WO2007002048A1 - A product release system for atomizing cosmetic hair compositions containing cationic polymers - Google Patents

A product release system for atomizing cosmetic hair compositions containing cationic polymers Download PDF

Info

Publication number
WO2007002048A1
WO2007002048A1 PCT/US2006/023923 US2006023923W WO2007002048A1 WO 2007002048 A1 WO2007002048 A1 WO 2007002048A1 US 2006023923 W US2006023923 W US 2006023923W WO 2007002048 A1 WO2007002048 A1 WO 2007002048A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymers
hair
acid
esters
release system
Prior art date
Application number
PCT/US2006/023923
Other languages
French (fr)
Inventor
Hartmut Schiemann
Thomas Krause
Michael Franzke
Dirk Weber
Monika Monks
Jan Baumeister
Ellen Florig
Original Assignee
The Procter & Gamble Company
Wella Aktien Gesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company, Wella Aktien Gesellschaft filed Critical The Procter & Gamble Company
Priority to MX2007015655A priority Critical patent/MX2007015655A/en
Priority to JP2008514982A priority patent/JP2008542401A/en
Priority to CA002611799A priority patent/CA2611799A1/en
Priority to EP06785159A priority patent/EP1893295A1/en
Priority to BRPI0612114-4A priority patent/BRPI0612114A2/en
Priority to AU2006262421A priority patent/AU2006262421A1/en
Publication of WO2007002048A1 publication Critical patent/WO2007002048A1/en
Priority to US12/335,592 priority patent/US20090098079A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/046Aerosols; Foams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties
    • A61K2800/542Polymers characterized by specific structures/properties characterized by the charge
    • A61K2800/5426Polymers characterized by specific structures/properties characterized by the charge cationic

Definitions

  • the object of the present invention is a product release system for atomizing cosmetic compositions, which has pressure-resistant packaging, a capillary-containing spray head, and a propellant-containmg cosmetic composition, and wherein the composition contains at least one film-forming, hair-setting, or hair-conditioning cationic polymer.
  • the object of the invention is thus a corresponding method for hair treatment.
  • cationic polymers as hair-setting or hair- conditioning ingredients.
  • cationic polymers provide the hair with good combing properties after application in wet hair and effect good setting with a good hold in dry hair.
  • cationic polymers are used to provide good combing properties in wet hair and good hold properties in dry hair. They provide hairstyle stability and increase hair volume in dry hair.
  • cationic polymers have not been widely used up to now in higher- viscosity products such as gels, waxes, hairdressing creams, or treatments, because the composition as well as the product consistency and the resulting more difficult application meant that the advantages of the cationic polymers could't be fully realized on the hair.
  • a process for atomizing liquid is known from WO 03/051523 Al with which the spray is formed using a capillary. Only the application with respect to atomizing liquid compositions is described. A fixture for atomizing liquid products is described in WO 03/051522 A2, wherein the spray is formed using a capillary. Only the use of liquid compositions for atomizing, which can also be highly viscous, is described, wherein, however, 0.00073 lb/in 2 s (5,000 mPa s) is mentioned as the maximum sprayable viscosity.
  • the object of the invention was to further improve the distributability on hair, the volume effect, the setting effect and/or hairstyle stability, the combing properties, the hair shine, and/or the holding properties of conventional hair treatment compositions, which were previously unavailable as a spray, and/or the hair treated with said composition.
  • the object of the invention is a product release system for atomizing cosmetic compositions.
  • the product release system has the following features:
  • a spray head containing a capillary containing a capillary
  • a propellant-containing cosmetic composition wherein atomization is done using the capillary and the composition contains at least one film-forming, hair-setting, or hair-conditioning cationic polymer.
  • atomize is understood to mean the release of the product in the form of dissipated particles.
  • the dissipated particles can have varying shapes, consistencies, and sizes.
  • the properties of the atomized particles can include everything from fine aerosol atomized spray to liquid drops, snow-like drops, solid spray flakes and spray foam.
  • the quantities of ingredients (e.g. wt. %) indicated in the following are each based on the basic composition without propellant unless explicitly indicated otherwise.
  • the quantities of the propellant are based on the total composition including propellant.
  • the composition is preferably non-liquid at 77°F (25 °C) and/or has a viscosity greater than 0.00073 lb/in 2 s (5,000 mPa s) (measured with a HAAKE VT-550 Rheometer, SV-DIN test body at a temperature of 77°F (25°C) and a shear speed of 12.9 s "1 ).
  • Non-liquid compositions in terms of the invention are particularly non-flow-capable compositions, which, for example, can be determined due to the fact that they will not flow off of a glass surface tilted at 45° at a temperature of 77 0 F (25°C).
  • Gel compositions are characterized in that the memory module G' is larger than the loss module G" at 77 0 F (25°C) with oscillographic measurements in the typical measurement range (0.01 to 40 Hz).
  • the viscosity of the composition to be used is preferably greater than 0.00073 (5,000) up to 0.0145 (100,000), and especially preferably 0.00145 (10,000) to 0.00725 lb/in 2 s (50,000 mPa s), or very especially preferably 0.00362 (25,000) to 0.0051 lb/in 2 s (35,000 mPa s), measured with a HAAKE VT-550 Rheometer, SV-DIN test body at a temperature of 77°F (25 0 C) and a shear speed of 12.9 s "1 .
  • Aerosol spray cans constructed of metal or plastic can be used as the pressure- resistant packaging.
  • Preferred metals are tin plates and aluminum, while the preferred plastic is polyethylene terephthalate.
  • Suitable spray systems with capillary-containing spray heads, with which the spray is formed using a capillary are described in WO 03/051523 Al and in WO 03/051522 A2.
  • the capillaries preferably have a diameter of 0.00394 (0.1) to 0.03937 in (1 mm), or particularly 0.00787 (0.2) to 0.02362 in (0.6 mm), and a length that is preferably 0.1968 (5) to 3.937 in (100 mm), or particularly 0.1968 (5) to 1.9685 in (50 mm).
  • the spray principle is also described in Aerosol Europe, vol. 13, no. 1-2005, pages 6-11. The spray system is based on the principle of capillary atomization.
  • the conventional swirl nozzle as well as, if necessary, the uptake tube are replaced by capillaries.
  • the energy-consuming and propellant-intensive swirling of the content of the can and the required strong dilution of the product with solvents is not necessary as compared to conventional spray systems.
  • the spray rate can be adjusted via the selection of the capillary geometry in conjunction with the interior pressure created by the propellant or a propellant mixture.
  • Preferred spray rates are 0.00035 (0.01058) to 0.0176 oz/s (0.5 g/s), particularly 0.00353 (0.1) to 0.01 oz/s (0.3 g/s).
  • the size of the spray drops created with the atomization can be adjusted via the selection of the capillary geometry in conjunction with the interior pressure or the viscosity of the composition. Suitable capillary atomization systems can be obtained in a product called TRUSPRAY® from Boehringer Ingelheim microParts GmbH.
  • the preferred drop size distributions are those with which the dv(50) value is a maximum of 0.00393 in (100 /mi), e.g. of from 0.00197 (50) to 0.00393 in (100 ⁇ m), with a maximum of 0.00354 in (90 ⁇ m) being especially preferred, e.g. of from 0.00275 (70) to 0.00354 in (90 ⁇ m), and/or with which the dv(90) value is a maximum of 0.0629 in (160 ⁇ m), e.g. of from 0.00354 (90) to 0.0629 in (160 ⁇ m), with a maximum of 0.0059 in (150 ⁇ m) being especially preferred, e.g.
  • the dv(50) or dv(90) values provide the maximum diameter that 50% or 90% of all droplets have.
  • the drop size distribution can, for example, be determined with the help of a particle measurement unit based on laser beam diffraction, e.g. a Malvern particle sizer measuring device.
  • Compositions that form a snow-like consistency, flakes, or foam (spray foam) upon exiting the capillary spray system are also preferred.
  • the propellant to be used can be selected from lower alkanes, particularly C3 to C5 hydrocarbons such as, for example, n-butane, i-butane, and propane, or also mixtures thereof, as well as dimethylethers or fluorine hydrocarbons such as F 152a (1,1-difluoroethane) or F 134 (tetrafluoroethane) as well as other gaseous propellants present with the pressures considered, such as, for example, N 2 , N 2 O, and CO 2 as well as mixtures of the aforementioned propellants.
  • the propellant is preferably selected from propane, n-butane, isobutane, dimethylether, fluorinated hydrocarbons, and mixtures thereof.
  • the content of propellant is, in addition, preferably 15 to 85 wt. %, with 25 to 75 wt. % being especially preferred.
  • the composition contains cosmetically acceptable solvents, preferably an aqueous, alcoholic, or aqueous alcoholic medium.
  • the lower alcohols with 1 to 4 C atoms such as ethanol and isopropanol, can be contained as alcohols, particularly those typically used for cosmetic purposes.
  • the composition can be in a pH range of 2.0 to 9.5. A pH range of 4 to 8 is particular preferred, providing no special application forms require other pH values.
  • organic solvents or a mixture of solvents with a boiling point of less than 752°F (400°C) can be contained in a quantity of from 0.1 to 15 wt. % or preferably of from 1 to 10 wt. %.
  • Unbranched or branched hydrocarbons such as n- pentane, hexane, isopentane, and cyclic hydrocarbons such as cyclopentane and cyclohexane are particularly suitable as additional co-solvents. These volatile hydrocarbons can also be used as propellants.
  • Other, especially preferred water-soluble solvents are glycerol, ethylene glycol, and propylene glycol in a quantity of up to 30 wt. %.
  • the product release system according to the invention can be used for hair treatment.
  • compositions can be agents for the care of hair such as, for example, hair-repair products or hair rinses, which, for example, can be applied as leave-on or rinse-off products; agents for the temporary reshaping and/or stabilizing of the hairstyle (styling agent), for example hair sprays, hair lacquers, hair gels, hair waxes, styling creams, etc.; permanent, semipermanent, or temporary hair colorants, for example oxidative hair colorants or nonoxidative hair tinting agents or hair bleaching agents; permanent hair restructuring agents, for example in the form of a mildly alkaline or acidic permanent wave or hair straightening agents containing a reducing agent, or in the form of permanent wave fixing agents containing an oxidizing agent.
  • hair-repair products or hair rinses which, for example, can be applied as leave-on or rinse-off products
  • agents for the temporary reshaping and/or stabilizing of the hairstyle for example hair sprays, hair lacquers, hair gels, hair waxes
  • the cationic polymers are contained in the composition to be used according to the present invention in a quantity that is preferably 0.01 to 20 wt. % or 0.05 to 10 wt. %, with 0.1 to 5 wt. % being particularly preferred.
  • the polymers can be synthetic or natural polymers.
  • the polymers are hair-setting and/or hair-conditioning polymers that preferably form a film as well.
  • Natural polymers are understood to also include chemically modified polymers of natural origin. Hair-setting polymers are understood to be those capable of exhibiting a setting effect on the hair or a stabilizing effect on the hairstyle when used in a 0.01 to 5% aqueous, alcoholic, or aqueous alcoholic solution or dispersion, e.g.
  • Hair-conditioning polymers are understood to be those capable of exhibiting a hair- conditioning or conditioning effect on the hair when used in a 0.01 to 5% aqueous, alcoholic, or aqueous alcoholic solution or dispersion, e.g. those that improve the combing ability or increase shine, especially those for which the "Hair Conditioning Agents” function is indicated in the International Cosmetic Ingredient Dictionary and Handbook, 10th edition, 2004.
  • Film- forming polymers are understood to be those capable of depositing a polymer film on the hair after drying when used in a 0.01 to 5% aqueous, alcoholic, or aqueous alcoholic solution or dispersion, especially those for which the 'TiIm Formers" function is indicated in the International Cosmetic Ingredient Dictionary and Handbook, 10th edition, 2004.
  • the polymers can also simultaneously have two or three of the properties known as "film-forming,” “hair- setting,” and "hair-conditioning.”
  • Cationic polymers are polymers with cationic groups or with amine groups, particularly primary, secondary, tertiary, or quaternary amine groups.
  • the cationic charge density will preferably be 1 to 7 meq/g.
  • Suitable synthetic cationic polymers are homo- or copolymers consisting of at least one of the following monomers:dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, monoalkylaminoalkyl acrylate, and monoalkyl aminoalkyl methacrylate, trialkyl methacryloxyalkyl ammonium, trialkyl acryloxyalkyl ammonium, dialkyl diallyl ammonium, and quaternary vinyl ammonium monomers with cyclic groups containing cationic nitrogens.
  • Suitable cationic polymers preferably contain quaternary amino groups.
  • Cationic polymers can be homo- or copolymers, where the quaternary nitrogen groups are contained either in the polymer chain or preferably as substituents on one or more of the monomers.
  • the monomers containing ammonium groups can be copolymerized with non- cationic monomers.
  • Suitable cationic monomer are unsaturated compounds that can undergo radical polymerization, which bear at least one cationic group, especially ammonium-substituted vinyl monomers such as, for example, trialkylmethacryloxyalkylammonium, trialkylacryloxyalkylammonium, dialkyldiallylammonium and quaternary vinylammonium monomers with cyclic, cationic nitrogen-containing groups such as pyridinium, imidazolium or quaternary pyrrolidones, e.g. alkylvinylimidazolium, alkylvinylpyridinium, or alkylvinylpyrrolidone salts.
  • the alkyl groups of these monomers are preferably lower alkyl groups such as, for example, Cl to C7 alkyl groups, and especially preferred are Cl to C3 alkyl groups.
  • the monomers containing ammonium groups can be copolymerized with non- cationic monomers.
  • Suitable comonomers are, for example, acrylamide, methacrylamide, alkyl- and dialkylacrylamide, alkyl- and dialkylmethacrylamide, alkyl acrylate, alkyl methacrylate, vinylcaprolactone, vinylcaprolactam, vinylpyrrolidone, vinyl esters, for example vinyl acetate, vinyl alcohol, propylene glycol or ethylene glycol, wherein the alkyl groups of these monomers are preferably Cl to C7 alkyl groups, and especially preferred are Cl to C3 alkyl groups.
  • Suitable polymers with quaternary amino groups are, for example, those described in the CTFA Cosmetic Ingredient Dictionary under the designations Polyquaternium such as methylvinylimidazolium chloride/vinylpyrrolidone copolymer (Polyquaternium- 16) or quaternized vinylpyrrolidone/dimethylaminoethyl methacrylate copolymer
  • Polyquaternium- 11 as well as quaternary silicone polymers or silicone oligomers such as, for example, silicone polymers with quaternary end groups (Quaternium-80).
  • Preferred cationic polymers of synthetic origin poly(dimethyldiallyl ammonium chloride); copolymers firom acrylamide and dimethyldiallyl ammonium chloride; quaternary ammonium polymers, formed by the reaction of diethyl sulfate with a copolymer from vinylpyrrolidone and dimethylaminoethyl methacrylate, especially vmylpyrrolidone/dimethylaminoethyl methacrylate methosulfate copolymer (e.g. Gafquat® 755 N, Gafquat® 734); quaternary ammonium polymers from methylvinylimidazolium chloride and vinylpyrrolidone (e.g.
  • LUVIQUAT® HM 550 Polyquaternium-35; Polyquaternium-57; polymers from trimethylammonium ethyl methacrylate chloride; terpolymers from dimethyldiallyl ammonium chloride, sodium acrylate and acrylamide (e.g. Merquat® Plus 3300); copolymers from vinylpyrrolidone, dimethylaminopropyl methacrylamide and methacryloylaminopropyllauryldimethylammonium chloride; terpolymers from vinylpyrrolidone, dimethylaminoethyl methacrylate and vinylcaprolactam (e.g.
  • Gaffix® VC 713 vinylpyiTolidone/methacrylaimdopropylirime&ylammoniuni chloride copolymers (e.g. Gafquat® HS 100); copolymers from vinylpyrrolidone and dimethylaminoethyl methacrylate; copolymers from vinylpyrrolidone, vinylcaprolactam and dimethylaiTiiiiopropylacrylamide; poly- or oligoesters formed from at least one first type of monomer, that is selected from hydroxyacids substituted with at least one quaternary ammonium group; dimethylpolysiloxane substituted with quaternary ammonium groups in the terminal positions.
  • Suitable cationic polymers that are derived from natural polymers are especially cationic derivatives of polysaccharides, for example, cationic derivatives of cellulose, starch or guar. Furthermore, chitosan and chitosan derivatives are also suitable.
  • Cationic polysaccharides are, for example, represented by the general formula
  • G is an anhydroglucose residue, for example, starch or cellulose anhydroglucose
  • B is a divalent linking group, for example alkylene, oxyalkylene, polyoxyalkylene or hydroxyalkylene;
  • R a , R b , and R c independently from one another, are alkyl, aryl, alkylaryl, arylalkyl, alkoxyalkyl, or alkoxyaryl, any of which can have up to 18 C atoms, wherein the total number of C atoms in R a , R b , and R c is preferably a maximum of 20;
  • X is a conventional counter-anion, for example, a halide, acetate, phosphate, nitrate, or alkyl sulfate, preferably a chloride.
  • Cationic celluloses are, for example, those with the ESfCI names Polyquaternium-4, Polyquaternium-10, or Polyquaternium-24.
  • a suitable cationic guar derivative has, for example, the BSfCI designation Guar Hydroxypropyltrimonium Chloride.
  • Especially preferred cationically-active substances are chitosan, chitosan salts and chitosan derivatives.
  • Chitosans that can be used according to the invention can be fully or partially deacetylated chitins.
  • the molecular weight can be distributed over a broad range, from 20,000 to about 5 million g/mol, for example from 30,000 to 70,000 g/mol.
  • the molecular weight will preferably lie above 100,000 g/mol, and especially preferred from 200,000 to 700,000 g/mol.
  • the degree of deacetylation is preferably from 10 to 99%, and especially preferably from 60 to 99%.
  • a preferred chitosan salt is chitosonium pyrrolidone carboxylate, e.g. Kytamer® PC with a molecular weight of from about 200,000 to 300,000 g/mol and a degree of deacetylation of from 70 to 85%.
  • Chitosan derivatives that can be considered include quaternized, alkylated or hydroxyalkylated derivatives, e.g. hydroxyethyl, hydroxypropyl or hydroxybutyl chitosan.
  • the chitosans or chitosan derivatives are preferably present in their neutralized or partially neutralized form.
  • the degree of neutralization will be preferably at least 50%, especially preferably between 70 and 100%, as calculated on the basis of the number of free base groups.
  • any cosmetically compatible inorganic or organic acids can be used such as, for example, formic acid, tartaric acid, malic acid, lactic acid, citric acid, pyrrolidone carboxylic acid, hydrochloric acid and others, of which pyrrolidone carboxylic acid is especially preferred.
  • Preferred cationic polymers derived from natural sources cationic cellulose derivatives from hydroxyethyl cellulose and diallyldimethyl ammonium chloride; cationic cellulose deviates from hydroxyethyl cellulose and trimethylammonium-substituted epoxide; chitosan and its salts; hydroxyalkyl chitosans and their salts; alkylhydroxyalkyl chitosans and their salts; N-hydroxyalkylchitosan alkyl ethers.
  • the composition to be used according to the invention is a gel and contains at least one thickener or gel-former preferably in a quantity of from 0.01 to 20 wt. % or of from 0.1 to 10 wt. %, of from 0.5 to 8 wt. %, or especially preferably of from 1 to 5 wt. %.
  • Materials for which the function "Viscosity Increasing Agent" is indicated in the International Cosmetic Ingredient Dictionary and Handbook, 10th edition, 2004 are essentially suitable.
  • the thickener or gel-former is preferably a thickening polymer and is especially preferably selected from copolymers consisting of at least one first type of monomer, which is selected from acrylic acid and methacrylic acid, and at least one second type of monomer, which is selected from esters of acrylic acid and ethoxylated fatty alcohol; crosslinked polyacrylic acid; crosslinked copolymers consisting of at least one first type of monomer, which is selected from acrylic acid and methacrylic acid, and at least one second type of monomer, which is selected from esters of acrylic acid with ClO to C30 alcohols; copolymers consisting of at least one first type of monomer, which is selected from acrylic acid and methacrylic acid, and at least one second type of monomer, which is selected from esters of itaconic acid and ethoxylated fatty alcohol; copolymers consisting of at least one type of monomer, which is selected from acrylic acid and methacrylic acid, at least one second type of monomer, which is selected from
  • the composition is waxy and contains at least one wax that is solid at 25°C preferably in a quantity of from 10 to 80 wt. %, particularly of from 20 to 60 wt. %, or of from 25 to 50 wt. %, as well as, if necessary, other water- insoluble materials that are liquid at room temperature.
  • the waxy consistency is preferably characterized in that the needle penetration number (unit of measurement
  • 0.00394 in (0,1 mm), test weight 3.937 oz (100 g), testing time 5 s, test temperature 77°F (25°C); according to DESf 51 579) preferably ranges from 2 to 70, or particularly from 3 to 40, and/or that the composition can be melted and has a solidification point that is greater than 77°F (25°C), or is preferably in a range of from 86 (30) to 158°F (70°C), or especially preferably in a range of from 104 (40) to 131 0 F (55°C).
  • any wax that is known in the prior art can be used as a wax or waxy material.
  • waxes include animal, vegetable, mineral, and synthetic waxes, microcrystalline waxes, macrocrystalline waxes, solid paraffins, petroleum jelly, Vaseline, ozocerite, montan wax, Fischer-Tropsch wax, polyolefin waxes, e.g.
  • polybutene beeswax, wool wax, and its derivatives such as, for example, wool wax alcohols, candelilla wax, olive wax, carnauba wax, Japan wax, apple wax, hydrogenated fats, fatty acid esters, fatty acid glycerides with a solidification point greater than 104 0 F (40 0 C), silicone waxes or hydrophilic waxes such as, for example, high-molecular-weight polyethylene glycol waxes with a molecular weight of from 800 to 20,000, preferably of from 2,000 to 10,000 g/mol.
  • silicone waxes or hydrophilic waxes such as, for example, high-molecular-weight polyethylene glycol waxes with a molecular weight of from 800 to 20,000, preferably of from 2,000 to 10,000 g/mol.
  • the waxes or waxy materials have a solidification point greater than 77°F (25°C), or preferably greater than 104°F (4O 0 C) or 131°F (55 0 C).
  • the needle penetration number (0.00394 in (0,1 mm), 3.937 oz (100 g), 5 s, 77°F (25°C); according to DIN 51 579) preferably lies in the range of from 2 to 70, or especially 3 to 40.
  • the composition is emulsion-like, wherein the consistency is preferably creamy.
  • the emulsion can be a water-in-oil emulsion, an oil-in-water emulsion, a microemulsion, or a higher emulsion.
  • at least one hydrophobic oil that is liquid at room temperature (77°F (25 0 C)) as well as at least one emulsifier is contained.
  • the oil content is preferably of from 1 to 20 wt. %, or particularly of from 2 to 10 wt. %.
  • the emulsifier content is preferably of from 0.01 to 30 wt. %, or particularly of from 0.1 to 20 wt. % or of from 0.5 to 10 wt. %.
  • Suitable liquid, hydrophobic oils have a melting point of less than 77 0 F (25°C) and a boiling point of preferably greater than 482°F (250 0 C), or particularly greater than 572°F (300 0 C). Volatile oils can also be used, hi principle, any oil generally known to a person skilled in the art can be used. Suitable oils are vegetable or animal oils, mineral oils (liquid paraffin), silicone oils or their mixtures. Hydrocarbon oils, e.g. paraffin or isoparaffin oils, squalane, oils from fatty acids and polyols, especially triglycerides, are suitable.
  • Suitable vegetable oils are, for example, sunflower oil, coconut oil, castor oil, lanolin oil, jojoba oil, corn oil, soy oil.
  • Suitable emulsifiers can include nonionic, anionic, cationic, or zwitterionic surfactants.
  • Suitable nonionic surfactants are, for example, ethoxylated fatty alcohols, fatty acids, fatty acid glycerides, or alkyl phenols, especially addition products of 2 to 30 mol ethylene oxide and/or
  • C22 alkyl groups e.g. decyl glucoside or lauryl glucoside.
  • Suitable anionic surfactants are, for example, salts and esters of carboxylic acids, alkyl ether sulfates and alkyl sulfates, fatty alcohol ether sulfates, sulfonic acids and their salts (e.g. sulfosuccinates or fatty acid isethienates), phosphoric acid esters and their salts, acylamino acids and their salts.
  • FIEDLER - Lexikon der Hilfsscher [FIEDLER -Dictionary of Adjuvants] , volume 1, fifth edition (2002), pages 97 to 102, to which expressed reference is made.
  • Preferred surfactants are mono-, di-, and/or triesters of phosphoric acid with addition products of from 2 to 30 mol ethylene oxide to C8 to C22 fatty alcohols.
  • Suitable amphoteric surfactants are, for example, derivatives of aliphatic quaternary ammonium, phosphonium and sulfonium compounds of the formula
  • Rl represents a straight-chain or branched-chain alkyl, alkenyl, or hydroxyalkyl group with 8 to 18 C atoms and 0 to about 10 ethylene oxide units and 0 to 1 glycerol units
  • Y is an N-, P-, or S-containing group
  • R2 is an alkyl or monohydroxyalkyl group with 1 to 3 C atoms
  • the total of x+y equals 2 if Y is a sulfur atom
  • the total of x+y equals 3 if Y is a nitrogen atom or a phosphorus atom
  • R3 is an alkylene or hydroxyalkylene group with 1 to 4 C atoms
  • Z H represents a carboxylate, sulfate, phosphonate, or phosphate group.
  • amphoteric surfactants such as betaines are also suitable.
  • betaines include C8 to Cl 8 alkylbetaines such as cocodimethylcarboxymethylbetaine, lauryldimethylcarboxymethylbetaine, lauryldimethyl- alpha-carboxyethylbetaine, cetyldimethylcarboxymethylbetaine, oleyldimethylgammacarboxypropylbetaine, and lauryl-bis-(2-hydroxypropyl)-alpha- carboxyethylbetaine; C8 to Cl 8 sulfobetaines such as cocodimethylsulfopropylbetaine, stearyldimethylsulfopropylbetaine, lauryldimethylsulfoethylbetaine, lauryl-bis-(2- hydroxyethyl)sulfopropylbetaine; the carboxyl derivatives of imidazole, C8 to Cl 8 alkyldimethylammonium acetate
  • Suitable cationic surfactants contain amino groups or quaternized hydrophilic ammonium groups that carry a positive charge in solution and can be represented by the general formula
  • Rl to R4 independently from one another, stand for aliphatic groups, aromatic groups, alkoxy groups, polyoxyalkylene groups, alkylamido groups, hydroxyalkyl groups, aryl groups, or alkaryl groups with 1 to 22 C atoms, wherein at least one radical has at least 6, preferably at least 8, C atoms and X " represents an anion, for example a halide, acetate, phosphate, nitrate, or alkyl sulfate, but preferably a chloride.
  • the aliphatic groups can also contain cross-compounds, or other groups, such as, for example, additional amino groups.
  • Suitable cationic surfactants are the chlorides or bromides of alkyldimethylbenzylammonium salts, alkyltrimethylarnmonium salts, e.g. cetyltrimethylammonium chloride or bromide, tetradecyltrimethylammonium chloride or bromide, alkyldimethylhydroxyethylammonium chlorides or bromides, dialkyldimethylammonium chlorides or bromides, alkylpyridinium salts, for example lauryl- or cetylpyridinium chloride, alkylamidoethyltrimethylammonium ether sulfates as well as compounds with cationic character such as amine oxides, e.g.
  • alkylmethylamine oxides or alkylaminoethyldimethylamine oxides are especially preferred.
  • C8-22 allcyldimethylbenzylammonium compounds are especially cetyltrimethylammonium chloride, C8-22 alkyldimethylhydroxyethylammonium compounds, di-(C8-22 alkyl)-dimethylammonium compounds, C8-22 alkylpyridinium salts, C8-22 alkylamidoethyltrimethylammonium ether sulfates, C8-22 alkylmethylamine oxides, and C8-22 alkylaminoethyldimethylamine oxides.
  • the cosmetic composition to be used according to the present invention can also contain at least one additional active cosmetic ingredient or additive for the hair or skin/scalp.
  • This active ingredient or additive can, for example, be selected from hair-conditioning materials, hair-setting materials, silicone compounds, photoprotective materials, preservatives, pigments, direct-penetrating hair dyes, particle-shaped materials, oxidizing agents, reducing agents, and oxidative hair colorant precursor products.
  • the active ingredients and additives are preferably contained in a quantity of from 0.01 to 20 wt. %, or particularly of from 0.05 to 10, or of from 0.1 to 5 wt. %.
  • the agent according to the invention contains at least one polymer with anionic groups or groups that can be anionized preferably in a quantity of from 0.01 to 20 wt. % or of from 0.05 to 10 wt. %, with 0.1 to 5 wt. % being particularly preferred.
  • Groups that can be anionized are understood to be acid groups such as, for example, carboxylic acid, sulfonic acid, or phosphoric acid groups that can be deprotonated using typical bases such as, for example, organic amines or alkali- or alkaline earth hydroxides.
  • the anionic polymers can be partially or completely neutralized with an alkaline neutralizing agent.
  • Organic or inorganic bases can be used as the neutralizing agent.
  • bases are amino alkanols such as, for example, ammomethylpropanol (AMP), triethanolamine or monoethanolamine, and also ammonia, NaOH, and KOH among others.
  • the anionic polymer can be a homo- or copolymer with acid group-containing monomer units derived from natural or synthetic sources, which, if necessary, can be polymerized with comonomers that contain no acid groups.
  • acid groups that can be considered are sulfonic acid, phosphoric acid, and carboxylic acid groups, of which the carboxylic acid groups are preferred.
  • Suitable acid group-containing monomers are, for example, acrylic acid, methacrylic acid, crotonic acid, maleic acid, and nialeic anhydride, maleic acid monoesters, especially the Cl to C7 alkyl monoesters of maleic acid, as well as aldehydocarboxylic acids or ketocarboxylic acids.
  • Comonomers that are not substituted with acid groups are, for example, acrylamide, methacrylamide, alkyl- and dialkylacrylamide, alkyl and dialkylmethacrylamide, alkyl acrylate, alkyl methacrylate, vinylcaprolactone, vinylpyrrolidone, vinyl ester, vinyl alcohol, propylene glycol or ethylene glycol, amine- substituted vinyl monomers such as, for example, dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, monoalkylaminoalkyl acrylate, and monoalkylaminoalkyl methacrylate, wherein the alkyl groups of these monomers are preferably Cl to C7 alkyl groups, with Cl to C-alkyl groups being especially preferred.
  • Suitable polymers with acid groups are especially homopolymers of acrylic acid or methacrylic acid, copolymers of acrylic acid or methacrylic acid with monomers selected from acrylic acid or methacrylic acid esters, acrylamides, methacrylamides and vinylpyrrolidone, homopolymers of crotonic acid as well as copolymers of crotonic acid with monomers selected from vinyl esters, acrylic acid or methacrylic acid esters, acrylamides and methacrylamides that are uncrosslinked or crosslinked with polyfunctional agents.
  • a suitable natural polymer is, for example, shellac.
  • Preferred polymers with acid groups are:
  • Terpolymers from acrylic acid, alkyl acrylate, and N-alkylacrylamide (INCI designation: Acrylate/Acrylamide Copolymer), especially terpolymers from acrylic acid, ethyl acrylate and N-tert-butylacrylamide; crosslinked or uncrosslinked vinyl acetate/crotonic acid copolymers (INCI designation: VA/Crotonate Copolymer); copolymers from one or more Cl to C5 alkyl acrylates, especially C2 to C4 alkyl acrylates and at least one monomer selected from acrylic acid or methacrylic acid (INCI designation: Acrylate Copolymer), e.g.
  • the agent according to the invention contains at least one zwitterionic and/or amphoteric polymer preferably in a quantity of from 0.01 to 20 wt. % or of from 0.05 to 10 wt. %, or especially preferably of from 0.1 to 5 wt. %.
  • Zwitterionic polymers simultaneously have at least one anionic and at least one cationic charge.
  • Amphoteric polymers exhibit at least one acidic group (e.g. carboxylic acid or sulfonic acid group) and at least one alkaline group (e.g. amino group). Acidic groups can be deprotonated using typical bases such as, for example, organic amines or alkali- or alkaline earth hydroxides.
  • Preferred zwitterionic or amphoteric polymers are: copolymers formed from alkylacrylamide, alkylaminoalkyl methacrylate, and two or more monomers from acrylic acid and methacrylic acid as well as, if necessary, their esters, especially copolymers from octylacrylamide, acrylic acid, butylaminoethyl methacrylate, methyl methacrylate and hydroxypropyl methacrylate (INCI designation: Octylacrylamide/Acrylate/Butylaminoethyl Methacrylate Copolymer); copolymers, that are formed from at least one of a first type of monomer that possesses quaternary amino groups and at least one of a second type of monomer that possesses acid groups; copolymers from fatty alcohol acrylates, alkylamine oxide methacrylate and at least one monomer selected from acrylic acid and methacrylic acid as well as if necessary acrylic acid esters and methacrylic acid esters, especially
  • the agent of the present invention contains 0.01 to 15 wt. %, or preferably 0.5 to 10 wt. %, of at least one synthetic or natural nonionic film-forming polymer.
  • Suitable synthetic nonionic polymers are homo- or copolymers consisting of at least one of the following monomers: vinyl lactams such as, for example, vinyl pyrrolidone or vinyl caprolactam; vinyl esters such as, for example, vinyl acetate; vinyl alcohol, vinyl formarnide, acrylamides, methacrylamides, alkyl acrylamides, dialkyl acrylamides, alkyl methacrylamides, dialkyl methacryl amides, alkyl acrylates, alkyl methacrylates, alkyl maleimides such as, for example, ethylmaleimide or hydroxyethylmaleimide, and alkylene glycols such as, for example, propylene or ethylene glycol, wherein the alkyl and/or alkylene groups of these monomers are preferably Cl to C7 alkyl groups, or especially preferably Cl to C3 alkyl groups.
  • vinyl lactams such as, for example, vinyl pyrrolidone or vinyl cap
  • Suitable homopolymers are, for example, those of vinylcaprolactam, vinylpyrrolidone or N-vinylformamide.
  • Further suitable synthetic, nonionic polymers are, for example, polyacrylamides, polyethylene glycol/polypropylene glycol copolymers, copolymerides from vinylpyrrolidone and vinyl acetate, terpolymers from vinylpyrrolidone, vinyl acetate, and vinyl propionate, polyacrylamides; polyvinyl alcohols as well as polyethylene glycol/polypropylene glycol copolymers.
  • Suitable natural film- forming polymers are, in particular, those based on saccharide, preferably glucans, e.g. cellulose and derivatives thereof.
  • Suitable derivatives are, in particular, those with alkyl and/or hydroxyalkyl substituents, wherein the alkyl groups can have, for example, 1 to 20, or preferably 1 to 4 C atoms, e.g. hydroxyalkyl cellulose.
  • Preferred nonionic polymers are: polyvinylpyrrolidone, polyvinylcaprolactam, vinylpyrrolidone/vinyl acetate copolymers, polyvinyl alcohol, isobutylene/ethylmaleimide/hydroxyethylmaleimide copolymer; copolymers from vinylpyrrolidone, vinyl acetate, and vinyl propionate.
  • the agent according to the invention contains at least one silicone compound preferably in a quantity of from 0.01 to 15 wt. %, or especially preferably of from 0.1 to 5 wt. %.
  • the silicone compounds include volatile and nonvolatile silicones and silicones that are soluble and insoluble in the agent.
  • One embodiment is high-molecular-weight silicone with a viscosity of 1,000 to 2,000,000 cSt at 77 0 F (25°C), or preferably 10,000 to 1,800,000 or 100,000 to 1,500,000.
  • the silicone compounds include polyalkyl and polyaryl siloxanes, particularly with methyl, ethyl, propyl, phenyl, methylphenyl, and phenylmethyl groups.
  • silicone compounds include, in particular, the materials with the BSfCI designations Cyclomethicone, Dimethicone, Dimethiconol, Dimethicone Copolyol, Phenyl Trimethicone, Amodimethicone, Trimethylsilylamodimethicone, Stearyl Siloxysilicate, Polymethylsilsesquioxane, and Dimethicone Crosspolymer.
  • Silicone resins and silicone elastomers are also suitable, wherein these are highly crosslinked siloxanes.
  • Preferred silicones are: cyclic dimethyl siloxanes, linear polydimethyl siloxanes, block polymers from polydimethyl siloxane and polyethylene oxide and/or polypropylene oxide, polydimethyl siloxanes with terminal or lateral polyethylene oxide or polypropylenoxide radicals, polydimethyl siloxanes with terminal hydroxyl groups, phenyl-substituted polydimethyl siloxanes, silicone emulsions, silicone elastomers, silicone waxes, silicone gums, amino- substituted silicones, and silicones substituted with quaternary ammonia groups.
  • the agent according to the invention contains a photoprotective material preferably in a quantity of from 0.01 to 10 wt. % or of from 0.1 to 5 wt. %, or especially preferably of from 0.2 to 2 wt. %.
  • the photoprotective materials include, in particular, all the photoprotective materials mentioned in EP 1 084 696. The following are preferred: 4-methoxy cinnamic acid-2-ethylhexyl ester, methyl methoxy cinnamate, 2- hydroxy-4-methoxy benzophenone-5-sulfonic acid, and polyethoxylated p-aminobenzoate.
  • the agent according to the present invention contains 0.01 to 20, especially preferably 0.05 to 10, or very especially preferably 0.1 to 5 wt. % of at least one hair-conditioning additive, selected from betaine; panthenol; panthenyl ethyl ether; sorbitol; protein hydro lysates; plant extracts; A-B block copolymers from alkyl acrylates and alkyl methacrylates; A-B block copolymers from alkyl methacrylates, and acrylonitrile; A-B-A block copolymers from lactide and ethylene oxide; A-B-A block copolymers from caprolacton and ethylene oxide; A-B-C block copolymers from alkylene or alkadiene compounds, styrene and alkyl methacrylates; A-B-C block copolymers from acrylic acid, styrene, and alkyl methacrylates; star-shaped block copolymers; hyper- branchedio
  • the agent according to the invention contains 0.01 to 5, or especially preferably 0.05 to 1 wt. %, of at least one preservative.
  • Suitable preservatives are those materials listed with the "Preservatives" function in the International Cosmetic Ingredient Dictionary and Handbook, 10th edition, e.g. phenoxyethanol, benzylparaben, butylparaben, ethylparaben, isobutylparaben, isopropylparaben, methylparaben, propylparaben, iodopropynyl butylcarbamate, methyldibromoglutaronitrile, and DMDM hydantoin.
  • a particular embodiment of the invention relates to a hair-conditioning agent.
  • Hair-conditioning agents are, for example, conditioners, treatments, hair-repair products, rinses, and the like.
  • the hair-conditioning agent contains at least one hair-conditioning ingredient selected from the aforementioned silicone compounds, cationic or amine- substituted surfactants, and cationic or amine-substituted polymers.
  • the hair-conditioning agent can be used in quantities of between 0.01 and 10.0 wt. %, or particularly between 0.01 and 5.0 wt. %, based on the finished product.
  • the hair-conditioning agent according to the invention can, after application to the dry, damp, or wet hair, either remain in the hair or it can be rinsed out after a suitable action period.
  • the action periods depend on the type of hair. As a general rule, action periods of between 0.5 and 30 minutes, particularly 0.5 and 10 minutes, and preferably between 1 and 5 minutes can be assumed.
  • Rl is an acyl or an alkyl residue with 8 to 24 C atoms, which can be branched or linear, saturated or unsaturated, whereby the acyl and/or the alkyl residue can contain one or more OH groups
  • R2, R3 and R4 independently of one another are hydrogen, alkyl or alkoxyalkyl residues with 1 to 6 C atoms, which can be the same or different, saturated or unsaturated and can be substituted with one or more hydroxy groups
  • X ' is an anion, especially a halide ion or a compound of the general formula RSO 3 " , wherein R has the meaning of saturated or unsaturated alkyl residues with 1 to 4
  • the active hair-conditioning compound is preferably an amidoamine and/or a quaternized amidoamine of the aforementioned formulae, wherein Rl is a branched or linear, saturated or unsaturated acyl residue with 8 to 24 C atoms that can contain at least one OH group.
  • Rl is a branched or linear, saturated or unsaturated acyl residue with 8 to 24 C atoms that can contain at least one OH group.
  • R2 is a branched or linear, saturated or unsaturated acyl residue with 8 to 24 C atoms that can contain at least one OH group.
  • R2 is a branched or linear, saturated or unsaturated acyl residue with 8 to 24 C atoms that can contain at least one OH group.
  • R2 is a branched or linear, saturated or unsaturated acyl residue with 8 to 24 C atoms that can contain at least one OH group.
  • R2 is a branched or linear, saturated or unsaturated acy
  • Suitable amines or amidoamines which can be optionally quaternized, are especially such with the INCI names Ricinoleamidopropyl Betaine, Ricinoleamidopropyl Dimethylamine, Ricinoleamidopropyl Dimethyl Lactate, Ricinoleamidopropyl Ethyldimonium Ethosulfate, Ricinoleamidopropyltrimonium Chloride, Ricinoleamidopropyltrimonium Methosulfate, Cocamidopropyl Betaine, Cocamidopropyl Dimethylamine, Cocamidopropyl Ethyldimonium Ethosulfate, Cocamidopropyltrimonium Chloride, Behenamidopropyl Dimethylamine, Isostearylamidopropyl Dimethylamine, Stearylamidopropyl Dimethylamine, Quaternium- 33, Undecyleneamidopropyltrimonium Methosulfate.
  • the agent according to the invention contains at least one pigment.
  • the pigments can be colored pigments that provide coloring effects to the product mass or the hair, or they can be shine-enhancing pigments that provide shine effects to the product or the hair.
  • the color or shine effects in the hair are preferably temporary, i.e. they remain until the next time the hair is washed and can be removed by washing the hair with typical shampoos.
  • the pigments are not dissolved in the product mass and can be contained in a quantity of from 0.01 to 25 wt. %, with 5 to 15 wt. % being particularly preferred.
  • the preferred particle size is 3.93 x 10 "5 (1) to 0.00787 in (200 ⁇ m), particularly 0.00012 (3) to 0.00591 in (150 ⁇ m), and especially preferably 0.00039 (10) to 0.00393 in (100 ⁇ m).
  • the pigments are practically insoluble colorants in the application medium and can be inorganic or organic. Inorganic-organic mixed pigments are also possible. Inorganic pigments are preferred. The advantage of inorganic pigments is their extraordinary resistance to light, weather, and temperature.
  • the inorganic pigments can be of natural origin, for example, manufactured from chalk, ocher, umbra, green earth, burnt Terra di Siena, or graphite.
  • the pigments can also be white pigments such as, for example, titanium dioxide or zinc oxide; black pigments such as, for example, iron oxide black; color pigments such as, for example, ultramarine or iron oxide red; shine pigments; metal effect pigments; pearl shine pigments; as well as fluorescence or phosphorescence pigments; wherein it is preferred if at least one pigment is a colored, nonwhite pigment.
  • Metallic oxides, metallic hydroxides, and metallic oxide hydrates, mixed phase pigments, sulfur-containing silicates, metallic sulfides, complex metal cyanides, metallic sulfates, metallic chromates, and metallic molybdates, as well as the metals themselves (bronze pigments) are suitable.
  • Titanium dioxide (CI 77891), black iron oxide (CI 77499), yellow iron oxide (CI 77492), red and brown iron oxide (CI 77491), manganese violet (CI 111 AT), ultramarine (sodium aluminum sulfosilicates, CI 77007, Pigment Blue 29), chromium oxide hydrate (CI77289), iron blue (ferric ferrocyanide, CI77510), and carmine (cochineal) are particularly suitable.
  • a metallic oxide or a metallic oxychloride such as titanium dioxide or bismuth oxychloride
  • other color-providing materials such as iron oxides, iron blue, ultramarine, carmine, etc., and wherein the color can be determined by varying the layer thickness are especially preferred.
  • These types of pigments are sold, for example, under the trade names Rona®, Colorona®, Dichrona®, and Timiron® by Merck, in Germany.
  • Organic pigments are, for example, the natural pigments sepia, Garcinia gumrni- gutta, bone black, Van Dyke brown, indigo, chlorophyll, and other plant pigments.
  • Synthetic organic pigments are, for example, azo-pigments, anthraquinoids, indigoids, and dioxazine, quinacridone, phthalocyanine, isoindolinone, perylene, perinone, metallic complex, alkali blue, and diketopyrrolopyrrol pigments.
  • the agent according to the present invention contains 0.01 to
  • Suitable materials are, for example, materials that are solid and in the form of particles at room temperature (77°F (25°C)).
  • Silica, silicates, aluminates, alumina, mica, salts, particularly inorganic metallic salts, metallic oxides, e.g. titanium dioxide, minerals, and polymer particles are somewhat suitable.
  • the particles are present in the agent in an undissolved, preferably steadily dispersed form and can be deposited on the hair in solid form after being applied to the hair and after the solvent has evaporated.
  • a stable dispersion can be obtained by providing the composition with a yield point that is great enough to inhibit any sinking of the solid particles.
  • Preferred particle-shaped materials are silica (silica gel, silicium dioxide) and metallic salts, particularly inorganic metallic salts, wherein silica is especially preferred.
  • Metallic salts are, for example, alkaline or alkaline-earth halogenides such as sodium chloride or potassium chloride; and alkaline or alkaline earth sulfates such as sodium sulfate or magnesium sulfate.
  • An additional embodiment relates to an agent for permanently restructuring hair. It contains at least one reducing agent, particularly a keratin-reducing mercapto compound preferably in a quantity of from 0.5 to 15 wt. %.
  • the required alkalinity is obtained by adding ammonia, organic amines, ammonium and alkali carbonates, or bicarbonates.
  • a sodium or ammonium sulfite or the salt of sulfuric acid with an organic amine such as, for example, monoethanolamine and guanidine can be used in a concentration of approximately 2 to 12 wt. % (calculated as SO2).
  • SO2 organic amine
  • mercaptoacetic acid mono glycol esters or glycerol esters are particularly used in a concentration of approximately 5 to 50 wt. % (corresponding to a content of 2 to 16 wt. % mercaptoacetic acid).
  • the agent according to the invention for permanent restructuring of hair can also contain a mixture of the aforementioned keratin-reducing compounds.
  • a fixing agent according to the invention containing at least one oxidizing agent can be used.
  • oxidizing agents sodium and potassium bromate, sodium perborate, urea peroxide, and hydrogen peroxide.
  • the concentration of oxidizing agent can be approximately 0.5 to 10 wt. %.
  • Both the agent according to the invention for permanent hair restructuring as well as the fixing agent according to the invention can be present in the form of an emulsion or in thickened form on an aqueous basis, particularly as a cream, gel, or paste.
  • composition to be used according to the invention can further contain any additive components that are conventional for hair treatment agents, for example perfume oils; opacifying agents such as, for example, ethylene glycol distearate, styrene/PVP copolymers or polystyrenes; humectants; shine providers; product dyes; antioxidants; each preferably in quantities of 0.01 to 10 wt. %, wherein the total quantity preferably does not exceed 10 wt. %.
  • perfume oils for example, opacifying agents such as, for example, ethylene glycol distearate, styrene/PVP copolymers or polystyrenes
  • humectants such as, for example, ethylene glycol distearate, styrene/PVP copolymers or polystyrenes
  • humectants such as, for example, ethylene glycol distearate, styrene/PVP copolymers or polystyrenes
  • the object of the invention is also a method for hair treatment, wherein a product release system according to the invention is provided, - via the product release system, the composition contained therein is sprayed on the hair, and the composition that is sprayed on is either rinsed out of the hair after an action period or it is left in the hair.
  • the product can also be placed in the hands or on an application device such as, for example, a comb or a brush, and then distributed into the hair, particularly if the product has a snow-like consistency, or it is in the form of flakes or foam.
  • an application device such as, for example, a comb or a brush
  • the products according to the invention are characterized, constrained by their special application with the special aerosol spray system to be used according to the invention, by an excellent distribution capacity in conjunction with a good hairstyle stability with good hold as well as shine for the hair.
  • An additional advantage of the products according to the present invention is that differing spray properties can be precisely adjusted by simply varying the propellant, the propellant composition, or the propellant pressure; these spray properties were not previously possible for the underlying active ingredient compositions.
  • the spray properties include everything from a fine aerosol atomized spray and snow-like drops to flakes of spray and spray foam.
  • the individual active ingredient compositions were filled, along with the individually indicated propellants, into a pressure-resistant aerosol can and equipped with a capillary spray system, as can be obtained, for example, under the trade name TRUSPRA Y® from Boehringer Ingelheim microParts GmbH.
  • Active ingredient composition :
  • Active ingredient composition :
  • Example 5 Emulsion-like, creamy hair-repair product/treatment Active ingredient composition:
  • Spray foam 5-5 Spray foam
  • Spray properties 6- 1 : Snow-like spray 6-2: Snow-like spray 6-3: Wet aerosol spray 6-4: Spray foam 6-5: Spray foam

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

A product release system for atomizing cosmetic hair compositions is described, which has (a) pressure-resistant packaging, (b) a capillary-containing spray head, and (c) a propellant-containing cosmetic composition, which contains at least one film-forming, hair-setting, or hair-conditioning cationic polymer. The atomization is done using the capillary. The capillary preferably has a diameter of 0.00394 (0.1) to 0.03937 in (1 mm) and a length of 0.1968 (5) to 3.937 in (100 mm). The spray rate is preferably 0.00035 (0.01) to 0.176 oz/s (5 g/s). The composition can particularly be a gel, wax, or emulsion.

Description

A PRODUCT RELEASE SYSTEM FOR ATOMIZING COSMETIC HAIR COMPOSITIONS CONTAINING CATIONIC POLYMERS
The object of the present invention is a product release system for atomizing cosmetic compositions, which has pressure-resistant packaging, a capillary-containing spray head, and a propellant-containmg cosmetic composition, and wherein the composition contains at least one film-forming, hair-setting, or hair-conditioning cationic polymer. The object of the invention is thus a corresponding method for hair treatment.
Many cosmetic hair products contain cationic polymers as hair-setting or hair- conditioning ingredients. In the form of foams, cationic polymers provide the hair with good combing properties after application in wet hair and effect good setting with a good hold in dry hair. In shampoos, permanent wave solutions, fixing products, and hair colors, cationic polymers are used to provide good combing properties in wet hair and good hold properties in dry hair. They provide hairstyle stability and increase hair volume in dry hair. However, cationic polymers have not been widely used up to now in higher- viscosity products such as gels, waxes, hairdressing creams, or treatments, because the composition as well as the product consistency and the resulting more difficult application meant that the advantages of the cationic polymers couldn't be fully realized on the hair.
A process for atomizing liquid is known from WO 03/051523 Al with which the spray is formed using a capillary. Only the application with respect to atomizing liquid compositions is described. A fixture for atomizing liquid products is described in WO 03/051522 A2, wherein the spray is formed using a capillary. Only the use of liquid compositions for atomizing, which can also be highly viscous, is described, wherein, however, 0.00073 lb/in2 s (5,000 mPa s) is mentioned as the maximum sprayable viscosity.
There is a need for products that will realize the advantageous hair-setting and hair-conditioning properties of cationic polymers even in application forms such as hair waxes, styling gels, hairdressing creams, or creamy treatments and that will combine the advantageous properties with these forms of application. The object of the invention, in particular, was to further improve the distributability on hair, the volume effect, the setting effect and/or hairstyle stability, the combing properties, the hair shine, and/or the holding properties of conventional hair treatment compositions, which were previously unavailable as a spray, and/or the hair treated with said composition.
The object of the invention is a product release system for atomizing cosmetic compositions. The product release system has the following features:
(a) pressure-resistant packaging,
(b) a spray head containing a capillary, and (c) a propellant-containing cosmetic composition, wherein atomization is done using the capillary and the composition contains at least one film-forming, hair-setting, or hair-conditioning cationic polymer.
The term "atomize" is understood to mean the release of the product in the form of dissipated particles. The dissipated particles can have varying shapes, consistencies, and sizes. The properties of the atomized particles can include everything from fine aerosol atomized spray to liquid drops, snow-like drops, solid spray flakes and spray foam.
The quantities of ingredients (e.g. wt. %) indicated in the following are each based on the basic composition without propellant unless explicitly indicated otherwise. The quantities of the propellant are based on the total composition including propellant.
The composition is preferably non-liquid at 77°F (25 °C) and/or has a viscosity greater than 0.00073 lb/in2 s (5,000 mPa s) (measured with a HAAKE VT-550 Rheometer, SV-DIN test body at a temperature of 77°F (25°C) and a shear speed of 12.9 s"1).
The properties of the compositions to be used according to the invention that are related to consistency are based on the base composition without propellant (unless explicitly indicated otherwise). Non-liquid compositions in terms of the invention are particularly non-flow-capable compositions, which, for example, can be determined due to the fact that they will not flow off of a glass surface tilted at 45° at a temperature of 770F (25°C). Gel compositions are characterized in that the memory module G' is larger than the loss module G" at 770F (25°C) with oscillographic measurements in the typical measurement range (0.01 to 40 Hz).
The viscosity of the composition to be used is preferably greater than 0.00073 (5,000) up to 0.0145 (100,000), and especially preferably 0.00145 (10,000) to 0.00725 lb/in2 s (50,000 mPa s), or very especially preferably 0.00362 (25,000) to 0.0051 lb/in2 s (35,000 mPa s), measured with a HAAKE VT-550 Rheometer, SV-DIN test body at a temperature of 77°F (250C) and a shear speed of 12.9 s"1.
Aerosol spray cans constructed of metal or plastic can be used as the pressure- resistant packaging. Preferred metals are tin plates and aluminum, while the preferred plastic is polyethylene terephthalate.
Suitable spray systems with capillary-containing spray heads, with which the spray is formed using a capillary, are described in WO 03/051523 Al and in WO 03/051522 A2. The capillaries preferably have a diameter of 0.00394 (0.1) to 0.03937 in (1 mm), or particularly 0.00787 (0.2) to 0.02362 in (0.6 mm), and a length that is preferably 0.1968 (5) to 3.937 in (100 mm), or particularly 0.1968 (5) to 1.9685 in (50 mm). The spray principle is also described in Aerosol Europe, vol. 13, no. 1-2005, pages 6-11. The spray system is based on the principle of capillary atomization. The conventional swirl nozzle as well as, if necessary, the uptake tube are replaced by capillaries. The energy-consuming and propellant-intensive swirling of the content of the can and the required strong dilution of the product with solvents is not necessary as compared to conventional spray systems. Even if only a small quantity of propellant is used, the product rises upward on the wall of the uptake tube capillary and is propelled, after the valve in the (wider) capillary of the spray head, in the direction of the exit opening, hi this manner, small drops from the flowing propellant are torn from the surface of the liquid and continue to flow as aerosol. Since there is no swirl chamber to inhibit the flow of the product nor any atomizing nozzle available, the energy in the system can be used much more efficiently to create the desired spray. The spray rate can be adjusted via the selection of the capillary geometry in conjunction with the interior pressure created by the propellant or a propellant mixture. Preferred spray rates are 0.00035 (0.01058) to 0.0176 oz/s (0.5 g/s), particularly 0.00353 (0.1) to 0.01 oz/s (0.3 g/s). The size of the spray drops created with the atomization can be adjusted via the selection of the capillary geometry in conjunction with the interior pressure or the viscosity of the composition. Suitable capillary atomization systems can be obtained in a product called TRUSPRAY® from Boehringer Ingelheim microParts GmbH.
The preferred drop size distributions are those with which the dv(50) value is a maximum of 0.00393 in (100 /mi), e.g. of from 0.00197 (50) to 0.00393 in (100 μm), with a maximum of 0.00354 in (90 μm) being especially preferred, e.g. of from 0.00275 (70) to 0.00354 in (90 μm), and/or with which the dv(90) value is a maximum of 0.0629 in (160 μm), e.g. of from 0.00354 (90) to 0.0629 in (160 μm), with a maximum of 0.0059 in (150 μm) being especially preferred, e.g. of from 0.00452 (115) to 0.0059 in (150 μm). The dv(50) or dv(90) values provide the maximum diameter that 50% or 90% of all droplets have. The drop size distribution can, for example, be determined with the help of a particle measurement unit based on laser beam diffraction, e.g. a Malvern particle sizer measuring device. Compositions that form a snow-like consistency, flakes, or foam (spray foam) upon exiting the capillary spray system are also preferred.
The propellant to be used can be selected from lower alkanes, particularly C3 to C5 hydrocarbons such as, for example, n-butane, i-butane, and propane, or also mixtures thereof, as well as dimethylethers or fluorine hydrocarbons such as F 152a (1,1-difluoroethane) or F 134 (tetrafluoroethane) as well as other gaseous propellants present with the pressures considered, such as, for example, N2, N2O, and CO2 as well as mixtures of the aforementioned propellants. The propellant is preferably selected from propane, n-butane, isobutane, dimethylether, fluorinated hydrocarbons, and mixtures thereof. The content of propellant is, in addition, preferably 15 to 85 wt. %, with 25 to 75 wt. % being especially preferred.
The composition contains cosmetically acceptable solvents, preferably an aqueous, alcoholic, or aqueous alcoholic medium. The lower alcohols with 1 to 4 C atoms, such as ethanol and isopropanol, can be contained as alcohols, particularly those typically used for cosmetic purposes. The composition can be in a pH range of 2.0 to 9.5. A pH range of 4 to 8 is particular preferred, providing no special application forms require other pH values. As additional co-solvents, organic solvents or a mixture of solvents with a boiling point of less than 752°F (400°C) can be contained in a quantity of from 0.1 to 15 wt. % or preferably of from 1 to 10 wt. %. Unbranched or branched hydrocarbons such as n- pentane, hexane, isopentane, and cyclic hydrocarbons such as cyclopentane and cyclohexane are particularly suitable as additional co-solvents. These volatile hydrocarbons can also be used as propellants. Other, especially preferred water-soluble solvents are glycerol, ethylene glycol, and propylene glycol in a quantity of up to 30 wt. %.
The product release system according to the invention can be used for hair treatment.
The compositions can be agents for the care of hair such as, for example, hair-repair products or hair rinses, which, for example, can be applied as leave-on or rinse-off products; agents for the temporary reshaping and/or stabilizing of the hairstyle (styling agent), for example hair sprays, hair lacquers, hair gels, hair waxes, styling creams, etc.; permanent, semipermanent, or temporary hair colorants, for example oxidative hair colorants or nonoxidative hair tinting agents or hair bleaching agents; permanent hair restructuring agents, for example in the form of a mildly alkaline or acidic permanent wave or hair straightening agents containing a reducing agent, or in the form of permanent wave fixing agents containing an oxidizing agent.
The cationic polymers are contained in the composition to be used according to the present invention in a quantity that is preferably 0.01 to 20 wt. % or 0.05 to 10 wt. %, with 0.1 to 5 wt. % being particularly preferred. The polymers can be synthetic or natural polymers. The polymers are hair-setting and/or hair-conditioning polymers that preferably form a film as well. Natural polymers are understood to also include chemically modified polymers of natural origin. Hair-setting polymers are understood to be those capable of exhibiting a setting effect on the hair or a stabilizing effect on the hairstyle when used in a 0.01 to 5% aqueous, alcoholic, or aqueous alcoholic solution or dispersion, e.g. those that increase curl retention with respect to a water wave, especially those for which the "Hair Fixatives" function is indicated in the International Cosmetic Ingredient Dictionary and Handbook, 10th edition, 2004. Hair-conditioning polymers are understood to be those capable of exhibiting a hair- conditioning or conditioning effect on the hair when used in a 0.01 to 5% aqueous, alcoholic, or aqueous alcoholic solution or dispersion, e.g. those that improve the combing ability or increase shine, especially those for which the "Hair Conditioning Agents" function is indicated in the International Cosmetic Ingredient Dictionary and Handbook, 10th edition, 2004. Film- forming polymers are understood to be those capable of depositing a polymer film on the hair after drying when used in a 0.01 to 5% aqueous, alcoholic, or aqueous alcoholic solution or dispersion, especially those for which the 'TiIm Formers" function is indicated in the International Cosmetic Ingredient Dictionary and Handbook, 10th edition, 2004. The polymers can also simultaneously have two or three of the properties known as "film-forming," "hair- setting," and "hair-conditioning."
Cationic polymers are polymers with cationic groups or with amine groups, particularly primary, secondary, tertiary, or quaternary amine groups. The cationic charge density will preferably be 1 to 7 meq/g.
Suitable synthetic cationic polymers are homo- or copolymers consisting of at least one of the following monomers:dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, monoalkylaminoalkyl acrylate, and monoalkyl aminoalkyl methacrylate, trialkyl methacryloxyalkyl ammonium, trialkyl acryloxyalkyl ammonium, dialkyl diallyl ammonium, and quaternary vinyl ammonium monomers with cyclic groups containing cationic nitrogens.
Suitable cationic polymers preferably contain quaternary amino groups. Cationic polymers can be homo- or copolymers, where the quaternary nitrogen groups are contained either in the polymer chain or preferably as substituents on one or more of the monomers. The monomers containing ammonium groups can be copolymerized with non- cationic monomers. Suitable cationic monomer are unsaturated compounds that can undergo radical polymerization, which bear at least one cationic group, especially ammonium-substituted vinyl monomers such as, for example, trialkylmethacryloxyalkylammonium, trialkylacryloxyalkylammonium, dialkyldiallylammonium and quaternary vinylammonium monomers with cyclic, cationic nitrogen-containing groups such as pyridinium, imidazolium or quaternary pyrrolidones, e.g. alkylvinylimidazolium, alkylvinylpyridinium, or alkylvinylpyrrolidone salts. The alkyl groups of these monomers are preferably lower alkyl groups such as, for example, Cl to C7 alkyl groups, and especially preferred are Cl to C3 alkyl groups.
The monomers containing ammonium groups can be copolymerized with non- cationic monomers. Suitable comonomers are, for example, acrylamide, methacrylamide, alkyl- and dialkylacrylamide, alkyl- and dialkylmethacrylamide, alkyl acrylate, alkyl methacrylate, vinylcaprolactone, vinylcaprolactam, vinylpyrrolidone, vinyl esters, for example vinyl acetate, vinyl alcohol, propylene glycol or ethylene glycol, wherein the alkyl groups of these monomers are preferably Cl to C7 alkyl groups, and especially preferred are Cl to C3 alkyl groups.
Suitable polymers with quaternary amino groups are, for example, those described in the CTFA Cosmetic Ingredient Dictionary under the designations Polyquaternium such as methylvinylimidazolium chloride/vinylpyrrolidone copolymer (Polyquaternium- 16) or quaternized vinylpyrrolidone/dimethylaminoethyl methacrylate copolymer
(Polyquaternium- 11) as well as quaternary silicone polymers or silicone oligomers such as, for example, silicone polymers with quaternary end groups (Quaternium-80).
Preferred cationic polymers of synthetic origin: poly(dimethyldiallyl ammonium chloride); copolymers firom acrylamide and dimethyldiallyl ammonium chloride; quaternary ammonium polymers, formed by the reaction of diethyl sulfate with a copolymer from vinylpyrrolidone and dimethylaminoethyl methacrylate, especially vmylpyrrolidone/dimethylaminoethyl methacrylate methosulfate copolymer (e.g. Gafquat® 755 N, Gafquat® 734); quaternary ammonium polymers from methylvinylimidazolium chloride and vinylpyrrolidone (e.g. LUVIQUAT® HM 550); Polyquaternium-35; Polyquaternium-57; polymers from trimethylammonium ethyl methacrylate chloride; terpolymers from dimethyldiallyl ammonium chloride, sodium acrylate and acrylamide (e.g. Merquat® Plus 3300); copolymers from vinylpyrrolidone, dimethylaminopropyl methacrylamide and methacryloylaminopropyllauryldimethylammonium chloride; terpolymers from vinylpyrrolidone, dimethylaminoethyl methacrylate and vinylcaprolactam (e.g. Gaffix® VC 713); vinylpyiTolidone/methacrylaimdopropylirime&ylammoniuni chloride copolymers (e.g. Gafquat® HS 100); copolymers from vinylpyrrolidone and dimethylaminoethyl methacrylate; copolymers from vinylpyrrolidone, vinylcaprolactam and dimethylaiTiiiiopropylacrylamide; poly- or oligoesters formed from at least one first type of monomer, that is selected from hydroxyacids substituted with at least one quaternary ammonium group; dimethylpolysiloxane substituted with quaternary ammonium groups in the terminal positions.
Suitable cationic polymers that are derived from natural polymers are especially cationic derivatives of polysaccharides, for example, cationic derivatives of cellulose, starch or guar. Furthermore, chitosan and chitosan derivatives are also suitable. Cationic polysaccharides are, for example, represented by the general formula
G-O-B-NVRbRc X-
G is an anhydroglucose residue, for example, starch or cellulose anhydroglucose;
B is a divalent linking group, for example alkylene, oxyalkylene, polyoxyalkylene or hydroxyalkylene;
Ra, Rb, and Rc, independently from one another, are alkyl, aryl, alkylaryl, arylalkyl, alkoxyalkyl, or alkoxyaryl, any of which can have up to 18 C atoms, wherein the total number of C atoms in Ra, Rb, and Rc is preferably a maximum of 20;
X is a conventional counter-anion, for example, a halide, acetate, phosphate, nitrate, or alkyl sulfate, preferably a chloride. Cationic celluloses are, for example, those with the ESfCI names Polyquaternium-4, Polyquaternium-10, or Polyquaternium-24. A suitable cationic guar derivative has, for example, the BSfCI designation Guar Hydroxypropyltrimonium Chloride.
Especially preferred cationically-active substances are chitosan, chitosan salts and chitosan derivatives. Chitosans that can be used according to the invention can be fully or partially deacetylated chitins. By way of example, the molecular weight can be distributed over a broad range, from 20,000 to about 5 million g/mol, for example from 30,000 to 70,000 g/mol. However, the molecular weight will preferably lie above 100,000 g/mol, and especially preferred from 200,000 to 700,000 g/mol. The degree of deacetylation is preferably from 10 to 99%, and especially preferably from 60 to 99%. A preferred chitosan salt is chitosonium pyrrolidone carboxylate, e.g. Kytamer® PC with a molecular weight of from about 200,000 to 300,000 g/mol and a degree of deacetylation of from 70 to 85%. Chitosan derivatives that can be considered include quaternized, alkylated or hydroxyalkylated derivatives, e.g. hydroxyethyl, hydroxypropyl or hydroxybutyl chitosan. The chitosans or chitosan derivatives are preferably present in their neutralized or partially neutralized form. The degree of neutralization will be preferably at least 50%, especially preferably between 70 and 100%, as calculated on the basis of the number of free base groups. For the neutralization agent, in principle any cosmetically compatible inorganic or organic acids can be used such as, for example, formic acid, tartaric acid, malic acid, lactic acid, citric acid, pyrrolidone carboxylic acid, hydrochloric acid and others, of which pyrrolidone carboxylic acid is especially preferred.
Preferred cationic polymers derived from natural sources: cationic cellulose derivatives from hydroxyethyl cellulose and diallyldimethyl ammonium chloride; cationic cellulose deviates from hydroxyethyl cellulose and trimethylammonium-substituted epoxide; chitosan and its salts; hydroxyalkyl chitosans and their salts; alkylhydroxyalkyl chitosans and their salts; N-hydroxyalkylchitosan alkyl ethers.
In one embodiment, the composition to be used according to the invention is a gel and contains at least one thickener or gel-former preferably in a quantity of from 0.01 to 20 wt. % or of from 0.1 to 10 wt. %, of from 0.5 to 8 wt. %, or especially preferably of from 1 to 5 wt. %. Materials for which the function "Viscosity Increasing Agent" is indicated in the International Cosmetic Ingredient Dictionary and Handbook, 10th edition, 2004 are essentially suitable. The thickener or gel-former is preferably a thickening polymer and is especially preferably selected from copolymers consisting of at least one first type of monomer, which is selected from acrylic acid and methacrylic acid, and at least one second type of monomer, which is selected from esters of acrylic acid and ethoxylated fatty alcohol; crosslinked polyacrylic acid; crosslinked copolymers consisting of at least one first type of monomer, which is selected from acrylic acid and methacrylic acid, and at least one second type of monomer, which is selected from esters of acrylic acid with ClO to C30 alcohols; copolymers consisting of at least one first type of monomer, which is selected from acrylic acid and methacrylic acid, and at least one second type of monomer, which is selected from esters of itaconic acid and ethoxylated fatty alcohol; copolymers consisting of at least one type of monomer, which is selected from acrylic acid and methacrylic acid, at least one second type of monomer, which is selected from esters of itaconic acid and ethoxylated ClO to C30 alcohol, and a third type of monomer, which is selected from Cl to C4 aminoalkyl acrylates; copolymers consisting of two or more monomers, which are selected from acrylic acid, methacrylic acid, acrylic acid esters and methacrylic acid esters; copolymers consisting of vinyl pyrrolidone and ammonium acryloyl dimethyltaurate; copolymers consisting of ammonium acryloyl dimethyltaurate and monomers selected from esters of methacrylic acid and ethoxylated fatty alcohols; hydroxyethyl cellulose; hydroxypropyl cellulose; hydroxypropyl guar; glyceryl polyacrylate; glyceryl polymethacrylate; copolymers consisting of at least one C2, C3, or C4 alkylene and styrene; polyurethane; hydroxypropyl starch phosphate; polyacrylamide; copolymers crosslinked with decadiene consisting of maleic acid anhydride and methyl vinyl ether; locust bean gum; guar gum; xanthan; dehydroxanthan; carrageenan; karaya gum; hydrolyzed corn starch; copolymers consisting of polyethylene oxide, fatty alcohols, and saturated methylene diphenyl diisocyanate (e.g. PEG-150/stearyl alcohol/ SMDI copolymer).
hi an additional embodiment, the composition is waxy and contains at least one wax that is solid at 25°C preferably in a quantity of from 10 to 80 wt. %, particularly of from 20 to 60 wt. %, or of from 25 to 50 wt. %, as well as, if necessary, other water- insoluble materials that are liquid at room temperature. The waxy consistency is preferably characterized in that the needle penetration number (unit of measurement
0.00394 in (0,1 mm), test weight 3.937 oz (100 g), testing time 5 s, test temperature 77°F (25°C); according to DESf 51 579) preferably ranges from 2 to 70, or particularly from 3 to 40, and/or that the composition can be melted and has a solidification point that is greater than 77°F (25°C), or is preferably in a range of from 86 (30) to 158°F (70°C), or especially preferably in a range of from 104 (40) to 1310F (55°C). Principally any wax that is known in the prior art can be used as a wax or waxy material. These waxes include animal, vegetable, mineral, and synthetic waxes, microcrystalline waxes, macrocrystalline waxes, solid paraffins, petroleum jelly, Vaseline, ozocerite, montan wax, Fischer-Tropsch wax, polyolefin waxes, e.g. polybutene, beeswax, wool wax, and its derivatives such as, for example, wool wax alcohols, candelilla wax, olive wax, carnauba wax, Japan wax, apple wax, hydrogenated fats, fatty acid esters, fatty acid glycerides with a solidification point greater than 1040F (400C), silicone waxes or hydrophilic waxes such as, for example, high-molecular-weight polyethylene glycol waxes with a molecular weight of from 800 to 20,000, preferably of from 2,000 to 10,000 g/mol. The waxes or waxy materials have a solidification point greater than 77°F (25°C), or preferably greater than 104°F (4O0C) or 131°F (550C). The needle penetration number (0.00394 in (0,1 mm), 3.937 oz (100 g), 5 s, 77°F (25°C); according to DIN 51 579) preferably lies in the range of from 2 to 70, or especially 3 to 40.
In another embodiment, the composition is emulsion-like, wherein the consistency is preferably creamy. The emulsion can be a water-in-oil emulsion, an oil-in-water emulsion, a microemulsion, or a higher emulsion. In addition to water, preferably at least one hydrophobic oil that is liquid at room temperature (77°F (250C)) as well as at least one emulsifier is contained. The oil content is preferably of from 1 to 20 wt. %, or particularly of from 2 to 10 wt. %. The emulsifier content is preferably of from 0.01 to 30 wt. %, or particularly of from 0.1 to 20 wt. % or of from 0.5 to 10 wt. %.
Suitable liquid, hydrophobic oils have a melting point of less than 770F (25°C) and a boiling point of preferably greater than 482°F (2500C), or particularly greater than 572°F (3000C). Volatile oils can also be used, hi principle, any oil generally known to a person skilled in the art can be used. Suitable oils are vegetable or animal oils, mineral oils (liquid paraffin), silicone oils or their mixtures. Hydrocarbon oils, e.g. paraffin or isoparaffin oils, squalane, oils from fatty acids and polyols, especially triglycerides, are suitable. Suitable vegetable oils are, for example, sunflower oil, coconut oil, castor oil, lanolin oil, jojoba oil, corn oil, soy oil. Suitable emulsifiers can include nonionic, anionic, cationic, or zwitterionic surfactants. Suitable nonionic surfactants are, for example, ethoxylated fatty alcohols, fatty acids, fatty acid glycerides, or alkyl phenols, especially addition products of 2 to 30 mol ethylene oxide and/or
1 to 5 mol propylene oxide to C8 to C22 fatty alcohols, to C 12 to C22 fatty acids, or to alkyl phenols with 8 to 15 C atoms in the alkyl group C 12 to C22 fatty acid mono- and diesters of addition products of 1 to 30 mol ethylene oxide to glycerol - addition products of 5 to 60 mol ethylene oxide to castor oil or hydrogenated castor oil fatty acid sugar esters, especially esters from saccharose and one or two C8 to C22 fatty acids, INCI: Sucrose Cocoate, Sucrose Dilaurate, Sucrose Distearate, Sucrose Laurate, Sucrose Myristate, Sucrose Oleate, Sucrose Palmitate, Sucrose Ricinoleate, Sucrose Stearate esters from sorbitan and one, two or three C8 to C22 fatty acids and a degree of ethoxylation of 4 to 20 polyglyceryl fatty acid esters, especially from one, two or more C8 to C22 fatty acids and polyglycerol with preferably 2 to 20 glyceryl units - alkylglucosides, alkyloligoglucosides, and alkylpolyglucoside with C8 to
C22 alkyl groups, e.g. decyl glucoside or lauryl glucoside.
Suitable anionic surfactants are, for example, salts and esters of carboxylic acids, alkyl ether sulfates and alkyl sulfates, fatty alcohol ether sulfates, sulfonic acids and their salts (e.g. sulfosuccinates or fatty acid isethienates), phosphoric acid esters and their salts, acylamino acids and their salts. A comprehensive description of these anionic surfactants is found in the publication "FIEDLER - Lexikon der Hilfsstoffe" [FIEDLER -Dictionary of Adjuvants] , volume 1, fifth edition (2002), pages 97 to 102, to which expressed reference is made. Preferred surfactants are mono-, di-, and/or triesters of phosphoric acid with addition products of from 2 to 30 mol ethylene oxide to C8 to C22 fatty alcohols. Suitable amphoteric surfactants are, for example, derivatives of aliphatic quaternary ammonium, phosphonium and sulfonium compounds of the formula
(R1X
(R2)y-Y(+)-CH2-R3-ZΘ
wherein Rl represents a straight-chain or branched-chain alkyl, alkenyl, or hydroxyalkyl group with 8 to 18 C atoms and 0 to about 10 ethylene oxide units and 0 to 1 glycerol units; Y is an N-, P-, or S-containing group; R2 is an alkyl or monohydroxyalkyl group with 1 to 3 C atoms; the total of x+y equals 2 if Y is a sulfur atom, and the total of x+y equals 3 if Y is a nitrogen atom or a phosphorus atom; R3 is an alkylene or hydroxyalkylene group with 1 to 4 C atoms, and ZH represents a carboxylate, sulfate, phosphonate, or phosphate group. Other amphoteric surfactants such as betaines are also suitable. Examples of betaines include C8 to Cl 8 alkylbetaines such as cocodimethylcarboxymethylbetaine, lauryldimethylcarboxymethylbetaine, lauryldimethyl- alpha-carboxyethylbetaine, cetyldimethylcarboxymethylbetaine, oleyldimethylgammacarboxypropylbetaine, and lauryl-bis-(2-hydroxypropyl)-alpha- carboxyethylbetaine; C8 to Cl 8 sulfobetaines such as cocodimethylsulfopropylbetaine, stearyldimethylsulfopropylbetaine, lauryldimethylsulfoethylbetaine, lauryl-bis-(2- hydroxyethyl)sulfopropylbetaine; the carboxyl derivatives of imidazole, C8 to Cl 8 alkyldimethylammonium acetate, C8 to Cl 8 alkyldimethylcarbonylmethylammonium salts, as well as C8 to Cl 8 fatty acid alkylamidobetaines such as, for example, coconut fatty acid amidopropylbetaine and N-coconut fatty acid amidoethyl-N-[2- (carboxymethoxy)ethyl]glycerol (CTFA name: Cocoamphocarboxyglycinate).
Suitable cationic surfactants contain amino groups or quaternized hydrophilic ammonium groups that carry a positive charge in solution and can be represented by the general formula
N^R1R2R3R4 XH wherein Rl to R4, independently from one another, stand for aliphatic groups, aromatic groups, alkoxy groups, polyoxyalkylene groups, alkylamido groups, hydroxyalkyl groups, aryl groups, or alkaryl groups with 1 to 22 C atoms, wherein at least one radical has at least 6, preferably at least 8, C atoms and X " represents an anion, for example a halide, acetate, phosphate, nitrate, or alkyl sulfate, but preferably a chloride. In addition to the carbon atoms and the hydrogen atoms, the aliphatic groups can also contain cross-compounds, or other groups, such as, for example, additional amino groups. Examples of suitable cationic surfactants are the chlorides or bromides of alkyldimethylbenzylammonium salts, alkyltrimethylarnmonium salts, e.g. cetyltrimethylammonium chloride or bromide, tetradecyltrimethylammonium chloride or bromide, alkyldimethylhydroxyethylammonium chlorides or bromides, dialkyldimethylammonium chlorides or bromides, alkylpyridinium salts, for example lauryl- or cetylpyridinium chloride, alkylamidoethyltrimethylammonium ether sulfates as well as compounds with cationic character such as amine oxides, e.g. alkylmethylamine oxides or alkylaminoethyldimethylamine oxides. Especially preferred are C8-22 allcyldimethylbenzylammonium compounds, C8-22 alkyltrimethylammonium compounds, especially cetyltrimethylammonium chloride, C8-22 alkyldimethylhydroxyethylammonium compounds, di-(C8-22 alkyl)-dimethylammonium compounds, C8-22 alkylpyridinium salts, C8-22 alkylamidoethyltrimethylammonium ether sulfates, C8-22 alkylmethylamine oxides, and C8-22 alkylaminoethyldimethylamine oxides.
The cosmetic composition to be used according to the present invention can also contain at least one additional active cosmetic ingredient or additive for the hair or skin/scalp. This active ingredient or additive can, for example, be selected from hair-conditioning materials, hair-setting materials, silicone compounds, photoprotective materials, preservatives, pigments, direct-penetrating hair dyes, particle-shaped materials, oxidizing agents, reducing agents, and oxidative hair colorant precursor products. The active ingredients and additives, depending on the type and intended use, are preferably contained in a quantity of from 0.01 to 20 wt. %, or particularly of from 0.05 to 10, or of from 0.1 to 5 wt. %. In one embodiment, the agent according to the invention, as a hair-conditioning or hair-setting additive, contains at least one polymer with anionic groups or groups that can be anionized preferably in a quantity of from 0.01 to 20 wt. % or of from 0.05 to 10 wt. %, with 0.1 to 5 wt. % being particularly preferred. Groups that can be anionized are understood to be acid groups such as, for example, carboxylic acid, sulfonic acid, or phosphoric acid groups that can be deprotonated using typical bases such as, for example, organic amines or alkali- or alkaline earth hydroxides. The anionic polymers can be partially or completely neutralized with an alkaline neutralizing agent. Such types of agents in which the acidic groups are neutralized in the polymer to 50 to 100%, or especially preferably to 70-100%, are preferred. Organic or inorganic bases can be used as the neutralizing agent. Particular examples of bases are amino alkanols such as, for example, ammomethylpropanol (AMP), triethanolamine or monoethanolamine, and also ammonia, NaOH, and KOH among others.
The anionic polymer can be a homo- or copolymer with acid group-containing monomer units derived from natural or synthetic sources, which, if necessary, can be polymerized with comonomers that contain no acid groups. Among the acid groups that can be considered are sulfonic acid, phosphoric acid, and carboxylic acid groups, of which the carboxylic acid groups are preferred. Suitable acid group-containing monomers are, for example, acrylic acid, methacrylic acid, crotonic acid, maleic acid, and nialeic anhydride, maleic acid monoesters, especially the Cl to C7 alkyl monoesters of maleic acid, as well as aldehydocarboxylic acids or ketocarboxylic acids. Comonomers that are not substituted with acid groups are, for example, acrylamide, methacrylamide, alkyl- and dialkylacrylamide, alkyl and dialkylmethacrylamide, alkyl acrylate, alkyl methacrylate, vinylcaprolactone, vinylpyrrolidone, vinyl ester, vinyl alcohol, propylene glycol or ethylene glycol, amine- substituted vinyl monomers such as, for example, dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, monoalkylaminoalkyl acrylate, and monoalkylaminoalkyl methacrylate, wherein the alkyl groups of these monomers are preferably Cl to C7 alkyl groups, with Cl to C-alkyl groups being especially preferred.
Suitable polymers with acid groups are especially homopolymers of acrylic acid or methacrylic acid, copolymers of acrylic acid or methacrylic acid with monomers selected from acrylic acid or methacrylic acid esters, acrylamides, methacrylamides and vinylpyrrolidone, homopolymers of crotonic acid as well as copolymers of crotonic acid with monomers selected from vinyl esters, acrylic acid or methacrylic acid esters, acrylamides and methacrylamides that are uncrosslinked or crosslinked with polyfunctional agents. A suitable natural polymer is, for example, shellac.
Preferred polymers with acid groups are:
Terpolymers from acrylic acid, alkyl acrylate, and N-alkylacrylamide (INCI designation: Acrylate/Acrylamide Copolymer), especially terpolymers from acrylic acid, ethyl acrylate and N-tert-butylacrylamide; crosslinked or uncrosslinked vinyl acetate/crotonic acid copolymers (INCI designation: VA/Crotonate Copolymer); copolymers from one or more Cl to C5 alkyl acrylates, especially C2 to C4 alkyl acrylates and at least one monomer selected from acrylic acid or methacrylic acid (INCI designation: Acrylate Copolymer), e.g. terpolymers from tert-butyl acrylate, ethyl acrylate and methacrylic acid; sodium polystyrenesulfonate; vinylacetate/crotonic acid/vinyl alkanoate copolymers, for example, copolymers from vinyl acetate, crotonic acid and vinyl propionate; copolymers from vinyl acetate, crotonic acid and vinyl neodecanoate (HSfCI designations: VA/Crotonate/Vinyl Propionate Copolymer, VA/Crotonate/Vinyl Neodecanoate Copolymer); aminomethylpropanol acrylate copolymers; copolymers from vinylpyrrolidone and at least one further monomer selected from acrylic acid and methacrylic acid as well as, if necessary, acrylic acid esters and methacrylic acid esters; copolymers from methyl vinyl ether and maleic acid monoalkylesters (INCI designations: Ethyl Ester of PVM/MA Copolymer, Butyl Ester of PVM/MA Copolymer); aminomethylpropanol salts of copolymers from allyl methacrylate and at least one further monomer selected from acrylic acid, and methacrylic acid as well as, if necessary, acrylic acid esters and methacrylic acid esters; crosslinked copolymers from ethyl acrylate and methacrylic acid; copolymers from vinyl acetate, mono-n-butyl maleate and isobornyl acrylate; copolymers from two or more monomers selected from acrylic acid and methacrylic acid as well as, if necessary, acrylic acid esters and methacrylic acid esters; copolymers from octylacrylamide and at least one monomer selected from acrylic acid and methacrylic acid as well as, if necessary, acrylic acid esters and methacrylic acid esters; polyesters from diglycol, cyclohexanedimethanol, isophthalic acid and sulfoisophtlialic acid, wherein the alkyl groups of the aforementioned polymers as a rule preferably possess 1, 2, 3, or 4 C atoms.
In one embodiment, the agent according to the invention, as a hair-conditioning or hair-setting additive, contains at least one zwitterionic and/or amphoteric polymer preferably in a quantity of from 0.01 to 20 wt. % or of from 0.05 to 10 wt. %, or especially preferably of from 0.1 to 5 wt. %. Zwitterionic polymers simultaneously have at least one anionic and at least one cationic charge. Amphoteric polymers exhibit at least one acidic group (e.g. carboxylic acid or sulfonic acid group) and at least one alkaline group (e.g. amino group). Acidic groups can be deprotonated using typical bases such as, for example, organic amines or alkali- or alkaline earth hydroxides.
Preferred zwitterionic or amphoteric polymers are: copolymers formed from alkylacrylamide, alkylaminoalkyl methacrylate, and two or more monomers from acrylic acid and methacrylic acid as well as, if necessary, their esters, especially copolymers from octylacrylamide, acrylic acid, butylaminoethyl methacrylate, methyl methacrylate and hydroxypropyl methacrylate (INCI designation: Octylacrylamide/Acrylate/Butylaminoethyl Methacrylate Copolymer); copolymers, that are formed from at least one of a first type of monomer that possesses quaternary amino groups and at least one of a second type of monomer that possesses acid groups; copolymers from fatty alcohol acrylates, alkylamine oxide methacrylate and at least one monomer selected from acrylic acid and methacrylic acid as well as if necessary acrylic acid esters and methacrylic acid esters, especially copolymers from lauryl acrylate, stearyl acrylate, ethylamine oxide methacrylate and at least one monomer selected from acrylic acid and methacrylic acid as well as if necessary their esters; copolymers from methacryloyl ethyl betaine and at least one monomer selected from methacrylic acid and methacrylic acid esters; copolymers from acrylic acid, methyl acrylate and methacrylamidopropyltrimethylammonium chloride (INCI designation: Polyquaternium- 47); copolymers from acrylamidopropyltrimethylammonium chloride and acrylates or copolymers from acrylamide, acrylamidopropyltrimethylammonium chloride, 2- amidopropylacrylamide sulfonate, and dimethylaminopropylamine (INCI designation: Polyquaternium-43); oligomers or polymers, producible from quaternary crotonoylbetaines or quaternary crotonoylbetaine esters.
In one embodiment, the agent of the present invention contains 0.01 to 15 wt. %, or preferably 0.5 to 10 wt. %, of at least one synthetic or natural nonionic film-forming polymer.
Suitable synthetic nonionic polymers are homo- or copolymers consisting of at least one of the following monomers: vinyl lactams such as, for example, vinyl pyrrolidone or vinyl caprolactam; vinyl esters such as, for example, vinyl acetate; vinyl alcohol, vinyl formarnide, acrylamides, methacrylamides, alkyl acrylamides, dialkyl acrylamides, alkyl methacrylamides, dialkyl methacryl amides, alkyl acrylates, alkyl methacrylates, alkyl maleimides such as, for example, ethylmaleimide or hydroxyethylmaleimide, and alkylene glycols such as, for example, propylene or ethylene glycol, wherein the alkyl and/or alkylene groups of these monomers are preferably Cl to C7 alkyl groups, or especially preferably Cl to C3 alkyl groups.
Suitable homopolymers are, for example, those of vinylcaprolactam, vinylpyrrolidone or N-vinylformamide. Further suitable synthetic, nonionic polymers are, for example, polyacrylamides, polyethylene glycol/polypropylene glycol copolymers, copolymerides from vinylpyrrolidone and vinyl acetate, terpolymers from vinylpyrrolidone, vinyl acetate, and vinyl propionate, polyacrylamides; polyvinyl alcohols as well as polyethylene glycol/polypropylene glycol copolymers. Suitable natural film- forming polymers are, in particular, those based on saccharide, preferably glucans, e.g. cellulose and derivatives thereof. Suitable derivatives are, in particular, those with alkyl and/or hydroxyalkyl substituents, wherein the alkyl groups can have, for example, 1 to 20, or preferably 1 to 4 C atoms, e.g. hydroxyalkyl cellulose. Preferred nonionic polymers are: polyvinylpyrrolidone, polyvinylcaprolactam, vinylpyrrolidone/vinyl acetate copolymers, polyvinyl alcohol, isobutylene/ethylmaleimide/hydroxyethylmaleimide copolymer; copolymers from vinylpyrrolidone, vinyl acetate, and vinyl propionate.
hi one embodiment, the agent according to the invention, as a hair-conditioning additive, contains at least one silicone compound preferably in a quantity of from 0.01 to 15 wt. %, or especially preferably of from 0.1 to 5 wt. %. The silicone compounds include volatile and nonvolatile silicones and silicones that are soluble and insoluble in the agent. One embodiment is high-molecular-weight silicone with a viscosity of 1,000 to 2,000,000 cSt at 770F (25°C), or preferably 10,000 to 1,800,000 or 100,000 to 1,500,000. The silicone compounds include polyalkyl and polyaryl siloxanes, particularly with methyl, ethyl, propyl, phenyl, methylphenyl, and phenylmethyl groups. Polydimethyl siloxanes, polydiethyl siloxanes, and polymethylphenyl siloxanes are preferred. Also preferred are shine-providing, arylated silicones with a refractive index of at least 1.46 or at least 1.52. The silicone compounds include, in particular, the materials with the BSfCI designations Cyclomethicone, Dimethicone, Dimethiconol, Dimethicone Copolyol, Phenyl Trimethicone, Amodimethicone, Trimethylsilylamodimethicone, Stearyl Siloxysilicate, Polymethylsilsesquioxane, and Dimethicone Crosspolymer. Silicone resins and silicone elastomers are also suitable, wherein these are highly crosslinked siloxanes. Preferred silicones are: cyclic dimethyl siloxanes, linear polydimethyl siloxanes, block polymers from polydimethyl siloxane and polyethylene oxide and/or polypropylene oxide, polydimethyl siloxanes with terminal or lateral polyethylene oxide or polypropylenoxide radicals, polydimethyl siloxanes with terminal hydroxyl groups, phenyl-substituted polydimethyl siloxanes, silicone emulsions, silicone elastomers, silicone waxes, silicone gums, amino- substituted silicones, and silicones substituted with quaternary ammonia groups.
In one embodiment, the agent according to the invention contains a photoprotective material preferably in a quantity of from 0.01 to 10 wt. % or of from 0.1 to 5 wt. %, or especially preferably of from 0.2 to 2 wt. %. The photoprotective materials include, in particular, all the photoprotective materials mentioned in EP 1 084 696. The following are preferred: 4-methoxy cinnamic acid-2-ethylhexyl ester, methyl methoxy cinnamate, 2- hydroxy-4-methoxy benzophenone-5-sulfonic acid, and polyethoxylated p-aminobenzoate.
In one embodiment, the agent according to the present invention contains 0.01 to 20, especially preferably 0.05 to 10, or very especially preferably 0.1 to 5 wt. % of at least one hair-conditioning additive, selected from betaine; panthenol; panthenyl ethyl ether; sorbitol; protein hydro lysates; plant extracts; A-B block copolymers from alkyl acrylates and alkyl methacrylates; A-B block copolymers from alkyl methacrylates, and acrylonitrile; A-B-A block copolymers from lactide and ethylene oxide; A-B-A block copolymers from caprolacton and ethylene oxide; A-B-C block copolymers from alkylene or alkadiene compounds, styrene and alkyl methacrylates; A-B-C block copolymers from acrylic acid, styrene, and alkyl methacrylates; star-shaped block copolymers; hyper- branched polymers; dendrimers; intrinsically electrically conducting 3,4-polyethylene dioxythiophenes and intrinsically electrically conducting polyanilines.
In one embodiment, the agent according to the invention contains 0.01 to 5, or especially preferably 0.05 to 1 wt. %, of at least one preservative. Suitable preservatives are those materials listed with the "Preservatives" function in the International Cosmetic Ingredient Dictionary and Handbook, 10th edition, e.g. phenoxyethanol, benzylparaben, butylparaben, ethylparaben, isobutylparaben, isopropylparaben, methylparaben, propylparaben, iodopropynyl butylcarbamate, methyldibromoglutaronitrile, and DMDM hydantoin.
A particular embodiment of the invention relates to a hair-conditioning agent. Hair-conditioning agents are, for example, conditioners, treatments, hair-repair products, rinses, and the like. The hair-conditioning agent contains at least one hair-conditioning ingredient selected from the aforementioned silicone compounds, cationic or amine- substituted surfactants, and cationic or amine-substituted polymers. The hair-conditioning agent can be used in quantities of between 0.01 and 10.0 wt. %, or particularly between 0.01 and 5.0 wt. %, based on the finished product. The hair-conditioning agent according to the invention can, after application to the dry, damp, or wet hair, either remain in the hair or it can be rinsed out after a suitable action period. The action periods depend on the type of hair. As a general rule, action periods of between 0.5 and 30 minutes, particularly 0.5 and 10 minutes, and preferably between 1 and 5 minutes can be assumed.
In addition to the aforementioned cationic surfactants, other suitable cationic or amino-substituted surfactants are those of the formula Rl -NH-(CH2)n-NR2R3 or of the formula Rl-NH-(CH2)n-l^R2R3R4 XT wherein Rl is an acyl or an alkyl residue with 8 to 24 C atoms, which can be branched or linear, saturated or unsaturated, whereby the acyl and/or the alkyl residue can contain one or more OH groups, R2, R3 and R4 independently of one another are hydrogen, alkyl or alkoxyalkyl residues with 1 to 6 C atoms, which can be the same or different, saturated or unsaturated and can be substituted with one or more hydroxy groups, X' is an anion, especially a halide ion or a compound of the general formula RSO3 ", wherein R has the meaning of saturated or unsaturated alkyl residues with 1 to 4 C atoms, and n means a whole number between 1 and 10, preferably from 2 to 5.
The active hair-conditioning compound is preferably an amidoamine and/or a quaternized amidoamine of the aforementioned formulae, wherein Rl is a branched or linear, saturated or unsaturated acyl residue with 8 to 24 C atoms that can contain at least one OH group. Preferred are such amines and/or quaternized amines, in which at least one of the residues R2, R3 and R4 means a residue according to the general formula CH2CH2OR5, wherein R5 can have the meaning of alkyl residues with 1 to 4 C atoms, hydroxyethyl or H. Suitable amines or amidoamines, which can be optionally quaternized, are especially such with the INCI names Ricinoleamidopropyl Betaine, Ricinoleamidopropyl Dimethylamine, Ricinoleamidopropyl Dimethyl Lactate, Ricinoleamidopropyl Ethyldimonium Ethosulfate, Ricinoleamidopropyltrimonium Chloride, Ricinoleamidopropyltrimonium Methosulfate, Cocamidopropyl Betaine, Cocamidopropyl Dimethylamine, Cocamidopropyl Ethyldimonium Ethosulfate, Cocamidopropyltrimonium Chloride, Behenamidopropyl Dimethylamine, Isostearylamidopropyl Dimethylamine, Stearylamidopropyl Dimethylamine, Quaternium- 33, Undecyleneamidopropyltrimonium Methosulfate.
In a preferred embodiment, the agent according to the invention contains at least one pigment. The pigments can be colored pigments that provide coloring effects to the product mass or the hair, or they can be shine-enhancing pigments that provide shine effects to the product or the hair. The color or shine effects in the hair are preferably temporary, i.e. they remain until the next time the hair is washed and can be removed by washing the hair with typical shampoos. The pigments are not dissolved in the product mass and can be contained in a quantity of from 0.01 to 25 wt. %, with 5 to 15 wt. % being particularly preferred. The preferred particle size is 3.93 x 10"5 (1) to 0.00787 in (200 μm), particularly 0.00012 (3) to 0.00591 in (150 μm), and especially preferably 0.00039 (10) to 0.00393 in (100 μm). The pigments are practically insoluble colorants in the application medium and can be inorganic or organic. Inorganic-organic mixed pigments are also possible. Inorganic pigments are preferred. The advantage of inorganic pigments is their extraordinary resistance to light, weather, and temperature. The inorganic pigments can be of natural origin, for example, manufactured from chalk, ocher, umbra, green earth, burnt Terra di Siena, or graphite. The pigments can also be white pigments such as, for example, titanium dioxide or zinc oxide; black pigments such as, for example, iron oxide black; color pigments such as, for example, ultramarine or iron oxide red; shine pigments; metal effect pigments; pearl shine pigments; as well as fluorescence or phosphorescence pigments; wherein it is preferred if at least one pigment is a colored, nonwhite pigment. Metallic oxides, metallic hydroxides, and metallic oxide hydrates, mixed phase pigments, sulfur-containing silicates, metallic sulfides, complex metal cyanides, metallic sulfates, metallic chromates, and metallic molybdates, as well as the metals themselves (bronze pigments) are suitable. Titanium dioxide (CI 77891), black iron oxide (CI 77499), yellow iron oxide (CI 77492), red and brown iron oxide (CI 77491), manganese violet (CI 111 AT), ultramarine (sodium aluminum sulfosilicates, CI 77007, Pigment Blue 29), chromium oxide hydrate (CI77289), iron blue (ferric ferrocyanide, CI77510), and carmine (cochineal) are particularly suitable.
Pearl shine and color pigments based on mica and/or glimmer coated with a metallic oxide or a metallic oxychloride such as titanium dioxide or bismuth oxychloride as well as, if necessary, other color-providing materials such as iron oxides, iron blue, ultramarine, carmine, etc., and wherein the color can be determined by varying the layer thickness are especially preferred. These types of pigments are sold, for example, under the trade names Rona®, Colorona®, Dichrona®, and Timiron® by Merck, in Germany.
Organic pigments are, for example, the natural pigments sepia, Garcinia gumrni- gutta, bone black, Van Dyke brown, indigo, chlorophyll, and other plant pigments. Synthetic organic pigments are, for example, azo-pigments, anthraquinoids, indigoids, and dioxazine, quinacridone, phthalocyanine, isoindolinone, perylene, perinone, metallic complex, alkali blue, and diketopyrrolopyrrol pigments.
In one embodiment, the agent according to the present invention contains 0.01 to
10, or especially preferably 0.05 to 5 wt. %, of at least one particle-shaped material. Suitable materials are, for example, materials that are solid and in the form of particles at room temperature (77°F (25°C)). Silica, silicates, aluminates, alumina, mica, salts, particularly inorganic metallic salts, metallic oxides, e.g. titanium dioxide, minerals, and polymer particles are somewhat suitable. The particles are present in the agent in an undissolved, preferably steadily dispersed form and can be deposited on the hair in solid form after being applied to the hair and after the solvent has evaporated. A stable dispersion can be obtained by providing the composition with a yield point that is great enough to inhibit any sinking of the solid particles. A sufficient yield point can be obtained by using suitable gel-formers in a suitable quantity. Preferred particle-shaped materials are silica (silica gel, silicium dioxide) and metallic salts, particularly inorganic metallic salts, wherein silica is especially preferred. Metallic salts are, for example, alkaline or alkaline-earth halogenides such as sodium chloride or potassium chloride; and alkaline or alkaline earth sulfates such as sodium sulfate or magnesium sulfate.
An additional embodiment relates to an agent for permanently restructuring hair. It contains at least one reducing agent, particularly a keratin-reducing mercapto compound preferably in a quantity of from 0.5 to 15 wt. %. The permanent wave agent is preferably present as an aqueous, alkaline (pH = 5 to 10) preparation, which contains e.g. cysteine, cysteamine, N-acetyl-L-cysteine, mercapto carboxylic acids such as, for example, mercaptoacetic acid or thiolactic acid, or salts of mercapto carboxylic acids such as, for example, ammonium and guanidine salts of mercaptoacetic acid or thiolactic acid as a keratin-reducing mercapto compound. The required alkalinity is obtained by adding ammonia, organic amines, ammonium and alkali carbonates, or bicarbonates. Neutral or acidic (pH = 4.5 to 7) hair restructuring agents that have an effective content of sulfites or mercaptocarboxylic acid esters in an aqueous medium can also be considered. In the first case, preferably sodium or ammonium sulfite or the salt of sulfuric acid with an organic amine such as, for example, monoethanolamine and guanidine, can be used in a concentration of approximately 2 to 12 wt. % (calculated as SO2). In the latter case, mercaptoacetic acid mono glycol esters or glycerol esters are particularly used in a concentration of approximately 5 to 50 wt. % (corresponding to a content of 2 to 16 wt. % mercaptoacetic acid). The agent according to the invention for permanent restructuring of hair can also contain a mixture of the aforementioned keratin-reducing compounds. For the oxidative after-treatment, a fixing agent according to the invention containing at least one oxidizing agent can be used. Examples of oxidizing agents that can be used in one of these types of fixing agents are sodium and potassium bromate, sodium perborate, urea peroxide, and hydrogen peroxide. The concentration of oxidizing agent can be approximately 0.5 to 10 wt. %. Both the agent according to the invention for permanent hair restructuring as well as the fixing agent according to the invention can be present in the form of an emulsion or in thickened form on an aqueous basis, particularly as a cream, gel, or paste.
The composition to be used according to the invention can further contain any additive components that are conventional for hair treatment agents, for example perfume oils; opacifying agents such as, for example, ethylene glycol distearate, styrene/PVP copolymers or polystyrenes; humectants; shine providers; product dyes; antioxidants; each preferably in quantities of 0.01 to 10 wt. %, wherein the total quantity preferably does not exceed 10 wt. %.
The object of the invention is also a method for hair treatment, wherein a product release system according to the invention is provided, - via the product release system, the composition contained therein is sprayed on the hair, and the composition that is sprayed on is either rinsed out of the hair after an action period or it is left in the hair.
Instead of being sprayed directly onto the hair, the product can also be placed in the hands or on an application device such as, for example, a comb or a brush, and then distributed into the hair, particularly if the product has a snow-like consistency, or it is in the form of flakes or foam.
The products according to the invention are characterized, constrained by their special application with the special aerosol spray system to be used according to the invention, by an excellent distribution capacity in conjunction with a good hairstyle stability with good hold as well as shine for the hair. An additional advantage of the products according to the present invention is that differing spray properties can be precisely adjusted by simply varying the propellant, the propellant composition, or the propellant pressure; these spray properties were not previously possible for the underlying active ingredient compositions. The spray properties include everything from a fine aerosol atomized spray and snow-like drops to flakes of spray and spray foam.
The following examples should serve to illustrate further the object of the present invention.
Examples
In the following examples, the individual active ingredient compositions were filled, along with the individually indicated propellants, into a pressure-resistant aerosol can and equipped with a capillary spray system, as can be obtained, for example, under the trade name TRUSPRA Y® from Boehringer Ingelheim microParts GmbH.
Example 1: Solid microemulsion
Active ingredient composition:
Figure imgf000026_0001
Figure imgf000027_0001
Consistency. Translucent, solid microemulsion
Filling with propellant:
Figure imgf000027_0002
Spray properties:
1 - 1 : Fine, dry aerosol spray
1-2: Fine, wet aerosol spray
1 -3 : Snow-like droplet formation
1-4: Spray foam
1-5: Very fine, dry aerosol
Practical tests were conducted on a mannequin wig. In a half-side comparison, the left side of the mannequin wig was treated with aerosol application 1-1 and the right side was treated with the propellant-free, highly viscous active ingredient composition. The aerosol version was easy to dispense and could be applied very precisely; it was also easier to distribute in the hair than the pure active ingredient. The hair treated with the aerosol application exhibited a significantly improved shine and significantly improved hold with the hairstyle in comparison to the hair treated with the pure active ingredient composition.
Example 2; Hair styling gel
Active ingredient composition:
Figure imgf000028_0001
Consistency: Highly viscous, clear gel Filling with propellant:
Figure imgf000029_0001
Spray properties:
2-1: Snow-like spray
2-2: Snow-like spray
2-3: Wet aerosol spray
2-4: Spray foam
2-5: Droplets (snow-like)
Example 3: Hair styling cream Composition:
Figure imgf000029_0002
Figure imgf000030_0001
Filling with propellant:
Figure imgf000030_0002
Spray properties:
2-1: Fine aerosol spray
2-2: Wet aerosol spray
2-3: Spray foam
2-4: Fine aerosol spray
2-5: Fine aerosol spray
Example 4: Hair styling wax Composition:
Figure imgf000031_0001
Consistency: Pasty wax
Filling with propellant:
Figure imgf000031_0002
Figure imgf000032_0001
Example 5; Emulsion-like, creamy hair-repair product/treatment Active ingredient composition:
Figure imgf000032_0002
Consistency: Thick cream
Propellant fillers:
Figure imgf000032_0003
Figure imgf000033_0001
Spray properties: 5 - 1 : Snow-like spray 5-2: Snow-like spray 5-3: Wet aerosol spray
5-4: Spray foam 5-5: Spray foam
Example 6: Hair balsam Composition:
Figure imgf000033_0002
Consistency: Viscous hair milk
Propellant fillers:
Figure imgf000034_0001
Spray properties: 6- 1 : Snow-like spray 6-2: Snow-like spray 6-3: Wet aerosol spray 6-4: Spray foam 6-5: Spray foam

Claims

What is claimed is:
1. A product release system to atomize a cosmetic composition for hair, which has the following:
(a) pressure-resistant packaging,
(b) a spray head containing a capillary, and
(c) a propellant-containing cosmetic composition, wherein atomization is done using the capillary and the composition contains at least one film-forming, hair-setting, or hair-conditioning cationic polymer.
2. The product release system according to Claim 1, wherein the capillary has a diameter of 0.00394 (0,1) to 0.03937 in (1 mm) and a length of 0.1968 (5) to 3.937 in (100 mm).
3. The product release system according to one of the preceding claims, wherein the spray rate is 0.00035 (0.01) to 0.176 oz/s (5 g/s).
4. The product release system according to one of the previous claims, wherein the propellants are selected from propane, butane, dimethyl ether, fluorinated hydrocarbons, and mixtures thereof.
5. The product release system according to one of the preceding claims, wherein the cationic polymer is selected from homo- or copolymers, which are constructed from at least one of the following monomers: dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, monoalkylaminoalkyl acrylate, and monoalkyl aminoalkyl methacrylate, trialkyl methacryloxyalkyl ammonium, trialkyl acryloxyalkyl ammonium, dialkyl diallyl ammonium, and quaternary vinyl ammonium monomers with cyclic groups containing cationic nitrogens.
6. The product release system according to one of the preceding claims, wherein the cationic polymer is selected from cationic cellulose derivatives from hydroxyethyl cellulose and diallyl dimethyl ammonium chloride; cationic cellulose derivatives from hydroxyethyl cellulose and epoxide substituted with trimethyl ammonium; poly(dimethyldiallyl ammonium chloride); copolymers from acrylamide and dimethyldiallyl ammonium chloride; quaternary ammonium polymers, formed by the reaction of diethylsulfate and a copolymer from vinyl pyrrolidone and dimethylaminoethyl methacrylate; quaternary ammonium polymers from methylvinylimidazolium chloride and vinyl pyrrolidone; Polyquaternium-35; polymer from trimethyl ammonium ethyl methacrylate chloride; Polyquaternium- 57; dimethylpolysiloxane terminally substituted with quaternary ammonium groups; copolymer from vinyl pyrrolidone, dimethylaminopropyl methacrylamide, and methacryloylamino propyl lauryl dimethyl ammonium chloride; chitosan and salts thereof; hydroxyalkyl chitosans and salts thereof; alkyl hydroxyalkyl chitosans and salts thereof; N-hydroxyalkyl chitosan alkyl ether; copolymer from vinyl caprolactam, vinyl pyrrolidone, and dimethylaminoethyl methacrylate; copolymers from vinyl pyrrolidone and dimethylaminoethyl methacrylate, copolymers from vinyl pyrrolidone, vinyl caprolactam, and dimethylaminopropylacrylamide; poly- or oligo-esters, constructed from at least one first type of monomer, which is selected from hydroxycarboxylic acid substituted with at least one quaternary ammonium group.
7. The product release system according to one of the preceding claims, wherein the composition is a gel, wax, or emulsion.
8. The product release system according to Claim 8, wherein the gel-type composition contains at least one thickener or gel-former in a quantity of from 0.01 to 20 wt. %.
9. The product release system according to Claim 8, wherein the thickener or gel- former is a thickened polymer, selected from copolymers from at least one first type of monomer, which is selected from acrylic acid and methacrylic acid and at least one second type of monomer, which is selected from esters of acrylic acid and ethoxylated fatty alcohol; crosslinked polyacrylic acid; crosslinked copolymers from at least one first type of monomer, which is selected from acrylic acid and methacrylic acid and at least one second type of monomer, which is selected from esters of acrylic acid with ClO to C30 alcohols; copolymer from at least one first type of monomer, which is selected from acrylic acid and methacrylic acid and at least one second type of monomer, which is selected from esters of itaconic acid and ethoxylated fatty alcohol; copolymers from at least one first type of monomer, which is selected from acrylic acid and methacrylic acid, at least one second type of monomer, which is selected from esters of itaconic acid and ethoxylated ClO to C30 alcohol and a third type of monomer, selected from Cl to C4 aminoalkyl acrylates; copolymers from two or more monomers, selected from acrylic acid, methacrylic acid, acrylic acid esters, and methacrylic acid esters; copolymers from vinyl pyrrolidone and ammonium acryloyl dimethyltaurate; copolymers from ammonium acryloyl dimethyltaurate and monomers selected from esters of methacrylic acid and ethoxylated fatty alcohols; hydroxyethyl cellulose; hydroxypropyl cellulose; hydroxypropyl guar; glyceryl polyacrylate; glycerylpoly methacrylate; copolymers from at least one C2, C3, or C4 alkylene and styrene; polyurethanes; hydroxypropyl starch phosphate; polyacrylamide; copolymer crosslinked with decadiene from maleic acid anhydride and methyl vinyl ether; locust bean gum; guar gum; xanthan; dehydroxanthan; carrageenan; karaya gum; hydrolyzed corn starch; copolymers from polyethylene oxide, fatty alcohols, and saturated methylene diphenyl diisocyanate.
10. The product release system according to Claim 7, wherein the waxy composition contains at least one wax that is solid at 77°F (25 °C) in a quantity of from 10 to 80 wt. %.
11. The product release system according to Claim 10, wherein the wax is selected from paraffin waxes, polyolefin waxes, wool wax, wool wax alcohols, candelilla wax, olive wax, carnauba wax, Japan wax, apple wax, hydrogenated fats, fatty acid esters, fatty acid glycerides, fatty acid triglycerides, polyethylene glycol waxes, and silicone waxes.
12. The product release system according to Claim 7, wherein the emulsion-type composition is water-in-oil, oil-in-water, or a microemulsion, and it contains at least one emulsifier in a quantity of from 0.1 to 30 wt. %, and at least one oil in a quantity of from 1 to 20 wt. %, and water.
13. The product release system according to Claim 12, wherein the oil is selected from silicone oils, mineral oils, isoparaffm oils, paraffin oils, squalane, sunflower seed oil, coconut oil, castor oil, lanolin oil, jojoba oil, corn oil, and soy oil.
14. The product release system according to Claim 12 or 13, wherein the emulsifier is selected from addition products of 2 to 30 mol ethylene oxide and/or 1 to 5 mol propylene oxide to C8 to C22 fatty alcohols, addition products of 2 to 30 mol ethylene oxide and/or 1 to 5 mol propylene oxide to C12 to C22 fatty acids, addition products of 2 to 30 mol ethylene oxide and/or 1 to 5 mol propylene oxide to alkyl phenols with 8 to 15 C atoms in the alkyl group, Cl 2 to C22 fatty acid monoesters and diesters of addition products of 1 to 30 mol ethylene oxide to glycerol, addition products of 5 to 60 mol ethylene oxide to castor oil or to hydrogenated castor oil, mono-, di-, or triesters of phosphoric acid with addition products of 2 to 30 mol ethylene oxide to C8 to C22 fatty alcohols, esters of saccharose and one or two C 8 to C22 fatty acids, esters from sorbitan and one, two, or three C8 to C22 fatty acids and one ethoxylation level of 4 to 20, polyglyceryl fatty acid esters from one, two, or more C8 to C22 fatty acids and polyglycerol with 2 to 20 glyceryl units, alkylglycosides, C8-22 alkyldimethyl benzyl ammonium compounds, C8-22 alkyltrimethyl ammonium compounds, C8- 22 alkyldimethyl hydroxyethyl ammonium compounds, di-(C8-22 alkyl)-dimethyl ammonium compounds, C8-22 alkylpyridinium salts, C8-22 alkylamido ethyl trimethyl ammonium ether sulfates, C8-22 alkylmethyl amine oxides, C8-22 alkyl amino ethyl dimethyl amine oxides, amidoamines, and quaternized amidoamines.
15. The product release system according to one of the proceeding claims, wherein the composition contains at least one additional active ingredient or additive, selected from hair-conditioning materials, hair-setting materials, silicone compounds, photoprotective materials, preservatives, pigments, direct- penetrating hair dyes, particle-shaped materials, oxidizing agents, reducing agents, and oxidative hair dye precursor products.
16. The product release system according to Claim 15, wherein the active ingredients and additives are contained in a quantity of from 0.01 to 20 Wt. %.
17. The product release system according to Claim 15 or 16, wherein a nonionic polymer is contained as a hair-conditioning or hair-setting material, with said polymer being selected from polyvinylpyrrolidone, polyvinyl caprolactam, vinyl pyrrolidone/vinylacetate copolymers, polyvinylalcohol, isobutylene/ethylmaleimide/hydroxyethylmaleimide copolymer; copolymers from vinyl pyrrolidone, vinyl acetate, and vinyl propionate.
18. The product release system according to Claim 15 or 16, wherein an anionic polymer is contained as a hair-conditioning or hair-setting material, with said polymer being selected from terpolymers from acrylic acid, ethyl acrylate, and N- tert-butylacrylamide; crosslinked or uncrosslinked vinyl acetate/crotonic acid copolymers; terpolymers from tert.-butylacrylate, ethyl acrylate, and methacrylic acid; sodium polystyrene sulfonate; copolymers from vinyl acetate, crotonic acid, and vinyl propionate; copolymers from vinyl acetate, crotonic acid, and vinyl neodecanoate; aminomethyl propanol acrylate copolymers; copolymers from vinyl pyrrolidone and at least one additional monomer selected from acrylic acid, methacrylic acid, acrylic acid esters, and methacrylic acid esters; copolymers from methyl vinyl ether and maleic acid monoalkyl esters; aminomethyl propanol salts of copolymers from allylmethacrylate and at least one additional monomer selected from acrylic acid, methacrylic acid, acrylic acid esters, and methacrylic acid esters; crosslinked copolymers from ethyl acrylate and methacrylic acid; copolymers from vinyl acetate, mono-n-butyl maleate, and isobornyl acrylate; copolymers from two or more monomers selected from acrylic acid, methacrylic acid, acrylic acid esters, and methacrylic acid esters, copolymers from octylacrylamide and at least one monomer selected from acrylic acid, methacrylic acid, acrylic acid esters, and methacrylic acid esters; polyesters from diglycol, cyclohexanedimethanol, isophthalic acid, and sulfoisophthalic acid.
19. The product release system according to one of Claims 15 or 16, wherein a zwitterionic or amphoteric polymer is contained as a hair-conditioning or hair-setting material, with said polymer being selected from copolymers from octylacrylamide, acrylic acid, butylaminoethyl methacrylate, methyl methacrylate, and hydroxypropyl methacrylate; copolymers from lauryl acrylate, stearyl acrylate, ethylamine oxide methacrylate, and at least one monomer selected from acrylic acid, methacrylic acid, acrylic acid esters, and methacrylic acid esters; copolymers from methacryloyl ethyl betaine and at least one monomer selected from methacrylic acid and methacrylic acid esters; copolymers from acrylic acid, methylacrylate, and methacrylamide propyl trimethylammonium chloride; oligomers or polymers that can be produced from quaternary crotonic betaines or quaternary crotonic betaine esters.
20. The product release system according to one of Claims 15 through 19, wherein at least one silicone compound is contained, which is selected from cyclic dimethylsiloxanes, linear polydimethylsiloxanes, block polymers from polydimethylsiloxane, and polyethylene oxide and/or polypropylene oxide, polydimethylsiloxanes with terminal or lateral polyethylene oxide or polypropylene oxide radicals, polydimethylsiloxanes with terminal hydroxyl groups, phenyl-substituted polydimethylsiloxanes, silicone emulsions, silicone elastomers, silicone waxes, silicone gums, amino-substituted silicones, and silicones substituted with one or more quaternary ammonium groups.
21. The product release system according to one of Claims 15 through 20, wherein at least one photoprotective material is contained, which is selected from 4-methoxy cinnamic acid-2-ethylhexyl ester, methyl methoxy cinnamate, 2-hydroxy-4- methoxy benzophenone-5-sulfonic acid, and polyethoxylated p-aminobenzoates.
22. The product release system according to one of Claims 15 through 21, wherein an active ingredient and additive is contained, which is selected from betaine; panthenol; panthenyl ethyl ether; sorbitol; protein hydrolysates; plant extracts! A- B block copolymers from alkyl acrylates and alkyl methacrylates; A-B block copolymers from alkyl methacrylates and acrylonitrile; A-B-A block copolymers from lactide and ethylene oxide; A-B-A block copolymers from caprolacton and ethylene oxide; A-B-C block copolymers from alkylene or alkadiene compounds, styrene and alkyl methacrylates; A-B-C block copolymers from acrylic acid, styrene, and alkyl methacrylates; star-shaped block copolymers; hyper-branched polymers, dendrimers, intrinsically electrically conducting 3,4-polyethylene dioxythiophenes, and intrinsically electrically conducting polyanilines.
23. The product release system according to one of Claims 15 through 22, wherein at least one pigment is contained, which is selected from titanium dioxide (CI 77891), black iron oxide (CI 77499), yellow iron oxide (CI 77492), red and brown iron oxide (CI 77491), manganese violet (CI 77742), ultramarine (CI 77007), chromium oxide hydrate (CI77289), iron blue (CI77510), bismuth oxichloride (CI77163), carmine (cochineal), pearl shine and color pigments based on mica which are coated with a metallic oxide or a metallic oxychloride such as titanium dioxide or bismuth oxychloride as well as, if necessary, additional color-providing materials such as iron oxides, iron blue, ultramarine, or carmine, and wherein the color is determined by varying the layer thickness.
24. The product release system according to one of Claims 15 through 23, wherein at least one particle-shaped material is contained, which is selected from silica, silicates, aluminates, alumina, mica, insoluble metallic salts, metallic oxides, minerals, and insoluble polymer particles.
25. The product release system according to Claim 1, wherein the composition is a gel and contains
(a) 0.1 to 10 wt. % of at least one thickened polymer, selected from copolymers from at least one first type of monomer, which is selected from acrylic acid and methacrylic acid and at least one second type of monomer, which is selected from esters of acrylic acid and ethoxylated fatty alcohol; crosslinked polyacrylic acid; crosslinked copolymers from at least one first type of monomer, which is selected from acrylic acid and methacrylic acid and at least one second type of monomer, which is selected from esters of acrylic acid with ClO to C30 alcohols; copolymers from at least one first type of monomer, which is selected from acrylic acid and methacrylic acid and at least one second type of monomer, which is selected from esters of itaconic acid and ethoxylated fatty alcohol; copolymers from at least one first type of monomer, which is selected from acrylic acid and methacrylic acid, at least one second type of monomer, which is selected from esters of itaconic acid and ethoxylated ClO to C30 alcohol and a third type of monomer, selected from Cl to C4 aminoalkyl acrylates; copolymers from two or more monomers, selected from acrylic acid, methacrylic acid, acrylic acid esters, and methacrylic acid esters; copolymers from vinyl pyrrolidone and ammonium acryloyl dimethyltaurate; copolymers from ammonium acryloyl dimethyltaurate and monomers selected from esters of methacrylic acid and ethoxylated fatty alcohols; hydroxyethyl cellulose; hydroxypropyl cellulose; hydroxypropyl guar; glyceryl polyacrylate; glyceryl polymethacrylate; copolymers from at least one C2, C3, or C4 alkylene and styrene; polyurethanes; hydroxypropyl starch phosphate; polyacrylamide; copolymer crosslinked with decadiene from maleic acid anhydride and methyl vinyl ether; locust bean gum; guar gum; xanthan; dehydroxanthan; carrageenan; karaya gum; hydrolyzed corn starch; copolymers from polyethylene oxide, fatty alcohols and saturated methylene diphenyl diisocyanate; and (b) 0.1 to 5 wt. % of at least one film-forming, hair-setting, or hair-conditioning cationic polymer, selected from the cationic polymers according to Claim 6.
26. The product release system according to Claim 1, wherein the composition is in the form of an O/W emulsion, a W/O emulsion, or a microemulsion and contains
(a) 1 to 20 wt. % of at least one oil or wax, selected from silicone oils, mineral oils, isoparaffin oils, paraffin oils, squalane, plant oils, paraffin waxes, polyolefin waxes, wool wax, wool wax alcohols, candelilla wax, olive wax, carnauba wax, Japan wax, apple wax, hydrogenated fats, fatty acid esters, fatty acid glycerides, fatty acid triglycerides, polyethylene glycol waxes, and silicone waxes;
(b) 0.01 to 30 wt. % of at least one emulsifier; and
(c) 0.01 to 20 wt. % of at least one film-forming, hair-setting, or hair-conditioning cationic polymer, selected from the cationic polymers according to Claim 6.
27. Use of a product release system according to one of the preceding claims for hair treatment.
28. A method for hair treatment, wherein a product release system is provided according to one of Claims 1 to 26, via the product release system, the composition contained therein is sprayed on the hair, and it is either rinsed out of the hair after an action period or it is left in the hair.
PCT/US2006/023923 2005-06-20 2006-06-20 A product release system for atomizing cosmetic hair compositions containing cationic polymers WO2007002048A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2007015655A MX2007015655A (en) 2005-06-20 2006-06-20 A product release system for atomizing cosmetic hair compositions containing cationic polymers.
JP2008514982A JP2008542401A (en) 2005-06-20 2006-06-20 Product release system for spraying a cosmetic cosmetic composition containing a cationic polymer
CA002611799A CA2611799A1 (en) 2005-06-20 2006-06-20 A product release system for atomizing cosmetic hair compositions containing cationic polymers
EP06785159A EP1893295A1 (en) 2005-06-20 2006-06-20 A product release system for atomizing cosmetic hair compositions containing cationic polymers
BRPI0612114-4A BRPI0612114A2 (en) 2005-06-20 2006-06-20 product release system for atomizing cosmetic hair compositions containing cationic polymers
AU2006262421A AU2006262421A1 (en) 2005-06-20 2006-06-20 A product release system for atomizing cosmetic hair compositions containing cationic polymers
US12/335,592 US20090098079A1 (en) 2005-06-20 2008-12-16 Product release system for atomizing cosmetic hair compositions containing cationic polymers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510028382 DE102005028382A1 (en) 2005-06-20 2005-06-20 Product release system to atomize cosmetic composition for hair, has pressure-resistant packaging, spray head containing capillary, and propellant-containing cosmetic composition having hair-setting, or hair-conditioning cationic polymer
DE102005028382.9 2005-06-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/335,592 Continuation US20090098079A1 (en) 2005-06-20 2008-12-16 Product release system for atomizing cosmetic hair compositions containing cationic polymers

Publications (1)

Publication Number Publication Date
WO2007002048A1 true WO2007002048A1 (en) 2007-01-04

Family

ID=37102061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/023923 WO2007002048A1 (en) 2005-06-20 2006-06-20 A product release system for atomizing cosmetic hair compositions containing cationic polymers

Country Status (9)

Country Link
EP (1) EP1893295A1 (en)
JP (1) JP2008542401A (en)
CN (1) CN101203273A (en)
AU (1) AU2006262421A1 (en)
BR (1) BRPI0612114A2 (en)
CA (1) CA2611799A1 (en)
DE (1) DE102005028382A1 (en)
MX (1) MX2007015655A (en)
WO (1) WO2007002048A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2940113B1 (en) * 2008-12-23 2011-04-01 Fabre Pierre Dermo Cosmetique CAROB BEAN HYDROLYSAT, PROCESS FOR PREPARING THE SAME AND USE THEREOF IN CAPILLARY COSMETICS
DE102012203942A1 (en) * 2012-03-14 2013-09-19 Beiersdorf Ag New hair fixative with sorbitol
CN106974840A (en) * 2016-11-01 2017-07-25 田鹏新 A kind of plastotype hair jelly of bloom texture and preparation method thereof
WO2019155673A1 (en) * 2018-02-09 2019-08-15 株式会社マンダム Hairdressing agent composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001078661A2 (en) * 2000-04-18 2001-10-25 Wella Aktiengesellschaft Aerosol foam for treating hair
US20030022799A1 (en) * 2001-07-27 2003-01-30 Alvarado Robert M. A shampoo foaming composition which comprises an alkyl ether sulfate, a sorbitan derivative, a betaine, an alkylamido alkylamine, an alkoxylated carboxylic acid, and an organic salt
WO2003051522A2 (en) 2001-12-14 2003-06-26 Steag Microparts Gmbh Apparatus for atomizing a liquid product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001078661A2 (en) * 2000-04-18 2001-10-25 Wella Aktiengesellschaft Aerosol foam for treating hair
US20030022799A1 (en) * 2001-07-27 2003-01-30 Alvarado Robert M. A shampoo foaming composition which comprises an alkyl ether sulfate, a sorbitan derivative, a betaine, an alkylamido alkylamine, an alkoxylated carboxylic acid, and an organic salt
WO2003051522A2 (en) 2001-12-14 2003-06-26 Steag Microparts Gmbh Apparatus for atomizing a liquid product

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"International Cosmetic Ingredient Dictionary and Handbook, 10th edition.", 2004
FIEDLER: ""Lexikon der Hilfsstoffe", Dictionary of Adjuvants. 5th edition.", vol. 1, 2002, pages: 97 - 102
XP002403573, Retrieved from the Internet <URL:http://web.archive.org/web/20041109220827/http://www.lindalgroup.com/documents/pdf/lindal_truspray.pdf> [retrieved on 20041109] *

Also Published As

Publication number Publication date
CN101203273A (en) 2008-06-18
EP1893295A1 (en) 2008-03-05
AU2006262421A1 (en) 2007-01-04
CA2611799A1 (en) 2007-01-04
JP2008542401A (en) 2008-11-27
DE102005028382A1 (en) 2006-12-28
BRPI0612114A2 (en) 2010-10-19
MX2007015655A (en) 2008-02-19

Similar Documents

Publication Publication Date Title
US20090098079A1 (en) Product release system for atomizing cosmetic hair compositions containing cationic polymers
US20070292460A1 (en) Product release system to atomize non-liquid or highly viscous cosmetic compositions
US20080112898A1 (en) Product release system to atomize polymer-containing cosmetic hair compositions
US20070297992A1 (en) Product release system to atomize compositions containing hair-conditioning ingredients
US20080020004A1 (en) Hair-Treatment Agent Comprising Terpolymer Of Vinylpyrrolidone, Methacrylamide And Vinylimidazole And Active Ingredients And Additives
WO2007002044A1 (en) Product release system for atomizing compositions containing hair-keratin-reducing or oxidative active ingredients
US20080038206A1 (en) Product release system for atomizing compositions containing hair-keratin-reducing or oxidative active ingredients
DE202005009615U1 (en) Product delivery system, useful e.g. for spraying cosmetic compositions and hair treatment, comprises a pressure resistant packing; a capillary containing spray button and a propellant containing cosmetic composition
WO2007002048A1 (en) A product release system for atomizing cosmetic hair compositions containing cationic polymers
DE202005009617U1 (en) Delivery system for spraying a cosmetic composition comprises a pressure-resistant pack, a capillary spray head and a composition including a propellant and a hair conditioner
DE202005009612U1 (en) Product delivery system, useful e.g. for spraying a hair cosmetic composition and hair treatment, comprises a pressure resistant package, a capillary containing spraying button; and a propellant containing composition
DE202005009611U1 (en) Product delivery system, useful e.g. for spraying a hair cosmetic composition and hair treatment, comprises a pressure resistant package, a capillary containing spraying button; and a propellant containing composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680022224.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006785159

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008514982

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/015655

Country of ref document: MX

Ref document number: 9504/DELNP/2007

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2611799

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006262421

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006262421

Country of ref document: AU

Date of ref document: 20060620

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0612114

Country of ref document: BR

Kind code of ref document: A2