WO2007004593A1 - ビリルビン変性器及びビリルビン透析装置 - Google Patents

ビリルビン変性器及びビリルビン透析装置 Download PDF

Info

Publication number
WO2007004593A1
WO2007004593A1 PCT/JP2006/313155 JP2006313155W WO2007004593A1 WO 2007004593 A1 WO2007004593 A1 WO 2007004593A1 JP 2006313155 W JP2006313155 W JP 2006313155W WO 2007004593 A1 WO2007004593 A1 WO 2007004593A1
Authority
WO
WIPO (PCT)
Prior art keywords
dialysis
hollow fiber
light source
blood
light
Prior art date
Application number
PCT/JP2006/313155
Other languages
English (en)
French (fr)
Inventor
Yoshimasa Takeda
Kiyoshi Morita
Original Assignee
National University Corporation Okayama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Okayama University filed Critical National University Corporation Okayama University
Priority to US11/988,195 priority Critical patent/US7998100B2/en
Publication of WO2007004593A1 publication Critical patent/WO2007004593A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3681Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by irradiation

Definitions

  • the present invention relates to a pyrirubin degeneration apparatus and pyrilvin dialysis used for blood treatment of a person with impaired liver function who has a reduced function to denature fat-soluble pyrirubin into water-soluble pyrirubin due to liver function deterioration or inability to function. It relates to the device.
  • Pyrylrubin produced by the degradation of hemoglobin in erythrocytes in the body is usually fat-soluble bilirubin, and this fat-soluble bilirubin is denatured into water-soluble pyryrubin in the liver.
  • the water-soluble pyrilvin is filtered out as a blood-waste waste product in the kidneys and discharged outside the body.
  • fat-soluble pyrirubin can be denatured into water-soluble pyrilbin by irradiation with green light at 450 nm to 530 nm, and the liver has a reduced function to convert fat-soluble bilirubin into water-soluble pyrilbin.
  • a device has been proposed that irradiates a functionally impaired person with green light using a light source capable of irradiating green light, and denatures fat-soluble bilirubin in blood into water-soluble pyryrubin by green light transmitted through the skin (for example, (See Patent Document 1.) o
  • Patent Document 1 JP 09-038221 A
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-358243
  • the blood circulation type pyrilbin denaturation apparatus has a problem that a physical, temporal and economic burden is great for persons with hepatic impairment who receive the treatment.
  • the present inventor often requires artificial dialysis, which is often accompanied by renal dysfunction in many patients with hepatic dysfunction in which the alteration efficiency of pyrirubin is reduced. And, focusing on the facts, I thought that there is a possibility that the burden on liver dysfunction can be greatly reduced while trying to reduce the risk by modifying pyrilbin with artificial dialysis, The present invention has been achieved.
  • the pyrilbin denaturing device of the present invention includes a dialysis column for dialysis of blood using a built-in hollow fiber, and an irradiation means for irradiating the hollow fiber with green light, and the hollow fiber is irradiated with green light to be hollow.
  • the fat-soluble bilirubin in the blood flowing through the thread was denatured into water-soluble pyrilbin.
  • the irradiation means includes a light source and a translucent fiber body that irradiates the light irradiated with the light source force toward the hollow fiber, and the translucent fiber body is disposed inside the dialysis column along the hollow fiber. Set up That was.
  • a plurality of hollow fibers are arranged around the translucent fiber body, and the translucent fiber body is surrounded by the hollow fiber.
  • the irradiating means includes a light source and a translucent flat plate that irradiates the light irradiated with the light source force toward the hollow fiber, and the translucent flat plate is placed inside the dialysis column along the hollow fiber. It was set up.
  • the irradiation means had a light source made of flat organic electronic luminescence (hereinafter simply referred to as “organic EL”), and this light source was provided inside the dialysis column along the hollow fiber.
  • organic EL flat organic electronic luminescence
  • the irradiation means includes a light source and an irradiation adjustment body that adjusts the irradiation direction of light emitted from the light source, and the irradiation adjustment body swings the light irradiation region along the longitudinal direction of the hollow fiber. That.
  • the irradiation means includes a light source and an irradiation adjustment body that adjusts the irradiation direction of light emitted from the light source, and the irradiation adjustment body is relatively rotated along the peripheral surface of the dialysis column. thing.
  • a dialysis part having a dialysis column for dialysis of blood with a built-in hollow fiber, and an infusion solution used for dialysis in the dialysis part is supplied to the dialysis part.
  • a blood circulation part for returning blood dialyzed in the dialysis part, and the dialysis part is provided with irradiation means for irradiating the hollow fiber with green light, and the hollow fiber.
  • the surface area is increased by the hollow fiber by providing the dialysis column for dialysis of blood using the built-in hollow fiber and the irradiation means for irradiating the hollow fiber with green light. Since blood can be irradiated with green light, denaturation into water-soluble pyrilbin can be greatly improved.
  • a dialysis part having a dialysis column for dialysis of blood using a built-in hollow fiber, an infusion supply part for supplying the infusion used for dialysis in the permeation part to the dialysis part, and blood in the dialysis part Sending And a blood circulation part for returning the blood dialyzed in the dialysis part.
  • the dialysis part is provided with irradiation means for irradiating the hollow fiber with green light, and the hollow fiber is irradiated with the green light to provide the hollow fiber.
  • the fat-soluble pyrirubin in blood flowing inside is denatured into water-soluble pyrilbin and dissolved in an infusion solution, the fat-soluble pyrirubin can be denatured into water-soluble bilirubin together with artificial dialysis.
  • FIG. 1 is a schematic view of a pyrilvin dialysis apparatus equipped with a pyrilvin denaturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a general dialysis column.
  • FIG. 3 is a schematic diagram of the bilirubin degeneration apparatus of Example 1.
  • FIG. 4 is a schematic view of a bilirubin denaturer of Example 2.
  • FIG. 5 is a schematic view of a bilirubin denaturer according to Example 3.
  • FIG. 6 is a schematic view of a bilirubin degeneration device of Example 4.
  • FIG. 7 is a schematic view of a bilirubin denaturer of Example 5.
  • FIG. 8 is a schematic view of a bilirubin degeneration device of Example 6.
  • the pyrilvin denaturing apparatus and the pyrilvin dialysis apparatus of the present invention irradiate the dialysis column by irradiating light from an irradiation means for irradiating the dialysis column used for artificial dialysis with light that denatures fat-soluble pyrilvin into water-soluble pyrilbin.
  • the fat-soluble pyrirubin in the blood flowing in the hollow fiber is denatured into water-soluble pyrilvin.
  • the irradiated light is preferably blue, blue-green or green light having a wavelength of 400 to 550 nm, preferably 450 nm to 530 nm green light and light in the vicinity thereof are used in the present invention.
  • light having a wavelength of 400 to 550 nm is referred to as green light.
  • the green light source may be configured by attaching a green color film to a light source such as a fluorescent lamp, or a xenon lamp or a laser light source may be used.
  • the dialysis column used for artificial dialysis is irradiated with green light so that the fat-soluble pyrilvin is water
  • the dialysis column used for artificial dialysis is irradiated with green light so that the fat-soluble pyrilvin is water
  • a relatively large amount of blood such as 100 to 200 ml per minute can be processed, and the processing efficiency can be improved.
  • FIG. 1 is a schematic diagram of a pyrilvin dialysis apparatus B equipped with a pyrilvin denaturer A.
  • the pyrilvin denaturing device A includes a dialysis column C for dialysis of blood using a built-in hollow fiber, and a light source device L for irradiating the hollow fiber of the dialysis column C with green light.
  • the pyrilbine dialysis apparatus B includes a blood feed pipe 91 for feeding blood collected from a human body through a blood feed pump P1 in the middle to the dialysis column C, and a dialysis column C.
  • a blood return pipe 92 for returning the treated blood an infusion liquid supply pipe 94 for feeding an infusion solution used for dialysis in the dialysis column C from the infusion tank 93 to the dialysis column C, and a dialysis column C
  • An infusion discharge pipe 95 for discharging the infusion that has passed is provided.
  • the infusion supply pipe 94 is provided with an infusion supply pump P2 in the middle, and the infusion is supplied from the infusion tank 93 to the dialysis force ram C by the infusion supply pump P2.
  • the blood supply pipe 91, the blood return pipe 92, the infusion supply pipe 94, and the infusion discharge pipe 95 are each equipped with a supply controller, a supply amount detector, etc., as necessary. Don't show it! Control the dialysis appropriately by the control unit! /
  • reference numeral 96 denotes a light guide tube made of an optical fiber for guiding green light emitted from the light source L to a light transmitting body provided in the dialysis column C as described later.
  • the dialysis column C is configured by inserting a number of hollow fibers 83 into a cylindrical frame 80 having a longitudinal shape. Hollow at the end of A first end frame 81 for mounting one end of the thread 83 is provided, and a second end frame 82 for mounting the other end of the hollow thread 83 is provided for the other end. It is installed between the first end frame 81 and the second end frame 82.
  • the dialysis column C can smoothly feed the blood fluid fed from the blood feeding pipe 91 to the first end frame 81 into each hollow fiber 83.
  • the blood delivered to the second end frame 82 can be smoothly delivered to the blood return pipe 92 connected to the second end frame 82.
  • the inside of the cylindrical frame 80 is filled with the infusion solution supplied from the infusion solution supply pipe 94, and the hollow fiber 83 is immersed in the infusion solution, and blood is dialyzed.
  • the cylindrical frame 80 is provided with an infusion supply port 84 that protrudes from the peripheral surface at one end, and an infusion port 85 that also protrudes the peripheral force at the other end.
  • An infusion supply pipe 94 is connected to the infusion supply port 84 via the first connector 86, and an infusion discharge pipe 95 is connected to the infusion outlet 85 via the second connector 87.
  • the infusion fed by the infusion pump P 2 is fed into the inside of the cylindrical frame 80 from the infusion feeding port 84 and is sent out of the cylindrical frame 80 through the infusion port 85.
  • the pyrilvin dialysis apparatus B is basically the same as the conventional artificial dialysis apparatus, and has a feature that an irradiation means for irradiating green light is provided in the dialysis column C as described later. It is only different.
  • Fig. 3 is a schematic diagram of the pyrirubin denaturing device A1 of the first embodiment.
  • the pyrilvin denaturing device A1 emits green light to the dialysis column C and the hollow fiber 83 of the dialysis column C described above.
  • Illumination unit D1 is provided as an irradiating means.
  • the illumination unit D1 is a translucent light source configured by a laser light source L1 that emits light of a predetermined wavelength and a thin linear light guide plate that irradiates the light emitted from the laser light source L1 toward the hollow fiber 83.
  • the translucent fibrous body 11 is capable of irradiating light guided by the light guide tube 96 in a direction perpendicular to the longitudinal direction of the translucent fibrous body 11, and this translucent fibrous body 11 Is disposed along the hollow fiber 83 to irradiate the hollow fiber 83 with green light.
  • a plurality of translucent fiber bodies 11 are arranged at predetermined intervals in the dialysis column C, and a light guide tube 96 is provided for each translucent fiber body 11. Is connected.
  • the translucent fiber body 11 has a translucency that has a large diameter compared to the hollow fiber 83, which has the same diameter as the hollow fiber 83. From the relationship with the number of arranged fiber bodies 11, a suitable diameter may be used.
  • each light guide tube 96 connected to each translucent fiber body 11 is connected to the infusion supply port 84, or the first connector 86, or the infusion solution outlet. It is inserted into the dialysis column C from the second connector 87 connected to 85, and the translucent fiber body 11 and the light guide tube 96 are prevented from coming into direct contact with blood, and coagulated into blood. This prevents the occurrence of malfunctions.
  • a light guide tube 96 connected to each translucent fibrous body 11 is inserted from the infusion supply port 84 and the infusion delivery port 85 of the dialysis column C.
  • the infusion delivery port 84 and the infusion delivery port 85 may be inserted with the light guide tube 96.
  • the translucent fibrous body 11 that emits green light is disposed inside the dialysis column C along the hollow fiber 83, thereby being positioned at the central portion of the dialysis column C.
  • the hollow fiber 83 can also be irradiated with green light, and the irradiation efficiency can be improved.
  • the translucent fiber body 11 radiates. All green light can be absorbed by blood, and the irradiation efficiency can be further improved.
  • the hollow fiber 83 and the translucent fiber body 11 are separately attached to the dialysis force ram C.
  • the hollow fiber is translucent.
  • the translucent fiber body and the hollow fiber may be integrally formed by bonding the permeable fiber body, or a part of the hollow fiber may be translucent. It may be composed of an optical fiber body! / Slightly, and a part of the periphery of the hollow fiber may be covered with a light guide plate material constituting the translucent fiber body.
  • FIG. 4 is a schematic diagram of the pyrilrubine denaturer A2 of Example 2, which is shown in FIG.
  • the dialysis column C described above and the illumination part D2 as an illuminating means for irradiating the hollow fiber 83 of the dialysis column C with green light are provided.
  • the illumination unit D2 is an LED light source with a built-in LED (Light Emitting Diode) that emits green light.
  • FIG. 4 is an energization wiring for energizing the LED light source L2.
  • the translucent flat plate 21 scatters the green light emitted from the LED light source L2 to transmit the translucent flat plate.
  • Irradiation is possible in a direction perpendicular to the longitudinal direction of 21.
  • the hollow fiber 83 Arranged along 83, the hollow fiber 83 is irradiated with green light. That is, the illumination part
  • the translucent plate 21 is a simple light guide plate. However, if necessary, a reflection film may be provided to improve the irradiation efficiency.
  • Light source L2 connecting force LED light source L2 may be connected to only one end.
  • the translucent flat plate 21 has a large-area flat plate shape.
  • the translucent flat plate 21 has slits for circulating an infusion at predetermined intervals.
  • a narrow flat plate may be provided on a plane with a predetermined interval.
  • the translucent flat plate 21 has a plurality of translucent flat plates 21 arranged at a predetermined interval only when the single translucent flat plate 21 is arranged inside the dialysis column C. By arranging the hollow fiber 83 between the two, the green light irradiation efficiency can be improved.
  • the energization wiring 22 connected to the LED light source L2 is introduced into the dialysis column C from the first connector 86 connected to the infusion port 84 and the second connector 87 connected to the infusion port 85.
  • the LED light source L2 and the translucent flat plate 21 are prevented from coming into direct contact with blood, thereby preventing problems such as coagulation in the blood.
  • the translucent plate 21 of the illumination part D2 is arranged along the hollow fiber 83 inside the dialysis column C, whereby the translucent body is arranged inside the dialysis column C. Therefore, the dialysis column C can be prevented from being expensive.
  • FIG. 5 is a schematic diagram of the pyrirubin denaturing device A3 of Example 3, which irradiates green light to the dialysis column C and the hollow fiber 83 of the dialysis column C described above.
  • the illumination unit D3 is provided as an illuminating means.
  • the illumination unit D3 includes an organic EL light source L3 composed of a flat organic EL.
  • reference numeral 32 denotes an energization wiring for energizing the organic EL light source L3. That is, the pyrilvin denaturing device A3 of this embodiment is provided with an organic EL light source L3 in place of the translucent plate 21 and the LED light source L2 in the dialysis column C in the pyrilvin denaturing device A2 of Example 2. This organic EL light source L3 is arranged along the hollow fiber 83.
  • the organic EL light source L3 uses a light emitting green light.
  • the organic EL light source L3 can improve the modification efficiency of pyrilbin by making it as large as possible.
  • the OLED light source L3 is provided with slits at predetermined positions as necessary to improve the flowability of infusion. You may make it not obstruct.
  • the first connector 86 force connected to the infusion supply port 84 is also introduced into the dialysis column C, and the organic EL light source L3 is directly connected to blood. To prevent contact with blood and prevent blood coagulation and other problems.
  • the organic EL light source L3 a plurality of organic EL light sources L3 are arranged at a predetermined interval only when only one is arranged inside the dialysis column C, and between each organic EL light source L3.
  • the empty yarn 83 By arranging the empty yarn 83, the irradiation efficiency of green light can be improved.
  • the organic EL light source L3 of the illumination part D3 inside the dialysis column C substantially parallel to the hollow fiber 83, the light source can be arranged inside the dialysis column C. It can be carried out very easily, and the cost of the dialysis column C can be suppressed.
  • FIG. 6 is a schematic diagram of the pyrilrubin denaturer A4 of Example 4, which is
  • the dialysis column C and the illuminating part D4 as an illuminating means for irradiating the hollow fiber 83 of the dialysis column C with green light are provided.
  • the illumination unit D4 includes a laser light source L4 that emits light of a predetermined wavelength, an oscillating irradiation adjustment body 41 that adjusts the irradiation direction of the light emitted from the laser light source L4, and the oscillating irradiation. It comprises a swing operation part 42 for swinging the adjustment body 41.
  • the oscillating type irradiation adjusting body 41 is configured by a mirror that reflects the light incident from the laser light source L4 in a predetermined irradiation direction.
  • the swing operation unit 42 includes a drive motor 42a, a rod-like spiral body 42b interlocked with the output shaft of the drive motor 42a, and a support body 42c screwed with the spiral body 42b.
  • the oscillating irradiation adjustment body 41 is attached to the support 42c, and the support 42c is moved forward and backward along the spiral 42b by rotating the spiral 42b forward or backward by the drive motor 42a. As the spiral body 42b swings back and forth, the swinging irradiation adjustment body 41 is moved back and forth along the spiral body 42b.
  • the spiral body 42b of the present example is disposed along the hollow fiber 83 of the dialysis column C, and the irradiation region by the laser beam reflected by the oscillating irradiation adjustment body 41 is arranged in the longitudinal direction of the hollow fiber 83. It is rocking.
  • a high-power laser light source L4 can be used as a light source, and green light having a wavelength that is most effective for denaturation from fat-soluble bilirubin to water-soluble pyrilbin can be irradiated toward the hollow fiber 83.
  • the swingable irradiation adjusting body 41 is moved back and forth so that the hollow fiber 83 may be damaged even if the hollow fiber 83 is irradiated with a relatively high-power laser beam. Can be resolved.
  • the illumination unit D4 is not limited to the case where only one laser light source L4 is installed, and a plurality of laser light sources L4 may be installed.
  • Fig. 7 is a schematic diagram of the pyrilrubin denaturer A5 of Example 5, which is The dialysis column C described above and the illuminating part D5 as an illuminating means for irradiating the hollow fiber 83 of the dialysis column C with green light are provided.
  • the illumination unit D5 includes a laser light source L5 that emits light of a predetermined wavelength, a rotary irradiation adjustment body 51 that adjusts the irradiation direction of light emitted from the laser light source L5, and the rotary irradiation adjustment body.
  • 51 is composed of a rotation operation unit (not shown) for rotating the operation.
  • the rotary irradiation adjustment body 51 is a polygonal columnar mirror body that reflects the laser light emitted from the laser light source L5 in a predetermined irradiation direction.
  • the peripheral surface is a six-plane shape. This is a hexagonal column rotary irradiation adjustment body 51 composed of mirror surfaces.
  • the rotary shaft 53 provided on the central axis of the hexagonal column rotary irradiation adjustment body 51 is rotationally driven at a predetermined angular velocity, and by rotating the rotary irradiation adjustment body 51, The irradiation area of the laser beam reflected by the rotary irradiation adjusting body 51 is scanned along the longitudinal direction of the hollow fiber 83.
  • the green light can be irradiated at a relatively low cost.
  • a high-power laser light source L5 can be used as the light source, and green light having a wavelength that is most effective for denaturation from fat-soluble bilirubin to water-soluble pyrilbin can be irradiated toward the hollow fiber 83.
  • the rotary irradiation adjustment body 51 is rotated to scan the irradiation region in the longitudinal direction of the hollow fiber 83, so that the hollow fiber 83 is irradiated with a relatively high output laser beam.
  • the possibility of damaging the hollow fiber 83 can be eliminated.
  • a plurality of laser light sources L5 may be installed, which is not limited to the case where only one laser light source L5 is installed.
  • Fig. 8 is a schematic diagram of the pyrirubin denaturing device A6 of Example 6, which irradiates the dialysis column C and the hollow fiber 83 of the dialysis column C with green light. It has an illumination part D6 as an illuminating means.
  • the illumination unit D6 is configured with a laser light source L6 that emits light of a predetermined wavelength, and a diffusion lens 61 that diffuses the light emitted from the laser light source L6 and irradiates it toward the hollow fiber 83. ing.
  • the diffusion lens 61 is an irradiation adjusting body that adjusts the irradiation direction.
  • the dialysis column C is driven to rotate at a predetermined angular velocity, and the dialysis column C is rotated with respect to the diffusion lens 61 that is an irradiation adjusting body. As a result, the entire surface of the dialysis column C is irradiated with green light.
  • the illumination unit D6 may be configured to rotate in the circumferential direction of the dialysis column C. By making it relatively rotatable, it is possible to irradiate the hollow fiber 83 with green light having a wavelength that is most effective for the modification to the fat-soluble pyrilbin force and water-soluble pyrilbin.
  • the hollow fiber 83 of the dialysis column C is arranged in a cylindrical shape along the inner peripheral surface of the cylindrical frame 80 of the dialysis column C, and the center of the dialysis column C where green light does not reach. It is better not to have a hollow thread 83 in the part.
  • An irradiation means for irradiating green light is provided on a dialysis column used for dialysis to form a pyrilvin denaturing device, and the fat-soluble pyrirubin in the blood is denatured to water-soluble pyrilbin with dialysis, thereby improving the efficiency of pyrirubin denaturation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Emergency Medicine (AREA)
  • Cardiology (AREA)
  • External Artificial Organs (AREA)

Abstract

 感染症の発症や血液凝固の発生などのリスクができるだけ小さいとともに、肝機能障害者への身体的、時間的、経済的な負担がより少ないビリルビンの低減化手段を提供する。  内蔵した中空糸で血液の透析を行う透析用カラムを備えた透析部と、この透析部での透析に用いる輸液を透析部に供給する輸液供給部と、前記透析部に血液を送給するとともに、前記透析部で透析された血液を返送する血液循環部を備え、前記透析部には前記中空糸に緑色光を照射する照射手段を設けて、前記中空糸に前記緑色光を照射して前記中空糸内を流れる血液中の脂溶性ビリルビンを水溶性ビリルビンに変性させて輸液に溶出させる。

Description

ピリルビン変性器及びピリルビン透析装置
技術分野
[0001] 本発明は、肝臓の機能低下あるいは機能不能に起因して脂溶性ピリルビンを水溶 性ピリルビンへと変性させる機能が低下した肝機能障害者の血液処理に用いるピリ ルビン変性器及びピリルビン透析装置に関するものである。
背景技術
[0002] 体内において赤血球中のヘモグロビンが分解されることによって生じるピリルビンは 、通常、脂溶性ビリルビンとなっており、この脂溶性ビリルビンは肝臓において水溶性 ピリルビンへと変性処理されている。そして、水溶性ピリルビンは腎臓において血液 中力 老廃物として濾し取られ、体外に排出されて 、る。
[0003] したがって、肝臓の機能低下ある!/、は機能不能が生じた場合には、脂溶性ピリルビ ンを水溶性ピリルビンへと変性させることができず、体内に脂溶性ビリルビンが蓄積さ れて 、わゆる黄疸の症状が現れることとなるので、脂溶性ビリルビンを水溶性ピリルビ ンへと変性させる治療または処置が必要となっている。
[0004] 脂溶性ピリルビンは、 450nm〜530nmの緑色光の照射によって水溶性ピリルビン へと変性可能であることが知られており、脂溶性ビリルビンを水溶性ピリルビンへと変 性させる機能が低下した肝機能障害者に緑色光を照射可能とした光源を用いて緑 色光を照射し、皮膚を透過した緑色光によって血液中の脂溶性ビリルビンを水溶性 ピリルビンに変性させる装置が提案されている(例えば、特許文献 1参照。 ) o
[0005] ただし、成人の場合には体重当たりの体表面積が小さいために緑色光の照射によ る脂溶性ビリルビンの水溶性ピリルビンへの変性効率が極めて悪く、現実性のあるビ リルビンの低減方法ではな力つた。
[0006] そこで、現状では、血液中の血漿を交換することによってピリルビン濃度を低減させ る血漿交換や、ピリルビン吸着カラムを用いたピリルビンの吸着除去によってピリルビ ン濃度を低減させるピリルビン吸着が行われており、さらに他の方法として、肝機能 障害者から血液の一部を抜き出して、血液に緑色光を直接的に照射し、その後、そ の血液を体内に戻すように循環させながら水溶性ピリルビンへの変性を行う装置も提 案されている。
特許文献 1:特開平 09— 038221号公報
特許文献 1:特開 2004— 358243号公報
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、血漿交換の場合には、他人の血漿を輸血することになるために輸血 にともなう感染症のリスクが存在し、また、ピリルビン吸着の場合には、血液中の凝固 系や免疫系が賦活ィ匕されて血液の凝固や炎症反応が生じるリスクが存在していると いう問題があった。
[0008] さらに、血液循環式のピリルビンの変性装置では、その治療を受ける肝機能障害者 の身体的及び時間的さらには経済的な負担が大きいという問題があった。
[0009] このように、ピリルビンの低減ィ匕には、感染症や血液凝固などのリスクができるだけ 小さいとともに、肝機能障害者への身体的、時間的、経済的な負担がより少ない治療 方法が求められていた。
[0010] 本発明者は、ピリルビンの変質効率が低下している肝機能障害者の多くが腎臓の 機能障害も併発して 、ることが多ぐ人工透析が必要となって 、ることが多!、と 、う事 実に着目し、人工透析にともなってピリルビンの変性を行うことによってリスクの低減を 図る一方で、肝機能障害者への負担を大きく軽減できる可能性があることに思い至り 、本発明を成すに至ったものである。
課題を解決するための手段
[0011] 本発明のピリルビン変性器では、内蔵した中空糸によって血液の透析を行う透析用 カラムと、中空糸に緑色光を照射する照射手段とを備え、中空糸に緑色光を照射し て中空糸内を流れる血液中の脂溶性ビリルビンを水溶性ピリルビンに変性させること とした。
[0012] さらに、以下の点にも特徴を有するものである。すなわち、
( 1)照射手段は、光源と、この光源力 照射された光を中空糸に向けて照射する透 光性繊維体を備え、この透光性繊維体を透析用カラムの内部に中空糸に沿って設 けたこと。
(2)透光性繊維体の周囲に複数の中空糸を配置して、透光性繊維体を中空糸で取 り囲んだこと。
(3)照射手段は、光源と、この光源力 照射された光を中空糸に向けて照射する透 光性平板体を備え、この透光性平板体を透析用カラムの内部に中空糸に沿って設 けたこと。
(4)照射手段は、平板状とした有機エレクトロニックルミネッセンス(以下、単に「有機 EL」という)からなる光源を有し、この光源を透析用カラムの内部に中空糸に沿って 設けたこと。
(5)照射手段は、光源と、この光源から照射された光の照射方向を調整する照射調 整体を備え、この照射調整体によって光の照射領域を中空糸の長手方向に沿って 揺動させていること。
(6)照射手段は、光源と、この光源から照射された光の照射方向を調整する照射調 整体を備え、この照射調整体を透析用カラムの周面に沿って相対的に回転させてい ること。
[0013] また、本発明のピリルビン透析装置では、内蔵した中空糸で血液の透析を行う透析 用カラムを備えた透析部と、この透析部での透析に用いる輸液を透析部に供給する 輸液供給部と、透析部に血液を送給するとともに、透析部で透析された血液を返送 する血液循環部とを備え、透析部には中空糸に緑色光を照射する照射手段を設け て、中空糸に緑色光を照射して中空糸内を流れる血液中の脂溶性ピリルビンを水溶 性ビリルビンに変性させて輸液に溶出させることとした。
発明の効果
[0014] 本発明によれば、内蔵した中空糸を用いて血液の透析を行う透析用カラムと、中空 糸に緑色光を照射する照射手段を備えることにより、中空糸によって表面積を増大さ せて血液に緑色光を照射できるので、水溶性ピリルビンへの変性を極めて向上させ ることがでさる。
[0015] 特に、内蔵した中空糸で血液の透析を行う透析用カラムを有する透析部と、この透 析部での透析に用いる輸液を透析部に供給する輸液供給部と、透析部に血液を送 給するとともに、透析部で透析された血液を返送する血液循環部とを備え、透析部に は中空糸に緑色光を照射する照射手段を設けて、中空糸に緑色光を照射して中空 糸内を流れる血液中の脂溶性ビリルビンを水溶性ピリルビンに変性させて輸液に溶 出させるピリルビン透析装置とした場合には、人工透析とともに脂溶性ピリルビンの水 溶性ビリルビンへの変性を行うことができる。
[0016] したがって、人工透析とピリルビン透析の 2つの治療を同時に行うことができるので 肝機能障害者への身体的負担を大きく低減でき、しかも、透析用カラムを用いて水 溶性ピリルビンを透析することもでき、ピリルビンの排出効率を向上させることができる
図面の簡単な説明
[0017] [図 1]図 1は本発明の実施形態に係るピリルビン変性器を備えたピリルビン透析装置 の概略図である。
[図 2]図 2は一般的な透析用カラムの説明図である。
[図 3]図 3は実施例 1のビリルビン変性器の概略図である。
[図 4]図 4は実施例 2のビリルビン変性器の概略図である。
[図 5]図 5は実施例 3のビリルビン変性器の概略図である。
[図 6]図 6は実施例 4のビリルビン変性器の概略図である。
[図 7]図 7は実施例 5のビリルビン変性器の概略図である。
[図 8]図 8は実施例 6のビリルビン変性器の概略図である。
符号の説明
[0018] A ピリルビン変性器
B ピリルビン透析装置
C 透析用カラム
L 光源装置
P1 血液送給ポンプ
P2 輸液送給ポンプ
11 透光性繊維体
80 円筒状フレーム 81 第 1端部フレーム
82 第 2端部フレーム
83 中空糸
84 輸液送給口
85 輸液送出口
86 第 1連結具
87 第 2連結具
91 血液送給管
92 血液返戻管
93 輸液タンク
94 輸液送給管
95 輸液排出管
96 導光管
発明を実施するための最良の形態
[0019] 本発明のピリルビン変性器及びピリルビン透析装置は、人工透析に用いる透析カラ ムに、脂溶性ピリルビンを水溶性ピリルビンに変性させる光を照射する照射手段から 光を照射して、透析カラムに内蔵した中空糸内を流れる血液中の脂溶性ピリルビンを 水溶性ピリルビンに変性させているものである。
[0020] このように中空糸に対して光を照射することにより、血液に対してほぼ直接的に光を 照射できるとともに、中空糸によって表面積が増大化されているので照射効率を向上 させることができ、効率よく脂溶性ピリルビンを水溶性ピリルビンに変性させることがで きる。
[0021] 照射する光は、波長が 400〜550nmの青色、青緑色あるいは緑色の光であれば よぐ好ましくは、 450nm〜530nmの緑色光及びその近傍の光がよぐ本発明では 、説明の便宜上、波長が 400〜550nmの光を緑色光と称する。緑色光の光源として は、蛍光灯などの光源に緑色のカラーフィルムを被着して構成してもよいし、キセノン ランプやレーザ光源を用いてもよ 、。
[0022] このように人工透析に用いる透析カラムに緑色光を照射して脂溶性ピリルビンを水 溶性ビリルビンに変性させることにより、腎機能障害者に対する治療として行われる 人工透析とともにピリルビンの透析を行うことができ、腎機能障害を併発している肝機 能障害者の身体的負担だけでなぐ時間的負担及び経済的負担を大きく低減できる
[0023] 特に、ピリルビン変性器を用いたピリルビン透析装置では、 1分当たり 100〜200ml などの比較的多量の血液を処理することができ、処理効率を向上させることができる
[0024] し力も、このピリルビン変性器を用いたピリルビン透析装置では、従来の血漿交換 の場合における感染症のリスクや、ピリルビン吸着の場合における血液凝固のリスク よりも低いリスクである人工透析におけるリスク程度にまでリスクを軽減でき、肝機能障 害者が安心して利用することができる。
[0025] 図 1は、ピリルビン変性器 Aを備えたピリルビン透析装置 Bの概略図である。
[0026] ピリルビン変性器 Aは、内蔵した中空糸で血液の透析を行う透析用カラム Cと、この 透析用カラム Cの中空糸に緑色光を照射する光源装置 Lとを備えて 、る。
[0027] ピリルビン透析装置 Bには、中途部に血液送給ポンプ P1を介設して人体力 採取し た血液を透析用カラム Cに送給する血液送給管 91と、透析用カラム Cで処理された 血液を返送する血液返戻管 92と、透析用カラム Cで透析を行うために用いる輸液を 輸液タンク 93から透析用カラム Cに送給する輸液送給管 94と、透析用カラム Cを通過 した輸液を排出する輸液排出管 95を備えている。輸液送給管 94には、中途部に輸液 送給ポンプ P2を介設して、この輸液送給ポンプ P2によって輸液タンク 93から透析用力 ラム Cに輸液を送給して 、る。
[0028] 血液送給管 91、血液返戻管 92、輸液送給管 94、輸液排出管 95には、それぞれ図 示しな 、送給制御器や送給量検出器などを必要に応じて装着し、図示しな!、制御部 によって透析が適正に行われるように制御して!/、る。
[0029] 図 1中、 96は後述するように透析用カラム Cに設けた透光体に光源 Lから照射され た緑色光を導くための光ファイバからなる導光管である。
[0030] 透析用カラム Cは、図 2に示すように、長手状とした円筒状フレーム 80の内部に多 数の中空糸 83を挿入して構成しており、円筒状フレーム 80には、一方の端部に中空 糸 83の一方の端部を装着する第 1端部フレーム 81を設けるとともに、他方の端部に中 空糸 83の他方の端部を装着する第 2端部フレーム 82を設け、中空糸 83は第 1端部フ レーム 81と第 2端部フレーム 82との間に架設している。
[0031] そして、透析用カラム Cは、血液送給管 91から第 1端部フレーム 81に送給された血 液を各中空糸 83内に円滑に送給可能としており、中空糸 83力 第 2端部フレーム 82 に送出された血液を第 2端部フレーム 82に接続した血液返戻管 92に円滑に送出可 能としている。
[0032] 円筒状フレーム 80の内部は、輸液送給管 94から送給された輸液で満たして、中空 糸 83を輸液に浸漬させて血液の透析を行って ヽる。
[0033] すなわち、円筒状フレーム 80には、一方の端部に周面から突出させた輸液送給口 84を設けるとともに、他方の端部に周面力も突出させた輸液送出口 85を設け、輸液 送給口 84には第 1連結具 86を介して輸液送給管 94を連通連結するとともに、輸液送 出口 85には第 2連結具 87を介して輸液排出管 95を連通連結して、輸液送給ポンプ P 2によって送給された輸液を輸液送給口 84から円筒状フレーム 80の内部に送給し、 輸液送出口 85から円筒状フレーム 80の外部に送出している。
[0034] このように、ピリルビン透析装置 Bは、基本的には従来の人工透析装置と同じであつ て、後述するように透析用カラム Cに緑色光照射用の照射手段を設けている点が異 なるだけである。
[0035] 以下にぉ 、て、本発明の要部であるピリルビン変性器 Aの構成にっ 、て実施例ご と説明する。なお、以下の説明においては、必要な場合を除いて図面中の中空糸 83 は省略している。
実施例 1
[0036] 図 3は、第 1実施例のピリルビン変性器 A1の概略図であり、このピリルビン変性器 A1 は、前述した透析用カラム Cと、この透析用カラム Cの中空糸 83に緑色光を照射する 照射手段としての照光部 D1を備えている。
[0037] 照光部 D1は、所定の波長の光を照射するレーザ光源 L1と、このレーザ光源 L1から 照射された光を中空糸 83に向けて照射する細線状の導光板で構成した透光性繊維 体 11と、レーザ光源 L1から透光性繊維体 11にまで光を導く光ファイバで構成した導 光管 96とを備えている。
[0038] 透光性繊維体 11は、導光管 96によって導かれた光を散乱して透光性繊維体 11の 長手方向と直行する方向に照射可能としており、この透光性繊維体 11を中空糸 83に 沿って配設して、中空糸 83への緑色光の照射を行って 、る。
[0039] 本実施例のピリルビン変性器 A1では、透析用カラム C内に所定間隔で複数本の透 光性繊維体 11を配置しており、各透光性繊維体 11にそれぞれ導光管 96を接続して いる。
[0040] また、本実施例のピリルビン変性器 A1では、透光性繊維体 11を中空糸 83と同程度 の径寸法としている力 中空糸 83と比較して大径としてもよぐ透光性繊維体 11の配 設数との関係から好適な径寸法としてよい。
[0041] さらに、本実施例のピリルビン変性器 A1では、各透光性繊維体 11と接続する各導 光管 96を、輸液送給口 84に接続した第 1連結具 86、または輸液送出口 85に接続した 第 2連結具 87から透析用カラム Cの内部に挿入しており、透光性繊維体 11及び導光 管 96が血液と直接的に接触することを防止して、血液に凝固などの不具合が生じる ことを防止している。
[0042] 特に本実施例のピリルビン変性器 A1では、透析用カラム Cの輸液送給口 84と輸液 送出口 85とから各透光性繊維体 11に接続する導光管 96を挿入している力 透光性 繊維体 11の配設数によっては、輸液送給口 84と輸液送出口 85のいずれか一方のみ 力も導光管 96を挿入してもよ 、。
[0043] 本実施例のように、緑色光を照射する透光性繊維体 11を中空糸 83に沿って透析用 カラム Cの内部に配設することによって、透析用カラム Cの中心部分に位置した中空 糸 83にも緑色光を照射でき、照射効率を向上させることができる。
[0044] 特に、透光性繊維体 11の周囲に複数の中空糸 83を配置して、透光性繊維体 11を 中空糸 83で取り囲んだ場合には、透光性繊維体 11が放射した緑色光を全て血液に 吸収させることができ、照射効率をさらに向上させることができる。
[0045] 本実施例の透析用カラム Cでは、中空糸 83と透光性繊維体 11とを別々に透析用力 ラム Cに装着しているが、中空糸の形成にともなって中空糸に透光性繊維体を接合さ せることにより透光性繊維体と中空糸とを一体成形してもよいし、中空糸の一部を透 光性繊維体で構成してもよ!/ヽし、透光性繊維体を構成する導光板材料で中空糸の 周囲の一部を被覆してもよい。
実施例 2
[0046] 図 4は、実施例 2のピリルビン変性器 A2の概略図であり、このピリルビン変性器 A2は
、前述した透析用カラム Cと、この透析用カラム Cの中空糸 83に緑色光を照射する照 射手段としての照光部 D2を備えて 、る。
[0047] 照光部 D2は、緑色光で発光する LED (Light Emitting Diode)を内蔵した LED光源
L2と、この LED光源 L2から照射された光を中空糸 83に向けて照射する平板状の導 光板で構成した透光性平板体 21とを備えている。図 4中、 22は LED光源 L2に通電す るための通電配線である。
[0048] 透光性平板体 21は、 LED光源 L2から照射された緑色光を散乱して透光性平板体
21の長手方向と直行する方向に照射可能としており、この透光性平板体 21を中空糸
83に沿って配設して、中空糸 83への緑色光の照射を行っている。すなわち、照光部
O2mヽゎゆるバックライトとなって 、る。
[0049] 本実施例のピリルビン変性器 A2では、透光性平板体 21は単なる導光板で構成して いるが、必要に応じて反射膜を設けて照射効率の向上を図ってもよい。
[0050] また本実施例のピリルビン変性器 A2では、透光性平板体 21の両端にそれぞれ LE
D光源 L2を接続している力 いずれか一方の端部にのみ LED光源 L2を接続してもよ い。
[0051] さらに、本実施例のピリルビン変性器 A2では、透光性平板体 21は大面積の平板状 としている力 透光性平板体 21には輸液を流通させるためのスリットを所定の間隔で 設けてもよいし、あるいは細幅の平板を所定の間隔を隔てながら平面上に配設しても よい。
[0052] 透光性平板体 21は、透析用カラム Cの内部に 1つだけ配置する場合だけでなぐ所 定の間隔で複数の透光性平板体 21を配置するとともに各透光性平板体 21との間に 中空糸 83を配置することにより、緑色光の照射効率を向上させることができる。
[0053] LED光源 L2に接続した通電配線 22は、輸液送給口 84に接続した第 1連結具 86、 及び輸液送出口 85に接続した第 2連結具 87から透析用カラム Cの内部に導入してお り、 LED光源 L2及び透光性平板体 21が血液と直接的に接触することを防止して、血 液に凝固などの不具合が生じることを防止している。
[0054] このように、透析用カラム Cの内部に照光部 D2の透光性平板体 21を中空糸 83に沿 つて配設することにより、透析用カラム Cの内部への透光体の配設を極めて容易に行 うことができ、透析用カラム Cが高コストィ匕することを抑制できる。
実施例 3
[0055] 図 5は、実施例 3のピリルビン変性器 A3の概略図であり、このピリルビン変性器 A3は 、前述した透析用カラム Cと、この透析用カラム Cの中空糸 83に緑色光を照射する照 射手段としての照光部 D3を備えて 、る。
[0056] 照光部 D3は、平板状とした有機 ELで構成した有機 EL光源 L3を備えており、図 5中 、 32は有機 EL光源 L3に通電するための通電配線である。すなわち、本実施形態の ピリルビン変性器 A3は、実施例 2のピリルビン変性器 A2における透析用カラム C内の 透光性平板体 21及び LED光源 L2の代わりに、有機 EL光源 L3を設けて ヽるものであ り、この有機 EL光源 L3を中空糸 83に沿って配設している。
[0057] 有機 EL光源 L3は緑色光を発光するものを使用している。有機 EL光源 L3は、でき るだけ大面積とすることによってピリルビンの変性効率を向上させることができるが、 有機 EL光源 L3には必要に応じて所定位置にスリットを設けて、輸液の流通性を阻害 しないようにしてもよい。
[0058] 有機 EL光源 L3に接続した通電配線 32は、輸液送給口 84に接続した第 1連結具 86 力も透析用カラム Cの内部に導入しており、有機 EL光源 L3が血液と直接的に接触す ることを防止して、血液に凝固などの不具合が生じることを防止して 、る。
[0059] 有機 EL光源 L3は、透析用カラム Cの内部に 1つだけ配置する場合だけでなぐ所 定の間隔で複数の有機 EL光源 L3を配置するとともに各有機 EL光源 L3との間に中 空糸 83を配置することにより、緑色光の照射効率を向上させることができる。
[0060] このように、透析用カラム Cの内部に照光部 D3の有機 EL光源 L3を中空糸 83と略平 行に配設することによって、透析用カラム Cの内部への光源の配設を極めて容易に 行うことができ、透析用カラム Cが高コストィ匕することを抑制できる。
実施例 4 [0061] 図 6は、実施例 4のピリルビン変性器 A4の概略図であり、このピリルビン変性器 A4は
、前述した透析用カラム Cと、この透析用カラム Cの中空糸 83に緑色光を照射する照 射手段としての照光部 D4を備えて 、る。
[0062] 照光部 D4は、所定の波長の光を照射するレーザ光源 L4と、このレーザ光源 L4から 照射された光の照射方向を調整する揺動型照射調整体 41と、この揺動型照射調整 体 41を揺動操作する揺動操作部 42とから構成している。
[0063] 揺動型照射調整体 41は、レーザ光源 L4から入射された光を所定の照射方向に反 射するミラーで構成して ヽる。
[0064] 揺動操作部 42は、駆動モータ 42aと、この駆動モータ 42aの出力軸に連動連結した 棒状の螺旋体 42bと、この螺旋体 42bと螺合した支持体 42cとで構成して 、る。
[0065] 揺動型照射調整体 41は支持体 42cに装着して、駆動モータ 42aによって螺旋体 42b を正転回転または逆転回転させることにより支持体 42cを螺旋体 42bに沿って進退揺 動させ、この螺旋体 42bの進退揺動にともなって揺動型照射調整体 41を螺旋体 42bに 沿って進退揺動させて 、る。
[0066] 本実施例の螺旋体 42bは透析用カラム Cの中空糸 83に沿って配置して、揺動型照 射調整体 41で反射されたレーザ光による照射領域を中空糸 83の長手方向に揺動さ せている。
[0067] このように透析用カラム Cの外部に設けた照光部 D4から緑色光の照射を行うことに よって、比較的低コストで緑色光の照射を行うことができる。
[0068] 特に、光源として高出力のレーザ光源 L4を用いることができ、脂溶性ビリルビンから 水溶性ピリルビンへの変性に最も効果的な波長の緑色光を中空糸 83に向けて照射 できる。
[0069] 照光部 D4では、揺動型照射調整体 41を進退揺動させていることにより、比較的高 出力のレーザ光を中空糸 83に照射しても、中空糸 83が損傷するおそれを解消できる 。なお、照光部 D4では、レーザ光源 L4を 1台だけ設置する場合に限定するものでは なぐ複数台のレーザ光源 L4を設置してもよい。
実施例 5
[0070] 図 7は、実施例 5のピリルビン変性器 A5の概略図であり、このピリルビン変性器 A5は 、前述した透析用カラム Cと、この透析用カラム Cの中空糸 83に緑色光を照射する照 射手段としての照光部 D5を備えて 、る。
[0071] 照光部 D5は、所定の波長の光を照射するレーザ光源 L5と、このレーザ光源 L5から 照射された光の照射方向を調整する回転型照射調整体 51と、この回転型照射調整 体 51を回転操作する回転操作部(図示せず)とから構成している。
[0072] 回転型照射調整体 51は、レーザ光源 L5から照射されたレーザ光を所定の照射方 向に反射する多角柱状のミラー体であって、本実施例では周面を 6面の平面状鏡面 で構成した六角柱の回転型照射調整体 51として 、る。
[0073] 回転操作部では、六角柱の回転型照射調整体 51の中心軸に設けた回転軸 53を所 定の角速度で回転駆動させており、回転型照射調整体 51を回転させることにより、回 転型照射調整体 51で反射されたレーザ光による照射領域を中空糸 83の長手方向に 沿って走査させている。
[0074] このように透析用カラム Cの外部に設けた照光部 D5から緑色光の照射を行うことに よって、比較的低コストで緑色光の照射を行うことができる。
[0075] 特に、光源として高出力のレーザ光源 L5を用いることができ、脂溶性ビリルビンから 水溶性ピリルビンへの変性に最も効果的な波長の緑色光を中空糸 83に向けて照射 できる。
[0076] 照光部 D5では、回転型照射調整体 51を回転させて照射領域を中空糸 83の長手方 向に走査させていることにより、比較的高出力のレーザ光を中空糸 83に照射しても、 中空糸 83が損傷するおそれを解消できる。なお、照光部 D5では、レーザ光源 L5を 1 台だけ設置する場合に限定するものではなぐ複数台のレーザ光源 L5を設置しても よい。
実施例 6
[0077] 図 8は、実施例 6のピリルビン変性器 A6の概略図であり、このピリルビン変性器 A6は 、前述した透析用カラム Cと、この透析用カラム Cの中空糸 83に緑色光を照射する照 射手段としての照光部 D6を備えて 、る。
[0078] 照光部 D6は、所定の波長の光を照射するレーザ光源 L6と、このレーザ光源 L6から 照射された光を拡散させて中空糸 83に向けて照射する拡散用レンズ 61と力 構成し ている。この拡散用レンズ 61が照射方向を調整する照射調整体となっている。
[0079] さらに、本実施例のピリルビン変性器 A6では、透析用カラム Cを所定の角速度で回 転駆動させており、照射調整体である拡散用レンズ 61に対して透析用カラム Cを回転 させることにより、透析用カラム Cの全面に緑色光を照射している。
[0080] なお、逆に、透析用カラム Cの周方向に照光部 D6を回転させるように構成してもよく 、照射調整体である拡散用レンズ 61を透析用カラム Cの周面に沿って相対的に回転 可能に構成することによって、脂溶性ピリルビン力 水溶性ピリルビンへの変性に最 も効果的な波長の緑色光を中空糸 83に向けて隈無く照射できる。
[0081] この場合、透析用カラム Cの中空糸 83は、透析用カラム Cの円筒状フレーム 80の内 周面に沿って円筒状に配置して、緑色光が届かない透析用カラム Cの中央部には中 空糸 83を設けな 、方が望ま 、。
産業上の利用可能性
[0082] 透析に用いる透析用カラムに緑色光を照射する照射手段を設けてピリルビン変性 器とし、透析にともなって血液中の脂溶性ピリルビンを水溶性ピリルビンに変性させる ことにより、ピリルビンの変性効率を向上させることができるとともに、血中のピリルビン の除去処理が必要な肝機能障害者に対して大きな身体的負担を与えることなぐ人 工透析とともに脂溶性ビリルビンの透析を行うことができる治療方法を提供できる。

Claims

請求の範囲
[1] 内蔵した中空糸によって血液の透析を行う透析用カラムと、
前記中空糸に緑色光を照射する照射手段と
を備え、
前記中空糸に前記緑色光を照射して前記中空糸内を流れる血液中の脂溶性ピリ ルビンを水溶性ピリルビンに変性させるピリルビン変性器。
[2] 前記照射手段は、光源と、この光源力 照射された光を前記中空糸に向けて照射 する透光性繊維体を備え、この透光性繊維体を前記透析用カラムの内部に前記中 空糸に沿って設けたことを特徴とする請求項 1記載のピリルビン変性器。
[3] 前記透光性繊維体の周囲に複数の前記中空糸を配置して、前記透光性繊維体を 前記中空糸で取り囲んだことを特徴とする請求項 2記載のピリルビン変性器。
[4] 前記照射手段は、光源と、この光源力 照射された光を前記中空糸に向けて照射 する透光性平板体を備え、この透光性平板体を前記透析用カラムの内部に前記中 空糸に沿って設けたことを特徴とする請求項 1記載のピリルビン変性器。
[5] 前記照射手段は、平板状とした有機エレクトロニックルミネッセンス力もなる光源を 有し、この光源を前記透析用カラムの内部に前記中空糸に沿って設けたことを特徴と する請求項 1記載のピリルビン変性器。
[6] 前記照射手段は、光源と、この光源から照射された光の照射方向を調整する照射 調整体を備え、この照射調整体によって前記光の照射領域を前記中空糸の長手方 向に沿って揺動させて 、ることを特徴とする請求項 1記載のピリルビン変性器。
[7] 前記照射手段は、光源と、この光源から照射された光の照射方向を調整する照射 調整体を備え、この照射調整体を前記透析用カラムの周面に沿って相対的に回転さ せていることを特徴とする請求項 1記載のピリルビン変性器。
[8] 内蔵した中空糸で血液の透析を行う透析用カラムを備えた透析部と、
この透析部での透析に用いる輸液を前記透析部に供給する輸液供給部と、 前記透析部に血液を送給するとともに、前記透析部で透析された血液を返送する 血液循環部と
を備え、 前記透析部には前記中空糸に緑色光を照射する照射手段を設けて、前記中空糸 に前記緑色光を照射して前記中空糸内を流れる血液中の脂溶性ピリルビンを水溶 性ビリルビンに変性させて前記輸液に溶出させているピリルビン透析装置。
PCT/JP2006/313155 2005-07-01 2006-06-30 ビリルビン変性器及びビリルビン透析装置 WO2007004593A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/988,195 US7998100B2 (en) 2005-07-01 2006-06-30 Apparatus for denaturating bilirubin and bilirubin dialyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-194414 2005-07-01
JP2005194414A JP4899040B2 (ja) 2005-07-01 2005-07-01 ビリルビン変性器及びビリルビン透析装置

Publications (1)

Publication Number Publication Date
WO2007004593A1 true WO2007004593A1 (ja) 2007-01-11

Family

ID=37604458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313155 WO2007004593A1 (ja) 2005-07-01 2006-06-30 ビリルビン変性器及びビリルビン透析装置

Country Status (3)

Country Link
US (1) US7998100B2 (ja)
JP (1) JP4899040B2 (ja)
WO (1) WO2007004593A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8009078B1 (en) 2010-03-18 2011-08-30 General Electric Company Configurable analog input channel with galvanic isolation
JP5861170B2 (ja) * 2011-12-16 2016-02-16 アドバンストヘルスケア株式会社 撮影システム
JP5835669B2 (ja) * 2012-04-03 2015-12-24 アドバンストヘルスケア株式会社 撮影システム
DE102017114528A1 (de) * 2017-06-29 2019-01-03 B. Braun Avitum Ag Vorrichtung zur extrakorporalen Blutbehandlung mit verbesserter Anordnung einer Blutbehandlungsvorrichtung
US11672898B2 (en) * 2018-06-08 2023-06-13 Oregon State University Microfluidic removal of excess bilirubin from blood
CN110711277A (zh) * 2019-10-17 2020-01-21 温州医科大学附属第二医院、温州医科大学附属育英儿童医院 血液胆红素分解装置
CN110711278A (zh) * 2019-10-17 2020-01-21 温州医科大学附属第二医院、温州医科大学附属育英儿童医院 血循环式胆红素分解装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275351A (ja) * 1987-05-07 1988-11-14 Kuraray Co Ltd 血液浄化用装置
JPH08131543A (ja) * 1994-11-14 1996-05-28 Fujisawa Pharmaceut Co Ltd 光源付き人工肺
JPH0938221A (ja) * 1995-07-25 1997-02-10 Kensei Okamoto 光線治療装置
JP2004223435A (ja) * 2003-01-24 2004-08-12 Fujikura Ltd 光触媒担持中空糸膜およびこれを用いた光触媒フィルタ装置
JP2004358243A (ja) * 2003-05-30 2004-12-24 Fresenius Medical Care Deutschland Gmbh ビリルビンを含む液体を体外照射するためのデバイスおよびその方法
JP2005516978A (ja) * 2002-02-01 2005-06-09 ガンブロ  インコーポレーテッド 光増感剤および光のピーク波長を使用する血液および血液製剤中の汚染の減少

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350156A (en) * 1980-05-29 1982-09-21 Japan Foundation For Artificial Organs Method and apparatus for on-line filtration removal of macromolecules from a physiological fluid
JP3051998B2 (ja) * 1990-12-20 2000-06-12 バクスター、インターナショナル、インコーポレイテッド 光活性療法及び細胞分離技術を用いる血液のような液体中の遊離の及び同伴された汚染物を同時に除去するためのシステム並びに方法
JP2003511103A (ja) * 1999-10-06 2003-03-25 メムブラーナ ゲゼルシャフト ミット ベシュレンクテル ハフツング 血液の前希釈又は後希釈を統合して行なう血液透析濾過用の膜モジュール
US6843961B2 (en) 2000-06-15 2005-01-18 Gambro, Inc. Reduction of contaminants in blood and blood products using photosensitizers and peak wavelengths of light
US7201730B2 (en) * 2003-03-17 2007-04-10 Hemavation, Llc Device and method for reducing inflammatory mediators in blood

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275351A (ja) * 1987-05-07 1988-11-14 Kuraray Co Ltd 血液浄化用装置
JPH08131543A (ja) * 1994-11-14 1996-05-28 Fujisawa Pharmaceut Co Ltd 光源付き人工肺
JPH0938221A (ja) * 1995-07-25 1997-02-10 Kensei Okamoto 光線治療装置
JP2005516978A (ja) * 2002-02-01 2005-06-09 ガンブロ  インコーポレーテッド 光増感剤および光のピーク波長を使用する血液および血液製剤中の汚染の減少
JP2004223435A (ja) * 2003-01-24 2004-08-12 Fujikura Ltd 光触媒担持中空糸膜およびこれを用いた光触媒フィルタ装置
JP2004358243A (ja) * 2003-05-30 2004-12-24 Fresenius Medical Care Deutschland Gmbh ビリルビンを含む液体を体外照射するためのデバイスおよびその方法

Also Published As

Publication number Publication date
JP4899040B2 (ja) 2012-03-21
JP2007007292A (ja) 2007-01-18
US20090131771A1 (en) 2009-05-21
US7998100B2 (en) 2011-08-16

Similar Documents

Publication Publication Date Title
WO2007004593A1 (ja) ビリルビン変性器及びビリルビン透析装置
JP6673560B2 (ja) 滅菌用紫外線発光ダイオードを用いた腹膜透析患者接続システム
US7207964B2 (en) Apparatus and method for down-regulating immune system mediators in blood
JP3108692B2 (ja) 血液処理システム
US7527737B2 (en) Hemodialysis apparatus and methods
JP3038445B2 (ja) 液体中の汚染物を根絶するシステム及び方法
EP1263481B1 (en) Device and method for pathogen inactivation of therapeutic fluids with sterilizing radiation
US7201730B2 (en) Device and method for reducing inflammatory mediators in blood
US20060210424A1 (en) Extracorporeal blood treatment system using ultraviolet light and filters
US20040182783A1 (en) Filter and concentrator device for treatment of blood
CN1572332A (zh) 含胆红素液体之体外照射装置及其方法
JP2004000488A (ja) 医療装置
US20210038802A1 (en) System and method for irradiating biological fluids
US4904874A (en) Apparatus for irradiating fluids
CN102725024B (zh) 增强的抗菌pdt
AR000901A1 (es) Metodo y disposicion en linea para el tratamiento extracorporal de sangre
US7229427B2 (en) Irradiation and filter device for treatment of blood
US20040186407A1 (en) Concentrator and filter apparatus for treatment of blood
US20040185041A1 (en) Method for extracorporeal treatment of blood
WO2021188624A1 (en) Polychromatic phototherapy device and method
US20040182784A1 (en) Concentrator and filter based blood treatment system
KR102545112B1 (ko) 덴탈 체어 장치
JP6626930B1 (ja) 採水ディスペンサー及び純水製造装置
GB2438375A (en) Dialysis apparatus with blood irradiation means
CN2880097Y (zh) 一种血液透析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11988195

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767733

Country of ref document: EP

Kind code of ref document: A1