WO2007004480A1 - Method for increasing the production of secondary metabolite in plant - Google Patents

Method for increasing the production of secondary metabolite in plant Download PDF

Info

Publication number
WO2007004480A1
WO2007004480A1 PCT/JP2006/312859 JP2006312859W WO2007004480A1 WO 2007004480 A1 WO2007004480 A1 WO 2007004480A1 JP 2006312859 W JP2006312859 W JP 2006312859W WO 2007004480 A1 WO2007004480 A1 WO 2007004480A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
production
concentration
secondary metabolites
growth
Prior art date
Application number
PCT/JP2006/312859
Other languages
French (fr)
Japanese (ja)
Inventor
Fawzia Afreen
Sayed Md. Akhter Zobayed
Toyoki Kozai
Original Assignee
National University Corporation Chiba University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Chiba University filed Critical National University Corporation Chiba University
Publication of WO2007004480A1 publication Critical patent/WO2007004480A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine

Definitions

  • the present invention relates to a method for increasing production of secondary metabolites in plants.
  • Secondary metabolism is a biochemical reaction common to many organisms, such as energy metabolism, amino acid 'primary metabolism such as protein / nucleic acid biosynthesis. ) In contrast to a limited range of organisms (Non-patent Document 1). There are few secondary metabolite that play an important role in sustaining life. On the other hand, alkaloids, terpenoids, phenols, antibiotics and pigments in various animals and plants and microorganisms. The physiological significance is not always clear! There is a case where a large amount of things are accumulated.
  • Non-patent Document 2 Various useful substances such as alkaloids, terpenoids, and flavonoids are known as secondary metabolites of plants. These substances are widely used in fields such as medicine, agriculture, and food. Plants themselves and their extracts have been developed and used as useful substances (Non-patent Document 2). However, the content in the plant body is very low, and the growth of the plant often takes several years from the late germination to the collection of secondary metabolites. In addition, the collection of plants can lead to environmental destruction, and the quality of the collected secondary metabolites is not necessarily uniform, and contamination with soil-derived harmful substances such as nickel and cadmium can occur. is there. Therefore, obtaining a sufficient amount of homogeneous and pure secondary metabolites quickly is an important issue in their use.
  • Non-patent Document 2 A typical example of this effort is to optimize the culture conditions, which has been shown to improve productivity. Furthermore, when various chemical substances are added to the medium or stress is applied during cultivation, production efficiency is improved by creating an environment close to natural conditions. Has also been made. It has also been clarified that the production of secondary metabolites is induced by stimulation with an elicitor (Non-patent Document 2).
  • Methods for producing secondary metabolites by plant tissue culture can be divided into three types: cell suspension culture, organ culture, and substance conversion by fixed cells.
  • the suspension culture method for cells is an industrially effective method because it can be easily scaled up to a large culture tank.
  • plants produce and accumulate secondary metabolites in specific tissues, they are often not produced by culture methods using unbroken cells.
  • organ culture since organ culture uses sorted cells, it can be cultured while maintaining the ability to produce secondary metabolites.
  • Crown gall cells generated by infection with agrobacterium are a kind of tumor cells, and unlike normal callus, they can continue to grow without the addition of plant hormones. This property is effective for cell culture. Since 1985, it became clear that hairy roots induced by infection with Agrobacterium rhizogenes grew significantly faster without the addition of plant hormones and could be used for production of plant secondary metabolites. Research in the field has made significant progress.
  • Non-Patent Documents 3 to 4 have been reported (Non-Patent Documents 3 to 4). However, since these reports are only those using cultured tissues of Hypericum perforatum, the amount of secondary metabolites produced is extremely small and only small. [0009] In recent years, focusing on the fact that plant genetic traits are expressed by stress, secondary metabolites are induced according to the expression level, and cell functions are regulated. Some studies have attempted to solve the above problems (Non-patent Document 5). For example, Non-Patent Document 5 reveals that the production of hypericin and pseudohypericin of Hypericum perforatum increases by introducing an air flow into the in vitro system. However, since small non-tissue organisms such as callus cells were used in the methods in these studies, the amount of secondary metabolites obtained in a certain time is insufficient.
  • Non-patent Document 4 Even in the case of cells that cannot be performed, the light irradiation intensity may increase with an increase (Non-patent Document 6).
  • secondary metabolites increase production in a poor environment where stress is applied to the plant, while growth of the plant body is impaired in a poor environment.
  • the total production of secondary metabolites cannot be increased.
  • Patent Document 1 Japanese Patent Publication No. 2004-500053
  • Non-Patent Document 1 “Iwanami Biology Dictionary”, 3rd edition, Iwanami Shoten, Mar. 10, 1983, p. 957
  • Non-patent document 2 “Ito technique for IJ fe” ”http: //www.jpo .go.jp / shiryou / s— sonota / map / kagaku 17/2 / 2-6-1.htm
  • Non-patent literature 3 Zobayed et al, In Vitro Dev. Biol.- Plant. 40 (2004) 108-114
  • Non-patent literature 4 Briskin et al., Plant Physiol. Biochem. 39 (2001) 1075-1081
  • Non-patent literature 5 Zobayed et al., Plant Science 166 (2004) 333-340
  • Non-Patent Document 6 Zhong et al., Biotechnol. Bioeng. 38 (1991) 653-658
  • An object of the present invention is to provide a method for rapidly producing a large amount of plant-derived secondary metabolites. Means for solving the problem
  • the present invention relates to at least the following:
  • a method for increasing the production of secondary metabolites in a plant wherein at least one of the elements affecting the growth of the plant is controlled on the plant body that has passed through the seedling stage. Said method.
  • Factors affecting plant growth are photosynthetic photon flux density (PPF), carbon dioxide concentration, light wavelength, light period (including day length; the same applies to “light period”), temperature, humidity And one or more nutritional nutrients.
  • PPF photosynthetic photon flux density
  • the present invention dramatically increases the production of secondary metabolites even under conditions suitable for plant growth in plants that have passed through the seedling stage, without applying stress. This is based on the knowledge that goes against the conventional common sense.
  • the increase in production in this case also means an increase in the content of secondary metabolites in the plant rather than a quantitative increase simply due to the use of a larger plant.
  • the growth rate of the plant in the present invention not only exceeds the growth rate in tissue culture, but also exceeds the growth rate when cultivated in the field or in a greenhouse. Therefore, the present invention does not use conventional plant tissue culture techniques, and rapidly produces high-concentration secondary metabolites in plants that have passed through the seedling stage in which the growth stage has advanced. This is possible and contributes to the low cost of producing secondary metabolites.
  • the present invention has the following excellent effects.
  • the method of the present invention produces secondary metabolites in a plant by controlling at least one of the factors affecting the growth of the plant on the plant that has passed the seedling stage. The effect of increasing the production rate rapidly and reducing the production cost is brought about.
  • factors affecting plant growth are one or two from photosynthesis photon flux density, carbon dioxide concentration, light wavelength, light period, temperature, humidity, and nutrient content. For those that are more than species, the production of secondary metabolites in the plant body is significantly increased.
  • the hypericin or the derivative thereof is a hypericin or a derivative thereof having antidepressant activity or the like. There is an effect of remarkably increasing the production.
  • the secondary metabolite is glycyrrhizic acid or a derivative thereof, glycyrrhizic acid having antiviral activity or the like in a plant of the genus Glycyrrhiza, particularly Glycyrrhiza uralensis Or, it has the effect of significantly increasing the production of its derivatives.
  • FIG. 1 is a diagram showing changes in weather conditions during the period when the test described in Example 1 was conducted.
  • FIG. 2 is a photographic diagram of Hypericum perforatum recovered in each test section in the test described in Example 1.
  • FIG. 3 Leaves, stems, roots and plants of Hypericum perforatum in the test described in Example 1 It is a figure which shows the whole raw weight.
  • FIG. 4 is a graph showing the dry weight of leaves, stems, roots and the whole plant of Hypericum perforatum in the test described in Example 1.
  • FIG. 5 is a diagram showing the number of stem nodes in Hypericum perforatum in the test described in Example 1.
  • FIG. 6 is a graph showing the net photosynthetic rate (Pn) of Hypericum perforatum in the test described in Example 1.
  • Pn net photosynthetic rate
  • (B) is for plants grown in a field.
  • FIG. 7 is a graph showing the concentrations of chlorophyll a (A) and b (B) and the chlorophyll aZb ratio (C) in the test described in Example 1.
  • FIG. 8 is a graph showing the concentrations of hypericin (A), pseudohypericin (B) and hyperforin (C) in leaf tissue in the test described in Example 1.
  • FIG. 9 is a diagram showing the correlation between the pure photosynthetic rate (Pn) and the hypericin (A) and pseudohypericin (B) concentrations in the test described in Example 1.
  • FIG. 1 A first figure.
  • FIG. 11A is a photographic diagram showing an overall view after recovery of Glycyrrhiza ur alensis recovered in each test section in the test described in Example 2.
  • FIG. 11B is a photographic view showing the above-ground part of Glycyrrhiza ur alensis recovered in each test section in the test described in Example 2.
  • FIG. 12 is a photograph of the roots of Glycyrrhiza ural ensis recovered in each test plot in the test described in Example 2.
  • FIG. 13 shows raw and dry weights of leaves (a and b), stems (c and d), and roots (e and f) of Glycyrrhiza uralensis transplanted to a hydroponic system in the test described in Example 2.
  • FIG. 13 shows raw and dry weights of leaves (a and b), stems (c and d), and roots (e and f) of Glycyrrhiza uralensis transplanted to a hydroponic system in the test described in Example 2.
  • FIG. 14 shows the raw weight and dry weight of leaves (a and b) and stems (c and d) of Glycyrrhiza uralensis transplanted to a plastic pot in the test described in Example 2.
  • FIG. 15 is a graph showing changes in fresh root weight (a) and dry weight (b) of Glycyrrhiza uralensis transplanted to a plastic pot in the test described in Example 2.
  • FIG. 16 is a graph showing changes in the concentration of glycyrrhizic acid in Glycyrrhiza uralensis transplanted to a hydroponic system in the test described in Example 2 (a) or transplanted to a plastic pot (b).
  • FIG. 17 is a graph showing the concentration of glycyrrhizic acid of Glycyrrhiza uralensis irradiated with UV-B in the test described in Example 2.
  • FIG. 18 is a diagram showing the net photosynthetic rate in the test described in Example 2 when a high dose of UV-B is irradiated for 3 days.
  • FIG. 19 is a graph showing the net photosynthetic rate in the test described in Example 2 when irradiated with a low dose of UV-B for 15 days.
  • increasing production means increasing production per unit time / unit area as compared with production under normal conditions in the outdoors or indoors (including indoors). To do.
  • Fractors affecting plant growth refers to photosynthesis photon flux density, carbon dioxide concentration, light wavelength, light period, and other indicators that directly affect plant photosynthesis, as well as temperature and humidity. It also means other environmental indicators.
  • “adult seedling” means the final stage of the seedling stage. That is, it generally means a seedling in a stage immediately before transplantation to a stage suitable for transplantation. Therefore, “plants that have passed through the seedling stage” are plants that have passed through a stage suitable for transplantation, and are typically transplanted from a nursery bed or seedling pot to a main field or a larger pot. It means a plant body in the stage corresponding to the stage from immediately after to maturity. In addition, “plants that have passed the seedling stage” do not include cultured cells, cultured tissues, and calli. In the present invention, “stress” is desired not to occur in a normal environment. Elements that adversely affect plant growth, such as ultraviolet irradiation, insufficient soil moisture, excessive salinity, It means low air humidity, pests, dense planting, etc.
  • the method of the present invention provides at least one element that affects plant growth in plant cultivation. There is no particular limitation as long as the control of the seed element is performed on a plant that has passed through the seedling growing season.
  • the homogenous and high-purity production of the secondary metabolite in the plant body does not affect the environment, the environmental conditions, and the external origin If it is possible without being affected by factors and organisms, it is preferable because it has an effect.
  • the method of the present invention is preferably performed in a room, particularly in a building that is not easily affected by the external environment, photosynthetic photon flux density, carbon dioxide concentration, light wavelength, light period, temperature, humidity. It is more preferable that the treatment is performed in a room where one or more kinds of nutrients can be controlled. Most preferably, photosynthetic photon flux density, carbon dioxide concentration, It is performed in a room with facilities that can automatically control the wavelength, light period, temperature, and humidity of light.
  • factors affecting plant growth include photosynthetic photon flux density, carbon dioxide concentration, light wavelength, light period, temperature, humidity, and nutrient content. If one or more of these factors affect plant growth, it is preferable because production of secondary metabolites in the plant can be significantly increased.
  • the preferred amounts and extents of these elements are generally the preferred amounts and extents for plant growth and Z or photosynthesis.
  • the photosynthetic photon flux density and concentration of carbon dioxide their respective 50: a LOOO ⁇ molm _2 s _ 1 and 300 ⁇ 2000 ⁇ mol mol _ 1.
  • the light synthesis photon flux density and more preferably 100 ⁇ 800 / ⁇ ⁇ 1 ⁇ 2 5 _ 1 , 300 ⁇ 600 / ⁇ ⁇ 1 m _2 s _ 1 it is even more preferred.
  • the concentration of carbon dioxide more preferably 500 ⁇ 1800 mol mol _ 1, 1000 ⁇ 1500 / ⁇ ⁇ 1 mol _ 1 is even more preferred.
  • the photosynthetic photon flux density and carbon dioxide concentration are within the above ranges, the production of secondary metabolites increases synergistically.
  • the preferred wavelength of light is 600 ⁇ ! ⁇ 700 nm, and the color is red.
  • White light is next preferred. Note that the light having these colors includes not only single-color light but also multi-color light having light of these colors as a main component, that is, light having the largest proportion of these colors.
  • the method further including applying stress to the plant is preferable because it has an effect of significantly increasing the production of secondary metabolites in the plant.
  • stresses include, for example, ultraviolet radiation, excess or deficiency of soil moisture, excess salinity, low air humidity, natural sources such as pests, and artificial things such as dense planting.
  • irradiation with ultraviolet rays is more preferable because it has the effect of significantly increasing the production of secondary metabolites in the plant body.
  • a suitable irradiation amount of UV-B is 2.5 to 7.5 W m — 2 as a total irradiation amount.
  • As the total dose more preferably 3. 0 to 7.
  • the number of days for irradiating the outside line may be changed within a range of 2 to 20 days.
  • the irradiation intensity can be changed according to the change in the number of days.
  • hypericin or its derivatives that are known to have antidepressant activity, antibacterial activity, antidiuretic activity, etc., and have recently also been known to have antitumor activity. Therefore, it has been used as a medical plant for a long time. Therefore, among the methods of the present invention, those that significantly increase the production of hypericin or a derivative thereof (such as pseudohypericin pseudonoinofolin: hyperforin etc.) in the body of a hypericaceae plant are To preferred. Hypericum perforatum (scientific name: Hypericum perforatum, English name: St Joh n's Wort) and hypericum erectum (scientific name: Hypericum erectum) are particularly preferably used.
  • the production of secondary metabolites in the plant body of the genus Glycyrrhiza has the effect of significantly increasing.
  • Glycyrrhiza genus plants that are Glycyrrhiza uralensis are preferred because they have the effect of significantly increasing the production of secondary metabolites in the plant body of Glycyrrhiza uralensis.
  • Glycyrrhiza globra is also preferably used in the present invention.
  • the roots or rhizomes of these plants are used as a source of licorice containing glycyrrhizin having antiviral activity or the like, or as a food additive because of its sweetness. Are used respectively.
  • anti-HIV activity and anti-SARS activity have been found, and glycyrrhizic acid has attracted more attention. Therefore, among the methods of the present invention, those that significantly increase the production of glycyrrhizic acid or a derivative thereof in the plant body of the genus Glycyrrhiza are also preferable from the viewpoint of providing a medicine.
  • Soil Wet mixed soil (Yanmar Agricultural Machinery Co., Ltd.) 150g
  • the top force was the fifth, fully expanded leaf!
  • a portable photosynthesis system LI-COR-6400 registered trademark, LI- COR Inc., USA
  • LI-COR-6400 registered trademark, LI- COR Inc., USA
  • the sixth and seventh fully developed leaves (fresh weight 0.25 g) were placed in yellow Eppendorf tubes (1.5 mL), immediately frozen in liquid nitrogen, and stored at 85 ° C. lmL of 2% (v Zv) DMSO in methanol was placed in each sample and ground using a MM200 (registered trademark, Retch GmbH & Co., Germany) at 30 Hz for 6 minutes. Next, centrifugation was performed at 4000 rpm (1467xg) and 4 ° C for 15 minutes (Kubota (registered trademark), Kubota Corporation).
  • the extract (0.5 mL) was filtered through a syringe filter (Dismic-13HP, Advantech, Toyo Roshi Kaisha Co., Ltd.) and diluted with 0.5 mL of 2% (vZv) DMSO in methanol. . Half of each aliquot was used for analysis of hypericin and pseudohypericin and hyperforin.
  • Samples for analysis of hypericin and pseudohypericin are placed in a transparent glass vial and irradiated with a light source of 155 ⁇ 5 / ⁇ ⁇ 1 ⁇ 2 5 _ 1 ⁇ (100W tungsten lamp, Toshiba) for 40 minutes. form) was converted to hypericin and pseudohypericin.
  • a sample of 20 ⁇ 1 extract was injected into a Phenomenex Hypersil C18 column (3.m, 4.6 mm ⁇ 100 mm) and placed in an HPLC system.
  • the HPLC system consists of an SCL-10A system controller, a SIL-10A autoinjector, and a CTO-10A column oven (Shimadzu Corporation).
  • SCL-10A system controller a system controller for isocratic separation of analytes using 0.1 Imol L -1 triethylammonium acetate and acetonitrile (33:67, vZv) as mobile phase
  • flow rates for neutral and pseudohypericin and hyperforin, 0. 5mLmin _ 1 and 1.2 were carried out with the OmLmin.
  • Hyperforin analysis was performed at 270 nm, and hypericin and pseudohypericin analysis at 588 nm, respectively, using an SPD-M10AV photodiode array detector.
  • the standard curve was created using standard concentrations of pseudohybelicin (0.5, 2.5, 5 , 25 and 50 / z GML), standard concentrations (0.5 of Nono Iperishin, 2.5, 5, 25 and 50 GML _1) and standard concentrations of hyperforin (0.5, 2.5, 5, 25 and 50 GML _1) was performed using (both r 2> 0. 99).
  • Quantification was performed by comparing peak areas (RT for 5.8 min, 3.5 min and 7.8 min for each) with a standard curve.
  • the concentration of secondary metabolites represents the dry weight of the MGG _1 leaf was their amount is determined by multiplying the dry weight of the total of the plant to the concentration.
  • the test was performed in 10 iterations with a fully random design for 3 x 3 variables. The test was conducted twice. Statistical significance was determined by one-way analysis of variance (ANOVA) using the Sigma Stat program (Sigma (Static) V2.03, SPSS Inc-) of Windows (registered trademark). The difference in values was evaluated by the Student-Newman-Keuls test with P ⁇ 0.05.
  • the fresh weight and the dry weight were the highest in the treated area, 29 and 30 times that of the control area (FC), respectively.
  • Raw weight and dry weight increased with increasing CO concentration in the case of PPF force S300 or 600 ⁇ molm " 2 s 1 .
  • the number of nodes was the highest in the HH-treated group, about four times that in the control group.
  • the concentration of pseudohypericin was highly correlated with the rate of pure photosynthesis (FIGS. 9A and 9B). That is, the concentration was 0.82 and 0.79 for R 2 as a quadratic function of Pn, respectively.
  • the concentrations of hypericin and pseudohypericin were the highest in the HH-treated group, 30 and 41 times stronger than the control group, respectively (mg g _1 DM).
  • the total hypericin concentration which is the sum of the concentrations of rhino, ipericin and pseudonoypericin, correlates with the PPF and CO concentrations, and is an approximated curve ( Figure 10A and 10B)
  • hyperforin concentration increased with increasing PPF and reached a maximum at 300 or 600 / ⁇ ⁇ 1 ⁇ 2 5 _ 1 ( Figure 8C).
  • concentration of hyperforin in the MH treatment group was the highest, 45 times that of the control group.
  • Glycyrrhiza uralensis (Fisch.) Seeds were soaked in concentrated sulfuric acid for 20 minutes, washed several times with tap water, and immediately sown in a multi-tray containing wet mixed soil (Yanmar Agricultural Machinery Co., Ltd.). After 4-5 days of germination, the tray was stored in artificial light (100 ⁇ molm ” 2 s _ 1 PPF (photosynthetic effective photon flux)).
  • Soil Wet mixed soil (Yanmar Agricultural Machinery Co., Ltd.). 550g per pot.
  • Luminous intensity (PPF) 300 ⁇ molm " 2 s _1
  • Blue, green, and red mean that the main components are blue, green, and red (40-81%), respectively, and do not mean each single color.
  • Luminous intensity 100 molm " 2 s _1 PPF for 7 days
  • the net photosynthetic rate (Pn) was also measured before and after each UV-B irradiation.
  • Root yarn and weave fresh weight 0.4-0.45g FM was placed in a yellow Eppendorf tube (20mL), immediately frozen in liquid nitrogen and stored at -85 ° C.
  • Glycyrrhizic acid was quantified by HPLC system consisting of SCL-10A system controller, SIL-10A autoinjector, and CTO-10A column oven (Shimadzu Corporation), and SPD-M10AV photodiode array detector at 254 nm. was used. Separation of glycyrrhizin was performed by injection onto a Phenomenex Hypersil C18 column (3. m, 4.6 mm x 100 mm). A lysocratic separation of the analyte was carried out using 0.1 mol L- 1 sodium diphosphate and acetonitrile (65:35, vZv) as the mobile phase and a flow rate of 1. OmLmin- 1 . A standard curve was prepared using a standard product of glycyrrhizin (Wako Pure Chemical Industries, Ltd.) (r 2 > 0.99), and the amount of glycyrrhizin was determined using the standard curve.
  • test was conducted twice. Statistical significance was determined by one-way analysis of variance (ANOVA) using the Sigma Stat program (Sigma® Stat TM V2.03, SPSS Inc. from Windows®). Differences in mean values were made by Tukey test with P ⁇ 0.05.
  • the growth of the red light irradiation group was superior to that of the blue light irradiation group or the control.
  • the fresh weight and dry weight of leaves and stems 3 months after transplantation were 1.4 times, 1.8 times, and 2 times greater in the red light-irradiated area than in the blue light-irradiated area, respectively (Figs. 14a to 14d) .
  • the control group is a red light irradiation group and a blue light irradiation group. It was located in the middle.
  • the fresh weight and dry weight of roots at 3 months and 6 months after transplantation were 1.19 times, 1.3 times and 2 times, 1.5 times as large in the red light irradiation region than in the blue light irradiation region, respectively. (Figs. 15a and 15b).
  • the concentration of glycyrrhizic acid in the red light irradiation group was the highest in the control group, followed by the lowest in the blue light irradiation group.
  • the concentration of glycyrrhizic acid increased.
  • the concentration of glycyrrhizic acid was about 1.5 times greater than that of the control group in both the group subjected to high UV-B irradiation for a short period and the group subjected to low UV-B irradiation for a long period of time (Fig. 17).
  • the section where low UV-B irradiation was performed for a long time showed a higher concentration of darlicyllithic acid.
  • the secondary metabolite of a plant can be produced much more rapidly and in a large amount as compared with the conventional method. Accordingly, the present invention greatly contributes to the development of the pharmaceutical industry, food industry and other related industries.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Nutrition Science (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Cultivation Of Plants (AREA)

Abstract

Disclosed is a method for producing a large quantity of a plant-derived secondary metabolite rapidly. A method for increasing the production of a secondary metabolite in a plant comprising controlling at least one of the factors having influences on the growth of the plant after the seeding stage.

Description

明 細 書  Specification
植物における二次代謝物の産生を増大せしめる方法  Methods for increasing the production of secondary metabolites in plants
技術分野  Technical field
[0001] 本発明は、植物における二次代謝物の産生を増大せしめる方法に関する。  [0001] The present invention relates to a method for increasing production of secondary metabolites in plants.
背景技術  Background art
[0002] 二次代謝 (secondary metabolism)とは、多くの生物に共通してみられる生化学的反 応である、エネルギー代謝、アミノ酸 'タンパク質 ·核酸の生合成のような一次代謝 (pr imary metabolism)に対して、限られた範囲の生物でのみ特異的にみられる代謝であ る(非特許文献 1)。二次代謝物 (secondary metabolite)の中には、生命の維持の上 で重要な役割を持つものも少なくな 、一方、各種の動植物や微生物でアルカロイド' テルぺノイド'フエノール類'抗生物質 ·色素など、その生理的意義が必ずしも明確で な!、ものが大量に蓄積されることがある。  [0002] Secondary metabolism is a biochemical reaction common to many organisms, such as energy metabolism, amino acid 'primary metabolism such as protein / nucleic acid biosynthesis. ) In contrast to a limited range of organisms (Non-patent Document 1). There are few secondary metabolite that play an important role in sustaining life. On the other hand, alkaloids, terpenoids, phenols, antibiotics and pigments in various animals and plants and microorganisms. The physiological significance is not always clear! There is a case where a large amount of things are accumulated.
[0003] 植物の二次代謝物としては、アルカロイド、テルぺノイド、フラボノイドなどのさまざま な有用物質が知られている。これらの物質は広く医学分野、農学分野、食品分野な どで利用されている。そして植物そのものや、その抽出物が有用物質として開発され 、利用されている(非特許文献 2)。し力しながら、植物体内の含有量は非常に少なく 、し力も植物の成長は遅ぐ発芽から二次代謝物採取までに数年を要することも少な くない。さらに、植物採取によって環境破壊につながることもあるうえに、採取された 二次代謝物の品質は必ずしも均一なものではなぐニッケル、カドミウムのような、土 壌由来の有害物質の混入が生じることもある。したがって、十分な量の均質かつ純粋 な二次代謝物を迅速に取得することが、その利用における重要な課題となっている。  [0003] Various useful substances such as alkaloids, terpenoids, and flavonoids are known as secondary metabolites of plants. These substances are widely used in fields such as medicine, agriculture, and food. Plants themselves and their extracts have been developed and used as useful substances (Non-patent Document 2). However, the content in the plant body is very low, and the growth of the plant often takes several years from the late germination to the collection of secondary metabolites. In addition, the collection of plants can lead to environmental destruction, and the quality of the collected secondary metabolites is not necessarily uniform, and contamination with soil-derived harmful substances such as nickel and cadmium can occur. is there. Therefore, obtaining a sufficient amount of homogeneous and pure secondary metabolites quickly is an important issue in their use.
[0004] 力かる課題の解決を目的として、 1930年代末に R. J.ゴートレ、 P. R.ホワイト(米 国)によって植物細胞培養の継代培養法が確立されて以来、植物細胞培養を行うこ とにより、植物の二次代謝物を生産させることが試みられている (非特許文献 2)。 力る試みにおける代表的な例は、培養条件を至適化することであって、これにより生 産性の向上が認められている。さらに、培地中に各種化学物質を添加したり、培養時 にストレスを加えると 、つた、自然条件に近 、環境を作出することによって生産効率 を上げることもなされている。また、ェリシターで刺激することで、二次代謝産物の生 産が誘起されることも明らかになつている(非特許文献 2)。 [0004] With the aim of resolving challenging issues, plant cell culture has been conducted since the establishment of the subculture method of plant cell culture by RJ Gotre and PR White (USA) in the late 1930s. Attempts have been made to produce the secondary metabolites of (Non-patent Document 2). A typical example of this effort is to optimize the culture conditions, which has been shown to improve productivity. Furthermore, when various chemical substances are added to the medium or stress is applied during cultivation, production efficiency is improved by creating an environment close to natural conditions. Has also been made. It has also been clarified that the production of secondary metabolites is induced by stimulation with an elicitor (Non-patent Document 2).
[0005] 植物組織培養による二次代謝物質の生産方法は、細胞懸濁培養、器官培養、固 定細胞による物質変換の 3種類に分けることができる。  [0005] Methods for producing secondary metabolites by plant tissue culture can be divided into three types: cell suspension culture, organ culture, and substance conversion by fixed cells.
細胞を懸濁培養する方法は大型培養槽へのスケールアップが容易であるので工業 的に有効な方法である。しかし、植物は二次代謝産物を特定の組織で生産、蓄積し て 、るため、未分ィ匕細胞を用いた培養法では生産が見られな 、ことも多 、。  The suspension culture method for cells is an industrially effective method because it can be easily scaled up to a large culture tank. However, because plants produce and accumulate secondary metabolites in specific tissues, they are often not produced by culture methods using unbroken cells.
一方、器官培養は分ィ匕した細胞を用いるため、二次代謝物生産能を維持したまま 培養することができる。ァグロバクテリア(Agrobacterium tumefaciens)の感染により生 じるクラウンゴール細胞は、一種の腫瘍細胞であり、通常のカルスと異なり植物ホル モン無添加で増殖し続けることができる。この特性は細胞培養を行う上で有効である 。 1985年にァグロバクテリア(Agrobacterium rhizogenes)の感染によって誘発された 毛状根が植物ホルモン無添加で著しく速く増殖しこのことが植物の二次代謝物生産 に利用できることが明らかになって以来、この分野の研究は著しい進展をみた。  On the other hand, since organ culture uses sorted cells, it can be cultured while maintaining the ability to produce secondary metabolites. Crown gall cells generated by infection with agrobacterium (Agrobacterium tumefaciens) are a kind of tumor cells, and unlike normal callus, they can continue to grow without the addition of plant hormones. This property is effective for cell culture. Since 1985, it became clear that hairy roots induced by infection with Agrobacterium rhizogenes grew significantly faster without the addition of plant hormones and could be used for production of plant secondary metabolites. Research in the field has made significant progress.
[0006] また、植物細胞の持つ酵素を触媒として利用することにより、物質交換を行ない、有 用物質を生産することも行われている。植物細胞を培養すると同時に前駆物質をカロ え物質交換を行わせたり、細胞を固定ィ匕することにより連続的に物質交換をさせるこ とも可能である。  [0006] In addition, by using an enzyme possessed by plant cells as a catalyst, substance exchange is performed to produce useful substances. At the same time as cultivating plant cells, it is possible to exchange precursors and perform substance exchange, or to continuously exchange substances by fixing cells.
[0007] しかしながら、上記いずれの方法も、二次代謝物の量、質、純度および産生速度に 力かる要求を十分に満足するものではない。また、培養器あるいはバイオリアクター を用いるインビトロ培養のために先進的なシステムを使用すると著しくコスト高になり、 経済的にみてシステムが将来性のな ヽものとなり得る(特許文献 1)。  [0007] However, none of the above methods sufficiently satisfy the requirements for the quantity, quality, purity and production rate of secondary metabolites. In addition, when an advanced system is used for in vitro culture using an incubator or a bioreactor, the cost becomes extremely high, and the system can be a promising method economically (Patent Document 1).
[0008] また、植物の二次代謝物として頻用されているものとして、医薬活性を有するものが あるが、これらについてもその産生は未だ不十分である。例えば、セィヨウオトギリソゥ において COの量や光子量を調節することによって、ハイペリシン等の産生が増大さ  [0008] Some of the frequently used secondary metabolites of plants have pharmaceutical activity, but their production is still insufficient. For example, in Hypericum perforatum, the production of hypericin and the like is increased by adjusting the amount of CO and the amount of photons.
2  2
れることについて報告されている(非特許文献 3〜4)。しかし、これらの報告は、いず れもセィヨウオトギリソゥの培養組織を用いたものにすぎないため、二次代謝物の産 生量は極めて小さ 、ものにすぎな 、。 [0009] 近年、ストレスによって植物の遺伝形質が発現し,その発現量に応じて二次代謝物 が誘導され,細胞機能が調節される点に着目し、ストレスを利用して二次代謝物にか カゝる上記課題の解決を試みた研究もなされて ヽる (非特許文献 5)。例えば非特許文 献 5においては、イン'ビトロ系内に気流を導入することによって、セィヨウオトギリソゥ のハイペリシン、シユードハイペリシンの産生が増大することが明らかになつている。し 力しながら、これら研究における方法において用いられたのもカルス ·細胞等の矮小 な非組織ィ匕生体であるため、一定時間にお 、て得られる二次代謝物の量は不十分 である。 Have been reported (Non-Patent Documents 3 to 4). However, since these reports are only those using cultured tissues of Hypericum perforatum, the amount of secondary metabolites produced is extremely small and only small. [0009] In recent years, focusing on the fact that plant genetic traits are expressed by stress, secondary metabolites are induced according to the expression level, and cell functions are regulated. Some studies have attempted to solve the above problems (Non-patent Document 5). For example, Non-Patent Document 5 reveals that the production of hypericin and pseudohypericin of Hypericum perforatum increases by introducing an air flow into the in vitro system. However, since small non-tissue organisms such as callus cells were used in the methods in these studies, the amount of secondary metabolites obtained in a certain time is insufficient.
[0010] 上記のとおり植物の二次代謝物の大量生産を妨げる障害となっている要因として、 外部環境に対する植物の反応の複雑さが挙げられる。例えば、光合成量との関係を みても、二次代謝物の産生は、光の照射強度を増大させると光合成量の増加に伴つ て増大するとする報告がある一方 (非特許文献 4)、光合成を行い得ない、細胞にお いても、光の照射強度を増大に伴って増大する場合もある (非特許文献 6)。  [0010] As described above, a factor that hinders mass production of plant secondary metabolites is the complexity of plant reactions to the external environment. For example, even when looking at the relationship with the amount of photosynthesis, there is a report that the production of secondary metabolites increases with an increase in the amount of photosynthesis when the light irradiation intensity is increased (Non-patent Document 4). Even in the case of cells that cannot be performed, the light irradiation intensity may increase with an increase (Non-patent Document 6).
また、上記のとおり二次代謝物は植物にストレスを与えるといった、劣悪な環境にお V、て産生が増大する一方、力かる劣悪な環境にぉ 、ては植物体の生育が損なわれ るため、二次代謝物の総産生量を増大せしめることはできない。  In addition, as described above, secondary metabolites increase production in a poor environment where stress is applied to the plant, while growth of the plant body is impaired in a poor environment. The total production of secondary metabolites cannot be increased.
[0011] 特許文献 1 :特表 2004— 500053号公報  [0011] Patent Document 1: Japanese Patent Publication No. 2004-500053
非特許文献 1:「岩波生物学辞典」、第 3版、岩波書店、 1983年 3月 10日、 957頁 非特許文献 2:「糸田胞禾 IJ用技 fe"」 http://www.jpo.go.jp/ shiryou/ s— sonota/ map/kagaku 17/2/2-6-1. htm  Non-Patent Document 1: “Iwanami Biology Dictionary”, 3rd edition, Iwanami Shoten, Mar. 10, 1983, p. 957 Non-patent document 2: “Ito technique for IJ fe” ”http: //www.jpo .go.jp / shiryou / s— sonota / map / kagaku 17/2 / 2-6-1.htm
非特許文献 3 : Zobayed et al, In Vitro Dev. Biol.- Plant. 40 (2004) 108-114 非特許文献 4 : Briskin et al., Plant Physiol. Biochem. 39 (2001) 1075-1081 非特許文献 5 : Zobayed et al., Plant Science 166 (2004) 333-340  Non-patent literature 3: Zobayed et al, In Vitro Dev. Biol.- Plant. 40 (2004) 108-114 Non-patent literature 4: Briskin et al., Plant Physiol. Biochem. 39 (2001) 1075-1081 Non-patent literature 5: Zobayed et al., Plant Science 166 (2004) 333-340
非特許文献 6 : Zhong et al., Biotechnol. Bioeng. 38 (1991) 653—658  Non-Patent Document 6: Zhong et al., Biotechnol. Bioeng. 38 (1991) 653-658
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 本願発明の課題は、植物由来の大量の二次代謝物を、迅速に産生する方法を提 供することにある。 課題を解決するための手段 [0012] An object of the present invention is to provide a method for rapidly producing a large amount of plant-derived secondary metabolites. Means for solving the problem
[0013] 本発明者らは、上記課題に鑑み鋭意研究を重ねた結果、組織培養レベルで、かつ ストレスを与えることが望まし 、と考えられて 、た植物の二次代謝物の増産にお!、て 、驚くべきことに、成苗期を経過した植物体において、ストレスを与えなくても二次代 謝物が増産され得るという知見を得て、さらに研究を進めた結果本発明を完成するに 至った。  [0013] As a result of intensive studies in view of the above problems, the present inventors have thought that it is desirable to apply stress at the tissue culture level and increase the production of secondary metabolites in plants. Surprisingly, we obtained the knowledge that secondary plants can increase production without giving stress to plants that have passed through the seedling stage, and completed the present invention as a result of further research. It reached to.
すなわち、本発明は、少なくとも以下に関する:  That is, the present invention relates to at least the following:
(1)植物における二次代謝物の産生を増大せしめる方法であって、植物の生育に影 響する要素の少なくとも 1種の要素の制御を、成苗期を経過した植物体に対して行う ことを含む、前記方法。  (1) A method for increasing the production of secondary metabolites in a plant, wherein at least one of the elements affecting the growth of the plant is controlled on the plant body that has passed through the seedling stage. Said method.
(2)植物の栽培が、室内で行われる、前記方法。  (2) The method as described above, wherein the plant is cultivated indoors.
(3)植物の生育に影響する要素が、光合成光量子束密度 (PPF)、二酸化炭素の濃 度、光の波長、明期(日長を含む。以下「明期」において同じ)、温度、湿度および栄 養分の量力もの 1種または 2種以上である、前記方法。  (3) Factors affecting plant growth are photosynthetic photon flux density (PPF), carbon dioxide concentration, light wavelength, light period (including day length; the same applies to “light period”), temperature, humidity And one or more nutritional nutrients.
(4)植物の生育に影響する要素が、光合成光量子束密度および二酸化炭素の濃度 である、前記方法。  (4) The method described above, wherein the factors affecting plant growth are photosynthetic photon flux density and carbon dioxide concentration.
(5)光合成光量子束密度が 50〜: LOOO /z mol m_2s_1であり、二酸化炭素の濃度が 300〜2000 μ mol mol_1である、前記方法。 (5) The method as described above, wherein the photosynthetic photon flux density is 50 to: LOOO / z mol m _2 s _1 and the concentration of carbon dioxide is 300 to 2000 μmol mol _1 .
(6)さらに、植物にストレスを与えることを含む、前記方法。  (6) The method further comprising applying stress to the plant.
(7)ストレスが、 UV—Bの照射である、前記方法。  (7) The method as described above, wherein the stress is UV-B irradiation.
(8)植物が、オトギリソゥ科植物である、前記方法。  (8) The said method whose plant is a Hypericaceae plant.
(9)オトギリソゥ科植物が、セィヨウオトギリソゥである、前記方法。  (9) The above-mentioned method, wherein the Hypericaceae plant is Hypericum perforatum.
(10)二次代謝物が、ハイペリシンまたはその誘導体である、前記方法。  (10) The method as described above, wherein the secondary metabolite is hypericin or a derivative thereof.
(11)植物が、 Glycyrrhiza属の植物である、前記方法。  (11) The method as described above, wherein the plant is a plant belonging to the genus Glycyrrhiza.
(12) 物力 Glycyrrhiza uralensisである、刖§方 fe。  (12) Physical strength Glycyrrhiza uralensis, 刖 § 方 fe.
(13)二次代謝物が、グリチルリチン酸またはその誘導体である、前記方法。  (13) The method as described above, wherein the secondary metabolite is glycyrrhizic acid or a derivative thereof.
[0014] 上記のとおり、本発明は、成苗期を経過した植物体において、ストレスを与えない、 むしろ植物の生育に好適な条件下においても二次代謝物の増産が劇的に増大する という、従来の技術常識に反する知見に基づくものである。し力も、この場合の増産と は、単により大きい植物体を用いたことによる量的な増大ではなぐ植物体内におけ る二次代謝物の含有割合の増大を意味する。また、本発明における植物の生育速 度は、組織培養における生育速度を上回ることは勿論、野外または温室における栽 培した場合の生育速度をも上回る。したがって、本発明は、従来のような植物の組織 培養技術を用いず、より生育ステージが進行した成苗期を経過した植物体において 、高濃度の二次代謝物を、迅速に産生することを可能とし、二次代謝物の産生の低 コストィ匕に資するものである。 [0014] As described above, the present invention dramatically increases the production of secondary metabolites even under conditions suitable for plant growth in plants that have passed through the seedling stage, without applying stress. This is based on the knowledge that goes against the conventional common sense. The increase in production in this case also means an increase in the content of secondary metabolites in the plant rather than a quantitative increase simply due to the use of a larger plant. In addition, the growth rate of the plant in the present invention not only exceeds the growth rate in tissue culture, but also exceeds the growth rate when cultivated in the field or in a greenhouse. Therefore, the present invention does not use conventional plant tissue culture techniques, and rapidly produces high-concentration secondary metabolites in plants that have passed through the seedling stage in which the growth stage has advanced. This is possible and contributes to the low cost of producing secondary metabolites.
発明の効果 The invention's effect
より具体的には、本発明は下記のとおりの優れた効果を奏するのである。  More specifically, the present invention has the following excellent effects.
(1)本発明の方法は、植物の生育に影響する要素の少なくとも 1種の要素の制御を、 成苗期を経過した植物体に対して行うことによって、植物体内における二次代謝物 の産生を顕著に増大かつ迅速ィ匕せしめ、産生の低コストィ匕をもたらすといった効果を 奏する。  (1) The method of the present invention produces secondary metabolites in a plant by controlling at least one of the factors affecting the growth of the plant on the plant that has passed the seedling stage. The effect of increasing the production rate rapidly and reducing the production cost is brought about.
(2)本発明の方法のうち、植物の栽培が室内で行われるものにおいては、植物体内 における二次代謝物の均質かつ高純度な産生を可能とするとともに、環境維持に資 するといつた効果も奏する。  (2) Among the methods of the present invention, when the plant is cultivated indoors, it is possible to produce a secondary metabolite in the plant in a homogeneous and high-purity manner, and at the same time contribute to maintaining the environment. Also play.
(3)本発明の方法のうち、植物の生育に影響する要素が、光合成光量子束密度、二 酸化炭素の濃度、光の波長、明期、温度、湿度および栄養分の量からの 1種または 2 種以上であるものにおいては、植物体内における二次代謝物の産生をより顕著に増 大せしめる効果を奏する。  (3) Among the methods of the present invention, factors affecting plant growth are one or two from photosynthesis photon flux density, carbon dioxide concentration, light wavelength, light period, temperature, humidity, and nutrient content. For those that are more than species, the production of secondary metabolites in the plant body is significantly increased.
(4)本発明の方法のうち、植物の生育に影響する要素が、光合成光量子束密度およ び二酸ィヒ炭素の濃度であるものにおいては、植物体内における二次代謝物の産生 を相乗的に増大せしめる効果を奏する。  (4) Among the methods of the present invention, if the factors affecting plant growth are the photosynthetic photon flux density and the concentration of diacid carbon, the production of secondary metabolites in the plant is synergistic. The effect which increases it automatically is produced.
(5)本発明の方法のうち、光合成光量子束密度が 50〜: LOOO /z molm^s—1であり、 二酸化炭素の濃度が 300〜2000 mol mol_1であるものにおいては、植物体内に おける二次代謝物の産生を、さらに相乗的に増大せしめる効果を奏する。 (5) Among the methods of the present invention, those having a photosynthetic photon flux density of 50 to: LOOO / z molm ^ s- 1 and a carbon dioxide concentration of 300 to 2000 mol mol _1 are contained in the plant body. There is an effect of synergistically increasing the production of secondary metabolites.
(6)本発明の方法のうち、植物にストレスを与えることをさらに含むものにおいては、 植物体内における二次代謝物の産生をより顕著に増大せしめる効果を奏する。(6) Among the methods of the present invention, those further comprising applying stress to the plant, This has the effect of more significantly increasing the production of secondary metabolites in the plant body.
(7)本発明の方法のうち、ストレスが、 UV— Bの照射であるものにおいては、植物体 内における二次代謝物の産生をより一層顕著に増大せしめる効果を奏する。 (7) Among the methods of the present invention, those in which the stress is UV-B irradiation exhibit an effect of further significantly increasing the production of secondary metabolites in the plant body.
(8)本発明の方法のうち、植物が、オトギリソゥ科植物であるものにおいては、オトギリ ソゥ科植物の植物体内における二次代謝物の産生を顕著に増大せしめる効果を奏 する。  (8) Among the methods of the present invention, when the plant is a Hypericaceae plant, the effect of remarkably increasing the production of secondary metabolites in the plant body of the Hypericaceae plant is achieved.
(9)本発明の方法のうち、オトギリソゥ科植物力 セィヨウオトギリソゥであるものにおい ては、セィヨウオトギリソゥの植物体内における二次代謝物の産生を顕著に増大せし める効果を奏する。  (9) Among the methods of the present invention, those that are Hypericaceae plant power are effective in significantly increasing the production of secondary metabolites in the plant body of Hypericum perforatum. .
(10)本発明の方法のうち、二次代謝物が、ハイペリシンまたはその誘導体であるもの にお 、ては、抗鬱活性等を有するハイペリシンまたはその誘導体のセィヨウオトギリソ ゥまたはオトギリソゥの植物体内における産生を顕著に増大せしめる効果を奏する。 (10) Among the methods of the present invention, when the secondary metabolite is hypericin or a derivative thereof, the hypericin or the derivative thereof is a hypericin or a derivative thereof having antidepressant activity or the like. There is an effect of remarkably increasing the production.
(11)本発明の方法のうち、植物が、 Glycyrrhiza属の植物であるものにおいては、 Gly cyrrhiza属植物の植物体内における二次代謝物の産生を顕著に増大せしめる効果 を奏する。 (11) Among the methods of the present invention, when the plant is a plant belonging to the genus Glycyrrhiza, the effect of remarkably increasing the production of secondary metabolites in the plant body of the genus Glycyrrhiza is achieved.
(12)本発明の方法のうち、植物が、 Glycyrrhiza uralensisであるものにおいては、 Gly cyrrhiza uralensisの植物体内における二次代謝物の産生を顕著に増大せしめる効 果を奏する。  (12) Among the methods of the present invention, when the plant is Glycyrrhiza uralensis, the effect of remarkably increasing the production of secondary metabolites in the plant body of Gly cyrrhiza uralensis is exhibited.
(13)本発明の方法のうち、二次代謝物が、グリチルリチン酸またはその誘導体であ るものにおいては、 Glycyrrhiza属植物、とくに Glycyrrhiza uralensisの植物体内にお ける、抗ウィルス活性等を有するグリチルリチン酸またはその誘導体の産生を顕著に 増大せしめる効果を奏する。  (13) Among the methods of the present invention, when the secondary metabolite is glycyrrhizic acid or a derivative thereof, glycyrrhizic acid having antiviral activity or the like in a plant of the genus Glycyrrhiza, particularly Glycyrrhiza uralensis Or, it has the effect of significantly increasing the production of its derivatives.
図面の簡単な説明 Brief Description of Drawings
[図 1]実施例 1に記載の試験を行った期間における気象条件の変化を示す図である FIG. 1 is a diagram showing changes in weather conditions during the period when the test described in Example 1 was conducted.
[図 2]実施例 1に記載の試験における各試験区において回収されたセィヨウオトギリソ ゥの写真図である。 FIG. 2 is a photographic diagram of Hypericum perforatum recovered in each test section in the test described in Example 1.
[図 3]実施例 1に記載の試験におけるセィヨウオトギリソゥの、葉、茎、根および植物体 全体の生重量を示す図である。 [FIG. 3] Leaves, stems, roots and plants of Hypericum perforatum in the test described in Example 1 It is a figure which shows the whole raw weight.
[図 4]実施例 1に記載の試験におけるセィヨウオトギリソゥの、葉、茎、根および植物体 全体の乾燥重量を示す図である。  FIG. 4 is a graph showing the dry weight of leaves, stems, roots and the whole plant of Hypericum perforatum in the test described in Example 1.
[図 5]実施例 1に記載の試験におけるセィヨウオトギリソゥにおける茎の節の数を示す 図である。  FIG. 5 is a diagram showing the number of stem nodes in Hypericum perforatum in the test described in Example 1.
[図 6]実施例 1に記載の試験におけるセィヨウオトギリソゥにおける純光合成速度 (Pn )を示す図である。(A)は PPFおよび Zまたは CO濃度を制御して生育せしめた植  FIG. 6 is a graph showing the net photosynthetic rate (Pn) of Hypericum perforatum in the test described in Example 1. (A) shows a plant grown with controlled PPF and Z or CO concentrations.
2  2
物についてのものであり、 (B)は野外圃場において生育せしめた植物についてのも のである。 (B) is for plants grown in a field.
[図 7]実施例 1に記載の試験におけるクロロフィル a (A)および b (B)の濃度ならびにク ロロフィル aZb比 (C)を示す図である。  FIG. 7 is a graph showing the concentrations of chlorophyll a (A) and b (B) and the chlorophyll aZb ratio (C) in the test described in Example 1.
[図 8]実施例 1に記載の試験における葉の組織におけるハイペリシン (A)およびシュ ードハイペリシン (B)ならびにハイパーフォリン(C)の濃度を示す図である。  FIG. 8 is a graph showing the concentrations of hypericin (A), pseudohypericin (B) and hyperforin (C) in leaf tissue in the test described in Example 1.
[図 9]実施例 1に記載の試験における純光合成速度 (Pn)とハイペリシン (A)およびシ ユードハイペリシン (B)濃度との相関を示す図である。 FIG. 9 is a diagram showing the correlation between the pure photosynthetic rate (Pn) and the hypericin (A) and pseudohypericin (B) concentrations in the test described in Example 1.
[図 10]実施例 1に記載の試験における PPF (A)および CO濃度 (B)と総ハイペリシ  [Fig. 10] PPF (A) and CO concentrations (B) and total hypericity in the test described in Example 1.
2  2
ン濃度との相関を示す図である。 FIG.
[図 11A]実施例 2に記載の試験における各試験区において回収された Glycyrrhiza ur alensisの回収後の全体図を示す写真図である。 FIG. 11A is a photographic diagram showing an overall view after recovery of Glycyrrhiza ur alensis recovered in each test section in the test described in Example 2.
[図 11B]実施例 2に記載の試験における各試験区において回収された Glycyrrhiza ur alensisの改修前の地上部を示す写真図である。  FIG. 11B is a photographic view showing the above-ground part of Glycyrrhiza ur alensis recovered in each test section in the test described in Example 2.
[図 12]実施例 2に記載の試験における各試験区において回収された Glycyrrhiza ural ensisの根の写真図である。  FIG. 12 is a photograph of the roots of Glycyrrhiza ural ensis recovered in each test plot in the test described in Example 2.
[図 13]実施例 2に記載の試験における水耕システムに移植した Glycyrrhiza uralensis の、葉 (aおよび b)、茎(cおよび d)、根 (eおよび f)の生重量および乾燥重量を示す 図である。  FIG. 13 shows raw and dry weights of leaves (a and b), stems (c and d), and roots (e and f) of Glycyrrhiza uralensis transplanted to a hydroponic system in the test described in Example 2. FIG.
[図 14]実施例 2に記載の試験におけるプラスチックポットに移植した Glycyrrhiza urale nsisの、葉(aおよび b)、茎(cおよび d)の生重量および乾燥重量を示す図である。 [図 15]実施例 2に記載の試験におけるプラスチックポットに移植した Glycyrrhiza urale nsisの、根の生重量 (a)および乾燥重量 (b)の推移を示す図である。 FIG. 14 shows the raw weight and dry weight of leaves (a and b) and stems (c and d) of Glycyrrhiza uralensis transplanted to a plastic pot in the test described in Example 2. FIG. 15 is a graph showing changes in fresh root weight (a) and dry weight (b) of Glycyrrhiza uralensis transplanted to a plastic pot in the test described in Example 2.
[図 16]実施例 2に記載の試験における水耕システムに移植した (a)、またはプラスチ ックポットに移植した(b)、 Glycyrrhiza uralensisのグリチルリチン酸の濃度の推移を示 す図である。 FIG. 16 is a graph showing changes in the concentration of glycyrrhizic acid in Glycyrrhiza uralensis transplanted to a hydroponic system in the test described in Example 2 (a) or transplanted to a plastic pot (b).
[図 17]実施例 2に記載の試験における、 UV— Bを照射した Glycyrrhiza uralensisのグ リチルリチン酸の濃度を示す図である。  FIG. 17 is a graph showing the concentration of glycyrrhizic acid of Glycyrrhiza uralensis irradiated with UV-B in the test described in Example 2.
[図 18]実施例 2に記載の試験における、高照射量の UV— Bを 3日間照射した場合の 純光合成速度を示す図である。  FIG. 18 is a diagram showing the net photosynthetic rate in the test described in Example 2 when a high dose of UV-B is irradiated for 3 days.
[図 19]実施例 2に記載の試験における、低照射量の UV— Bを 15日間照射した場合 の純光合成速度を示す図である。  FIG. 19 is a graph showing the net photosynthetic rate in the test described in Example 2 when irradiated with a low dose of UV-B for 15 days.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明において、「産生を増大せしめる」とは、野外または屋内(室内を含む)にお ける通常の条件下における産生に比較して、単位時間 ·単位面積当たりの産生量を 増大せしめることを意味する。  In the present invention, “increasing production” means increasing production per unit time / unit area as compared with production under normal conditions in the outdoors or indoors (including indoors). To do.
「植物の生育に影響する要素」とは、光合成光量子束密度、二酸化炭素の濃度、光 の波長、明期のように、植物の光合成に直接影響を及ぼすような指標とともに、温度 、湿度のような、その他の環境における指標も意味する。  “Factors affecting plant growth” refers to photosynthesis photon flux density, carbon dioxide concentration, light wavelength, light period, and other indicators that directly affect plant photosynthesis, as well as temperature and humidity. It also means other environmental indicators.
本発明において、「成苗」とは、苗のステージの最終ステージを意味する。すなわち 、一般的には移植直前のステージ〜移植に好適なステージにある苗を意味する。し たがって、「成苗期を経過した植物体」とは、移植に好適なステージを経過した植物 体であって、典型的には苗床や育苗ポットから本圃やより大きいポット等に移植され た直後から成熟期までのステージに相当するステージにある植物体を意味する。ま た、「成苗期を経過した植物体」には、培養細胞、培養組織、カルスは包含されない。 本発明において、「ストレス」とは、通常の環境下においては生じないことが望まれる 、植物の生育に不利な影響を及ぼす要素、例えば紫外線の照射、土壌水分の過不 足、過剰な塩分、低空気湿度、病害虫、密植等を意味する。  In the present invention, “adult seedling” means the final stage of the seedling stage. That is, it generally means a seedling in a stage immediately before transplantation to a stage suitable for transplantation. Therefore, “plants that have passed through the seedling stage” are plants that have passed through a stage suitable for transplantation, and are typically transplanted from a nursery bed or seedling pot to a main field or a larger pot. It means a plant body in the stage corresponding to the stage from immediately after to maturity. In addition, “plants that have passed the seedling stage” do not include cultured cells, cultured tissues, and calli. In the present invention, “stress” is desired not to occur in a normal environment. Elements that adversely affect plant growth, such as ultraviolet irradiation, insufficient soil moisture, excessive salinity, It means low air humidity, pests, dense planting, etc.
本発明の方法は、植物の栽培において、植物の生育に影響する要素の少なくとも 1 種の要素の制御を、成苗期を経過した植物体に対して行うものであれば特に制限さ れない。 The method of the present invention provides at least one element that affects plant growth in plant cultivation. There is no particular limitation as long as the control of the seed element is performed on a plant that has passed through the seedling growing season.
本発明の方法のうち、植物の栽培が室内で行われるものにおいては、植物体内にお ける二次代謝物の均質かつ高純度な産生を、環境に影響を与えることなぐまた環境 条件ならびに外部由来因子および生物の影響を受けることなく可能とするといつた効 果も奏するため好適である。 Among the methods of the present invention, when the plant is cultivated indoors, the homogenous and high-purity production of the secondary metabolite in the plant body does not affect the environment, the environmental conditions, and the external origin If it is possible without being affected by factors and organisms, it is preferable because it has an effect.
本発明の方法を、室内において行った場合の利点は、例えば以下のとおりである。 Advantages when the method of the present invention is performed indoors are, for example, as follows.
1)植物の二次代謝物の増産および迅速な生産のための環境の最適化。 1) Optimization of the environment for increased production and rapid production of plant secondary metabolites.
2)環境、季節、地理および政治的制限の除去または低減。  2) Removal or reduction of environmental, seasonal, geographic and political restrictions.
3)外部環境の影響を受けることのない、空気の温度、湿度、二酸化炭素濃度およ び気流の速度の制御の実現。  3) Realization of control of air temperature, humidity, carbon dioxide concentration and air velocity without being affected by the external environment.
4)土地および農業資材の使用量の削減。  4) Reduce the use of land and agricultural materials.
5)植物の生育および二次代謝物の濃度の増大。  5) Increase in plant growth and secondary metabolite concentration.
6)二次代謝物の品質の均一化および二次代謝物を用いた製品の品質規準の国 際的な統一。  6) Uniform quality of secondary metabolites and international standardization of product quality standards using secondary metabolites.
7)必要な場合における、開花の抑制または促進。  7) Inhibiting or promoting flowering when necessary.
8)生産の迅速化。  8) Speed up production.
9)特定の植物における二次代謝物の、生化学的特性の普遍的な特徴付け。 9) Universal characterization of the biochemical properties of secondary metabolites in specific plants.
10)遺伝子工学による優良クローンの選抜および遺伝形質の改良の実現。 10) Selection of excellent clones by genetic engineering and improvement of genetic traits.
11)優良な生殖細胞の長期保存および選抜された優良な生殖細胞の短時間およ び低労働による生育の実現。  11) Long-term preservation of excellent germ cells and realization of selected excellent germ cells by short time and low labor.
12)殺虫剤、殺菌剤、除草剤等の農薬の使用の省略、肥料の再利用化による環境 汚染の回避。  12) Avoid the use of pesticides such as insecticides, fungicides and herbicides, and avoid environmental pollution by reusing fertilizers.
13)屋外や温室での栽培が制限されて ヽる遺伝子組換え植物の栽培。  13) Cultivation of genetically modified plants that are restricted to cultivation outdoors or in greenhouses.
本発明の方法は、室内、とくに、外部環境の影響を受けにくい建造物の室内にお いて行うことが好ましぐ光合成光量子束密度、二酸化炭素の濃度、光の波長、明期 、温度、湿度および栄養分の量力 の 1種または 2種以上を制御できる室内で行われ るものはより好ましい。最も好ましくは、光合成光量子束密度、二酸化炭素の濃度、 光の波長、明期、温度、湿度の全てを自動的に制御できる設備を有する室内で行わ れるものである。 The method of the present invention is preferably performed in a room, particularly in a building that is not easily affected by the external environment, photosynthetic photon flux density, carbon dioxide concentration, light wavelength, light period, temperature, humidity. It is more preferable that the treatment is performed in a room where one or more kinds of nutrients can be controlled. Most preferably, photosynthetic photon flux density, carbon dioxide concentration, It is performed in a room with facilities that can automatically control the wavelength, light period, temperature, and humidity of light.
[0020] 本発明の方法のうち、植物の生育に影響する要素として、光合成光量子束密度、 二酸化炭素の濃度、光の波長、明期、温度、湿度および栄養分の量を挙げることが できる。植物の生育に影響する要素がこれらの 1種または 2種以上であれば、植物体 内における二次代謝物の産生がより顕著に増大されるため好ましい。これらの要素の 好ましい量、程度は、一般に、植物の生育および Zまたは光合成に好ましい量、程 度である。  [0020] Among the methods of the present invention, factors affecting plant growth include photosynthetic photon flux density, carbon dioxide concentration, light wavelength, light period, temperature, humidity, and nutrient content. If one or more of these factors affect plant growth, it is preferable because production of secondary metabolites in the plant can be significantly increased. The preferred amounts and extents of these elements are generally the preferred amounts and extents for plant growth and Z or photosynthesis.
[0021] 本発明において、好ましい光合成光量子束密度および二酸化炭素の濃度は、それ ぞれ 50〜: LOOO μ molm_2s_ 1および 300〜2000 μ mol mol_ 1である。また、光合 成光量子束密度として、 100〜800 /ζ πιο1π 25_ 1はより好ましく、 300〜600 /ζ πιο1 m_2s_ 1はさらにより好ましい。二酸化炭素の濃度としては、 500〜1800 mol mol _1はより好ましく、 1000〜1500 /ζ πιο1 mol_ 1はさらにより好ましい。光合成光量子 束密度および二酸化炭素の濃度を上記の範囲とした場合には、二次代謝物の産生 量は相乗的に増大する。 [0021] In the present invention, preferably the photosynthetic photon flux density and concentration of carbon dioxide, their respective 50: a LOOO μ molm _2 s _ 1 and 300~2000 μ mol mol _ 1. Further, as the light synthesis photon flux density, and more preferably 100~800 / ζ πιο1π 2 5 _ 1 , 300~600 / ζ πιο1 m _2 s _ 1 it is even more preferred. The concentration of carbon dioxide, more preferably 500~1800 mol mol _ 1, 1000~1500 / ζ πιο1 mol _ 1 is even more preferred. When the photosynthetic photon flux density and carbon dioxide concentration are within the above ranges, the production of secondary metabolites increases synergistically.
また、好ましい光の波長は、 600ηπ!〜 700nmであり、色としては赤色である。白色 光がこれに次いで好ましい。なお、これらの色を有する光は、単色光のみならず、こ れらの色の光を主成分とする、すなわち、これらの色の光が最も大きい割合を占める 複色光も包含する。  The preferred wavelength of light is 600ηπ! ˜700 nm, and the color is red. White light is next preferred. Note that the light having these colors includes not only single-color light but also multi-color light having light of these colors as a main component, that is, light having the largest proportion of these colors.
[0022] 本発明の方法のうち、植物にストレスを与えることをさらに含むものにおいては、植 物体内における二次代謝物の産生をより顕著に増大せしめる効果を奏するため好ま しい。ストレスの例には、例えば紫外線の照射、土壌水分の過不足、過剰な塩分、低 空気湿度、病害虫のような天然由来のもの、および密植のような人為的なものが包含 される。  [0022] Among the methods of the present invention, the method further including applying stress to the plant is preferable because it has an effect of significantly increasing the production of secondary metabolites in the plant. Examples of stresses include, for example, ultraviolet radiation, excess or deficiency of soil moisture, excess salinity, low air humidity, natural sources such as pests, and artificial things such as dense planting.
[0023] これらのストレスのうち、紫外線、とくに UV— Bの照射は、植物体内における二次代 謝物の産生をより一層顕著に増大せしめる効果を奏するため、より好ましい。 UV- B の好適な照射量は、全照射量として 2. 5〜7. 5W m_2である。全照射量として、より 好ましくは 3. 0〜7. OW m_2であり、最も好ましくは 3. 3〜6. 5W m_2である。紫 外線を照射する日数は、 2日〜20日の範囲で変更してよい。 日数の変更に応じて、 照射強度も変更することができる。 [0023] Among these stresses, irradiation with ultraviolet rays, particularly UV-B, is more preferable because it has the effect of significantly increasing the production of secondary metabolites in the plant body. A suitable irradiation amount of UV-B is 2.5 to 7.5 W m — 2 as a total irradiation amount. As the total dose, more preferably 3. 0 to 7. OW m_ 2, and most preferably 3. a 3~6. 5W m_ 2. purple The number of days for irradiating the outside line may be changed within a range of 2 to 20 days. The irradiation intensity can be changed according to the change in the number of days.
[0024] 本発明の方法のうち、植物が、オトギリソゥ科植物であるものにおいては、これらの 植物の植物体内における二次代謝物の産生が顕著に増大される効果を奏するため 好ましい。 [0024] Among the methods of the present invention, those in which the plant is a Hypericaceae plant are preferable because the production of secondary metabolites in the plant body of these plants is remarkably increased.
これらの植物の葉、茎、花は、抗鬱活性、抗菌活性、抗利尿作用等を有することが知 られ、近年抗腫瘍活性を有することも知られるに至っているハイペリシンまたはその誘 導体を産生するため、古くから医用植物として用いられている。したがって、本発明の 方法のうち、オトギリソゥ科植物の植物体内におけるハイペリシンまたはその誘導体( シユードノヽィペリシン: pseudohypericinゝ ノヽイノ ーフォリン: hyperforin等)の産生を顕 著に増大せしめるものは、医薬の提供の観点から好ましい。とくに好適に用いられる オトギリソゥ科植物は、セィヨウオトギリソゥ(学名: Hypericum perforatum,英名: St Joh n's Wort)およびオトギリソゥ(学名: Hypericum erectum)である。  The leaves, stems, and flowers of these plants produce hypericin or its derivatives that are known to have antidepressant activity, antibacterial activity, antidiuretic activity, etc., and have recently also been known to have antitumor activity. Therefore, it has been used as a medical plant for a long time. Therefore, among the methods of the present invention, those that significantly increase the production of hypericin or a derivative thereof (such as pseudohypericin pseudonoinofolin: hyperforin etc.) in the body of a hypericaceae plant are To preferred. Hypericum perforatum (scientific name: Hypericum perforatum, English name: St Joh n's Wort) and hypericum erectum (scientific name: Hypericum erectum) are particularly preferably used.
[0025] また、本発明の方法のうち、植物が、 Glycyrrhiza属の植物であるものにおいては、 G lycyrrhiza属植物の植物体内における二次代謝物の産生が顕著に増大される効果 効果を奏するため好ましい。 Glycyrrhiza属植物が Glycyrrhiza uralensisであるものに おいては、 Glycyrrhiza uralensisの植物体内における二次代謝物の産生を顕著に増 大せしめる効果が奏されるため好ましい。また、 Glycyrrhiza globraも、本発明におい て好適に用いられる。 [0025] In addition, among the methods of the present invention, when the plant is a plant belonging to the genus Glycyrrhiza, the production of secondary metabolites in the plant body of the genus Glycyrrhiza has the effect of significantly increasing. preferable. Glycyrrhiza genus plants that are Glycyrrhiza uralensis are preferred because they have the effect of significantly increasing the production of secondary metabolites in the plant body of Glycyrrhiza uralensis. Glycyrrhiza globra is also preferably used in the present invention.
これらの植物の根または根茎は、抗ウィルス活性等を有するグリチルリチン酸 (glycy rrhizin)またはその誘導体を含有する甘草 (カンゾゥ)の供給源として、医用目的等に 、また甘味を有するため食品添加物として、それぞれ用いられている。とくに近年、抗 HIV活性および抗 SARS活性が見いだされるに至り、グリチルリチン酸は一層注目 を集めている。したがって、本発明の方法のうち、 Glycyrrhiza属植物の植物体内にお けるグリチルリチン酸またはその誘導体の産生を顕著に増大せしめるものは、医薬の 提供の観点力も好ましい。  The roots or rhizomes of these plants are used as a source of licorice containing glycyrrhizin having antiviral activity or the like, or as a food additive because of its sweetness. Are used respectively. Particularly in recent years, anti-HIV activity and anti-SARS activity have been found, and glycyrrhizic acid has attracted more attention. Therefore, among the methods of the present invention, those that significantly increase the production of glycyrrhizic acid or a derivative thereof in the plant body of the genus Glycyrrhiza are also preferable from the viewpoint of providing a medicine.
[実施例]  [Example]
[0026] 以下に、実施例によって本発明をより詳細に説明する力 如何なる意味においても 、本発明はこれらの実施例に限定されない。 [0026] In the following, the ability to explain the present invention in more detail by way of examples in any sense The present invention is not limited to these examples.
〔実施例 1〕  Example 1
セィヨウオトギリソゥ(St John's Wort)における二次代 f物の産生の増大 1.材料と方法  Increased production of secondary f products in St John's Wort 1. Materials and Methods
1. 1 植物、処理および生育条件  1. 1 Plant, treatment and growth conditions
•移植前の植物 · · · 30日令のセィヨウオトギリソゥの苗(8枚の展開葉を有する) 苗の生育条件:人工照明(100 molm_2 S _1PPF)付き閉鎖系 • Plant before transplanting ··· 30-day-old Hypericum perforatum seedlings (with 8 unfolded leaves) Seedling growth conditions: Closed system with artificial lighting (100 molm _2 S _1 PPF)
日長: 16L8D (16時間明期 8時間暗期)  Day length: 16L8D (16 hours light period 8 hours dark period)
温度:明期、暗期のそれぞれにおいて 27°Cおよび 25°C  Temperature: 27 ° C and 25 ° C in light and dark periods
[0027] ·移植. · ·プラスチックポット(直径 5cm、高さ 7. 5cm)に移植した後環境条件制御設 備付き室内に静置した。 [0027] · Transplantation ···· Transplanted in a plastic pot (diameter 5cm, height 7.5cm), and then left in a room with environmental condition control equipment.
土:湿った混合土壌 (ヤンマー農機 (株)) 150g  Soil: Wet mixed soil (Yanmar Agricultural Machinery Co., Ltd.) 150g
光度 (PPF): 100、 300、 600 μ molm"2s_1 Luminous intensity (PPF): 100, 300, 600 μmolm " 2 s _1
CO濃度: 500、 1000、 1500 /z mol mol"1 CO concentration: 500, 1000, 1500 / z mol mol " 1
2  2
生育条件: 7日間の 100 molm_2s_1PPFの後、移植 14日後に 300 μ molm"2s_1 Growth conditions: 7 days after 100 molm _2 s _1 PPF, 14 days after transplanting 300 μmolm " 2 s _1
PPF、移植 21日後に 600 molm_2s_1PPFとした。 PPF, 600 molm _2 s _1 PPF 21 days after transplantation.
日長: 16L8D (16時間明期 8時間暗期)  Day length: 16L8D (16 hours light period 8 hours dark period)
温度:明期、暗期のそれぞれにおいて 27°Cおよび 25°C  Temperature: 27 ° C and 25 ° C in light and dark periods
相対湿度: 70 ± 5%  Relative humidity: 70 ± 5%
栄養液剤の ρΗ· · · 5. 5  ΡΗ of nutrient solution 5.5
試験期間 ·,·45日  Test period ··· 45 days
栽植密度 · ' · 178株 m—2 Planting density · '· 178 shares m— 2
施肥:ハイポネックス(登録商標、 N: P :K=6 : 10 : 5、株式会社ノヽィポネックス)を正 規のカ価の半分として、 3日ごとに行った。  Fertilization: Hyponex (registered trademark, N: P: K = 6: 10: 5, Noyponex, Inc.) was carried out every 3 days with half the normal price.
対照:2004年 7月 14日— 8月 28日に、千葉大学園芸学部構内圃場において栽培し た植物。ハイポネックス (登録商標)を正規の力価の半分として、毎日与えた。栽植密 度は 12株 m_2。気象条件の変化は図 1に示すとおり。 Control: Plants cultivated in the field of Chiba University Horticultural Department on July 14 – August 28, 2004. Hyponex® was given daily as half the normal titer. Planting density is 12 m_2 . Changes in weather conditions are shown in Figure 1.
[0028] ·調査 (1)移植 45日後に生重量、乾燥重量を、茎、葉、根について測定。茎の節数も数え た。 [0028] · Survey (1) Raw weight and dry weight were measured for stems, leaves and roots 45 days after transplantation. The number of stem nodes was also counted.
(2)クロロフィル濃度の測定  (2) Measurement of chlorophyll concentration
植物体先端部(shoot)から数えて 5番目の葉 (0. 020±0. 005g)を移植後 45日目 に回収したものを対象として、 Porra et al.(1989) , Biophysica Acta 975, 384- 394に基 づいて行った。  Porra et al. (1989), Biophysica Acta 975, 384, which was collected 45 days after transplanting the fifth leaf (0.020 ± 0.005 g) counted from the plant tip (shoot). -Based on 394.
(3)純光合成速度(Net photosynthetic rate: Pn)の測定  (3) Net photosynthetic rate (Pn) measurement
上位力も 5番目の、完全に展開した葉につ!、て、移植後 43日目に、携帯用光合成 システム(LI-COR- 6400登録商標、 LI- COR Inc., USA)を用いて行った。  The top force was the fifth, fully expanded leaf! On the 43rd day after transplantation, a portable photosynthesis system (LI-COR-6400 registered trademark, LI- COR Inc., USA) was used. .
制御された環境において生育せしめた植物については、各々の処理条件下 (表 1) において測定を行った。野外において生育せしめた植物については、二酸化炭素濃 度 400 μ mol
Figure imgf000014_0001
気温 34°Cの条件下(2004年 8月 26曰の正午頃)【こお!ヽて行 つた o
Plants grown in a controlled environment were measured under each treatment condition (Table 1). For plants grown outdoors, the carbon dioxide concentration is 400 μmol.
Figure imgf000014_0001
At a temperature of 34 ° C (around noon on August 26, 2004) [Koo!
[0029] [表 1] 制御された環境 (LL - HH)及び野外 (FC)においてセィヨウオトギリソゥを 生育させた際の処理条件  [0029] [Table 1] Treatment conditions for growing Hypericum perforatum in controlled environments (LL-HH) and outdoors (FC)
PPF 1 co2濃度 処理コード (μιηοΐ s"1) (μιηοΐ mol"1) PPF 1 co 2 concentration treatment code (μιηοΐ s " 1 ) (μιηοΐ mol" 1 )
LL 100 500  LL 100 500
LM 100 1000  LM 100 1000
LH 100 1500  LH 100 1500
ML 300 500  ML 300 500
匪 300 1000  匪 300 1000
MH 300 1500  MH 300 1500
HL 600 500  HL 600 500
H 600 1000 H 600 1000
Figure imgf000014_0002
Figure imgf000014_0002
FC (control) 1770Y 380Y FC (control) 1770 Y 380 Y
z何もない棚における光合成光量子束密度 (PPF)  zPhotosynthesis photon flux density (PPF) in an empty shelf
Y野外にて測定した (2004年 7月 14日〜2004年 8月 28日)FPF及ぴ CC>2濃度  Y measured in the field (July 14, 2004-August 28, 2004) FPF and CC> 2 concentration
[0030] 1. 2 抽出とハイペリシン、シユードハイペリシシンおよびハイパーフォリンの定量 ハイペリシン、シユードハイペリシシンおよびハイパーフォリンの抽出、化学分析は、[0030] 1.2 Extraction and determination of hypericin, pseudohypericin and hyperforin Extraction and chemical analysis of hypericin, pseudohypericin and hyperforin
Zobayed et al. (2004), Plant Sci. 166, 333-340に記載の方法を改変した方法によつ て行った。概略は、以下のとおりである。 The method described in Zobayed et al. (2004), Plant Sci. 166, 333-340 was performed by a modified method. The outline is as follows.
6番目および 7番目の完全展開葉 (生重量 0. 25g)を黄色のエツペンドルフ管(1. 5mL)に入れ、直ちに液体窒素中にて凍結し、 85°Cにて保存した。 lmLの 2% (v Zv) DMSOのメタノール溶液を各サンプルに入れ、 MM200 (登録商標、 Retch Gm bH & Co., Germany)を用いて 30Hzにて 6分間粉砕した。次に 4000rpm (1467xg) 、 4°Cにて、 15分間遠心分離を行った (Kubota (登録商標)、(株)クボタ)。抽出液 (0 . 5mL)を 0. のシリンジフィルタ(Dismic-13HP、 Advantech、東洋濾紙株式会 社)によって濾過し、 0. 5mLの 2% (vZv) DMSOのメタノール溶液をカ卩えて希釈し た。ァリコートの半分ずつを、ハイペリシンおよびシユードハイペリシシンならびにハイ パーフォリンの分析に用いた。  The sixth and seventh fully developed leaves (fresh weight 0.25 g) were placed in yellow Eppendorf tubes (1.5 mL), immediately frozen in liquid nitrogen, and stored at 85 ° C. lmL of 2% (v Zv) DMSO in methanol was placed in each sample and ground using a MM200 (registered trademark, Retch GmbH & Co., Germany) at 30 Hz for 6 minutes. Next, centrifugation was performed at 4000 rpm (1467xg) and 4 ° C for 15 minutes (Kubota (registered trademark), Kubota Corporation). The extract (0.5 mL) was filtered through a syringe filter (Dismic-13HP, Advantech, Toyo Roshi Kaisha Co., Ltd.) and diluted with 0.5 mL of 2% (vZv) DMSO in methanol. . Half of each aliquot was used for analysis of hypericin and pseudohypericin and hyperforin.
[0031] ハイパーフォリンの分析は、 3. 5mLの 2% (vZv) DMSOのメタノール溶液をカロえ た後、抽出を暗室内、室温下にて行った。 [0031] For the analysis of hyperforin, 3.5 mL of a 2% (vZv) DMSO methanol solution was prepared, and then the extraction was performed in a dark room at room temperature.
ハイペリシンおよびシユードハイペリシシン分析用のサンプルは、透明なガラスバイ アルに入れ、 155± 5 /ζ πιο1π 25_ 1ΡΡΡの光源(100Wタングステンランプ、東芝)を 40分間照射し、近似体 (proto- form)をハイペリシンおよびシユードハイペリシシンに 変換した。 Samples for analysis of hypericin and pseudohypericin are placed in a transparent glass vial and irradiated with a light source of 155 ± 5 / ζ πιο1π 2 5 _ 1ΡΡΡ (100W tungsten lamp, Toshiba) for 40 minutes. form) was converted to hypericin and pseudohypericin.
20 μ 1の抽出物のサンプルを Phenomenex Hypersil C18カラム(3. m、 4. 6mm X 100mm)に注入し、 HPLCシステムに設置した。該 HPLCシステムは、 SCL— 10 Aシステムコントローラ、 SIL— 10Aオートインジェクタ、および CTO— 10Aカラムォ ーブン(島津製作所)からなる。分析検体のァイソクラチックな分離を、移動相として 0 . ImolL- 1の酢酸トリェチルアンモ -ゥムおよびァセトニトリル(33 : 67、 vZv)を用い 、流速をノヽィペリシンおよびシユードハイペリシシンならびにハイパーフォリンに対して 、 0. 5mLmin_ 1および 1. OmLmin として行った。 A sample of 20 μ1 extract was injected into a Phenomenex Hypersil C18 column (3.m, 4.6 mm × 100 mm) and placed in an HPLC system. The HPLC system consists of an SCL-10A system controller, a SIL-10A autoinjector, and a CTO-10A column oven (Shimadzu Corporation). For isocratic separation of analytes using 0.1 Imol L -1 triethylammonium acetate and acetonitrile (33:67, vZv) as mobile phase, flow rates for neutral and pseudohypericin and hyperforin, 0. 5mLmin _ 1 and 1.2 were carried out with the OmLmin.
[0032] ハイパーフォリンの分析は 270nm、ハイペリシンおよびシユードハイペリシシンの分 析は 588nmにて、 SPD—M10AVフォトダイオードアレイ ·ディテクタを用いて、それ ぞれ行った。標準曲線の作成は、シユードハイべリシシンの標準濃度 (0. 5、 2. 5、 5 、 25および 50 /z gmL )、ノヽィペリシンの標準濃度(0. 5、 2. 5、 5、 25および 50 gmL_1)およびハイパーフォリンの標準濃度(0. 5、 2. 5、 5、 25および 50 gmL_1) を用いて行った(いずれも r2>0. 99)。 [0032] Hyperforin analysis was performed at 270 nm, and hypericin and pseudohypericin analysis at 588 nm, respectively, using an SPD-M10AV photodiode array detector. The standard curve was created using standard concentrations of pseudohybelicin (0.5, 2.5, 5 , 25 and 50 / z GML), standard concentrations (0.5 of Nono Iperishin, 2.5, 5, 25 and 50 GML _1) and standard concentrations of hyperforin (0.5, 2.5, 5, 25 and 50 GML _1) was performed using (both r 2> 0. 99).
定量は、ピーク面積 (RTは、それぞれに対して 5. 8分、 3. 5分および 7. 8分)を標 準曲線と比較して行った。  Quantification was performed by comparing peak areas (RT for 5.8 min, 3.5 min and 7.8 min for each) with a standard curve.
二次代謝物の濃度は mgg_1葉の乾燥重量によって表し、それらの量は前記濃度に 植物体の総の乾燥重量を乗じて求めた。 The concentration of secondary metabolites represents the dry weight of the MGG _1 leaf was their amount is determined by multiplying the dry weight of the total of the plant to the concentration.
[0033] 1. 3 統計分析 [0033] 1.3 Statistical analysis
試験は 3 X 3の変動要因につき、完全ランダムデザインによって、 10反復にて行つ た。試験は 2回行った。統計的有意度の決定は、一元配置分散分析 (ANOVA)によ つて、 Sigma Stat program (Windows (登録商標)の Sigma Stat ( (商標) V2.03,SPSS Inc -)を用いて行った。平均値の差は、 Student- Newman- Keuls testにより、 P≤0. 05とし て評価を行った。  The test was performed in 10 iterations with a fully random design for 3 x 3 variables. The test was conducted twice. Statistical significance was determined by one-way analysis of variance (ANOVA) using the Sigma Stat program (Sigma (Static) V2.03, SPSS Inc-) of Windows (registered trademark). The difference in values was evaluated by the Student-Newman-Keuls test with P≤0.05.
[0034] 2.結果 [0034] 2. Results
セィヨウオトギリソゥの生重量および乾燥重量は、光合成光量子束密度 (PPF)およ び Zまたは CO濃度の増大に伴って増加した(図 2〜4)。移植後 45日目には、 HH  Green and dry weights of Hypericum perforatum increased with increasing photosynthetic photon flux density (PPF) and Z or CO concentrations (Figures 2-4). On day 45 after transplantation, HH
2  2
処理区おいて生重量および乾燥重量は最大となり、それぞれ対照区 (FC)の 29倍 および 30倍となった。生重量および乾燥重量は、 PPF力 S300または 600 μ molm"2s 一1の場合、 CO濃度の増大に伴って増加した。 The fresh weight and the dry weight were the highest in the treated area, 29 and 30 times that of the control area (FC), respectively. Raw weight and dry weight increased with increasing CO concentration in the case of PPF force S300 or 600 μmolm " 2 s 1 .
2  2
茎の節の数は、 PPFおよび Zまたは CO濃度の増大に伴って増加した(図 5)。茎  The number of stem nodes increased with increasing PPF and Z or CO concentrations (Figure 5). Stem
2  2
の節の数は、 HH処理区おいて最大となり、対照区の約 4倍であった。  The number of nodes was the highest in the HH-treated group, about four times that in the control group.
[0035] 葉における純光合成速度 (Pn)は PPFおよび Zまたは CO濃度の増大に伴って増 [0035] The net photosynthetic rate (Pn) in leaves increases with increasing PPF and Z or CO concentrations.
2  2
加し(図 6A)、 HH処理区おいて最大であった。 PPFが低い場合(100 /ζ πιο1π 25_ 、 Pnに対する CO濃度の影響は小さ力つた力 PPFが大きい場合(300または 60 (Fig. 6A), the largest in the HH treatment section. When PPF is low (100 / ζ πιο1π 2 5 _ , the effect of CO concentration on Pn is small force. When PPF is large (300 or 60
2  2
0 /ζ πιο1π 23_ 1)、 Pnは CO濃度の増大に伴って顕著に増加した。野外圃場におい 0 / ζ πιο1π 2 3 _ 1 ), Pn markedly increased with increasing CO concentration. Smell in the field
2  2
て生育せしめた植物の Pnは生育条件を制御した植物に比較して小さ力つた(図 6B) 。クロロフィル aの濃度は、生育条件の違いによって影響を受けな力つた。クロロフィル bの濃度は、 HH処理区において最大であった(図 7Aおよび 7B)。 CO濃度が 1500 ^ mol mol_1の場合、クロロフィル a/b比は、 PPFの増大に伴って減少した(図 7CThe Pn of the plant grown in this way was less potent than the plant under controlled growth conditions (Fig. 6B). Chlorophyll a concentration was unaffected by differences in growth conditions. The concentration of chlorophyll b was the highest in the HH treatment area (FIGS. 7A and 7B). CO concentration is 1500 In the case of ^ mol mol _1 , the chlorophyll a / b ratio decreased with increasing PPF (Figure 7C).
) o ) o
[0036] 葉の組織におけるハイペリシンおよびシユードハイペリシンの濃度(mgZplant)は 、 PPFおよび CO濃度の増大に伴って増加した(図 8Aおよび 8B)。ハイペリシンおよ  [0036] Hypericin and pseudohypericin concentrations (mgZplant) in leaf tissue increased with increasing PPF and CO concentrations (Figures 8A and 8B). Hypericin and
2  2
びシユードハイペリシンの濃度は、純光合成速度と高い相関があった(図 9Aおよび 9 B)。すなわち、前記濃度は、 Pnの二次関数として、 R2がそれぞれ 0. 82および 0. 79 であった。ハイペリシンおよびシユードハイペリシンの濃度は、 HH処理区において最 大であり、それぞれ対照区より 30倍および 41倍大き力つた (mg g_1DM)。 The concentration of pseudohypericin was highly correlated with the rate of pure photosynthesis (FIGS. 9A and 9B). That is, the concentration was 0.82 and 0.79 for R 2 as a quadratic function of Pn, respectively. The concentrations of hypericin and pseudohypericin were the highest in the HH-treated group, 30 and 41 times stronger than the control group, respectively (mg g _1 DM).
[0037] ノ、ィぺリシンおよびシユードノヽィペリシンの濃度を合算した総ハイペリシン濃度は、 PPFおよび CO濃度に相関し、多項相関(図 10Aおよび 10B)において近似曲線( [0037] The total hypericin concentration, which is the sum of the concentrations of rhino, ipericin and pseudonoypericin, correlates with the PPF and CO concentrations, and is an approximated curve (Figure 10A and 10B)
2  2
R2= l)が得られた。 R 2 = l) was obtained.
制御した試験区においては、ハイパーフォリンの濃度は PPFの増大に伴って増加 し、 300または 600 /ζ πιο1π 25_ 1において最大となった(図 8C)。全体では、 MH処 理区におけるハイパーフォリンの濃度が最大となり、対照区の 45倍の量となった。 In the controlled plots, hyperforin concentration increased with increasing PPF and reached a maximum at 300 or 600 / ζ πιο1π 2 5 _ 1 (Figure 8C). Overall, the concentration of hyperforin in the MH treatment group was the highest, 45 times that of the control group.
[0038] 〔実施例 2〕 [Example 2]
Glycyrrhiza uralensisにおける二次代謝物の産生の増大(紫外線の影響など) 1.材料と方法  Increased production of secondary metabolites in Glycyrrhiza uralensis (eg UV effects) 1. Materials and methods
1. 1 植物、処理および生育条件  1. 1 Plant, treatment and growth conditions
'移植前の植物 · · · 10日令の Glycyrrhiza uralensisの苗(4枚の展開葉を有する) 'Plant before transplanting ········ Glycyrrhiza uralensis seedlings with 10 days of age (with 4 unfolded leaves)
Glycyrrhiza uralensis (Fisch.)の種を濃硫酸に 20分間浸漬した後水道水で数回洗 浄し、湿った混合土壌 (ヤンマー農機 (株))を入れたマルチトレーに直ちに播種した 。発芽 4〜5日後にトレーを人工光(100 μ molm"2s_1PPF (光合成有効光子量束) )に保管した。 Glycyrrhiza uralensis (Fisch.) Seeds were soaked in concentrated sulfuric acid for 20 minutes, washed several times with tap water, and immediately sown in a multi-tray containing wet mixed soil (Yanmar Agricultural Machinery Co., Ltd.). After 4-5 days of germination, the tray was stored in artificial light (100 μmolm ” 2 s _ 1 PPF (photosynthetic effective photon flux)).
日長: 16L8D (16時間明期 8時間暗期)  Day length: 16L8D (16 hours light period 8 hours dark period)
温度:明期、暗期のそれぞれにおいて 28°Cおよび 26°C  Temperature: 28 ° C and 26 ° C in each of light and dark periods
[0039] '移植後 · · '苗をランダムに選択し、水耕システム(deep flow technique(DFT)付き)ま たはプラスチックポット (直径 15cm、高さ 19cm)に移植。環境条件制御設備付き室 内に静置。 (1)水耕システムに移植したもの · · ·苗(高さ 5cm)を、プラスチックのトレー (長さ 54c mX幅 39cmX深さ 8cm。栄養溶液を含む)に載せたスタイロフォーム 'シートの孔( 支持用のスポンジ付き)に入れた。 [0039] 'After transplanting · · ·' Select seedlings randomly and transplant them to a hydroponic system (with deep flow technique (DFT)) or plastic pot (15cm in diameter, 19cm in height). Leave in a room with environmental condition control equipment. (1) Transplanted in hydroponic system · · · Styrofoam 'sheet hole (supporting 5cm height) placed on plastic tray (length 54cm x width 39cm x depth 8cm, including nutrient solution) With a sponge for).
栽植密度' ··トレィ当たり 12株(38株 Zm2) Planting density '··· 12 strains per train (38 strains Zm 2 )
処理当たりトレー数 ·'·3  Number of trays per process · '· 3
(2)プラスチックポットに移植したもの · · ·  (2) Transplanted into a plastic pot
土:湿った混合土壌 (ヤンマー農機 (株))。ポット当たり 550g。  Soil: Wet mixed soil (Yanmar Agricultural Machinery Co., Ltd.). 550g per pot.
処理当たりポット数 ··· 30  Number of pots per process ... 30
栽植密度 ·,·52株 Zm2 Planting density ··· 52 strains Zm 2
[0040] 光度(PPF): 300 μ molm"2s_1 [0040] Luminous intensity (PPF): 300 μmolm " 2 s _1
光波長:下記表 2のとおり  Light wavelength: as shown in Table 2 below
[表 2]  [Table 2]
各処理のスぺク トル特性  Spectral characteristics of each treatment
Figure imgf000018_0001
Figure imgf000018_0001
*各データの測定は、光合成光子束密度(PPF) ΙΟθ ίπιοΙπΓ 2s- 1において 行った。 * Measurement of each data was performed at photosynthetic photon flux density (PPF) ΙΟθ ίπιοΙπΓ 2 s- 1 .
。青、 緑、 赤は、 それぞれ青、 緑、 赤を主成分とする(40〜81%)こと を意味し、 それぞれの単色を意味するものではない。  . Blue, green, and red mean that the main components are blue, green, and red (40-81%), respectively, and do not mean each single color.
[0041] (3)水耕システムに移植したものおよびプラスチックポットに移植したものに共通する 生育条件  [0041] (3) Growth conditions common to those transplanted into hydroponic systems and those transplanted into plastic pots
日長: 16L8D (16時間明期 8時間暗期)  Day length: 16L8D (16 hours light period 8 hours dark period)
温度:明期、暗期のそれぞれにおいて 28°Cおよび 26°C  Temperature: 28 ° C and 26 ° C in each of light and dark periods
CO濃度: 1000 μ mol mol"1 CO concentration: 1000 μmol mol " 1
2  2
光度: 7日間の 100 molm"2s_1PPF Luminous intensity: 100 molm " 2 s _1 PPF for 7 days
相対湿度: 65— 70%  Relative humidity: 65—70%
施肥:ハイポネックス(登録商標、 N:P:K=6:6:6、株式会社ノヽィポネックス)を正規 の力価として行った。 栄養液剤の ρΗ· · · 5. 8 Fertilization: Hyponex (registered trademark, N: P: K = 6: 6: 6, Noyponex Inc.) was used as a regular titer. ΡΗ of nutrient solution
栄養剤の施用 · · 'プラスチックポットに移植したものにおいては 3日ごとに行った。水 耕システムに移植したものにおいては 10日ごとに新しいものと交換し、栄養液の量を 一定に保っために、 2から 3日に 1回の頻度で、必要に応じてトレイに栄養液を補充し た。  Application of nutrients · · 'Those transplanted in plastic pots were performed every 3 days. For those transplanted to the hydroponic system, replace them with new ones every 10 days, and keep the amount of nutrient solution at a frequency of once every two to three days to keep the amount of nutrient solution constant. Replenished.
[0042] 試験期間 · · ·水耕システムに移植したものは 3ヶ月、およびプラスチックポットに移植 したものは 6ヶ月。  [0042] Test period · · · 3 months transplanted to hydroponic system and 6 months transplanted to plastic pot.
サンプルの回収' · '水耕システムに移植したものにおいては、移植後 1、 3および 6ケ 月に、プラスチックポットに移植したものにおいては 6ヶ月に行った。  Sample collection '·' For those transplanted into hydroponic systems, 1, 3 and 6 months after transplanting and 6 months for those transplanted into plastic pots.
[0043] (4) UV— Βの照射 [0043] (4) UV—irradiation of sputum
移植後の生育条件' · ·プラスチックポット(直径 15cm、高さ 19cm)に移植。室内の実 験設備に静置。  Growth conditions after transplanting '· · Transplanted into a plastic pot (15cm in diameter, 19cm in height). Leave in indoor experimental equipment.
栽培株数 · ' · 60  Number of cultivated strains · '· 60
他の生育条件、栄養条件' · '該当するものについて、プラスチックポットに移植したも のにおける上記条件に同じ  Other growth and nutritional conditions '·' Same as above for transplanted plastic pots where applicable
1^ー 照射' · ·移植 3ヶ月後に、下記各処理を行った。  1 ^ -irradiation '· · 3 months after transplantation, the following treatments were performed.
i)高 UV—B照射を短期間(1. 13W m_2、 3日間)、 300 molm_2s_1PPF ii)低 UV— B照射を長期間(0. 43W m_2、 15日間)、 300 μ molm"2s_1PPF iii)対照(UV—B照射なし)、 300 μ molm"2s_1PPF i) High UV—B irradiation for a short period (1.13 W m _2 , 3 days), 300 molm _2 s _1 PPF ii) Low UV—B irradiation for a long period (0.43 W m _2 , 15 days), 300 μ molm " 2 s _1 PPF iii) Control (no UV—B irradiation), 300 μmolm" 2 s _1 PPF
なお、各 UV— B照射の期間およびその前後に純光合成速度 (Pn)の測定も行った  The net photosynthetic rate (Pn) was also measured before and after each UV-B irradiation.
[0044] 1. 2 抽出とグリチルリチン酸の定量 [0044] 1.2 Extraction and determination of glycyrrhizic acid
グリチルリチン酸の抽出、単離は、 Sato et al. (2004), Plant Sci. 166, 333- 340に記 載の方法を改変した方法によって行った。概略は、以下のとおりである。  Extraction and isolation of glycyrrhizic acid was performed by a modified method described in Sato et al. (2004), Plant Sci. 166, 333-340. The outline is as follows.
根糸且織(生重量 0. 4-0. 45g FM)を黄色のエツペンドルフ管(20mL)に入れ、 直ちに液体窒素中にて凍結し、 -85°Cにて保存した。  Root yarn and weave (fresh weight 0.4-0.45g FM) was placed in a yellow Eppendorf tube (20mL), immediately frozen in liquid nitrogen and stored at -85 ° C.
lmLの 80% (vZv)エタノールを各サンプルに入れ、 MM200 (登録商標、 Retch Gmblt& Co., Germany)を用いて 30Hzにて 6分間粉砕した。次に 10, OOOrpmにて、 10分間遠心分離を行った (Kubota (登録商標)、(株)クボタ)。抽出液を 0. 2 mの シリンジフィルタ(Dismic-13HP、 Advantech、東洋濾紙株式会社)によって濾過し、 3 00 μ Lのァリコートを、プラスチック製の HPLCのオートサンプラーのバイアルに入れ 、 20 Lのサンプルをインジェクションし、 HPLCによってピーク面積からグリチルリチ ン酸を定量した。 lmL of 80% (vZv) ethanol was added to each sample and ground using a MM200 (registered trademark, Retch Gmblt & Co., Germany) at 30 Hz for 6 minutes. Next at 10, OOOrpm, Centrifugation was performed for 10 minutes (Kubota (registered trademark), Kubota Corporation). The extract was filtered through a 0.2 m syringe filter (Dismic-13HP, Advantech, Toyo Roshi Kaisha, Ltd.), and 300 μL of the aliquot was placed in a plastic HPLC autosampler vial and a 20 L sample. The glycyrrhizic acid was quantified from the peak area by HPLC.
[0045] グリチルリチン酸の定量には、 SCL— 10Aシステムコントローラ、 SIL— 10Aオートィ ンジェクタ、および CTO— 10Aカラムオーブン(島津製作所)からなる HPLCシステ ム、および 254nmにて SPD—M10AVフォトダイオードアレイ ·ディテクタを用いて行 つた。グリチルリジンの分離は、 Phenomenex Hypersil C18カラム(3. m、 4. 6mm X 100mm)に注入して行った。分析検体のァイソクラチックな分離を、移動相として 0 . ImolL—1の二リン酸ナトリウムおよびァセトニトリル(65 : 35、 vZv)を用い、流速を 1 . OmLmin—1として行った。グリチルリジンの標準品(和光純薬株式会社)を用いて標 準曲線を作成し (r2>0. 99)、グリチルリジンの量は前記標準曲線を用いて求めた。 [0045] Glycyrrhizic acid was quantified by HPLC system consisting of SCL-10A system controller, SIL-10A autoinjector, and CTO-10A column oven (Shimadzu Corporation), and SPD-M10AV photodiode array detector at 254 nm. Was used. Separation of glycyrrhizin was performed by injection onto a Phenomenex Hypersil C18 column (3. m, 4.6 mm x 100 mm). A lysocratic separation of the analyte was carried out using 0.1 mol L- 1 sodium diphosphate and acetonitrile (65:35, vZv) as the mobile phase and a flow rate of 1. OmLmin- 1 . A standard curve was prepared using a standard product of glycyrrhizin (Wako Pure Chemical Industries, Ltd.) (r 2 > 0.99), and the amount of glycyrrhizin was determined using the standard curve.
[0046] 1. 3 統計分析  [0046] 1.3 Statistical analysis
試験は 2回行った。統計的有意度の決定は、一元配置分散分析 (ANOVA)によつ て、 Sigma Stat program (Windows (登録商標)の Sigma Stat (商標) V2.03, SPSS Inc.) を用いて行った。平均値の差は、 Tukey testにより、 P≤0. 05として行った。  The test was conducted twice. Statistical significance was determined by one-way analysis of variance (ANOVA) using the Sigma Stat program (Sigma® Stat ™ V2.03, SPSS Inc. from Windows®). Differences in mean values were made by Tukey test with P≤0.05.
[0047] 2.結果  [0047] 2.Result
プラスチックポットに移植したものは、水耕システムに移植したものより生育が旺盛 であり、形態の外観もより優れていた(図 l la、 l lb)。  Those transplanted into plastic pots grew more vigorously and had better morphological appearance than those transplanted into hydroponic systems (Figure l la, l lb).
移植 3ヶ月後において、水耕システムに移植したものの葉および茎の状態は、赤色 光照射区および青色光照射区と対照(白色光照射区)との間に差はなかった (図 13a 〜13d)。これに対して、根の生重量および乾燥重量においては、赤色光照射区お よび青色光照射区は対照より小さ力つた(図 13e、 13f)。  Three months after transplantation, the leaves and stems transplanted to the hydroponic system did not differ between the red and blue light-irradiated groups and the control (white light-irradiated group) (Figures 13a to 13d). ). On the other hand, in the fresh weight and dry weight of the roots, the red light irradiation group and the blue light irradiation group were smaller than the control (FIGS. 13e and 13f).
[0048] プラスチックポットに移植したものにおいては、赤色光照射区の生育が、青色光照 射区または対照の場合より優れていた。移植 3ヶ月後の葉および茎の生重量および 乾燥重量は、赤色光照射区において青色光照射区よりそれぞれ 1. 4倍、 1. 8倍お よび 2倍ずつ大き力 た(図 14a〜14d)。対照区は、赤色光照射区と青色光照射区 との中間に位置した。 [0048] In those transplanted to plastic pots, the growth of the red light irradiation group was superior to that of the blue light irradiation group or the control. The fresh weight and dry weight of leaves and stems 3 months after transplantation were 1.4 times, 1.8 times, and 2 times greater in the red light-irradiated area than in the blue light-irradiated area, respectively (Figs. 14a to 14d) . The control group is a red light irradiation group and a blue light irradiation group. It was located in the middle.
移植 3ヶ月後および 6ヶ月後の根の生重量および乾燥重量は、赤色光照射区にお いて青色光照射区よりそれぞれ 1. 9倍、 1. 3倍および 2倍、 1. 5倍大き力つた(図 15 a、 15b)。  The fresh weight and dry weight of roots at 3 months and 6 months after transplantation were 1.19 times, 1.3 times and 2 times, 1.5 times as large in the red light irradiation region than in the blue light irradiation region, respectively. (Figs. 15a and 15b).
[0049] プラスチックポットに移植したものの場合、グリチルリチン酸の濃度 (根の生重量 g当 たりの量)を、移植後 1ヶ月後、 3ヶ月後、 6ヶ月後に測定した。その結果、グリチルリチ ン酸の濃度は移植後 1ヶ月後から 3ヶ月後に著しく増大した後、根は太くなつたが(図 12)、ほとんど増加しなかった(図 16b)。  [0049] In the case of transplanted to a plastic pot, the concentration of glycyrrhizic acid (amount per g of raw root weight) was measured 1 month, 3 months, and 6 months after transplantation. As a result, the concentration of glycyrrhizic acid increased markedly after 1 to 3 months after transplantation, but the roots became thick (Fig. 12), but hardly increased (Fig. 16b).
グリチルリチン酸の濃度に対する照射光の影響については、赤色光照射区におい てグリチルリチン酸の濃度は最も高ぐ対照区がこれに次ぎ、青色光照射区において 最も低かった。  Regarding the effect of irradiation light on the concentration of glycyrrhizic acid, the concentration of glycyrrhizic acid in the red light irradiation group was the highest in the control group, followed by the lowest in the blue light irradiation group.
[0050] 水耕システムに移植したものの場合、グリチルリチン酸の濃度 (移植 3ヶ月後)に対 する照射光の影響については、赤色光照射区においてグリチルリチン酸の濃度は最 も高ぐ対照区と青色光照射区においては差はな力つた(図 6A)。移植 3ヶ月後のグ リチルリチン酸の濃度をプラスチックポットに移植したものと水耕システムに移植したも のとにおいて比較すると、プラスチックポットに移植したものが 1. 6倍大き力つた(図 1 6a, 16b)。  [0050] In the case of transplanted to a hydroponic system, regarding the effect of irradiation light on the concentration of glycyrrhizic acid (3 months after transplantation), the concentration of glycyrrhizic acid in the red light irradiation group was the highest in the control group and in the blue group. There was no significant difference in the light irradiation zone (Fig. 6A). When the concentration of glycyrrhizic acid at 3 months after transplantation was compared with that transplanted into plastic pots and those transplanted into hydroponic systems, those transplanted into plastic pots were 1.6 times stronger (Fig. 1 6a, 16b).
[0051] UV— Bを照射すると、グリチルリチン酸の濃度は大きくなつた。すなわち、高 UV— B照射を短期間行った区および低 UV— B照射を長期間行った区のいずれにおいて も、グリチルリチン酸の濃度は対照区より約 1. 5倍大き力つた(図 17)。 UV— B照射 区間の比較においては、低 UV—B照射を長期間行った区の方がより大きいダリチル リチン酸の濃度を示した。  [0051] When UV-B was irradiated, the concentration of glycyrrhizic acid increased. In other words, the concentration of glycyrrhizic acid was about 1.5 times greater than that of the control group in both the group subjected to high UV-B irradiation for a short period and the group subjected to low UV-B irradiation for a long period of time (Fig. 17). . In the comparison of the UV-B irradiation sections, the section where low UV-B irradiation was performed for a long time showed a higher concentration of darlicyllithic acid.
なお、各 UV—B照射期間における純光合成速度は、その前後の期間より小さかつ た(図 18、 19)。  The net photosynthetic rate during each UV-B irradiation period was smaller than that before and after that period (Figs. 18 and 19).
産業上の利用可能性  Industrial applicability
[0052] 上記実施例からも明らかなとおり、本発明によれば、植物の二次代謝物を従来の方 法に比較して、はるかに迅速かつ大量に産生せしめることができる。したがって、本 発明は、医薬産業、食品産業および他の関連産業の発展に大きく寄与する。 [0052] As is apparent from the above examples, according to the present invention, the secondary metabolite of a plant can be produced much more rapidly and in a large amount as compared with the conventional method. Accordingly, the present invention greatly contributes to the development of the pharmaceutical industry, food industry and other related industries.

Claims

請求の範囲  The scope of the claims
[I] 植物における二次代謝物の産生を増大せしめる方法であって、植物の生育に影響 する要素の少なくとも 1種の要素の制御を、成苗期を経過した植物体に対して行うこ とを含む、前記方法。  [I] A method for increasing the production of secondary metabolites in a plant, wherein at least one of the elements affecting the growth of the plant is controlled on the plant body that has passed the seedling stage. Said method.
[2] 室内で行われる、請求項 1に記載の方法。  [2] The method according to claim 1, wherein the method is performed indoors.
[3] 植物の生育に影響する要素が、光合成光量子束密度、二酸化炭素の濃度、光の波 長、明期、温度、湿度および栄養分の量力もの 1種または 2種以上である、請求項 1 に記載の方法。  [3] The factor affecting plant growth is one or more of photosynthetic photon flux density, carbon dioxide concentration, light wavelength, light period, temperature, humidity, and nutrients. The method described in 1.
[4] 植物の生育に影響する要素が、光合成光量子束密度および二酸化炭素の濃度であ る、請求項 3に記載の方法。  [4] The method according to claim 3, wherein the factors affecting plant growth are photosynthetic photon flux density and carbon dioxide concentration.
[5] 光合成光量子束密度が 50〜: LOOO μ molm_2s_1であり、二酸ィ匕炭素の濃度が 300[5] Photosynthetic photon flux density is 50 ~: LOOO μmolm _2 s _1 and diacid carbon concentration is 300
〜2000 μ mol mol_1である、請求項 4に記載の方法。 To 2000 is μ mol mol _1, The method of claim 4.
[6] さらに、植物にストレスを与えることをさらに含む、請求項 1に記載の方法。 6. The method according to claim 1, further comprising applying stress to the plant.
[7] ストレスが、 UV— Bの照射である、請求項 5に記載の方法。 [7] The method according to claim 5, wherein the stress is UV-B irradiation.
[8] 植物が、オトギリソゥ科植物である、請求項 1〜7のいずれかに記載の方法。 [8] The method according to any one of claims 1 to 7, wherein the plant is a Hypericaceae plant.
[9] オトギリソゥ科植物力 セィヨウオトギリソゥである、請求項 8に記載の方法。 [9] The method of claim 8, which is Hypericaceae plant power.
[10] 二次代謝物が、ハイペリシンまたはその誘導体である、請求項 8または 9に記載の方 法。 [10] The method according to claim 8 or 9, wherein the secondary metabolite is hypericin or a derivative thereof.
[II] 植物が、 Glycyrrhiza属の植物である、請求項 1〜10のいずれかに記載の方法。  [II] The method according to any one of claims 1 to 10, wherein the plant is a plant belonging to the genus Glycyrrhiza.
[12] 植物が、 Glycyrrhiza uralensisである、請求項 11に記載の方法。 [12] The method according to claim 11, wherein the plant is Glycyrrhiza uralensis.
[13] 二次代謝物が、グリチルリチン酸またはその誘導体である、請求項 11または 12に記 載の方法。  [13] The method according to claim 11 or 12, wherein the secondary metabolite is glycyrrhizic acid or a derivative thereof.
PCT/JP2006/312859 2005-06-30 2006-06-28 Method for increasing the production of secondary metabolite in plant WO2007004480A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-191783 2005-06-30
JP2005191783A JP4686716B2 (en) 2005-06-30 2005-06-30 Methods for increasing the production of secondary metabolites in plants

Publications (1)

Publication Number Publication Date
WO2007004480A1 true WO2007004480A1 (en) 2007-01-11

Family

ID=37604349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312859 WO2007004480A1 (en) 2005-06-30 2006-06-28 Method for increasing the production of secondary metabolite in plant

Country Status (2)

Country Link
JP (1) JP4686716B2 (en)
WO (1) WO2007004480A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4260682A1 (en) 2022-04-14 2023-10-18 Lithuanian Research Centre for Agriculture and Forestry Lighting method for promoting accumulation of secondary metabolites in chelidonium majus plants

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5876444B2 (en) * 2013-05-30 2016-03-02 鹿島建設株式会社 Method for improving concentration of medicinal components in licorice plants

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121228A (en) * 2002-08-01 2004-04-22 New Industry Research Organization Method for increasing polyphenol content of harvested plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121228A (en) * 2002-08-01 2004-04-22 New Industry Research Organization Method for increasing polyphenol content of harvested plant

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BUETER B. ET AL.: "Significance of genetic and environmental aspects in the field cultivation of Hypericum perforatum", PLANTA MEDICA, vol. 64, no. 5, 1998, pages 431 - 437, XP003005175 *
MOSALEEYANON K. ET AL.: "Relationships between net photosynthetic rate and secondary metabolite contents in St. John's wort", PLANT SCIENCE, vol. 169, no. 3, 1 August 2005 (2005-08-01), pages 523 - 531, XP004652286 *
POUTARAUD A. ET AL.: "Effect of light on hybericins contents in fresh following top parts and in an extract of St. John's Wort", PLANTA MEDICA, vol. 67, no. 3, 2001, pages 254 - 259, XP003005174 *
SOUTHWELL I.A. ET AL.: "Seasonal variation in hypericin content of Hypericum perforatum", PHYTOCHEMISTRY, vol. 56, no. 5, 2001, pages 437 - 441, XP004291788 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4260682A1 (en) 2022-04-14 2023-10-18 Lithuanian Research Centre for Agriculture and Forestry Lighting method for promoting accumulation of secondary metabolites in chelidonium majus plants

Also Published As

Publication number Publication date
JP4686716B2 (en) 2011-05-25
JP2007006778A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
Zobayed et al. Production of St. John's wort plants under controlled environment for maximizing biomass and secondary metabolites
KR101200235B1 (en) New Rhodobacter sphaeroides DAA2 and uses thereof
JP5714603B2 (en) Novel fluorescent Pseudomonas species of the Pseudomonas azotoformans species for enhancing budding and growth of plants
Naing et al. Combined effects of supplementary light and CO2 on rose growth and the production of good quality cut flowers
Brisibe et al. Adaptation and agronomic performance of Artemisia annua L. under lowland humid tropical conditions
CN103931429A (en) Artificial light seedling culture method capable of promoting plant growth and differentiation
Rahman et al. In vitro regeneration of Paulownia tomentosa Steud. plants through the induction of adventitious shoots in explants derived from selected mature trees, by studying the effect of different plant growth regulators.
CN110972864A (en) Selenium-rich cultivation method for Bigheng white atractylodes rhizome
KR102488480B1 (en) Culturing method of Brassica oleracea var. acephala
CN105431397B (en) Method for cultivating crop using bacillus bacteria
RU2760289C2 (en) Biostimulating composition for plant growth, containing lipopeptides
CN105961441B (en) The application of bacillus JC65 and its volatile materials in plant growth-promoting
JP4686716B2 (en) Methods for increasing the production of secondary metabolites in plants
Kwack et al. Growth and development of grafted cucumber transplants as affected by seedling ages of scions and rootstocks and light intensity during their cultivation in a closed production system
CN108391591B (en) Tissue culture and rapid propagation method for tabebuia flavedo
CN114503989B (en) Application of 2-amino-3-indolyl butyric acid in promoting plant growth
Yahya et al. Effect of biofertilizer trichoderma harzianum t-22 application, growing medium and training methods on some chararctrestics for Lantana camara plants
RU2736340C9 (en) Agricultural growth stimulant
Gong et al. Effects of fungal elicitors on seed germination and tissue culture of Cymbidium goeringii
Tuhuteru et al. Responses growth and yield of three shallot cultivars in sandy coastal land with PGPR (Plant Growth Promoting Rhizobacteria)
KR20130045444A (en) Methods for cultivating root medicinal plants
KR100533793B1 (en) Mass propagation Method for Stock and Adventitious Root of Acanthopanax Koreanum Nakai Using Bioreactor
CN106171981A (en) The preparation method of a kind of cross-pollinatd plant callus high frequency regeneration system and the application in genetic transformation thereof
Iman et al. Increased production and flavonoids of two celery highland varieties (Apium graveolens L.) by endophytic bacteria in lowland
CN111320510A (en) Directional fermentation microbial fertilizer and preparation method thereof

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767476

Country of ref document: EP

Kind code of ref document: A1