WO2007004604A1 - Dispositif de mesure de la densité osseuse - Google Patents

Dispositif de mesure de la densité osseuse Download PDF

Info

Publication number
WO2007004604A1
WO2007004604A1 PCT/JP2006/313221 JP2006313221W WO2007004604A1 WO 2007004604 A1 WO2007004604 A1 WO 2007004604A1 JP 2006313221 W JP2006313221 W JP 2006313221W WO 2007004604 A1 WO2007004604 A1 WO 2007004604A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
bone
bone density
reflected
unit
Prior art date
Application number
PCT/JP2006/313221
Other languages
English (en)
Japanese (ja)
Inventor
Shigeo Tanaka
Masamichi Nogawa
Kenichi Yamakoshi
Original Assignee
Kanazawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University filed Critical Kanazawa University
Publication of WO2007004604A1 publication Critical patent/WO2007004604A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4504Bones
    • A61B5/4509Bone density determination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/414Evaluating particular organs or parts of the immune or lymphatic systems
    • A61B5/417Evaluating particular organs or parts of the immune or lymphatic systems the bone marrow

Definitions

  • the present invention relates to a bone density measuring apparatus for measuring bone density using light.
  • osteoporosis is one of the serious problems for the future elderly society. Since osteoporosis can be a major cause of lifestyle habits, it is necessary to know bone condition by measuring bone density on a daily basis.
  • the main bone densitometers currently in use are large and expensive because they use X-rays and ultrasound. Therefore, it is difficult for individuals to self-check bone density on a daily basis using these devices.
  • biological information measurement by optical sensing is mainly applied to non-invasive measurement such as blood oxygen saturation measurement and has already been put into practical use.
  • non-invasive measurement such as blood oxygen saturation measurement
  • small and inexpensive high-performance light-emitting diodes and photodiodes can be used, and biometric information measurement methods based on optical sensing methods are expected to have a dramatically broader application range.
  • An object of the present invention is to provide a small-sized and low-cost non-invasive bone density measuring device by applying the above-described optical sensing method to non-invasive measurement of bone density. And this is to allow individuals to measure bone density on a daily basis.
  • the present invention provides a light emitting unit, a light receiving unit in which a plurality of light receiving elements are arranged to receive reflected / scattered light from the light emitting unit, the light emitting unit, and the light receiving unit.
  • the light emitting unit may be a light emitting diode that generates near-infrared light
  • the light receiving unit may be a photodiode array in which a plurality of photodiodes are arranged.
  • a small-sized and low-cost non-invasive bone density measuring device can be realized by measuring light scattering in the bone. This allows individuals to routinely measure bone density.
  • a bone density measuring apparatus using spatially resolved spectroscopy using light is configured.
  • the bone density measuring device of the present invention is an apparatus that can measure bone density non-invasively by utilizing the reflection of light from bone tissue and the identification of scattering.
  • bone tissue is composed of bone and bone marrow force surrounding it.
  • Bone means bone matrix, which is mainly composed of hydroxyapatite and collagen fibers!
  • bone density means the space occupancy or porosity of this “bone” expressed by the weight per unit space, and the bone density measuring device described below measures this.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a bone density measuring apparatus of the present invention. In FIG.
  • the measuring unit of the bone density measuring apparatus includes a light emitting unit 110 that emits light and a light receiving unit 120 that receives light through the bone to be measured.
  • the light emitting unit 110 and the light receiving unit 120 are connected to the control unit 140.
  • the control unit 140 controls the light emission of the light emitting unit 110, inputs the measurement value from the light receiving unit 120, and displays it as bone density.
  • the light emitting unit 110 uses, for example, a light emitting diode (LED).
  • the light receiving unit 120 is an array of 16 photodiodes (PDs) as light receiving elements arranged in a line. Since the light emitted from the light emitting diode is excellent in biopermeability, near infrared light is desirable.
  • Near-infrared light emitted from the light emitting diode (LED) 110 is irradiated toward the bone 134 with the upper force of the skin 132.
  • the irradiated near-infrared light reaches the bone 134, and the diffusely reflected light is detected by the photodiode 120 arranged on the skin.
  • the diffuse reflected light intensity detected by the photodiode 120 reflects the bone density. Can be evaluated.
  • the present invention focuses on the difference in the diffuse reflection intensity distribution resulting from the difference in the absorption and scattering characteristics of the skin and the bone. Thus, light information based only on bone strength is extracted.
  • the present invention uses a photodiode array in which 16 photodiodes are arranged in a row as shown in FIG.
  • the diode detects reflected / scattered light from the skin of the surface layer, while the far-end photodiode reflects / scatters light that reflects the density characteristics of bones deeper than the reflected / scattered light of skin force. Uses that is detected.
  • the bone density information can be extracted by analyzing the spatial distribution of the reflected / scattered light intensity obtained from the photodiode far from the light emitting diode.
  • Fig. 2 (a) shows the spatial distribution of the reflected and scattered light intensity for each simulated bone tissue sample.
  • the reflected 'scattered light intensity tended to increase overall as the cancellous bone tip density increased.
  • the tendency was strong in the intensity distribution of the photodiode (PD) close to the light emitting diode. Reflecting more on the difference in cancellous bone tip density, the relationship between the slope of the reflected light scattered light intensity distribution (approximate linear force calculation) and the cancellous bone tip density at the far and wide photodiodes was investigated.
  • Figure 3 shows the results of investigating the difference in the slope of the reflected / scattered light intensity distribution when the thickness of the gelatin layer (simulated skin layer) is changed with the same cancellous bone tip density (0.24gZcm 3 ). It is.
  • the arrangement of the photodiode array that is the light receiving unit does not have to be a configuration in which the distribution in one direction is measured in a line as shown in FIG.
  • the photodiode array 120 may be arranged radially or concentrically as shown in FIGS. 4 (a) and 4 (b). Such an arrangement has the effect of reducing errors caused by the difference in how the device is applied to the measurement area by measuring the distribution in multiple directions.
  • the reflected / scattered light intensity detected by a photodiode close to the light-emitting diode more strongly reflects the skin condition of the surface layer, so the accuracy of bone density information obtained with a distant photodiode by using this information It is also possible to improve further.
  • the force used to obtain a correlation with bone density using one wavelength is not necessarily one wavelength.
  • the true value prediction algorithm based on such a database includes a lookup table method, a neural network, or a multivariate analysis method.
  • the bone density is quantitatively evaluated by the spatial distribution decomposition spectroscopy in the diffuse reflection mode.
  • the transmitted signal is transmitted as in the conventional X-ray method (DEXA) and ultrasonic method, which are methods for measuring bone density. Since it is not necessary to detect on the opposite side, as shown in Fig. 5, the entire device can be made compact and used conveniently.
  • the light receiving unit 120 is shown in order to show the light (near-infrared light) V applied to the bone 200 of the arm to be measured.
  • the invented device can use general-purpose LEDs and photodiodes, so that the cost is significantly reduced compared to conventional machines using X-rays or ultrasonic waves.
  • the device of the present invention is small and light, it is most suitable for bone density measurement in space flight where a limited space on board and a limited weight are required.
  • FIG. 1 is a diagram showing a schematic configuration of a bone density measuring device according to the present invention.
  • FIG. 2 (a) A graph showing the spatial distribution of reflected / scattered light for a simulated bone tissue sample. (B) The result of investigating the correlation between the slope of the reflected light scattered light intensity distribution and the cancellous bone tip density.
  • FIG. 3 is a graph showing the difference in the slope of the reflected light / scattered light intensity distribution when the thickness of the gelatin layer is changed.
  • FIG. 5 is a diagram showing a state in which the bone density measuring apparatus of the present invention is miniaturized and bone density is measured. It is.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Rheumatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Vascular Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Dentistry (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Le problème que l’invention se propose de résoudre est la mise au point d’un dispositif de mesure de la densité osseuse de faible encombrement, à moindre coût et non invasif. Les solutions proposées consistent en un dispositif de mesure de la densité osseuse dont l’unité de mesure comprend une unité émettrice de lumière (DEL) (110) produisant un rayonnement proche infrarouge et une unité réceptrice de lumière (réseau de photodiodes) (120) pour recevoir ce rayonnement à travers un os objet de la mesure. L’unité émettrice de lumière (110) et l’unité réceptrice de lumière (120) sont reliées par une unité de commande (140). L’unité de commande (140) dirige l’émission de lumière de l’unité émettrice (110) et reçoit une valeur mesurée de l’unité réceptrice (120) qu’elle affiche sous forme de densité osseuse. Le rayonnement lumineux reflété/dispersé par la peau (132) et l’os (134) est détecté par des photodiodes (120) disposées en séries. Des photodiodes distantes détectent les rayonnements lumineux reflétés/dispersés correspondant aux caractéristiques de densité d’un os à un endroit plus profond sans être affectées par les rayonnements lumineux reflétés/dispersés par la peau. Les informations de densité osseuse peuvent être obtenues en analysant la répartition dans l’espace des intensités lumineuses reflétées/dispersées détectées par les photodiodes distantes de la DEL.
PCT/JP2006/313221 2005-07-01 2006-07-03 Dispositif de mesure de la densité osseuse WO2007004604A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-194017 2005-07-01
JP2005194017A JP2007007267A (ja) 2005-07-01 2005-07-01 骨密度計測装置

Publications (1)

Publication Number Publication Date
WO2007004604A1 true WO2007004604A1 (fr) 2007-01-11

Family

ID=37604465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313221 WO2007004604A1 (fr) 2005-07-01 2006-07-03 Dispositif de mesure de la densité osseuse

Country Status (2)

Country Link
JP (1) JP2007007267A (fr)
WO (1) WO2007004604A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011051888A3 (fr) * 2009-11-02 2011-10-13 Koninklijke Philips Electronics N.V. Capteur optique médical
CN105510238A (zh) * 2014-09-28 2016-04-20 天津先阳科技发展有限公司 多位置漫射光谱数据的处理、建模、预测方法和处理装置
WO2018007546A1 (fr) * 2016-07-06 2018-01-11 Koninklijke Philips N.V. Surveillance des caractéristiques osseuses

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100905571B1 (ko) 2007-07-19 2009-07-02 삼성전자주식회사 생체 정보 측정 장치
JP4640492B2 (ja) 2008-10-27 2011-03-02 パナソニック電工株式会社 骨密度計測装置
JP2010194033A (ja) * 2009-02-24 2010-09-09 Panasonic Electric Works Co Ltd 生体情報計測装置
JP5426964B2 (ja) * 2009-08-26 2014-02-26 パナソニック株式会社 健康測定装置
JP6951730B2 (ja) * 2016-03-02 2021-10-20 国立大学法人金沢大学 骨密度計測装置及び方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07503649A (ja) * 1992-12-09 1995-04-20 カール−ツアイス−シュティフテュング・ハンデルンド・アルツ・カール・ツアイス 生物組織中の密度分布を光学的に,空間分解しつつ確定する装置及び方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970404A (ja) * 1995-09-07 1997-03-18 Akira Itabashi 骨組織解析装置および方法
US6662030B2 (en) * 1998-05-18 2003-12-09 Abbott Laboratories Non-invasive sensor having controllable temperature feature
US6353226B1 (en) * 1998-11-23 2002-03-05 Abbott Laboratories Non-invasive sensor capable of determining optical parameters in a sample having multiple layers
US20010041829A1 (en) * 2000-01-12 2001-11-15 Suresh Thennadil Non-invasive method of determining skin thickness and characterizing layers of skin tissue in vivo
US7050842B2 (en) * 2000-07-11 2006-05-23 Lightouch Medical, Inc. Method of tissue modulation for noninvasive measurement of an analyte
GB0426993D0 (en) * 2004-12-09 2005-01-12 Council Cent Lab Res Councils Apparatus for depth-selective raman spectroscopy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07503649A (ja) * 1992-12-09 1995-04-20 カール−ツアイス−シュティフテュング・ハンデルンド・アルツ・カール・ツアイス 生物組織中の密度分布を光学的に,空間分解しつつ確定する装置及び方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUSHIMI Y. ET AL.: "Kinsekigai Bunkoho ni yoru Kotsumitsudo Keisoku no Kisoteki Kento", DAI 44 KAI JAPANESE SOCIETY FOR MEDICAL AND BIOLOGICAL ENGINEERING TAIKAI RONBUNSHU, vol. 43, 25 April 2005 (2005-04-25), pages 321, XP003008841 *
TAKEUCHI A. ET AL.: "Hikari Sanran ni Motozuku Kotsusoshiki no Atarashii Sokuteiho", DAI 13 KAI THE JAPANESE SOCIETY FOR BONE AND MINERAL RESEARCH PROGRAM SHOROKUSHU, 1 July 1995 (1995-07-01), pages 358, XP003008840 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011051888A3 (fr) * 2009-11-02 2011-10-13 Koninklijke Philips Electronics N.V. Capteur optique médical
CN105510238A (zh) * 2014-09-28 2016-04-20 天津先阳科技发展有限公司 多位置漫射光谱数据的处理、建模、预测方法和处理装置
US10054594B2 (en) 2014-09-28 2018-08-21 Tianjin Sunrise Technologies Development Co., Ltd. Processing, model establishment, and predication methods of multi-position diffuse spectral data and processing apparatus
WO2018007546A1 (fr) * 2016-07-06 2018-01-11 Koninklijke Philips N.V. Surveillance des caractéristiques osseuses
RU2748048C2 (ru) * 2016-07-06 2021-05-19 Конинклейке Филипс Н.В. Контроль характеристик костей
US11234636B2 (en) 2016-07-06 2022-02-01 Koninklijke Philips N.V. Monitoring bone characteristics

Also Published As

Publication number Publication date
JP2007007267A (ja) 2007-01-18

Similar Documents

Publication Publication Date Title
WO2007004604A1 (fr) Dispositif de mesure de la densité osseuse
US20100016732A1 (en) Apparatus and method for neural-signal capture to drive neuroprostheses or control bodily function
Chance et al. Phase measurement of light absorption and scatter in human tissue
AU2008325237B2 (en) Optical sensor for determining the concentration of an analyte
KR102085712B1 (ko) 로버스트 캘리브레이션 및 자가-수정을 위한 조직 옥시메트리 프로브 기하학
JP5271700B2 (ja) 光反射率測定値を補正するためのシステム及び方法
AU749033B2 (en) Apparatus and method for noninvasive glucose measurement
JP5966135B2 (ja) 光学的測定装置
US7342652B2 (en) Biomedical optical device and biomedical optical measuring method
JP2010540964A (ja) 光学デバイス構成要素
US7961304B2 (en) Optical device components
EP0880689A1 (fr) Procede et appareil d'analyse quantitative dans l'infrarouge proche
KR101097399B1 (ko) 피부 자가형광을 이용한 최종 당화 산물 양의 평가에 의한 질병 진단 장치
EP2312992A1 (fr) Procédé et appareil de capture de signal neural pour entraîner des prothèses neurales ou commander une fonction corporelle
JP2008237775A (ja) 血液成分計測装置
CN109154564A (zh) 无创性血液分析
WO2007060583A2 (fr) Procede et appareil pour determiner des concentrations d'analytes dans un fluide trouble
US20090131799A1 (en) Bone density measuring device
US9993158B2 (en) Apparatus for measuring condition of object
KR100300960B1 (ko) 혈중성분 농도의 무혈측정 방법 및 장치
RU2234853C1 (ru) Диагностическое устройство для измерения физико-биологических характеристик кожи и слизистых оболочек in vivo
CN108670269A (zh) 一种基于光散射能量的人体无创血糖测量装置
KR102290329B1 (ko) 스마트 생리학적 정보 측정 시스템
CN109044282B (zh) 融合触觉传感和光断层扫描成像的检测装置与检测方法
KR20200049276A (ko) 광확산 신호 검출 프로브

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06780725

Country of ref document: EP

Kind code of ref document: A1