WO2007004530A1 - Illumination light communication device and illumination light communication method - Google Patents

Illumination light communication device and illumination light communication method Download PDF

Info

Publication number
WO2007004530A1
WO2007004530A1 PCT/JP2006/313048 JP2006313048W WO2007004530A1 WO 2007004530 A1 WO2007004530 A1 WO 2007004530A1 JP 2006313048 W JP2006313048 W JP 2006313048W WO 2007004530 A1 WO2007004530 A1 WO 2007004530A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse signal
illumination light
light
information
illumination
Prior art date
Application number
PCT/JP2006/313048
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Kuroda
Akira Imamura
Kei Tanaka
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2007524008A priority Critical patent/JP4676494B2/en
Publication of WO2007004530A1 publication Critical patent/WO2007004530A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/1149Arrangements for indoor wireless networking of information
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/33Pulse-amplitude modulation [PAM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/335Pulse-frequency modulation [PFM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators

Definitions

  • the present invention relates to an illumination light communication apparatus and an illumination light communication method for communicating information using illumination light.
  • Illumination light communication technology is generally a technology that communicates information using illumination light emitted from illumination devices such as luminaires installed in the house and illumination lights installed outdoors. .
  • a light emitting diode In illumination light communication, a light emitting diode (LED) is often used as a light source of illumination light irradiation means. With the recent progress of LED technology, LED can produce bright white illumination light. The LED can switch between light emission and non-light emission at high speed. By utilizing such LED characteristics, it is possible to modulate illumination light with digital information (a panelless signal) and transmit digital information via the illumination light. Then, the illumination light modulated by the digital information is received by the light receiving element, and the digital information is extracted from the electrical signal corresponding to the illumination light, thereby realizing the reception of the digital information. Thus, information communication using illumination light is realized.
  • digital information a panelless signal
  • Japanese Patent Laid-Open No. 2004-229273 discloses a method for performing information communication using illumination light.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-229273
  • illumination light communication illumination light emitted from a light source such as a lighting fixture is modulated by digital information (pulse signal).
  • digital information pulse signal
  • the brightness of the illumination light changes at high speed. In other words, the illumination light flashes rapidly.
  • the illumination light is blinking, the blinking speed is high. Therefore, each change in the brightness of the illumination light corresponding to the change in the level of the pulse signal is directly detected through the human eye. It cannot be recognized.
  • the present invention has been made in view of the above-described problems, and a first object of the present invention is to provide illumination light that can be directly recognized by humans even if the illumination light is modulated by information. It is an object of the present invention to provide an illumination light communication device, an illumination light communication method, and a computer program that can reduce flicker.
  • a second problem of the present invention is to provide an illumination light communication device, an illumination light communication method, and a computer program capable of stabilizing the brightness (luminance) of illumination light modulated by information. is there.
  • an illumination light communication apparatus is an illumination light communication apparatus that communicates information via illumination light, a light source that emits illumination light that is visible light, and the light source A modulation unit that modulates emitted illumination light based on the information, and a light amount control unit that controls light emission by the light source so that the light amount per predetermined period of the illumination light modulated by the modulation unit is constant.
  • an illumination light communication method of the present invention is an illumination light communication method that communicates information via illumination light that is visible light emitted from a light source, and is based on the information. Therefore, a modulation step for modulating the illumination light, and a light amount control step for controlling light emission from the light source so that the light amount per predetermined period of the illumination light modulated in the modulation step is constant.
  • a computer program of the present invention causes a computer to function as the illumination light communication device of the present invention (including various aspects thereof).
  • a computer program product in a computer-readable medium clearly embodies a computer-executable program instruction, and the computer is used as the illumination optical communication device ( However, these functions are included).
  • the computer program product is read into a computer from a recording medium such as a ROM, CD-ROM, DVD-ROM, or hard disk storing the computer program product, or
  • a recording medium such as a ROM, CD-ROM, DVD-ROM, or hard disk storing the computer program product
  • the computer program product which is a transmission wave
  • the computer program product may be composed of computer-readable code (or computer-readable instructions) that function as the illumination light communication device of the present invention described above.
  • FIG. 1 is a block diagram showing a first embodiment of an illumination light communication apparatus of the present invention.
  • FIG. 2 is an explanatory diagram showing a specific example when the illumination light communication device in FIG. 1 is applied to an indoor illumination device.
  • FIG. 3 is an explanatory diagram showing a specific example when the illumination light communication apparatus in FIG. 1 is applied to an illumination lamp.
  • FIG. 4 is a block diagram showing in detail the internal structure of the illumination light communication device in FIG. 1.
  • FIG. 5 is an explanatory diagram showing communication information sent from an information source.
  • FIG. 6 Pulse signal corresponding to communication information before bi-phase encoding processing, pulse signal corresponding to communication information after no-phase encoding processing, and pulse signal after waveform inversion processing It is a wave form diagram which shows a number.
  • FIG. 7 is a block diagram showing a second embodiment of the illumination light communication apparatus of the present invention.
  • FIG. 8 is a circuit diagram showing a more specific aspect of the second embodiment of the illumination optical communication apparatus of the present invention.
  • FIG. 9 is a block diagram showing a third embodiment of the illumination light communication apparatus of the present invention.
  • FIG. 10 is a circuit diagram showing a more specific aspect of the third embodiment of the illumination optical communication apparatus of the present invention.
  • FIG. 11 is a block diagram showing a fourth embodiment of the illumination light communication apparatus of the present invention.
  • FIG. 12 is a circuit diagram showing a more specific aspect of the fourth embodiment of the illumination optical communication apparatus of the present invention.
  • FIG. 13 is a waveform diagram showing a pulse signal generated by adding an adjustment pulse signal to the pulse signal generated by the pulse signal generation circuit.
  • FIG. 14 is a block diagram showing a fifth embodiment of the illumination light communication apparatus of the present invention.
  • FIG. 15 is a waveform diagram showing a pulse signal generated by a pulse signal generator, a pulse signal divided by a pulse divider, and a pulse signal in which the number of divided pulses is changed by a node number controller.
  • FIG. 1 shows a first embodiment of the illumination light communication apparatus of the present invention.
  • An illumination light communication device 1 in FIG. 1 is a device that communicates information via illumination light.
  • the illumination light communication device 1 can communicate information of various forms, types and contents. However, it is desirable that the form of information communicated by the illumination light communication device 1 is digital information expressed by a binary code. However, if it is analog information, for example, the analog information may be converted into binary digital information by an analog-to-digital converter and then communicated. If multi-value digital information is used, for example, by a signal processing circuit, Communication can be performed after converting this into binary digital information.
  • communication information information communicated via illumination light is referred to as “communication information”.
  • the illumination light communication device 1 includes a light source 11, a modulation unit 12, and a light amount control unit 13 as shown in FIG.
  • the light source 11 spontaneously emits illumination light.
  • the illumination light is visible light.
  • the illumination light is preferably white light.
  • the light source 11 is preferably a light emitting diode (LED). Further, the light source 11 is preferably a light emitting diode that emits white light, that is, a white light emitting diode.
  • the light source 11 may be configured by a combination of a blue light emitting diode, a green light emitting diode, and a red light emitting diode instead of the white light emitting diode.
  • light-emitting elements that emit visible light spontaneously and can switch between light emission and non-light emission at high speed
  • organic electroluminescence elements, inorganic electroluminescence elements, or silicon light-emitting diodes are used instead of light-emitting diodes.
  • the light source 11 may be composed of elements, etc.
  • the modulation unit 12 modulates illumination light emitted from the light source 11 based on communication information.
  • the amount control unit 13 controls the light emission by the light source 11 so that the amount of illumination light modulated by the modulation unit 12 per unit time is constant. Specifically, the light quantity control unit 13 controls the generation of illumination light by the light source 11 or the modulation of illumination light by the modulation unit 12. Further specific description of the modulation unit 12 and the light amount control unit 13 will be described later.
  • FIG. 2 shows a specific example when the illumination light communication device 1 is applied to an indoor lighting device.
  • the indoor lighting device 20 in FIG. 2 has both a function as indoor lighting and a function of communicating communication information through illumination light.
  • the light emitting diode array plate 21 is provided with a plurality of white light emitting diodes 11A, 11A,. These white light emitting diodes 11 A are covered with a transparent cover 22.
  • the light emitting diode arrangement IJ plate 21 is attached to the attachment unit 23, and is further attached to the ceiling 24 via the attachment unit 23.
  • a modulation unit 12 and a light amount control unit 13 are provided inside the mounting unit 23.
  • the white light emitting diode 11A emits white illumination light.
  • the modulation unit 12 modulates the illumination light based on communication information sent from the information source. That is, the white light emitting diode 11A emits illumination light modulated based on communication information.
  • the indoor lighting device 20 communicates information with various devices such as information appliances, personal computers, and AV (Audio Vidual) devices that are exposed to illumination light indoors via illumination light. Can communicate.
  • the indoor lighting device 20 communicates communication information with a refrigerator 31 having a communication function, a PDA (Personal Digital Assistance) 32, a notebook personal computer 33, a DVD recorder 34 having a communication function, and the like. Can do.
  • the light amount control unit 13 controls the amount of illumination light emitted from the white light emitting diode 11A so that the amount of illumination light modulated by the modulation unit 12 per unit period is constant. This stabilizes the brightness of the illumination light emitted by the white light emitting diode 11A and reduces flickering of the illumination light.
  • FIG. 3 shows a specific example when the illumination light communication device 1 is applied to an illumination lamp.
  • the illuminating lamp 30 in FIG. 3 has both a function as outdoor illumination and a function of communicating communication information through illumination light.
  • a modulation unit 12 and a light amount control unit 13 are provided in the storage box 42 provided at the lower end of the column 41.
  • the white light emitting diode 11B emits white illumination light.
  • the modulation unit 12 modulates the illumination light based on communication information sent from the information source.
  • the illumination lamp 30 communicates communication information with the equipment in the place where the illumination light strikes, for example, the communication equipment provided in the automobile passing under the illumination light 30 via the illumination light. be able to.
  • the light amount control unit 13 controls the light amount of the illumination light emitted from the white light emitting diode 11B so that the light amount per predetermined period of the illumination light modulated by the modulation unit 12 is constant. Thereby, the brightness of the illumination light emitted from the white light emitting diode 11B is stabilized, and flickering of the illumination light is reduced.
  • FIG. 4 shows the internal structure of the illumination light communication device 1 in FIG. 1 in detail.
  • the light quantity control unit 13 includes a bi-fading encoding processing unit 41.
  • the modulation unit 12 includes a panelless signal generation unit 42 and a waveform inversion unit 43.
  • the bi-phase coding processing unit 41, the pulse signal generation unit 42, and the waveform inversion unit 43 can be configured by a microcomputer, a multiprocessor, or the like in which an arithmetic device, a control device, a logic circuit, and a memory element are incorporated. .
  • FIG. 5 shows communication information sent from information sources.
  • FIG. 6 shows a pulse signal P11 corresponding to the communication information before the bi-phase encoding process, a pulse signal P12 corresponding to the communication information after the phase code process, and a pulse signal P13 after the waveform inversion process.
  • communication information 51 is sent to the information source power illumination light communication device 1.
  • the information source is provided in any place of the building including the room where the indoor lighting device 20 is provided, for example.
  • Main computer eg personal computer
  • the information source is, for example, a communication base, a computer server provided in an information center of an intelligent transportation system (ITS), etc.
  • ITS intelligent transportation system
  • synchronization information 52 and a reception blank 53 are added to the communication information 51 sent from the information source.
  • the synchronization information 52 is information for synchronizing the information source and the illumination light communication device 1.
  • the reception blank 53 is provided for two-way communication between the illumination light communication device 1 and a communication device (for example, the refrigerator 31, the PDA 32, the notebook personal computer 33, the DVD recorder 34, etc. in FIG. 2). Blank. That is, the illumination light communication device 1 transmits the communication information 51 to the communication device via the illumination light. In response to this, the communication device transmits response information to the illumination light communication device 1 through a wireless communication medium such as white visible light or infrared light. The illumination light communication device 1 receives this response information.
  • the reception blank 53 is provided to secure time for receiving the response information.
  • the header 54 includes identification information for identifying individual communication devices that communicate with the illumination light communication device 1. For example, when the illumination light communication device 1 communicates with four communication devices such as the refrigerator 31, the PDA 32, the notebook personal computer 33, and the DVD recorder 34 in FIG. Such identification information is included. That is, when the refrigerator 31 is given an identification number such as “01”, PDA 32 as “02”, notebook personal computer as “03”, and DVD recorder 34 as “04”, “01”, “ Identification information indicating “02”, “03” or “04” is included in the header 54. Each communication device can determine whether or not the communication information 51 transmitted from the illumination light communication device 1 is the communication information 51 addressed to itself based on the identification information. As a result, the illumination light communication device 1 can communicate with one of a plurality of communication devices.
  • the communication information 51 is sent from the information source to the illumination light communication device 1, the communication information 51 is first supplied to the bi-fade coding processing unit 41.
  • the bi-phase encoding process unit 41 performs a phase encoding process on the communication information 51.
  • the pulse signal generation unit 42 generates a pulse signal P12 corresponding to the communication information 51 that has undergone the bi-face coding process by the bi-phase code processing unit 41.
  • the bi-fading encoding process is, for example, the following process. That is, the bifaise mark If the noise signal corresponding to the communication information 51 before the encoding process is, for example, the pulse signal PI 1 in FIG. 6, the high-level part of the pulse signal P11 has a duty ratio of 50 in the bi-phase encoding process. Converted to% 1st pulse a. Furthermore, the low-level partial force duty ratio of the pulse signal P11 is converted to a second pulse b having a phase force S180 degrees different from the first pulse a with a 50% duty ratio. In this way, the pulse signal P11 is converted into a pulse signal P12 having a duty ratio of 50% as a whole.
  • the waveform inverting unit 43 causes the pulseless signal P11 corresponding to the communication information 51 before the bi-phase coding process to be low in the pulse signal P12 corresponding to the communication information 51 after the phase-phase code processing. Invert the waveform of the section corresponding to the section of level). That is, as shown in FIG. 6, the waveform inversion unit 43 inverts a portion corresponding to the second pulse b of the pulse signal P12. As a result, the noise signal P12 is converted into the pulse signal P13. According to this waveform inversion process, in the pulse signal P13, the pulse always rises at a position corresponding to the position where the level of the pulse signal P11 is inverted. Thus, by performing signal processing based on the rising position of the pulse in the pulse signal P13, the original information, that is, the communication information 51 before the bi-phase encoding process can be restored easily and with high accuracy.
  • the pulse signal P13 is supplied from the waveform inversion unit 43 to the light source 11.
  • the light source 11 emits illumination light modulated by the pulse signal P13, that is, illumination light whose brightness changes in accordance with the waveform of the pulse signal P13.
  • the average frequency of the pulse signal P13 is, for example, about 100 kHz or more, a change in the brightness of the illumination light corresponding to the waveform of the pulse signal P13 cannot be directly recognized by human eyes. Further, since the pulse signal P13 is a pulse signal having a duty ratio of 50% as a whole, the amount of illumination light modulated by the noise signal P13 per predetermined period (for example, about 0.5 to 1 second) is almost equal. It becomes constant. As a result, regardless of the contents of the communication information 51, that is, the arrangement state of “1” and “0” in the communication information 51, the brightness of the illumination light emitted from the light source 11 is maintained over a long period of time (the light source 11 is Will be almost constant).
  • the communication code is used for the communication code. Processing is performed, the duty ratio of the pulse signal corresponding to the communication information is set to 50%, and the illumination light is modulated by this pulse signal. Therefore, the amount of illumination light per predetermined period can be made almost constant. Accordingly, the brightness (luminance) of the illumination light can be stabilized, and flickering of the illumination light that can be directly recognized by humans can be reduced. As a result, when the illuminating light communication device 1 is applied to an indoor lighting device (see Fig. 2), an illuminating lamp (see Fig. 3), etc., the original performance as these lightings, that is, light is applied to the object to make it brighter. Maintaining that brightness will help maintain and improve performance.
  • the illumination light communication apparatus 1 employs a configuration in which the amount of illumination light is made constant by performing no-phase code delay processing. As a result, the configuration is simpler than when using a configuration that detects the amount of illumination light and feeds back the detection results to adjust the amount of illumination light (for example, the illumination light communication device 60 described later). Power to reduce the number of parts.
  • the modulation unit 12 in FIGS. 1 to 4 is a specific example of the modulation means
  • the light quantity control unit 13 is a specific example of the light quantity control means.
  • 4 is a specific example of the bi-phase encoding processing means
  • the pulse signal generation section 42 is a specific example of the pulse signal generation means
  • the waveform inversion section 43 is a specific example of the waveform inversion means. It is an example.
  • FIG. 7 shows a second embodiment of the illumination light communication apparatus of the present invention.
  • the illumination light communication device 60 in FIG. 7 detects the light amount of the illumination light per predetermined period, and changes the amplitude of the pulse signal for modulating the illumination light so that the detected light amount is constant.
  • the configuration is adopted.
  • the modulation unit 61 includes a pulse signal generation unit 62.
  • the light quantity control unit 63 includes a light quantity detection unit 64 and an amplitude control unit 65.
  • the operation of the illumination light communication device 60 is as follows.
  • the pulse signal generator 62 When communication information is sent from the information source, the pulse signal generator 62 generates a pulse signal corresponding to the communication information.
  • the light source 66 emits illumination light whose brightness changes in accordance with the waveform of the pulse signal generated by the pulse signal generation unit 62.
  • the light quantity detection unit 64 detects the light quantity per predetermined period of the illumination light emitted from the light source 66.
  • the amplitude control unit 65 is a light amount detected by the light amount detection unit 64. The amplitude of the pulse signal generated by the pulse signal generation unit 62 is changed so that becomes a predetermined light quantity.
  • Fig. 8 shows a more specific example of the illumination light communication device 60 according to the second embodiment of the present invention.
  • 8 includes a pulse signal generation circuit 71, an amplifier 72, a white light emitting diode (white LED) 73, a light receiving element 74, an integration circuit 75, a reference value output circuit 76, and a comparator 77.
  • the light receiving element 74 is provided in a place where the illumination light emitted from the white light emitting diode 73 strikes. Taking the indoor lighting device 20 in FIG. 2 as an example, the light receiving element 74 is attached to, for example, the center of the inner surface of the transparent cover.
  • the operation of the illumination light communication device 70 is as follows.
  • the pulse signal generation circuit 71 When communication information is sent from the information source, the pulse signal generation circuit 71 generates a pulse signal P21 corresponding to the communication information. For example, the pulse signal P21 having high and low amplitudes corresponding to the codes “1” and “0” in the communication information is generated.
  • the amplifier 72 amplifies the pulse signal P21 and supplies it to the white light emitting diode 73 as the pulse signal P22.
  • the white light emitting diode 73 emits illumination light modulated by the pulse signal P22, that is, illumination light whose brightness changes in accordance with the waveform of the pulse signal P22.
  • the light receiving element 74 receives the illumination light emitted from the white light emitting diode 73, generates an electrical signal whose amplitude changes in accordance with the intensity of the illumination light, and uses this electrical signal as an integration circuit 75.
  • the integrating circuit 75 generates an integrated value per predetermined period (for example, about 0.5 to 1 second) of the electric signal, and supplies the integrated value to one input terminal of the comparator 77.
  • a predetermined reference value is input from the reference value output circuit 76 to the other input terminal of the comparator 77.
  • the comparator 77 compares the integrated value supplied from the integrating circuit 75 with a predetermined reference value, and supplies a DC control signal having a voltage corresponding to the difference between the two to the amplifier 72.
  • the amplifier 72 changes the amplification factor according to the voltage of this control signal.
  • the amplitude of the pulse signal P22 changes according to the voltage of the control signal, that is, the difference between the integrated value supplied from the integrating circuit 75 and the predetermined reference value. More specifically, when the integrated value supplied from the integrating circuit 75 is larger than a predetermined reference value, the voltage of the control signal supplied from the comparator 77 to the amplifier 72 becomes negative, which causes the amplifier to The gain of 72 decreases. Therefore, the amplitude of the pulse signal P22 is reduced, and as a result, the amount of illumination light per predetermined period is reduced.
  • the integral value supplied from the integration circuit 75 is smaller than a predetermined reference value, the voltage of the control signal supplied from the comparator 77 to the amplifier 72 becomes positive, and thereby the amplification factor of the amplifier 72 increases. Therefore, the amplitude of the pulse signal P22 increases, and as a result, the amount of illumination light per predetermined period increases. By repeating such an operation, the amount of illumination light per predetermined period converges to a constant amount.
  • the illumination light communication devices 60 and 70 detect the light amount of the illumination light per predetermined period, and the pulse for modulating the illumination light so that the detected light amount becomes constant.
  • the amplitude of the signal is changed.
  • the light quantity per predetermined period of illumination light can be made substantially constant. Therefore, the brightness (luminance) of the illumination light can be stabilized, and flickering of the illumination light that can be directly recognized by humans can be reduced.
  • the illumination light communication devices 60 and 70 detect the light amount of the illumination light actually emitted per predetermined period, and feedback control the light amount of the illumination light per predetermined period using the detection result.
  • the configuration is adopted. For this reason, the amount of illumination light can be made constant with high accuracy.
  • an integration value for a predetermined period is generated by the integration circuit 75 and used for comparison by the comparator 77.
  • an average value may be used instead of the integral value.
  • the integrated value per predetermined period generated by the integrating circuit 75 may be divided by the length of the predetermined period to generate an average value and used for comparison by the comparator 77.
  • the modulation unit 61 is a specific example of the modulation means
  • the light quantity control unit 63 is a specific example of the light quantity control means.
  • the pulse signal generation unit 62 is a specific example of the pulse signal generation unit
  • the light amount detection unit 64 is a specific example of the light amount detection unit
  • the amplitude control unit 65 is a specific example of the amplitude control unit.
  • a pulse signal generation circuit 71 is a specific example of pulse signal generation means.
  • the white light emitting diode 73 is a specific example of the light source.
  • the light receiving element 74 and the integrating circuit 75 are specific examples of the light amount detecting means.
  • the reference value output circuit 76, the comparator 77, and the amplifier 72 are specific examples of the amplitude control means. [0058] (Third embodiment)
  • FIG. 9 shows a third embodiment of the illumination light communication apparatus of the present invention.
  • the illumination light communication device 80 in FIG. 9 obtains an integral value per predetermined period of the noise signal for modulating the illumination light, and the pulse is adjusted so that the obtained integral value becomes constant. A configuration that changes the amplitude of the signal is adopted.
  • the modulation unit 81 includes a pulse signal generation unit 82.
  • the light quantity control unit 83 includes a light quantity detection unit 84 and an amplitude control unit 85.
  • the operation of the illumination light communication device 80 is as follows.
  • the pulse signal generation unit 82 When communication information is sent from the information source, the pulse signal generation unit 82 generates a pulse signal corresponding to the communication information.
  • the light source 86 emits illumination light whose brightness changes in accordance with the waveform of the pulse signal generated by the pulse signal generation unit 82.
  • the integral value acquisition unit 84 acquires an integral value per predetermined period of the pulse signal supplied from the pulse signal generation unit 82 to the light source 86.
  • the amplitude control unit 85 changes the amplitude of the pulse signal generated by the pulse signal generation unit 82 so that the integral value acquired by the integration value acquisition unit 84 becomes a predetermined reference value.
  • FIG. 10 shows a more specific example of the illumination light communication device 80 according to the third embodiment of the present invention.
  • the illumination light communication apparatus 90 in FIG. 10 includes a pulse signal generation circuit 91, an amplifier 92, a white light emitting diode (white LED) 93, an integration circuit 94, a reference value output circuit 95, and a comparator 96.
  • the operation of the illumination light communication apparatus 90 is as follows.
  • the pulse signal generation circuit 91 When communication information is sent from the information source, the pulse signal generation circuit 91 generates a pulse signal P31 corresponding to the communication information. For example, a pulse signal P31 having high and low amplitudes corresponding to the codes “1” and “0” in the communication information is generated.
  • the amplifier 92 amplifies the pulse signal P31 and supplies it to the white light emitting diode 93 as the pulse signal P32.
  • the white light emitting diode 93 emits illumination light modulated by the pulse signal P32, that is, illumination light whose brightness changes in accordance with the waveform of the pulse signal P32.
  • the pulse signal P32 output from the amplifier 92 is also supplied to the integrating circuit 94.
  • the integration circuit 94 generates an integration value per predetermined period (for example, about 0.5 to 1 second) of the pulse signal P32 and supplies this integration value to one input terminal of the comparator 96.
  • a predetermined reference value is input from the reference value output circuit 95 to the other input terminal.
  • the comparator 96 compares the integrated value supplied from the integrating circuit 94 with the reference value, and supplies a DC control signal having a voltage corresponding to the difference between the two to the amplifier 92.
  • the amplifier 92 changes the amplification factor according to the voltage of this control signal.
  • the amplitude of the pulse signal P32 changes in accordance with the voltage of the control signal, that is, the difference between the integrated value supplied from the integrating circuit 94 and the reference value. More specifically, when the integrated value supplied from the integrating circuit 94 is larger than the reference value, the voltage of the control signal supplied from the comparator 96 to the amplifier 92 becomes negative, which causes the amplification factor of the amplifier 92 to increase. Go down. Therefore, the amplitude of the pulse signal P32 is reduced, and as a result, the amount of illumination light per predetermined period is reduced.
  • the integral value supplied from the integration circuit 94 is smaller than the reference value, the voltage of the control signal supplied from the comparator 96 to the amplifier 92 becomes positive, and thereby the amplification factor of the amplifier 92 increases. Accordingly, the amplitude of the pulse signal P32 increases, and as a result, the amount of illumination light per predetermined period increases. By repeating such an operation, the amount of illumination light per predetermined period converges to a constant amount of light.
  • the integral value per predetermined period of the pulse signal for modulating the illumination light is obtained, and the obtained integral value is constant.
  • the amplitude of the pulse signal is changed.
  • the light quantity per predetermined period of illumination light can be made substantially constant. Therefore, the brightness (luminance) of the illumination light can be stabilized, and flickering of the illumination light that can be directly recognized by humans can be reduced.
  • the illumination light communication devices 80 and 90 an integral value per predetermined period of the pulse signal actually supplied to the light source 93 is acquired, and the light per predetermined period of the illumination light is obtained using this integral value.
  • a configuration that feedback controls the amount is adopted. For this reason, the amount of illumination light can be made constant with high accuracy.
  • the modulation unit 81 is a specific example of the modulation means
  • the light quantity control unit 83 is a specific example of the light quantity control means.
  • the pulse signal generation unit 82 is a specific example of the pulse signal generation unit
  • the integral value acquisition unit 84 is a specific example of the integration value acquisition unit
  • the amplitude control unit 85 is a specific example of the amplitude control unit.
  • a pulse signal generation circuit 91 is a specific example of a panelless signal generation means.
  • the white light emitting diode 93 is a specific example of the light source. is there.
  • the integration circuit 94 is a specific example of the integrated value acquisition means. Reference value output circuit
  • a comparator 96 and an amplifier 92 are specific examples of the amplitude control means.
  • FIG. 11 shows a fourth embodiment of the illumination light communication apparatus of the present invention.
  • the adjustment pulse signal is added to the pulse signal corresponding to the communication information, and the illumination light is modulated by the pulse signal to which the adjustment pulse signal is added. Then, the amplitude of the adjustment pulse signal is changed so that the amount of illumination light per predetermined period is constant.
  • modulation section 101 includes pulse signal generation section 102 and adjustment pulse addition section 103.
  • the light quantity control unit 104 includes an adjustment pulse signal control unit 105.
  • the operation of the illumination light communication apparatus 100 is as follows.
  • the pulse signal generation unit 102 When communication information is sent from the information source, the pulse signal generation unit 102 generates a first pulse signal corresponding to the communication information.
  • the adjustment pulse adding unit 103 generates the second pulse signal by adding the adjustment pulse signal to the first panelless signal generated by the noise signal generating unit 102.
  • the light source 106 emits illumination light whose brightness changes according to the waveform of the second pulse signal generated by the adjustment pulse adding unit 103.
  • the adjustment pulse signal control unit 105 changes the amplitude of the adjustment pulse signal so that the amount of illumination light emitted from the light source 106 per predetermined period is constant.
  • the amount of illumination light emitted from the light source 106 is detected in substantially the same manner as the illumination light communication device 60 described above.
  • a method of performing feedback control based on the above can be used.
  • FIG. 12 shows a more specific example of the illumination light communication apparatus 100 that is the fourth embodiment of the present invention.
  • the illumination light communication device 110 in FIG. 12 includes a pulse signal generation circuit 111, an adjustment panelless generation circuit 112, an amplifier 113, a pulsed circuit 114, a white light emitting diode (white LED) 115, a light receiving element 116, and an integration circuit. 117, reference value output circuit 118 and comparator 119 It has.
  • illumination light communication apparatus 110 The operation of illumination light communication apparatus 110 is as follows.
  • the pulse signal generation circuit 111 When communication information is sent from the information source, the pulse signal generation circuit 111 generates a pulse signal P41 corresponding to the communication information. Further, the adjustment pulse generation circuit 112 generates an adjustment pulse signal P42.
  • the amplifier 11 3 amplifies the adjustment no-less signal P42. Then, the pulsed circuit 114 adds the amplified adjustment pulse signal P42 to the pulse signal P41, thereby generating a noise signal P43.
  • FIG. 13 shows the waveform of the pulse signal P43 obtained by adding the adjustment pulse signal P42 to the pulse signal P41.
  • the pulse signal P41 is, for example, a signal whose amplitude becomes a high level or a low level corresponding to codes “1” and “0” in the communication information.
  • the frequency, duty ratio, and length (total signal length of one unit) of the adjustment pulse signal P42 are determined in advance as initial values, and are constant, for example.
  • the amplitude of the adjustment pulse signal P42 changes due to a change in the amplification factor of the amplifier 113.
  • the reception period in FIG. 13 corresponds to the reception blank 53 in FIG.
  • Such a pulse signal P43 is supplied from the pulse addition circuit 114 to the white light emitting diode 115.
  • the white light emitting diode 115 emits illumination light modulated by the pulse signal P43, that is, illumination light whose brightness changes in accordance with the waveform of the pulse signal P43.
  • the light receiving element 116 receives the illumination light emitted from the white light emitting diode 115, generates an electrical signal whose amplitude changes according to the intensity of the illumination light, and uses this electrical signal as an integration circuit 117.
  • the integration circuit 117 generates an integration value per predetermined period (for example, about 0.5 to 1 second) of the electrical signal and supplies the integration value to one input terminal of the comparator 119.
  • a predetermined reference value is input from the reference value output circuit 118 to the other input terminal of the comparator 119.
  • the comparator 119 compares the integrated value supplied from the integrating circuit 117 with a reference value, and supplies a DC control signal having a voltage corresponding to the difference between the two to the amplifier 113.
  • the amplifier 113 changes the amplification factor according to the voltage of this control signal.
  • the amplitude of the adjustment pulse signal P42 changes according to the voltage of the control signal, that is, the difference between the integrated value supplied from the integrating circuit 117 and the predetermined reference value. More specifically, the integration circuit 117 When the integral value supplied to the power is larger than a predetermined reference value, the voltage of the control signal supplied from the comparator 119 to the amplifier 113 becomes negative, thereby reducing the amplification factor of the amplifier 113. Therefore, the amplitude of the adjustment pulse signal P42 is reduced, and as a result, the amount of illumination light per predetermined period is reduced.
  • the voltage of the control signal supplied from the comparator 119 to the amplifier 113 becomes positive, and thereby the amplification factor of the amplifier 113 is increased. Goes up. Therefore, the amplitude of the adjustment panelless signal P43 increases, and as a result, the amount of illumination light per predetermined period increases. By repeating such an operation, the amount of illumination light per predetermined period converges to a constant amount.
  • the communication device that has received the illumination light emitted from the illumination light communication device 110 acquires a signal corresponding to the pulse signal P43 from the illumination light, and from this signal, a signal corresponding to the adjustment pulse signal P42. And only the signal corresponding to the pulse signal P41 is extracted.
  • Such an extraction process can be realized as follows, for example. That is, the timing (interval) for adding the adjustment pulse signal P42 to the pulse signal P41 and the length of the adjustment pulse signal P42 per unit are determined in advance in the illumination light communication apparatus 110.
  • the communication device identifies the signal corresponding to the signal force adjustment pulse signal P42 corresponding to the pulse signal P43 under the state where the illumination light communication device 110 and the communication device are synchronized. Is possible. Therefore, the communication device can extract only the signal corresponding to the panoramic signal P41 from the signal corresponding to the pulse signal P43, and this signal power communication information can be reproduced.
  • the adjustment pulse signal is added to the pulse signal corresponding to the communication information, and the illumination light is modulated by the pulse signal to which the adjustment pulse signal is added. Then, the amplitude of the adjustment pulse signal is changed so that the amount of illumination light per predetermined period is constant. Thereby, the light quantity per predetermined period of illumination light can be made substantially constant. Accordingly, the brightness (luminance) of the illumination light can be stabilized, and flickering of the illumination light that can be directly recognized by humans can be reduced.
  • illumination light communication apparatuses 100 and 110 employ a configuration in which an adjustment panelless signal is added to a pulse signal corresponding to communication information.
  • the amplitude and frequency of the adjustment pulse signal By arbitrarily setting and adjusting initial values such as number, duty ratio, and length, the amount of illumination light can be set and adjusted over a wide range. Therefore, it is possible to widen the range of setting and adjusting the brightness of the illumination, and to realize illumination that can freely control the brightness.
  • the present invention is not limited to this. ,.
  • the modulation unit 101 is a specific example of the modulation unit
  • the light amount control unit 104 is a specific example of the light amount control unit.
  • the pulse signal generation unit 102 is a specific example of the pulse signal generation unit
  • the adjustment pulse addition unit 103 is a specific example of the adjustment pulse addition unit
  • the adjustment pulse signal control unit 105 is a specific example of the adjustment pulse signal control unit. It is. Also, craft
  • a noise signal generation circuit 111 is a specific example of the pulse signal generation means.
  • the white light emitting diode 115 is a specific example of the light source.
  • the adjustment pulse generation circuit 112 and the pulse addition circuit 114 are specific examples of adjustment pulse addition means.
  • the light receiving element 116, the integrating circuit 117, the reference value output circuit 118, the comparator 119, and the amplifier 113 are specific examples of the adjustment pulse signal control means.
  • FIG. 14 shows a fifth embodiment of the illumination light communication apparatus of the present invention.
  • the pulse of the no-less signal for modulating the illumination light is divided into subdivided pulses. Then, the number of subdivided pulses is changed so that the amount of illumination light per predetermined period is constant.
  • the modulation unit 121 includes a pulse signal generation unit 122 and a pulse division unit 123.
  • the light quantity control unit 124 includes a pulse number control unit 125.
  • illumination light communication apparatus 120 The operation of illumination light communication apparatus 120 is as follows.
  • the pulse signal generator 122 When communication information is sent from the information source, the pulse signal generator 122 generates a pulse signal P51 corresponding to the communication information. Subsequently, the pulse division unit 123 generates the pulse signal P generated by the noise signal generation unit 122.
  • the 51 pulses (on-pulse) are divided into a plurality of subdivided pulses having a width smaller than the minimum width of the pulse of the pulse signal P51, thereby generating a pulse signal P53.
  • the light source 126 emits illumination light whose brightness changes according to the waveform of the pulse signal P53.
  • the adjustment pulse signal control unit 105 changes the number of subdivided pulses of the noise signal P53 so that the amount of illumination light emitted from the light source 106 per unit time is constant.
  • the amount of illumination light emitted from the light source 126 is detected in substantially the same manner as the illumination light communication device 60 described above.
  • a method of performing feedback control based on the detection result can be used.
  • a method of obtaining an integral value of the pulse signal P53 supplied to the light source 126 and performing feedback control based on the integral value can be used in substantially the same manner as the illumination light communication device 80 described above.
  • FIG. 15 shows a pulse signal P51 generated by the pulse signal generator 122, a pulse signal P52 divided by the pulse divider 123, and a pulse signal in which the number of divided pulses is changed by the pulse number controller 125. P53 is shown.
  • the pulse dividing unit 123 divides the pulse W1 of the pulse signal P51 into divided pulses W2 having a width smaller than one half of the minimum pulse width of the pulse signal P51, for example.
  • the pulse number control unit 125 reduces the number of divided pulses W2 of the pulse signal P52. At this time, as shown in the pulse signal P 53 in FIG. 15, at least the divided pulse (starting divided pulse W2a) located at the rising edge of the pulse W1 and the divided pulse (end) located at the falling edge of the corresponding node W1. The split pulse W2b) remains. That is, the pulse number control unit 125 reduces the number of divided pulses W2 existing between the first divided pulse W2a and the last divided pulse W2b.
  • the signal corresponding to the pulse signal P51 can be easily and accurately restored based on the signal corresponding to the pulse signal P53. That is, based on the illumination light modulated by the pulse signal P53, the signal corresponding to the pulse signal P51 can be restored easily and with high accuracy, and thus communication information can be easily and accurately reproduced. It becomes possible.
  • the pulse signal for modulating illumination light is divided into subdivided pulses so that the amount of illumination light per predetermined period is constant. Change the number of subdivision pulses. Thereby, the light quantity per predetermined period of illumination light can be made substantially constant.
  • the brightness (luminance) of the illumination light can be stabilized, and flickering of the illumination light that can be directly recognized by humans can be reduced.
  • the illuminating light communication device 1 is applied to an indoor lighting device (see Fig. 2), an illuminating lamp (see Fig. 3), etc., the original performance as these lightings, that is, light is applied to the object to make it brighter.
  • the performance of maintaining the brightness can be maintained or improved.
  • the modulation unit 121 is a specific example of the modulation unit
  • the light amount control unit 124 is a specific example of the light amount control unit.
  • the pulse signal generation unit 122 is a specific example of the pulse signal generation unit
  • the pulse division unit 123 is a specific example of the pulse division unit
  • the pulse number control unit 125 is a specific example of the pulse number control unit.
  • the present invention is not limited to this.
  • a DC offset may be applied and appropriately changed so that the amount of illumination light is constant.
  • the amount of illumination light for each predetermined period can be made constant. Furthermore, it goes without saying that the adjustment of the potential during the high level period of the pulse signal may also be performed.
  • the present invention can be appropriately changed without departing from the gist or idea of the invention that can be read from the claims and the entire specification, and the illumination light communication device and illumination light accompanied by such a change can be used.
  • a communication method and a computer program for realizing these functions are also included in the technical idea of the present invention.
  • the illumination light communication apparatus and illumination light communication method according to the present invention can be used for illumination light communication in which information is communicated using illumination light, for example. Further, it can also be used for, for example, an illumination optical communication device that is mounted on or can be connected to various computer equipment for consumer use or business use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

White light emitting diodes (11A, 11A, ...) emits illumination light modulated by communication information. A light quantity control unit (13) controls generation of the illumination light or modulation by a modulation unit (12) so that the light quantity of the illumination light per a predetermined period is constant. For example, the light quantity control unit (13) performs biphase encoding for the communication information.

Description

明 細 書  Specification
照明光通信装置および照明光通信方法  Illumination light communication apparatus and illumination light communication method
技術分野  Technical field
[0001] 本発明は、照明光を利用して情報の通信を行う照明光通信装置および照明光通 信方法に関する。  The present invention relates to an illumination light communication apparatus and an illumination light communication method for communicating information using illumination light.
背景技術  Background art
[0002] 現在、照明光通信技術の開発が進められている。照明光通信技術とは、概して、屋 内に備え付けられた照明器具や、屋外に設置されている照明灯などの照明光照射 手段から照射される照明光を利用して情報通信を行う技術である。  [0002] Currently, development of illumination optical communication technology is underway. Illumination light communication technology is generally a technology that communicates information using illumination light emitted from illumination devices such as luminaires installed in the house and illumination lights installed outdoors. .
[0003] 照明光通信においては、照明光照射手段の光源として、発光ダイオード (LED、 Li ght-Emitting Diode)が用いられることが多い。近年の LED技術の進展により、 LED により明るい白色の照明光を作り出すことができる。そして、 LEDは発光 ·非発光を高 速に切り替えることができる。このような LEDの性質を利用すれば、デジタル情報 (パ ノレス信号)により照明光を変調し、照明光を介してデジタル情報を送信することができ る。そして、デジタル情報により変調された照明光を受光素子で受け取り、この照明 光に対応する電気信号からデジタル情報を抽出することにより、デジタル情報の受信 が実現する。こうして、照明光を利用した情報通信が実現する。  In illumination light communication, a light emitting diode (LED) is often used as a light source of illumination light irradiation means. With the recent progress of LED technology, LED can produce bright white illumination light. The LED can switch between light emission and non-light emission at high speed. By utilizing such LED characteristics, it is possible to modulate illumination light with digital information (a panelless signal) and transmit digital information via the illumination light. Then, the illumination light modulated by the digital information is received by the light receiving element, and the digital information is extracted from the electrical signal corresponding to the illumination light, thereby realizing the reception of the digital information. Thus, information communication using illumination light is realized.
[0004] 例えば、特開 2004— 229273号の公開特許公報には、照明光を利用して情報通 信を行う一方式が記載されている。  [0004] For example, Japanese Patent Laid-Open No. 2004-229273 discloses a method for performing information communication using illumination light.
[0005] 特許文献 1 :特開 2004— 229273号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-229273
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] ところで、照明光通信では、照明器具などの光源から照射される照明光をデジタル 情報 (パルス信号)により変調する。この結果、照明光の明るさが高速に変化する。つ まり、平たく言えば、照明光が高速に点滅する。 By the way, in illumination light communication, illumination light emitted from a light source such as a lighting fixture is modulated by digital information (pulse signal). As a result, the brightness of the illumination light changes at high speed. In other words, the illumination light flashes rapidly.
[0007] 照明光が点滅しているとはいえ、点滅速度が高速である。したがって、パルス信号 のレベル変化に対応した照明光の明るさの変化の一つ一つを人間の目を介して直 接認識することはできない。 [0007] Although the illumination light is blinking, the blinking speed is high. Therefore, each change in the brightness of the illumination light corresponding to the change in the level of the pulse signal is directly detected through the human eye. It cannot be recognized.
[0008] ところが、デジタル情報における 0と 1の配列に偏りがある場合には、ある程度長い 期間ごとにみた照明光の明るさが変化する。この明るさの変化は比較的低速なので、 人間の目を介して直接認識することができる場合がある。  [0008] However, when there is a bias in the arrangement of 0 and 1 in digital information, the brightness of the illumination light seen over a relatively long period of time changes. This change in brightness is relatively slow, so it may be directly perceivable through the human eye.
[0009] 例えば、デジタル情報において 0が連続すれば、パルス信号においてローレベル が連続し、照明光が暗い状態あるいは照明光が消えている状態が長い期間継続す る。この結果、人間は、照明光が暗くなつたと感じる。一方、デジタル情報において 1 が連続すれば、人間は、照明光が明るくなつたと感じる。  [0009] For example, if 0 continues in digital information, the low level continues in the pulse signal, and the illumination light is dark or the illumination light is off for a long period. As a result, humans feel that the illumination light has become dark. On the other hand, if 1 continues in digital information, humans feel that the illumination light has become brighter.
[0010] 例えばこのような事情により、照明器具などの光源から照射される照明光をデジタ ル情報により変調すると、デジタル情報の内容によっては、人間が直接認識できるよ うなちらつきが照明光に発生する可能性がある。これは照明器具、照明灯などに本 来的に要求される性能、つまり物に光をあてて明るくし、その明るさを維持するという 性能を低下させることとなり、好ましくない。  [0010] For example, when illumination light emitted from a light source such as a lighting fixture is modulated with digital information due to such circumstances, flickering that can be directly recognized by humans may occur in the illumination light depending on the contents of digital information. there is a possibility. This is not preferable because it lowers the performance that is essentially required for lighting fixtures, lighting, etc., that is, the performance of illuminating and maintaining the brightness of an object.
[0011] 本発明は上記に例示したような問題点に鑑みなされたものであり、本発明の第 1の 課題は、情報によって照明光を変調しても、人間が直接認識できるような照明光のち らっきを軽減することができる照明光通信装置、照明光通信方法およびコンピュータ プログラムを提供することにある。  [0011] The present invention has been made in view of the above-described problems, and a first object of the present invention is to provide illumination light that can be directly recognized by humans even if the illumination light is modulated by information. It is an object of the present invention to provide an illumination light communication device, an illumination light communication method, and a computer program that can reduce flicker.
[0012] 本発明の第 2の課題は、情報によって変調された照明光の明るさ(輝度)の安定化 を図ることができる照明光通信装置、照明光通信方法およびコンピュータプログラム を提供することにある。  [0012] A second problem of the present invention is to provide an illumination light communication device, an illumination light communication method, and a computer program capable of stabilizing the brightness (luminance) of illumination light modulated by information. is there.
課題を解決するための手段  Means for solving the problem
[0013] 上記課題を解決するために本発明の照明光通信装置は、照明光を介して情報を 通信する照明光通信装置であって、可視光である照明光を発する光源と、前記光源 から発せられる照明光を前記情報に基づいて変調する変調手段と、前記変調手段 により変調された照明光の所定期間当たりの光量が一定となるように、前記光源によ る発光を制御する光量制御手段とを備えている。  In order to solve the above problems, an illumination light communication apparatus according to the present invention is an illumination light communication apparatus that communicates information via illumination light, a light source that emits illumination light that is visible light, and the light source A modulation unit that modulates emitted illumination light based on the information, and a light amount control unit that controls light emission by the light source so that the light amount per predetermined period of the illumination light modulated by the modulation unit is constant. And.
[0014] 上記課題を解決するために本発明の照明光通信方法は、光源から発せられる可視 光である照明光を介して情報を通信する照明光通信方法であって、前記情報に基 づいて前記照明光を変調する変調工程と、前記変調工程において変調された照明 光の所定期間当たりの光量が一定となるように、前記光源における発光を制御する 光量制御工程とを備えている。 In order to solve the above problems, an illumination light communication method of the present invention is an illumination light communication method that communicates information via illumination light that is visible light emitted from a light source, and is based on the information. Therefore, a modulation step for modulating the illumination light, and a light amount control step for controlling light emission from the light source so that the light amount per predetermined period of the illumination light modulated in the modulation step is constant.
[0015] 上記課題を解決するために本発明のコンピュータプログラムは、本発明の照明光 通信装置 (但し、その各種態様を含む)としてコンピュータを機能させる。  In order to solve the above problems, a computer program of the present invention causes a computer to function as the illumination light communication device of the present invention (including various aspects thereof).
[0016] 上記課題を解決するためにコンピュータ読取可能な媒体内のコンピュータプロダラ ム製品は、コンピュータにより実行可能なプログラム命令を明白に具現化し、該コンビ ユータを、本発明の照明光通信装置 (但し、その各種態様を含む)として機能させる。  [0016] In order to solve the above problems, a computer program product in a computer-readable medium clearly embodies a computer-executable program instruction, and the computer is used as the illumination optical communication device ( However, these functions are included).
[0017] 本発明のコンピュータプログラム製品によれば、当該コンピュータプログラム製品を 格納する ROM、 CD-ROM, DVD-ROM,ハードディスク等の記録媒体から、当 該コンピュータプログラム製品をコンピュータに読み込めば、或いは、例えば伝送波 である当該コンピュータプログラム製品を、通信手段を介してコンピュータにダウン口 ードすれば、上述した本発明の照明光通信装置を比較的容易に実施可能となる。更 に具体的には、当該コンピュータプログラム製品は、上述した本発明の照明光通信 装置として機能させるコンピュータ読取可能なコード (或いはコンピュータ読取可能な 命令)から構成されてよい。  [0017] According to the computer program product of the present invention, the computer program product is read into a computer from a recording medium such as a ROM, CD-ROM, DVD-ROM, or hard disk storing the computer program product, or For example, if the computer program product, which is a transmission wave, is downloaded to a computer via communication means, the illumination light communication apparatus of the present invention described above can be implemented relatively easily. More specifically, the computer program product may be composed of computer-readable code (or computer-readable instructions) that function as the illumination light communication device of the present invention described above.
[0018] 本発明のこのような作用及び他の利得は次に説明する実施形態から明らかにされ る。  [0018] These effects and other advantages of the present invention will become apparent from the embodiments described below.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明の照明光通信装置の第 1実施形態を示すブロック図である。  FIG. 1 is a block diagram showing a first embodiment of an illumination light communication apparatus of the present invention.
[図 2]図 1中の照明光通信装置を屋内照明装置に適用した場合の具体例を示す説 明図である。  FIG. 2 is an explanatory diagram showing a specific example when the illumination light communication device in FIG. 1 is applied to an indoor illumination device.
[図 3]図 1中の照明光通信装置を照明灯に適用した場合の具体例を示す説明図であ る。  FIG. 3 is an explanatory diagram showing a specific example when the illumination light communication apparatus in FIG. 1 is applied to an illumination lamp.
[図 4]図 1中の照明光通信装置の内部構造を詳細に示すブロック図である。  4 is a block diagram showing in detail the internal structure of the illumination light communication device in FIG. 1.
[図 5]情報源から送られた通信情報を示す説明図である。  FIG. 5 is an explanatory diagram showing communication information sent from an information source.
[図 6]バイフエイズ符号化処理前の通信情報に対応するパルス信号、ノくィフェイズ符 号化処理後の通信情報に対応するパルス信号、および波形反転処理後のパルス信 号を示す波形図である。 [Fig. 6] Pulse signal corresponding to communication information before bi-phase encoding processing, pulse signal corresponding to communication information after no-phase encoding processing, and pulse signal after waveform inversion processing It is a wave form diagram which shows a number.
[図 7]本発明の照明光通信装置の第 2実施形態を示すブロック図である。  FIG. 7 is a block diagram showing a second embodiment of the illumination light communication apparatus of the present invention.
[図 8]本発明の照明光通信装置の第 2実施形態のより具体的な一態様を示す回路図 である。  FIG. 8 is a circuit diagram showing a more specific aspect of the second embodiment of the illumination optical communication apparatus of the present invention.
[図 9]本発明の照明光通信装置の第 3実施形態を示すブロック図である。  FIG. 9 is a block diagram showing a third embodiment of the illumination light communication apparatus of the present invention.
[図 10]本発明の照明光通信装置の第 3実施形態のより具体的な一態様を示す回路 図である。  FIG. 10 is a circuit diagram showing a more specific aspect of the third embodiment of the illumination optical communication apparatus of the present invention.
[図 11]本発明の照明光通信装置の第 4実施形態を示すブロック図である。  FIG. 11 is a block diagram showing a fourth embodiment of the illumination light communication apparatus of the present invention.
[図 12]本発明の照明光通信装置の第 4実施形態のより具体的な一態様を示す回路 図である。  FIG. 12 is a circuit diagram showing a more specific aspect of the fourth embodiment of the illumination optical communication apparatus of the present invention.
[図 13]パルス信号生成回路により生成されたパルス信号に調整パルス信号を付加す ることにより生成されたパルス信号を示す波形図である。  FIG. 13 is a waveform diagram showing a pulse signal generated by adding an adjustment pulse signal to the pulse signal generated by the pulse signal generation circuit.
[図 14]本発明の照明光通信装置の第 5実施形態を示すブロック図である。  FIG. 14 is a block diagram showing a fifth embodiment of the illumination light communication apparatus of the present invention.
[図 15]パルス信号生成部により生成されたパルス信号、パルス分割部により分割され たパルス信号、およびノ^レス数制御部により分割パルスの個数が変更されたパルス 信号を示す波形図である。  FIG. 15 is a waveform diagram showing a pulse signal generated by a pulse signal generator, a pulse signal divided by a pulse divider, and a pulse signal in which the number of divided pulses is changed by a node number controller.
符号の説明 Explanation of symbols
1、 60、 70、 80、 90、 100、 110、 120 照明光通信装置  1, 60, 70, 80, 90, 100, 110, 120 Illumination light communication device
11、 66、 86、 106、 126 光源  11, 66, 86, 106, 126 Light source
12、 61、 81、 101、 121 変調部  12, 61, 81, 101, 121 Modulator
13、 63、 83、 104、 124 光量制御部  13, 63, 83, 104, 124 Light intensity controller
41 バイフエイズ符号ィヒ処理部  41 Bi-Faise Coder Processing Unit
42、 62、 82、 102、 122 パルス信号生成部  42, 62, 82, 102, 122 Pulse signal generator
43 波形反転部  43 Waveform inversion section
51 通信情報  51 Communication information
64 光量検出部  64 Light intensity detector
65、 85 振幅制御部  65, 85 Amplitude controller
84 積分値取得部 105 調整パルス信号制御部 84 Integration value acquisition unit 105 Adjustment pulse signal controller
123 ノ ルス分割部  123 Norse division
125 ノ ルス数制御部  125 Norse number control unit
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明を実施するための最良の形態について実施形態毎に順に図面に基 づいて説明する。  Hereinafter, the best mode for carrying out the present invention will be described in each embodiment in order with reference to the drawings.
[0022] (第 1実施形態)  [0022] (First embodiment)
図 1は、本発明の照明光通信装置の第 1実施形態を示している。図 1中の照明光通 信装置 1は、照明光を介して情報の通信を行う装置である。照明光通信装置 1は様 々な形態 ·種類 ·内容の情報を通信することができる。もっとも、照明光通信装置 1に よって通信する情報の形態は、 2値の符号により表現されたデジタル情報であること が望ましレ、。ただ、アナログの情報であれば例えばアナログ—デジタルコンバータに よりアナログ情報を 2値のデジタル情報に変換してから通信を行えばよいし、多値の デジタル情報であれば、例えば信号処理回路により、これを 2値のデジタル情報に変 換してから通信を行えばよい。以下、説明の便宜上、照明光を介して通信する情報 を「通信情報」という。  FIG. 1 shows a first embodiment of the illumination light communication apparatus of the present invention. An illumination light communication device 1 in FIG. 1 is a device that communicates information via illumination light. The illumination light communication device 1 can communicate information of various forms, types and contents. However, it is desirable that the form of information communicated by the illumination light communication device 1 is digital information expressed by a binary code. However, if it is analog information, for example, the analog information may be converted into binary digital information by an analog-to-digital converter and then communicated. If multi-value digital information is used, for example, by a signal processing circuit, Communication can be performed after converting this into binary digital information. Hereinafter, for convenience of explanation, information communicated via illumination light is referred to as “communication information”.
[0023] 照明光通信装置 1は、図 1に示すように、光源 11、変調部 12および光量制御部 13 を備えている。  The illumination light communication device 1 includes a light source 11, a modulation unit 12, and a light amount control unit 13 as shown in FIG.
[0024] 光源 11は照明光を自発的に発する。照明光は可視光である。照明光は白色光で あることが望ましい。光源 11は発光ダイオード (LED)であることが望ましい。さらに、 光源 11は白色光を発する発光ダイオード、すなわち白色発光ダイオードであること が望ましい。もっとも、白色発光ダイオードに代え、青色発光ダイオード、緑色発光ダ ィオードおよび赤色発光ダイオードの組み合わせにより光源 11を構成してもよい。ま た、発光ダイオードに代え、可視光を自発的に発し、かつ発光'非発光の切り替えを 高速に行うことができる他の発光素子 (例えば有機エレクトロルミネセンス素子、無機 エレクトロルミネセンス素子またはシリコン発光素子など)により光源 11を構成してもよ レ、。  [0024] The light source 11 spontaneously emits illumination light. The illumination light is visible light. The illumination light is preferably white light. The light source 11 is preferably a light emitting diode (LED). Further, the light source 11 is preferably a light emitting diode that emits white light, that is, a white light emitting diode. However, the light source 11 may be configured by a combination of a blue light emitting diode, a green light emitting diode, and a red light emitting diode instead of the white light emitting diode. In addition, other light-emitting elements that emit visible light spontaneously and can switch between light emission and non-light emission at high speed (for example, organic electroluminescence elements, inorganic electroluminescence elements, or silicon light-emitting diodes) are used instead of light-emitting diodes. The light source 11 may be composed of elements, etc.
[0025] 変調部 12は、光源 11から発せられる照明光を通信情報に基づいて変調する。光 量制御部 13は、変調部 12により変調された照明光の所定期間当たりの光量が一定 となるように、光源 11による発光を制御する。具体的には、光量制御部 13は、光源 1 1による照明光の発生または変調部 12による照明光の変調を制御する。変調部 12 および光量制御部 13のさらなる具体的な説明は後述する。 The modulation unit 12 modulates illumination light emitted from the light source 11 based on communication information. light The amount control unit 13 controls the light emission by the light source 11 so that the amount of illumination light modulated by the modulation unit 12 per unit time is constant. Specifically, the light quantity control unit 13 controls the generation of illumination light by the light source 11 or the modulation of illumination light by the modulation unit 12. Further specific description of the modulation unit 12 and the light amount control unit 13 will be described later.
[0026] 図 2は、照明光通信装置 1を屋内照明装置に適用した場合の具体例を示している。  FIG. 2 shows a specific example when the illumination light communication device 1 is applied to an indoor lighting device.
図 2中の屋内照明装置 20は、屋内用の照明としての機能と、照明光を介して通信情 報の通信を行う機能とを兼ね備えてレ、る。  The indoor lighting device 20 in FIG. 2 has both a function as indoor lighting and a function of communicating communication information through illumination light.
[0027] 図 2に示すように、屋内照明装置 20において、発光ダイオード配列板 21には、光 源としての複数の白色発光ダイオード 11 A、 11A、…が取り付けられている。これら 白色発光ダイオード 11 Aは、透明カバー 22により覆われている。発光ダイオード配 歹 IJ板 21は、取付ユニット 23に取り付けられており、さらに、取付ユニット 23を介して天 井 24に取り付けられている。また、取付ユニット 23の内部には、変調部 12および光 量制御部 13が設けられている。  As shown in FIG. 2, in the indoor lighting device 20, the light emitting diode array plate 21 is provided with a plurality of white light emitting diodes 11A, 11A,. These white light emitting diodes 11 A are covered with a transparent cover 22. The light emitting diode arrangement IJ plate 21 is attached to the attachment unit 23, and is further attached to the ceiling 24 via the attachment unit 23. In addition, a modulation unit 12 and a light amount control unit 13 are provided inside the mounting unit 23.
[0028] 白色発光ダイオード 11Aは、白色の照明光を発する。変調部 12は、この照明光を 情報源から送られてくる通信情報に基づいて変調する。つまり、白色発光ダイオード 11Aは、通信情報に基づいて変調された照明光を発する。これにより、屋内照明装 置 20は、屋内において照明光の当たる場所にある情報家電、パーソナルコンビユー タ、 AV (Audio Vidual)機器など、様々な機器との間で、照明光を介して通信情報の 通信を行うことができる。例えば、屋内照明装置 20は、通信機能を備えた冷蔵庫 31 、 PDA (Personal Digital Assistance) 32、ノート型パーソナルコンピュータ 33、通信 機能を備えた DVDレコーダ 34などとの間で通信情報の通信を行うことができる。  [0028] The white light emitting diode 11A emits white illumination light. The modulation unit 12 modulates the illumination light based on communication information sent from the information source. That is, the white light emitting diode 11A emits illumination light modulated based on communication information. As a result, the indoor lighting device 20 communicates information with various devices such as information appliances, personal computers, and AV (Audio Vidual) devices that are exposed to illumination light indoors via illumination light. Can communicate. For example, the indoor lighting device 20 communicates communication information with a refrigerator 31 having a communication function, a PDA (Personal Digital Assistance) 32, a notebook personal computer 33, a DVD recorder 34 having a communication function, and the like. Can do.
[0029] 光量制御部 13は、変調部 12により変調された照明光の所定期間当たりの光量が 一定となるように、白色発光ダイオード 11 Aから発せられる照明光の光量を制御する 。これにより、白色発光ダイオード 11A力 発せられる照明光の明るさが安定し、照明 光のちらつきが軽減される。  [0029] The light amount control unit 13 controls the amount of illumination light emitted from the white light emitting diode 11A so that the amount of illumination light modulated by the modulation unit 12 per unit period is constant. This stabilizes the brightness of the illumination light emitted by the white light emitting diode 11A and reduces flickering of the illumination light.
[0030] 図 3は、照明光通信装置 1を照明灯に適用した場合の具体例を示している。図 3中 の照明灯 30は、屋外用の照明としての機能と、照明光を介して通信情報の通信を行 う機能とを兼ね備えている。 [0031] 図 3に示すように、照明灯 30において、柱 41の上端部には、複数の白色発光ダイ オード 11B、 11B、…が取り付けられている。また、柱 41の下端部に設けられた収容 箱 42の中には、変調部 12および光量制御部 13が設けられてレ、る。 FIG. 3 shows a specific example when the illumination light communication device 1 is applied to an illumination lamp. The illuminating lamp 30 in FIG. 3 has both a function as outdoor illumination and a function of communicating communication information through illumination light. As shown in FIG. 3, in the illuminating lamp 30, a plurality of white light emitting diodes 11B, 11B,... In addition, a modulation unit 12 and a light amount control unit 13 are provided in the storage box 42 provided at the lower end of the column 41.
[0032] 白色発光ダイオード 11Bは、白色の照明光を発する。変調部 12は、この照明光を 情報源から送られてくる通信情報に基づいて変調する。これにより、照明灯 30は、照 明光が当たる場所にある機器、例えば照明灯 30の下を通過する自動車に設けられ た通信機器などとの間で、照明光を介して通信情報の通信を行うことができる。  [0032] The white light emitting diode 11B emits white illumination light. The modulation unit 12 modulates the illumination light based on communication information sent from the information source. As a result, the illumination lamp 30 communicates communication information with the equipment in the place where the illumination light strikes, for example, the communication equipment provided in the automobile passing under the illumination light 30 via the illumination light. be able to.
[0033] 光量制御部 13は、変調部 12により変調された照明光の所定期間当たりの光量が 一定となるように、白色発光ダイオード 11Bから発せられる照明光の光量を制御する 。これにより、白色発光ダイオード 11Bから発せられる照明光の明るさが安定し、照明 光のちらつきが軽減される。  [0033] The light amount control unit 13 controls the light amount of the illumination light emitted from the white light emitting diode 11B so that the light amount per predetermined period of the illumination light modulated by the modulation unit 12 is constant. Thereby, the brightness of the illumination light emitted from the white light emitting diode 11B is stabilized, and flickering of the illumination light is reduced.
[0034] 図 4は、図 1中の照明光通信装置 1の内部構造を詳細に示している。図 4に示すよう に、光量制御部 13は、バイフエイズ符号化処理部 41を備えている。変調部 12は、パ ノレス信号生成部 42および波形反転部 43を備えてレ、る。バイフエイズ符号化処理部 4 1、パルス信号生成部 42および波形反転部 43は、演算装置、制御装置、論理回路 および記憶素子などが組み込まれたマイクロコンピュータ、マルチプロセッサなどによ り構成すること力できる。  FIG. 4 shows the internal structure of the illumination light communication device 1 in FIG. 1 in detail. As shown in FIG. 4, the light quantity control unit 13 includes a bi-fading encoding processing unit 41. The modulation unit 12 includes a panelless signal generation unit 42 and a waveform inversion unit 43. The bi-phase coding processing unit 41, the pulse signal generation unit 42, and the waveform inversion unit 43 can be configured by a microcomputer, a multiprocessor, or the like in which an arithmetic device, a control device, a logic circuit, and a memory element are incorporated. .
[0035] 図 5および図 6を参照しながら、照明光通信装置 1の動作について説明する。図 5 は、情報源から送られた通信情報等を示している。図 6は、バイフエイズ符号化処理 前の通信情報に対応するパルス信号 P11、ノ フェイズ符号ィ匕処理後の通信情報 に対応するパルス信号 P12、および波形反転処理後のパルス信号 P13を示している  The operation of the illumination light communication apparatus 1 will be described with reference to FIGS. 5 and 6. Figure 5 shows communication information sent from information sources. FIG. 6 shows a pulse signal P11 corresponding to the communication information before the bi-phase encoding process, a pulse signal P12 corresponding to the communication information after the phase code process, and a pulse signal P13 after the waveform inversion process.
[0036] まず、情報源力 照明光通信装置 1へ通信情報 51が送られてくる。照明光通信装 置 1を図 2に示すような屋内照明装置 20に適用した場合には、情報源は、例えば屋 内照明装置 20が設けられた部屋を含む建物のいずれかの場所に設けられたメイン コンピュータ(例えばパーソナルコンピュータ)などである。また、照明光通信装置 1を 図 3に示すような照明灯 30に適用した場合には、情報源は、例えば通信基地、高度 道路交通システム (ITS)の情報センタなどに設けられたコンピュータサーバなどであ る。 First, communication information 51 is sent to the information source power illumination light communication device 1. When the illumination light communication device 1 is applied to the indoor lighting device 20 as shown in FIG. 2, the information source is provided in any place of the building including the room where the indoor lighting device 20 is provided, for example. Main computer (eg personal computer). When the illumination light communication device 1 is applied to an illumination lamp 30 as shown in FIG. 3, the information source is, for example, a communication base, a computer server provided in an information center of an intelligent transportation system (ITS), etc. In The
[0037] 情報源から送られてくる通信情報 51には、図 5に示すように、同期情報 52と受信用 ブランク 53が付加されている。同期情報 52は、情報源と照明光通信装置 1との間の 同期をとるための情報である。受信用ブランク 53は、照明光通信装置 1と通信機器( 例えば図 2中の冷蔵庫 31、 PDA32、ノート型パーソナルコンピュータ 33、 DVDレコ ーダ 34など)との間で双方向通信を行うために設けられたブランクである。つまり、照 明光通信装置 1が通信機器へ照明光を介して通信情報 51を送信する。これに応じ て通信機器が照明光通信装置 1へ白色可視光または赤外線などの無線通信媒介を 介して応答情報を送信する。照明光通信装置 1は、この応答情報を受信する。受信 用ブランク 53は、この応答情報を受信するための時間を確保するために設けられて いる。  As shown in FIG. 5, synchronization information 52 and a reception blank 53 are added to the communication information 51 sent from the information source. The synchronization information 52 is information for synchronizing the information source and the illumination light communication device 1. The reception blank 53 is provided for two-way communication between the illumination light communication device 1 and a communication device (for example, the refrigerator 31, the PDA 32, the notebook personal computer 33, the DVD recorder 34, etc. in FIG. 2). Blank. That is, the illumination light communication device 1 transmits the communication information 51 to the communication device via the illumination light. In response to this, the communication device transmits response information to the illumination light communication device 1 through a wireless communication medium such as white visible light or infrared light. The illumination light communication device 1 receives this response information. The reception blank 53 is provided to secure time for receiving the response information.
[0038] また、通信情報 51の先頭にはヘッダ 54が設けられている。ヘッダ 54には、照明光 通信装置 1との間で通信を行う個々の通信機器を識別するための識別情報が含まれ ている。例えば、図 2中の冷蔵庫 31、 PDA32、ノート型パーソナルコンピュータ 33、 DVDレコーダ 34といった 4個の通信機器との間で照明光通信装置 1が通信を行う場 合には、ヘッダ 54には例えば次のような識別情報が含まれている。すなわち、冷蔵 庫 31に「01」、 PDA32に「02」、ノート型パーソナルコンピュータに「03」、 DVDレコ ーダ 34に「04」といった識別番号がそれぞれ付されているときには、「01」、「02」、「0 3」または「04」を示す識別情報がヘッダ 54に含まれている。各通信機器は、識別情 報に基づいて照明光通信装置 1から送信された通信情報 51が自己宛の通信情報 5 1であるか否力を判断することができる。これにより、照明光通信装置 1は、複数個存 在する通信機器の 1つと通信を行うことができる。  Further, a header 54 is provided at the head of the communication information 51. The header 54 includes identification information for identifying individual communication devices that communicate with the illumination light communication device 1. For example, when the illumination light communication device 1 communicates with four communication devices such as the refrigerator 31, the PDA 32, the notebook personal computer 33, and the DVD recorder 34 in FIG. Such identification information is included. That is, when the refrigerator 31 is given an identification number such as “01”, PDA 32 as “02”, notebook personal computer as “03”, and DVD recorder 34 as “04”, “01”, “ Identification information indicating “02”, “03” or “04” is included in the header 54. Each communication device can determine whether or not the communication information 51 transmitted from the illumination light communication device 1 is the communication information 51 addressed to itself based on the identification information. As a result, the illumination light communication device 1 can communicate with one of a plurality of communication devices.
[0039] さて、情報源から照明光通信装置 1へ通信情報 51が送られてくると、通信情報 51 は、まず、バイフエイズ符号化処理部 41に供給される。バイフエイズ符号化処理部 41 は、通信情報 51に対レ フェイズ符号化処理を行う。続いて、パルス信号生成部 4 2は、バイフエイズ符号ィ匕処理部 41によりバイフエイズ符号化処理が行われた通信情 報 51に対応するパルス信号 P12を生成する。  [0039] Now, when the communication information 51 is sent from the information source to the illumination light communication device 1, the communication information 51 is first supplied to the bi-fade coding processing unit 41. The bi-phase encoding process unit 41 performs a phase encoding process on the communication information 51. Subsequently, the pulse signal generation unit 42 generates a pulse signal P12 corresponding to the communication information 51 that has undergone the bi-face coding process by the bi-phase code processing unit 41.
[0040] バイフエイズ符号化処理は例えば次のような処理である。すなわち、バイフエイズ符 号化処理前の通信情報 51に対応するノ^レス信号が例えば図 6中のパルス信号 PI 1 であるとすると、バイフエイズ符号化処理において、パルス信号 P11のハイレベルの 部分が、デューティ比が 50%の第 1パルス aに変換される。さらに、パルス信号 P11 のローレベルの部分力 デューティ比が 50%でかつ第 1パルス aと位相力 S180度異な る第 2パルス bに変換される。このようにしてパルス信号 P11は、全体としてデューティ 比が 50%のパルス信号 P12に変換される。 [0040] The bi-fading encoding process is, for example, the following process. That is, the bifaise mark If the noise signal corresponding to the communication information 51 before the encoding process is, for example, the pulse signal PI 1 in FIG. 6, the high-level part of the pulse signal P11 has a duty ratio of 50 in the bi-phase encoding process. Converted to% 1st pulse a. Furthermore, the low-level partial force duty ratio of the pulse signal P11 is converted to a second pulse b having a phase force S180 degrees different from the first pulse a with a 50% duty ratio. In this way, the pulse signal P11 is converted into a pulse signal P12 having a duty ratio of 50% as a whole.
[0041] 続いて、波形反転部 43は、ノ フェイズ符号ィ匕処理後の通信情報 51に対応する パルス信号 P 12において、バイフエイズ符号化処理前の通信情報 51に対応するパ ノレス信号 P11がローレベルほたはハイレベルでもよレ、)の区間に対応する区間の波 形を反転させる。すなわち、図 6に示すように、波形反転部 43は、パルス信号 P12の 第 2パルス bに相当する部分を反転させる。これにより、ノ^レス信号 P 12はパルス信 号 P13に変換される。この波形反転処理によれば、パルス信号 P13において、パル ス信号 P11のレベルが反転する位置に対応する位置で常にパルスが立ち上がる。こ れにより、パルス信号 P13におけるパルスの立ち上がり位置を基準に信号処理を行う ことにより、容易かつ高精度に元の情報、つまりバイフエイズ符号化処理前の通信情 報 51を復元することができる。  [0041] Subsequently, the waveform inverting unit 43 causes the pulseless signal P11 corresponding to the communication information 51 before the bi-phase coding process to be low in the pulse signal P12 corresponding to the communication information 51 after the phase-phase code processing. Invert the waveform of the section corresponding to the section of level). That is, as shown in FIG. 6, the waveform inversion unit 43 inverts a portion corresponding to the second pulse b of the pulse signal P12. As a result, the noise signal P12 is converted into the pulse signal P13. According to this waveform inversion process, in the pulse signal P13, the pulse always rises at a position corresponding to the position where the level of the pulse signal P11 is inverted. Thus, by performing signal processing based on the rising position of the pulse in the pulse signal P13, the original information, that is, the communication information 51 before the bi-phase encoding process can be restored easily and with high accuracy.
[0042] 続いて、パルス信号 P13は波形反転部 43から光源 11へ供給される。そして、光源 11は、パルス信号 P13によって変調された照明光、つまりパルス信号 P13の波形に 対応して明るさが変化する照明光を発する。  Subsequently, the pulse signal P13 is supplied from the waveform inversion unit 43 to the light source 11. The light source 11 emits illumination light modulated by the pulse signal P13, that is, illumination light whose brightness changes in accordance with the waveform of the pulse signal P13.
[0043] パルス信号 P13の平均周波数は例えば約 100kHz以上であるため、パルス信号 P 13の波形に対応した照明光の明るさの変化は、人間の目により直接認識することが できない。さらに、パルス信号 P13は全体としてデューティ比が 50%のパルス信号で あるので、ノ^レス信号 P13によって変調された照明光の所定期間当たり(例えば約 0 . 5ないし 1秒当たり)の光量はほぼ一定になる。これにより、通信情報 51の内容、つ まり通信情報 51における「1」、「0」の配列状態にかかわらず、光源 11から発せられ た照明光の明るさは長期間にわたり(光源 11が照明光を発している間ずつと)ほぼ一 定になる。  [0043] Since the average frequency of the pulse signal P13 is, for example, about 100 kHz or more, a change in the brightness of the illumination light corresponding to the waveform of the pulse signal P13 cannot be directly recognized by human eyes. Further, since the pulse signal P13 is a pulse signal having a duty ratio of 50% as a whole, the amount of illumination light modulated by the noise signal P13 per predetermined period (for example, about 0.5 to 1 second) is almost equal. It becomes constant. As a result, regardless of the contents of the communication information 51, that is, the arrangement state of “1” and “0” in the communication information 51, the brightness of the illumination light emitted from the light source 11 is maintained over a long period of time (the light source 11 is Will be almost constant).
[0044] 以上説明したとおり、照明光通信装置 1では、通信情報に対レ フェイズ符号ィ匕 処理を行い、通信情報に対応するパルス信号のデューティ比を 50%にし、このパル ス信号によって照明光を変調する。したがって、照明光の所定期間当たりの光量をほ ぼ一定にすることができる。よって、照明光の明るさ (輝度)を安定化させることができ 、人間が直接認識できるような照明光のちらつきを軽減することができる。これにより、 照明光通信装置 1を屋内照明装置(図 2参照)や照明灯(図 3参照)などに適用した 場合に、これら照明としての本来的性能、つまり物に光をあてて明るくし、その明るさ を維持するとレ、う性能を維持なレ、し向上させること力できる。 [0044] As described above, in the illumination light communication device 1, the communication code is used for the communication code. Processing is performed, the duty ratio of the pulse signal corresponding to the communication information is set to 50%, and the illumination light is modulated by this pulse signal. Therefore, the amount of illumination light per predetermined period can be made almost constant. Accordingly, the brightness (luminance) of the illumination light can be stabilized, and flickering of the illumination light that can be directly recognized by humans can be reduced. As a result, when the illuminating light communication device 1 is applied to an indoor lighting device (see Fig. 2), an illuminating lamp (see Fig. 3), etc., the original performance as these lightings, that is, light is applied to the object to make it brighter. Maintaining that brightness will help maintain and improve performance.
[0045] また、照明光通信装置 1では、ノ フェイズ符号ィ匕処理を行うことにより照明光の光 量の一定化を図る構成を採用した。これにより、照明光の光量を検出し、この検出結 果をフィードバックして照明光の光量調整を行う構成を採用する場合 (例えば後述の 照明光通信装置 60など)と比較して、構成の簡単化、部品点数の削減などを実現す ること力 Sできる。 [0045] In addition, the illumination light communication apparatus 1 employs a configuration in which the amount of illumination light is made constant by performing no-phase code delay processing. As a result, the configuration is simpler than when using a configuration that detects the amount of illumination light and feeds back the detection results to adjust the amount of illumination light (for example, the illumination light communication device 60 described later). Power to reduce the number of parts.
[0046] なお、図 1ないし図 4中の変調部 12が変調手段の具体例であり、光量制御部 13が 光量制御手段の具体例である。図 4中のバイフエイズ符号ィ匕処理部 41がバイフヱイ ズ符号化処理手段の具体例であり、パルス信号生成部 42がパルス信号生成手段の 具体例であり、波形反転部 43が波形反転手段の具体例である。  It should be noted that the modulation unit 12 in FIGS. 1 to 4 is a specific example of the modulation means, and the light quantity control unit 13 is a specific example of the light quantity control means. 4 is a specific example of the bi-phase encoding processing means, the pulse signal generation section 42 is a specific example of the pulse signal generation means, and the waveform inversion section 43 is a specific example of the waveform inversion means. It is an example.
[0047] (第 2実施形態)  [0047] (Second embodiment)
図 7は、本発明の照明光通信装置の第 2実施形態を示している。図 7中の照明光通 信装置 60は、照明光の所定期間当たりの光量を検出し、この検出された光量が一定 となるように、照明光を変調するためのパルス信号の振幅を変化させる構成を採用し ている。  FIG. 7 shows a second embodiment of the illumination light communication apparatus of the present invention. The illumination light communication device 60 in FIG. 7 detects the light amount of the illumination light per predetermined period, and changes the amplitude of the pulse signal for modulating the illumination light so that the detected light amount is constant. The configuration is adopted.
[0048] すなわち、照明光通信装置 60において、変調部 61はパルス信号生成部 62を備え ている。光量制御部 63は、光量検出部 64および振幅制御部 65を備えている。  That is, in the illumination light communication device 60, the modulation unit 61 includes a pulse signal generation unit 62. The light quantity control unit 63 includes a light quantity detection unit 64 and an amplitude control unit 65.
[0049] 照明光通信装置 60の動作は次のとおりである。情報源から通信情報が送られてく ると、パルス信号生成部 62は、通信情報に対応するパルス信号を生成する。光源 66 は、パルス信号生成部 62により生成されたパルス信号の波形に対応して明るさが変 化する照明光を発する。光量検出部 64は、光源 66から発せられた照明光の所定期 間当たりの光量を検出する。振幅制御部 65は、光量検出部 64により検出された光量 が所定光量となるように、パルス信号生成部 62により生成されるパルス信号の振幅を 変化させる。 [0049] The operation of the illumination light communication device 60 is as follows. When communication information is sent from the information source, the pulse signal generator 62 generates a pulse signal corresponding to the communication information. The light source 66 emits illumination light whose brightness changes in accordance with the waveform of the pulse signal generated by the pulse signal generation unit 62. The light quantity detection unit 64 detects the light quantity per predetermined period of the illumination light emitted from the light source 66. The amplitude control unit 65 is a light amount detected by the light amount detection unit 64. The amplitude of the pulse signal generated by the pulse signal generation unit 62 is changed so that becomes a predetermined light quantity.
[0050] 図 8は、本発明の第 2実施形態である照明光通信装置 60をより具体化した例を示し ている。図 8中の照明光通信装置 70は、パルス信号生成回路 71、増幅器 72、白色 発光ダイオード(白色 LED) 73、受光素子 74、積分回路 75、基準値出力回路 76お よび比較器 77を備えている。受光素子 74は、白色発光ダイオード 73から発せられる 照明光が当たる場所に設けられている。図 2中の屋内照明装置 20を例に挙げると、 受光素子 74は、例えば透明カバーの内面中央部に取り付けられている。  [0050] Fig. 8 shows a more specific example of the illumination light communication device 60 according to the second embodiment of the present invention. 8 includes a pulse signal generation circuit 71, an amplifier 72, a white light emitting diode (white LED) 73, a light receiving element 74, an integration circuit 75, a reference value output circuit 76, and a comparator 77. Yes. The light receiving element 74 is provided in a place where the illumination light emitted from the white light emitting diode 73 strikes. Taking the indoor lighting device 20 in FIG. 2 as an example, the light receiving element 74 is attached to, for example, the center of the inner surface of the transparent cover.
[0051] 照明光通信装置 70の動作は次のとおりである。情報源から通信情報が送られてく ると、パルス信号生成回路 71は、通信情報に対応するパルス信号 P21を生成する。 例えば、通信情報における符号の「1」、「0」に対応して振幅がハイレベル、ローレべ ルとなるパルス信号 P21を生成する。増幅器 72はパルス信号 P21を増幅し、これを パルス信号 P22として白色発光ダイオード 73に供給する。 白色発光ダイオード 73は 、パルス信号 P22によって変調された照明光、すなわち、パルス信号 P22の波形に 対応して明るさが変化する照明光を発する。  [0051] The operation of the illumination light communication device 70 is as follows. When communication information is sent from the information source, the pulse signal generation circuit 71 generates a pulse signal P21 corresponding to the communication information. For example, the pulse signal P21 having high and low amplitudes corresponding to the codes “1” and “0” in the communication information is generated. The amplifier 72 amplifies the pulse signal P21 and supplies it to the white light emitting diode 73 as the pulse signal P22. The white light emitting diode 73 emits illumination light modulated by the pulse signal P22, that is, illumination light whose brightness changes in accordance with the waveform of the pulse signal P22.
[0052] 続いて、受光素子 74は、白色発光ダイオード 73から発せられた照明光を受光し、 照明光の強度に応じて振幅が変化する電気信号を生成し、この電気信号を積分回 路 75に供給する。積分回路 75は、この電気信号の所定期間当たり(例えば約 0. 5な いし 1秒当たり)の積分値を生成し、この積分値を比較器 77の一方の入力端子に供 給する。比較器 77の他方の入力端子には、基準値出力回路 76から所定の基準値 が入力されている。比較器 77は、積分回路 75から供給された積分値と所定の基準 値とを比較し、両者の差に応じた電圧を有する直流の制御信号を増幅器 72に供給 する。  [0052] Subsequently, the light receiving element 74 receives the illumination light emitted from the white light emitting diode 73, generates an electrical signal whose amplitude changes in accordance with the intensity of the illumination light, and uses this electrical signal as an integration circuit 75. To supply. The integrating circuit 75 generates an integrated value per predetermined period (for example, about 0.5 to 1 second) of the electric signal, and supplies the integrated value to one input terminal of the comparator 77. A predetermined reference value is input from the reference value output circuit 76 to the other input terminal of the comparator 77. The comparator 77 compares the integrated value supplied from the integrating circuit 75 with a predetermined reference value, and supplies a DC control signal having a voltage corresponding to the difference between the two to the amplifier 72.
[0053] 増幅器 72は、この制御信号の電圧に従って増幅率を変化させる。これにより、パル ス信号 P22の振幅が制御信号の電圧、つまり積分回路 75から供給された積分値と 所定の基準値と差に従って変化する。より具体的に説明すると、積分回路 75から供 給された積分値が所定の基準値よりも大きいときには、比較器 77から増幅器 72へ供 給される制御信号の電圧はマイナスになり、これにより増幅器 72の増幅率が下がる。 したがって、パルス信号 P22の振幅が小さくなり、この結果、照明光の所定期間当た りの光量が減少する。一方、積分回路 75から供給された積分値が所定の基準値より も小さいときには、比較器 77から増幅器 72へ供給される制御信号の電圧はプラスに なり、これにより増幅器 72の増幅率が上がる。したがって、パルス信号 P22の振幅が 大きくなり、この結果、照明光の所定期間当たりの光量が増加する。このような動作が 繰り返されることにより、照明光の所定期間当たりの光量が一定の光量に収束してい <。 The amplifier 72 changes the amplification factor according to the voltage of this control signal. As a result, the amplitude of the pulse signal P22 changes according to the voltage of the control signal, that is, the difference between the integrated value supplied from the integrating circuit 75 and the predetermined reference value. More specifically, when the integrated value supplied from the integrating circuit 75 is larger than a predetermined reference value, the voltage of the control signal supplied from the comparator 77 to the amplifier 72 becomes negative, which causes the amplifier to The gain of 72 decreases. Therefore, the amplitude of the pulse signal P22 is reduced, and as a result, the amount of illumination light per predetermined period is reduced. On the other hand, when the integral value supplied from the integration circuit 75 is smaller than a predetermined reference value, the voltage of the control signal supplied from the comparator 77 to the amplifier 72 becomes positive, and thereby the amplification factor of the amplifier 72 increases. Therefore, the amplitude of the pulse signal P22 increases, and as a result, the amount of illumination light per predetermined period increases. By repeating such an operation, the amount of illumination light per predetermined period converges to a constant amount.
[0054] 以上説明したとおり、照明光通信装置 60、 70では、照明光の所定期間当たりの光 量を検出し、この検出された光量が一定となるように、照明光を変調するためのパル ス信号の振幅を変化させる。これにより、照明光の所定期間当たりの光量をほぼ一定 にすることができる。よって、照明光の明るさ (輝度)を安定化させることができ、人間 が直接認識できるような照明光のちらつきを軽減することができる。  [0054] As described above, the illumination light communication devices 60 and 70 detect the light amount of the illumination light per predetermined period, and the pulse for modulating the illumination light so that the detected light amount becomes constant. The amplitude of the signal is changed. Thereby, the light quantity per predetermined period of illumination light can be made substantially constant. Therefore, the brightness (luminance) of the illumination light can be stabilized, and flickering of the illumination light that can be directly recognized by humans can be reduced.
[0055] また、照明光通信装置 60、 70では、実際に発せられる照明光の所定期間当たりの 光量を検出し、この検出結果を用いて照明光の所定期間当たりの光量をフィードバッ ク制御する構成を採用している。このため、照明光の光量の一定化を高精度に図るこ とができる。  [0055] In addition, the illumination light communication devices 60 and 70 detect the light amount of the illumination light actually emitted per predetermined period, and feedback control the light amount of the illumination light per predetermined period using the detection result. The configuration is adopted. For this reason, the amount of illumination light can be made constant with high accuracy.
[0056] なお、照明光通信装置 70では、積分回路 75により所定期間当たりの積分値を生 成し、これを比較器 77による比較に用いている。しかし、積分値に代えて平均値を用 いてもよい。例えば、積分回路 75により生成された所定期間当たりの積分値を、当該 所定期間の長さで割って平均値を生成し、これを比較器 77による比較に用いてもよ レ、。  Note that in the illumination light communication device 70, an integration value for a predetermined period is generated by the integration circuit 75 and used for comparison by the comparator 77. However, an average value may be used instead of the integral value. For example, the integrated value per predetermined period generated by the integrating circuit 75 may be divided by the length of the predetermined period to generate an average value and used for comparison by the comparator 77.
[0057] また、図 7において、変調部 61が変調手段の具体例であり、光量制御部 63が光量 制御手段の具体例である。また、パルス信号生成部 62がパルス信号生成手段の具 体例であり、光量検出部 64が光量検出手段の具体例であり、振幅制御部 65が振幅 制御手段の具体例である。また、図 8において、パルス信号生成回路 71がパルス信 号生成手段の具体例である。また、白色発光ダイオード 73が光源の具体例である。 また、受光素子 74および積分回路 75が光量検出手段の具体例である。また、基準 値出力回路 76、比較器 77および増幅器 72が振幅制御手段の具体例である。 [0058] (第 3実施形態) In FIG. 7, the modulation unit 61 is a specific example of the modulation means, and the light quantity control unit 63 is a specific example of the light quantity control means. Further, the pulse signal generation unit 62 is a specific example of the pulse signal generation unit, the light amount detection unit 64 is a specific example of the light amount detection unit, and the amplitude control unit 65 is a specific example of the amplitude control unit. In FIG. 8, a pulse signal generation circuit 71 is a specific example of pulse signal generation means. The white light emitting diode 73 is a specific example of the light source. The light receiving element 74 and the integrating circuit 75 are specific examples of the light amount detecting means. Further, the reference value output circuit 76, the comparator 77, and the amplifier 72 are specific examples of the amplitude control means. [0058] (Third embodiment)
図 9は、本発明の照明光通信装置の第 3実施形態を示している。図 9中の照明光通 信装置 80は、照明光を変調するためのノ^レス信号の所定期間当たりの積分値を取 得し、この取得された積分値が一定となるように、前記パルス信号の振幅を変化させ る構成を採用している。  FIG. 9 shows a third embodiment of the illumination light communication apparatus of the present invention. The illumination light communication device 80 in FIG. 9 obtains an integral value per predetermined period of the noise signal for modulating the illumination light, and the pulse is adjusted so that the obtained integral value becomes constant. A configuration that changes the amplitude of the signal is adopted.
[0059] すなわち、照明光通信装置 80において、変調部 81はパルス信号生成部 82を備え ている。光量制御部 83は、光量検出部 84および振幅制御部 85を備えている。  That is, in the illumination light communication device 80, the modulation unit 81 includes a pulse signal generation unit 82. The light quantity control unit 83 includes a light quantity detection unit 84 and an amplitude control unit 85.
[0060] 照明光通信装置 80の動作は次のとおりである。情報源から通信情報が送られてく ると、パルス信号生成部 82は、通信情報に対応するパルス信号を生成する。光源 86 は、パルス信号生成部 82により生成されたパルス信号の波形に対応して明るさが変 化する照明光を発する。積分値取得手段 84は、パルス信号生成部 82から光源 86へ 供給されるパルス信号の所定期間当たりの積分値を取得する。振幅制御部 85は、積 分値取得手段 84により取得された積分値が所定の基準値となるように、パルス信号 生成部 82により生成されるパルス信号の振幅を変化させる。  [0060] The operation of the illumination light communication device 80 is as follows. When communication information is sent from the information source, the pulse signal generation unit 82 generates a pulse signal corresponding to the communication information. The light source 86 emits illumination light whose brightness changes in accordance with the waveform of the pulse signal generated by the pulse signal generation unit 82. The integral value acquisition unit 84 acquires an integral value per predetermined period of the pulse signal supplied from the pulse signal generation unit 82 to the light source 86. The amplitude control unit 85 changes the amplitude of the pulse signal generated by the pulse signal generation unit 82 so that the integral value acquired by the integration value acquisition unit 84 becomes a predetermined reference value.
[0061] 図 10は、本発明の第 3実施形態である照明光通信装置 80をより具体化した例を示 してレ、る。図 10中の照明光通信装置 90は、パルス信号生成回路 91、増幅器 92、白 色発光ダイオード(白色 LED) 93、積分回路 94、基準値出力回路 95および比較器 96を備えている。  FIG. 10 shows a more specific example of the illumination light communication device 80 according to the third embodiment of the present invention. The illumination light communication apparatus 90 in FIG. 10 includes a pulse signal generation circuit 91, an amplifier 92, a white light emitting diode (white LED) 93, an integration circuit 94, a reference value output circuit 95, and a comparator 96.
[0062] 照明光通信装置 90の動作は次のとおりである。情報源から通信情報が送られてく ると、パルス信号生成回路 91は、通信情報に対応するパルス信号 P31を生成する。 例えば、通信情報における符号の「1」、「0」に対応して振幅がハイレベル、ローレべ ルとなるパルス信号 P31を生成する。増幅器 92はパルス信号 P31を増幅し、これを パルス信号 P32として白色発光ダイオード 93に供給する。 白色発光ダイオード 93は 、パルス信号 P32によって変調された照明光、すなわち、パルス信号 P32の波形に 対応して明るさが変化する照明光を発する。  The operation of the illumination light communication apparatus 90 is as follows. When communication information is sent from the information source, the pulse signal generation circuit 91 generates a pulse signal P31 corresponding to the communication information. For example, a pulse signal P31 having high and low amplitudes corresponding to the codes “1” and “0” in the communication information is generated. The amplifier 92 amplifies the pulse signal P31 and supplies it to the white light emitting diode 93 as the pulse signal P32. The white light emitting diode 93 emits illumination light modulated by the pulse signal P32, that is, illumination light whose brightness changes in accordance with the waveform of the pulse signal P32.
[0063] 増幅器 92から出力されたパルス信号 P32は、積分回路 94にも供給される。積分回 路 94は、パルス信号 P32の所定期間当たり(例えば約 0. 5ないし 1秒当たり)の積分 値を生成し、この積分値を比較器 96の一方の入力端子に供給する。比較器 96の他 方の入力端子には、基準値出力回路 95から所定の基準値が入力されている。比較 器 96は、積分回路 94から供給された積分値と基準値とを比較し、両者の差に応じた 電圧を有する直流の制御信号を増幅器 92に供給する。 The pulse signal P32 output from the amplifier 92 is also supplied to the integrating circuit 94. The integration circuit 94 generates an integration value per predetermined period (for example, about 0.5 to 1 second) of the pulse signal P32 and supplies this integration value to one input terminal of the comparator 96. Other than comparator 96 A predetermined reference value is input from the reference value output circuit 95 to the other input terminal. The comparator 96 compares the integrated value supplied from the integrating circuit 94 with the reference value, and supplies a DC control signal having a voltage corresponding to the difference between the two to the amplifier 92.
[0064] 増幅器 92は、この制御信号の電圧に従って増幅率を変化させる。これにより、パル ス信号 P32の振幅が制御信号の電圧、つまり積分回路 94から供給された積分値と 基準値と差に従って変化する。より具体的に説明すると、積分回路 94から供給され た積分値が基準値よりも大きいときには、比較器 96から増幅器 92へ供給される制御 信号の電圧はマイナスになり、これにより増幅器 92の増幅率が下がる。したがって、 パルス信号 P32の振幅が小さくなり、この結果、照明光の所定期間当たりの光量が減 少する。一方、積分回路 94から供給された積分値が基準値よりも小さいときには、比 較器 96から増幅器 92へ供給される制御信号の電圧はプラスになり、これにより増幅 器 92の増幅率が上がる。したがって、パルス信号 P32の振幅が大きくなり、この結果 、照明光の所定期間当たりの光量が増加する。このような動作が繰り返されることによ り、照明光の所定期間当たりの光量が一定の光量に収束していく。  The amplifier 92 changes the amplification factor according to the voltage of this control signal. As a result, the amplitude of the pulse signal P32 changes in accordance with the voltage of the control signal, that is, the difference between the integrated value supplied from the integrating circuit 94 and the reference value. More specifically, when the integrated value supplied from the integrating circuit 94 is larger than the reference value, the voltage of the control signal supplied from the comparator 96 to the amplifier 92 becomes negative, which causes the amplification factor of the amplifier 92 to increase. Go down. Therefore, the amplitude of the pulse signal P32 is reduced, and as a result, the amount of illumination light per predetermined period is reduced. On the other hand, when the integral value supplied from the integration circuit 94 is smaller than the reference value, the voltage of the control signal supplied from the comparator 96 to the amplifier 92 becomes positive, and thereby the amplification factor of the amplifier 92 increases. Accordingly, the amplitude of the pulse signal P32 increases, and as a result, the amount of illumination light per predetermined period increases. By repeating such an operation, the amount of illumination light per predetermined period converges to a constant amount of light.
[0065] 以上説明したとおり、照明光通信装置 80、 90では、照明光を変調するためのパル ス信号の所定期間当たりの積分値を取得し、この取得された積分値が一定となるよう に、前記パルス信号の振幅を変化させる。これにより、照明光の所定期間当たりの光 量をほぼ一定にすることができる。よって、照明光の明るさ (輝度)を安定化させること ができ、人間が直接認識できるような照明光のちらつきを軽減することができる。  [0065] As described above, in the illumination light communication devices 80 and 90, the integral value per predetermined period of the pulse signal for modulating the illumination light is obtained, and the obtained integral value is constant. The amplitude of the pulse signal is changed. Thereby, the light quantity per predetermined period of illumination light can be made substantially constant. Therefore, the brightness (luminance) of the illumination light can be stabilized, and flickering of the illumination light that can be directly recognized by humans can be reduced.
[0066] また、照明光通信装置 80、 90では、実際に光源 93に供給されるパルス信号の所 定期間当たりの積分値を取得し、この積分値を用いて照明光の所定期間当たりの光 量をフィードバック制御する構成を採用している。このため、照明光の光量の一定化 を高精度に図ることができる。  [0066] In addition, in the illumination light communication devices 80 and 90, an integral value per predetermined period of the pulse signal actually supplied to the light source 93 is acquired, and the light per predetermined period of the illumination light is obtained using this integral value. A configuration that feedback controls the amount is adopted. For this reason, the amount of illumination light can be made constant with high accuracy.
[0067] なお、図 9において、変調部 81が変調手段の具体例であり、光量制御部 83が光量 制御手段の具体例である。また、パルス信号生成部 82がパルス信号生成手段の具 体例であり、積分値取得部 84が積分値取得手段の具体例であり、振幅制御部 85が 振幅制御手段の具体例である。また、図 10において、パルス信号生成回路 91がパ ノレス信号生成手段の具体例である。また、白色発光ダイオード 93が光源の具体例で ある。また、積分回路 94が積分値取得手段の具体例である。また、基準値出力回路In FIG. 9, the modulation unit 81 is a specific example of the modulation means, and the light quantity control unit 83 is a specific example of the light quantity control means. The pulse signal generation unit 82 is a specific example of the pulse signal generation unit, the integral value acquisition unit 84 is a specific example of the integration value acquisition unit, and the amplitude control unit 85 is a specific example of the amplitude control unit. In FIG. 10, a pulse signal generation circuit 91 is a specific example of a panelless signal generation means. The white light emitting diode 93 is a specific example of the light source. is there. Further, the integration circuit 94 is a specific example of the integrated value acquisition means. Reference value output circuit
95、比較器 96および増幅器 92が振幅制御手段の具体例である。 95, a comparator 96, and an amplifier 92 are specific examples of the amplitude control means.
[0068] (第 4実施形態)  [0068] (Fourth embodiment)
図 11は、本発明の照明光通信装置の第 4実施形態を示している。図 11中の照明 光通信装置 100では、通信情報に対応したパルス信号に調整パルス信号を付加し、 調整パルス信号の付加されたパルス信号によって照明光を変調する。そして、照明 光の所定期間当たりの光量が一定となるように、調整パルス信号の振幅を変化させる  FIG. 11 shows a fourth embodiment of the illumination light communication apparatus of the present invention. In the illumination optical communication device 100 in FIG. 11, the adjustment pulse signal is added to the pulse signal corresponding to the communication information, and the illumination light is modulated by the pulse signal to which the adjustment pulse signal is added. Then, the amplitude of the adjustment pulse signal is changed so that the amount of illumination light per predetermined period is constant.
[0069] すなわち、照明光通信装置 100において、変調部 101はパルス信号生成部 102お よび調整パルス付加部 103を備えている。光量制御部 104は、調整パルス信号制御 部 105を備えている。 That is, in illumination light communication apparatus 100, modulation section 101 includes pulse signal generation section 102 and adjustment pulse addition section 103. The light quantity control unit 104 includes an adjustment pulse signal control unit 105.
[0070] 照明光通信装置 100の動作は次のとおりである。情報源から通信情報が送られて くると、パルス信号生成部 102は、通信情報に対応する第 1パルス信号を生成する。 続いて、調整パルス付加部 103は、ノ レス信号生成部 102により生成された第 1パ ノレス信号に調整パルス信号を付加することにより、第 2パルス信号を生成する。光源 106は、調整パルス付加部 103により生成された第 2パルス信号の波形に応じて明る さが変化する照明光を発する。調整パルス信号制御部 105は、光源 106から発せら れる照明光の所定期間当たりの光量が一定となるように、調整パルス信号の振幅を 変化させる。光量の一定化を図るために調整パルス信号の振幅を変化させる方法と しては、上述した照明光通信装置 60とほぼ同様に、光源 106から発せられる照明光 の光量を検出し、この検出結果に基づいてフィードバック制御を行う方法を用いること ができる。あるいは、上述した照明光通信装置 80とほぼ同様に、光源 106に供給さ れる第 2パルス信号の積分値を取得し、この積分値に基づレ、てフィードバック制御を 行う方法を用いることができる。  The operation of the illumination light communication apparatus 100 is as follows. When communication information is sent from the information source, the pulse signal generation unit 102 generates a first pulse signal corresponding to the communication information. Subsequently, the adjustment pulse adding unit 103 generates the second pulse signal by adding the adjustment pulse signal to the first panelless signal generated by the noise signal generating unit 102. The light source 106 emits illumination light whose brightness changes according to the waveform of the second pulse signal generated by the adjustment pulse adding unit 103. The adjustment pulse signal control unit 105 changes the amplitude of the adjustment pulse signal so that the amount of illumination light emitted from the light source 106 per predetermined period is constant. As a method of changing the amplitude of the adjustment pulse signal in order to make the amount of light constant, the amount of illumination light emitted from the light source 106 is detected in substantially the same manner as the illumination light communication device 60 described above. A method of performing feedback control based on the above can be used. Alternatively, it is possible to use a method of obtaining the integral value of the second pulse signal supplied to the light source 106 and performing feedback control based on the integral value, in substantially the same manner as the illumination light communication device 80 described above. .
[0071] 図 12は、本発明の第 4実施形態である照明光通信装置 100をより具体化した例を 示している。図 12中の照明光通信装置 110は、パルス信号生成回路 111、調整パ ノレス生成回路 112、増幅器 113、パルス付カ卩回路 114、白色発光ダイオード(白色 L ED) 115、受光素子 116、積分回路 117、基準値出力回路 118および比較器 119 を備えている。 FIG. 12 shows a more specific example of the illumination light communication apparatus 100 that is the fourth embodiment of the present invention. The illumination light communication device 110 in FIG. 12 includes a pulse signal generation circuit 111, an adjustment panelless generation circuit 112, an amplifier 113, a pulsed circuit 114, a white light emitting diode (white LED) 115, a light receiving element 116, and an integration circuit. 117, reference value output circuit 118 and comparator 119 It has.
[0072] 照明光通信装置 110の動作は次のとおりである。情報源から通信情報が送られて くると、パルス信号生成回路 111は、通信情報に対応するパルス信号 P41を生成す る。また、調整パルス生成回路 112は、調整パルス信号 P42を生成する。増幅器 11 3は調整ノ^レス信号 P42を増幅する。そして、パルス付カ卩回路 114は、この増幅され た調整パルス信号 P42をパルス信号 P41に付加することにより、 ノ^レス信号 P43を生 成する。  The operation of illumination light communication apparatus 110 is as follows. When communication information is sent from the information source, the pulse signal generation circuit 111 generates a pulse signal P41 corresponding to the communication information. Further, the adjustment pulse generation circuit 112 generates an adjustment pulse signal P42. The amplifier 11 3 amplifies the adjustment no-less signal P42. Then, the pulsed circuit 114 adds the amplified adjustment pulse signal P42 to the pulse signal P41, thereby generating a noise signal P43.
[0073] 図 13は、パルス信号 P41に調整パルス信号 P42が付加されたパルス信号 P43の 波形を示している。パルス信号 P41は、例えば、通信情報における符号の「1」、「0」 に対応して振幅がハイレベル、ローレベルとなる信号である。一方、調整パルス信号 P42の周波数、デューティ比および長さ(1ユニットの全体的な信号長)は予め初期 値として決められており、例えばこれらはそれぞれ一定である。しかし、調整パルス信 号 P42の振幅は、増幅器 113の増幅率の変化によって変化する。なお、図 13中の 受信期間は、図 5中の受信用ブランク 53に対応する。  FIG. 13 shows the waveform of the pulse signal P43 obtained by adding the adjustment pulse signal P42 to the pulse signal P41. The pulse signal P41 is, for example, a signal whose amplitude becomes a high level or a low level corresponding to codes “1” and “0” in the communication information. On the other hand, the frequency, duty ratio, and length (total signal length of one unit) of the adjustment pulse signal P42 are determined in advance as initial values, and are constant, for example. However, the amplitude of the adjustment pulse signal P42 changes due to a change in the amplification factor of the amplifier 113. The reception period in FIG. 13 corresponds to the reception blank 53 in FIG.
[0074] このようなパルス信号 P43は、パルス付加回路 114から白色発光ダイオード 115に 供給される。 白色発光ダイオード 115は、パルス信号 P43によって変調された照明光 、すなわち、パルス信号 P43の波形に対応して明るさが変化する照明光を発する。  Such a pulse signal P43 is supplied from the pulse addition circuit 114 to the white light emitting diode 115. The white light emitting diode 115 emits illumination light modulated by the pulse signal P43, that is, illumination light whose brightness changes in accordance with the waveform of the pulse signal P43.
[0075] 続いて、受光素子 116は、白色発光ダイオード 115から発せられた照明光を受光し 、照明光の強度に応じて振幅が変化する電気信号を生成し、この電気信号を積分回 路 117に供給する。積分回路 117は、この電気信号の所定期間当たり(例えば約 0. 5ないし 1秒当たり)の積分値を生成し、この積分値を比較器 119の一方の入力端子 に供給する。比較器 119の他方の入力端子には、基準値出力回路 118から所定の 基準値が入力されている。比較器 119は、積分回路 117から供給された積分値と基 準値とを比較し、両者の差に応じた電圧を有する直流の制御信号を増幅器 113に供 給する。  Subsequently, the light receiving element 116 receives the illumination light emitted from the white light emitting diode 115, generates an electrical signal whose amplitude changes according to the intensity of the illumination light, and uses this electrical signal as an integration circuit 117. To supply. The integration circuit 117 generates an integration value per predetermined period (for example, about 0.5 to 1 second) of the electrical signal and supplies the integration value to one input terminal of the comparator 119. A predetermined reference value is input from the reference value output circuit 118 to the other input terminal of the comparator 119. The comparator 119 compares the integrated value supplied from the integrating circuit 117 with a reference value, and supplies a DC control signal having a voltage corresponding to the difference between the two to the amplifier 113.
[0076] 増幅器 113は、この制御信号の電圧に従って増幅率を変化させる。これにより、調 整パルス信号 P42の振幅が制御信号の電圧、つまり積分回路 117から供給された積 分値と所定の基準値と差に従って変化する。より具体的に説明すると、積分回路 117 力 供給された積分値が所定の基準値よりも大きいときには、比較器 119から増幅器 113へ供給される制御信号の電圧はマイナスになり、これにより増幅器 113の増幅率 が下がる。したがって、調整パルス信号 P42の振幅が小さくなり、この結果、照明光の 所定期間当たりの光量が減少する。一方、積分回路 117から供給された積分値が所 定の基準値よりも小さレ、ときには、比較器 119から増幅器 113へ供給される制御信号 の電圧はプラスになり、これにより増幅器 113の増幅率が上がる。したがって、調整パ ノレス信号 P43の振幅が大きくなり、この結果、照明光の所定期間当たりの光量が増 加する。このような動作が繰り返されることにより、照明光の所定期間当たりの光量が 一定の光量に収束していく。 The amplifier 113 changes the amplification factor according to the voltage of this control signal. As a result, the amplitude of the adjustment pulse signal P42 changes according to the voltage of the control signal, that is, the difference between the integrated value supplied from the integrating circuit 117 and the predetermined reference value. More specifically, the integration circuit 117 When the integral value supplied to the power is larger than a predetermined reference value, the voltage of the control signal supplied from the comparator 119 to the amplifier 113 becomes negative, thereby reducing the amplification factor of the amplifier 113. Therefore, the amplitude of the adjustment pulse signal P42 is reduced, and as a result, the amount of illumination light per predetermined period is reduced. On the other hand, when the integrated value supplied from the integrating circuit 117 is smaller than a predetermined reference value, the voltage of the control signal supplied from the comparator 119 to the amplifier 113 becomes positive, and thereby the amplification factor of the amplifier 113 is increased. Goes up. Therefore, the amplitude of the adjustment panelless signal P43 increases, and as a result, the amount of illumination light per predetermined period increases. By repeating such an operation, the amount of illumination light per predetermined period converges to a constant amount.
[0077] なお、照明光通信装置 110から照射された照明光を受け取った通信機器は、照明 光からパルス信号 P43に相当する信号を取得し、この信号から、調整パルス信号 P4 2に相当する信号を取り除き、パルス信号 P41に対応する信号だけを抽出する。この ような抽出処理は、例えば次のように実現することができる。すなわち、照明光通信装 置 110におレ、て調整パルス信号 P42をパルス信号 P41に付加するタイミング(間隔) および 1ユニット当たりの調整パルス信号 P42の長さを予め決めておく。これにより、 照明光通信装置 110と通信機器との間で同期がとれた状態のもとで、通信機器は、 パルス信号 P43に相当する信号力 調整パルス信号 P42に相当する信号を特定す ることが可能になる。よって、通信機器は、パルス信号 P43に相当する信号からパノレ ス信号 P41に対応する信号だけを抽出することができ、この信号力 通信情報を再 生することが可能になる。  [0077] Note that the communication device that has received the illumination light emitted from the illumination light communication device 110 acquires a signal corresponding to the pulse signal P43 from the illumination light, and from this signal, a signal corresponding to the adjustment pulse signal P42. And only the signal corresponding to the pulse signal P41 is extracted. Such an extraction process can be realized as follows, for example. That is, the timing (interval) for adding the adjustment pulse signal P42 to the pulse signal P41 and the length of the adjustment pulse signal P42 per unit are determined in advance in the illumination light communication apparatus 110. As a result, the communication device identifies the signal corresponding to the signal force adjustment pulse signal P42 corresponding to the pulse signal P43 under the state where the illumination light communication device 110 and the communication device are synchronized. Is possible. Therefore, the communication device can extract only the signal corresponding to the panoramic signal P41 from the signal corresponding to the pulse signal P43, and this signal power communication information can be reproduced.
[0078] 以上説明したとおり、照明光通信装置 100、 110では、通信情報に対応したパルス 信号に調整パルス信号を付加し、調整パルス信号の付加されたパルス信号によって 照明光を変調する。そして、照明光の所定期間当たりの光量が一定となるように、調 整パルス信号の振幅を変化させる。これにより、照明光の所定期間当たりの光量をほ ぼ一定にすることができる。よって、照明光の明るさ (輝度)を安定化させることができ 、人間が直接認識できるような照明光のちらつきを軽減することができる。  As described above, in illumination light communication apparatuses 100 and 110, the adjustment pulse signal is added to the pulse signal corresponding to the communication information, and the illumination light is modulated by the pulse signal to which the adjustment pulse signal is added. Then, the amplitude of the adjustment pulse signal is changed so that the amount of illumination light per predetermined period is constant. Thereby, the light quantity per predetermined period of illumination light can be made substantially constant. Accordingly, the brightness (luminance) of the illumination light can be stabilized, and flickering of the illumination light that can be directly recognized by humans can be reduced.
[0079] また、照明光通信装置 100、 110では、通信情報に対応するパルス信号に調整パ ノレス信号を付加する構成を採用している。これにより、調整パルス信号の振幅、周波 数、デューティ比、長さなどの初期値を任意に設定'調整することにより、照明光の光 量を広い範囲で設定 ·調整することができる。したがって、照明の明るさの設定'調整 の範囲を広くすることができ、明るさを自在にコントロールできる照明を実現すること が可能になる。 In addition, illumination light communication apparatuses 100 and 110 employ a configuration in which an adjustment panelless signal is added to a pulse signal corresponding to communication information. As a result, the amplitude and frequency of the adjustment pulse signal By arbitrarily setting and adjusting initial values such as number, duty ratio, and length, the amount of illumination light can be set and adjusted over a wide range. Therefore, it is possible to widen the range of setting and adjusting the brightness of the illumination, and to realize illumination that can freely control the brightness.
[0080] なお、上述した照明光通信装置 100、 110では、照明光の光量が一定となるように 、調整パルス信号の振幅を変化させる構成を採用したが、本発明はこれに限られな レ、。例えば、照明光の光量が一定となるように、調整パルス信号の周波数、デューテ ィ比または長さを変化させてもょレ、。  In the illumination light communication devices 100 and 110 described above, a configuration is adopted in which the amplitude of the adjustment pulse signal is changed so that the amount of illumination light is constant, but the present invention is not limited to this. ,. For example, you can change the frequency, duty ratio, or length of the adjustment pulse signal so that the amount of illumination light is constant.
[0081] また、図 11において、変調部 101が変調手段の具体例であり、光量制御部 104が 光量制御手段の具体例である。また、パルス信号生成部 102がパルス信号生成手 段の具体例であり、調整パルス付加部 103が調整パルス付加手段の具体例であり、 調整パルス信号制御部 105が調整パルス信号制御手段の具体例である。また、図工In FIG. 11, the modulation unit 101 is a specific example of the modulation unit, and the light amount control unit 104 is a specific example of the light amount control unit. The pulse signal generation unit 102 is a specific example of the pulse signal generation unit, the adjustment pulse addition unit 103 is a specific example of the adjustment pulse addition unit, and the adjustment pulse signal control unit 105 is a specific example of the adjustment pulse signal control unit. It is. Also, craft
2において、ノ^レス信号生成回路 111がパルス信号生成手段の具体例である。また 、白色発光ダイオード 115が光源の具体例である。また、調整パルス生成回路 112 およびパルス付加回路 114が調整パルス付加手段の具体例である。また、受光素子 116、積分回路 117、基準値出力回路 118、比較器 119および増幅器 113が調整 パルス信号制御手段の具体例である。 In FIG. 2, a noise signal generation circuit 111 is a specific example of the pulse signal generation means. The white light emitting diode 115 is a specific example of the light source. The adjustment pulse generation circuit 112 and the pulse addition circuit 114 are specific examples of adjustment pulse addition means. The light receiving element 116, the integrating circuit 117, the reference value output circuit 118, the comparator 119, and the amplifier 113 are specific examples of the adjustment pulse signal control means.
[0082] (第 5実施形態) [0082] (Fifth embodiment)
図 14は、本発明の照明光通信装置の第 5実施形態を示している。図 14中の照明 光通信装置 120では、照明光を変調するためのノ^レス信号のパルスを、細分パルス に分割する。そして、照明光の所定期間当たりの光量が一定となるように、細分パル スの個数を変化させる。  FIG. 14 shows a fifth embodiment of the illumination light communication apparatus of the present invention. In the illumination optical communication device 120 in FIG. 14, the pulse of the no-less signal for modulating the illumination light is divided into subdivided pulses. Then, the number of subdivided pulses is changed so that the amount of illumination light per predetermined period is constant.
[0083] すなわち、照明光通信装置 120において、変調部 121はパルス信号生成部 122お よびパルス分割部 123を備えてレ、る。光量制御部 124は、パルス数制御部 125を備 えている。  That is, in the illumination light communication apparatus 120, the modulation unit 121 includes a pulse signal generation unit 122 and a pulse division unit 123. The light quantity control unit 124 includes a pulse number control unit 125.
[0084] 照明光通信装置 120の動作は次のとおりである。情報源から通信情報が送られて くると、パルス信号生成部 122は、通信情報に対応するパルス信号 P51を生成する。 続いて、パルス分割部 123は、ノ^レス信号生成部 122により生成されたパルス信号 P 51のパルス(オンパルス)を、当該パルス信号 P51のパルスの最小幅よりも小さい幅 を有する複数の細分パルスに分割し、これにより、パルス信号 P53を生成する。そし て、光源 126は、パルス信号 P53の波形に対応して明るさが変化する照明光を発す る。 The operation of illumination light communication apparatus 120 is as follows. When communication information is sent from the information source, the pulse signal generator 122 generates a pulse signal P51 corresponding to the communication information. Subsequently, the pulse division unit 123 generates the pulse signal P generated by the noise signal generation unit 122. The 51 pulses (on-pulse) are divided into a plurality of subdivided pulses having a width smaller than the minimum width of the pulse of the pulse signal P51, thereby generating a pulse signal P53. The light source 126 emits illumination light whose brightness changes according to the waveform of the pulse signal P53.
[0085] 調整パルス信号制御部 105は、光源 106から発せられる照明光の所定期間当たり の光量が一定となるように、ノ^レス信号 P53の細分パルスの個数を変化させる。光量 の一定化を図るためにパルス信号 P53の細分パルスの個数を変化させる方法として は、上述した照明光通信装置 60とほぼ同様に、光源 126から発せられる照明光の光 量を検出し、この検出結果に基づいてフィードバック制御を行う方法を用いることがで きる。あるいは、上述した照明光通信装置 80とほぼ同様に、光源 126に供給される パルス信号 P53の積分値を取得し、この積分値に基づレ、てフィードバック制御を行う 方法を用いることができる。  The adjustment pulse signal control unit 105 changes the number of subdivided pulses of the noise signal P53 so that the amount of illumination light emitted from the light source 106 per unit time is constant. As a method of changing the number of subdivided pulses of the pulse signal P53 in order to make the amount of light constant, the amount of illumination light emitted from the light source 126 is detected in substantially the same manner as the illumination light communication device 60 described above. A method of performing feedback control based on the detection result can be used. Alternatively, a method of obtaining an integral value of the pulse signal P53 supplied to the light source 126 and performing feedback control based on the integral value can be used in substantially the same manner as the illumination light communication device 80 described above.
[0086] 図 15は、パルス信号生成部 122により生成されたパルス信号 P51、パルス分割部 1 23により分割されたパルス信号 P52、およびパルス数制御部 125により分割パルス の個数が変更されたパルス信号 P53を示している。  FIG. 15 shows a pulse signal P51 generated by the pulse signal generator 122, a pulse signal P52 divided by the pulse divider 123, and a pulse signal in which the number of divided pulses is changed by the pulse number controller 125. P53 is shown.
[0087] パルス分割部 123は、パルス信号 P51のパルス W1を、例えば当該パルス信号 P5 1の最小パルス幅の 2分の 1よりも小さい幅を有する分割パルス W2に分割する。  The pulse dividing unit 123 divides the pulse W1 of the pulse signal P51 into divided pulses W2 having a width smaller than one half of the minimum pulse width of the pulse signal P51, for example.
[0088] 照明光の光量が所定の基準光量よりも大きいときには、パルス数制御部 125は、パ ルス信号 P52の分割パルス W2の個数を減らす。このとき、図 15に示すパルス信号 P 53のように、少なくともパルス W1の立ち上がり部に位置する分割パルス(先頭分割 パルス W2a)と、当該ノ^レス W1の立ち下がり部に位置する分割パルス(末尾分割パ ルス W2b)とを残存させる。つまり、パルス数制御部 125は、先頭分割パルス W2aと 末尾分割パルス W2bとの間に存在する分割パルス W2の個数を減らす。これにより、 照明光通信装置 120と通信を行う通信機器において、パルス信号 P53に対応する信 号に基づいてパルス信号 P51に対応する信号を容易かつ高精度に復元することが 可能になる。つまり、パルス信号 P53により変調された照明光に基づいて、パルス信 号 P51に対応する信号を容易かつ高精度に復元することが可能になり、よって通信 情報を容易かつ高精度に再生することが可能になる。 [0089] 以上説明したとおり、照明光通信装置 120では、照明光を変調するためのパルス 信号のノ^レスを細分パルスに分割し、照明光の所定期間当たりの光量が一定となる ように、細分パルスの個数を変化させる。これにより、照明光の所定期間当たりの光 量をほぼ一定にすることができる。よって、照明光の明るさ (輝度)を安定化させること ができ、人間が直接認識できるような照明光のちらつきを軽減することができる。これ により、照明光通信装置 1を屋内照明装置(図 2参照)や照明灯(図 3参照)などに適 用した場合に、これら照明としての本来的性能、つまり物に光をあてて明るくし、その 明るさを維持するという性能を維持ないし向上させることができる。 [0088] When the amount of illumination light is larger than a predetermined reference amount of light, the pulse number control unit 125 reduces the number of divided pulses W2 of the pulse signal P52. At this time, as shown in the pulse signal P 53 in FIG. 15, at least the divided pulse (starting divided pulse W2a) located at the rising edge of the pulse W1 and the divided pulse (end) located at the falling edge of the corresponding node W1. The split pulse W2b) remains. That is, the pulse number control unit 125 reduces the number of divided pulses W2 existing between the first divided pulse W2a and the last divided pulse W2b. As a result, in the communication device that communicates with the illumination light communication device 120, the signal corresponding to the pulse signal P51 can be easily and accurately restored based on the signal corresponding to the pulse signal P53. That is, based on the illumination light modulated by the pulse signal P53, the signal corresponding to the pulse signal P51 can be restored easily and with high accuracy, and thus communication information can be easily and accurately reproduced. It becomes possible. [0089] As described above, in illumination light communication apparatus 120, the pulse signal for modulating illumination light is divided into subdivided pulses so that the amount of illumination light per predetermined period is constant. Change the number of subdivision pulses. Thereby, the light quantity per predetermined period of illumination light can be made substantially constant. Therefore, the brightness (luminance) of the illumination light can be stabilized, and flickering of the illumination light that can be directly recognized by humans can be reduced. As a result, when the illuminating light communication device 1 is applied to an indoor lighting device (see Fig. 2), an illuminating lamp (see Fig. 3), etc., the original performance as these lightings, that is, light is applied to the object to make it brighter. The performance of maintaining the brightness can be maintained or improved.
[0090] なお、図 14において、変調部 121が変調手段の具体例であり、光量制御部 124が 光量制御手段の具体例である。また、パルス信号生成部 122がパルス信号生成手 段の具体例であり、パルス分割部 123がパルス分割手段の具体例であり、パルス数 制御部 125がパルス数制御手段の具体例である。  In FIG. 14, the modulation unit 121 is a specific example of the modulation unit, and the light amount control unit 124 is a specific example of the light amount control unit. Further, the pulse signal generation unit 122 is a specific example of the pulse signal generation unit, the pulse division unit 123 is a specific example of the pulse division unit, and the pulse number control unit 125 is a specific example of the pulse number control unit.
なお、上述した照明光通信装置では、照明光の光量が一定となるように、パルス信号 または調整パルス信号の振幅を変化させる構成を説明したが、本発明はこれに限ら れない。例えば、照明光の光量が一定となるように DCオフセットをかけてこれを適宜 変更してもよい。  In the illumination light communication apparatus described above, the configuration in which the amplitude of the pulse signal or the adjustment pulse signal is changed so that the amount of illumination light is constant has been described, but the present invention is not limited to this. For example, a DC offset may be applied and appropriately changed so that the amount of illumination light is constant.
また、パルス信号のローレベル期間の電位を調整することにより、所定期間ごとの照 明光の光量を一定とすることもできる。さらにはパルス信号のハイレベル期間の電位 の調整も合わせて行ってよいことは言うまでもない。  Further, by adjusting the potential of the pulse signal in the low level period, the amount of illumination light for each predetermined period can be made constant. Furthermore, it goes without saying that the adjustment of the potential during the high level period of the pulse signal may also be performed.
[0091] また、本発明は、請求の範囲および明細書全体から読み取るこのできる発明の要 旨または思想に反しない範囲で適宜変更可能であり、そのような変更を伴う照明光 通信装置および照明光通信方法並びにこれらの機能を実現するコンピュータプログ ラムもまた本発明の技術思想に含まれる。 [0091] Further, the present invention can be appropriately changed without departing from the gist or idea of the invention that can be read from the claims and the entire specification, and the illumination light communication device and illumination light accompanied by such a change can be used. A communication method and a computer program for realizing these functions are also included in the technical idea of the present invention.
産業上の利用可能性  Industrial applicability
[0092] 本発明に係る照明光通信装置および照明光通信方法は、例えば照明光を利用し て情報の通信を行う照明光通信に利用可能である。また、例えば民生用或いは業務 用の各種コンピュータ機器に搭載される又は各種コンピュータ機器に接続可能な照 明光通信装置等にも利用可能である。  The illumination light communication apparatus and illumination light communication method according to the present invention can be used for illumination light communication in which information is communicated using illumination light, for example. Further, it can also be used for, for example, an illumination optical communication device that is mounted on or can be connected to various computer equipment for consumer use or business use.

Claims

請求の範囲 The scope of the claims
[1] 照明光を介して情報を通信する照明光通信装置であって、  [1] An illumination light communication device that communicates information via illumination light,
可視光である照明光を発する光源と、  A light source that emits illumination light that is visible light;
前記光源から発せられる照明光を前記情報に基づいて変調する変調手段と、 前記変調手段により変調された照明光の所定期間当たりの光量が一定となるように A modulation unit that modulates the illumination light emitted from the light source based on the information, and a light amount per predetermined period of the illumination light modulated by the modulation unit is constant.
、前記光源による発光を制御する光量制御手段とを備えていることを特徴とする照明 光通信装置。 An illumination optical communication device comprising: a light amount control unit that controls light emission by the light source.
[2] 前記光量制御手段は、前記光源による照明光の発生または前記変調手段による 照明光の変調を制御することを特徴とする請求の範囲第 1項に記載の照明光通信装 置。  [2] The illumination light communication apparatus according to claim 1, wherein the light amount control means controls generation of illumination light by the light source or modulation of illumination light by the modulation means.
[3] 前記光源は発光ダイオードであることを特徴とする請求の範囲第 1項に記載の照明 光通信装置。  [3] The illumination optical communication device according to [1], wherein the light source is a light emitting diode.
[4] 前記光量制御手段は、 2値の符号で表現された前記情報に対しバイフエイズ符号 化処理を行うバイフエイズ符号ィ匕処理手段を備え、  [4] The light amount control unit includes a bi-phase code processing unit that performs bi-phase encoding processing on the information expressed by a binary code,
前記変調手段は、前記バイフエイズ符号ィヒ処理手段によりバイフエイズ符号化処理 が行われた情報に対応するパルス信号を生成するパルス信号生成手段を備え、 前記光源は、前記パルス信号生成手段により生成されたパルス信号の波形に対応 して明るさが変化する照明光を発することを特徴とする請求の範囲第 1項に記載の照 明光通信装置。  The modulation means includes pulse signal generation means for generating a pulse signal corresponding to the information that has been subjected to bi-phase encoding processing by the bi-phase encoding process, and the light source is generated by the pulse signal generation means 2. The illumination light communication apparatus according to claim 1, wherein illumination light whose brightness changes according to the waveform of the pulse signal is emitted.
[5] 前記変調手段は、前記バイフエイズ符号ィ匕処理後の前記情報に対応するパルス信 号にぉレ、て、前記バイフエイズ符号化処理前の前記情報に対応するパルス信号がハ ィレベルまたはローレベルの区間に対応する区間の波形を反転させる波形反転手段 を備えていることを特徴とする請求の範囲第 4項に記載の照明光通信装置。  [5] The modulation means may be configured such that the pulse signal corresponding to the information before the bi-fading encoding process is high level or low level in response to the pulse signal corresponding to the information after the bi-phase encoding process. 5. The illumination light communication apparatus according to claim 4, further comprising waveform inversion means for inverting the waveform of the section corresponding to the section.
[6] 前記変調手段は、前記情報に対応するパルス信号を生成するパルス信号生成手 段を備え、  [6] The modulation means includes a pulse signal generation means for generating a pulse signal corresponding to the information,
前記光源は、前記パルス信号生成手段により生成されたノ^レス信号の波形に対応 して明るさが変化する照明光を発し、  The light source emits illumination light whose brightness changes in accordance with the waveform of the noise signal generated by the pulse signal generation means,
前記光量制御手段は、 前記光源から発せられた照明光の所定期間当たりの光量を検出する光量検出手 段と、 The light amount control means includes A light amount detecting means for detecting a light amount per predetermined period of illumination light emitted from the light source;
前記光量検出手段により検出された光量が所定光量となるように、前記パルス信号 の振幅を変化させる振幅制御手段とを備えていることを特徴とする請求の範囲第 1項 に記載の照明光通信装置。  The illumination light communication according to claim 1, further comprising: an amplitude control unit that changes an amplitude of the pulse signal so that a light amount detected by the light amount detection unit becomes a predetermined light amount. apparatus.
[7] 前記変調手段は、前記情報に対応するパルス信号を生成するパルス信号生成手 段を備え、  [7] The modulation means includes a pulse signal generation means for generating a pulse signal corresponding to the information,
前記光源は、前記パルス信号生成手段により生成されたパルス信号の波形に対応 して明るさが変化する照明光を発し、  The light source emits illumination light whose brightness changes according to the waveform of the pulse signal generated by the pulse signal generation means,
前記光量制御手段は、  The light amount control means includes
前記パルス信号生成手段により生成されたパルス信号の所定期間当たりの積分値 を取得する積分値取得手段と、  An integral value acquisition means for acquiring an integral value per predetermined period of the pulse signal generated by the pulse signal generation means;
前記積分値取得手段により取得された積分値が所定値となるように、前記パルス信 号の振幅を変化させる振幅制御手段とを備えていることを特徴とする請求の範囲第 1 項に記載の照明光通信装置。  The amplitude control means for changing the amplitude of the pulse signal so that the integral value acquired by the integral value acquisition means becomes a predetermined value. Illumination light communication device.
[8] 前記変調手段は、 [8] The modulation means includes
2値の符号で表現された前記情報に対応する第 1パルス信号を生成するパルス信 号生成手段と、  Pulse signal generating means for generating a first pulse signal corresponding to the information represented by a binary code;
前記パルス信号生成手段により生成された第 1パルス信号に調整パルス信号を付 加することにより第 2パルス信号を生成する調整パルス付加手段とを備え、  Adjusting pulse adding means for generating a second pulse signal by adding an adjusting pulse signal to the first pulse signal generated by the pulse signal generating means,
前記光源は、前記第 2パルス信号の波形に対応して明るさが変化する照明光を発 し、  The light source emits illumination light whose brightness changes according to the waveform of the second pulse signal,
前記光量制御手段は、前記調整パルス信号の振幅、デューティ比または長さを変 化させる調整パルス信号制御手段を備えていることを特徴とする請求の範囲第 1項 に記載の照明光通信装置。  The illumination light communication apparatus according to claim 1, wherein the light amount control means includes adjustment pulse signal control means for changing an amplitude, a duty ratio, or a length of the adjustment pulse signal.
[9] 前記変調手段は、 [9] The modulation means includes
2値の符号で表現された前記情報に対応する第 1パルス信号を生成するパルス信 号生成手段と、 前記パルス信号生成手段により生成された第 1パルス信号のパルスを、当該第 1パ ノレス信号のノ^レスの最小幅よりも小さい幅を有する複数の細分パルスに分割すること により第 2パルス信号を生成するパルス分割手段とを備え、 Pulse signal generating means for generating a first pulse signal corresponding to the information represented by a binary code; The second pulse signal is divided by dividing the pulse of the first pulse signal generated by the pulse signal generating means into a plurality of subdivided pulses having a width smaller than the minimum width of the first panoramic signal. A pulse dividing means for generating,
前記光源は、前記第 2パルス信号の波形に対応して明るさが変化する照明光を発 し、  The light source emits illumination light whose brightness changes according to the waveform of the second pulse signal,
前記光量制御手段は、前記第 2パルス信号の細分パルスの個数を変化させるパル ス数制御手段を備えていることを特徴とする請求の範囲第 1項に記載の照明光通信 装置。  2. The illumination light communication apparatus according to claim 1, wherein the light amount control means includes pulse number control means for changing the number of subdivided pulses of the second pulse signal.
[10] 光源から発せられる可視光である照明光を介して情報を通信する照明光通信方法 であって、  [10] An illumination light communication method for communicating information via illumination light that is visible light emitted from a light source,
前記情報に基づいて前記照明光を変調する変調工程と、  A modulation step of modulating the illumination light based on the information;
前記変調工程において変調された照明光の所定期間当たりの光量が一定となるよ うに、前記光源における発光を制御する光量制御工程とを備えていることを特徴とす る照明光通信方法。  An illumination light communication method comprising: a light amount control step of controlling light emission from the light source so that the light amount per predetermined period of the illumination light modulated in the modulation step is constant.
[11] 請求の範囲第 1項に記載の照明光通信装置としてコンピュータを機能させることを 特徴とするコンピュータプログラム。  [11] A computer program for causing a computer to function as the illumination light communication device according to claim 1.
PCT/JP2006/313048 2005-06-30 2006-06-30 Illumination light communication device and illumination light communication method WO2007004530A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007524008A JP4676494B2 (en) 2005-06-30 2006-06-30 Illumination light communication apparatus, illumination light communication method, and computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-191724 2005-06-30
JP2005191724 2005-06-30

Publications (1)

Publication Number Publication Date
WO2007004530A1 true WO2007004530A1 (en) 2007-01-11

Family

ID=37604395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313048 WO2007004530A1 (en) 2005-06-30 2006-06-30 Illumination light communication device and illumination light communication method

Country Status (2)

Country Link
JP (1) JP4676494B2 (en)
WO (1) WO2007004530A1 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305712A (en) * 2006-05-10 2007-11-22 Dainippon Screen Mfg Co Ltd Light emitting device
JP2008206087A (en) * 2007-02-22 2008-09-04 Matsushita Electric Works Ltd Visible optical communication system
JP2008282588A (en) * 2007-05-08 2008-11-20 Nec Lighting Ltd Lighting fixture
EP2151932A1 (en) * 2007-04-23 2010-02-10 Sumitomo Chemical Company, Limited Illuminating light communication system and transmitting device for illuminating light communication
JP2010141393A (en) * 2008-12-09 2010-06-24 Konica Minolta Holdings Inc Illumination light communication apparatus and illumination light communication system
JP2010533947A (en) * 2007-07-19 2010-10-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method, system and apparatus for transmitting lighting device data
WO2010125093A1 (en) * 2009-04-28 2010-11-04 Siemens Aktiengesellschaft Method and device for optically transmitting data
JP2011503778A (en) * 2007-11-07 2011-01-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting fixture and method for controlling a lighting fixture
JP2012142204A (en) * 2010-12-29 2012-07-26 Central Nippon Highway Engineering Nagoya Co Ltd Maintenance system for tunnel illumination lamp fitting group, and maintenance and management method for tunnel illumination lamp fitting group utilizing the same
JP2013504969A (en) * 2009-09-16 2013-02-07 サムスン エレクトロニクス カンパニー リミテッド Preamble design to support multiple topologies using visible light communication
CN103209027A (en) * 2012-01-17 2013-07-17 巴法络股份有限公司 Signal Output Apparatus And Signal Transmitting And Receiving System
KR101301021B1 (en) 2009-09-21 2013-08-28 한국전자통신연구원 Transmitter, receiver for visible light communication and method using the same
WO2013175803A1 (en) * 2012-05-24 2013-11-28 パナソニック株式会社 Information communication method
US8620165B2 (en) 2009-09-21 2013-12-31 Electronics And Telecommunications Research Institute Transmitter, receiver for visible light communication and method using the same
KR101381603B1 (en) * 2009-09-18 2014-04-14 한국전자통신연구원 Visible light wireless communication method minimizing the brightness reduction of light source and enabling the dimming control of light source, and apparatus therefor
US8908074B2 (en) 2012-12-27 2014-12-09 Panasonic Intellectual Property Corporation Of America Information communication method
US8913144B2 (en) 2012-12-27 2014-12-16 Panasonic Intellectual Property Corporation Of America Information communication method
US8922666B2 (en) 2012-12-27 2014-12-30 Panasonic Intellectual Property Corporation Of America Information communication method
US8988574B2 (en) 2012-12-27 2015-03-24 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information using bright line image
US9008352B2 (en) 2012-12-27 2015-04-14 Panasonic Intellectual Property Corporation Of America Video display method
US9085927B2 (en) 2012-12-27 2015-07-21 Panasonic Intellectual Property Corporation Of America Information communication method
US9088363B2 (en) 2012-12-27 2015-07-21 Panasonic Intellectual Property Corporation Of America Information communication method
US9087349B2 (en) 2012-12-27 2015-07-21 Panasonic Intellectual Property Corporation Of America Information communication method
US9094120B2 (en) 2012-12-27 2015-07-28 Panasonic Intellectual Property Corporaton Of America Information communication method
US9262954B2 (en) 2012-12-27 2016-02-16 Panasonic Intellectual Property Corporation Of America Visible light communication signal display method and apparatus
JP2016518638A (en) * 2013-03-12 2016-06-23 フィリップス ライティング ホールディング ビー ヴィ Emergency manager for lighting equipment
JP2017033241A (en) * 2015-07-31 2017-02-09 ホーチキ株式会社 Optical alarm device
US9608725B2 (en) 2012-12-27 2017-03-28 Panasonic Intellectual Property Corporation Of America Information processing program, reception program, and information processing apparatus
US9608727B2 (en) 2012-12-27 2017-03-28 Panasonic Intellectual Property Corporation Of America Switched pixel visible light transmitting method, apparatus and program
US9646568B2 (en) 2012-12-27 2017-05-09 Panasonic Intellectual Property Corporation Of America Display method
CN107360379A (en) * 2012-12-27 2017-11-17 松下电器(美国)知识产权公司 Information communicating method
JP2018157390A (en) * 2017-03-17 2018-10-04 Necライティング株式会社 Illumination communication system and illumination communication method
EP3373481A4 (en) * 2015-11-06 2018-11-07 Panasonic Intellectual Property Corporation of America Visible light signal generation method, signal generation device and program
US10142020B2 (en) 2014-11-14 2018-11-27 Panasonic Intellectual Property Corporation Of America Reproduction method for reproducing contents
US10263701B2 (en) 2015-11-12 2019-04-16 Panasonic Intellectual Property Corporation Of America Display method, non-transitory recording medium, and display device
US10303945B2 (en) 2012-12-27 2019-05-28 Panasonic Intellectual Property Corporation Of America Display method and display apparatus
US10504584B2 (en) 2015-12-17 2019-12-10 Panasonic Intellectual Property Corporation Of America Display method and display device
US10523876B2 (en) 2012-12-27 2019-12-31 Panasonic Intellectual Property Corporation Of America Information communication method
US10530486B2 (en) 2012-12-27 2020-01-07 Panasonic Intellectual Property Corporation Of America Transmitting method, transmitting apparatus, and program
US10951310B2 (en) 2012-12-27 2021-03-16 Panasonic Intellectual Property Corporation Of America Communication method, communication device, and transmitter
WO2022200131A1 (en) * 2021-03-26 2022-09-29 Seaborough Life Science B.V. Distributed dosing in free-space delivery of photo-bio modulation irradiation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072365A (en) * 2002-08-06 2004-03-04 Sony Corp Optical communication device, method for outputting optical communication data, method for analyzing optical communication data, and computer program
JP2004246274A (en) * 2003-02-17 2004-09-02 Sharp Corp Display device, mobile telephone terminal using same, mobile game terminal, television receiver, and stereoscopic display system
JP2005142773A (en) * 2003-11-05 2005-06-02 Victor Co Of Japan Ltd Transmission apparatus
JP2006120910A (en) * 2004-10-22 2006-05-11 Nakagawa Kenkyusho:Kk Power supply for semiconductor light emitting element, and lighting apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156443A (en) * 1986-12-19 1988-06-29 Fujitsu Ltd Coding transmitter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072365A (en) * 2002-08-06 2004-03-04 Sony Corp Optical communication device, method for outputting optical communication data, method for analyzing optical communication data, and computer program
JP2004246274A (en) * 2003-02-17 2004-09-02 Sharp Corp Display device, mobile telephone terminal using same, mobile game terminal, television receiver, and stereoscopic display system
JP2005142773A (en) * 2003-11-05 2005-06-02 Victor Co Of Japan Ltd Transmission apparatus
JP2006120910A (en) * 2004-10-22 2006-05-11 Nakagawa Kenkyusho:Kk Power supply for semiconductor light emitting element, and lighting apparatus

Cited By (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305712A (en) * 2006-05-10 2007-11-22 Dainippon Screen Mfg Co Ltd Light emitting device
JP2008206087A (en) * 2007-02-22 2008-09-04 Matsushita Electric Works Ltd Visible optical communication system
EP2151932A4 (en) * 2007-04-23 2012-12-12 Sumitomo Chemical Co Illuminating light communication system and transmitting device for illuminating light communication
EP2151932A1 (en) * 2007-04-23 2010-02-10 Sumitomo Chemical Company, Limited Illuminating light communication system and transmitting device for illuminating light communication
JP2008282588A (en) * 2007-05-08 2008-11-20 Nec Lighting Ltd Lighting fixture
US9219545B2 (en) 2007-07-19 2015-12-22 Koninklijke Philips N.V. Method, system and device for transmitting lighting device data
JP2010533947A (en) * 2007-07-19 2010-10-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method, system and apparatus for transmitting lighting device data
JP2011503778A (en) * 2007-11-07 2011-01-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting fixture and method for controlling a lighting fixture
JP2010141393A (en) * 2008-12-09 2010-06-24 Konica Minolta Holdings Inc Illumination light communication apparatus and illumination light communication system
WO2010125093A1 (en) * 2009-04-28 2010-11-04 Siemens Aktiengesellschaft Method and device for optically transmitting data
CN102415020A (en) * 2009-04-28 2012-04-11 西门子公司 Method and device for optically transmitting data
US9319134B2 (en) 2009-04-28 2016-04-19 Siemens Aktiengesellschaft Method and device for optically transmitting data
JP2013504969A (en) * 2009-09-16 2013-02-07 サムスン エレクトロニクス カンパニー リミテッド Preamble design to support multiple topologies using visible light communication
KR101381603B1 (en) * 2009-09-18 2014-04-14 한국전자통신연구원 Visible light wireless communication method minimizing the brightness reduction of light source and enabling the dimming control of light source, and apparatus therefor
US8620165B2 (en) 2009-09-21 2013-12-31 Electronics And Telecommunications Research Institute Transmitter, receiver for visible light communication and method using the same
KR101301021B1 (en) 2009-09-21 2013-08-28 한국전자통신연구원 Transmitter, receiver for visible light communication and method using the same
JP2012142204A (en) * 2010-12-29 2012-07-26 Central Nippon Highway Engineering Nagoya Co Ltd Maintenance system for tunnel illumination lamp fitting group, and maintenance and management method for tunnel illumination lamp fitting group utilizing the same
JP2013150078A (en) * 2012-01-17 2013-08-01 Buffalo Inc Signal output device and signal transmission and reception system
CN103209027A (en) * 2012-01-17 2013-07-17 巴法络股份有限公司 Signal Output Apparatus And Signal Transmitting And Receiving System
CN106888357A (en) * 2012-05-24 2017-06-23 松下电器(美国)知识产权公司 Information communicating method, information-communication device, program and recording medium
CN103650383B (en) * 2012-05-24 2017-04-12 松下电器(美国)知识产权公司 Information communication method
US9166810B2 (en) 2012-05-24 2015-10-20 Panasonic Intellectual Property Corporation Of America Information communication device of obtaining information by demodulating a bright line pattern included in an image
CN107104731A (en) * 2012-05-24 2017-08-29 松下电器(美国)知识产权公司 Information communicating method, information-communication device, program and recording medium
US8994841B2 (en) 2012-05-24 2015-03-31 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information specified by stripe pattern of bright lines
CN106972887A (en) * 2012-05-24 2017-07-21 松下电器(美国)知识产权公司 Information communicating method, information-communication device, program and recording medium
WO2013175803A1 (en) * 2012-05-24 2013-11-28 パナソニック株式会社 Information communication method
CN106972887B (en) * 2012-05-24 2019-07-09 松下电器(美国)知识产权公司 Information communicating method, information-communication device and recording medium
CN107104731B (en) * 2012-05-24 2019-09-03 松下电器(美国)知识产权公司 Information communicating method, information-communication device and recording medium
US9083543B2 (en) 2012-05-24 2015-07-14 Panasonic Intellectual Property Corporation Of America Information communication method of obtaining information from a subject by demodulating data specified by a pattern of a bright line included in an obtained image
US9083544B2 (en) 2012-05-24 2015-07-14 Panasonic Intellectual Property Corporation Of America Information communication method of obtaining information from a subject by demodulating data specified by a pattern of a bright line included in an obtained image
US9456109B2 (en) 2012-05-24 2016-09-27 Panasonic Intellectual Property Corporation Of America Information communication method of obtaining information from a subject by demodulating data specified by a pattern of a bright line included in an obtained image
CN106888357B (en) * 2012-05-24 2019-09-17 松下电器(美国)知识产权公司 Information communicating method, information-communication device and recording medium
US9300845B2 (en) 2012-05-24 2016-03-29 Panasonic Intellectual Property Corporation Of America Information communication device for obtaining information from a subject by demodulating a bright line pattern included in an obtained image
US9143339B2 (en) 2012-05-24 2015-09-22 Panasonic Intellectual Property Corporation Of America Information communication device for obtaining information from image data by demodulating a bright line pattern appearing in the image data
US10218914B2 (en) 2012-12-20 2019-02-26 Panasonic Intellectual Property Corporation Of America Information communication apparatus, method and recording medium using switchable normal mode and visible light communication mode
US9571191B2 (en) 2012-12-27 2017-02-14 Panasonic Intellectual Property Corporation Of America Information communication method
US9859980B2 (en) 2012-12-27 2018-01-02 Panasonic Intellectual Property Corporation Of America Information processing program, reception program, and information processing apparatus
US9087349B2 (en) 2012-12-27 2015-07-21 Panasonic Intellectual Property Corporation Of America Information communication method
US9184838B2 (en) 2012-12-27 2015-11-10 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information using ID list and bright line image
US9203515B2 (en) 2012-12-27 2015-12-01 Panasonic Intellectual Property Corporation Of America Information communication method
US9088360B2 (en) 2012-12-27 2015-07-21 Panasonic Intellectual Property Corporation Of America Information communication method
US9247180B2 (en) 2012-12-27 2016-01-26 Panasonic Intellectual Property Corporation Of America Video display method using visible light communication image including stripe patterns having different pitches
US9252878B2 (en) 2012-12-27 2016-02-02 Panasonic Intellectual Property Corporation Of America Information communication method
US9258058B2 (en) 2012-12-27 2016-02-09 Panasonic Intellectual Property Corporation Of America Signal transmitting apparatus for transmitting information by bright line pattern in image
US9262954B2 (en) 2012-12-27 2016-02-16 Panasonic Intellectual Property Corporation Of America Visible light communication signal display method and apparatus
US9281895B2 (en) 2012-12-27 2016-03-08 Panasonic Intellectual Property Corporation Of America Information communication method
US9088363B2 (en) 2012-12-27 2015-07-21 Panasonic Intellectual Property Corporation Of America Information communication method
US9085927B2 (en) 2012-12-27 2015-07-21 Panasonic Intellectual Property Corporation Of America Information communication method
US9331779B2 (en) 2012-12-27 2016-05-03 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information using ID list and bright line image
US9341014B2 (en) 2012-12-27 2016-05-17 Panasonic Intellectual Property Corporation Of America Information communication method using change in luminance
US11659284B2 (en) 2012-12-27 2023-05-23 Panasonic Intellectual Property Corporation Of America Information communication method
US9380227B2 (en) 2012-12-27 2016-06-28 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information using bright line image
US9407368B2 (en) 2012-12-27 2016-08-02 Panasonic Intellectual Property Corporation Of America Information communication method
US9450672B2 (en) 2012-12-27 2016-09-20 Panasonic Intellectual Property Corporation Of America Information communication method of transmitting a signal using change in luminance
US9088362B2 (en) 2012-12-27 2015-07-21 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information by demodulating bright line pattern included in an image
US9462173B2 (en) 2012-12-27 2016-10-04 Panasonic Intellectual Property Corporation Of America Information communication method
US9467225B2 (en) 2012-12-27 2016-10-11 Panasonic Intellectual Property Corporation Of America Information communication method
US9515731B2 (en) 2012-12-27 2016-12-06 Panasonic Intellectual Property Corporation Of America Information communication method
US9560284B2 (en) 2012-12-27 2017-01-31 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information specified by striped pattern of bright lines
US9564970B2 (en) 2012-12-27 2017-02-07 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information using ID list and bright line image
US11490025B2 (en) 2012-12-27 2022-11-01 Panasonic Intellectual Property Corporation Of America Information communication method
US9030585B2 (en) 2012-12-27 2015-05-12 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information by demodulating bright line pattern included in image
US9591232B2 (en) 2012-12-27 2017-03-07 Panasonic Intellectual Property Corporation Of America Information communication method
US9608725B2 (en) 2012-12-27 2017-03-28 Panasonic Intellectual Property Corporation Of America Information processing program, reception program, and information processing apparatus
US9608727B2 (en) 2012-12-27 2017-03-28 Panasonic Intellectual Property Corporation Of America Switched pixel visible light transmitting method, apparatus and program
US9613596B2 (en) 2012-12-27 2017-04-04 Panasonic Intellectual Property Corporation Of America Video display method using visible light communication image including stripe patterns having different pitches
US9019412B2 (en) 2012-12-27 2015-04-28 Panasonic Intellectual Property Corporation Of America Information communication method for selecting between visible light communication mode and normal imaging mode
US9635278B2 (en) 2012-12-27 2017-04-25 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information specified by striped pattern of bright lines
US9641766B2 (en) 2012-12-27 2017-05-02 Panasonic Intellectual Property Corporation Of America Information communication method
US9646568B2 (en) 2012-12-27 2017-05-09 Panasonic Intellectual Property Corporation Of America Display method
US9008352B2 (en) 2012-12-27 2015-04-14 Panasonic Intellectual Property Corporation Of America Video display method
US8994865B2 (en) 2012-12-27 2015-03-31 Panasonic Intellectual Property Corporation Of America Information communication method
JP2017143553A (en) * 2012-12-27 2017-08-17 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Information communication method, information communication device and program
US8988574B2 (en) 2012-12-27 2015-03-24 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information using bright line image
US9756255B2 (en) 2012-12-27 2017-09-05 Panasonic Intellectual Property Corporation Of America Information communication method
US9768869B2 (en) 2012-12-27 2017-09-19 Panasonic Intellectual Property Corporation Of America Information communication method
US9794489B2 (en) 2012-12-27 2017-10-17 Panasonic Intellectual Property Corporation Of America Information communication method
CN107360379A (en) * 2012-12-27 2017-11-17 松下电器(美国)知识产权公司 Information communicating method
US9094120B2 (en) 2012-12-27 2015-07-28 Panasonic Intellectual Property Corporaton Of America Information communication method
US9918016B2 (en) 2012-12-27 2018-03-13 Panasonic Intellectual Property Corporation Of America Information communication apparatus, method, and recording medium using switchable normal mode and visible light communication mode
US9998220B2 (en) 2012-12-27 2018-06-12 Panasonic Intellectual Property Corporation Of America Transmitting method, transmitting apparatus, and program
US10051194B2 (en) 2012-12-27 2018-08-14 Panasonic Intellectual Property Corporation Of America Information communication method
US11165967B2 (en) 2012-12-27 2021-11-02 Panasonic Intellectual Property Corporation Of America Information communication method
US10951310B2 (en) 2012-12-27 2021-03-16 Panasonic Intellectual Property Corporation Of America Communication method, communication device, and transmitter
US10887528B2 (en) 2012-12-27 2021-01-05 Panasonic Intellectual Property Corporation Of America Information communication method
US10148354B2 (en) 2012-12-27 2018-12-04 Panasonic Intellectual Property Corporation Of America Luminance change information communication method
US10165192B2 (en) 2012-12-27 2018-12-25 Panasonic Intellectual Property Corporation Of America Information communication method
US10742891B2 (en) 2012-12-27 2020-08-11 Panasonic Intellectual Property Corporation Of America Information communication method
US10205887B2 (en) 2012-12-27 2019-02-12 Panasonic Intellectual Property Corporation Of America Information communication method
US8965216B2 (en) 2012-12-27 2015-02-24 Panasonic Intellectual Property Corporation Of America Information communication method
US10225014B2 (en) 2012-12-27 2019-03-05 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information using ID list and bright line image
CN107360379B (en) * 2012-12-27 2020-06-30 松下电器(美国)知识产权公司 Information communication method
US10303945B2 (en) 2012-12-27 2019-05-28 Panasonic Intellectual Property Corporation Of America Display method and display apparatus
US10334177B2 (en) 2012-12-27 2019-06-25 Panasonic Intellectual Property Corporation Of America Information communication apparatus, method, and recording medium using switchable normal mode and visible light communication mode
US8922666B2 (en) 2012-12-27 2014-12-30 Panasonic Intellectual Property Corporation Of America Information communication method
US10354599B2 (en) 2012-12-27 2019-07-16 Panasonic Intellectual Property Corporation Of America Display method
US10361780B2 (en) 2012-12-27 2019-07-23 Panasonic Intellectual Property Corporation Of America Information processing program, reception program, and information processing apparatus
US10368006B2 (en) 2012-12-27 2019-07-30 Panasonic Intellectual Property Corporation Of America Information communication method
US10368005B2 (en) 2012-12-27 2019-07-30 Panasonic Intellectual Property Corporation Of America Information communication method
US10666871B2 (en) 2012-12-27 2020-05-26 Panasonic Intellectual Property Corporation Of America Information communication method
US8913144B2 (en) 2012-12-27 2014-12-16 Panasonic Intellectual Property Corporation Of America Information communication method
US8908074B2 (en) 2012-12-27 2014-12-09 Panasonic Intellectual Property Corporation Of America Information communication method
US10447390B2 (en) 2012-12-27 2019-10-15 Panasonic Intellectual Property Corporation Of America Luminance change information communication method
US10455161B2 (en) 2012-12-27 2019-10-22 Panasonic Intellectual Property Corporation Of America Information communication method
US10638051B2 (en) 2012-12-27 2020-04-28 Panasonic Intellectual Property Corporation Of America Information communication method
US10516832B2 (en) 2012-12-27 2019-12-24 Panasonic Intellectual Property Corporation Of America Information communication method
US10523876B2 (en) 2012-12-27 2019-12-31 Panasonic Intellectual Property Corporation Of America Information communication method
US10521668B2 (en) 2012-12-27 2019-12-31 Panasonic Intellectual Property Corporation Of America Display method and display apparatus
US10531010B2 (en) 2012-12-27 2020-01-07 Panasonic Intellectual Property Corporation Of America Information communication method
US10531009B2 (en) 2012-12-27 2020-01-07 Panasonic Intellectual Property Corporation Of America Information communication method
US10530486B2 (en) 2012-12-27 2020-01-07 Panasonic Intellectual Property Corporation Of America Transmitting method, transmitting apparatus, and program
US10616496B2 (en) 2012-12-27 2020-04-07 Panasonic Intellectual Property Corporation Of America Information communication method
JP2016518638A (en) * 2013-03-12 2016-06-23 フィリップス ライティング ホールディング ビー ヴィ Emergency manager for lighting equipment
US10389446B2 (en) 2014-11-14 2019-08-20 Panasonic Intellectual Property Corporation Of America Reproduction method for reproducing contents
US10142020B2 (en) 2014-11-14 2018-11-27 Panasonic Intellectual Property Corporation Of America Reproduction method for reproducing contents
JP2017033241A (en) * 2015-07-31 2017-02-09 ホーチキ株式会社 Optical alarm device
US10171165B2 (en) 2015-11-06 2019-01-01 Panasonic Intellectual Property Corporation Of America Visible light signal generating method, signal generating apparatus, and program
EP3373481A4 (en) * 2015-11-06 2018-11-07 Panasonic Intellectual Property Corporation of America Visible light signal generation method, signal generation device and program
US10263701B2 (en) 2015-11-12 2019-04-16 Panasonic Intellectual Property Corporation Of America Display method, non-transitory recording medium, and display device
US10951309B2 (en) 2015-11-12 2021-03-16 Panasonic Intellectual Property Corporation Of America Display method, non-transitory recording medium, and display device
US10504584B2 (en) 2015-12-17 2019-12-10 Panasonic Intellectual Property Corporation Of America Display method and display device
JP2018157390A (en) * 2017-03-17 2018-10-04 Necライティング株式会社 Illumination communication system and illumination communication method
WO2022200131A1 (en) * 2021-03-26 2022-09-29 Seaborough Life Science B.V. Distributed dosing in free-space delivery of photo-bio modulation irradiation

Also Published As

Publication number Publication date
JPWO2007004530A1 (en) 2009-01-29
JP4676494B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
WO2007004530A1 (en) Illumination light communication device and illumination light communication method
US9363857B2 (en) Modulation of light emitted by a lighting device, using plurality of different modulation periods
JP5629257B2 (en) Lighting system and method for processing light
US8634725B2 (en) Method and apparatus for transmitting data using visible light communication
US8488971B2 (en) Method, system and device for transmitting lighting device data
US8299722B2 (en) Time division light output sensing and brightness adjustment for different spectra of light emitting diodes
JP6185982B2 (en) Method and apparatus for visible light communication
US8330395B2 (en) LED lighting system with optical communication functionality
US20090208221A1 (en) Optical space transmission system using visible light and infrared light
US8331796B2 (en) Method and device for communicating data using a light source
US20140285096A1 (en) Coded light transmission and reception
US20150016825A1 (en) Visible light communication device, lighting fixture including the same, and lighting system
EP3201524B1 (en) Flame simulating light-emitting devices and related methods
JP2011505053A (en) Intrinsic flux detection
Li et al. Unidirectional visible light communication and illumination with LEDs
JP2006237869A (en) Illumination light transmission system
CN101814955A (en) Device used for transmitting and receiving signal in visible light communication system
JP2014517451A (en) Lighting device and receiver
US20170079106A1 (en) Visible light communication apparatus and method for manufacturing visible light communication apparatus
CN107846751B (en) Lighting device with signal editing function, lighting system and electronic device
Căilean et al. Experimental Evaluation of an Indoor Visible Light Communications System in Light Dimming Conditions
JP2016058887A (en) Visible light communication device and reception device
JP6482682B2 (en) Optical signal generator, optical signal receiver, and optical communication system
CN107835552B (en) Lighting device with light-emitting modulation function, lighting system and electronic device
US9307605B2 (en) Electronic lighting system and method for lighting synchronization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007524008

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767656

Country of ref document: EP

Kind code of ref document: A1