WO2006137142A1 - Engine rpm measuring method and device thereof - Google Patents

Engine rpm measuring method and device thereof Download PDF

Info

Publication number
WO2006137142A1
WO2006137142A1 PCT/JP2005/011553 JP2005011553W WO2006137142A1 WO 2006137142 A1 WO2006137142 A1 WO 2006137142A1 JP 2005011553 W JP2005011553 W JP 2005011553W WO 2006137142 A1 WO2006137142 A1 WO 2006137142A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
engine speed
unit
pass filter
engine
Prior art date
Application number
PCT/JP2005/011553
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyokatsu Iwahashi
Masaharu Ohya
Yasutaka Nakajima
Original Assignee
Rion Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co., Ltd. filed Critical Rion Co., Ltd.
Priority to JP2007522163A priority Critical patent/JP4651667B2/en
Priority to PCT/JP2005/011553 priority patent/WO2006137142A1/en
Publication of WO2006137142A1 publication Critical patent/WO2006137142A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/025Engine noise, e.g. determined by using an acoustic sensor

Definitions

  • the present invention relates to an engine speed measurement method and apparatus for measuring the engine speed as well as engine exhaust sound power.
  • proximity exhaust noise Exhaust noise from a muffler emitted from an automobile is called proximity exhaust noise, and its measurement method is standardized by JIS and ISO. In recent years, proximity exhaust noise measurement has been applied in Japan to detect poorly maintained vehicles such as modified mufflers.
  • proximity exhaust noise measurement it is necessary to measure the maximum noise level from when the engine speed is maintained for several seconds in a stopped state (idle blowing) to when the accelerator is rapidly turned off and the engine is idling. Therefore, in addition to the sound level meter, a device that detects the engine speed is required.
  • Exhaust noise is noise that has pulsation sound associated with explosion in the cylinder that causes the engine to rotate, and detecting the pulsation frequency of this pulsation sound is equivalent to detecting the engine speed. . Therefore, a method is known in which the frequency of exhaust noise is analyzed, the maximum peak frequency is regarded as the primary frequency component of the pulsation frequency, and the engine speed is detected.
  • the noise greatly depends on the rotational speed, so there are cases where the current proximity exhaust noise measurement method cannot cope.
  • the noise value exceeding the proximity exhaust noise value determined by the automobile manufacturer based on the proximity exhaust noise measurement method exceeds the predetermined engine speed required by the proximity exhaust noise measurement method.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to accurately measure the engine exhaust sound power and the engine speed. It is an object of the present invention to provide an engine speed measurement method and apparatus capable of performing the same. Means for solving the problem
  • the invention determines the idling state frequency characteristic force primary frequency by using a method of measuring engine speed by converting engine exhaust sound into a digital signal.
  • Data sump A fifth step of updating the ring frequency and a sixth step of calculating the engine speed according to the output value of the fourth step are provided.
  • the invention according to claim 2 is an apparatus for measuring engine speed by converting engine exhaust sound into a digital signal, a frequency detection unit for detecting a primary frequency from frequency characteristics in an idling state, and the primary frequency
  • a frequency detection unit for detecting a primary frequency from frequency characteristics in an idling state, and the primary frequency
  • a band-pass filter that processes engine exhaust sound that changes from an idling state following a change in the power level
  • a zero-cross processing unit that removes fluctuations in the data force amplitude output from the band-pass filter
  • AF-V converter that outputs a value corresponding to the frequency of the data to be transmitted
  • frequency modulation that updates the sampling frequency of the data input to the bandpass filter according to the value output from the AF-V converter
  • an engine speed calculator for calculating the engine speed according to the value output from the frequency modulator.
  • the invention according to claim 3 is the engine speed measurement device according to claim 2, wherein the frequency modulation unit is a thinning interval determination unit that determines a thinning interval of sampling data of engine exhaust sound;
  • the AF-V conversion unit includes a low-pass filter that outputs a change in frequency as a change in amplitude, and a low-pass filter that thins out the sampling data according to the thinning-out interval determined by the thinning interval determination unit. It also becomes the effective power calculation unit that converts the effective value output by to a value equivalent to the frequency.
  • FIG. 1 is a block diagram of an engine speed measuring device according to the present invention.
  • FIG. 1 is a block diagram of the engine speed measuring device according to the present invention
  • Fig. 2 is in an idling state
  • FIG. 3 is a flowchart showing the measurement procedure when the engine speed changes.
  • the present invention is in principle equivalent to detecting the primary frequency component of the pulse-like sound included in the exhaust sound, but does not directly detect the primary frequency component by direct frequency analysis.
  • the changed sampling frequency has a fixed relationship. It has a feature that it expresses the engine speed!
  • the digital filter and digital frequency used in the present invention will be outlined.
  • IIR cyclic digital bandpass filter with fc [H z] as the center frequency of the analog real frequency f as an example, the sampling frequency fs [Hz], the center frequency fc [Hz] of the analog real frequency f, and The nature of the digital filter will be described.
  • the frequency characteristic H (z) of an IIR (cyclic) digital bandpass filter is expressed by the following equation (1).
  • z e j2 it i / is , and N and M are integers and satisfy the condition of N ⁇ M. an and bm are coefficients that determine the frequency characteristics of the digital filter.
  • equation (1) it is assumed that coefficients an and bm of a digital bandpass filter having fc [Hz] as the center frequency of the analog real frequency f are determined under the condition of the sampling frequency fs [Hz].
  • this digital filter shifts the center frequency to k times fc.
  • an engine speed measurement device includes a microphone 1, an AZD conversion unit 2, and an FFT (Fast Fourier Transform) analysis unit that convert engine exhaust sound into an analog electrical signal. 3, low-pass filter (LPF) 4, frequency modulation unit 5, band-pass filter (BPF) 6, zero-cross waveform generation unit 7, AF-V (frequency voltage) conversion unit 8, engine rotation A number calculation unit 9 is provided.
  • LPF low-pass filter
  • BPF band-pass filter
  • AF-V frequency voltage
  • a frequency analysis unit having the same function as the FFT analysis unit 3 may be used. If the engine exhaust sound is digital data stored on a memory card or the like, it is not necessary to provide the microphone 1 and the AZD converter 2.
  • the AZD converter 2 converts the exhaust sound collected by the microphone 1 into a digital signal at a sampling frequency fp [Hz].
  • Sampling frequency fp is determined by the condition expressed by the following equation (2), where D is the maximum decimation interval of the decimation unit, which will be described later, and R [rpm] is the maximum measurable rotational speed.
  • c is a coefficient determined by engine specifications, and is generally 3 in a 6-cylinder 4-cycle engine. The data generated here is used as sampling data.
  • the FFT analysis unit 3 is provided only for determining the primary frequency component MHz of the pulsation sound in the exhaust sound when the engine of the vehicle to be measured is idling.
  • the primary frequency component fc is determined as a frequency having a peak value near the frequency using the engine specifications (idling speed, engine type, etc.).
  • the low-pass filter 4 is provided so that the aliasing phenomenon due to the sampling theorem does not occur when the sampling data is thinned out by the thinning-out device connected to the subsequent stage.
  • the cutoff frequency fac [Hz] of the Rhonos filter 4 is set within the range indicated by the following equation (3) using the maximum thinning interval 0, the maximum rotation speed R, and the coefficient c in equation (2). [0026] [Equation 3]
  • the band-pass filter 6 is the same as described above if the thinning-out device 11 in the preceding stage accurately inputs the sampling data ⁇ ), which is the input of the band-pass filter 6 in proportion to the engine speed change, at the interval I. Due to the nature of the digital filter, as a result, it follows the primary frequency component of the pulsation sound in the exhaust sound, and functions to selectively extract the primary frequency component while suppressing other components.
  • the zero-cross waveform generation unit 7 converts the output waveform into a rectangular wave having an amplitude of 1 or -1 depending on whether the output waveform (close to a sine wave) of the bandpass filter 6 is larger or smaller than zero.
  • the amplitude of the primary frequency component of the pulsation noise in the exhaust sound may fluctuate. This fluctuation is detected by the low-pass filter 13 and the effective power calculator 14 (described later). As a result, the amplitude variation is eliminated by using a zero-cross waveform. As a result, the change in the output amplitude of the preceding bandpass filter 6 can be absorbed.
  • the A-F-V conversion unit 8 includes a low-pass filter (LPF) 13, an effective power calculation unit 14, and a gate unit 15, and outputs a change in frequency as a voltage.
  • the low-pass filter 13 is provided to detect a change in the primary frequency component of the pulsation sound in the exhaust sound accompanying a change in the engine speed.
  • the following equation (4) is the output amplitude vf based on the general frequency amplitude characteristic of the nth-order butter-throw bus filter having the cutoff frequency flp [Hz].
  • the effective power calculation unit 14 is provided to calculate a value equivalent to the output amplitude vf shown in the output signal force equation (4) of the low-pass filter 13.
  • the gate unit 15 is a switch that connects the output of the effective power calculation unit 14 to the subsequent thinning interval determination unit 12 at regular intervals. This interval is determined by the response time of the bandpass filter 6 and the response time of the effective power calculation unit 14. Empirically, the switch is turned on at intervals of 5 to 10 cycles of the signal input to the effective power calculation unit 14, and the output value of the effective power calculation unit 14 at that time is output.
  • the frequency modulation unit 5 includes a decimation unit 11 that decimates sampling data ⁇ according to a decimation interval d (i), and a decimation interval determination unit 12 that gives the decimation interval d (i) to the decimation unit 11.
  • the sampling frequency is modulated according to the pressure level.
  • INT [ ⁇ ] is an operator that rounds [ ⁇ ] to an integer.
  • the initial value d0 is the maximum thinning interval D.
  • R0 is the number of revolutions during idling
  • AVG [ ⁇ ] is the operator that performs the average operation of the tom force and the i + m interval
  • m is an arbitrary integer.
  • step SP1 microphone 1 converts the exhaust sound during idling to an analog electrical signal.
  • step SP2 the AZD conversion unit 2 converts the exhaust sound collected by the microphone 1 into a digital signal at the sampling frequency fp [Hz].
  • step SP3 the primary frequency component (fundamental frequency) fc [Hz] of the pulsation sound in the exhaust sound when the engine is idling is determined (first step).
  • step SP13 the low-pass filter 4 having a cutoff frequency fac [Hz] is passed through to prevent the aliasing phenomenon caused by the sampling theorem from occurring in the AZD-converted digital signal.
  • step SP14 the output signal (sampling data ⁇ ) of the low-pass filter 4 is thinned out according to the interval I (interval) d (i) (i time point) determined by the thinning interval determination unit 12 in step SP18.
  • the digital frequency fd which is the ratio of the analog actual frequency f to the sampling frequency fs, is made constant (fifth step).
  • the primary frequency component is selectively extracted while following the primary frequency component of the pulsating sound in the aerial sound and suppressing the other components (second step). Note that the primary frequency component fc [Hz] obtained in step SP3 is used as the initial setting parameter, and the coefficients an and bm of the bandpass filter 6 are determined.
  • step SP16 in order to remove the amplitude change of the primary frequency component from the output waveform of the bandpass filter 6 (close to a sine wave), the output waveform is subjected to an amplitude force depending on whether the output waveform is larger or smaller than zero. Convert to ⁇ or 1 square wave (3rd step).
  • step SP17 when the sampled signal force having the frequency f is input using the gradient frequency region (f> flp) of the amplitude characteristic of the low-pass filter 13 having the cutoff frequency force 3 ⁇ 4p [Hz], When the input frequency changes, the output amplitude V i3 ⁇ 4 of the low-pass filter 13 changes. Therefore, the effective power is calculated, and a voltage whose magnitude changes according to the change of the input frequency is output from the gate unit 15 (fourth step ).
  • step SP18 the output signal of the AF-V conversion unit 8 is input to the decimation interval determination unit 12 of the frequency modulation unit 5, and the decimation interval d (i + l) is calculated by equation (5). Is done.
  • the thinning interval d (i + l) is sent to step SP19 (sixth process) and to step SP14 (fifth process).
  • step SP19 the engine speed R (i + 1) is calculated from the thinning interval d (i + 1) calculated by the thinning interval determination unit 12 using equation (6) (sixth step).
  • the bandpass filter 6 that dynamically tracks the primary frequency component proportional to the engine speed. Assuming that the engine speed in the idling state is 500 rpm to lOOOOrpm and that the primary frequency component is the largest frequency component in that frequency range, there is no practical problem. Since it dynamically follows changes in the engine speed based on the frequency at that time, it is more accurate than a method that simply considers the peak frequency of the FFT result as the engine speed, as in the prior art. In addition, since zero cross processing is performed, it is not affected by the amplitude fluctuation of the primary frequency component.
  • the low-order or high-order frequency component Even if the minutes are large, the engine speed can be measured with high accuracy in a non-contact state and with the hood closed, so that the application range can be expanded.

Abstract

[PROBLEMS] To provide an engine rpm measuring device capable of accurately measuring engine rpm from engine exhaust sound. [MEANS FOR SOLVING PROBLEMS] There is provided a device for measuring an engine rpm by converting an engine exhaust sound into a digital signal. The device includes: an FFT analysis unit (3) for detecting a primary frequency from frequency characteristic of an idling state; a band pass filter (6) following a change of the primary frequency and processing the engine exhaust sound changing from the idling state; a zero cross waveform generation unit (7) excluding an amplitude component from the data outputted from the band pass filter (6); ΔF-V conversion unit (8) for outputting a value in accordance with a frequency of the data outputted from the zero cross waveform generation unit (7); a frequency modulation unit (5) for updating the sampling frequency of data inputted to the band pass filter (6) according to the value outputted from the ΔF-V conversion unit (8); and an engine rpm calculation unit (9) for calculating the engine rpm according to the value outputted from the frequency modulation unit (5).

Description

明 細 書  Specification
エンジン回転数計測方法及びその装置  Engine speed measurement method and apparatus
技術分野  Technical field
[0001] 本発明は、エンジン排気音力もエンジンの回転数を計測するエンジン回転数計測 方法及びその装置に関する。  TECHNICAL FIELD [0001] The present invention relates to an engine speed measurement method and apparatus for measuring the engine speed as well as engine exhaust sound power.
背景技術  Background art
[0002] 自動車から発せられるマフラからの排気騒音は、その測定法力 近接排気騒音と 呼ばれ、 JISや ISOで測定法が標準化されている。 日本では近年、近接排気騒音測 定がマフラ改造車等の整備不良車の摘発にも応用されようとしている。  [0002] Exhaust noise from a muffler emitted from an automobile is called proximity exhaust noise, and its measurement method is standardized by JIS and ISO. In recent years, proximity exhaust noise measurement has been applied in Japan to detect poorly maintained vehicles such as modified mufflers.
近接排気騒音測定では、停止状態で所定のエンジン回転数を数秒ほど維持した 状態 (空吹かし)から、急速にアクセルオフしアイドリング状態になるまでの騒音の最 大値レベルを測定しなければならない。このために騒音計の他に、エンジン回転数を 検出する装置が必要となる。  In proximity exhaust noise measurement, it is necessary to measure the maximum noise level from when the engine speed is maintained for several seconds in a stopped state (idle blowing) to when the accelerator is rapidly turned off and the engine is idling. Therefore, in addition to the sound level meter, a device that detects the engine speed is required.
[0003] 従来、騒音計とは別に、エンジン回転数検出のためにプラグスパーク時のハイテン シヨンコード力 の電磁波を検出して利用するものや、エンジンブロックまたはその周 辺のエンジンピストンの運動に起因する振動を、マグネットアタッチメント式振動セン サで検出して利用する回転計が使われてきた。  [0003] Conventionally, apart from the sound level meter, it is detected by using electromagnetic waves of high tension cord force at the time of plug spark for detecting the engine speed, or due to the movement of the engine block or the engine piston around it. A tachometer has been used which detects and uses a magnet attachment type vibration sensor to detect the vibration.
また、排気音はエンジンに回転を生じさせるシリンダ内の爆発に伴う脈動音を有す る騒音であり、この脈動音の脈動周波数を検出することはエンジンの回転数を検出 することと等価である。そこで、排気音を周波数分析し、その最大のピーク周波数を 脈動周波数の一次周波数成分と見做し、エンジンの回転数を検出する方法が知られ ている。  Exhaust noise is noise that has pulsation sound associated with explosion in the cylinder that causes the engine to rotate, and detecting the pulsation frequency of this pulsation sound is equivalent to detecting the engine speed. . Therefore, a method is known in which the frequency of exhaust noise is analyzed, the maximum peak frequency is regarded as the primary frequency component of the pulsation frequency, and the engine speed is detected.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかし、近年の自動車技術の発展から、電磁波が微量ある 、はハイテンションコー ドのない車やエンジンブロックおよびその周辺がアルミ製の車(二輪車を含む)が多く なり、電磁波や振動を利用する技術が使えない状況になってきた。 また、回転数検出に電磁波や振動を利用する技術が使えたとしても、現在検討され ている改定 ISOでは、エンジンルームをボンネットで閉じることを規定しょうとしており[0004] However, due to recent developments in automobile technology, there are an increasing number of cars and engine blocks that do not have high-tension cords and aluminum blocks (including motorcycles) that do not have high-tension cords. The technology we are using has become unusable. Even if technology that uses electromagnetic waves or vibrations can be used to detect the number of revolutions, the revised ISO that is currently being considered attempts to regulate that the engine room is closed by a hood.
、センサをエンジンルーム内に設置し、センサのケーブルをエンジンルーム外に引き 出すことが難 、状況になることが想定されて 、る。 It is assumed that it will be difficult to install the sensor in the engine room and pull the sensor cable out of the engine room.
[0005] また、 FFT (高速フーリエ変換)分析を用いる排気音の周波数分析法にお!ヽても、 一次周波数成分が他の低次あるいは高次周波数成分より大き 、場合には高精度に エンジン回転数を検出できる力 一次周波数成分に比して低次あるいは高次周波数 成分が大き 、場合にはエンジン回転数を正確に検出できな 、場合がある。従って、 この方法では時々刻々変化するエンジン回転数を常に正確に検出できるとは限らな い。 [0005] In addition, even in the exhaust sound frequency analysis method using FFT (Fast Fourier Transform) analysis, even if the primary frequency component is larger than other low-order or high-order frequency components, the engine is highly accurate. Force that can detect the rotational speed The lower-order or higher-order frequency component is larger than the primary frequency component. In some cases, the engine speed cannot be detected accurately. Therefore, this method cannot always accurately detect the engine speed that changes every moment.
[0006] 更に、マフラ改造車等の整備不良車を取り締まるためには、その騒音が回転数に 大きく依存するため、現行の近接排気騒音測定法では対応できない場合が考えられ る。つまり、自動車メーカが近接排気騒音測定法を基に定めた近接排気騒音値を上 回る騒音値を、近接排気騒音測定法が求める所定のエンジン回転数に至る過程で 超えてしまう場合である。このような事象を明確にするためには、エンジン回転数の変 化と排気音の変化を的確に関連付け、エンジン回転数の変化と騒音レベルを逐次監 視する必要がある。  [0006] Furthermore, in order to control a poorly maintained vehicle such as a modified muffler vehicle, the noise greatly depends on the rotational speed, so there are cases where the current proximity exhaust noise measurement method cannot cope. In other words, the noise value exceeding the proximity exhaust noise value determined by the automobile manufacturer based on the proximity exhaust noise measurement method exceeds the predetermined engine speed required by the proximity exhaust noise measurement method. In order to clarify such an event, it is necessary to accurately correlate changes in engine speed with changes in exhaust noise, and monitor engine speed changes and noise levels sequentially.
[0007] 本発明は、従来の技術が有するこのような問題点に鑑みてなされたものであり、そ の目的とするところは、エンジンの排気音力 エンジンの回転数を的確に計測するこ とができるエンジン回転数計測方法及びその装置を提供しょうとするものである。 課題を解決するための手段  [0007] The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to accurately measure the engine exhaust sound power and the engine speed. It is an object of the present invention to provide an engine speed measurement method and apparatus capable of performing the same. Means for solving the problem
[0008] 上記課題を解決すべく請求項 1に係る発明は、エンジン排気音をデジタル信号に 変換してエンジン回転数を計測する方法にぉ 、て、アイドリング状態の周波数特性 力 一次周波数を決定する第 1工程と、アイドリング状態力 変化するエンジン排気 音を前記一次周波数の変化に追従するバンドパスフィルタで処理する第 2工程と、こ の第 2工程から出力されるデータから振幅の変動を取り除く第 3工程と、この第 3工程 力 出力されるデータの周波数に応じた値を出力する第 4工程と、この第 4工程から 出力される値に応じて前記第 2工程のバンドパスフィルタに入力するデータのサンプ リング周波数を更新する第 5工程と、前記第 4工程の出力値に応じてエンジン回転数 を算出する第 6工程を備えた。 [0008] In order to solve the above-mentioned problem, the invention according to claim 1 determines the idling state frequency characteristic force primary frequency by using a method of measuring engine speed by converting engine exhaust sound into a digital signal. The first step, the second step of processing the engine exhaust sound changing idling state force with a bandpass filter that follows the change of the primary frequency, and the step of removing amplitude fluctuations from the data output from the second step The third step, the third step, the fourth step for outputting a value corresponding to the frequency of the output data, and the input to the band pass filter of the second step according to the value output from the fourth step Data sump A fifth step of updating the ring frequency and a sixth step of calculating the engine speed according to the output value of the fourth step are provided.
[0009] 請求項 2に係る発明は、エンジン排気音をデジタル信号に変換してエンジン回転数 を計測する装置において、アイドリング状態の周波数特性から一次周波数を検出す る周波数検出部と、前記一次周波数の変化に追従してアイドリング状態から変化す るエンジン排気音を処理するバンドパスフィルタと、このバンドパスフィルタから出力さ れるデータ力 振幅の変動を取り除くゼロクロス処理部と、このゼロクロス処理部から 出力されるデータの周波数に応じた値を出力する A F— V変換部と、この A F— V変 換部から出力される値に応じて前記バンドパスフィルタに入力するデータのサンプリ ング周波数を更新する周波数変調部と、この周波数変調部から出力される値に応じ てエンジン回転数を算出するエンジン回転数算出部を備えた。  [0009] The invention according to claim 2 is an apparatus for measuring engine speed by converting engine exhaust sound into a digital signal, a frequency detection unit for detecting a primary frequency from frequency characteristics in an idling state, and the primary frequency A band-pass filter that processes engine exhaust sound that changes from an idling state following a change in the power level, a zero-cross processing unit that removes fluctuations in the data force amplitude output from the band-pass filter, and a output from the zero-cross processing unit AF-V converter that outputs a value corresponding to the frequency of the data to be transmitted, and frequency modulation that updates the sampling frequency of the data input to the bandpass filter according to the value output from the AF-V converter And an engine speed calculator for calculating the engine speed according to the value output from the frequency modulator.
[0010] 請求項 3に係る発明は、請求項 2記載のエンジン回転数計測装置において、前記周 波数変調部は、エンジン排気音のサンプリングデータの間引き間隔を決定する間引 き間隔決定部と、この間引き間隔決定部が決定した間引き間隔に応じて前記サンプ リングデータを間引く間引き器からなり、前記 A F— V変換部は、周波数の変化を振 幅の変化として出力するローパスフィルタと、このローパスフィルタが出力する実効値 を周波数と等価な値に変換する実効パワー算出部力もなる。  [0010] The invention according to claim 3 is the engine speed measurement device according to claim 2, wherein the frequency modulation unit is a thinning interval determination unit that determines a thinning interval of sampling data of engine exhaust sound; The AF-V conversion unit includes a low-pass filter that outputs a change in frequency as a change in amplitude, and a low-pass filter that thins out the sampling data according to the thinning-out interval determined by the thinning interval determination unit. It also becomes the effective power calculation unit that converts the effective value output by to a value equivalent to the frequency.
発明の効果  The invention's effect
[0011] 本発明によれば、排気音に含まれる脈動音の一次周波数成分に比して低次ある!/ヽ は高次周波数成分が大き 、場合であっても、非接触且つボンネットを閉じた状態で 時々刻々変化するエンジンの回転数を容易に高精度で計測することができる。  [0011] According to the present invention, there is a lower order than the primary frequency component of the pulsation sound included in the exhaust sound! / ヽ is non-contact and closes the hood even if the higher order frequency component is large. It is possible to easily and accurately measure the engine speed, which changes from moment to moment in a state of being hot.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明に係るエンジン回転数計測装置のブロック構成図 FIG. 1 is a block diagram of an engine speed measuring device according to the present invention.
[図 2]アイドリング状態における計測手順を示すフローチャート  [Figure 2] Flow chart showing the measurement procedure in the idling state
[図 3]エンジン回転数変化時における計測手順を示すフローチャート  [Figure 3] Flow chart showing the measurement procedure when the engine speed changes
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下に本発明の実施の形態を添付図面に基づいて説明する。ここで、図 1は本発 明に係るエンジン回転数計測装置のブロック構成図、図 2はアイドリング状態におけ る計測手順を示すフローチャート、図 3はエンジン回転数変化時における計測手順を 示すフローチャートである。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Here, Fig. 1 is a block diagram of the engine speed measuring device according to the present invention, and Fig. 2 is in an idling state. FIG. 3 is a flowchart showing the measurement procedure when the engine speed changes.
[0014] 本発明は、原理的には排気音に含まれる脈同音の一次周波数成分を検出すること と等価であるが、直接周波数分析によってその一次周波数成分を検出するのではな ぐデジタルフィルタとデジタル周波数の関係を利用し、排気音信号をデジタル化す るためのサンプリング周波数を排気音に含まれる脈動音自身の情報をもとに変化さ せることで、変化させたサンプリング周波数が一定の関係を持ってエンジン回転数を 表現して!/ヽることを特徴とする。  [0014] The present invention is in principle equivalent to detecting the primary frequency component of the pulse-like sound included in the exhaust sound, but does not directly detect the primary frequency component by direct frequency analysis. By using the digital frequency relationship and changing the sampling frequency for digitizing the exhaust sound signal based on the information of the pulsation sound itself contained in the exhaust sound, the changed sampling frequency has a fixed relationship. It has a feature that it expresses the engine speed!
[0015] 先ず、本発明で用いるデジタルフィルタとデジタル周波数にっ 、て概説する。 fc[H z]をアナログ実周波数 fの中心周波数に持つ IIR形 (巡回形)のデジタルバンドパスフ ィルタを例に、サンプリング周波数 fs[Hz]、アナログ実周波数 fの中心周波数 fc[Hz] 及びデジタルフィルタの性質について説明する。  First, the digital filter and digital frequency used in the present invention will be outlined. Using an IIR (cyclic) digital bandpass filter with fc [H z] as the center frequency of the analog real frequency f as an example, the sampling frequency fs [Hz], the center frequency fc [Hz] of the analog real frequency f, and The nature of the digital filter will be described.
IIR形 (巡回形)のデジタルバンドパスフィルタの周波数特性 H(z)は、次式(1)で表 わされる。  The frequency characteristic H (z) of an IIR (cyclic) digital bandpass filter is expressed by the following equation (1).
[0016] [数 1]  [0016] [Equation 1]
N-1 N-1
H (z) ="g—— (1 )  H (z) = "g—— (1)
2 Dm " Z  2 Dm "Z
[0017] ここで、 z=ej2 it i/isであり、 N, Mは整数で N≤Mの条件を満たす。 an, bmは、デジタ ルフィルタの周波数特性を決定する係数である。 Here, z = e j2 it i / is , and N and M are integers and satisfy the condition of N ≦ M. an and bm are coefficients that determine the frequency characteristics of the digital filter.
[0018] 式(1)において、サンプリング周波数 fs[Hz]の条件で、 fc[Hz]をアナログ実周波数 f の中心周波数に持つデジタルバンドパスフィルタの係数 an, bmを決定したとする。こ の係数 an, bmを固定して、サンプリング周波数 fsを k倍にした場合、このデジタルフィ ルタは k倍の fcに中心周波数をシフトする。  [0018] In equation (1), it is assumed that coefficients an and bm of a digital bandpass filter having fc [Hz] as the center frequency of the analog real frequency f are determined under the condition of the sampling frequency fs [Hz]. When the coefficients an and bm are fixed and the sampling frequency fs is increased by k times, this digital filter shifts the center frequency to k times fc.
[0019] なぜならば、 z=ej2 it i/isにおいて、 fd = f/fsとし、 fdc = fc /fsとすれば、(k'fc) Z (k'f s)も fdcとなるので、式(1)で表わされるデジタルフィルタ周波数特性 H(z)と同じにな る。以降 fdは、無単位であるがデジタル周波数と呼ぶ。つまり、デジタルフィルタの係 数 an, bmが固定された場合、その特性 H(z)は、アナログ実周波数 fとサンプリング周 波数 fsの比であるデジタル周波数 fdによって一意に決定される。 [0019] Because in z = e j2 it i / is , if fd = f / fs and fdc = fc / fs, (k'fc) Z (k'f s) is also fdc, This is the same as the digital filter frequency characteristic H (z) expressed by equation (1). Hereafter, fd is unitless but called digital frequency. In other words, the digital filter When the numbers an and bm are fixed, the characteristic H (z) is uniquely determined by the digital frequency fd, which is the ratio of the analog real frequency f and the sampling frequency fs.
[0020] 本発明に係るエンジン回転数計測装置は、図 1に示すように、エンジンの排気音を アナログ電気信号に変換するマイクロホン 1と、 AZD変換部 2と、 FFT (高速フーリエ 変換)分析部 3と、ローパスフィルタ (LPF) 4と、周波数変調部 5と、バンドパスフィル タ(BPF) 6と、ゼロクロス波形生成部 7と、 A F— V (周波数 電圧)変換部 8と、ェン ジン回転数算出部 9を備えてなる。  [0020] As shown in Fig. 1, an engine speed measurement device according to the present invention includes a microphone 1, an AZD conversion unit 2, and an FFT (Fast Fourier Transform) analysis unit that convert engine exhaust sound into an analog electrical signal. 3, low-pass filter (LPF) 4, frequency modulation unit 5, band-pass filter (BPF) 6, zero-cross waveform generation unit 7, AF-V (frequency voltage) conversion unit 8, engine rotation A number calculation unit 9 is provided.
なお、周波数検出部としての FFT分析部 3の代わりに、 FFT分析部 3と同等の機能 を有する周波数分析手段でもよい。また、エンジン排気音をメモリカードなどに保存し たデジタルデータとすれば、マイクロホン 1と AZD変換部 2を設ける必要はな ヽ。  Instead of the FFT analysis unit 3 as a frequency detection unit, a frequency analysis unit having the same function as the FFT analysis unit 3 may be used. If the engine exhaust sound is digital data stored on a memory card or the like, it is not necessary to provide the microphone 1 and the AZD converter 2.
[0021] AZD変換部 2は、マイクロホン 1で集音された排気音をサンプリング周波数 fp[Hz] でデジタル信号化する。サンプリング周波数 fpは、後述する間引き器の最大間引き 間隔を D、必要とされる計測可能な最大回転数を R[rpm]とした場合、次式 (2)で表さ れる条件により決定される。  [0021] The AZD converter 2 converts the exhaust sound collected by the microphone 1 into a digital signal at a sampling frequency fp [Hz]. Sampling frequency fp is determined by the condition expressed by the following equation (2), where D is the maximum decimation interval of the decimation unit, which will be described later, and R [rpm] is the maximum measurable rotational speed.
[0022] [数 2]  [0022] [Equation 2]
-¾^- - R- c<f P (2) -¾ ^--R- c <f P (2)
60  60
[0023] ここで、 cはエンジンの諸元によって決められる係数であり、 6気筒 4サイクルェンジ ンでは、一般に 3である。ここで生成されたデータをサンプリングデータ とする。 [0023] Here, c is a coefficient determined by engine specifications, and is generally 3 in a 6-cylinder 4-cycle engine. The data generated here is used as sampling data.
[0024] FFT分析部 3は、測定対象車のエンジンのアイドリング状態における排気音中の脈 動音の一次周波数成分 MHz]を決定するためだけに設けられて 、る。一次周波数 成分 fcは、エンジンの諸元 (アイドリング回転数、エンジン形式など)を用い、その周 波数近傍のピーク値を持つ周波数として決定される。  [0024] The FFT analysis unit 3 is provided only for determining the primary frequency component MHz of the pulsation sound in the exhaust sound when the engine of the vehicle to be measured is idling. The primary frequency component fc is determined as a frequency having a peak value near the frequency using the engine specifications (idling speed, engine type, etc.).
[0025] ローパスフィルタ 4は、後段に接続される間引き器によってサンプリングデータ が 間引かれた場合に、サンプリング定理による折り返し現象が発生しないために設けら れている。ローノ スフィルタ 4のカットオフ周波数 fac[Hz]は、式(2)の最大間引き間 隔0、最大回転数 R、係数 cを用いて、次式(3)で示される範囲に設定される。 [0026] [数 3] [0025] The low-pass filter 4 is provided so that the aliasing phenomenon due to the sampling theorem does not occur when the sampling data is thinned out by the thinning-out device connected to the subsequent stage. The cutoff frequency fac [Hz] of the Rhonos filter 4 is set within the range indicated by the following equation (3) using the maximum thinning interval 0, the maximum rotation speed R, and the coefficient c in equation (2). [0026] [Equation 3]
-^■R- c<fac <^ . ^ (3) -^ ■ R- c <f ac <^. ^ (3)
[0027] バンドパスフィルタ 6は、式(1)で示した係数 an, bmが FFT分析部 3で決定された一 次周波数成分 fcとサンプリング周波数 fs ( = fpZD)の比 fdcを中心周波数に持つよう に決定され、測定対象車のエンジン回転数検出が終了するまで固定される。バンド パスフィルタ 6は、前段の間引き器 11がエンジン回転数変化に比例して的確にバンド パスフィルタ 6の入力であるサンプリングデータ Χή)を間弓 Iき間隔 diで間弓 Iけば、上述 したデジタルフィルタの性質から、結果として排気音中の脈動音の一次周波数成分 を追従し、その他の成分を抑圧しながら一次周波数成分を選択的に抽出する働きを する。 [0027] The bandpass filter 6 has, as a center frequency, the ratio of the primary frequency component fc determined by the FFT analyzer 3 and the sampling frequency fs (= fpZD), fdc (equation (1)). This is fixed until the detection of the engine speed of the vehicle to be measured is completed. The band-pass filter 6 is the same as described above if the thinning-out device 11 in the preceding stage accurately inputs the sampling data で), which is the input of the band-pass filter 6 in proportion to the engine speed change, at the interval I. Due to the nature of the digital filter, as a result, it follows the primary frequency component of the pulsation sound in the exhaust sound, and functions to selectively extract the primary frequency component while suppressing other components.
[0028] ゼロクロス波形生成部 7は、バンドパスフィルタ 6の出力波形(正弦波に近い)がゼロ よりも大きいか小さいかによつて、出力波形を振幅が 1または— 1の矩形波に変換す る。エンジン回転数に依存して排気音中の脈動音の一次周波数成分の振幅が変動 する場合があり、この変動は、後述する後段のローパスフィルタ 13と実効パワー算出 部 14でのエンジン回転数変化検出に影響を与えるため、ゼロクロス波形にすることに より振幅の変動を除く。これにより、前段のバンドパスフィルタ 6の出力振幅の変化を 吸収できる。  [0028] The zero-cross waveform generation unit 7 converts the output waveform into a rectangular wave having an amplitude of 1 or -1 depending on whether the output waveform (close to a sine wave) of the bandpass filter 6 is larger or smaller than zero. The Depending on the engine speed, the amplitude of the primary frequency component of the pulsation noise in the exhaust sound may fluctuate. This fluctuation is detected by the low-pass filter 13 and the effective power calculator 14 (described later). As a result, the amplitude variation is eliminated by using a zero-cross waveform. As a result, the change in the output amplitude of the preceding bandpass filter 6 can be absorbed.
[0029] A F—V変換部 8は、ローパスフィルタ(LPF) 13と、実効パワー算出部 14と、ゲート 部 15からなり、周波数の変化分を電圧で出力する。ローパスフィルタ 13は、エンジン 回転数の変化に伴う排気音中の脈動音の一次周波数成分の変化を検出するために 設けられている。次式 (4)は、カットオフ周波数 flp[Hz]を持つ n次バターワースローバ スフィルタの一般的な周波数振幅特性による出力振幅 vfである。  [0029] The A-F-V conversion unit 8 includes a low-pass filter (LPF) 13, an effective power calculation unit 14, and a gate unit 15, and outputs a change in frequency as a voltage. The low-pass filter 13 is provided to detect a change in the primary frequency component of the pulsation sound in the exhaust sound accompanying a change in the engine speed. The following equation (4) is the output amplitude vf based on the general frequency amplitude characteristic of the nth-order butter-throw bus filter having the cutoff frequency flp [Hz].
[0030] [数 4]
Figure imgf000008_0001
[0031] ローパスフィルタ 13の振幅特性の傾斜周波数域 (f >flp)に周波数 fを持つ信号が、 入力された場合は、その入力周波数が変化するとローパスフィルタ 13の出力振幅 vf が変化する。逆に言えば、この変化幅を捉えることで入力周波数の変化幅を知ること ができる。ローパスフィルタ 13のカットオフ周波数 flp[Hz]は、ローパスフィルタ 13の傾 斜周波数域に、一次周波数成分 fc[Hz]が対応するように一次周波数成分 fcより小さ くする必要がある。
[0030] [Equation 4]
Figure imgf000008_0001
[0031] When a signal having a frequency f in the gradient frequency range (f> flp) of the amplitude characteristic of the low-pass filter 13 is input, the output amplitude vf of the low-pass filter 13 changes when the input frequency changes. In other words, the change width of the input frequency can be known by capturing this change width. The cut-off frequency flp [Hz] of the low-pass filter 13 needs to be smaller than the primary frequency component fc so that the primary frequency component fc [Hz] corresponds to the slope frequency region of the low-pass filter 13.
[0032] 実効パワー算出部 14は、ローパスフィルタ 13の出力信号力 式 (4)に示す出力振 幅 vfと等価な値を算出するために設けられている。ゲート部 15は、実効パワー算出 部 14の出力を一定間隔で後段の間引き間隔決定部 12へ接続するスィッチである。 この間隔は、バンドパスフィルタ 6の応答時間や実効パワー算出部 14の応答時間に よって決められる。経験的には、実効パワー算出部 14へ入力される信号の 5周期か ら 10周期分の間隔ごとにスィッチをオンし、その時の実効パワー算出部 14の出力値 を出力する。  The effective power calculation unit 14 is provided to calculate a value equivalent to the output amplitude vf shown in the output signal force equation (4) of the low-pass filter 13. The gate unit 15 is a switch that connects the output of the effective power calculation unit 14 to the subsequent thinning interval determination unit 12 at regular intervals. This interval is determined by the response time of the bandpass filter 6 and the response time of the effective power calculation unit 14. Empirically, the switch is turned on at intervals of 5 to 10 cycles of the signal input to the effective power calculation unit 14, and the output value of the effective power calculation unit 14 at that time is output.
[0033] 周波数変調部 5は、間引き間隔 d(i)に応じてサンプリングデータ ΧΦを間引く間引き器 11と、間引き器 11に間引き間隔 d(i)を与える間引き間隔決定部 12からなり、入力電 圧の大きさに応じてサンプリング周波数を変調させる。  [0033] The frequency modulation unit 5 includes a decimation unit 11 that decimates sampling data ΧΦ according to a decimation interval d (i), and a decimation interval determination unit 12 that gives the decimation interval d (i) to the decimation unit 11. The sampling frequency is modulated according to the pressure level.
間引き間隔決定部 12は、アイドリング状態の実効パワー算出部 14の出力値 vfcと、 i 時点のゲート部 15の出力値 vKi)及び i時点の間引き間隔 d(i)を用 、て、 i+1時点の間 引き間隔 d(i+l)を次式 (5)を用いて算出する。  The decimation interval determination unit 12 uses the output value vfc of the effective power calculation unit 14 in the idling state, the output value vKi of the gate unit 15 at the i time point, and the decimation interval d (i) at the i time point to i + 1 The decimation interval d (i + l) is calculated using the following equation (5).
[0034] [数 5]
Figure imgf000009_0001
[0034] [Equation 5]
Figure imgf000009_0001
[0035] ここで、 INT[ · ]は、[ · ]を整数に丸める演算子である。初期値 d0は、最大間引 き間隔 Dである。 Here, INT [·] is an operator that rounds [·] to an integer. The initial value d0 is the maximum thinning interval D.
[0036] エンジン回転数算出部 9は、間引き間隔決定部 12で i時点ごとに計算された間引き 間隔 di力も次式 (6)を用いて、エンジン回転数 Riを算出する。  [0036] The engine speed calculation unit 9 also calculates the engine speed Ri using the following equation (6) for the thinning interval di force calculated at the time point i by the thinning interval determination unit 12.
[0037] [数 6]
Figure imgf000010_0001
[0037] [Equation 6]
Figure imgf000010_0001
[0038] ここで、 R0はアイドリング時の回転数、 AVG [ · ]はト m力も i+m区間の平均演算 を行う演算子、 mは任意の整数である。 [0038] Here, R0 is the number of revolutions during idling, AVG [·] is the operator that performs the average operation of the tom force and the i + m interval, and m is an arbitrary integer.
[0039] 以上のように構成した本発明に係るエンジン回転数計測装置の作用及びエンジン 回転数計測方法について説明する。  [0039] The operation of the engine speed measuring device according to the present invention configured as described above and the engine speed measuring method will be described.
先ず、エンジンのアイドリング状態におけるエンジン回転数計測作業が、図 2に示 すフローチャートに従って行われる。ステップ SP1において、マイクロホン 1によりアイ ドリング状態時の排気音をアナログ電気信号に変換する。次いで、ステップ SP2にお いて、 AZD変換部 2が、マイクロホン 1で集音された排気音をサンプリング周波数 fp[ Hz]でデジタル信号化する。そして、ステップ SP3において、エンジンのアイドリング 状態における排気音中の脈動音の一次周波数成分 (基本周波数) fc[Hz]を決定す る (第 1工程)。  First, the engine speed measurement operation when the engine is idling is performed according to the flowchart shown in FIG. In step SP1, microphone 1 converts the exhaust sound during idling to an analog electrical signal. Next, in step SP2, the AZD conversion unit 2 converts the exhaust sound collected by the microphone 1 into a digital signal at the sampling frequency fp [Hz]. Then, in step SP3, the primary frequency component (fundamental frequency) fc [Hz] of the pulsation sound in the exhaust sound when the engine is idling is determined (first step).
[0040] 次に、アイドリング状態力も変化するエンジン排気音についてのエンジン回転数計 測作業が、図 3に示すフローチャートに従って行われる。ステップ SP11において、マ イク口ホン 1によりエンジンの排気音をアナログ電気信号に変換する。ステップ SP12 において、 AZD変換部 2が、マイクロホン 1で集音された排気音をサンプリング周波 数 fp[Hz]でデジタル信号ィ匕する。  [0040] Next, the engine speed measurement operation for the engine exhaust sound that also changes the idling state force is performed according to the flowchart shown in FIG. In step SP11, the engine exhaust sound is converted into an analog electric signal by the microphone 1. In step SP12, the AZD conversion unit 2 digitally inputs the exhaust sound collected by the microphone 1 at the sampling frequency fp [Hz].
[0041] 次!、で、ステップ SP13にお!/、て、 AZD変換されたデジタル信号にサンプリング定 理による折り返し現象が発生しないよう、カットオフ周波数 fac[Hz]のローパスフィルタ 4を通す。  [0041] Next, in step SP13, the low-pass filter 4 having a cutoff frequency fac [Hz] is passed through to prevent the aliasing phenomenon caused by the sampling theorem from occurring in the AZD-converted digital signal.
ステップ SP 14にお 、て、ステップ SP 18の間引き間隔決定部 12で決定された間弓 I き間隔 d(i) (i時点)に応じてローパスフィルタ 4の出力信号 (サンプリングデータ Χφ)を 間引き、アナログ実周波数 fとサンプリング周波数 fsの比であるデジタル周波数 fdが 一定になるようにする(第 5工程)。  In step SP14, the output signal (sampling data Χφ) of the low-pass filter 4 is thinned out according to the interval I (interval) d (i) (i time point) determined by the thinning interval determination unit 12 in step SP18. The digital frequency fd, which is the ratio of the analog actual frequency f to the sampling frequency fs, is made constant (fifth step).
[0042] ステップ SP15では、サンプリングデータ Xft)が間弓 Iき間隔 diで間弓 |かれることにより 、デジタル周波数の性質から中心周波数 fdc (=fcZfs)のバンドパスフィルタ 6が、排 気音中の脈動音の一次周波数成分を追従し、その他の成分を抑圧しながら一次周 波数成分を選択的に抽出する (第 2工程)。なお、初期設定用パラメータとして、ステ ップ SP3において求めた一次周波数成分 fc[Hz]が用いられ、バンドパスフィルタ 6の 係数 an, bmが決定される。 [0042] In step SP15, the sampling data Xft) is interleaved with the interspace I and the interval di, so that the bandpass filter 6 with the center frequency fdc (= fcZfs) is excluded from the nature of the digital frequency. The primary frequency component is selectively extracted while following the primary frequency component of the pulsating sound in the aerial sound and suppressing the other components (second step). Note that the primary frequency component fc [Hz] obtained in step SP3 is used as the initial setting parameter, and the coefficients an and bm of the bandpass filter 6 are determined.
[0043] 次いで、ステップ SP16において、バンドパスフィルタ 6の出力波形(正弦波に近い) から一次周波数成分の振幅変化を除くため、出力波形がゼロよりも大きいか小さいか によって、出力波形を振幅力 ^または 1の矩形波に変換する (第 3工程)。  [0043] Next, in step SP16, in order to remove the amplitude change of the primary frequency component from the output waveform of the bandpass filter 6 (close to a sine wave), the output waveform is subjected to an amplitude force depending on whether the output waveform is larger or smaller than zero. Convert to ^ or 1 square wave (3rd step).
[0044] ステップ SP17では、カットオフ周波数力 ¾p[Hz]であるローパスフィルタ 13の振幅特 性の傾斜周波数域 (f>flp)を用い、周波数 fを持つサンプル信号力 入力された場 合に、その入力周波数が変化するとローパスフィルタ 13の出力振幅 Vi¾変化するの で、その実効パワーを算出し、入力周波数の変化に応じて大きさが変化する電圧を ゲート部 15から出力する(第 4工程)。 [0044] In step SP17, when the sampled signal force having the frequency f is input using the gradient frequency region (f> flp) of the amplitude characteristic of the low-pass filter 13 having the cutoff frequency force ¾p [Hz], When the input frequency changes, the output amplitude V i¾ of the low-pass filter 13 changes. Therefore, the effective power is calculated, and a voltage whose magnitude changes according to the change of the input frequency is output from the gate unit 15 (fourth step ).
[0045] 次いで、ステップ SP18において、 A F—V変換部 8の出力信号が、周波数変調部 5 の間引き間隔決定部 12に入力され、式(5)により、間引き間隔 d(i+l)が算出される。 間引き間隔 d(i+l)は、ステップ SP19 (第 6工程)に送られると共に、ステップ SP14 (第 5工程)に送られる。  [0045] Next, in step SP18, the output signal of the AF-V conversion unit 8 is input to the decimation interval determination unit 12 of the frequency modulation unit 5, and the decimation interval d (i + l) is calculated by equation (5). Is done. The thinning interval d (i + l) is sent to step SP19 (sixth process) and to step SP14 (fifth process).
一方、ステップ SP19において、間引き間隔決定部 12で算出された間引き間隔 d(i+ 1)から、式 (6)を用いて、エンジン回転数 R(i+1)を算出する(第 6工程)。  On the other hand, in step SP19, the engine speed R (i + 1) is calculated from the thinning interval d (i + 1) calculated by the thinning interval determination unit 12 using equation (6) (sixth step).
[0046] このように、サンプリング周波数を変化させることで、エンジン回転数に比例した一 次周波数成分を動的に追跡するバンドパスフィルタ 6を構築することが可能になる。 アイドリング状態のエンジン回転数は 500rpmから lOOOrpm以下であり、一次周波 数成分がその周波数範囲における一番大きな周波数成分であると仮定することは、 実用上問題はない。その時の周波数を基準としてエンジン回転数の変化に動的に追 従するので、従来技術のように単純に FFTの結果のピーク周波数をエンジン回転数 と見なす方法よりも精度が高い。また、ゼロクロス処理を行っているので、一次周波数 成分の振幅変動の影響を受けることがな 、。 Thus, by changing the sampling frequency, it is possible to construct the bandpass filter 6 that dynamically tracks the primary frequency component proportional to the engine speed. Assuming that the engine speed in the idling state is 500 rpm to lOOOOrpm and that the primary frequency component is the largest frequency component in that frequency range, there is no practical problem. Since it dynamically follows changes in the engine speed based on the frequency at that time, it is more accurate than a method that simply considers the peak frequency of the FFT result as the engine speed, as in the prior art. In addition, since zero cross processing is performed, it is not affected by the amplitude fluctuation of the primary frequency component.
産業上の利用可能性  Industrial applicability
[0047] 排気音に含まれる脈動音の一次周波数成分に比べて低次あるいは高次周波数成 分が大きい場合であっても、非接触且つボンネットを閉じた状態で、エンジンの回転 数を高精度で計測することができるので、適用範囲の拡大が図れる。 [0047] Compared to the primary frequency component of the pulsation sound included in the exhaust sound, the low-order or high-order frequency component Even if the minutes are large, the engine speed can be measured with high accuracy in a non-contact state and with the hood closed, so that the application range can be expanded.

Claims

請求の範囲 The scope of the claims
[1] エンジン排気音をデジタル信号に変換してエンジン回転数を計測する方法にぉ 、て 、アイドリング状態の周波数特性力 一次周波数を決定する第 1工程と、アイドリング 状態力も変化するエンジン排気音を前記一次周波数の変化に追従するバンドパスフ ィルタで処理する第 2工程と、この第 2工程から出力されるデータ力 振幅の変動を 取り除く第 3工程と、この第 3工程から出力されるデータの周波数に応じた値を出力 する第 4工程と、この第 4工程から出力される値に応じて前記第 2工程のバンドパスフ ィルタに入力するデータのサンプリング周波数を更新する第 5工程と、前記第 4工程 の出力値に応じてエンジン回転数を算出する第 6工程を備えたことを特徴とするェン ジン回転数計測方法。  [1] The method of measuring engine speed by converting engine exhaust sound into a digital signal, the first step of determining the frequency characteristic force primary frequency in the idling state, and the engine exhaust sound that also changes the idling state force The second step of processing by the band pass filter that follows the change of the primary frequency, the third step of removing the fluctuation of the data force amplitude output from the second step, and the frequency of the data output from the third step A fourth step of outputting a corresponding value, a fifth step of updating a sampling frequency of data input to the bandpass filter of the second step according to a value output from the fourth step, and a fourth step of An engine speed measurement method comprising a sixth step of calculating an engine speed according to an output value.
[2] エンジン排気音をデジタル信号に変換してエンジン回転数を計測する装置にぉ 、て 、アイドリング状態の周波数特性力 一次周波数を検出する周波数検出部と、前記 一次周波数の変化に追従してアイドリング状態力 変化するエンジン排気音を処理 するバンドパスフィルタと、このバンドパスフィルタから出力されるデータから振幅の変 動を取り除くゼロクロス処理部と、このゼロクロス処理部から出力されるデータの周波 数に応じた値を出力する A F—V変換部と、この A F—V変換部から出力される値に 応じて前記バンドパスフィルタに入力するデータのサンプリング周波数を更新する周 波数変調部と、この周波数変調部から出力される値に応じてエンジン回転数を算出 するエンジン回転数算出部を備えたことを特徴とするエンジン回転数計測装置。  [2] A device for measuring engine speed by converting engine exhaust sound into a digital signal, a frequency characteristic force in an idling state, and a frequency detector for detecting a primary frequency, and following the change in the primary frequency Idle state force A band-pass filter that processes engine exhaust sound that changes, a zero-cross processing unit that removes amplitude fluctuations from the data output from this band-pass filter, and the frequency of the data output from this zero-cross processing unit An AF-V converter that outputs a corresponding value, a frequency modulator that updates a sampling frequency of data input to the bandpass filter according to a value output from the AF-V converter, and the frequency modulation An engine speed characterized by comprising an engine speed calculation unit for calculating the engine speed according to a value output from the unit Number measuring device.
[3] 前記周波数変調部は、エンジン排気音のサンプリングデータの間引き間隔を決定す る間引き間隔決定部と、この間引き間隔決定部が決定した間引き間隔に応じて前記 サンプリングデータを間引く間引き器力もなり、前記 A F— V変換部は、周波数の変 化を振幅の変化として出力するローパスフィルタと、このローパスフィルタが出力する 実効値を周波数と等価な値に変換する実効パワー算出部力 なる請求項 2記載のェ ンジン回転数計測装置。  [3] The frequency modulation unit also serves as a decimation interval determination unit that determines the sampling interval of engine exhaust sound sampling data, and a decimation unit that decimates the sampling data according to the decimation interval determined by the decimation interval determination unit. 3. The AF-V conversion unit includes: a low-pass filter that outputs a change in frequency as an amplitude change; and an effective power calculation unit that converts an effective value output from the low-pass filter into a value equivalent to a frequency. The engine speed measuring device described.
PCT/JP2005/011553 2005-06-23 2005-06-23 Engine rpm measuring method and device thereof WO2006137142A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007522163A JP4651667B2 (en) 2005-06-23 2005-06-23 Engine speed measurement method and apparatus
PCT/JP2005/011553 WO2006137142A1 (en) 2005-06-23 2005-06-23 Engine rpm measuring method and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/011553 WO2006137142A1 (en) 2005-06-23 2005-06-23 Engine rpm measuring method and device thereof

Publications (1)

Publication Number Publication Date
WO2006137142A1 true WO2006137142A1 (en) 2006-12-28

Family

ID=37570195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011553 WO2006137142A1 (en) 2005-06-23 2005-06-23 Engine rpm measuring method and device thereof

Country Status (2)

Country Link
JP (1) JP4651667B2 (en)
WO (1) WO2006137142A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170352A (en) * 2008-01-18 2009-07-30 Jeol Ltd Oscillation canceller for electron beam apparatus
JP2011252715A (en) * 2010-05-31 2011-12-15 Rion Co Ltd Engine speed measuring method and device for the same
US9617931B2 (en) 2014-04-07 2017-04-11 MAGNETI MARELLI S.p.A. Method to control a supercharged internal combustion engine provided with a turbocharger by means of an estimation of the average power delivered by the turbine of the turbocharger
CN109752565A (en) * 2019-03-02 2019-05-14 吉林大学 A kind of tractor engine measurement of rotating speed meter
EP3737848A4 (en) * 2017-11-22 2022-03-09 Husqvarna AB A power tool communication system
US11410055B2 (en) 2018-12-06 2022-08-09 Fujitsu Limited Learning of a feature based on betti sequences obtained from time series data
US11640553B2 (en) 2018-11-21 2023-05-02 Fujitsu Limited Method for analyzing time-series data based on machine learning and information processing apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101963323B1 (en) * 2017-02-27 2019-07-31 대한민국 Vehicle speed estimation method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123381A (en) * 1974-03-14 1975-09-27
JPS58109854A (en) * 1981-12-24 1983-06-30 Komatsu Ltd Engine tachometer
JPS58131518A (en) * 1982-02-01 1983-08-05 Toyota Motor Corp Analysing method for tracking
JPH01265135A (en) * 1988-04-18 1989-10-23 Honda Motor Co Ltd Vehicle production control system
JPH0545565U (en) * 1991-11-18 1993-06-18 恒二 北村 Engine tachometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123381A (en) * 1974-03-14 1975-09-27
JPS58109854A (en) * 1981-12-24 1983-06-30 Komatsu Ltd Engine tachometer
JPS58131518A (en) * 1982-02-01 1983-08-05 Toyota Motor Corp Analysing method for tracking
JPH01265135A (en) * 1988-04-18 1989-10-23 Honda Motor Co Ltd Vehicle production control system
JPH0545565U (en) * 1991-11-18 1993-06-18 恒二 北村 Engine tachometer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170352A (en) * 2008-01-18 2009-07-30 Jeol Ltd Oscillation canceller for electron beam apparatus
JP2011252715A (en) * 2010-05-31 2011-12-15 Rion Co Ltd Engine speed measuring method and device for the same
US9617931B2 (en) 2014-04-07 2017-04-11 MAGNETI MARELLI S.p.A. Method to control a supercharged internal combustion engine provided with a turbocharger by means of an estimation of the average power delivered by the turbine of the turbocharger
EP3737848A4 (en) * 2017-11-22 2022-03-09 Husqvarna AB A power tool communication system
US11640553B2 (en) 2018-11-21 2023-05-02 Fujitsu Limited Method for analyzing time-series data based on machine learning and information processing apparatus
US11410055B2 (en) 2018-12-06 2022-08-09 Fujitsu Limited Learning of a feature based on betti sequences obtained from time series data
CN109752565A (en) * 2019-03-02 2019-05-14 吉林大学 A kind of tractor engine measurement of rotating speed meter

Also Published As

Publication number Publication date
JPWO2006137142A1 (en) 2009-01-08
JP4651667B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP4651667B2 (en) Engine speed measurement method and apparatus
JP5335803B2 (en) Knock signal detection in automotive systems
US11198338B2 (en) Device for determining a rotational speed and a vibration of a wheel end of a vehicle
US9453760B2 (en) Device and method for evaluation of vibrations
DK2085902T3 (en) Order tracking method and system
CN101201282A (en) Fundamental frequency identification method for detecting cord force of cable-stayed bridge
CN1725024A (en) Realtime power mask trigger
JP2013076610A (en) Acceleration sensor circuit
EP0671610B1 (en) Apparatus for diagnosing sound source and vibration source
KR101792177B1 (en) Method for estimating a torque generated by an internal combustion engine
JP3020349B2 (en) Error detection method and device
JP5456580B2 (en) Engine speed measurement method and apparatus
CN114354112B (en) Blade multi-order coupling vibration fatigue analysis method
JP2009211021A (en) Reverberation time estimating device and reverberation time estimating method
CN114184270A (en) Equipment vibration data processing method, device, equipment and storage medium
RU2728485C1 (en) Method for multifunctional diagnostics of bearing assemblies and device for its implementation in integral version
JP2932996B2 (en) Harmonic pitch detector
JP6964872B2 (en) Ship engine speed estimation device, ship engine speed estimation method and ship engine speed estimation program
JP5867209B2 (en) Sound removal apparatus, sound inspection apparatus, sound removal method, and sound removal program
JPH1194642A (en) Diagnostic device for contribution of source of sound or vibration
JP3664812B2 (en) Distortion rate measuring method and apparatus
JP4229231B2 (en) Analog-to-digital conversion method
JP4303072B2 (en) Engine evaluation device
Petry et al. The technique of dithering—a parameter study
CN117346882A (en) Vibration acceleration integration device based on multiple data screening and data screening method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007522163

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05752986

Country of ref document: EP

Kind code of ref document: A1