID NO: 2 1)
Bam-4DS-F-0R1 : 5, TCT AGA GGA TCC ATG GCT ATG AAA TTG AAC GCC 3' (配列 番号 2 2 ) Bam-4DS-F-0R1: 5, TCT AGA GGA TCC ATG GCT ATG AAA TTG AAC GCC 3 '(SEQ ID NO: 2 2)
4DS-R-0R : 5' TCA TAT CAT GAT CTG ' ACG GTT G 3, (配列番号 2 3 )  4DS-R-0R: 5 'TCA TAT CAT GAT CTG' ACG GTT G 3, (SEQ ID NO: 2 3)
Sac- 4DS- R- 0R1 : 5' TCT AGA CGA GCT CTC ATA TCA TGA TCT GAC GGT TG 3' (配 列番号 2 4 ) Sac- 4DS- R-0R1: 5 'TCT AGA CGA GCT CTC ATA TCA TGA TCT GAC GGT TG 3' (Column number 2 4)
これらプライマーを用いて PCRを行い、ポリぺプチドコード全領域を増幅した。 次に、 タカラバイオ製 DNA Ligat ion kit ver. 2を用いて、 ポリペプチドコード領 域の DNA断片と TA- Cl oning用 (PCR産物のクローニング用) ベクター (Novagen 製 pSTBlue l) のライゲーシヨン(16°C、 ー晚反応)を行った。 T0Y0B0製コンビテン トセル ( . co ' DH5ひ) を付属プロトコルに従って形質転換し、 IPTG、 X- gal、 お よび 50 g/ralカナマイシンを添加した LB培地で培養し、形質転換体を選抜した。 出現したコロニーを釣菌して 50 / g/mlカナマイシンを添加した LB培地で液体培 養して得た菌体から、 QIAGEN社製 Plasmid mini kitを用いてプラスミ ド DNAを 調製した。 ゲル電気泳動による揷入断片の確認を行い、 目的断片がサブクロー二 ングされたと予想されるプラスミ ド DNAを得た。  PCR was performed using these primers to amplify the entire polypeptide coding region. Next, using the DNA Ligat ion kit ver. 2 from Takara Bio, the DNA fragment of the polypeptide coding region and the TA-Cloning (for cloning PCR products) vector (Novagen pSTBlue) ligation (16 ° C, 晚 reaction). A T0Y0B0 cell (.co'DH5) was transformed according to the attached protocol, cultured in LB medium supplemented with IPTG, X-gal, and 50 g / ral kanamycin, and a transformant was selected. Plasmid DNA was prepared using QIAGEN's Plasmid mini kit from the cells obtained by liquid culture in LB medium supplemented with 50 / g / ml kanamycin. The inserted fragment was confirmed by gel electrophoresis to obtain a plasmid DNA in which the target fragment was expected to be subcloned.
シークェンシング用プライマーは pSTBlue l ベクターのクローニングサイ トの 両端に存在する T7配列および Ml 3配列を標的としたプライマー(タカラバイオ製 BcaBEST Sequenc ing Pr imer T7 ; 5 ' ΤΑΑ TAC GAC TCA CTA TAG GG 3 ' (配列番 号 2 5 ) および M13 Primer M4; 5 ' GTT TTC CCA GTC ACG AC 3 ' , (配列番号 2 6 ) ) を使用した。 本実施例で単離した Dc4DES遺伝子の塩基配列及び Dc4DESのァミノ 酸配列を、 それぞれ配列番号 1及び 2に示す。  Sequencing primers are primers targeting the T7 and Ml3 sequences present at both ends of the pSTBlue vector cloning site (Takara Bio BcaBEST Sequencing Primer T7; 5 'TAC TAC GAC TCA CTA TAG GG 3 '(SEQ ID NO: 2 5) and M13 Primer M4; 5' GTT TTC CCA GTC ACG AC 3 ', (SEQ ID NO: 2 6)) were used. The nucleotide sequence of the Dc4DES gene isolated in this Example and the amino acid sequence of Dc4DES are shown in SEQ ID NOs: 1 and 2, respectively.
得られた塩基配列は Genetyx- Win Ver. 4. 0/ ATGC ver. 2 (ソフトゥヱァ開発社製) を用いて解析 ·編集した。' .  The obtained base sequence was analyzed and edited using Genetyx-Win Ver. 4.0 / ATGC ver. 2 (manufactured by Software Development Co., Ltd.). '.
Dc4DES 遺伝子と既報のコリアンダー由来遺伝子(Cs4DES)との塩基配列の相同 性 (i dent i ty) はポリべプチドコード領域 (推定) 配列 (Dc4DES遺伝子 Ι ΐ δΐ bp、 Cs4DES遺伝子 1158 bp) において 88. 0%であった。 また、 アミノ酸配列の相同性 The nucleotide sequence homology (i dent i ty) between the Dc4DES gene and the previously reported coriander-derived gene (Cs4DES) is 88. 0 in the polypeptide coding region (presumed) sequence (Dc4DES gene Ι ΐ δ bp, Cs4DES gene 1158 bp). %Met. Amino acid sequence homology
( ident ity)はポリぺプチドコード領域推定ァミノ酸配列(Dc4DES遺伝子 386aa、 Cs4DES遺伝子 385aa) において 90. 2%であった。 Dc4DESアミノ酸配列と Cs4DES ァミノ酸配列のァライメントを図 3に示す。図 3において、上段が Dc4DESァミノ 酸配列であり下段が Cs4DESァミノ酸配列である。 The (identity) was 90.2% in the polypeptide coding region predicted amino acid sequence (Dc4DES gene 386aa, Cs4DES gene 385aa). The alignment of the Dc4DES amino acid sequence and the Cs4DES amino acid sequence is shown in FIG. In FIG. 3, the upper row is the Dc4DES amino acid sequence and the lower row is the Cs4DES amino acid sequence.
〔実施例 2〕 PTE遺伝子の同定及ぴクローニング  [Example 2] Identification and cloning of PTE gene
植物試料 Plant sample
実施例 2では、 実験試料としてニンジン Daucus caro ta し ) の F1品種であ る夏播き鮮紅五寸、 陽州五寸、 および固定種である新黒田五寸を使用した。 ニン. ジン種子は太田種苗から購入した。 遺伝子クローニング源としては相同遺伝子の 配列が同一である固定種が望ましいが、 実験の都合上 (早期に開花した試料が準 備できた)、 F1 品種も使用した。 また同じセリ科植物であるコ リアンダー { Corianirum sa ti vi um)、 アイ/レ Anetnum gra veolens cv. mammo th) 栽培し使 用した。 In Example 2, an F1 variety of carrot Daucus caro ta) was used as an experimental sample. We used summer sowing fresh red 5 inch, Yangshu 5 inch, and fixed Kuroda 5 inch. Nin. Gin seeds were purchased from Ota seedlings. As a gene cloning source, a fixed species with the same homologous gene sequence is desirable, but F1 varieties were also used for the convenience of the experiment (a sample that had flowered early) was prepared. The same celery family plants, coriander (Corianirum sa ti vi um) and ai / grass (Anetnum gra veolens cv. Mammo th) were cultivated and used.
人工気象器 (コイ ト トロン;小糸製作所) 中で 25°C、 日照 16時間、 湿度 50% で栽培した植物体を試料とした。  Plants grown at 25 ° C, 16 hours of sunshine, and 50% humidity in an artificial meteorological instrument (Koitotron; Koito Manufacturing Co., Ltd.) were used as samples.
RNAの調製 RNA preparation
ニンジンの葉、 未熟種子、 完熟種子を各 100 mg程度ずつ採取し、 実施例 1の方 法に準じて RNAを調製した。  About 100 mg each of carrot leaves, immature seeds and ripe seeds were collected, and RNA was prepared according to the method of Example 1.
RT - PCR増幅 RT-PCR amplification
ニンジンと同じセリ科植物であるコリアンダーに由来する 0TE 様遺伝子 0TE-like gene derived from coriander, the same celery family of carrots
(CsOTE)の部分 c DNA配列 (ァクセッション 'ナンバー, L20978) について BLAST サーチ (blastnお J;び b丄 astx ; http : //www. ncbi. nlm. nih. gov/blast/) を tlレヽ、 相同性の高い遺伝子としてヒットした 17種の類似遺伝子をリスト · アップした。 その推定アミノ酸配列について、 さらにマルチプルァライメント解析を行い、 保 存性の高い領域を選んだ。 さらに同じ遺伝子の DNA配列について同様にマルチプ ルァライメント解析を行い、 ァミノ酸レベルで保存性の高かった領域について近 縁種の DNA でのコ ドン使用頻度を考慮して degenerate プライマーを設計しBLAST search (blastn and J; and b 丄 astx; http: // www. Ncbi. Nlm. Nih. Gov / blast /) for the partial cDNA sequence of (CsOTE) (accession 'number, L20978) We listed 17 similar genes that were hit as highly homologous genes. For the deduced amino acid sequence, multiple alignment analysis was performed, and regions with high conservation were selected. In addition, a multiple alignment analysis was performed on the DNA sequence of the same gene in the same manner, and degenerate primers were designed in consideration of the frequency of codon usage in the DNA of closely related species in regions that were highly conserved at the amino acid level.
RT - PCR法に使用した。 以下にその配列を示す。 なお、 括弧内はシロイヌナズナの oleoyl - ACP thioesterase (AtOTE)を基準に相当する塩基番号を示した。 Used for RT-PCR method. The sequence is shown below. In parentheses, the base numbers corresponding to oleoyl-ACP thioesterase (AtOTE) of Arabidopsis thaliana are shown.
TE-PF3 (515-536) : 5 ' - RTG GNA CNM GRG KRR ATT GGA T —3 ' (配列番号 2 7 ) TE-PF3 (515-536): 5 '-RTG GNA CNM GRG KRR ATT GGA T —3' (SEQ ID NO: 2 7)
TE-PF2 (415-438) : 5 '— CTB ATW TGG GTB ACD DMN MGN ATG -3 " (配列番号 2 8 )TE-PF2 (415-438): 5 '— CTB ATW TGG GTB ACD DMN MGN ATG -3 "(SEQ ID NO: 2 8)
TE-PF1 (235-257) : 5 '— GAR RAY GGN YWN TCB TAY AMR GA -3 ' (配列番号 2 9 )TE-PF1 (235-257): 5 '— GAR RAY GGN YWN TCB TAY AMR GA -3' (SEQ ID NO: 2 9)
TE-PR1 (886-915) : 5 - TGR CAY TCN CKY CKR TAR TC -3 " (配列番号 3 0 )TE-PR1 (886-915): 5-TGR CAY TCN CKY CKR TAR TC -3 "(SEQ ID NO: 30)
TE-PR2 (787-809) : 5 ' - ACR TTR TTN ACR TGY TKR TTC AT -3 ' (配列番号 3 1 )TE-PR2 (787-809): 5 '-ACR TTR TTN ACR TGY TKR TTC AT-3' (SEQ ID NO: 3 1)
TE-PRO (1041-1061) : 5 ' - GTD SKN CMV CKR TTK AKY TC -3 " (配列番号 3 2 ) 具体的には、 QIAGEN社製 One - step RT-PCR kitを使用して上記プライマーの組 み合わせ対を用いて RT-PCR増幅を行った。反応液組成はキット添付の標準プロト コルに従い、 Eppendorf 製サーマルサイクラー (マスターサイクラ一 · グラディ ェント) を用いて実施した。 本装置はヒートブロック上に任意の (最大 1 2段階 の) 温度勾配を設定して反応を行う事ができるので、 増幅効率と特異性に重要な アニーリング温度は 50°Cから 70°C (5°C毎に 5段階) で行った。 PCR条件は 50°C で 30分、 94°Cで 15分処理した後、 94°Cで 1分、 50- 70°Cで 1分及び 72°Cで 1分 30秒のサイクルを 40サイクル処理し、 その後、 72°Cで 15分処理した。 反応後は 4°Cを維持した。 TE-PRO (1041-1061): 5 '-GTD SKN CMV CKR TTK AKY TC -3 "(SEQ ID NO: 3 2) Specifically, the above primers were used using the QIAGEN One-step RT-PCR kit. set RT-PCR amplification was performed using the mated pair. The reaction solution composition was carried out using an Eppendorf thermal cycler (master cycler gradient) according to the standard protocol attached to the kit. Since this device can perform reactions with any temperature gradient (up to 12 steps) on the heat block, the annealing temperature, which is important for amplification efficiency and specificity, ranges from 50 ° C to 70 ° C (5 This was done in 5 steps per ° C). PCR conditions were 30 minutes at 50 ° C, 15 minutes at 94 ° C, then 40 cycles of 94 ° C for 1 minute, 50-70 ° C for 1 minute and 72 ° C for 1 minute 30 seconds. Then, it was treated at 72 ° C for 15 minutes. After the reaction, 4 ° C was maintained.
RT-PCRの結果、 TE- PF2と TE- PR1の組み合わせで特異的な増幅産物(約 500 bp) が得られた。 この増幅産物の塩基配列を解読し、 部分配列を用いて分子系統樹解 析したところ、 0TEクラスターに属することが判明した。  As a result of RT-PCR, a specific amplification product (about 500 bp) was obtained by combining TE-PF2 and TE-PR1. The base sequence of this amplified product was decoded, and molecular phylogenetic analysis was performed using the partial sequence. As a result, it was found to belong to the 0TE cluster.
5 及び 3, RACE法及び PCR 5 and 3, RACE method and PCR
RT-PCRの結果として得られた部分配列について再度データベースを検索し、相 同性の高い遺伝子を再抽出した。 その推定アミノ酸配列について、 同様にマルチ ブルアライメント解析を行い、アミノ酸レベルで保存性の低い領域を選び出した。 次にその領域について DNAでのコドン使用頻度を考慮して、 目的の遺伝子の特異 的増幅が可能なプライマーを設計し RACE法に使用した。  The database was searched again for the partial sequences obtained as a result of RT-PCR, and highly homologous genes were re-extracted. For the deduced amino acid sequence, a multiple alignment analysis was performed in the same manner, and a region with low conservation at the amino acid level was selected. Next, considering the codon usage in DNA for the region, a primer capable of specific amplification of the target gene was designed and used in the RACE method.
〔3 RACE用〕  [For 3 RACE]
TE-D1F: 5 ' - TAG CAA GTG GGT GAT GAT - 3 ' (配列番号 3 3 )  TE-D1F: 5 '-TAG CAA GTG GGT GAT GAT-3' (SEQ ID NO: 3 3)
TE-D3F: 5 ' - GTT TTC TGC CCC AAA ACA CC一 3 ' (配列番号 3 4 ) TE-D3F: 5 '-GTT TTC TGC CCC AAA ACA CC 1 3' (SEQ ID NO: 3 4)
〔5 ' -RACE 用〕  [For 5'-RACE]
TE-D2R: 5 ' - TAT TCA TCT CGA ACA TCA T -3 ' (配列番号 3 5 )  TE-D2R: 5 '-TAT TCA TCT CGA ACA TCA T-3' (SEQ ID NO: 3 5)
TE-D1R: 5 ' - ATC ATC ACC CAC TTG CTA -3 ' (配列番号 3 6 ) TE-D1R: 5 '-ATC ATC ACC CAC TTG CTA -3' (SEQ ID NO: 3 6)
RACE法の結果、 増幅において 2種の異なる遺伝子断片が得られた。 両者とも不 飽和了シル ACPに特異性を持つ TE群から成る Fat Aクラスターに属していたが、 一方は分子系統樹上において既知の 0TEと同じサブクラスターに属していたのに 対し、 もう一方は新規なサブクラスターを形成した。 .  As a result of the RACE method, two different gene fragments were obtained during amplification. Both belonged to the Fat A cluster consisting of TE groups with specificity for unsaturated syl ACP, but one belonged to the same subcluster as the known 0TE on the molecular phylogenetic tree, whereas the other belonged to A new subcluster was formed. .
なお、 実施例 2において塩基配列の決定および得られた塩基配列の解析 ·編集 は実施例 1と同様に行った。 さらに分子系統樹解析は、 国立遺伝学研究所 日本 DNA デ ー タ バ ン ク の 遺 伝 子 解 析 サ ー ビ ス (http : //www. ddbj . nig. ac. jp/Wel come-j. html) を利用して、 Clustal W プログ ラム (塩基配列 ·ァミノ酸配列の多重整列と系統樹作成プログラム) により行つ た。 In Example 2, determination of the base sequence and analysis / editing of the obtained base sequence were performed in the same manner as in Example 1. Furthermore, molecular phylogenetic tree analysis Using the DNA data bank gene analysis service (http://www.ddbj.nig.ac.jp/Wel come-j.html), the Clustal W program (base Sequence · Multiple alignment of amino acid sequences and phylogenetic tree creation program).
RACE法の結果として 2種の異なる遺伝子断片が得られたので、その両者の特異 的増幅用プライマーも設計した。 すなわち、 RACE法で決定した配列情報に基づき cDNA およびポリべプチドコード領域の全長を再増幅およびクローニングするた めに下記の 0TE遺伝子特異的増幅用プライマーおよび PTE遺伝子特異的増幅用プ ライマーを設計した。  As a result of the RACE method, two different gene fragments were obtained. Primers for specific amplification of both were also designed. Specifically, the following 0TE gene-specific amplification primers and PTE gene-specific amplification primers were designed to re-amplify and clone the full length cDNA and polypeptide coding region based on the sequence information determined by the RACE method.
[0TE遺伝子特異的増幅用プライマー〕  [0TE gene specific amplification primer]
< 3 ' -RACE用 >  <For 3 '-RACE>
0TE-2F: 5 ' - GCA TTC TAG GCT AGG ATT GT -3 ' (配列番号 3 7 )  0TE-2F: 5 '-GCA TTC TAG GCT AGG ATT GT-3' (SEQ ID NO: 3 7)
0TE-3F: 5 一 AAG GAA GTC CTT TAT ACG - 3 ' (酉己列番号 3 8 ) 0TE-3F: 5 1 AAG GAA GTC CTT TAT ACG-3 '(Train number 3 8)
< 5 ' -RACE 用 > .  <5 '-RACE use>.
OTE-ralR: 5 ' - GGC GAA TCG AGA TCG AAT CT -3 ' (配列番号 3 9 )  OTE-ralR: 5 '-GGC GAA TCG AGA TCG AAT CT -3' (SEQ ID NO: 3 9)
0TE-m2R: 5 ' - CAC CTG AGC ATT CAC CCC ATT —3 ' (配列番号 4 0 ) 0TE-m2R: 5 '-CAC CTG AGC ATT CAC CCC ATT —3' (SEQ ID NO: 40)
0TE-m3R: 5 ' - CTC AAT TTC TCC GCC AAG CT -3 ' (配列番号 4 1 ) 0TE-m3R: 5 '-CTC AAT TTC TCC GCC AAG CT-3' (SEQ ID NO: 4 1)
〔PTE遺伝子特異的増幅用プライマー〕  [Primers for PTE gene-specific amplification]
く 3 RACE用 > -3 For RACE>-
PTE-2F: 5 ' - CTT TTC CAG TCT CGG GCT TG -3 ' (配列番号 4 2 ) PTE-2F: 5'-CTT TTC CAG TCT CGG GCT TG-3 '(SEQ ID NO: 4 2)
< 5 ' -RACE 用〉  <For 5'-RACE>
PTE-4R: 5 ' - GGA AGC AAC TCA TCG TCG TCT GT -3 ' (配列番号 4 3 )  PTE-4R: 5 '-GGA AGC AAC TCA TCG TCG TCT GT -3' (SEQ ID NO: 4 3)
PTE-2R: 5 ' - CAA GCC CGA GAC TGG AAA AG -3 ' (配列番号 4 4 ) PTE-2R: 5 '-CAA GCC CGA GAC TGG AAA AG-3' (SEQ ID NO: 4 4)
また、ポリべプチドコード増幅用のプライマーには、植物用発現ベクター pBI 121 へ導入するための制限酵素サイ ト (Bam Hlおよび Sacl) を付加したプライマーも 作成した。  We also created primers with restriction enzyme sites (Bam Hl and Sacl) for introduction into the plant expression vector pBI121 as primers for amplification of the polypeptide code.
〔推定ポリぺプチドコード領域用〕  [For estimated polypeptide code region]
XbaBam-DcPTE-OF: 5 ' - TCT AGA GGA TCC ATG TTA TTG ACA ACA GGG AC -3 ' (配 列番号 4 5 ) DcPTE - OF : 5 ' - ATG TTA TTG ACA ACA GGG AC一 3 " (酉己列番号 4 6 )XbaBam-DcPTE-OF: 5 '-TCT AGA GGA TCC ATG TTA TTG ACA ACA GGG AC -3' (sequence number 4 5) DcPTE-OF: 5 '-ATG TTA TTG ACA ACA GGG AC 1 3 "(Self Row Number 4 6)
Sac - DcPTE - 6R: 5 ' - TCT AGA CGA GCT CCT AGT TTA AAC AGT ACA CTG - 3 ' (配歹 U 番号 4 7 ) Sac-DcPTE-6R: 5 '-TCT AGA CGA GCT CCT AGT TTA AAC AGT ACA CTG-3' (Urban U number 4 7)
DcPTE - 6R: 5 ' - CTA GTT TAA ACA GTA CAC TG - 3 ' (配列番号 4 8 )  DcPTE-6R: 5'-CTA GTT TAA ACA GTA CAC TG-3 '(SEQ ID NO: 4 8)
これらプライマーを用いてニンジン RNAを铸型にして RT - PCRを行い、ポリぺプ チドコード全領域を増幅した。 次に、 タカラバイオ製 DNA Ligation kit ver. 2 を用いて、 PCR増幅断片と TA - Cloning用 (PC.R産物のクローニング用) ベクター Using these primers, carrot RNA was converted into a saddle shape and RT-PCR was performed to amplify the entire polypeptide coding region. Next, using Takara Bio DNA Ligation kit ver. 2, PCR amplified fragment and TA-Cloning (PC.R product cloning) vector
(Novagen製 pSTBluel) のライゲーシヨン(16°C、 ー晚反応)を行った。 T0Y0B0製 コンビテントセル( . ' DH5 ) を付属プロ トコルに従って形質転換し、 IPTG、(Novagen pSTBluel) was ligated (16 ° C, 晚 reaction). Transform T0Y0B0 competent cells (. DH5) according to the attached protocol,
X- gal、 および 50 μ g/mlカナマイシンを添加した LB培地で培養し、 形質転換体 を選抜した。 出現したコロニーを釣菌して 50 ; g/mlカナマイシンを添加した LB 培地で液体培養して得た菌体から、 QIAGEN社製 Plasmid mini kitを用いてプラ スミ ド DNAを調製した。 ゲル電気泳動による揷入断片の確認を行い、 目的断片が サブクローニングされたと予想されるプラスミ ド DNAを得た。 本実施例では 2種 類の Dc4PTE 遺伝子を単離した。 単離した 2種類の Dc4PTE 遺伝子を Dc4PTEa、Transformants were selected by culturing in LB medium supplemented with X-gal and 50 μg / ml kanamycin. Plasmid DNA was prepared from the cells obtained by liquid culture in LB medium supplemented with 50; g / ml kanamycin using the QIAGEN Plasmid mini kit. The inserted fragment was confirmed by gel electrophoresis to obtain a plasmid DNA in which the target fragment was expected to be subcloned. In this example, two types of Dc4PTE genes were isolated. The two isolated Dc4PTE genes are identified as Dc4PTEa,
Dc4PTEb と名づけ、 それらの塩基配列をそれぞれ配列番号 3及び 5に示し、 2種 類の Dc4PTEのァミノ酸配列をそれぞれ配列番号 4及び 6に示す。 They are named Dc4PTEb, their base sequences are shown in SEQ ID NOs: 3 and 5, respectively, and the two amino acid sequences of Dc4PTE are shown in SEQ ID NOs: 4 and 6, respectively.
以上のようにして DcPTE遺伝子をクローニングした。 DcPTE遺伝子のクローニ ングと同様に、 コリアンダーとディルについても PTE遺伝子のクローニングを試 みたところ、コリアンダー由来のぺトロセリノィル- ACP チォエステラーゼ遺伝子 The DcPTE gene was cloned as described above. Similar to the cloning of the DcPTE gene, cloning of the PTE gene was also performed for coriander and dill. A petrocellinol-ACP thioesterase gene derived from coriander
(CsPTE 遺伝子)、 ディル由来のペトロセリノィル- ACP チォエステラーゼ遺伝子(CsPTE gene), dill-derived petrocellinol-ACP thioesterase gene
(AgPTE 遺伝子)を単離した。 それらの塩基配列をそれぞれ配列番号 7及び 9に示 し、 2種類の Dc4PTEのアミノ酸配列をそれぞれ配列番号 8及び 1 0に示す。次に、(AgPTE gene) was isolated. Their base sequences are shown in SEQ ID NOs: 7 and 9, respectively, and the amino acid sequences of two types of Dc4PTE are shown in SEQ ID NOs: 8 and 10, respectively. next,
DcPTE 遺伝子によってコードされる酵素のぺトロセリノィル - ACP チォエステラ ーゼ活性を検討した。 具体的には、 以下に示すように、 大腸菌を用いてヒスチジ ン標識組換えタンパク質を調製し、 その酵素活性の解析を行った The activity of the petroselinol-ACP thioesterase of the enzyme encoded by the DcPTE gene was examined. Specifically, as shown below, histidine-labeled recombinant protein was prepared using E. coli and the enzyme activity was analyzed.
ヒスチジン標識タンパク質の発現コンストラク トの作製  Construction of histidine-tagged protein expression construct
既知のベニバナ由来 oleoyl- ACP thi-oest eraseの^ (Plant Physio丄. , 100, Oleoyl- ACP thi-oest erase ^ (Plant Physio 丄., 100,
1751-1758, 1994) に基づき、 各遺伝子の mature peptide cleavage siteを推定 し、 mature pept ide発現用 DNAコンス トラク ト中のコード領域の N末端として設 定した。また、 C末端側は停止コドンまでとした。 DcPTEa遺伝子については、 mature peptide cl eavage s ite として 32番目のァミノ酸をコードする塩基配列と 33番 目のアミノ酸をコードする塩基配列の間を推定した。 DcOTE遺伝子と CsOTE遺伝 子(こつレヽて fま、 mature peptide cleavage s ite として 51番目のァミノ酸をコー ドする塩基配列と 52番目のアミノ酸をコードする塩基配列の間を推定した。 その領域を pST Bluel (Novagen製クローニングベクター) にクローニングした DcPTEa, DcOTE, CsOTE cDNAを铸型として PCR法で増幅した。 その産物をヒスチ ジン標識タンパク質用発現ベクター PQE - 30 UA (QIAGEN 社製)と混合し、 等量の TaKaRa Ligat ion kit ver. 2を加えて 16°Cで 30分間ライゲーション反応を行いサ ブクローニングした。 このベクターにサブクローエングすると、 N 末端に 6XHi s が付加された組換えタンパク質を大腸菌で調製できる。 反応液の全量を 50 / 1の 大腸菌コンビテントセル (laclq 変異を持つ JM109株、 タカラバイオ社製) に添 加し、 メーカー指定のプロ トコルに従って形質転換操作を行った。 得られた形質 転換体 (50 z g/ml アンピシリン入り LB寒天培地で生育) からプラスミ ドを調製 した。 1751-1758, 1994) to estimate the mature peptide cleavage site of each gene It was set as the N-terminus of the coding region in the mature peptide expression DNA construct. In addition, the C-terminal is up to the stop codon. For the DcPTEa gene, a mature peptide cl eavage site was estimated between the base sequence encoding the 32nd amino acid and the base sequence encoding the 33rd amino acid. As a mature peptide cleavage site, the DcOTE gene and the CsOTE gene were estimated as the mature peptide cleavage site between the base sequence encoding the 51st amino acid and the base sequence encoding the 52nd amino acid. DcPTEa, DcOTE, and CsOTE cDNAs cloned into Bluel (Novagen cloning vector) were amplified by PCR using a vertical type, and the product was mixed with the expression vector for histidine-tagged protein PQE-30 UA (QIAGEN) The amount of TaKaRa Ligat ion kit ver. 2 was added and subcloned by ligation reaction for 30 minutes at 16 ° C.When subcloning this vector, the recombinant protein with 6XHis added to the N-terminus was transferred in E. coli. preparation can. the reaction mixture (JM109 strain having lacl q mutation, Takara Bio Inc.) 50/1 E. coli combination competent cells the total amount of and added pressure, the manufacturer specifies protocol Thus it was transformed operation. Resulting transformants from (grown in 50 zg / ml ampicillin containing LB agar medium) was prepared plasmid.
大腸菌によるヒスチジン標識タンパク質の発現及び精製 Expression and purification of histidine-tagged proteins by E. coli
作製したヒスチジン標識タンパク質発現 DNA コンス トラク トを大腸菌 (JM109 株) に形質転換し (もしくはプラスミ ド調製前に保存.したグリセロール ·ストッ クを禾 IJ用し)、 Overnight Express Autoinduction System 1 (メルク)と 50 i g/ral アンピシリンを添加した LB培地で終夜培養し、 発現誘導を行つた。  The prepared histidine-tagged protein expression DNA construct was transformed into E. coli (JM109 strain) (or stored before plasmin preparation. Use glycerol stock for IJ) and Overnight Express Autoinduction System 1 (Merck). Expression was induced by culturing overnight in LB medium supplemented with 50 ig / ral ampicillin.
次に、 発現コンス トラク トにより形質転換された大腸菌 20mLを集菌し、 Lys i s Buffer 4mL (50mM リン酸水素ナトリ ゥム、 300mMの NaCl、 10mMのイミダゾール) と 10mg/ml のリゾヂームを加えて混合、 30分氷中に静置した後、 超音波破砕装置 (T0MY社製 UD- 201) を使用し 10秒 X 6回の超音波処理により破砕した。  Next, collect 20 mL of E. coli transformed with the expression construct, add 4 mL of Lys is Buffer (50 mM sodium hydrogen phosphate, 300 mM NaCl, 10 mM imidazole) and 10 mg / ml lysozyme and mix. After standing in ice for 30 minutes, the mixture was crushed by ultrasonic treatment for 10 seconds × 6 times using an ultrasonic crusher (UD-201 manufactured by T0MY).
15000rpm、4°Cで 10分間の遠心分離後、あらかじめ平衡化しておいた Hi sTrap HP カラム(Amersham)に上清をシリンジで注入し、 ペリスタ ·ポンプ (P- 1、 Araersham 社製) を使用して、 キッ トに付属の Bufferで洗浄、 溶出した。 溶出は、 ImLづっ 全量 4mLで分画した。 精製した DcPTEa、 DcOTE, CsOTEのヒスチジン標識タンパク質溶出液について 1 画分ずつ SDS- PAGE (ドデシル硫酸ナトリウム一ポリアクリ ドアミ ド .ゲル電気 泳動) を行ったところ、 目的のタンパク質が精製されていることを確認した。 結 果を図 4に示す。 After centrifugation at 15000 rpm and 4 ° C for 10 minutes, the supernatant is injected into a pre-equilibrated HisTrap HP column (Amersham) with a syringe and using a peristaltic pump (P-1, Araersham). Wash and elute with Buffer supplied with the kit. Elution was performed by fractionating 4 mL of ImL. Purified DcPTEa, DcOTE, and CsOTE histidine-labeled protein eluates were subjected to SDS-PAGE (fractional sodium dodecyl sulfate-polyacrylamide gel electrophoresis) for each fraction to confirm that the target protein was purified. did. The results are shown in Fig. 4.
図 4に示した電気泳動結果から高濃度のタンパク質が溶出されている画分を選 定し、,それらについて Lowry法 (RCDCプロテインアツセィ 'キット, BIO- RAD) によるタンパク質濃度測定を行ったところ、それぞれ約 200 M gの組換えタンパク 質が調製できた。 From the results of electrophoresis shown in Fig. 4, fractions from which high-concentration proteins were eluted were selected, and protein concentrations were measured using the Lowry method (RCDC protein assembly kit, BIO-RAD). the recombinant protein of about 200 M g each of which can be prepared.
ァシル ACPの調製 Preparation of Asil ACP
基質として使用するァシル ACPは以下のように調製した。先ず、脂肪酸(ォレイ ン酸、 ペトロセリン酸)のへキサン溶液(lOOmM)を調製し、 6. 2 を 10m lガラ ス試験管に入れ、窒考ガスにより乾固した。その後、以下の表 2の反応液を加え、 ヒートブロック上で 37°Cにて 60分間反応させた。  Facil ACP used as a substrate was prepared as follows. First, a hexane solution (lOOmM) of fatty acid (oleic acid, petrothelic acid) was prepared, and 6.2 was put into a 10 ml glass test tube and dried with a nitrogen gas. Then, the reaction liquid of the following Table 2 was added, and it was made to react for 60 minutes at 37 degreeC on a heat block.
表 2  Table 2
' 1M Tris-HCl (pH 8. 0) 400 μ 1 '1M Tris-HCl (pH 8.0) 400 μ 1
• 1Μ MgCl 40 μ 1  • 1Μ MgCl 40 μ 1
- 1Μ ATP 200 y l  -1Μ ATP 200 y l
• 1 DTT 10 1  • 1 DTT 10 1
• 20% Triton X 100 400 μ 1  • 20% Triton X 100 400 μ 1
' LiCl 400 ^ 1  'LiCl 400 ^ 1
- PanVera社製 holo- ACP 1000 μ 1  -PanVera holo- ACP 1000 μ 1
- His-tagged Acyl-ACP synthetase (0. 26 mg/mL) 48 ^ 1  -His-tagged Acyl-ACP synthetase (0. 26 mg / mL) 48 ^ 1
• ¾0 1502 1  • ¾0 1502 1
反応後、水を 12ml加えた後、酢酸で pH6. 0に調整した。 反応液に含まれるァシ ル ACPは以下の(A)〜(M)に示す手順で精製した。 After the reaction, 12 ml of water was added, and the pH was adjusted to 6.0 with acetic acid. The acyl ACP contained in the reaction solution was purified by the procedure shown in the following (A) to (M).
(A) DEAE-Toyopearl 650C (T0S0H社) 1. 8 mlを ポリプロピレン製 空カラム(BI0 RAD社製)に充填 (lml bed volumeとする)  (A) DEAE-Toyopearl 650C (T0S0H) 1. Fill 8 ml into an empty polypropylene column (BI0 RAD) (use lml bed volume)
(B) bis Tris-HCl pH6. 0 (Buffer Bとする)を(A)の 10倍量程加え平衡化する。 (B) Add bis Tris-HCl pH 6.0 (referred to as Buffer B) about 10 times the amount in (A) to equilibrate.
(C) ァシル ACP溶液 (pH6. 0) をカラムに添加 (C) Add the Asil ACP solution (pH 6.0) to the column.
(D) Buffer B 3mLで洗浄  (D) Wash with 3 mL Buffer B
(E) 80% (w/w) Isopropanol in Buffer B 3mLで未反応の脂肪酸を洗い流す。 T JP2006/313449 (E) 80% (w / w) Wash off unreacted fatty acid with 3mL of Isopropanol in Buffer B. T JP2006 / 313449
※ェ^ ]:。^^^ と Buffer Bは、 個々に超音波洗浄機で脱気したものを混合して使 用 ※ e ^] :. ^^^ and Buffer B are used by mixing them individually deaerated with an ultrasonic cleaner
(F) Buffer B 3mLで洗浄  (F) Wash with 3 mL Buffer B
(G) 0. 6M LiCl in Buffer B 5mlで溶出  (G) Elution with 0.5 ml of 0.6 M LiCl in Buffer B
(H) 別の空カラムに Octyl- Sepharose (Amersham社製) 4. 5mlを入れる  (H) Add 5 ml of Octyl- Sepharose (Amersham) into another empty column.
(bed volume 約 3ml とする) (The bed volume should be about 3ml)
(I) (H)の 10倍量の Buffer Bで平衡化  (I) Equilibrate with 10 times the amount of Buffer B in Buffer B
(H, Iの操作は事前に行っておく)  (H and I operations should be performed in advance)
(J) (G)の溶出液を(I)に直接溶出しアプライする  (J) Elution of (G) eluate directly to (I) and apply
(K) lOmM MES-NaOH pH6. 0 (Buffer Cとする) 5mlで洗浄  (K) lOmM MES-NaOH pH6.0 (referred to as Buffer C) Wash with 5 ml
(L) 35°/o (w/w) Isopropanol in Buffer C 6mLで溶出  (L) 35 ° / o (w / w) Elution with 6 mL of Isopropanol in Buffer C
※: [sopropanol と Buffer Cは、 個々に超音波洗浄機で脱気したものを混合して使 用  *: [Sopropanol and Buffer C are used by mixing individually degassed with an ultrasonic cleaner.
(M) 減圧遠心濃縮機を使用し、 イソプロパノールを揮発させる  (M) Use a vacuum centrifugal concentrator to volatilize isopropanol
精製酵素のチォエステラーゼ活性の検出 Detection of thioesterase activity of purified enzyme
上記の操作により精製したヒスチジン標識タンパク質について、ァシル ACP (ォ レオイル ACP、ペトロセリノィル- ACP)を基質として使用してチォエステラーゼ活 性を測定した。 反応前に Lowry法 (RCDCプロテインアツセィ ·キット、 BIO- RAD 社製) により両溶液のタンパク質濃度の測定を行った。  The histidine-labeled protein purified by the above procedure was assayed for thioesterase activity using isyl ACP (oleoyl ACP, petroselinol-ACP) as a substrate. Prior to the reaction, the protein concentration of both solutions was measured by the Lowry method (RCDC protein assembly kit, manufactured by BIO-RAD).
25mM Tris-HCl (pH8. 0) , ImM DTT, ァシル ACPと水を混合後、 25°Cで 5分間のプ レ'インキュベーション (使用するバッファ類を反応温度に馴化) を施し、 12 /z g の DcPTE、 DcOTEのヒスチジン標識タンパク質、 対照区として y -グロブリンをそ れぞれ加えて、反応液全量が 100 になるようにし、 25°Cで 30分間反応させた。 反応液の 10分 1量(10 μ 1)を用いて、 SDS- PAGEにより未反応のァシル ACPおよび 反応生成物である遊離 ACPを検出する事により、. チォエステラーゼ活性を測定し た。 その結果を電気泳動写真として図 5に示す。 .  After mixing 25 mM Tris-HCl (pH 8.0), ImM DTT, acyl ACP and water, pre-incubate for 5 minutes at 25 ° C (acclimate the buffer used to the reaction temperature) and add 12 / zg DcPTE, DcOTE histidine-tagged protein, and y-globulin as a control were added, respectively, so that the total amount of the reaction solution reached 100, and reacted at 25 ° C for 30 minutes. The amount of thioesterase was measured by detecting unreacted acyl ACP and free ACP as a reaction product by SDS-PAGE using 10 minutes of the reaction solution (10 μ1). The results are shown in FIG. 5 as an electrophoretogram. .
また、電気泳動後のゲルを CBB染色後、高性能スキャナー (Pictrostat digital In addition, the gel after electrophoresis is stained with CBB, and then a high-performance scanner (Pictrostat digital
400、 富士写真工業) を用いてデジタル画像データ化し、 画像解析ソフ ト Image400, Fuji Photo Industry Co., Ltd.) and converted to digital image data. Image analysis software Image
Analys is ver. 3. 0 (日立製作所) でァシル ACPおよび遊離 ACPのバンドの濃度を 定量化した。 その結果を図 6に示す。 図 6に示すように、 ペトロセリノィル- ACP を基質とした場合 (図 6 ( B ) ) には DcOTEよりも DcPTEの方が明らかに高い反応 性を有する事が判明した。 逆に、 ォレオイル - ACPを基質にした場合 (図 6 (A) ) には DcOTEの反応性の方が高かった。 従って、 DcPTEはペトロセリン酸に対して 特異性を持つチォエステラーゼであると結論付けることができた。 Analys is ver. 3.0 (Hitachi, Ltd.) Quantified. The result is shown in Fig. 6. As shown in Fig. 6, it was found that DcPTE had a significantly higher reactivity than DcOTE when Petrocelinol-ACP was used as the substrate (Fig. 6 (B)). Conversely, when oleoyl-ACP was used as the substrate (Fig. 6 (A)), the reactivity of DcOTE was higher. Therefore, we could conclude that DcPTE is a thioesterase with specificity for petroceric acid.
〔実施例 3〕  Example 3
次に、実施例 1でクローニングした Dc4DES遺伝子及び実施例 2でクローニング した DcPTE遺伝子を導入した形質転換植物を作製し、 当該形質転換植物における ペトロセリン酸の合成能を検討した。 すなわち、 Dc4DES遺伝子を単独で導入した 形質転換植物、 DcPTE遺伝子を単独で導入した形質転換植物、 並びに Dc4DES遺伝 子及び DcPTE遺伝子を共に導入した形質転換植物を作製した。  Next, a transformed plant into which the Dc4DES gene cloned in Example 1 and the DcPTE gene cloned in Example 2 were introduced was prepared, and the ability to synthesize petroceric acid in the transformed plant was examined. That is, a transformed plant into which the Dc4DES gene was introduced alone, a transformed plant into which the DcPTE gene was introduced alone, and a transformed plant into which both the Dc4DES gene and the DcPTE gene were introduced were prepared.
常時全身発現用 DNAコンストラク トの作成 Creating a DNA construct for constant systemic expression
形質転換に使用したベクターのうち、 常時全身常時全身発現用ベクターを図 7 に示す。 図 7中、 "Pnos"は Agrobacterium由来のノパリン合成酵素プロモーター を意味し、 "Tnos"は Agrobacterium由来のノパリン合成酵素ターミネータを意味 し、 "P35S" は CaMV35Sプロモーターを意味し、 "NPT II" はネオマイシンホスホ トランスフェラーゼ Π遺伝子を意味する。  Of the vectors used for transformation, Fig. 7 shows vectors for constant whole body expression. In Fig. 7, "Pnos" means Agrobacterium-derived nopaline synthase promoter, "Tnos" means Agrobacterium-derived nopaline synthase terminator, "P35S" means CaMV35S promoter, and "NPT II" means neomycin. Phosphotransferase This refers to the sputum gene.
具体的には、 植物用発現ベクター pBI121 (Clontech社製) に含まれる GUS遺 伝子を、 Dc4DES遺伝子の cDNA配列で置換した。  Specifically, the GUS gene contained in the plant expression vector pBI121 (Clontech) was replaced with the cDNA sequence of the Dc4DES gene.
Dc4DES遺伝子の 0RF領域をコードする DNA断片は、 5'末端側に Bam HI、 3'末端 側に Sac I配列を付加するように設計したプライマーを用いて PCR法によって増 幅した。この PCR産物を pSTBluel (Novagen製クローニングベクター) と混合し、 等量の TaKaRa Ligation kit ver. 2を加えて 16°Cで 30分ライゲーション反応を 行った。 反応液の全量を 50 ^ 1のコンビテントセル . co i DH5ひ、 TOYOBO社製) に添加し、 メーカー指定のプロトコルに従って形質転換操作を行った。 得られた 形質転換体 (50 ; g/mlカナマイシン入り LB寒天培地で生育) からプラスミ ドを 調製した。 得られたプラスミ ドを制限酵素 (Bam HIおよび Sac I) で処理した。 次に PBI 121内の CaMV35Sプロモーターの下流に連結された GUS遺伝子を切出すた めに、 同様に制限酵素処理 (Bam HIと Sac I) を行った。 これらの制限酵素消化 産物について 0. 8 %ァガロースゲル電気泳動を行い QIAGEN社製 QIAqui ck gel extraction kitおよび Genecl ean I I (BIO 101)を用いて、 Dc4DES遺伝子を含む DNA 断片および pBI121のパックボーン(GUS遺伝子を除去した部分)をそれぞれ分取 · 精製した。 The DNA fragment encoding the 0RF region of the Dc4DES gene was amplified by PCR using primers designed to add Bam HI at the 5 ′ end and Sac I sequence at the 3 ′ end. This PCR product was mixed with pSTBluel (Novagen cloning vector), an equal amount of TaKaRa Ligation kit ver. 2 was added, and a ligation reaction was performed at 16 ° C for 30 minutes. The total amount of the reaction solution was added to a 50 ^ 1 competent cell (co i DH5, manufactured by TOYOBO), and the transformation was performed according to the protocol specified by the manufacturer. A plasmid was prepared from the obtained transformant (50; grown on LB agar medium containing g / ml kanamycin). The obtained plasmid was treated with restriction enzymes (Bam HI and Sac I). Next, restriction enzyme treatment (Bam HI and Sac I) was similarly performed to excise the GUS gene linked to the downstream of the CaMV35S promoter in PBI 121. These restriction enzyme digests The product was subjected to 0.8% agarose gel electrophoresis, and the QIAquick gel extraction kit and Geneclean II (BIO 101) manufactured by QIAGEN were used. Each was separated and purified.
PBI 121のバックボーン断片と挿入対象の DNA断片(Dc4DES遺伝子)との比が 1 : 10になる様に混合し、 等量の TaKaRa Ligat ion ki t ver. 2を用いて 16°Cで 30分 ライゲーシヨン反応を行った。 反応液の全量を 100 μ 1 のコンビテントセル (E. col i strain DH5 a , T0Y0B0) に添加し、 メーカー指定のプロトコルに従って 形質転換操作を行った。 50 ju g/mlカナマイシンを含む LB寒天培地に塗布し、一 晚培養した。 Mix so that the ratio of the backbone fragment of PBI 121 to the DNA fragment to be inserted (Dc4DES gene) is 1:10, and use an equal amount of TaKaRa Ligat ion kit ver. 2 for 30 minutes at 16 ° C. Ligation reaction was performed. The total amount of the reaction solution was added to 100 μl of a competent cell (E. coli strain DH5a, T0Y0B0), and transformation was performed according to the protocol specified by the manufacturer. It was applied to an LB agar medium containing 50 jug / ml kanamycin and cultured for a while.
一方、 Dc4DES遺伝子と DcPTE遺伝子とを共発現するためのベクター (図 6 (D) ) は、図 6 (A)に示した Dc4DES発現用の発現ベクター中の T-DNAの LB付近にあるュ 二一クな Eco RIサイ トおよび Dra IIIサイ ト間に、 DcPTE遺伝子の発現ユニット On the other hand, the vector for co-expression of the Dc4DES gene and the DcPTE gene (Fig. 6 (D)) is located near the LB of the T-DNA in the expression vector for Dc4DES expression shown in Fig. 6 (A). DcPTE gene expression unit between unique Eco RI and Dra III sites
(プロモーター及びターミネータを含む DNA断片) を挿入することで作製した。 DcPTE遺伝子の発 ¾ユニットは、 両端に Eco RIサイ トおよび Dra IIIサイ トを付 加するように設計したプライマーを用いた PCR法で増幅した。 (DNA fragment containing promoter and terminator) was inserted. The DcPTE gene generation unit was amplified by PCR using primers designed to add Eco RI and Dra III sites at both ends.
種子特異的発現用コンス トラク トの作製 Production of seed-specific expression constructs
形質転換に使用したベクターのうち、 種子特異的発現用ベクターを図 8 (A)〜 (D) に示す。 図 8 (A) 〜 (D) 中 、 " Pnap " はナ タ ネ ( B. campestris cv . Kizakinona tane) 由来ナピン Aプロモーターを意味する。 当該プロモーター は、 モンサント社がナタネ油脂含量の制御に用いていることで知られる。  Of the vectors used for transformation, seed-specific expression vectors are shown in FIGS. 8 (A) to (D). In FIG. 8 (A) to (D), “Pnap” means the napin A promoter derived from rapeseed (B. campestris cv. Kizakinona tane). The promoter is known to be used by Monsanto to control rapeseed oil content.
具体的には、 図 7に示したベクターにおける CaMV35Sプロモーターを、 ナタネ 由来のナピン Aプロモーターで置換することによって種子特異的発現用ベクター を作製した。また、 GUS遺伝子を、 Dc4DES遺伝子、 DcPTE遺伝子又は Cs4DESの cDNA 配列で置換した。  Specifically, a seed-specific expression vector was prepared by replacing the CaMV35S promoter in the vector shown in FIG. 7 with a rapeseed napin A promoter. The GUS gene was replaced with the cDNA sequence of Dc4DES gene, DcPTE gene or Cs4DES.
一方、 Dc4DES遺伝子と DcPTE遺伝子とを共発現するためのベクター (図 8 (D) ) は、図 8 (A)に示した Dc4DES発現用の発現ベクター中の T - DNAの LB付近にあるュ ニークな Eco RIサイトおよび Dra IIIサイ ト間に、 DcPTE遺伝子の発現ユニット On the other hand, the vector for co-expression of the Dc4DES gene and the DcPTE gene (Fig. 8 (D)) is a unique protein near the LB of T-DNA in the expression vector for Dc4DES expression shown in Fig. 8 (A). DcPTE gene expression unit between the Eco RI site and Dra III site
(プロモーター及びターミネータを含む DNA断片) を揷入することで作製した。 DcPTE遺伝子の発現ュニットは、 両端に Eco RIサイ トおよび Dra II Iサイ トを付 加するように設計したプライマーを用いた PCR法で増幅した。 (DNA fragment containing promoter and terminator) was inserted. The DcPTE gene expression unit was amplified by PCR using primers designed to add Eco RI and Dra II I sites at both ends.
ェレク トロポレーション、法による Agrobacteriwnへの ϋ云子尊ヽ 入 Elektroporation, law into Agrobacteriwn
作製したプラスミ ドを用いてァグロバクテリクムのエレク 1、口ポレーション (電気穿孔) 法による形質転換を行った。 常法により調製された ^ robac erii^ tumefaciens (LBA4404株)のコンビテントセル 40 μ 1を溶かし、 DNA溶液を 5 1 (25 ^ g) 添加し、氷上で 1〜 2分間静置した。 続いて、氷冷した BI0 - RAD社製キ ュベット(0. 2 cm)に入れ、 島津製作所製遺伝子導入装置を用いて 1. 25kV、 10 F のパルス電流を印加した。直ちに冷却した S0C培地を 460 μ 1力 Pえ、 28°Cで 1時間 培養した。 5( i g/mlカナマイシンおよび 50 g/ml リファンピシンを含む LB寒天 培地に塗布し、 ー晚培養して形質転換体を選抜した。 出現した形質転換コロニー について s ingle- colony isolationを行った後に、 コロニーを複数個釣菌し、 PCR 法により目的のプラスミ ド DNAの存在を確認した。  The prepared plasmid was used to transform agrobacterium by electroporation (electroporation). 40 μ1 of ^ robac erii ^ tumefaciens (LBA4404 strain) prepared by a conventional method was dissolved, 5 1 (25 ^ g) of DNA solution was added, and the mixture was allowed to stand on ice for 1-2 minutes. Subsequently, it was placed in an ice-cooled BI0-RAD cuvette (0.2 cm) and a pulse current of 1.25 kV and 10 F was applied using a Shimadzu gene introduction device. Immediately after cooling, the S0C medium was incubated at 28 ° C for 1 hour with 460 µ1 force. 5 (Applied to LB agar medium containing ig / ml kanamycin and 50 g / ml rifampicin, and cultured in anther culture to select transformants. Appearance of transformed colonies After performing single-colony isolation, colonies A plurality of bacteria were collected and the presence of the desired plasmid DNA was confirmed by PCR.
減圧浸潤法によるシロイヌナズナ形質転換体の作製 Preparation of Arabidopsis transformants by vacuum infiltration
シロイヌナズナ ( irabidopsis thaliana e t. Columbia)を、 減圧浸潤法によって 形質転換した。 減圧浸潤法は、 秀潤社、 モデル植物の実験プロ トコル、 2001、 109- 113pp.に従って実行した。  Arabidopsis thaliana et al. (Colombia) was transformed by the vacuum infiltration method. The vacuum infiltration method was carried out according to Shujunsha, model plant experimental protocol, 2001, 109-113 pp.
次に、 減圧浸潤を行ったシロイヌナズナを栽培し、 採取した種子を形質転換第 一世代種子 (T 1種子) とした。 ただし、 これらは便宜上、 形質転換世代種子とし て极うが、 本種子集団のすべての種子が形質転換されている訳ではない。  Next, Arabidopsis thaliana with reduced pressure infiltration was cultivated, and the collected seeds were used as transformed first generation seeds (T1 seeds). However, for convenience, they serve as transformed generation seeds, but not all seeds of this seed population have been transformed.
次に、 形質転換第一世代種子をカナマイシン入り培地 (Murashige& Skoog基本 培地に、 0. 5g/L MES、 10g/L sucrose, 8g/L Agar, lOOmg/L carbeni ci ll in, 50mg/L kanamycinを添加したもの) に播種し、 明条件で発芽させた。 1〜2週間程度育成 し、 形質転換された個体 (カナマイシン耐性を有しており正常に生育) を選抜し た。 本葉が正常に展開した個体を再度同じ培地に移植し、 1〜2週間程度育成して 再選抜を行った。 得られた系統を形質転換第一世代植物体 (T1植物) とした。 力 ナマイシン耐性系統を滅菌していないバーミキユラィ トに移植し、 非滅菌環境へ 馴化させて栽培を行った。 .  Next, transform the first generation seeds into kanamycin-containing medium (Murashige & Skoog basic medium with 0.5g / L MES, 10g / L sucrose, 8g / L Agar, lOOmg / L carbenicin, 50mg / L kanamycin) So that it was germinated under light conditions. A transformed individual (having kanamycin resistance and growing normally) was selected after growing for about 1 to 2 weeks. Individuals whose true leaves were normally developed were transplanted again to the same medium, grown for about 1 to 2 weeks, and reselected. The obtained line was used as a transformed first generation plant (T1 plant). Force Namicin resistant strains were transplanted to non-sterile vermiculites and cultivated in a non-sterile environment. .
次に、 形質転換第一世代植物体より約 lOOmgのロゼット葉を採取し、 液体窒素 凍結下で粉碎した。 QIAGEN製 DNA調製キッ ト (DNeasy plant mini kit) を用い てキッ ト添付の標準プロ トコルに従って DNAを調製した。 T- DNA内の薬剤耐性遺 伝子(ΝΡΤΠ)および導入した脂肪酸合成系の遺伝子を標的とした PCR プライマー を用いてタカラバイオ製 Ex Taq DNA polymeraseを使用して PCR増幅を行った。 得られた PCR増幅産物断片について、 0. 8%ァガロースゲルを用いて TAEバッフ ァで電気泳動後、ェチジゥムプロマイ ド染色を行い、目的断片の増幅を確認した。 増幅の有無によって遺伝子導入の有無を判定した。 Next, approximately lOOmg of rosette leaves are collected from the first-generation transgenic plants, and liquid nitrogen is collected. Powdered under freezing. DNA was prepared using the QIAGEN DNA preparation kit (DNeasy plant mini kit) according to the standard protocol attached to the kit. PCR amplification was performed using Ex Taq DNA polymerase manufactured by Takara Bio, using PCR primers targeting the drug resistance gene (ΝΡΤΠ) in T-DNA and the introduced fatty acid synthesis system gene. The obtained PCR amplification product fragment was electrophoresed in a TAE buffer using a 0.8% agarose gel and then stained with ethidium promide to confirm the amplification of the target fragment. The presence or absence of gene transfer was determined by the presence or absence of amplification.
次に、 前述した T-DNA導入が確認された系統を引き続き栽培し、 採取した種子 を形質転換第二世代種子 (T2種子) とした。 各コンス トラク トにっき 15系統以 上の T2種子を収穫し、 以下の脂肪酸組成解析に用いた。  Next, the above-mentioned line in which T-DNA introduction was confirmed was continuously cultivated, and the collected seed was used as a transformed second generation seed (T2 seed). More than 15 T2 seeds were harvested from each construct and used for the following fatty acid composition analysis.
シロイヌナズナ種子用脂肪酸組成分析プロ トコル Fatty acid composition analysis protocol for Arabidopsis seeds
種子中の脂肪酸組成の分析を行うために、 種子脂肪酸を塩酸一メタノールでメ チル . エステル化し、 その n-へキサン抽出物を GC- MSで解析した。 なお、 試料の 酸化防止剤として BHT (Butylated hydroxytoluene)を添加した。 また内部標準と して植物油中に含まれない pentadecanoic acid (C15 : 0)のメチルエステル(SIGMA) のメタノール溶液を秤量後の種子に直接添加し、 分析用試料調製時の実験誤差の 補正に使用した。  In order to analyze the fatty acid composition in seeds, seed fatty acids were methyl esterified with monomethanol hydrochloride and the n-hexane extract was analyzed by GC-MS. BHT (Butylated hydroxytoluene) was added as an antioxidant for the sample. In addition, a methanol solution of methyl ester (SIGMA) of pentadecanoic acid (C15: 0) not contained in vegetable oil as an internal standard is added directly to the seed after weighing and used to correct experimental errors when preparing samples for analysis. did.
抽出に用いる n-へキサンはフタル酸エステル分析用グレードの n-へキサン(東 京化成) を使用した。 これにより、 GC解析中に脂肪酸と同様の挙動を示すフタル 酸エステルの影響を排除することができる.。  The n-hexane used for the extraction was phthalate analytical grade n-hexane (Tokyo Kasei). This eliminates the effects of phthalates that behave like fatty acids during GC analysis.
定性分析用のプロ トコルを表 3に、 定量分析用のプロ トコルを表 4に示す。 表 3 定性分析用プロトコル Table 3 shows the protocol for qualitative analysis and Table 4 shows the protocol for quantitative analysis. Table 3 Protocol for qualitative analysis
(1) 試料 5tng (Fresh weight)秤量 (1) Sample 5tng (Fresh weight) weighing
(2) 1.5mL eppendorf tube(PP製)に入れ tangsten beads 1粒添加 (Qiagen)  (2) Place in a 1.5mL eppendorf tube (PP) and add 1 tangsten beads (Qiagen)
(3) 0.1% BHTおよび 5πΜ C15: 0-O e /MeOH 各 500 μ 1添加  (3) 0.1% BHT and 5πΜ C15: 0-O e / MeOH 500 μ1 each added
(4) 粉碎 (mixer mill MM300, Qiagen) ,Freq:l/20s, lrain.  (4) Flour (mixer mill MM300, Qiagen), Freq: l / 20s, lrain.
(5) 10% HCl/MeOH (東京化成; 4°C保存) 500μ1添加  (5) 10% HCl / MeOH (Tokyo Kasei; stored at 4 ° C) 500μ1 added
(6) 80 lhr (Heat block, I aki)  (6) 80 lhr (Heat block, I aki)
(7) n-hexane (フタル酸エステル分析用,東京化成) 1ml添加  (7) 1 ml of n-hexane (for analysis of phthalate ester, Tokyo Kasei)
(8) Vortex (混和) 5sec  (8) Vortex (mixing) 5sec
(9) 上層 (へキサン相) .を 1.5ml eppendolf tubeに移す (800μ1分とる)  (9) Transfer the upper layer (hexane phase) to a 1.5 ml eppendolf tube (take 800 μ1 min)
(10) 減圧下で乾固 (Concentrater 5301, eppendolf )  (10) Dry under reduced pressure (Concentrater 5301, eppendolf)
(11) n-hexane (フタル酸エステル分析用,東京化成) 100/i l添加  (11) n-hexane (for analysis of phthalate ester, Tokyo Kasei) 100 / il added
(12) GC用ガラス管瓶に移し密栓  (12) Transfer to GC glass bottle and seal
(13) GC/MS分析 '  (13) GC / MS analysis ''
表 4 定量分析用プロトコル Table 4 Protocol for quantitative analysis
(1) 試料 (種子) 10粒 (Fresh weight)秤量  (1) Sample (seed) 10 grains (Fresh weight) weighing
(2) 1.5 mL eppendorf tube(PP製)に入れ tangsteti beads 1粒添加 (Qiagen)  (2) Place in a 1.5 mL eppendorf tube (PP) and add 1 tangsteti beads (Qiagen)
(3) 0.002% BHTおよび 0.1 mM C15: 0-OMe /MeOH 各 500 1添加  (3) Add 0.002% BHT and 0.1 mM C15: 0-OMe / MeOH 500 1 each
(4) 粉砕 (mixer mill MJ1300, Qiagen) , Freq:i/20 sec, lmin.  (4) Milling (mixer mill MJ1300, Qiagen), Freq: i / 20 sec, lmin.
(5) 10% HC1 /MeOH (朿京化成; 4°C保存) 500 μい添加  (5) 10% HC1 / MeOH (Sokkyo Kasei; stored at 4 ° C) Add 500 μl
(6) 80°C lhr (Heat block, Iwaki)  (6) 80 ° C lhr (Heat block, Iwaki)
(7) n-hexane (フタル酸エステル分析用,柬京化成) 1 ml添加  (7) 1 ml of n-hexane (for analysis of phthalate ester, Sokyo Kasei)
(8) Vortex (混和) 5sec  (8) Vortex (mixing) 5sec
(9) 上層 (へキサン相) を 1.5ml eppendolf . tubeに移す (800μ1分とる)  (9) Transfer the upper layer (hexane phase) to 1.5ml eppendolf.tube (take 800μ1 min)
(7) n-hexane (フタル酸エステル分析用,東京化成) 800 μ 1 再添加  (7) n-hexane (for phthalate analysis, Tokyo Kasei) 800 μ 1 re-added
(8) Vortex (混和) 5sec ·  (8) Vortex (mixing) 5sec ·
(9) 上層 (へキサン相) を l,5tnl 印 pendolf tubeに移す (800μ1分とる)  (9) Transfer the upper layer (hexane phase) to the l, 5tnl-marked pendolf tube (take 800μ1 minutes)
(10) 減圧下で乾固 (Concentrater 5301, eppendolf )  (10) Dry under reduced pressure (Concentrater 5301, eppendolf)
(11) n-hexane (フタル酸エステル分析用,柬京化成) 100/z 1添加  (11) n-hexane (for analysis of phthalate ester, Sokyo Kasei) 100 / z 1 added
(12) GC用ガラス管瓶に移し密栓  (12) Transfer to GC glass bottle and seal
(13) GC/MS分析 (HP製〉  (13) GC / MS analysis (manufactured by HP)
上記プロトコルに従った処理によって得られたスぺクトルは、 表5の条件で解 祈した。 この条件は、 二重結合位置による位置異性体であるォレイン酸 (C18:l, Δ 9)およびペトロセリン酸 (C18: 1, Δ 6)を GCで分離して解析できる条件である。 The spectrum obtained by the processing according to the above protocol was prayed under the conditions shown in Table 5 . This is a condition in which oleic acid (C18: l, Δ9) and petrothelic acid (C18: 1, Δ6), which are positional isomers based on the double bond position, can be separated and analyzed by GC.
表 5 分析機器 : HEWLETT PACKARD GC/ S HP6890 series GC system Table 5 Analytical instrument: HEWLETT PACKARD GC / S HP6890 series GC system
5973 Mass Selective Detector  5973 Mass Selective Detector
カラム : SUPELCO SP-2380 (内径 0- 25mm、 lOOm)  Column: SUPELCO SP-2380 (inner diameter 0-25mm, lOOm)
分離プログラム :開始時温度 80°C、 昇温 3°C/分→180°C (保温 35分)、  Separation program: Start temperature 80 ° C, temperature increase 3 ° C / min → 180 ° C (heat retention 35 minutes),
昇温 30で/分→240°C (保温 10分) 計約 80分 .  Temperature rise at 30 / min → 240 ° C (Insulation temperature 10 minutes) Total 80 minutes.
分析モード : split (split比 20: 1)  Analysis mode: split (split ratio 20: 1)
キャリアガス :ヘリウム 流速 1 mL/min,  Carrier gas: Helium flow rate 1 mL / min,
Pressure 29. 9 psi, Average Velocity 20 cm/sec  Pressure 29. 9 psi, Average Velocity 20 cm / sec
GC - MSシステムの質量検出器の Total Ion Chromatogramにおける各ピークの積 分値を内部標準および分子量で割算した値を算出し、その和を全脂肪酸料として、 全脂肪酸中のモル分率(mol-%)で各脂肪酸の組成を示した。 なお、質量分析器で検 出されるフラグメント強度は物貧によって異なり、 分子量を単純に反映しない事 が知られているが、 同一条件で分析した際の再現性 '定量性は非常に高く、 相対 的な比較は十分に可能である。 Calculate the value obtained by dividing the integrated value of each peak in the Total Ion Chromatogram of the mass detector of the GC-MS system by the internal standard and the molecular weight, and using the sum as the total fatty acid material, the mole fraction (mol -%) Shows the composition of each fatty acid. In addition, it is known that the intensity of fragments detected by a mass spectrometer differs depending on the quality of the substance and does not simply reflect the molecular weight. However, the reproducibility when analyzed under the same conditions is very high and relative. Such a comparison is sufficiently possible.
解析結果 1 Analysis result 1
本発明で取得した Dc4DES 遺伝子のペトロセリン酸生産に対する効果を調べる ために、 CaMV35Sプロモーターの制御下に Dc4DES遺伝子を発現する pB- 4DES コン ストラクトを用いて常時全身発現型の形質転換植物を作製した。 この形質転換植 物から葉を採取し、 油脂成分を抽出して上述の方法により脂肪酸組成分析をおこ なった。 なお、 脂肪酸成分としては、 ペトロセリン酸および、 ペトロセリン酸の 前駆体である cis- 4-へキサデセン酸 (16 : 1 Δ 4) について解析を行った。 これら モノエン不飽和脂肪酸の分析結果を表 6に示す。  In order to examine the effect of the Dc4DES gene obtained in the present invention on the production of petrothelinic acid, a transformed plant with a constant systemic expression was produced using a pB-4DES construct that expresses the Dc4DES gene under the control of the CaMV35S promoter. Leaves were collected from this transformed plant, oil and fat components were extracted, and fatty acid composition analysis was performed by the method described above. As fatty acid components, we analyzed petroceric acid and cis-4-hexadecenoic acid (16: 1Δ4), which is a precursor of petroceric acid. Table 6 shows the analysis results of these monoene unsaturated fatty acids.
表 6 脂肪酸!: (wt% /総脂肪酸量)  Table 6 Fatty acids! : (wt% / total fatty acid content)
分析植物組織  Analysis plant tissue
G16:1厶 4土 SE 018:1 Λ 6士 SE  G16: 1 厶 4sat SE 018: 1Λ 6 people SE
WT leaf 0 ± 0 0 ± 0  WT leaf 0 ± 0 0 ± 0
pB-4DES/ T T2 leaf 4.60 士 0.1 7.67 ± 0.17 その結果、 野生型のシロイヌナズナでは合成されないぺトロセリ ン酸が PB-Dc4DESを導入した形質転換体の葉中では全脂肪酸の Ί. 67w t %が蓄積してい た。すなわち、ニンジン由来の Dc4DES遺伝子を用いることにより植物細胞中で効 率的にぺトロセリン酸を生産することが可能であることが示された(表 6 )。また、 既に報告されているタバコの培養細胞にコリアンダー由来の Cs4DES 遺伝子を導 入した場合のペトロセリン酸含量が 2. 7w t %であることから (特許文献 1 )、 ぺ トロセリン酸の合成 ·蓄積において、 コリアンダー由来の Cs4DES遺伝子よりも二 pB-4DES / T T2 leaf 4.60 0.1 0.17 ± 0.17 As a result, not synthesized in wild-type Arabidopsis Bae Toroseri phosphate is Ί. 67w t% of the total fatty acids was accumulated in leaves of transformants obtained by introducing a P B-Dc4DES. In other words, it was shown that petrothelic acid can be efficiently produced in plant cells by using the carrot-derived Dc4DES gene (Table 6). In addition, the introduction of Coriander-derived Cs4DES gene into tobacco cultured cells, which has already been reported, has a petrothelic acid content of 2.7 wt% (Patent Document 1). More than the Cs4DES gene from Coriander
§  §
ンジン由来の Dc4DES遺伝子の機能が優れていることが判明した。 It was found that the function of the Dc4DES gene derived from carrot is excellent.
解析結果 2 Analysis result 2
種子特異的に発現するナタネのナピンプロモーターを用いて種子特異的に Dc4DES遺伝子、 Cs4DES遺伝子、 DcPTE遺伝子 発現する形質転換植物を作製し、 これらの種子から油脂成分を抽出して上述の方法により脂肪酸組成分析をおこな つた。 モノエン不飽和脂肪酸の分析結果を表 7に示す。 なお、表 7中 "NT"は not testedの略である。  Using the rapeseed napin promoter that expresses seeds specifically, transgenic plants expressing Dc4DES gene, Cs4DES gene, and DcPTE gene that express seeds specifically are prepared, and the oil and fat components are extracted from these seeds and fatty acids are extracted by the method described above. A compositional analysis was performed. Table 7 shows the analysis results of monoene unsaturated fatty acids. In Table 7, “NT” stands for not tested.
表 7  Table 7
Genotype Fatty acid (mol¾)  Genotype Fatty acid (mol¾)
厶 4 SE C18 : 1厶 6 SE G20: 1 A 8 SE 計 SE  厶 4 SE C18: 1 厶 6 SE G20: 1 A 8 SE Total SE
実験値  Experimental value
WT 0.00 0.00 0.D0 0,00  WT 0.00 0.00 0.D0 0,00
pNC≤4DES T Τ2(π=3) 0.38 ±0.04 0.81 ±0.11 0.35 ±0.05 1.54 ±0.20  pNC≤4DES T Τ2 (π = 3) 0.38 ± 0.04 0.81 ± 0.11 0.35 ± 0.05 1.54 ± 0.20
PNDQ4DES/WT T2(n=3) 0.40 ±0.03 0.89 ±0.09 0.41 ± 0,03 1.70 土 0.15 pNDc4DESPTE/WT T2(n=Q) 0.37 ±0.01 1.37 ±0.07 0.53 ±0.03 2.28 ±0.15 pNDc4DESPTE/ T T3(n=3) 0.42 ±0.02 1.83 ±0.09 0,68 ±0.05 2.93 ±0.15 P NDQ4DES / WT T2 (n = 3) 0.40 ± 0.03 0.89 ± 0.09 0.41 ± 0,03 1.70 Sat 0.15 pNDc4DESPTE / WT T2 (n = Q) 0.37 ± 0.01 1.37 ± 0.07 0.53 ± 0.03 2.28 ± 0.15 pNDc4DESPTE / T T3 ( n = 3) 0.42 ± 0.02 1.83 ± 0.09 0,68 ± 0.05 2.93 ± 0.15
文献値  Literature value
WT 0.00 0.00 0.00  WT 0.00 0.00 0.00
pN-Gs4DES/WT T2く n=10) NT NT 0.6 ±0.04  pN-Gs4DES / WT T2 n = 10) NT NT 0.6 ± 0.04
PN-Cs4DES/fab1 T2(n=6) NT NT 2.4 ±0.2  PN-Cs4DES / fab1 T2 (n = 6) NT NT 2.4 ± 0.2
その結果、 PN- Cs4DESを導入した形質転換体の種子において 0. 81mol%のぺト口 セリン酸が蓄積していた。 これに対し、 pN- Dc4DES を導入した形質転換体の種子 に蓄積しているペトロセリン酸は 0. 89mol %であり、 種子中でのペトロセリン酸 の合成'蓄積においてもコリアンダー由来の Cs4DES遺伝子よりも-ンジン由来の Dc4DES遺伝子の機能が優れていた。 As a result, 0.81 mol% of petostellanic acid was accumulated in the seeds of the transformant introduced with PN -Cs4DES. In contrast, the amount of petroceric acid accumulated in the seeds of the transformants into which pN-Dc4DES was introduced was 0.89 mol%, and even in the synthesis of petrothelinic acid in seeds' accumulation, the Cs4DES gene derived from coriander The function of the Dc4DES gene derived from carrot was excellent.
pN - Dc4DES- DcPTE を導入した形質転換体の場合は、 1. 83 mol %のペトロセリン 酸が蓄積していた。 すなわち、 Cs4DES遺伝子のみを導入した場合と比較して、 ぺ トロセリン酸の蓄積量が 226%に増加しており、 ペトロセリノィル - ACPに高い基 質特異性を持つ DcPTEを導入することによりペトロセリン酸の生産が促進された。 すなわち、 Dc4DES遺伝子と DcPTE遺伝子とを共発現することにより、 Dc4DES遺伝 子を単独で発現させた場合に比較して遥かに高いぺトロセリン酸蓄積量を示す効 果がある事が判明した。 また、従来技術であるコリアンダー由来 Cs4DES遺伝子を 単独で用いた場合と比較すると、 2倍以上に近い値が得られた。 これまでに 4 DES 遺伝子と共発現させることによってペトロセリン酸蓄積量を高めることを可能に するペトロセリン酸生合成系遺伝子は全く知られておらず、 これは世界初の発見In the case of the transformant introduced with pN-Dc4DES-DcPTE, 1.83 mol% of petrothelic acid was accumulated. In other words, compared to the case where only the Cs4DES gene was introduced, The amount of accumulated troceric acid increased to 226%, and the introduction of DcPTE with high substrate specificity into petrocerinol-ACP promoted the production of petrothelinic acid. In other words, it was found that co-expression of the Dc4DES gene and the DcPTE gene has an effect of showing a far higher amount of accumulated petrothelic acid than when the Dc4DES gene is expressed alone. Compared to the conventional Coriander-derived Cs4DES gene used alone, a value nearly doubled was obtained. So far, no petrothelinic acid biosynthetic genes have been known that make it possible to increase the amount of petrothelic acid accumulation by co-expression with the 4DES gene.
C、ある。 C, there is.
また、表 6に示すように、 Dc4DES遺伝子を単独で発現させるか、もしくは Dc4DES 遺伝子及び DcPTE遺伝子を共発現させることにより、ペトロセリン酸のみならず、 cis- 8-ィコセン酸の生産が可能であることを発見した。 また、 Dc4DES遺伝子及び DcPTE遺伝子を共発現させた場合には、 Dc4DES遺伝子を単独で発現させた場合と 比較して ci s- 8-ィコセン酸の生産量を増加できることが確認できた。 なお、 c i s- 8-ィコセン酸はこれまでに植物での生産例はない。  In addition, as shown in Table 6, it is possible to produce not only petroceric acid but also cis-8-icosenoic acid by expressing the Dc4DES gene alone or by co-expressing the Dc4DES gene and the DcPTE gene. I found In addition, it was confirmed that the amount of ci s-8-icosenoic acid produced could be increased when the Dc4DES gene and the DcPTE gene were co-expressed compared to when the Dc4DES gene was expressed alone. In addition, c i s-8-icosenoic acid has not been produced in plants so far.
解析結果 3 Analysis result 3
さらに、 Dc4DES遺伝子または DcPTE遺伝子を単独で発現させた形質転換植物と、 Furthermore, a transformed plant in which the Dc4DES gene or DcPTE gene is expressed alone,
Dc4DES遺伝子及び DcPTE遺伝子を共発現させた形質転換植物における、飽和脂肪 酸を含む各脂肪酸組 の分析をおこなった。 Analysis of each fatty acid group including saturated fatty acid in a transgenic plant co-expressed with the Dc4DES gene and the DcPTE gene was performed.
その結果、野生株と Cs 4 DES遺伝子、 Dc4DES遺伝子導入形質転換植物に対して、 As a result, against wild-type strains and Cs 4 DES gene and Dc4DES gene-introduced transformed plants,
DcPTE遺伝子を単独で、あるいは DcPTE遺伝子と Dc4DES遺伝子を共発現させた形 質転換体では種子中の飽和脂肪酸含量が有意に増加している事が判明した(図 9 )。It was found that the saturated fatty acid content in seeds was significantly increased in transformants in which the DcPTE gene alone or the DcPTE gene and the Dc4DES gene were co-expressed (Fig. 9).
DcPTE遺伝子を導入した植物種子中のステアリン酸(C18: 0)、ィコサン酸(C20: 0)、 ドコサン酸 (C22 : 0) の含量は、 DcPTE遺伝子を導入していない植物種子中含量のThe content of stearic acid (C18: 0), icosanoic acid (C20: 0), and docosanoic acid (C22: 0) in plant seeds with the DcPTE gene introduced is the same as the content in plant seeds without the DcPTE gene introduced.
2倍近くに達していた。 DcPTE遺伝子は、推定アミノ酸配列に基づく分子系統樹解 祈から、 不飽和脂肪酸- ACPに特異性を有する Fat Aと呼ばれる群のチォエステラ ーゼ遺伝子として分類されている。 また、 実施例 2に示すようにべテロセリノィ ル ACPに基質特異性を示すとの結果から、 不飽和脂肪酸含量を高める効果は予期 できるものの、 飽和脂肪酸の増産効果は予想し難いことから、 DcPTE遺伝子は当 業者の予測できない格別顕著な効果を有する遺伝子であることが判明した。 Nearly doubled. The DcPTE genes are classified as a group of tioesterase genes called Fat A, which has specificity for unsaturated fatty acids-ACP, based on a molecular phylogenetic analysis based on the deduced amino acid sequence. In addition, as shown in Example 2, it can be expected that the effect of increasing unsaturated fatty acid content can be expected from the results of showing substrate specificity for betacellinoyl ACP, but it is difficult to predict the production effect of saturated fatty acid. This It turned out to be a gene that had an exceptionally remarkable effect that could not be predicted by a vendor.
植物由来脂肪酸を酸化分解することによってナイロン原料 (ジカルボン酸) を 製造する場合に、 DcPTE遺伝子の持つ「ペトロセリン酸蓄積促進効果に加えて C18 以上の飽和脂肪酸含量を高める効果」 は非常に有利な性質となると考えられる。 すなわち、 飽和脂肪酸含量を増加により、 相対的にぺトロセリン酸以外の不飽和 脂肪酸(酸化分解されるので不純物生成の原因となる)含量を下げることとなる。 また、 この効果は Dc 4 DES遺伝子等の他の遺伝子と併用しなくても単独で得られ るので、 樹脂原料製造を目的としたペトロセリン酸蓄積以外の用途 (飽和脂肪酸 生産等) へも応用することができる。 産業上の利用可能性 In the production of nylon material (dicarboxylic acid) by oxidative decomposition of plant-derived fatty acids, "the effect of increasing the saturated fatty acid content of C1 8 or more in addition to petroselinic acid accumulation promoting effect" with the DcPTE gene is very advantageous It is considered to be a property. That is, by increasing the saturated fatty acid content, the content of unsaturated fatty acids other than petroceric acid (causing oxidative degradation and causing impurities to be generated) will be lowered. In addition, this effect can be obtained alone without using in combination with other genes such as the Dc 4 DES gene, so it can be applied to uses other than the accumulation of petroceric acid for the production of resin raw materials (saturated fatty acid production etc.) be able to. Industrial applicability
本発明によれば、 ペトロセリン酸の製造においてその合成量を増加させるため に用いる新規遺伝子を提供することができ、 当該遺伝子を用いた新規なぺトロセ リン酸の製造方法を提供することができる。 本発明に係るペトロセリン酸の製造 に関与する遺伝子を用いれば、 例えば植物種子内に多量にぺトロセリン酸を蓄積 することができる。  ADVANTAGE OF THE INVENTION According to this invention, the novel gene used in order to increase the amount of the synthesis | combination in manufacture of petroselinic acid can be provided, and the manufacturing method of the novel petroselinic acid using the said gene can be provided. If a gene involved in the production of petrothelic acid according to the present invention is used, for example, petroselinic acid can be accumulated in large amounts in plant seeds.
本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。  All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims

請求の範囲 The scope of the claims
1 . 以下の(a)、 (b)又は(c)のタンパク質をコードする遺伝子。 1. A gene encoding the following protein (a), (b) or (c).
(a)配列番号 2に示すァミノ酸配列を含むタンパク質  (a) a protein comprising the amino acid sequence shown in SEQ ID NO: 2
(b)配列番号 2に示すアミノ酸配列において 1又は複数のアミノ酸が欠失、置換又 は付加されたアミノ酸配列を含み、 Δ 4 -パルミ トイル- ACPデサチユラーゼ活性を 有するタンパク質  (b) A protein having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 and having Δ 4 -palmitoyl-ACP desaturase activity
(c)配列番号 1に示す塩基配列と相補的な塩基配列からなる DNAに対して、ストリ ンジヱントな条件下でハイブリダィズする DNAによりコードされ、 Δ 4-パルミ ト ィル- ACPデサチユラーゼ活性を有するタンパク質  (c) a protein encoded by a DNA that hybridizes under stringent conditions to DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 and having Δ4-palmityl-ACP desaturase activity
2 . 以下の(a)、 (b)又は(c)のタンパク質をコードする遺伝子。  2. A gene encoding the following protein (a), (b) or (c).
(a)配列番号 4又は 6に示すァミノ酸配列を含むタンパク質  (a) a protein comprising the amino acid sequence shown in SEQ ID NO: 4 or 6
(b)配列番号 4又は 6に示すアミノ酸配列において 1又は複数のアミノ酸が欠失、 置換又は付加されたアミノ酸配列を含み、ペトロセリノィル - ACPチォエステラー ゼ活性を有するタンパク質  (b) a protein having an amino acid sequence in which one or more amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 4 or 6, and having petrocellinol-ACP tioesterase activity
(c)配列番号 3又は 5に示す塩基配列と相補的な塩基配列からなる DNAに対して、 ストリンジェントな条件下でハイブリダイズする DNAによりコードされ、 ペトロ セリノィル -ACPチォエステラーゼ活性を有するタンパク質  (c) a protein encoded by DNA that hybridizes under stringent conditions to DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 3 or 5 and having petro-cerinoyl-ACP tioesterase activity
3 . 請求項 1記載の遺伝子及び/又は請求項 2記載の遺伝子を有する発現べク  3. An expression vector having the gene of claim 1 and / or the gene of claim 2.
4 . 請求項 1記載の遺伝子及び/又は請求項 2記載の遺伝子を導入してなる形 質転換体。 4. A transformant obtained by introducing the gene according to claim 1 and / or the gene according to claim 2.
5 . 請求項 1記載の遺伝子及び/又は請求項 2記載の遺伝子を植物細胞に導入 し、 形質転換植物を作製する工程と、  5. introducing a gene according to claim 1 and / or a gene according to claim 2 into a plant cell to produce a transformed plant;
上記形質転換植物から採取した組織からペトロセリン酸を抽出する工程とを備 える、 ペトロセリン酸の製造方法。  A method for producing petroseric acid, comprising a step of extracting petroseric acid from a tissue collected from the transformed plant.
6 . 請求項 1記載の遺伝子及び請求項 2記載の遺伝子を導入した事を特徴と するぺトロセリン酸生産能を有する形質転換植物細胞もしくは形質転換植物個体。  6. A transformed plant cell or transformed plant individual having the ability to produce petrothelic acid, characterized by introducing the gene according to claim 1 and the gene according to claim 2.
7 . 請求項 1記載の遺伝子及び請求項 2記載の遺伝子を導入した事を特徴と する c is- 4-へキサデセン酸 (cis-4-Hexadecenoic acid) 生産能を有する开質転 換植物細胞もしくは形質転換植物個体。 7. The gene according to claim 1 and the gene according to claim 2 are introduced. C is-4-Hexadecenoic acid An open transformed plant cell or a transformed plant individual capable of producing cis-4-Hexadecenoic acid.
8 . 請求項 1記載の遺伝子及び請求項 2記載の遺伝子を導入した事を特徴と する c is- 8-ィコセン酸 (cis- 8-icosenoic acid) 生産能を有する开質転換植物細 胞もしくは形質転換植物個体。  8. A transgenic plant cell or trait having the ability to produce cis-8-icosenoic acid, characterized by introducing the gene of claim 1 and the gene of claim 2 Convertible plant individual.
9 . 請求項 2記載の遺伝子を導入した事を特徴とする飽和脂肪酸増産能を有 する形質転換植物細胞もしくは形質転換植物個体。  9. A transformed plant cell or a transformed plant individual having the ability to increase saturated fatty acid, wherein the gene according to claim 2 is introduced.
1 0 . 種子特異的プロモーターと、 当該プロモーターの下流に配された上記 遺伝子とを有する発現ベクターを用いて上記植物細胞を形質転換し、 上記ペトロ セリン酸を種子から抽出することを特徴とする請求項 5記載のペトロセリン酸の 製造方法。  10. The plant cell is transformed with an expression vector having a seed-specific promoter and the gene arranged downstream of the promoter, and the petrothelic acid is extracted from the seed. Item 6. A method for producing petroceric acid according to Item 5.
1 1 . 種子特異的プロモーターと、 当該プロモーターの下流に配された上記 遺伝子とを有する発現ベクターを用いて上記植物細胞を形質転換し、上記 ci s-4- ベキサデセン酸 (cis-4-Hexadecenoi c acid) を種子から抽出することを特徴とす る請求項 5記載の c is_4-へキサデセン酸 (cis- 4_Hexadecenoic aci d) の製造方 法。  1 1. The plant cell is transformed with an expression vector having a seed-specific promoter and the gene arranged downstream of the promoter, and the ci s-4-bexadecenoic acid (cis-4-Hexadecenoi c 6. The method for producing cis_4-hexadecenoic acid according to claim 5, wherein the acid is extracted from seeds.
1 2 . 種子特異的プロモーターと、 当該プロモーターの下流に配された上記 遺伝子とを有する発現ベクターを用いて上記植物細胞を形質転換し、上記 cis - 8 - ィコセン酸 (ci s- 8-icosenoic acid) を種子から抽出することを特徴とする請求 項 5記載の cis- 8-ィコセン酸 (c i s- 8- icosenoic ac id) の製造方法。  1 2. The above plant cell is transformed with an expression vector having a seed-specific promoter and the above gene located downstream of the promoter, and the above cis-8-icosenoic acid (ci s-8-icosenoic acid) 6) The method for producing cis-8-icosenoic acid according to claim 5, wherein the cis-8-icosenoic acid is extracted from seeds.
1 3 . 種子特異的プロモーターと、 当該プロモーターの下流に配された上記 遺伝子とを有する発現べクタ一を用いて上記植物細胞を形質転換し、 上記飽和脂 肪酸を種子から抽出することを特徴とする請求項 5記載の飽和脂肪酸の製造方法。  1 3. The plant cell is transformed with an expression vector having a seed-specific promoter and the gene arranged downstream of the promoter, and the saturated fatty acid is extracted from the seed. A method for producing a saturated fatty acid according to claim 5.
PCT/JP2006/313449 2005-06-30 2006-06-29 Novel gene involved in biosynthesis of petroselinic acid and process for production of petroselinic acid WO2007004694A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2006266760A AU2006266760B2 (en) 2005-06-30 2006-06-29 Novel genes involved in petroselinic acid biosynthesis and method for producing petroselinic acid
JP2007523443A JP4840360B2 (en) 2005-06-30 2006-06-29 A novel gene involved in biosynthesis of petrothelic acid, a method for producing petrothelic acid
CA2614062A CA2614062C (en) 2005-06-30 2006-06-29 Novel genes involved in petroselinic acid biosynthesis and method for producing petroselinic acid
CN2006800241478A CN101213298B (en) 2005-06-30 2006-06-29 Novel gene involved in biosynthesis of petroselinic acid and process for production of petroselinic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-191775 2005-06-30
JP2005191775 2005-06-30

Publications (1)

Publication Number Publication Date
WO2007004694A1 true WO2007004694A1 (en) 2007-01-11

Family

ID=37604552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313449 WO2007004694A1 (en) 2005-06-30 2006-06-29 Novel gene involved in biosynthesis of petroselinic acid and process for production of petroselinic acid

Country Status (5)

Country Link
JP (1) JP4840360B2 (en)
CN (1) CN101213298B (en)
AU (1) AU2006266760B2 (en)
CA (2) CA2614062C (en)
WO (1) WO2007004694A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430134A (en) * 1992-08-07 1995-07-04 Michigan State University Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants
JPH10505237A (en) * 1994-08-31 1998-05-26 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Nucleotide sequences of canola and soybean palmitoyl-ACP thioesterase genes and their use in regulating the fatty acid content of soybean and canola plant oils
JPH10510438A (en) * 1995-09-29 1998-10-13 カルジーン,インコーポレーテッド Plant stearoyl-ACP thioesterase sequence and method for increasing the stearate content of plant seed oil
JP2002502263A (en) * 1997-06-03 2002-01-22 カルジーン エルエルシー Engineering of plant thioesterase and plant thioesterase with novel substrate specificity
JP2002521560A (en) * 1998-08-03 2002-07-16 カーギル インコーポレイテッド Biodegradable high oxidation stable oil

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9918022D0 (en) * 1999-07-30 1999-09-29 Unilever Plc Skin care composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430134A (en) * 1992-08-07 1995-07-04 Michigan State University Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants
JPH10505237A (en) * 1994-08-31 1998-05-26 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Nucleotide sequences of canola and soybean palmitoyl-ACP thioesterase genes and their use in regulating the fatty acid content of soybean and canola plant oils
JPH10510438A (en) * 1995-09-29 1998-10-13 カルジーン,インコーポレーテッド Plant stearoyl-ACP thioesterase sequence and method for increasing the stearate content of plant seed oil
JP2002502263A (en) * 1997-06-03 2002-01-22 カルジーン エルエルシー Engineering of plant thioesterase and plant thioesterase with novel substrate specificity
JP2002521560A (en) * 1998-08-03 2002-07-16 カーギル インコーポレイテッド Biodegradable high oxidation stable oil

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CAHOON E.B. ET AL.: "Apparent Role of Phosphatidylcholine in the Metabolism of Petroselinic Acid in Developing Umbelliferase Endosperm", PLANT, vol. 104, no. 3, 1994, pages 845 - 855, XP003008854 *
CAHOON E.B. ET AL.: "Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco", PROC. NATL. ACAD. SCI. USA, vol. 89, no. 23, 1992, pages 11184 - 11188, XP002000646 *
CAHOON E.B. ET AL.: "Metabolic Evidence for the Involvement of a [delta]4-Palmitoyl-Acyl Carrier Protein Desaturase in Petroselinic Acid Synthesis in Coriander Endosperm and Transgenic Tobacco Cells", PLANT PHYSIOL., vol. 104, no. 3, 1994, pages 827 - 837, XP003008851 *
CAHOON E.B. ET AL.: "Petroselinic acid biosynthesis and production in transgenic plants", PROGRESS IN LIPID RESEARCH, vol. 33, no. 1-2, 1994, pages 155 - 163, XP003008852 *
DÖRMANN P. ET AL.: "Cloning and expression in Escherichia coli of a cDNA coding for the oleoyl-acyl carrier protein thioesterase from coriander (Coriandrum sativum L.)", BIOCHIM. BIOPHYS. ACTA, vol. 1212, no. 1, 1994, pages 134 - 136, XP003008853 *

Also Published As

Publication number Publication date
JPWO2007004694A1 (en) 2009-01-29
JP4840360B2 (en) 2011-12-21
CN101213298B (en) 2012-04-18
CA2614062C (en) 2011-11-15
AU2006266760B2 (en) 2011-12-15
CA2614062A1 (en) 2007-01-11
CA2700545C (en) 2012-08-28
AU2006266760A1 (en) 2007-01-11
CN101213298A (en) 2008-07-02
CA2700545A1 (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP4481819B2 (en) Diacylglycerol acyltransferase nucleic acid sequences and related products
CA2109580C (en) Plant medium-chain thioesterases
EP1309698B1 (en) A cytochrome p450 enzyme associated with the synthesis of delta-12 -epoxy groups in fatty acids of plants
AU2013340445B2 (en) Improved acyltransferase polynucleotides, polypeptides, and methods of use
EP1064387B1 (en) Limanthes oil genes
US11312971B2 (en) Enhanced acyltransferase polynucleotides, polypeptides and methods of use
CN1617880A (en) Plant cyclopropane fatty acid synthase genes, proteins and uses thereof
CN105121646B (en) Novel acyltransferase polynucleotides, polypeptides, and methods of use thereof
US20060156430A1 (en) Novel cytochrome P450 monooxygenase
WO2007004694A1 (en) Novel gene involved in biosynthesis of petroselinic acid and process for production of petroselinic acid
EP1352069A2 (en) Nucleic acids that code for oxidosqualene cyclases
US11613762B2 (en) Plants with modified lipid metabolism and methods for making the same
CA2387044A1 (en) Oleoyl-acyl-carrier-protein thioesterases in plants

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680024147.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007523443

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2614062

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006266760

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2006266760

Country of ref document: AU

Date of ref document: 20060629

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006266760

Country of ref document: AU

122 Ep: pct application non-entry in european phase

Ref document number: 06780825

Country of ref document: EP

Kind code of ref document: A1