WO2007003501A1 - Capteur gyrometrique micro-usine realisant une mesure differentielle du mouvement des masses vibrantes - Google Patents

Capteur gyrometrique micro-usine realisant une mesure differentielle du mouvement des masses vibrantes Download PDF

Info

Publication number
WO2007003501A1
WO2007003501A1 PCT/EP2006/063306 EP2006063306W WO2007003501A1 WO 2007003501 A1 WO2007003501 A1 WO 2007003501A1 EP 2006063306 W EP2006063306 W EP 2006063306W WO 2007003501 A1 WO2007003501 A1 WO 2007003501A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
mass
comb
elementary
module
Prior art date
Application number
PCT/EP2006/063306
Other languages
English (en)
Inventor
Claude Rougeot
Bernard Chaumet
Bertrand Le Verrier
Jérôme WILLEMIN
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to DE602006007001T priority Critical patent/DE602006007001D1/de
Priority to US11/994,825 priority patent/US7707886B2/en
Priority to EP06763769A priority patent/EP1899681B1/fr
Priority to AT06763769T priority patent/ATE432458T1/de
Priority to JP2008518786A priority patent/JP2008545128A/ja
Publication of WO2007003501A1 publication Critical patent/WO2007003501A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion
    • G01C19/5747Structural details or topology the devices having two sensing masses in anti-phase motion each sensing mass being connected to a driving mass, e.g. driving frames

Definitions

  • Micro-machined gyrometric sensor realizing a differential measurement of the movement of vibrating masses
  • the invention relates to a microgyrometer, that is to say an inertial micromechanical sensor dedicated to the measurement of angular velocities, produced by micromachining techniques, with an original arrangement of the measuring modules for the movement of the vibrating masses.
  • the micro-machining of sensors is inspired by the techniques of realization of integrated circuits: it consists in collectively making on a single thin plate (in principle in silicon) several tens or hundreds of identical sensors, by techniques of deposit, doping and photoengraving which not only define the electrical parts of the sensor but also the geometric cutting patterns that give the sensor its mechanical properties.
  • Engraving techniques are well mastered, and collective manufacturing greatly reduces costs. The robustness of the devices is excellent, and the small size of the structures is very advantageous.
  • a suspended vibrating mass and an electrical excitation structure are formed in a silicon wafer to put this mass in vibration in a given direction.
  • the sensitive axis of the gyrometer perpendicular to this direction of vibration, a Coriolis force is generated on the mass.
  • This Coriolis force which is a vectorial composition of the vibration and rotational motion, produces a vibration of the mass in a direction perpendicular to both the excitation vibration and the axis of rotation. This resulting natural vibration is detected by a detection structure, itself made by micro-machining.
  • the sensitive axis of these gyrometers is located in the plane of the silicon wafer and the detection structure detects a movement perpendicular to the plane of the masses by means of electrodes placed above each moving mass. The electrical signals that resulting from this detection are used to determine a value of angular speed of rotation of the gyrometer around its sensitive axis.
  • the gyro comprises several machined plates, which are brought back to one another; one of the plates comprises the micro-machined vibrating structure itself with its moving masses, its connecting arms and a structure for exciting the vibration; at least one other plate has electrodes for detecting the vibration generated by the Coriolis force.
  • the manufacture of the multi-plate assembly is expensive.
  • the detection structure In this type of gyrometer, it is necessary to separate the excitation movement along the Ox axis and the detection movement along the Oy axis: the detection structure must in fact mainly detect the movement according to Oy that results of the Coriolis force, without the measurement being polluted by a parasitic detection of the excitation movement according to Ox.
  • a differential effect is implemented to overcome non-linearities and to achieve a high sensitivity.
  • This differential effect consists of a subtraction of the signals generated by the movement of the masses, the vibrating masses, along the same axis, in phase opposition.
  • the difference in capacity of the two masses is at the origin of a drift of the gyrometer which is detrimental to its proper functioning.
  • the gyrometers of the state of the art comprise a detection module for measuring the movement of each mass. These detection modules deliver a signal that evolves in the same direction, although the movements of the two masses are reversed, which makes the gyro sensitive to an acceleration, dynamic or static, collinear with the axis of movement of the masses.
  • An object of the invention is to provide a microgyrometer structure which allows a rotation measurement with a very good sensitivity, a very good linearity, a very good stability of bias and minimal disturbances due to the excitation movement or the static or dynamic acceleration applied in the collinear axis to the mass displacement axis.
  • Another aim is to propose a microgyrometer structure which can receive, in addition to the electrical structures for vibrating and motion detection, auxiliary electrical structures for adjusting the frequency, bias compensation (non-zero angular velocity measurement when the angular velocity is equal to zero) due to intrinsic defects or to the dispersion of characteristics during mass production, and to control the position of the masses in a fixed position which may be the one occupied by them when they are at rest.
  • a vibrating structure gyro produced by micromachining of a flat thin plate, this gyrometer having two symmetrical mobile assemblies (30, 50; 30 ', 50') with respect to a central axis parallel to a direction Oy of the plane of the plate, coupled by a coupling structure (20, 20 ', 22) connecting these two sets to allow a transfer of vibration mechanical energy between them, each of the two symmetrical mobile assemblies comprises two movable elements (30, 50), a first inertial movable member (50) being connected to the coupling structure (20, 20 ', 22) and vibratable in two orthogonal directions Ox and Oy of the plane of the plate, and a second movable member (30) being connected on the one hand to the first member (50) and on the other hand to fixed anchoring zones (34, 36) by connecting means (40-46; 58) which allow transmission to the second element of the vibratory movement ion of the first element in the direction Oy without allowing a movement of
  • one of the other which are first and second signals S1 M1, S1M2 for the first and second modules of the first structure and third and fourth signals S2M1, S2M2 for the first and second modules of the second structure, and means being provided for performing the linear combination S1 M1 + S2M2 - S1 M2 - S2M1.
  • the single figure represents a view from above of the general structure of the micromachined gyrometer according to the invention.
  • the figure shows the planar thin plate of silicon machined according to the invention to make a gyrometer whose sensitive axis is perpendicular to the plane of the plate (which is the plane of the figure).
  • Conductive silicon makes it possible the electrical functions of the gyrometer and in particular the excitation functions and the detection functions; these functions are performed by interdigital capacitive combs powered by current or electrical voltage; the fingers of these combs, directly machined in the conductive silicon, serve as capacitor plates useful for the excitation functions and the detection functions.
  • the thickness of the original silicon wafer is a few hundred micrometers; the plate comprises, on the one hand, fixed anchoring zones formed in this thickness and, on the other hand, the vibrating structure itself, free with respect to the anchoring zones and formed on a smaller thickness, for example over a thickness of a few tens of microns, isolated from the rest of the plate thickness by a narrow gap. Over this thickness of a few tens of micrometers, the silicon wafer is cut by micromachining according to the moving mass patterns, moving frame, coupling structure, bending arm, and desired interdigitated combs.
  • a silicon on insulator substrate consists of a silicon substrate a few hundred micrometers thick which carries on its front face a thin layer of silicon oxide itself covered with a monocrystalline silicon layer of a few tens micrometers thick.
  • the machining consists in attacking the silicon of the substrate by its front face, according to the desired surface patterns, by means of photogravure techniques in use in microelectronics, until reaching the oxide layer, with a selective etching product which Attacks silicon without significantly attacking the oxide. Etching is stopped when the oxide layer is exposed.
  • the general structure of the gyrometer is a tuning fork type structure, that is to say a symmetrical structure comprising two inertial mobile assemblies vibrating in phase opposition, these mobile assemblies being interconnected by a coupling structure for transmitting without losses. , from one set to another, the mechanical vibration energies of the two sets to phase out these vibrations.
  • the symmetry of the structure is a symmetry with respect to an axis A1, with a movable assembly on each side of this axis.
  • the coupling structure is preferably constituted by two rectangular outer frames 20 and 20 'within which the moving inertial assemblies are located.
  • the frames 20 and 20 'are interconnected by a short connecting bar 22 can be considered rigid.
  • Link bar 22 connects the middle of one side of the first frame to the middle of an adjacent side of the second frame. It constitutes a center of symmetry of the whole structure; it is perpendicular to the axis A1 and centered on this axis.
  • the short link bar 22 may be reinforced by two other short link bars located on either side of the bar 22 and also centered on the axis A1.
  • the outer frames 20 and 20 'of the coupling structure surround the two moving assemblies in principle by at least three sides and they are connected to these two sets preferably along sides perpendicular to the general axis of symmetry A1.
  • the frames 20 and 20 ' may (optionally) be each attached to an anchoring zone 24, 24' located in the middle of an opposite side to the side connected to the connecting bar 22. In this case, the frames 20 and 20 completely surround each respective inertial mobile assembly.
  • the central connecting bar 22 and the other sides of the frames 20 and 20 ' are not connected to fixed anchoring zones.
  • the interdigitated combs used to vibrate the inertial assemblies and to detect the movement resulting from the Coriolis force are also arranged inside each of the frames. outside 20 and 20 '.
  • Each inertial assembly comprises a central movable inertial mass 30 and an intermediate inertial frame 50 which surrounds it and which is therefore located between the mass 30 and the outer frame 20.
  • the moving mass 30 can move only in a direction Oy (vertical axis in the plane of the figure); the intermediate frame 50 can move along the axis Oy and along an axis Ox perpendicular to Oy and also located in the plane of the figure.
  • the sensitive axis of the gyrometer is an axis Oz perpendicular to the plane of the plate.
  • a vibration of the intermediate inertial frame is excited in the Ox direction; when the gyro rotates about its sensitive axis Oz, a vibration of the intermediate frame is generated along the axis Oy. This vibration according to Oy is transmitted to the mass 30, while the vibration according to Ox is not transmitted.
  • an excitation structure of the vibration is associated with the intermediate frame 50, and a vibration detection structure is associated with the inertial mass 30.
  • the coupling structure consisting of the frames 20, 20 'and the bar 22 which connects them, transmits the mechanical vibration energy of the mobile inertial assembly from one side to the other of the axis A1 both for the vibrations according to Ox and the vibrations according to Oy because this coupling structure is connected directly to the intermediate frames which can vibrate at the same time according to Ox and according to Oy.
  • the mobile mass 30 is connected to fixed anchoring zones by at least two bending arms designed to allow movement of the mass according to Oy but to prevent any significant movement of the mass in the Ox direction.
  • These arms are preferably located on either side of an axis of symmetry 32 of the mass, parallel to Ox.
  • these zones are preferably situated on another axis of symmetry 38 of the mass, which axis is parallel to Oy.
  • the bending arms which connect the mass 30 to the zones 34 and 36 are elongated arms in the Ox direction, so as to have a high stiffness (high resistance to elongation) in this direction. They are also very narrow, compared to their length, to have a low stiffness in the direction Oy perpendicular to Ox; this low stiffness allows movement of the mass along Oy.
  • the mass being connected to the anchoring zone 34 by two arms 40 and 42 in the extension one of the other on both sides of zone 34; the mass is also connected to the second anchoring zone 36 by two arms 44 and 46 in the extension of one another on either side of the zone 36.
  • each arm is connected on one side near an end corner of the mass (the mass has one form in principle generally rectangular) and the other to the anchoring zone situated on the axis of symmetry 38.
  • the arms 40, 42, 44, 46 could also be envisaged to give the arms 40, 42, 44, 46 a folded shape with two branches elongated in the direction Oy, the arms then being attached to the mass closer to the central anchoring zone.
  • the mobile intermediate frame 50 preferably completely surrounds the mass 30.
  • the mass 30 is connected to the intermediate frame 50 by at least two bending arms which have the particularity of having a very high stiffness (very high resistance to elongation) in the Oy direction and low stiffness in the direction Ox. These arms are elongated in the direction Oy and have a small width in front of their length, in order to present this difference in stiffness.
  • bending arms of this type between the mass 30 and the intermediate frame 50, the arms being conveniently located at each corner of the moving mass if of generally rectangular shape. They are arranged symmetrically on the one hand with respect to the axis of symmetry 32 of the mass (axis parallel to Ox) and secondly with respect to the axis of symmetry 38 (parallel to Oy).
  • These arms are designated by the references 52, 54, 56, 58. They preferably have a U-folded shape to halve their longitudinal dimension without significantly reducing their useful length, thus without significantly reducing the high ratio between their stiffness according to Oy and their stiffness according to Ox.
  • the two folded branches of the U are elongated parallel to Oy and are interconnected by a short connecting element.
  • the arms 52 to 58 could, however, not be folded over and extend in the direction Oy between the intermediate frame and the mass. Folding saves space without significantly altering the desired mechanical characteristics.
  • the arms are folded as in the figure, it is preferable to also connect the short connecting element (which connects the two branches of the U) of a first arm 52 to the corresponding short element of the arm 54 which is symmetrical of the arm 52 relative to the axis 38.
  • a cross member 60 is provided for this purpose, parallel to Ox, to connect the bottom of the U of the link arm 52 to the bottom of the U of the flexion arm 54, the arms 52 and 54 being symmetrical with respect to the axis 38.
  • a similar cross-member 62 symmetrical with the cross-member 60 with respect to the axis 32, connects the symmetrical elements 56 and 58.
  • crosspieces 60 and 62 parallel to Ox, reinforce the symmetry of transmission of a movement according to Oy imposed by the mobile intermediate frame 50 to the mass 30. They are not present if the arms 52, 54, 56, 58 do not have a folded shape because in this case the ends of the arms 52 and 54 would already be rigidly connected by the intermediate frame 50 itself.
  • the elongated U-shaped folded bending arm between the movable frame 50 and the movable mass 30 is obtained by cuts in the movable frame and in the moving mass, but in general, the arms bends extend approximately from an inner corner of the intermediate frame to a corner facing the mass even if the actual attachment point of the arm on the frame or on the mass does not start exactly from this corner.
  • the mass is suspended globally by its four corners to the moving frame.
  • the movable intermediate frame 50 surrounded by the outer frame 20 of the coupling structure, is connected to this outer frame by arms of short links 64 on one side, 66 on the other, the arms 64 being symmetrical with the arms 66 relative to the axis of symmetry 32.
  • the arms 64, as well as the arms 66, are distributed along a side of the frame 50, this side being parallel to the Ox axis.
  • These short arms are substantially rigid links through which the vibration energy according to Ox and Oy of the intermediate frame 50 (and the moving mass 30) can pass to the coupling structure and thus to the second intermediate frame 50 'and the second moving mass 30 '.
  • three short arms 64 are distributed along the side of the intermediate frame 50; three other short arms 66 are distributed along the opposite side.
  • the intermediate frame 50 is vibrated according to Ox by a first interdigitated comb structure 70 which comprises a fixed half-comb 72 attached to an anchoring zone 74 and a movable half-comb 76 formed along a first side (parallel to Oy) of the intermediate frame 50.
  • the teeth or fingers of the fixed half-comb 72 conductive silicon machined at the same time as the other elements of the gyrometer, constitute the first frame of a capacity and the teeth or fingers of the half -Mobile 76, also conductive silicon, constitute the second frame of this capacity.
  • the comb structure acts as an exciter of the movement of the moving part due to the forces of attraction exerted between the facing fingers when a tension is applied between the half-combs.
  • the excitation voltage is alternating to generate a vibration movement, and the frequency of this voltage is chosen close to the mechanical resonance frequency of the structure.
  • the excitation voltage is applied between the anchoring zone 74 and one and / or the other of the anchoring zones 34 and 36.
  • the fixed half-comb 72 is in direct electrical contact (via the silicon body driver) with the anchoring zone 74; the moving half-comb 76 is in contact with the anchoring zones 34 and 36 via the bending arms 52 to 58, the body of the moving mass, the bending arms 40 to 46, and the intermediate frame 50 , so that by applying a tension between the anchoring zone 74 and the anchoring zones 34 or 36 a tension is applied between the fixed part and the moving part of the comb 70.
  • the excitation movement generated on the intermediate frame 50 is in the direction Ox, the combs acting by changing the overlapping surface of the interposed fingers.
  • the microgyrometer preferably comprises another interdigitated comb structure associated with the intermediate frame, symmetrical with the structure 70 with respect to the axis 38. It comprises a fixed half-comb 82 attached to an anchoring zone 84, and a half mobile comb 86 machined along one side of the intermediate frame 50.
  • This structure can serve as a detector of the movement of the frame according to Ox. It is useful for the enslavement of the movement excited by the comb 70; the slaving is generally useful for adjusting the excitation frequency with respect to the resonant frequency of the structure.
  • the voltages detected by the structure 80 appear between the anchoring zone 84 and the anchoring zones 34 and 36 (or else the zone 24).
  • a dual motion detection structure comprising a first and a second elementary detection structure is associated with the second movable element (30) of each of the two assemblies to detect a vibration of the second elements according to Oy.
  • Each elementary detection structure comprises a first module. detection and a second detection module.
  • These detection modules are symmetrical with respect to the axis of symmetry 32 of the mass, they each comprise two interdigitated combs 90, 110 identical.
  • the orientation of these combs depends on the principle on which the detection is based: if the detection is based on a measurement of the surface variations in mutual overlap of the fingers of the fixed and mobile half-combs, the motion detection comb according to Oy is arranged perpendicularly excitation comb 70 (which also relies on overlapping surface variations). But if the detection is based on a measurement of the spacing variations between the fingers of the fixed half-comb and the moving half-comb, the detection comb is arranged parallel to the excitation comb. Detection by varying the spacing between fingers is preferred because it is more sensitive.
  • the interdigitation of the combs is then dissymmetrical at rest, the fingers of a half-comb not being exactly in the middle of the interval between two fingers of the other half-comb, whereas a working comb (like the excitation comb) based on variations surfaces overlapped at the fingers of a half-comb in the middle of the gap between the fingers of the other half-comb.
  • all the detection combs are arranged with the same general orientation as the combs 70 and 80, although they are associated with a movement according to Oy while the combs 70 and 80 are associated with a movement (excitation or detection) according to Ox.
  • the first and the second module are associated with the moving mass, each of them comprises two identical interdigitated combs.
  • the first module comprises two combs 90 and 110 disposed parallel to the axis of symmetry 38 and on either side of this axis. These combs both play the same role of detector of the movement of the mass according to Oy, and one could alternatively be content with a single comb placed in the center of the mass along the axis 38.
  • the comb 90 comprises a fixed half-comb 92 attached to an anchoring zone 94 and a moving half-comb 96 forming part of the moving mass itself.
  • the moving mass comprises a cutout to make room for the fixed comb 92 and the anchoring zone 94, and the edges of this cutout are cut in the form of fingers to form the movable half-comb 96 in which are interposed the fingers of the fixed half-comb.
  • the comb 90 is double, that is to say that two sides of the cut of the mass 30 are provided with fingers, and the fixed half-comb 92 has fingers on both sides of the anchoring zone 94.
  • the interdigitated structure 110 is rigorously symmetrical with the structure 90 with respect to the axis of symmetry 38 and is formed in another cutout of the moving mass 30. It comprises a fixed half-comb 112, an anchoring zone 114, and a half-moving comb 116.
  • an electronic circuit associated with this structure detects the frequency modulation of the electrical voltages present between the anchoring zone 94 and the anchoring zones 34 and 36, and / or between the zone 114 and the zones 34 and 36 constituting a first detection signal S1 M1 of the first module.
  • This modulation is due to a displacement of the moving mass along the axis Oy since the mass can move only along this axis.
  • the second detection module comprises two combs 100, 120 which are symmetrical to the combs 90, 110 of the first module relative to each other. to the axis of symmetry 32 of the mass.
  • the detection signal S1 M2 of the second module consists of the frequency modulation of the electrical voltages present between an anchoring zone 104 of the comb 100 and the anchoring zones 34. Due to the symmetry of the first and second modules along the axis 32, when the mass 30 is at rest, the relative position along the axis Ox of the teeth of the movable half-comb 96 relative to the teeth of the fixed comb 92 is reversed relative to the relative position, according to the axis Ox, the teeth of the moving half-comb 106 with respect to the teeth of the fixed comb 102. Accordingly, when the mass 30 is driven in a movement along the axis Oy, the first detection signal S1 M1 and a second detection signal S1 M2 from the second module move in the opposite direction.
  • the four detection signals are exploited as a linear combination S1 M1 + S2M2-S1 M2-S2M1 which constitutes the output signal resulting from the gyro.
  • the linear combination deals with four signals, generated by the motion of two vibrating masses in phase opposition, two of the signals varying in opposite directions of two others.
  • the gyro delivering the resulting output signal is insensitive to the acceleration in the direction of movement of the masses. Assuming that the difference in static capacitance between the first modules of the first and second structures is identical to the difference in static capacitance between the second modules of the first and second structures, this difference in static capacitance does not produce no effect on the resulting output signal, and therefore no drift is observed in this case.
  • the first module of the first structure is electrically connected to the second module of the second structure to make a first sum S1 M1 + S2M2 and vice versa
  • the second module of the first structure is electrically connected to the first module of the second structure to realize a second sum S1 M2 + S2M1, and in that the result of the two sums is subtracted by an electronic means external to the plate.
  • At least one additional interdigital comb associated with the moving mass could be provided.
  • This comb makes it possible to adjust electrically, by a simple direct tension control, the apparent stiffness of the bending arms 40, 42, 44, 46, this stiffness adjustment having a direct consequence on the adjustment of the natural vibration frequency according to Oy in the presence of a Coriolis force.
  • the natural mechanical resonance of mobile assemblies depends on the stiffness of the bending arms that oppose the generated vibration movement.
  • a stiffness adjustment, and therefore a frequency adjustment makes it possible to compensate for variations in resonant frequency that could result from non-uniformities or manufacturing defects. The differences between the actual frequency and the predicted theoretical frequency can thus be compensated.
  • the comb that could exert this constraint is a comb oriented like the other combs (general direction according to Oy) and in this case it acts by variation of the spacing between fingers of the half-combs (comb with offset fingers).
  • a single central comb may suffice, or two symmetrical combs arranged laterally on either side of the axis 38.
  • the stiffness adjustment comb comprises a fixed half-comb, a self-anchoring zone (for a feed autonomous electric), and a mobile half-comb still constituted by fingers directly cut into the moving mass.
  • Another improvement may be provided by combining two new combs with the moving mass. These additional combs are intended to exert, by applying appropriate continuous voltages on each of them, a twisting force of the mobile mass around its center of symmetry. This has the effect of modifying the orientation of the excitation movement with respect to the movement of detection, and therefore modify (in a sense tending to compensate for it) the quadrature bias of the gyrometer.
  • the gyrometer biases are the non-zero signal values measured while the angular rotation speed of the gyrometer is zero.
  • the quadrature bias results from movements along an axis while a force is actually exerted on a perpendicular axis. It results from squareness defects of beam sections or other asymmetry factors.
  • This bias can be partially offset by exerting a certain torsion of the moving mass. This twist is exerted for example by an action on two interdigitated combs diagonally located on either side of a center of symmetry of the moving mass 30.
  • a DC voltage is applied to each comb so as to exert a torque in the meaning that is suitable for bias compensation.
  • the torsion torque exists when the combs exert forces applied at different points and whose directions do not pass through the center of symmetry of the mass.
  • two combs can be provided, in addition to the detection combs 90, 100, 110 and 120 to exert this torque and frequency adjustment combs.
  • a single comb would suffice, provided that this comb exerts a force in a direction which does not pass through the center of symmetry of the moving mass.
  • the additional combs arranged diagonally on the moving mass and exerting forces in directions which do not pass through the center of symmetry of the mass, could serve both to adjust the frequency and to exert torsion. bias compensation; by applying different amplitude voltages on the additional combs, both a torsion torque and a resultant upward or downward force are created, the latter creating the desired negative stiffness.
  • a configuration with combs specifically for stiffness adjustment and combs specifically for quadrature bias compensation is preferred.
  • two combs may be provided, in addition to detection combs 90, 100, 110 and 120 which are combs for exerting a restoring force of the moving mass to a fixed position.
  • the voltage that is applied to these combs is intended to compensate for the displacement imparted by the movement of the gyrometer, the value of this voltage is calculated from the measurement of the position delivered by the detection combs.
  • a microgyrometer has thus been described which is easily achievable from a silicon wafer in the plane of which two mobile inertial units and a mechanical coupling structure which surrounds them have been machined, and in which each moving assembly in the form of two parts, moving mass and moving frame, the movable frame being connected to the coupling structure by rigid links, the mobile mass being connected to the frame on the one hand and to anchor points on the other part by bending arms which allow a movement in the plane in a single degree of freedom for the moving mass and in two degrees of freedom for the frame.
  • the mechanical coupling between the two moving assemblies is as well for the excitation vibrations as for the orthogonal vibrations resulting from the Coriolis force.
  • the gyro according to the invention can have very good quality coefficients in excitation and in detection, which makes it possible to increase the sensitivity of the gyrometer in the case where an identical excitation frequency and a detection frequency are used.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Cosmetics (AREA)

Abstract

Un microgyromètre comporte deux ensembles mobiles symétriques (30, 50 ; 30' , 50' ) couplés par une structure de couplage (20, 20' , 22) ; chacun des deux ensembles comporte une masse mobile (30) entourée par un cadre intermédiaire mobile (50) . Le cadre (50) est relié à la structure de couplage (20, 20' , 22) et peut vibrer selon deux degrés de liberté dans des directions orthogonales Ox et Oy du plan de la plaque. La masse (30) est reliée d'une part au cadre et d'autre part à des zones d'ancrage fixes (34, 36) , par des moyens de liaison (40-46 ; 52-58) qui permettent la transmission à la masse du mouvement de vibration selon la direction Oy sans autoriser un mouvement de la masse selon la direction Ox. Une structure d'excitation (70) est associée au cadre pour exciter sa vibration selon Ox. Une structure de détection de mouvement (90) est associée à la masse (30) pour détecter sa vibration selon Oy.

Description

Capteur gyrométrique micro-usiné réalisant une mesure différentielle du mouvement des masses vibrantes
L'invention concerne un microgyromètre, c'est-à-dire un capteur micromécanique inertiel dédié à la mesure de vitesses angulaires, réalisé par des techniques de micro-usinage, avec une disposition originale des modules de mesure du mouvement des masses vibrantes. Le micro-usinage de capteurs s'inspire des techniques de réalisation de circuits intégrés : il consiste à réaliser collectivement sur une seule plaque mince (en principe en silicium) plusieurs dizaines ou centaines de capteurs identiques, par des techniques de dépôt, dopage et photogravure qui définissent non seulement les parties électriques du capteur mais aussi les motifs géométriques de découpe qui donnent au capteur ses propriétés mécaniques.
Les techniques de gravure sont bien maîtrisées, et la fabrication collective réduit considérablement les coûts. La robustesse des dispositifs est excellente, et la petite taille des structures est très avantageuse. Pour réaliser un microgyromètre, on constitue dans une plaque de silicium une masse vibrante suspendue et une structure d'excitation électrique pour mettre cette masse en vibration dans une direction déterminée. Lorsqu'on fait tourner le gyromètre autour d'un axe dit axe sensible du gyromètre, perpendiculaire à cette direction de vibration, une force de Coriolis est engendrée sur la masse. Cette force de Coriolis, qui est une composition vectorielle du mouvement de vibration et du mouvement de rotation, produit une vibration de la masse dans un sens perpendiculaire à la fois à la vibration d'excitation et à l'axe de rotation. Cette vibration naturelle résultante est détectée par une structure de détection, elle-même réalisée par micro-usinage.
Des structures à deux masses vibrantes couplées mécaniquement à la manière d'un diapason ont déjà été réalisées. Les deux masses sont coplanaires, usinées dans la même plaque de silicium.
En général, l'axe sensible de ces gyromètres est situé dans le plan de la plaque de silicium et la structure de détection détecte un mouvement perpendiculaire au plan des masses à l'aide d'électrodes placées au-dessus de chaque masse mobile. Les signaux électriques qui résultent de cette détection servent à déterminer une valeur de vitesse angulaire de rotation du gyromètre autour de son axe sensible.
Toutefois, la réalisation de structures de détection de mouvements perpendiculaires au plan des masses mobiles oblige en général à prévoir que le gyromètre comprend plusieurs plaques usinées, que l'on vient rapporter les unes sur les autres ; l'une des plaques comporte la structure vibrante micro-usinée proprement dite avec ses masses mobiles, ses bras de liaison et une structure d'excitation de la vibration ; au moins une autre plaque comporte des électrodes de détection de la vibration engendrée par la force de Coriolis. La fabrication de l'ensemble à plusieurs plaques est coûteuse.
C'est pourquoi on a également cherché à réaliser des structures technologiquement plus simples, usinées dans une seule plaque de silicium, et dans lesquelles un mouvement d'excitation de la masse mobile est engendré dans une direction Ox du plan alors qu'un mouvement résultant de la force de Coriolis est détecté dans une direction Oy du même plan, perpendiculaire à Ox. L'axe sensible du microgyromètre est dans ce cas un axe Oz perpendiculaire au plan de la plaque de silicium. La structure d'excitation et la structure de détection sont des peignes capacitifs interdigités réalisés au cours de l'usinage de la plaquette de silicium. Toutes les structures électriques sont réalisées sur la même plaque que la structure mécanique vibrante. La fabrication est de ce fait beaucoup moins coûteuse.
Dans ce type de gyromètre, il est nécessaire de bien séparer le mouvement d'excitation selon l'axe Ox et le mouvement de détection selon l'axe Oy : il faut en effet que la structure de détection détecte principalement le mouvement selon Oy qui résulte de la force de Coriolis, sans que la mesure soit polluée par une détection parasite du mouvement d'excitation selon Ox.
Dans le cas de gyromètre de l'état de l'art comportant deux masses vibrantes et détectant dans le plan leur mouvement, un effet différentiel est mis en œuvre pour s'affranchir de non-linéarités et pour atteindre une sensibilité élevée. Cet effet différentiel consiste en une soustraction des signaux générés par le mouvement des masses, les masses vibrant, selon un même axe, en opposition de phase. Lorsque les deux masses n'ont pas une capacité statique parfaitement identique, la différence de capacités des deux masses est à l'origine d'une dérive du gyromètre qui nuit à son bon fonctionnement. Par ailleurs, les gyromètres de l'état de l'art comportent un module de détection pour mesurer le mouvement de chaque masse. Ces modules de détection délivrent un signal qui évolue dans le même sens, bien que les mouvements des deux masses soient inverses, ce qui rend sensible le gyromètre à une accélération, dynamique ou statique, colinéaire à l'axe de déplacement des masses.
Un but de l'invention est de proposer une structure de microgyromètre qui permette une mesure de rotation avec une très bonne sensibilité, une très bonne linéarité, une très bonne stabilité de biais et des perturbations minimes dues au mouvement d'excitation ou à l'accélération statique ou dynamique appliquée dans l'axe colinéaire à l'axe de déplacement des masse. Un autre but est de proposer une structure de microgyromètre qui peut recevoir, outre les structures électriques de mise en vibration et de détection de mouvement, des structures électriques auxiliaires de réglage de fréquence, de compensation de biais (mesure de vitesse angulaire non égale à zéro lorsque la vitesse angulaire est égale à zéro) dus à des défauts intrinsèques ou à la dispersion de caractéristiques lors de la fabrication en série, et d'asservissement de la position des masses sur une position fixe pouvant être celle qu'elle occupe lorsqu'elles sont au repos.
Selon l'invention, on propose un gyromètre à structure vibrante réalisé par micro-usinage d'une plaque mince plane, ce gyromètre comportant deux ensembles mobiles symétriques (30, 50 ; 30', 50') par rapport à un axe central parallèle à une direction Oy du plan de la plaque, couplés par une structure de couplage (20, 20', 22) reliant ces deux ensembles pour permettre un transfert d'énergie mécanique de vibration entre eux, chacun des deux ensembles mobiles symétriques comporte deux éléments mobiles (30, 50), un premier élément mobile inertiel (50) étant relié à la structure de couplage (20, 20', 22) et pouvant vibrer selon deux degrés de liberté dans des directions orthogonales Ox et Oy du plan de la plaque, et un deuxième élément mobile (30) étant relié d'une part au premier élément (50) et d'autre part à des zones d'ancrage fixe (34, 36), par des moyens de liaison (40-46 ; 52-58) qui permettent la transmission au deuxième élément du mouvement de vibration du premier élément selon la direction Oy sans autoriser un mouvement du deuxième élément selon la direction Ox, une structure d'excitation (70) étant associée au premier élément mobile (50) pour exciter une vibration du premier élément selon Ox, et une première et une deuxième structures de détection de mouvement (90, 110 ; 100, 120 ) étant associées au deuxième élément mobile (30) de chacun des deux ensembles pour détecter une vibration des deuxièmes éléments selon Oy, le premier élément mobile (50) étant un cadre intermédiaire rectangulaire entourant le deuxième élément mobile désigné par l'appellation masse mobile (30), et la structure de couplage comportant deux cadres extérieurs (20, 20') dont chacun entoure le cadre intermédiaire d'un ensemble mobile respectif caractérisé en ce que chaque structure de détection comprend un premier module (90, 110 ; 90', 110') de détection et un deuxième module (100, 120 ; 100', 120') de détection, symétriques par rapport à l'axe de symétrie général Ox, les premiers modules (90, 110; 90', 110') de détection de chaque structure d'une part et les deuxièmes modules (100, 120 ; 100', 120') de détection de chaque structure d'autre part étant symétriques par rapport à l'axe central parallèle à la direction Oy, le premier et le deuxième modules de chaque structure fournissant des signaux de détections distincts variant en sens inverse l'un de l'autre qui sont un premier et un deuxième signaux S1 M1 , S1M2 pour le premier et le deuxième modules de la première structure et un troisième et quatrième signaux S2M1 , S2M2 pour le premier et le deuxième modules de la seconde structure, et des moyens étant prévus pour réaliser la combinaison linéaire S1 M1 + S2M2 - S1 M2 - S2M1.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels :
- la figure unique représente en vue de dessus la structure générale du gyromètre micro-usiné selon l'invention ;
La figure représente la plaque mince plane de silicium usinée selon l'invention pour faire un gyromètre dont l'axe sensible est perpendiculaire au plan de la plaque (qui est le plan de la figure).
Le silicium est choisi comme matériau préférentiel, d'une part pour ses propriétés mécaniques et d'autre part pour sa conductivité élevée lorsqu'il est suffisamment dopé par une impureté appropriée (du bore en général pour du silicium de type P). Le silicium conducteur permet de réaliser les fonctions électriques du gyromètre et notamment les fonctions d'excitation et les fonctions de détection ; ces fonctions sont réalisées par des peignes capacitifs interdigités alimentés en courant ou en tension électrique ; les doigts de ces peignes, directement usinés dans le silicium conducteur, servent d'armatures de condensateurs utiles aux fonctions d'excitation et aux fonctions de détection.
L'épaisseur de la plaque de silicium d'origine est de quelques centaines de micromètres ; la plaque comporte d'une part des zones d'ancrage fixes formée dans cette épaisseur et d'autre part la structure vibrante proprement dite, libre par rapport aux zones d'ancrage et formée sur une épaisseur plus faible, par exemple sur une épaisseur de quelques dizaines de micromètres, isolée du reste de l'épaisseur de la plaque par un intervalle étroit. Sur cette épaisseur de quelques dizaines de micromètres, la plaque de silicium est découpée par micro-usinage selon les motifs de masse mobile, cadre mobile, structure de couplage, bras de flexion, et peignes interdigités désirés.
L'usinage de la structure peut être réalisé en utilisant comme substrat d'origine un substrat de silicium sur isolant, mais d'autres méthodes sont également possibles. Un substrat en silicium sur isolant est constitué d'un substrat de silicium de quelques centaines de micromètres d'épaisseur qui porte sur sa face avant une fine couche d'oxyde de silicium elle-même recouverte d'une couche de silicium monocristallin de quelques dizaines de micromètres d'épaisseur. L'usinage consiste à attaquer le silicium du substrat par sa face avant, selon les motifs de surface désirés, au moyen de techniques de photogravure en usage en microélectronique, jusqu'à atteindre la couche d'oxyde, avec un produit de gravure sélectif qui attaque le silicium sans attaquer significativement l'oxyde. On arrête la gravure lorsque la couche d'oxyde est mise à nu. Cette couche d'oxyde est ensuite enlevée par attaque sélective avec un autre produit de manière à ne conserver que la couche superficielle de silicium monocristallin, sauf à l'endroit des zones d'ancrage où la couche d'oxyde subsiste et forme une liaison solidaire entre le substrat et la couche superficielle de silicium monocristallin. L'usinage par la face avant définit les différents découpages des parties mobiles. Ce sont donc ces motifs de surface, zones d'ancrage et découpages des parties mobiles, que l'on voit sur la figure. La structure générale du gyromètre est une structure de type diapason, c'est-à-dire une structure symétrique comportant deux ensembles inertiels mobiles vibrant en opposition de phase, ces ensembles mobiles étant reliés entre eux par une structure de couplage servant à transmettre sans pertes, d'un ensemble à l'autre, les énergies mécaniques de vibration des deux ensembles pour mettre en opposition de phase ces vibrations. La symétrie de la structure est une symétrie par rapport à un axe A1 , avec un ensemble mobile de chaque côté de cet axe.
La structure de couplage est constituée de préférence par deux cadres extérieurs rectangulaires 20 et 20' à l'intérieur desquels sont situés les ensembles inertiels mobiles. Les cadres 20 et 20' sont reliés entre eux par une courte barre de liaison 22 pouvant être considérée comme rigide. La barre de liaison 22 relie le milieu d'un côté du premier cadre au milieu d'un côté adjacent du deuxième cadre. Elle constitue un centre de symétrie de toute la structure ; elle est perpendiculaire à l'axe A1 et centrée sur cet axe. La barre de liaison courte 22 peut être renforcée par deux autres barres de liaison courtes situées de part et d'autre de la barre 22 et également centrées sur l'axe A1. Ces barres courtes, plus ou moins éloignées de la barre 22, permettent un certain ajustement de l'écart entre les fréquences utiles d'excitation et de détection du microgyromètre (la fréquence de détection étant de préférence légèrement différente de la fréquence d'excitation et la différence de fréquences représentant la bande passante du gyromètre).
Les cadres extérieurs 20 et 20' de la structure de couplage entourent les deux ensembles mobiles en principe par au moins trois côtés et ils sont reliés à ces deux ensembles de préférence le long de côtés perpendiculaires à l'axe de symétrie générale A1. Les cadres 20 et 20' peuvent (facultativement) être fixés chacun à une zone d'ancrage 24, 24' située au milieu d'un côté opposé au côté relié à la barre de liaison 22. Dans ce cas, les cadres 20 et 20' entourent complètement chacun un ensemble mobile inertiel respectif. La barre de liaison centrale 22 et les autres côtés des cadres 20 et 20' ne sont pas reliés à des zones d'ancrage fixes.
Les peignes interdigités servant à la mise en vibration des ensembles inertiels et à la détection du mouvement résultant de la force de Coriolis sont disposés eux aussi à l'intérieur de chacun des cadres extérieurs 20 et 20'. Dans ce qui suit on va décrire seulement les éléments situés à l'intérieur du cadre 20, la structure étant rigoureusement identique pour l'autre cadre 20' ; les éléments intérieurs au cadre 20' sont désignés par les mêmes références que celles du cadre 20 mais affectés du signe 'prime'. Chaque ensemble inertiel comporte une masse inertielle mobile centrale 30 et un cadre inertiel intermédiaire 50 qui l'entoure et qui est donc situé entre la masse 30 et le cadre extérieur 20.
La masse mobile 30 ne peut se déplacer que selon une direction Oy (axe vertical dans le plan de la figure) ; le cadre intermédiaire 50 peut se déplacer selon l'axe Oy et selon un axe Ox perpendiculaire à Oy et également situé dans le plan de la figure. L'axe sensible du gyromètre est un axe Oz perpendiculaire au plan de la plaque. On excite une vibration du cadre intermédiaire inertiel dans la direction Ox ; lorsque le gyromètre tourne autour de son axe sensible Oz, une vibration du cadre intermédiaire est engendrée selon l'axe Oy. Cette vibration selon Oy est transmise à la masse 30, alors que la vibration selon Ox n'est pas transmise. Comme on le verra, une structure d'excitation de la vibration est associée au cadre intermédiaire 50, et une structure de détection de vibration est associée à la masse inertielle 30. La structure de couplage, constituée par les cadres 20, 20' et la barre 22 qui les relie, transmet l'énergie mécanique de vibration de l'ensemble inertiel mobile d'un côté à l'autre de l'axe A1 aussi bien pour les vibrations selon Ox que selon les vibrations selon Oy car cette structure de couplage est reliée directement aux cadres intermédiaires qui peuvent vibrer à la fois selon Ox et selon Oy. La masse mobile 30 est reliée à des zones d'ancrage fixes par au moins deux bras de flexion conçus pour autoriser un déplacement de la masse selon Oy mais pour empêcher tout mouvement significatif de la masse dans la direction Ox. Ces bras sont de préférence situés de part et d'autre d'un axe de symétrie 32 de la masse, parallèle à Ox. Il y a alors deux zones d'ancrage 34 et 36 situées de part et d'autre de la masse mobile, symétriques par rapport à cet axe de symétrie 32. De plus, ces zones sont de préférence situées sur un autre axe de symétrie 38 de la masse, axe qui est parallèle à Oy. Les bras de flexion qui relient la masse 30 aux zones 34 et 36 sont des bras allongés dans la direction Ox, de manière à présenter une grande raideur (grande résistance à l'allongement) dans cette direction. Ils sont par ailleurs très étroits, comparativement à leur longueur, pour présenter une faible raideur dans la direction Oy perpendiculaire à Ox ; cette faible raideur autorise un déplacement de la masse selon Oy. Il y a de préférence quatre bras de flexion plutôt que deux, la masse étant reliée à la zone d'ancrage 34 par deux bras 40 et 42 dans le prolongement l'un de l'autre de part et d'autre de la zone 34 ; la masse est reliée par ailleurs à la deuxième zone d'ancrage 36 par deux bras 44 et 46 dans le prolongement l'un de l'autre de part et d'autre de la zone 36.
En pratique, comme on le voit sur la figure, pour gagner en encombrement dans la direction Oy sans réduire significativement la dimension de la masse dans cette direction, on effectue une découpe dans la masse autour de la zone d'ancrage ; pour maximiser la flexibilité des bras de flexion dans la direction Oy en augmentant le rapport entre la longueur et la largeur de ces bras, on relie chaque bras d'un côté à proximité d'un coin d'extrémité de la masse (la masse a une forme en principe généralement rectangulaire) et de l'autre à la zone d'ancrage située sur l'axe de symétrie 38. On notera qu'on pourrait aussi envisager de donner aux bras 40, 42, 44, 46 une forme repliée avec deux branches allongées dans la direction Oy, les bras étant alors attachés à la masse plus près de la zone d'ancrage centrale. On notera aussi que, plutôt qu'une zone d'ancrage centrale située au milieu d'un côté de la masse mobile, on pourrait avoir deux zones d'ancrage situées plutôt à proximité des coins d'extrémité de la masse de part et d'autre de l'axe 38.
Le cadre intermédiaire mobile 50 entoure de préférence complètement la masse 30. La masse 30 est reliée au cadre intermédiaire 50 par au moins deux bras de flexion qui ont pour particularité de présenter une très grande raideur (très grande résistance à l'allongement) dans la direction Oy et une faible raideur dans la direction Ox. Ces bras sont allongés dans la direction Oy et ont une largeur faible devant leur longueur, afin de présenter cette différence de raideurs.
Il y a de préférence quatre bras de flexion de ce type entre la masse 30 et le cadre intermédiaire 50, les bras étant situés en pratique chacun à un coin de la masse mobile si elle est de forme généralement rectangulaire. Ils sont disposés symétriquement d'une part par rapport à l'axe de symétrie 32 de la masse (axe parallèle à Ox) et d'autre part par rapport à l'axe de symétrie 38 (parallèle à Oy).
Ces bras sont désignés par les références 52, 54, 56, 58. Ils ont de préférence une forme repliée en U pour diviser par deux leur dimension longitudinale sans réduire significativement leur longueur utile donc sans diminuer significativement le rapport élevé entre leur raideur selon Oy et leur raideur selon Ox. Les deux branches repliées du U sont allongées parallèlement à Oy et sont reliées entre elles par un court élément de liaison. Les bras 52 à 58 pourraient cependant ne pas être repliés et s'étendre en totalité selon la direction Oy entre le cadre intermédiaire et la masse. Le repliement permet de gagner de la place sans modifier significativement les caractéristiques mécaniques désirées.
Si les bras sont repliés comme sur la figure, il est préférable de relier par ailleurs l'élément court de liaison (qui relie les deux branches du U) d'un premier bras 52 à l'élément court correspondant du bras 54 qui est symétrique du bras 52 par rapport à l'axe 38. Une traverse 60 est prévue à cet effet, parallèle à Ox, pour relier le fond du U du bras de liaison 52 au fond du U du bras de flexion 54, les bras 52 et 54 étant symétriques par rapport à l'axe 38. Une traverse similaire 62, symétrique de la traverse 60 par rapport à l'axe 32, relie les éléments symétriques 56 et 58. Ces traverses 60 et 62, parallèles à Ox, renforcent la symétrie de transmission d'un mouvement selon Oy imposé par le cadre intermédiaire mobile 50 à la masse 30. Elles ne sont pas présentes si les bras 52, 54, 56, 58 n'ont pas une forme repliée car dans ce cas les extrémités des bras 52 et 54 seraient déjà reliées rigidement par le cadre intermédiaire 50 lui-même.
Comme on le voit sur la figure, la forme repliée en U allongé des bras de flexion entre le cadre mobile 50 et la masse mobile 30 est obtenue par des découpes dans le cadre mobile et dans la masse mobile, mais de manière générale, les bras de flexion partent à peu près d'un coin intérieur du cadre intermédiaire vers un coin en vis-à-vis de la masse même si le point de fixation effectif du bras sur le cadre ou sur la masse ne part pas exactement de ce coin. On peut considérer que la masse est suspendue globalement par ses quatre coins au cadre mobile.
Le cadre intermédiaire mobile 50, entouré par le cadre extérieur 20 de la structure de couplage, est relié à ce cadre extérieur par des bras de liaison courts 64 d'un côté, 66 de l'autre, les bras 64 étant symétriques des bras 66 par rapport à l'axe de symétrie 32. Les bras 64, de même que les bras 66, sont répartis le long d'un côté du cadre 50, ce côté étant parallèle à l'axe Ox. Ces bras courts constituent des liaisons pratiquement rigides à travers lesquelles l'énergie de vibration selon Ox et Oy du cadre intermédiaire 50 (et de la masse mobile 30) peut passer vers la structure de couplage et donc vers le deuxième cadre intermédiaire 50' et la deuxième masse mobile 30'. Dans l'exemple représenté, trois bras courts 64 sont répartis le long du côté du cadre intermédiaire 50 ; trois autres bras courts 66 sont répartis le long du côté opposé.
Il n'y a pas de bras de liaison entre le cadre intermédiaire et le cadre extérieur de couplage le long des côtés parallèles à l'axe Oy.
Le cadre intermédiaire 50 est excité en vibration selon Ox par une première structure en peigne interdigité 70 qui comporte un demi-peigne fixe 72, attaché à une zone d'ancrage 74 et un demi-peigne mobile 76 constitué le long d'un premier côté (parallèle à Oy) du cadre intermédiaire 50. Les dents ou doigts du demi-peigne fixe 72, en silicium conducteur usiné en même temps que les autres éléments du gyromètre, constituent la première armature d'une capacité et les dents ou doigts du demi-peigne mobile 76, également en silicium conducteur, constituent la deuxième armature de cette capacité. Classiquement, la structure en peigne agit comme excitateur du mouvement de la partie mobile grâce aux forces d'attraction qui s'exercent entre les doigts en regard lorsqu'une tension est appliquée entre les demi- peignes. La tension d'excitation est alternative pour engendrer un mouvement de vibration, et la fréquence de cette tension est choisie proche de la fréquence de résonance mécanique de la structure. La tension d'excitation est appliquée entre la zone d'ancrage 74 et l'une et/ou l'autre des zones d'ancrage 34 et 36. Le demi-peigne fixe 72 est en contact électrique direct (par le corps du silicium conducteur) avec la zone d'ancrage 74 ; le demi-peigne mobile 76 est en contact avec les zones d'ancrage 34 et 36 par l'intermédiaire des bras de flexion 52 à 58, du corps de la masse mobile, des bras de flexion 40 à 46, et du cadre intermédiaire 50, de sorte qu'en appliquant une tension entre la zone d'ancrage 74 et les zones d'ancrage 34 ou 36 on applique bien une tension entre la partie fixe et la partie mobile du peigne 70. Le mouvement d'excitation engendré sur le cadre intermédiaire 50 est selon la direction Ox, les peignes agissant par modification de la surface en recouvrement mutuel des doigts intercalés.
Le microgyromètre comporte de préférence une autre structure à peignes interdigités associée au cadre intermédiaire, symétrique de la structure 70 par rapport à l'axe 38. Elle comporte un demi-peigne fixe 82 attaché à une zone d'ancrage 84, et un demi-peigne mobile 86 usiné le long d'un côté du cadre intermédiaire 50. Cette structure peut servir de détecteur du mouvement du cadre selon Ox. Elle est utile pour l'asservissement du mouvement excité par le peigne 70 ; l'asservissement est en général utile pour ajuster la fréquence d'excitation par rapport à la fréquence de résonance de la structure. Les tensions détectées par la structure 80 apparaissent entre la zone d'ancrage 84 et les zones d'ancrage 34 et 36 (ou encore la zone 24). Une double structure de détection de mouvement comprenant une première et une deuxième structure élémentaire de détection est associée au deuxième élément mobile (30) de chacun des deux ensembles pour détecter une vibration des deuxièmes éléments selon Oy. Chaque structure élémentaire de détection comprend un premier module de détection et un deuxième module de détection.
Ces modules de détection sont symétriques par rapport à l'axe de symétrie 32 de la masse, ils comportent chacun deux peignes interdigités 90, 110 identiques. L'orientation de ces peignes dépend du principe sur lequel repose la détection : si la détection repose sur une mesure des variations de surface en recouvrement mutuel des doigts des demi-peignes fixe et mobile, le peigne de détection des mouvements selon Oy est disposé perpendiculairement au peigne d'excitation 70 (qui repose aussi sur des variations de surface en recouvrement). Mais si la détection repose sur une mesure des variations d'espacement entre les doigts du demi-peigne fixe et du demi-peigne mobile, le peigne de détection est disposé parallèlement au peigne d'excitation. La détection par la variation de l'espacement entre doigts est préférée car elle est plus sensible. L'interdigitation des peignes est alors dissymétrique au repos, les doigts d'un demi-peigne n'étant pas exactement au milieu de l'intervalle entre deux doigts de l'autre demi-peigne, alors qu'un peigne fonctionnant (comme le peigne d'excitation) sur la base de variations de surfaces en recouvrement a les doigts d'un demi-peigne au milieu de l'intervalle entre les doigts de l'autre demi-peigne.
C'est le cas sur la figure : tous les peignes de détection sont disposés avec la même orientation générale que les peignes 70 et 80, bien qu'ils soient associés à un mouvement selon Oy alors que les peignes 70 et 80 sont associés à un mouvement (excitation ou détection) selon Ox.
Dans l'exemple de la figure, le premier et le deuxième module sont associés à la masse mobile, chacun d'eux comporte deux peignes interdigités identiques. Le premier module comporte deux peignes 90 et 110 disposés parallèlement à l'axe de symétrie 38 et de part et d'autre de cet axe. Ces peignes jouent tous les deux le même rôle de détecteur du mouvement de la masse selon Oy , et on pourrait en variante se contenter d'un seul peigne placé au centre de la masse le long de l'axe 38.
Le peigne 90 comporte un demi-peigne fixe 92 attaché à une zone d'ancrage 94 et un demi-peigne mobile 96 faisant partie de la masse mobile elle-même. La masse mobile comporte une découpe pour laisser la place au peigne fixe 92 et à la zone d'ancrage 94, et les bords de cette découpe sont découpés en forme de doigts pour constituer le demi-peigne mobile 96 dans lequel viennent s'intercaler les doigts du demi-peigne fixe. Dans l'exemple représenté, le peigne 90 est double, c'est-à-dire que deux côtés de la découpe de la masse 30 sont pourvus de doigts, et le demi-peigne fixe 92 comporte des doigts de part et d'autre de la zone d'ancrage 94.
La structure interdigitée 110 est rigoureusement symétrique de la structure 90 par rapport à l'axe de symétrie 38 et est formée dans une autre découpe de la masse mobile 30. Elle comporte un demi-peigne fixe 112, une zone d'ancrage 114, et un demi-peigne mobile 116.
Pour la détection du mouvement selon Oy, un circuit électronique associé à cette structure détecte la modulation en fréquence des tensions électriques présentes entre la zone d'ancrage 94 et les zones d'ancrage 34 et 36, et/ou entre la zone 114 et les zones 34 et 36 constituant un premier signal de détection S1 M1 du premier module. Cette modulation n'est due qu'à un déplacement de la masse mobile selon l'axe Oy puisque la masse ne peut se déplacer que selon cet axe.
Le deuxième module de détection comporte deux peignes 100, 120 qui sont symétriques aux peignes 90, 110 du premier module par rapport à l'axe de symétrie 32 de la masse. Le signal de détection S1 M2 du deuxième module étant constitué par la modulation en fréquence des tensions électriques présentes entre une zone d'ancrage 104 du peigne 100, et les zones d'ancrage 34. En raison de la symétrie du premier et du deuxième module suivant l'axe 32, lorsque la masse 30 est au repos, la position relative, selon l'axe Ox, des dents du demi-peigne mobile 96 par rapport aux dents du peigne fixe 92 est inversée par rapport à la position relative, selon l'axe Ox, des dents du demi-peigne mobile 106 par rapport aux dents du peigne fixe 102. En conséquence, lorsque la masse 30 est animée d'un mouvement suivant l'axe Oy, le premier signal de détection S1 M1 et un deuxième signal de détection S1 M2 issu du deuxième module évoluent en sens inverse.
Pour des raisons de symétries, il en est de même pour un troisième signal de détection S2M1 et un quatrième signal de détection S2M2 issus respectivement du premier et du deuxième module de détection de mouvement de la masse inertielle mobile centrale 30'.
Les quatre signaux de détection sont exploités sous forme d'une combinaison linéaire S1 M1+ S2M2 - S1 M2 - S2M1 qui constitue le signal de sortie résultant du gyromètre. La combinaison linéaire traite de quatre signaux, générés par le mouvement de deux masses vibrant en opposition de phase, deux des signaux variant en sens inverse de deux autres. Le gyromètre délivrant le signal de sortie résultant est insensible à l'accélération dans la direction du mouvement des masses. Sous l'hypothèse que la différence de capacité statique entre les premiers modules de la première et de la deuxième structure est identique à la différence de capacité statique entre les deuxièmes modules de la première et de la deuxième structure, cette différence de capacité statique ne produit aucun effet sur le signal de sortie résultant, et par conséquent on n'observe donc aucune dérive dans ce cas.
Avantageusement, le premier module de la première structure est relié électriquement au deuxième module de la deuxième structure pour réaliser une première somme S1 M1+ S2M2 et réciproquement le deuxième module de la première structure est relié électriquement au premier module de la deuxième structure pour réaliser une deuxième somme S1 M2 + S2M1 , et en ce que le résultat des deux sommes est soustrait par un moyen électronique extérieur à la plaque.
On pourrait prévoir au moins un peigne interdigité supplémentaire associé à la masse mobile. Ce peigne permet d'ajuster électriquement, par une simple commande en tension continue, la raideur apparente des bras de flexion 40, 42, 44, 46, cet ajustement de raideur ayant une conséquence directe sur l'ajustement de la fréquence de vibration naturelle selon Oy en présence d'une force de Coriolis. En effet, la résonance mécanique naturelle des ensembles mobiles dépend de la raideur des bras de flexion qui s'opposent au mouvement de vibration engendré. Un ajustement de raideur, donc de fréquence, permet de compenser les variations de fréquence de résonance qui pourraient résulter de non-uniformités ou de défauts de fabrication. Les écarts entre la fréquence réelle et la fréquence théorique prévue peuvent ainsi être compensés. Avec un peigne alimenté en tension continue, et agissant sur la masse mobile 30 pour exercer un effort constant dans la direction Oy, on peut exercer une contrainte au repos sur les bras de flexion 40, 42, 44, 46. Cette contrainte tend à créer une raideur négative, d'origine électrostatique, dont la valeur absolue vient se soustraire à la raideur naturelle de ces bras dans la direction Oy.
Le peigne qui pourrait exercer cette contrainte est un peigne orienté comme les autres peignes (direction générale selon Oy) et dans ce cas il agit par variation de l'espacement entre doigts des demi-peignes (peigne à doigts décalés). Un seul peigne central peut suffire, ou bien deux peignes symétriques disposés latéralement de part et d'autre de l'axe 38. Le peigne d'ajustement de raideur comporte un demi-peigne fixe, une zone d'ancrage autonome (pour une alimentation électrique autonome), et un demi-peigne mobile constitué encore par des doigts directement découpés dans la masse mobile. On peut également prévoir une autre amélioration consistant à associer deux nouveaux peignes à la masse mobile. Ces peignes supplémentaires sont destinés à exercer, grâce à une application de tensions continues appropriées sur chacun d'eux, un effort de torsion de la masse mobile autour de son centre de symétrie. Ceci a pour effet de modifier l'orientation du mouvement d'excitation par rapport au mouvement de détection, et de modifier par conséquent (dans un sens tendant à le compenser) le biais en quadrature du gyromètre.
Les biais du gyromètre sont les valeurs de signal non nulles mesurées alors que la vitesse angulaire de rotation du gyromètre est nulle. Le biais en quadrature résulte de mouvements selon un axe alors qu'un effort est en réalité exercé sur un axe perpendiculaire. Il résulte de défauts de rectangularité de sections de poutres ou d'autres facteurs de dissymétrie. Ce biais peut être compensé en partie en exerçant une certaine torsion de la masse mobile. Cette torsion est exercée par exemple grâce à une action sur deux peignes interdigités situés diagonalement de part et d'autre d'un centre de symétrie de la masse mobile 30. Une tension continue est appliquée sur chaque peigne de manière à exercer un couple dans le sens qui convient à la compensation du biais. Le couple de torsion existe dès lors que les peignes exercent des forces appliquées en des points différents et dont les directions ne passent pas par le centre de symétrie de la masse.
Par exemple, on peut prévoir deux peignes, en plus des peignes de détection 90, 100, 110 et 120 pour exercer ce couple et des peignes d'ajustage de fréquence. Mais un seul peigne suffirait, à condition que ce peigne exerce un effort dans une direction qui ne passe pas par le centre de symétrie de la masse mobile. On comprendra par ailleurs que les peignes supplémentaires, disposés en diagonale sur la masse mobile et exerçant des efforts dans des directions qui ne passent pas par le centre de symétrie de la masse, pourraient servir à la fois à ajuster la fréquence et à exercer la torsion de compensation de biais ; en appliquant des tensions d'amplitude différentes sur les peignes supplémentaires, on crée à la fois un couple de torsion et un effort résultant vers le haut ou vers le bas, ce dernier créant la raideur négative souhaitée. Pour des raisons de symétrie et d'indépendance de la commande de raideur et de la commande de torsion, on préfère cependant une configuration avec des peignes spécifiquement pour l'ajustement de raideur et des peignes spécifiquement pour la compensation de biais en quadrature.
On peut enfin prévoir une autre amélioration consistant à associer deux nouveaux peignes à la masse mobile asservir sa position sur une position fixe pouvant être la position que la masse mobile occupe lorsqu'elle est au repos. De cette manière on s'affranchit des non-linéarité de la mesure délivrée par le gyromètre apparaissant lorsque le déplacement de la masse mobile est important.
Par exemple, on peut prévoir deux peignes, en plus des peignes de détection 90, 100, 110 et 120 qui sont des peignes pour exercer une force de rappel de la masse mobile vers une position fixe. La tension qui est appliquée à ces peignes vise à compenser le déplacement imprimé par le mouvement du gyromètre, la valeur de cette tension est calculée à partir de la mesure de la position délivrée par le peignes de détection.
Dans ce qui précède on a prévu que tous les peignes interdigités étaient placés dans des découpes de la masse mobile, mais on pourrait aussi envisager qu'ils soient disposés sur les bords de la masse mobile sans modifier les principes qui ont été expliqués ci-dessus.
On a ainsi décrit un microgyromètre qui est facilement réalisable à partir d'une plaque de silicium dans le plan de laquelle on a usiné à la fois deux ensembles inertiels mobiles et une structure de couplage mécanique qui les entoure, et dans lequel on a réalisé chaque ensemble mobile sous forme de deux parties, masse mobile et cadre mobile, le cadre mobile étant relié à la structure de couplage par des liaisons rigides, la masse mobile étant reliée au cadre d'une part et à des points d'ancrage d'autre part par des bras de flexion qui autorisent un mouvement dans le plan selon un seul degré de liberté pour la masse mobile et selon deux degrés de liberté pour le cadre. Le couplage mécanique entre les deux ensembles mobiles se fait aussi bien pour les vibrations d'excitation que pour les vibrations orthogonales résultant de la force de Coriolis. Il ne se fait pas par l'intermédiaire de bras de flexion souples mais directement par des liaisons rigides entre le cadre mobile et la structure de couplage (contrairement à des structures dans lesquelles le couplage entre ensembles mobiles se ferait par l'intermédiaire de bras de flexion qui serviraient à la fois à assurer la souplesse de suspension des ensembles inertiels et le couplage entre les deux ensembles).
Le gyromètre selon l'invention peut présenter de très bons coefficients de qualité en excitation et en détection, ce qui permet d'augmenter la sensibilité du gyromètre dans le cas où on utilise une fréquence d'excitation et une fréquence de détection identiques.

Claims

REVENDICATIONS
1. Gyromètre à structure vibrante réalisé par micro-usinage d'une plaque mince plane, ce gyromètre comportant deux ensembles mobiles symétriques (30, 50 ; 30', 50') par rapport à un axe central parallèle à une direction Oy du plan de la plaque, couplés par une structure de couplage (20, 20', 22) reliant ces deux ensembles pour permettre un transfert d'énergie mécanique de vibration entre eux, chacun des deux ensembles mobiles symétriques comporte deux éléments mobiles (30, 50), un premier élément mobile inertiel (50) étant relié à la structure de couplage (20, 20', 22) et pouvant vibrer selon deux degrés de liberté dans des directions orthogonales Ox et Oy du plan de la plaque, et un deuxième élément mobile (30) étant relié d'une part au premier élément (50) et d'autre part à des zones d'ancrage fixe (34, 36), par des moyens de liaison (40-46 ; 52-58) qui permettent la transmission au deuxième élément du mouvement de vibration du premier élément selon la direction Oy sans autoriser un mouvement du deuxième élément selon la direction Ox, une structure d'excitation (70) étant associée au premier élément mobile (50) pour exciter une vibration du premier élément selon Ox, et une double structure de détection de mouvement comprenant une première et une deuxième structure élémentaire de détection (90, 110 ; 100, 120 ) étant associée au deuxième élément mobile (30) de chacun des deux ensembles pour détecter une vibration des deuxièmes éléments selon Oy, le premier élément mobile (50) étant un cadre intermédiaire entourant le deuxième élément mobile désigné par l'appellation masse mobile (30), et la structure de couplage comportant deux cadres extérieurs (20, 20') dont chacun entoure le cadre intermédiaire d'un ensemble mobile respectif caractérisé en ce que chaque structure élémentaire de détection comprend un premier module (90, 110 ; 90', 110') de détection et un deuxième module (100, 120 ; 100', 120') de détection, symétriques par rapport à un axe de symétrie (32) parallèle à la direction Ox, les premiers modules (90, 110; 90', 110') de détection de chaque structure élémentaire d'une part et les deuxièmes modules (100, 120 ; 100', 120') de détection de chaque structure élémentaire d'autre part étant symétriques par rapport à l'axe central parallèle à la direction Oy, le premier et le deuxième module de chaque structure élémentaire fournissant des signaux de détection distincts variant en sens inverse l'un de l'autre qui sont un premier et un deuxième signal S1 M1 , S1 M2 pour le premier et le deuxième module de la première structure élémentaire et un troisième et quatrième signal S2M1 , S2M2 pour le premier et le deuxième module de la seconde structure élémentaire, et des moyens étant prévus pour réaliser la combinaison linéaire S1 M 1+ S2M2 - S1M2 - S2M1.
2. Gyromètre selon la revendication 1 , caractérisé en ce que le premier module (90, 110) de la première structure élémentaire est relié électriquement au deuxième module (100', 120') de la deuxième structure élémentaire pour réaliser une première somme S1 M1 + S2M2 et réciproquement le deuxième module (100, 120) de la première structure élémentaire est relié électriquement au premier module (90', 100') de la deuxième structure élémentaire pour réaliser une deuxième somme S1M2 + S2M1 , et en ce que des moyens sont prévus pour soustraire la première et la deuxième somme.
3. Gyromètre selon l'une des revendications 1 à 2, caractérisé en ce que la structure d'excitation du premier élément mobile est un peigne capacitif à électrodes interdigitées usiné dans la plaque mince plane.
4. Gyromètre selon l'une des revendications 1 à 3, caractérisé en ce que les modules de détection de la structure élémentaire de détection comportent au moins un peigne capacitif à électrodes interdigitées usiné dans la plaque mince plane.
5. Gyromètre selon l'une des revendications 1 à 4, caractérisé en ce qu'il comporte au moins un peigne interdigité associé à chaque deuxième élément mobile, pour exercer un couple de torsion ajustable sur le deuxième élément mobile.
6. Gyromètre selon l'une des revendications 1 à 4, caractérisé en ce qu'il comporte un peigne interdigité associé à chaque deuxième élément mobile, pour l'ajustement de la fréquence de détection.
7. Gyromètre selon l'une des revendications 1 à 4, caractérisé en ce qu'il comporte au moins un peigne interdigité associé à chaque deuxième élément mobile, pour asservir la position du deuxième élément mobile sur une position pouvant être celle que le deuxième élément mobile a lorsqu'il est au repos.
PCT/EP2006/063306 2005-07-05 2006-06-19 Capteur gyrometrique micro-usine realisant une mesure differentielle du mouvement des masses vibrantes WO2007003501A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE602006007001T DE602006007001D1 (de) 2005-07-05 2006-06-19 Enzmessung der bewegung von vibrierenden massen
US11/994,825 US7707886B2 (en) 2005-07-05 2006-06-19 Micro-machined gyrometric sensor for differential measurement of the movement of vibrating masses
EP06763769A EP1899681B1 (fr) 2005-07-05 2006-06-19 Capteur gyrometrique micro-usine realisant une mesure differentielle du mouvement des masses vibrantes
AT06763769T ATE432458T1 (de) 2005-07-05 2006-06-19 Mikrobearbeiteter gyrometrischer sensor zur differenzmessung der bewegung von vibrierenden massen
JP2008518786A JP2008545128A (ja) 2005-07-05 2006-06-19 振動質量体の運動の示差測定のための微細機械加工されたジャイロメータセンサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0507144 2005-07-05
FR0507144A FR2888318B1 (fr) 2005-07-05 2005-07-05 Capteur gyrometrique micro-usine realisant une mesure differentielle du mouvement des masses vibrantes

Publications (1)

Publication Number Publication Date
WO2007003501A1 true WO2007003501A1 (fr) 2007-01-11

Family

ID=36123100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/063306 WO2007003501A1 (fr) 2005-07-05 2006-06-19 Capteur gyrometrique micro-usine realisant une mesure differentielle du mouvement des masses vibrantes

Country Status (7)

Country Link
US (1) US7707886B2 (fr)
EP (1) EP1899681B1 (fr)
JP (1) JP2008545128A (fr)
AT (1) ATE432458T1 (fr)
DE (1) DE602006007001D1 (fr)
FR (1) FR2888318B1 (fr)
WO (1) WO2007003501A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517781A (ja) * 2008-04-16 2011-06-16 ヴィーティーアイ テクノロジーズ オーワイ 振動型マイクロメカニカル角速度センサ
EP2573516A1 (fr) 2011-09-21 2013-03-27 Tronics Microsystems S.A. Un gyroscope micro-electromécanique

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100095768A1 (en) * 2008-10-20 2010-04-22 Custom Sensors & Technologies, Inc. Micromachined torsional gyroscope with anti-phase linear sense transduction
FI20095201A0 (fi) * 2009-03-02 2009-03-02 Vti Technologies Oy Värähtelevä mikromekaaninen kulmanopeusanturi
GB201020722D0 (en) * 2010-12-07 2011-01-19 Atlantic Inertial Systems Ltd Accelerometer
RU2490593C1 (ru) * 2012-03-14 2013-08-20 Федеральное государственное бюджетное образовательное учреждение высшего професионального образования "Национальный исследовательский Томский политехнический университет" Интегральный микромеханический гироскоп
JP6191151B2 (ja) * 2012-05-29 2017-09-06 株式会社デンソー 物理量センサ
FR2992418B1 (fr) * 2012-06-22 2014-08-01 Thales Sa Capteur a element vibrant dans une cavite, a detection integree d anomalies
US10024879B2 (en) * 2013-04-14 2018-07-17 Purdue Research Foundation Performance improvement of MEMS devices
FI126071B (en) * 2014-01-28 2016-06-15 Murata Manufacturing Co Improved gyroscope structure and gyroscope
CN105242782B (zh) * 2015-09-25 2019-03-29 联想(北京)有限公司 电子设备和信息处理方法
WO2017061638A1 (fr) * 2015-10-06 2017-04-13 주식회사 스탠딩에그 Dispositif mems, boîtier mems le comprenant, et terminal utilisateur
US10371521B2 (en) 2016-05-26 2019-08-06 Honeywell International Inc. Systems and methods for a four-mass vibrating MEMS structure
US10696541B2 (en) 2016-05-26 2020-06-30 Honeywell International Inc. Systems and methods for bias suppression in a non-degenerate MEMS sensor
RU173867U1 (ru) * 2016-12-15 2017-09-15 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Вибрационный гироскоп LL-типа
US11226245B2 (en) * 2017-03-31 2022-01-18 Technische Universitaet Wien Force sensor
RU179133U1 (ru) * 2017-12-27 2018-04-28 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Вибрационный гироскоп LL-типа
JP7225817B2 (ja) * 2019-01-17 2023-02-21 セイコーエプソン株式会社 角速度センサー、慣性計測装置、電子機器および移動体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042324A1 (fr) * 2002-11-05 2004-05-21 Thales Capteur gyrometrique micro-usine, a detection dans le plan de la plaque usinee
FR2859527A1 (fr) * 2003-09-09 2005-03-11 Thales Sa Gyrometre micro-usine a double diapason et a detection dans le plan de la plaque usinee
EP1519149A1 (fr) * 2003-09-29 2005-03-30 Murata Manufacturing Co., Ltd. Appareil pour détecter une vitesse de rotation
WO2005031257A2 (fr) * 2003-09-25 2005-04-07 Kionix, Inc. Capteur de vitesse angulaire sur l'axe z

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19530007C2 (de) * 1995-08-16 1998-11-26 Bosch Gmbh Robert Drehratensensor
JP3659160B2 (ja) * 2000-02-18 2005-06-15 株式会社デンソー 角速度センサ
JP3603746B2 (ja) * 2000-05-02 2004-12-22 株式会社村田製作所 振動子
DE10108196A1 (de) * 2001-02-21 2002-10-24 Bosch Gmbh Robert Drehratensensor
DE10108197A1 (de) * 2001-02-21 2002-09-12 Bosch Gmbh Robert Drehratensensor
JP2002323323A (ja) * 2001-04-25 2002-11-08 Mitsubishi Electric Corp 角速度センサ
JP2003247829A (ja) * 2002-02-21 2003-09-05 Kinseki Ltd 角速度センサ
FR2859528B1 (fr) * 2003-09-09 2006-01-06 Thales Sa Gyrometre micro-usine a double diapason et a detection dans le plan de la plaque usinee

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042324A1 (fr) * 2002-11-05 2004-05-21 Thales Capteur gyrometrique micro-usine, a detection dans le plan de la plaque usinee
FR2859527A1 (fr) * 2003-09-09 2005-03-11 Thales Sa Gyrometre micro-usine a double diapason et a detection dans le plan de la plaque usinee
WO2005031257A2 (fr) * 2003-09-25 2005-04-07 Kionix, Inc. Capteur de vitesse angulaire sur l'axe z
EP1519149A1 (fr) * 2003-09-29 2005-03-30 Murata Manufacturing Co., Ltd. Appareil pour détecter une vitesse de rotation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517781A (ja) * 2008-04-16 2011-06-16 ヴィーティーアイ テクノロジーズ オーワイ 振動型マイクロメカニカル角速度センサ
EP2573516A1 (fr) 2011-09-21 2013-03-27 Tronics Microsystems S.A. Un gyroscope micro-electromécanique
WO2013041959A1 (fr) 2011-09-21 2013-03-28 Tronics Microsystems S.A. Gyroscope micro-électromécanique

Also Published As

Publication number Publication date
JP2008545128A (ja) 2008-12-11
FR2888318B1 (fr) 2007-09-14
DE602006007001D1 (de) 2009-07-09
EP1899681B1 (fr) 2009-05-27
ATE432458T1 (de) 2009-06-15
EP1899681A1 (fr) 2008-03-19
FR2888318A1 (fr) 2007-01-12
US20080210005A1 (en) 2008-09-04
US7707886B2 (en) 2010-05-04

Similar Documents

Publication Publication Date Title
EP1899681B1 (fr) Capteur gyrometrique micro-usine realisant une mesure differentielle du mouvement des masses vibrantes
EP1515119B1 (fr) Gyromètre micro-usiné à double diapason
EP1558896B1 (fr) Capteur gyrometrique micro-usine, a detection dans le plan de la plaque usinee
EP1960736B1 (fr) Gyrometre vibrant equilibre par un dispositif electrostatique
EP2960625B1 (fr) Capteur inertiel angulaire mems fonctionnant en mode diapason
EP2679952B1 (fr) Gyroscope micro-usiné à détection dans le plan de la plaque usinée
EP1626282B1 (fr) Micro gyromètre a détection frequentielle
EP1456606B1 (fr) Capteur inertiel micro-usine pour la mesure de mouvements de rotation
EP2520940B1 (fr) Centrale inertielle à plusieurs axes de détection
EP2078207A2 (fr) Accelerometre resonant comportant un resonateur en forme de diapason equipe de balourds
EP1570275B1 (fr) Accelerometre a poutre vibrante
EP1515118B1 (fr) Gyromètre micro-usine à structure vibrante et à détection dans le plan de la plaque usinée
EP0773429B1 (fr) Gyromètre à résonateur mécanique
EP2414774B1 (fr) Elément vibrant sur deux modes découplés et application à un gyromètre vibrant
FR2860865A1 (fr) Gyrometre micromecanique infertiel a diapason
CA3211041A1 (fr) Resonateur en vibration de flexion a haut facteur de qualite pour la realisation de references de temps, de capteurs de force ou de gyrometres

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006763769

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008518786

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11994825

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2006763769

Country of ref document: EP