WO2006136577A1 - Stromsensor zur galvanisch getrennten strommessung - Google Patents

Stromsensor zur galvanisch getrennten strommessung Download PDF

Info

Publication number
WO2006136577A1
WO2006136577A1 PCT/EP2006/063392 EP2006063392W WO2006136577A1 WO 2006136577 A1 WO2006136577 A1 WO 2006136577A1 EP 2006063392 W EP2006063392 W EP 2006063392W WO 2006136577 A1 WO2006136577 A1 WO 2006136577A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
conductor
layer
detection
sensor elements
Prior art date
Application number
PCT/EP2006/063392
Other languages
English (en)
French (fr)
Inventor
Jens Hauch
Gotthard Rieger
Kai-Uwe Barholz
Marco Diegel
Roland Mattheis
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2006136577A1 publication Critical patent/WO2006136577A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R17/00Measuring arrangements involving comparison with a reference value, e.g. bridge

Definitions

  • the invention relates to a current sensor for galvanically isolated current measurement, in particular direct current measurement.
  • the galvanically isolated current detection is required in many devices for interference-free control and regulation or to monitor functional states.
  • the current range to be measured is in the range of a few mA to several 100 A for both DC and AC currents. Due to the lack of alternating fields, no inductive methods can be used to detect DC currents.
  • field sensors which have a bridge circuit of four magnetoresistive XMR sensor elements.
  • the bridge circuit via which a bridge current is lead, two parallel-connected bridge branches, each having two elements, the sensor has ⁇ . Between the sensor elements of each bridge branch is a common tap of the bridge circuit for a bridge signal.
  • the sensor elements each det as so-called spin valves keptbil ⁇ , wherein they have a hard reference layer magnetization and a magnetic field to be detected by the rotatable Detekti- onstikmagnetmaschine.
  • Reference layer magnetizations of all sensor elements point in the same direction, while the detection magnetizations of in one Brückenzweig horizontal sensor elements are each directed antiparallel.
  • Reference layer magnetization and detection layer magnetization of each sensor element enclose an angle of approximately 90 ° in the field-free case.
  • a bridge circuit of four magnetoresistive XMR sensor elements of the spin valve type for current measurement can be found in DE 101 13 131 A1.
  • the magnetizations of the reference layers of elements of each bridge branch are anti-parallel, aligned in the direction of the bridge current.
  • the generated magnetic field on current-carrying sorelementen each of two Sen ⁇ is detected, forming a half-bridge and work so as angle sensors. From a difference of the angle signals of the half-bridges, the current is then determined.
  • the invention is based on the problem to provide a current sensor for galvanically isolated current detection, which is simple in construction and allows the exact current detection with ge ⁇ demanded dynamics and linearity.
  • a current sensor of the aforementioned type comprising a U-shaped current conductor, above or below the one of the detection of the generated during current flow between the conductor legs, the current proportional magnetic gradient field de bridge circuit consisting of four XMR Sensor elements is arranged, of which two are assigned to a leg of the current conductor, wherein the bridge circuit over which a bridge current is to lead, two parallel ge ⁇ switched bridge branches, in which there are two, a common tap of the bridge circuit forming sensor elements , in which
  • the detection layer magnetizations are in the absence of current flow at an angle between 80 ° - 100 ° to the respective reference layer magnetization
  • the term "XMR” is generally used for the magnetoresistive effect of thin-layer sequences, which is markedly increased, in particular by at least one order of magnitude, compared with the "classical AMR effect” occurring in single-layer elements.
  • the main representatives are the so-called GMR (Giant Magneto Resistance) effect and the TMR (Tunneling Magneto Resistance) effect (see, for example, the publication “XMR Technologies” - Technology Analysis: Magnetism, Volume 2, of the VDI Technology Center). Physical Technologies ", Dusseldorf (DE), 1997, pages 11 to 46).
  • the current sensor according to the invention takes advantage of the intrinsic properties of a ⁇ XMR-sensor bridge in connection with crossed anisotropy between the reference layer magnetization and de tektions fürmagnetmaschine.
  • the galvanic isolation between the U-shaped conductor and the sensor bridge is given by the magnetic field measurement and the resulting possible electrical insulation layer between the conductor and bridge, said insulation layer is made possible in a preferred Si structure of the bridge circuit and the sensor by the oxide of the substrate ,
  • the one extending between the two preferably runs parallel to one another U-shaped conductor section forming current legs generated in-plane gradient magnetic field, which is detected from the two thigh ⁇ specific individual fields metrologically over the bridge determined.
  • This advantageously makes it possible external superimposed homogeneous magnetic fields at Integra ⁇ tion of the current sensor into an electrical device often gege ben ⁇ to suppress, so that the current detection therefore extremely resistant to interference is.
  • the configuration of the XMR sensor elements as spin valves he ⁇ enables highly accurate detection of the individual fields and here over the gradient field after the Detektions für- magnetization easily depending on the particular he ⁇ rotates witnessed magnetic field, and consequently as a result of thereof re- sulting change in resistance over the XMR-sensor element can be highly accurately each field and over the bridge scarf ⁇ then processing the gradient field recorded and reproduced in the form of the off ⁇ transition signal.
  • the interpretation ⁇ is supply and connection of the XMR-sensor bridge chosen so that the reference layer magnetization of all elements unidirektio- nal and at least approximately perpendicular to the two legs of the U-shaped current conductor (including deviations of + 10 ° from the exact perpendicularity lies, while the preferred direction of the detection layer at an angle between 80 ° - 100 °, preferably about 90 ° to
  • Reference layer magnetization is, that is substantially parallel to the conductor leg, wherein the detection layer magnetizations need not necessarily be unidirectional, they may also be uniaxial. In any case, the respective detection layer magnetization rotates very easily with the external field.
  • the output of the XMR sensor measuring bridge is the Feldstär ⁇ ke the uniaxial gradient field in direct proportion because the magnetoresistive signal from an XMR sensor element guide in the off ⁇ a spin valves so-called proportional layer over a range of 180 ° to the cosine of the angle between the reference ⁇ and detection layer magnetization.
  • the detection layer imprinted a preferred direction in the linear region of the cosine, ie preferably in the angular range between 80 ° - 100 °, in particular 90 ° to Referenz Anlagen ⁇ netization
  • the angle component of the rotating magnetization vector is proportional to the field strength of the applied uniaxial field.
  • the proportionality ratio can be adjusted by the strength of the anisotropies of the detection layer, which will be discussed later.
  • the current sensor of the invention allows the exact He constitutional ⁇ to a direct current.
  • it provides a linear output signal as led from ⁇
  • it is very simple in structure configured after only provide the four XMR sensor elements and ten as a measuring bridge to 29al- and are to be contacted accordingly.
  • the uniform orientation of the magnetization a simple conditioning of the reference layers, they can advertising aligned in a common manufacturing process to.
  • the detection layer magnetization which is preferably likewise unidirectional, and therefore can also be produced in a single common production step for all four XMR sensor elements. This also applies in the case of the formation of a uniaxial detection-layer magnetization, which sets as a result of reverse rotations after the imprinting of a preferred direction.
  • each reference layer is preferably exchange-coupled with an antiferromagnetic layer.
  • an antiferromagnetic layer For this, a na ⁇ t Anlagen antiferromagnet can be applied.
  • an exchange bias system is formed in which the reference ⁇ magnetization is pinned on the magnetization magnet Antiferromagneten.
  • the proportionality ratio of the output signal to the in-plane gradient magnetic field can be set.
  • each detection layer may have a coating-induced anisotropy lying in the direction of the detection layer magnetization, for which purpose as a rule the layer is deposited in an applied magnetic field which defines the preferred direction.
  • each XMR sensor element can be designed as a strip element for generating a shape anisotropy lying in the direction of the detection layer magnetization.
  • This for ⁇ manisotropy allows a reduction of the influence of the orange-peel coupling.
  • This orange-peel coupling produces a unidirectional anisotropy in pinning direction, ie, in Rich ⁇ processing of the exchange coupling of the reference layer with the anti-ferromagnet.
  • the orange-peel-coupling field is on Oberflä ⁇ chenuneben whatsoever in the transitions from the detection layer to the non-magnetic intermediate layer, and due to the reference layer.
  • a ferromagnetic coupling in the interface region sets in here, which although extremely local limited, nevertheless produces a coupling field and thus a unidirectional anisotropy perpendicular to the detection layer magnetization.
  • This may, inter alia, by the strip width Titange ⁇ be acting.
  • a shape anisotropy is produced with a shape anisotropy field strength over the strip width, which lies uniaxially in the strip longitudinal direction, that is to say perpendicular to the orange-peel coupling field, thereby reducing it.
  • the special design of the particular detection layer or the Anisotropie researcher can thus Sen ⁇ sorsignal be set so that hysteresis and non unambiguities the characteristic can be avoided.
  • the structure of the individual XMR sensors thus makes it possible to realize the application-relevant sensor properties, namely the linearity, the hysteresis freedom and the adaptability of the sensor.
  • FIG. 1 is a schematic diagram of a current sensor according to the invention in the de-energized state with sensor elements arranged according to the invention
  • FIG. 2 is a schematic diagram of the current sensor of FIG. 1 with the sensor elements in the usual representation of a bridge arrangement
  • FIG. 4 shows a schematic representation of a layer structure of a GMR sensor element of a current sensor as shown in FIGS. 1 and 2, FIG. 4 shows the current sensor from FIG.
  • FIG. 5 is a schematic representation of the individual layer magnetizations or light axes
  • FIG. 6 is a schematic diagram of the position of the anisotropies within the layer stack.
  • 1 shows a current sensor 1 according to the invention comprising a U-shaped current conductor 2 with two substantially parallel conductor legs 3, 4, via which current conductor 2 the direct current to be measured flows, which flows at one side of the current conductor 3 and flows away again at the other conductor branch ,
  • the current sensor 1 can be embodied as a discrete chip or as a discrete component, with the corresponding ⁇ maschinetechniksan somebodyn the current line for the integration of the current sensor into corresponding board modules (z. B. PCB or PCB DCB) to enable.
  • a bridge circuit 5 which is constructed with four XMR sensor elements.
  • GMR Giant Magneto Re ⁇ sistance
  • TMR Tunneling Magneto Resistance
  • Each GMR sensor element is constructed in a known manner as a layer stack of different individual layers, which will be discussed below.
  • each GMR sensor element 6 - 9 has a reference layer with a reference layer magnetization R, wherein all reference layer magnetizations R are unidirectionally aligned and perpendicular to the respective adjacent conductor leg 3 or 4. This unidirectional alignment makes it possible to condition all reference layers in a single step in a common magnetic field.
  • each of the GMR sensor element 6 - 9 a Detek- tion layer having a upon application of an external magnetic ⁇ field rotatable detecting layer magnetization D, which if so, no current flows in the non-energized state, on the conductor 2, as shown in Fig's 1,. is substantially perpendicular to the reference layer magnetization R and preferably also unidirectionally aligned, so that the detection layer magnetizations of all sensor elements can be formed in a common manufacturing step in the magnetic field from ⁇ .
  • the GMR sensor elements 6-9 are connected to a bridge and make it possible to detect the current flowing between the two current conductor legs 3, 4 gradient field over the current conductor 2.
  • the measurement signal which is proportional to the in-plane gradient field at current flow, is detected at the taps or outputs S1 / S2, at which therefore the output signal of the bridge circuit 5 is tapped.
  • the magnetizations R and D Due to the embodiment of the GMR sensor elements 6-9 as spin valves in conjunction with the crossed anisotropy or the crossed magnetizations R and D, a proportionality of the magnetoresistive signal of a GMR sensor element to the angle results, the magnetizations R and D to each other assume, in a range of 180 °, that is, the angular component of the rotating magnetization vector of the detection magnetization D is proportional to the field strength of the applied uniaxial field at the respective current conductor 3 or 4, from which, measured after the in-plane gradient field is, also a proportional, linearönsig ⁇ nal over the entire bridge circuit 5 results.
  • the orientations of the reference layer magnetizations R of the individual sensor elements are aligned antiparallel within each branch, the orientation of these magnetizations being different from the diagonally opposite ones.
  • ordered sensor elements 6, 8 and 7, 9 are rectified from different bridge branches respectively. He is also ⁇ clear that the conductor limbs 3 and 4 respectively dia gonal ⁇ sensor elements 6, 8 and 7, respectively assigned different from ckenzweigen-nesting,. 9
  • the arrangement of the individual sensor elements shown in the figure is modified such that the current conductor legs 3 and 4 form a U-shaped current conductor and thereby point the reference layer magnetizations R of all sensor elements in the same direction (ie unidirectionally).
  • the current flow is supplied via the left in the figure left current conductor leg 3 (Im) and on the right current conductor leg 4 dissipated (I ou t) • Form due to the current flow in current flow for the current sensor of FIG Thigh-specific magnetic fields that rotate the detection layer magnetization D of the respective adjacent GMR sensor elements 6-9, that is, the respective detection layer magnetization D follows the applied field.
  • the detection layer magnetizations of the GMR sensor elements 6 and 8 are parallel to the reference layer magnetization R, while the detection layer magnetization D of the sensor elements 7, 9 are rotated in the opposite, antiparallel direction.
  • FIG. 4 shows, in the form of a schematic diagram, the basic structure of a GMR sensor element, here exemplarily the sensor element 6.
  • An upper termination or seed layer 10 is followed by a layer 11 of an antiferromagnet, preferably a natural antiferromagnet, which is exchange-coupled with the adjoining reference layer 12 is.
  • This reference layer 12 may be, for example, an artificial antiferromagnet.
  • Separated by a non-magnetic decoupling layer 13 is the detection layer 14, which in turn pinned via a subsequent layer 15 of an antiferromagnetic material as well as the reference layer 12, that is exchange-coupled. From the ⁇ circuit also forms a termination or seed layer 16th
  • a typical layer stack can be represented as follows:
  • Terminal or seed layer 10 Ta5 / NiFe2
  • Natural antiferromagnetic layer 11 IrMnIO reference layer 12 (artificial antiferromagnet): CoFe4, 5 / RuO, 8 / CoFe4
  • Decoupling layer 13 Cu3 detection layer 14: CoFeO, 8 / NiFe20 Natural antiferromagnet layer 15: IrMnIO termination or seed layer 16: Ta5 / CuO, 8.
  • FIG. 5 shows a vertically oriented pinning direction defined by the natural antiferromagnet layer 11, which is exchange-coupled to the reference layer 12, followed by the easy axis of the reference layer, which is necessarily parallel thereto.
  • the easy axis of the detection layer 14 is orthogonal thereto, that is, shown horizontally in FIG. 5, corresponding to the pinning direction via the natural antiferromagnet layer 15.
  • FIG. 6 shows a schematic representation of the position of the individual anisotropies.
  • H e b represents the anisotropy resulting from the exchange bias field strength of the natural antiferromagnetic layer 11. It is a unidirectional pinning direction that, as stated, pegs the unidirectional reference layer magnetizations.
  • Perpendicular to the exchange-bias field strength is the featured with H ind ge ⁇ coating induced anisotropy field of the detecting layer 14, which is uniaxial.
  • FIG. 6 also shows the second exchange bias field strength H e b2, which is induced via the natural antiferromagnetic layer 15 pinned by the detection layer and which likewise lies in the strip longitudinal direction.
  • the coating-induced anisotropic field strength H ind the shape anisotropy field strength H sh and the (optionally optional) exchange bias field strength H e b2 are responsible for the strength of the detection layer anisotropy.
  • the sum of the orange-peel coupling field strength H acts counter to this detection layer anisotropy Fer ro and H fer ro oppositely oriented stray field coupling strength H SF •
  • H SF anisotropy Fer ro and H fer ro oppositely oriented stray field coupling strength
  • the sensor signal which can be picked off via the bridge circuit 5 can advantageously be adjusted so that hystereses and non-individualities of the characteristic can be largely avoided.
  • an additional intrinsic uniaxial anisotropy is given if appropriate materials such as, for. B. permalloy can be used, this uniaxial Ani ⁇ sotropie additionally acts to increase the anisotropic starch.
  • the DC current sensor according to the invention offers the possibility of being able to measure galvanically isolated direct currents. Due to the intrinsic shielding of the bridge circuit 5 and the magnetic field gradient measurement are superimposed homogeneous external magnetic fields, not from the current supply of the associated current conductor, suppressed to a certain extent, so do not affect the output signal. The evaluation of the in-plane magnetization vector of the XMR spin valve elements with crossed anisotropy enables this extraneous field suppression.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

Stromsensor zur galvanisch getrennten Strommessung, insbesondere Gleichstrommessung, umfassend einen U-förmig verlaufenden Stromleiter (2), ober- oder unterhalb dem eine der Erfassung des bei Stromfluss zwischen den Leiterschenkeln (3, 4) erzeugten, dem Strom proportionalen magnetischen Gradientenfelds dienende Brückenschaltung (5) bestehend aus vier XMR-Sensorelementen (6, 7, 8, 9) insbesondere vom GMR- oder TMR- Typ, von denen je zwei einem Schenkel (3, 4) des Stromleiters (2) zugeordnet sind, angeordnet ist, wobei die XMR-Sensorelemente (6, 7, 8, 9) als Spin Valves mit einer harten Referenz-Schichtmagnetisierung (R) und einer über das bei Stromfluss im zugeordneten Stromleiterschenkel (3, 4) erzeugte Magnetfeld drehbaren Detektionsschichtmagnetisierung (D) ausgeführt sind, wobei die Referenzschichtmagnetisierungen (R) aller XMR-Sensorelemente (6, 7, 8, 9) unidirektional und senkrecht zum jeweils zugeordneten Stromleitungsschenkel (3, 4) liegen und die Detektionsschichtmagnetisierungen (D) unter einem Winkel zwischen 80° - 100° zur jeweiligen Referenzschichtmagnetisierung (R) stehen.

Description

Beschreibung
Stromsensor zur galvanisch getrennten Strommessung
Die Erfindung betrifft einen Stromsensor zur galvanisch getrennten Strommessung, insbesondere Gleichstrommessung.
Die galvanisch getrennte Stromerfassung ist in vielen Geräten zur störsicheren Steuerung und Regelung oder aber zur Überwa- chung von Funktionszuständen erforderlich. Der zu messende Strombereich liegt für viele Anwendungen sowohl bei Gleich- als auch bei Wechselströmen im Bereich einiger mA bis mehrere 100 A. Aufgrund fehlender Wechselfelder können bei der Erfassung von Gleichströmen keine Induktivmethoden zum Einsatz kommen. Um dennoch eine Stromerfassung zu ermöglichen und die geforderte Linearität des Ausgangssignals zu gewährleisten, werden z. B. Hall-Sensoren im Luftspalt einer Spule betrieben, oder es muss durch ein Regelungssystem (Kompensationsprinzip) die Linearität der Sensoren gewährleistet werden. Bei allen diesen Ausführungsformen sind aufwändige hybride
Sensorlösungen für eingeschränkte Strombereiche mit kostenin¬ tensiver Aufbautechnik erforderlich.
Auf dem Gebiet der Magnetfeldsensorik sind Feldsensoren be- kannt, die eine Brückenschaltung aus vier magnetoresistiven XMR-Sensorelementen aufweisen. Dabei besitzt die Brückenschaltung, über die ein Brückenstrom zu führen ist, zwei parallel geschaltete Brückenzweige mit jeweils zwei der Sensor¬ elemente. Zwischen den Sensorelementen jedes Brückenzweigs liegt dabei ein gemeinsamer Abgriff der Brückenschaltung für ein Brückensignal. Bei einer entsprechenden, aus der EP 0 710 850 Bl zu entnehmenden Brückenschaltung sind die Sensorelemente jeweils als so genannte Spin Valves ausgebil¬ det, wobei sie eine harte Referenzschichtmagnetisierung und eine von dem zu detektierenden Magnetfeld drehbare Detekti- onsschichtmagnetisierung besitzen. Die Referenzschichtmagnetisierungen aller Sensorelemente weisen dabei in dieselbe Richtung, während die Detektionsmagnetisierungen von in einem Brückenzweig liegenden Sensorelementen jeweils antiparallel gerichtet sind. Referenzschichtmagnetisierung und Detekti- onsschichtmagnetisierung jedes Sensorelementes schließen dabei einen Winkel von etwa 90° im feldfreien Fall ein.
Eine Brückenschaltung von vier magnetoresistiven XMR- Sensorelementen vom Spin valve-Typ zur Strommessung ist der DE 101 13 131 Al zu entnehmen. Hier sind die Magnetisierungen der Referenzschichten von Elementen jedes Brückenzweigs anti- parallel, in Richtung des Brückenstroms ausgerichtet. Über die Brücke ist ein U-förmiger Stromleiter zu legen, dessen bei Stromführung erzeugtes Magnetfeld jeweils von zwei Sen¬ sorelementen erfasst wird, die eine Halbbrücke bilden und so als Winkelsensoren arbeiten. Aus einer Differenzbildung der Winkelsignale der Halbbrücken wird dann der Strom bestimmt.
Einzelheiten der hierfür zu wählenden Magnetisierungsrichtungen der Schichten der einzelnen Sensorelemente sind nicht offenbart .
Der Erfindung liegt das Problem zugrunde, einen Stromsensor zur galvanisch getrennten Stromerfassung anzugeben, der einfach aufgebaut ist und die exakte Stromerfassung mit der ge¬ forderten Dynamik und Linearität ermöglicht.
Zur Lösung dieses Problems ist ein Stromsensor der eingangs genannten Art vorgesehen, umfassend einen U-förmig verlaufenden Stromleiter, ober- oder unterhalb dem eine der Erfassung des bei Stromfluss zwischen den Leiterschenkeln erzeugten, dem Strom proportionalen magnetischen Gradientenfelds dienen- de Brückenschaltung bestehend aus vier XMR-Sensorelementen angeordnet ist, von denen jeweils zwei einem Schenkel des Stromleiters zugeordnet sind, wobei die Brückenschaltung, über welche ein Brückenstrom zu führen ist, zwei parallel ge¬ schaltete Brückenzweige aufweist, in denen sich jeweils zwei, einen gemeinsamen Abgriff der Brückenschaltung bildende Sensorelemente befinden, wobei
• die XMR-Sensorelemente jeweils als Spin Valves mit einer harten Referenzschichtmagnetisierung und einer über das bei Stromfluss im zugeordneten Stromleiterschenkel er¬ zeugte Magnetfeld drehbaren Detektionsschichtmagnetisie- rung ausgeführt sind,
• die Detektionsschichtmagnetisierungen bei fehlendem Stromfluss jeweils unter einem Winkel zwischen 80° - 100° zur jeweiligen Referenzschichtmagnetisierung stehen, und
• die Sensorelemente innerhalb der Brückenschaltung so an¬ geordnet und ausgerichtet sind, dass die zu einem Brü- ckenzweig gehörenden Sensorelemente jeweils verschiedenen Stromleiterschenkeln zugeordnet sind und die Referenzschichtmagnetisierungen aller XMR-Sensorelemente unidi- rektional und zumindest annähernd senkrecht zum jeweils zugeordneten Stromleiterschenkel liegen.
Dabei sei die Bezeichnung „XMR" allgemein für den magnetore- sistiven Effekt von Dünnschichtenfolgen verwendet, der gegenüber den bei einschichtigen Elementen auftretenden „klassischen AMR-Effekt" deutlich, insbesondere um mindestens eine Größenordnung, erhöht ist. Hauptvertreter sind der so genannte GMR(Giant Magneto Resistance) -Effekt und der TMR (Tunneling Magneto Resistance) -Effekt (vgl. z.B. die Veröffentlichung „XMR-Technologien" - Technologieanalyse: Magnetismus; Bd.2, des VDI-Technologie-Zentrums „Physikalische Technologien", Düsseldorf (DE), 1997, Seiten 11 bis 46).
Der erfindungsgemäße Stromsensor nutzt vorteilhaft die Eigen¬ schaften einer XMR-Sensorbrücke in Verbindung mit gekreuzten Anisotropien zwischen Referenzschichtmagnetisierung und De- tektionsschichtmagnetisierung . Die galvanische Isolation zwischen dem U-förmigen Stromleiter und der Sensorbrücke ist durch die Magnetfeldmessung und die dadurch mögliche elektrische Isolationsschicht zwischen Leiter und Brücke gegeben, wobei diese Isolationsschicht in einem bevorzugten Si-Aufbau der Brückenschaltung bzw. des Sensors durch das Oxid des Substrats ermöglicht wird. Infolge der besonderen Verschaltung der XMR-Sensorelemente als Brücke wird das sich zwischen den beiden bevorzugt parallel zueinander verlaufenden, einen U-förmigen Leiterabschnitt bildenden Stromschenkeln erzeugte in-plane-Gradientenmagnetfeld, das aus den beiden schenkel¬ spezifischen Einzelfeldern messtechnisch über die Brücke er- fasst wird, bestimmt. Hierdurch ist es vorteilhaft möglich, externe überlagerte homogene Magnetfelder, die bei Integra¬ tion des Stromsensors in ein elektrisches Gerät häufig gege¬ ben sind, zu unterdrücken, so dass die Stromerfassung mithin äußerst störsicher ist.
Die Ausgestaltung der XMR-Sensorelemente als Spin Valves er¬ möglicht eine äußerst exakte Erfassung der Einzelfelder und hierüber des Gradientenfelds, nachdem die Detektionsschicht- magnetisierung sehr leicht in Abhängigkeit des jeweils er¬ zeugten Magnetfelds dreht und mithin infolge der hieraus re- sultierenden Widerstandsänderung über das XMR-Sensorelement äußerst exakt das jeweilige Feld und über die Brückenschal¬ tung dann das Gradientenfeld erfasst und in Form des Aus¬ gangssignals wiedergegeben werden kann. Dabei ist die Ausle¬ gung und Verschaltung der XMR-Sensorbrücke so gewählt, dass die Referenzschichtmagnetisierung aller Elemente unidirektio- nal und zumindest annähernd senkrecht zu den beiden Schenkeln des U-förmigen Stromleiters (unter Einschluss von Abweichungen um +10° gegenüber der exakt senkrechten Ausrichtung liegt, während die Vorzugsrichtung der Detektionsschicht un- ter einem Winkel zwischen 80° - 100°, bevorzugt ca. 90° zur
Referenzschichtmagnetisierung steht, also im Wesentlichen parallel zum Stromleiterschenkel, wobei die Detektionsschicht- magnetisierungen nicht zwingend unidirektional sein müssen, sie können auch uniaxial sein. In jedem Fall dreht die jewei- lige Detektionsschichtmagnetisierung sehr leicht mit dem externen Feld.
Das Ausgangssignal der XMR-Sensormessbrücke ist der Feldstär¬ ke des uniaxialen Gradientenfelds direkt proportional, da das magnetoresistive Signal eines XMR-Sensorelements in der Aus¬ führung eines so genannten Spin Valves über einen Bereich von 180° proportional zum Cosinus des Winkels zwischen Referenz¬ schicht- und Detektionsschichtmagnetisierung ist. Wird nun der Detektionsschicht eine Vorzugsrichtung im linearen Bereich des Cosinus aufgeprägt, also bevorzugt im Winkelbereich zwischen 80° - 100°, insbesondere 90° zur Referenzschichtmag¬ netisierung, so ist die Winkelkomponente des drehenden Magne- tisierungsvektors proportional zur Feldstärke des angelegten uniaxialen Feldes. Das Proportionalitätsverhältnis kann durch die Stärke der Anisotropien der Detektionsschicht eingestellt werden, worauf Nachfolgend noch eingegangen wird.
Damit lässt der erfindungsgemäße Stromsensor die exakte Er¬ fassung eines Gleichstroms zu. Einerseits liefert er wie aus¬ geführt ein lineares Ausgangssignal, zum anderen ist er im Aufbau sehr einfach konfiguriert, nachdem lediglich die vier XMR-Sensorelemente vorzusehen und als Messbrücke zu verschal- ten und entsprechend zu kontaktieren sind. Dabei lässt die unidirektionale Ausrichtung der Referenzschichtmagnetisie¬ rung, also die einheitliche Ausrichtung der Magnetisierung, eine einfache Konditionierung der Referenzschichten zu, sie können in einem gemeinsamen Herstellprozess ausgerichtet wer- den. Entsprechendes gilt für die Detektionsschichtmagnetisie- rung, die bevorzugt ebenfalls unidirektional ist, mithin also auch in einem einzigen gemeinsamen Herstellungsschritt für alle vier XMR-Sensorelemente erzeugt werden kann. Dies gilt auch im Falle der Ausbildung einer uniaxialen Detektions- Schichtmagnetisierung, die sich infolge von Rückdrehungen nach dem Aufprägen einer Vorzugsrichtung einstellt.
Um die Referenzschichtmagnetisierung möglichst hart auszuführen, ist jede Referenzschicht bevorzugt mit einer antiferro- magnetischen Schicht austauschgekoppelt. Hierzu kann ein na¬ türlicher Antiferromagnet aufgebracht werden. Hierdurch wird ein exchange bias System ausgebildet, bei dem die Referenz¬ schichtmagnetisierung über den Antiferromagneten gepinnt ist.
Zur Ausbildung der Detektionsschichtanisotropie sind mehrere Möglichkeiten denkbar, die bevorzugt kumulativ angewendet werden sollten, nachdem sich über die Stärke der Anisotropie bzw. der kumulativ wirkenden Anisotropien der Detektions- schicht das Proportionalitätsverhältnis des Ausgangssignals zum in-plane Gradientenmagnetfelds einstellen lässt.
Zum einen kann jede Detektionsschicht eine in Richtung der Detektionsschichtmagnetisierung liegende beschichtungsindu- zierte Anisotropie aufweisen, wozu in der Regel die Schicht in einem anliegenden Magnetfeld, das die Vorzugsrichtung definiert, abgeschieden wird.
Zusätzlich kann jedes XMR-Sensorelement als Streifenelement zur Erzeugung einer in Richtung der Detektionsschichtmagneti- sierung liegenden Formanisotropie ausgeführt sein. Diese For¬ manisotropie ermöglicht eine Reduzierung des Einflusses der orange-peel-Kopplung . Diese orange-peel-Kopplung erzeugt eine unidirektionale Anisotropie in Pinningrichtung, also in Rich¬ tung der Austauschkopplung der Referenzschicht mit dem Anti- ferromagneten . Das orange-peel-Kopplungsfeld ist auf Oberflä¬ chenunebenheiten in den Übergängen von der Detektionsschicht zur unmagnetischen Zwischenschicht und zur Referenzschicht zurückzuführen. Hier stellt sich aufgrund dieser Unebenheiten eine ferromagnetische Kopplung im Grenzflächenbereich ein, die wenngleich lokal extrem begrenzt, gleichwohl ein Kopplungsfeld und damit eine unidirektionale, senkrecht zur De- tektionsschichtmagnetisierung liegende Anisotropie erzeugt. Dieser kann nun u. a. durch die Streifenbreite entgegenge¬ wirkt werden. Es wird also eine Formanisotropie mit einer Formanisotropiefeldstärke über die Streifenbreite erzeugt, die uniaxial in Streifenlängsrichtung liegt, mithin also senkrecht zum orange-peel-Kopplungsfeld, dieses dabei redu- zierend.
Dem trägt weiterhin eine bevorzugt vorgesehene materialspezi¬ fische, intrinsische und in Richtung der Detektionsschicht- magnetisierung liegende Anisotropie bei, die aus der Wahl des entsprechenden Schichtmaterials, z. B. Permalloy resultiert.
Für die Kompensation der orange-peel-Kopplung vorteilhaft ist ferner noch eine aus einem Streufeld der Referenzmagnetisie- rung resultierende Anisotropiefeldstärke, die unidirektional entgegen der Pinningrichtung, also dem orange-peel-Kopp- lungsfeld entgegengesetzt gerichtet liegt.
Hierüber besteht die Möglichkeit, die aus der orange-peel- Kopplung resultierende Nullpunktsverschiebung der Kennlinie zu kompensieren und diese wieder nahe oder in den Nullpunkt zurückzuschieben .
Durch den speziellen Aufbau insbesondere der Detektions- schicht bzw. der Anisotropieverhältnisse kann somit das Sen¬ sorsignal so eingestellt werden, dass Hysteresen und Nicht- eindeutigkeiten der Kennlinie vermieden werden. Der Aufbau der einzelnen XMR-Sensoren ermöglicht also die Realisierung der anwendungsrelevanten Sensoreigenschaften, nämlich der Li- nearität, der Hysteresefreiheit und der Adaptionsfähigkeit des Sensors.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung er- geben sich aus dem im Folgenden beschriebenen Ausführungsbeispiel sowie anhand der Zeichnungen. Dabei zeigen:
Fig. 1 eine Prinzipdarstellung eines erfindungsgemäßen Stromsensors im unbestromten Zustand mit erfin- dungsgemäß angeordneten Sensorelementen,
Fig. 2 eine Prinzipdarstellung des Stromsensors nach Fig. 1 mit den Sensorelementen in üblicher Darstellung einer Brückenanordnung,
Fig. 3 den Stromsensor aus Fig. 1 bei Stromfluss, Fig. 4 eine Prinzipdarstellung eines Schichtaufbaus eines GMR-Sensorelements eines Stromsensors wie in Fig. 1 und 2 gezeigt,
Fig. 5 eine Prinzipdarstellung der einzelnen Schichtmagnetisierungen bzw. leichten Achsen, und Fig. 6 eine Prinzipdarstellung zur Lage der Anisotropien innerhalb des Schichtstapels. Fig. 1 zeigt einen erfindungsgemäßen Stromsensor 1, umfassend einen U-förmigen Stromleiter 2 mit zwei im Wesentlichen parallelen Stromleiterschenkeln 3, 4, über welchen Stromleiter 2 der zu messende Gleichstrom fließt, der am einen Stromlei- terschenkel 3 zufließt und am anderen Stromleiterschenkel wieder abfließt. Der Stromsensor 1 kann als diskreter Chip oder als diskretes Bauteil ausgeführt sein, mit entsprechen¬ den Kontaktierungsanschlüssen der Stromleiterbahn zur Integration des Stromsensors in entsprechende Leiterplattenmodule (z. B. PCB- oder DCB-Leiterplatten) zu ermöglichen.
Über- oder unterhalb des Stromleiters 2 und elektrisch iso¬ liert dazu befindet sich eine Brückenschaltung 5, die mit vier XMR-Sensorelementen aufgebaut ist. Für das Ausführungs- beispiel seien nachfolgend als die XMR-Sensorelemente vier Sensorelemente 6, 7, 8, 9 vom GMR(GMR = Giant Magneto Re¬ sistance) -Typ gewählt, obwohl ebenso gut dafür auch Elemente vom TMR(TMR = Tunneling Magneto Resistance) -Typ vorgesehen werden können. Jedes GMR-Sensorelement ist in bekannter Weise als Schichtstapel aus verschiedenen Einzelschichten aufgebaut, worauf nachfolgend noch eingegangen wird. In jedem Fall weist jedes GMR-Sensorelement 6 - 9 eine Referenzschicht mit einer Referenzschichtmagnetisierung R auf, wobei alle Referenzschichtmagnetisierungen R unidirektional ausgerichtet und senkrecht zum jeweils benachbarten Stromleiterschenkel 3 bzw. 4 liegen. Diese unidirektionale Ausrichtung ermöglicht es, alle Referenzschichten in einem Herstellungsschritt in einem gemeinsamen Magnetfeld zu konditionieren .
Weiterhin weist jedes GMR-Sensorelement 6 - 9 eine Detek- tionsschicht mit einer bei Anliegen eines externen Magnet¬ felds drehbare Detektionsschichtmagnetisierung D auf, die im unbestromten Zustand, wenn also kein Strom über den Stromleiter 2 fließt, wie in Fig. 1 gezeigt ist, im Wesentlichen senkrecht zur Referenzschichtmagnetisierung R steht und bevorzugt ebenfalls unidirektional ausgerichtet ist, so dass auch die Detektionsschichtmagnetisierungen aller Sensorele- mente in einem gemeinsamen Herstellschritt im Magnetfeld aus¬ gebildet werden können.
Die GMR-Sensorelemente 6 - 9 sind zu einer Brücke geschaltet und ermöglichen es, bei Stromfluss über den Stromleiter 2 das sich zwischen den beiden Stromleiterschenkel 3, 4 ergebende Gradientenfeld zu erfassen. Das Messsignal, das proportional zum in-plane-Gradientenfeld bei Stromfluss ist, wird an den Abgriffen bzw. Ausgängen S1/S2, an denen also das Ausgangs- signal der Brückenschaltung 5 abgegriffen wird, erfasst. Aufgrund der Ausführung der GMR-Sensorelemente 6 - 9 als Spin Valves in Verbindung mit der gekreuzten Anisotropie bzw. den gekreuzten Magnetisierungen R und D ergibt sich eine Proportionalität des magnetoresistiven Signals eines GMR-Sensor- elements zum Winkel, den die Magnetisierungen R und D zueinander einnehmen, in einem Bereich von 180°, das heißt, die Winkelkomponente des drehenden Magnetisierungsvektors der De- tektionsschichtmagnetisierung D ist proportional zur Feldstärke des angelegten uniaxialen Felds am jeweiligen Strom- leiter 3 bzw. 4, woraus, nachdem das in-plane-Gradientenfeld gemessen wird, auch ein proportionales, lineares Ausgangssig¬ nal über die gesamte Brückenschaltung 5 resultiert.
Für die in Figur 1 gezeigte Brückenschaltung 5 mit der erfin- dungsgemäßen Ausrichtung der einzelnen Magnetisierungen wurde in Fig. 2 die übliche Darstellung einer Brückenschaltung gewählt. Dabei ist verdeutlicht, dass die Brückenschaltung 5, über die ein Brückenstrom iB zu führen ist, zwei parallelge¬ schaltete Brückenzweige Zl und Z2 aufweist. In jedem dieser Brückenzweige befinden sich dabei zwei hintereinander ge¬ schaltete Sensorelemente, und zwar in dem Brückenzweig Zl die Sensorelemente 6 und 7 sowie in dem Brückenzweig Z2 die hin¬ tereinander geschalteten Sensorelemente 9 und 8 (jeweils in Führungsrichtung des Brückenstroms iB gesehen) . Wie aus der Figur deutlich hervorgeht, sind die Ausrichtungen der Referenzschichtmagnetisierungen R der einzelnen Sensorelemente innerhalb eines jeden Zweigs antiparallel ausgerichtet, wobei die Ausrichtung dieser Magnetisierungen von den diagonal zu- geordneten Sensorelementen 6, 8 bzw. 7, 9 aus verschiedenen Brückenzweige jeweils gleichgerichtet sind. Außerdem ist er¬ sichtlich, dass die Stromleiterschenkel 3 und 4 jeweils dia¬ gonalen Sensorelementen 6, 8 bzw. 7, 9 aus verschiedenen Brü- ckenzweigen zugeordnet sind. Erfindungsgemäß wird die in der Figur dargestellte Anordnung der einzelnen Sensorelemente so abgeändert, dass die Stromleiterschenkel 3 und 4 einen U-för- mig verlaufenden Stromleiter bilden und dabei die Referenzschichtmagnetisierungen R aller Sensorelemente in dieselbe Richtung (d.h. unidirektional) weisen.
Die Verhältnisse bei Stromfluss für den Stromsensor nach Fig. 1 zeigt in entsprechender Darstellung Fig. 3. Der Strom wird über den in der Figur linken Stromleiterschenkel 3 zugeführt (Im) und am rechten Stromleiterschenkel 4 abgeführt (Iout) • Aufgrund des Stromflusses bilden sich schenkelspezifische Magnetfelder aus, die die Detektionsschichtmagnetisierung D der jeweiligen benachbarten GMR-Sensorelemente 6 - 9 drehen, das heißt, die jeweilige Detektionsschichtmagnetisierung D folgt dem anliegenden Feld. Im gezeigten Beispiel stellen sich die Detektionsschichtmagnetisierungen der GMR-Sensorelemente 6 und 8 parallel zur Referenzschichtmagnetisierung R, während die Detektionsschichtmagnetisierung D der Sensorelemente 7, 9 in die entgegengesetzte, antiparallele Richtung gedreht werden. An den beiden Ausgängen Sl und S2 kann nun das sich aus der dargestellten Brückenschaltung ergebende Ausgangssignal, das proportional zu der gegebenen Gradienten¬ feldstärke ist, abgegriffen werden. Dabei ist darauf hinzu¬ weisen, dass Fig. 3 den Fall zeigt, dass die jeweiligen schenkelspezifischen Felder die Detektionsschichtmagnetisie- rungen D jeweils vollständig auslenken. Bei geringeren Feldern werden die Detektionsschichtmagnetisierungen ausgehend von der „Ruhestellung" gemäß Fig. 1 um einen Winkel <±90° ausgelenkt, das resultierende abgegriffene Brückensignal der unter einer Messspannung von im gezeigten Beispiel 5 Volt stehenden Messbrücke, das abhängig vom Winkel, den die Detek- tionsschichtmagnetisierungen D zur Referenzschichtmagnetisierung R einnehmen, ist folglich ein anderes, jedoch in einem proportionalen Zusammenhang zur Feldstärke des Gradientenfelds stehendes Signal. Je nach Stärke der Anisotropie der Detektionsschichtmagnetisierung kann folglich die Sensoreigenschaft anwendungsrelevant eingestellt werden.
Fig. 4 zeigt in Form einer Prinzipdarstellung den prinzipiellen Aufbau eines GMR-Sensorelements, hier exemplarisch des Sensorelements 6. Einer oberen Abschluss- oder Keimschicht 10 folgt eine Schicht 11 aus einem Antiferromagneten, bevorzugt einem natürlichen Antiferromagneten, die austauschgekoppelt mit der daran anschließenden Referenzschicht 12 ist. Bei die¬ ser Referenzschicht 12 kann es sich beispielsweise um einen künstlichen Antiferromagneten handeln. Über eine unmagnetische Entkopplungsschicht 13 getrennt ist die Detektions- schicht 14, die über eine nachfolgende Schicht 15 wiederum aus einem antiferromagnetischen Material wie auch die Referenzschicht 12 gepinnt, also austauschgekoppelt ist. Den Ab¬ schluss bildet auch hier eine Abschluss- oder Keimschicht 16.
Ein typischer Schichtstapel kann sich wie folgt darstellen:
Abschluss- oder Keimschicht 10: Ta5/NiFe2 Natürliche Antiferromagnetschicht 11: IrMnIO Referenzschicht 12 (künstlicher Antiferromagnet) : CoFe4, 5/RuO, 8/CoFe4
Entkopplungsschicht 13: Cu3 Detektionsschicht 14: CoFeO, 8/NiFe20 Natürliche Antiferromagnetschicht 15: IrMnIO Abschluss- oder Keimschicht 16: Ta5/CuO,8.
Insgesamt ist hier also ein so genanntes exchange bias Sys¬ tem, bei dem sowohl die Referenzschicht 12 als auch die De¬ tektionsschicht 14 jeweils über eine natürliche Antiferro- magnetschicht austauschgekoppelt und gepinnt ist, mit ge- kreuzten Anisotropien vorgesehen.
Die gekreuzten Anisotropien bzw. leichten Achsen ergeben sich aus der Prinzipdarstellung gemäß Fig. 5. Gezeigt ist die in Fig. 5 vertikal verlaufend dargestellte Pinningrichtung, die über die natürliche Antiferromagnetschicht 11, die mit der Referenzschicht 12 austauschgekoppelt ist, definiert wird, gefolgt von der leichten Achse der Referenzschicht, die hier- zu zwangsläufig parallel steht.
Die leichte Achse der Detektionsschicht 14 steht orthogonal dazu, in Fig. 5 also horizontal dargestellt, entsprechend die Pinningrichtung über die natürliche Antiferromagnetschicht 15.
Fig. 6 zeigt schließlich als Prinzipdarstellung die Lage der einzelnen Anisotropien.
Der mit Heb gekennzeichnete Pfeil gibt die Anisotropie, die aus der exchange-bias-Feldstärke der natürlichen Antiferro- magnetschicht 11 resultiert, wieder. Es handelt sich um eine unidirektionale Pinningrichtung, die wie ausgeführt die uni- direktionalen Referenzschichtmagnetisierungen pinnt .
Senkrecht zur exchange-bias-Feldstärke steht die mit Hind ge¬ kennzeichnete beschichtungsinduzierte Anisotropiefeldstärke der Detektionsschicht 14, die uniaxial ist.
Senkrecht zu dieser und unidirektional in Pinningrichtung der exchange bias Feldstärke Heb steht die mit Hferro gekennzeich¬ nete orange peel Kopplungsfeldstärke, die wie oben ausgeführt aus Oberflächenunebenheiten im Grenzflächenbereich Referenz- schicht-Entkopplungsschicht-Detektionsschicht resultiert .
Wiederum senkrecht zu dieser steht die mit Hsh gekennzeichne¬ te uniaxiale Formanisotropiefeldstärke, die in Längsrichtung des Sensorstreifens, der in Fig. 6 als länglicher Kasten dargestellt ist mit einer Streifenbreite b, verläuft.
Zu dieser wiederum senkrecht und unidirektional, jedoch der Pinningrichtung der exchange-bias-Feldstärke Heb entgegenge- richtet steht die durch das Streufeld der Referenzschichtmag¬ netisierung erzeugte Anisotropiefeldstärke HSF
Schließlich ist in Fig. 6 noch die zweite exchange-bias-Feld- stärke Heb2 gezeigt, die über die natürliche Antiferromagnet- schicht 15, die die Detektionsschicht pinnt, induziert wird, und die ebenfalls in Streifenlängsrichtung liegt.
Für die Stärke der Detektionsschichtanisotropie verantwort- lieh sind im gezeigten Beispiel die beschichtungsinduzierte Anisotropiefeldstärke Hind, die Formanisotropiefeldstärke Hsh sowie die (gegebenenfalls optionale) exchange-bias-Feldstärke Heb2 • Dieser Detektionsschichtanisotropie entgegengesetzt wirkt die Summe der orange-peel-Kopplungsfeidstärke Hferro und der Hferro entgegengesetzt orientierten Streufeldkopplungs- feidstärke HSF • Für den Einsatz vorteilhaft ist eine voll¬ ständige Kompensation dieser beiden Feldstärken.
Durch den oben beschriebenen Aufbau der GMR-Sensorelemente 6 - 9 bzw. der Detektionsschichten und deren Kopplung kann vorteilhaft das Sensorsignal, das über die Brückenschaltung 5 abgegriffen werden kann, so eingestellt werden, dass Hysteresen und Nichteindeutigkeiten der Kennlinie weitestgehend vermieden werden können. Dies resultiert vorteilhaft aus der hinreichenden uniaxialen Detektionsschichtanisotropie senk¬ recht zur Ausrichtung der Referenzschicht, die über die Ein¬ zelanisotropien, wie sie in Fig. 6 gezeigt sind, aufgeprägt wird. Abschließend ist festzuhalten, dass eine zusätzliche intrinsische uniaxiale Anisotropie gegeben ist, wenn zur BiI- düng der Detektionsschicht entsprechende Materialien wie z. B. Permalloy verwendet werden, wobei diese uniaxiale Ani¬ sotropie zusätzlich die Anisotropiestärke erhöhend wirkt.
Insgesamt bietet der erfindungsgemäße Gleichstromsensor die Möglichkeit, galvanisch isoliert Gleichströme messen zu kön¬ nen. Aufgrund der intrinsischen Schirmung der Brückenschaltung 5 und der Magnetfeldgradientenmessung werden überlagerte homogene externe Magnetfelder, die nicht aus der Bestromung des zugeordneten Stromleiters resultieren, bis zu einer gewissen Stärke unterdrückt, wirken sich also nicht auf das Ausgangssignal aus. Die Auswertung des in-plane-Magnetisie- rungsvektors der XMR-Spin-Valves-Sensorelemente mit gekreuz- ter Anisotropie ermöglicht diese Fremdfeldunterdrückung.
Durch die Verschaltung der Brückenelemente können die Refe¬ renzschichten wie auch die Detektionsschichten mit einheitlicher Ausrichtung der jeweiligen Magnetisierungen konditioniert werden, was die Herstellprozesse vereinfacht. Die Sig- nalkennlinie der Messbrücke ist direkt linear. Eine gezielte Einstellung des Proportionalitätsverhältnisses durch das spe¬ zielle Schichtsystem sowie die entsprechenden, einstellbaren Anisotropien ist möglich und erweitert den Einsatzbereich des Stromsensors erheblich, dieser kann anwendungsrelevant hin- sichtlich seiner Linearität, der Hysteresefreiheit und der Adaptierbarkeit ausgeführt werden.

Claims

Patentansprüche
1. Stromsensor zur galvanisch getrennten Strommessung, insbesondere Gleichstrommessung, umfassend einen U-förmig verlau- fenden Stromleiter (2), ober- oder unterhalb dem eine der Erfassung des bei Stromfluss zwischen den Leiterschenkeln (3, 4) erzeugten, dem Strom proportionalen magnetischen Gradientenfelds dienende Brückenschaltung (5) bestehend aus vier XMR-Sensorelementen (6, 7, 8, 9) angeordnet ist, von denen jeweils zwei einem Schenkel (3, 4) des Stromleiters (2) zuge¬ ordnet sind, wobei die Brückenschaltung (5) , über welche ein Brückenstrom (iB) zu führen ist, zwei parallel geschaltete Brückenzweige (Zl, Z2) aufweist, in denen sich jeweils zwei, einen gemeinsamen Abgriff (Sl, S2) der Brückenschaltung (5) bildende Sensorelemente (6,7 bzw. 9,8) befinden, wobei
• die XMR-Sensorelemente (6, 7, 8, 9) jeweils als Spin VaI- ves mit einer harten Referenzschichtmagnetisierung (R) und einer über das bei Stromfluss im zugeordneten Stromleiterschenkel (3, 4) erzeugte Magnetfeld drehbaren De- tektionsschichtmagnetisierung (D) ausgeführt sind,
• die Detektionsschichtmagnetisierungen (D) bei fehlendem Stromfluss jeweils unter einem Winkel zwischen 80° - 100° zur jeweiligen Referenzschichtmagnetisierung (R) stehen, und • die Sensorelemente (6, 7, 8, 9) innerhalb der Brücken¬ schaltung (5) so angeordnet und ausgerichtet sind, dass die zu einem Brückenzweig (Zl, Z2) gehörenden Sensorele¬ mente (6, 7 bzw. 9, 8) jeweils verschiedenen Stromleiterschenkeln (3, 4) zugeordnet sind und die Referenz- Schichtmagnetisierungen (R) aller XMR-Sensorelemente (6, 7, 8, 9) unidirektional und zumindest annähernd senkrecht zum jeweils zugeordneten Stromleiterschenkel (3, 4) lie¬ gen .
2. Stromsensor nach Anspruch 1, dadurch gekennzeichnet, dass die Referenzschichtmagnetisierungen (R) und die Detektions- schichtmagnetisierungen (D) unter einem Winkel von 90° zueinander stehen.
3. Stromsensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass alle Detektionsschichtmagnetisie- rungen (D) unidirektional verlaufen.
4. Stromsensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Referenzschichten (12) mit je¬ weils einer antiferromagnetischen Schicht (11) austauschge¬ koppelt sind.
5. Stromsensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Detektionsschichten (14) mit jeweils einer antiferromagnetischen Schicht (15) austauschge¬ koppelt sind.
6. Stromsensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die XMR-Sensorelemente (6, 7, 8, 9) als Streifenelemente zur Erzeugung einer in Richtung der Detektionsschichtmagnetisierung (D) liegenden Formanisotropie (Hsh) ausgeführt sind.
7. Stromsensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Detektionsschichten (14) eine in Richtung der Detektionsschichtmagnetisierung (D) liegende beschichtungsinduzierte Anisotropie (Hind) aufweisen.
8. Stromsensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Detektionsschicht (D) eine ma¬ terialspezifische intrinsisch, in Richtung der Detektions- Schichtmagnetisierung liegende Anisotropie aufweist.
9. Stromsensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die XMR-Sensorelemente (6, 7, 8, 9) vom GMR-Typ oder vom TMR-Typ sind.
PCT/EP2006/063392 2005-06-23 2006-06-21 Stromsensor zur galvanisch getrennten strommessung WO2006136577A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102005029269.0 2005-06-23
DE102005029269 2005-06-23
DE102006021774.8 2006-05-10
DE102006021774.8A DE102006021774B4 (de) 2005-06-23 2006-05-10 Stromsensor zur galvanisch getrennten Strommessung

Publications (1)

Publication Number Publication Date
WO2006136577A1 true WO2006136577A1 (de) 2006-12-28

Family

ID=37192634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/063392 WO2006136577A1 (de) 2005-06-23 2006-06-21 Stromsensor zur galvanisch getrennten strommessung

Country Status (2)

Country Link
DE (1) DE102006021774B4 (de)
WO (1) WO2006136577A1 (de)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074908A (ja) * 2007-09-20 2009-04-09 Alps Electric Co Ltd 原点検出装置
DE102008030332A1 (de) 2008-06-30 2009-12-31 Siemens Aktiengesellschaft Verfahren zur Minimierung der Temperaturabhängigkeit von Messsignalen von Spinvalve-Magnetfeldsensoren und damit aufgebaute intrinsisch temperaturkompensierte GMR/TMR-Brücke
US7768083B2 (en) 2006-01-20 2010-08-03 Allegro Microsystems, Inc. Arrangements for an integrated sensor
US7777607B2 (en) 2004-10-12 2010-08-17 Allegro Microsystems, Inc. Resistor having a predetermined temperature coefficient
US7795862B2 (en) 2007-10-22 2010-09-14 Allegro Microsystems, Inc. Matching of GMR sensors in a bridge
US7816905B2 (en) 2008-06-02 2010-10-19 Allegro Microsystems, Inc. Arrangements for a current sensing circuit and integrated current sensor
US7973527B2 (en) 2008-07-31 2011-07-05 Allegro Microsystems, Inc. Electronic circuit configured to reset a magnetoresistance element
US8063634B2 (en) 2008-07-31 2011-11-22 Allegro Microsystems, Inc. Electronic circuit and method for resetting a magnetoresistance element
WO2012013906A1 (fr) 2010-07-30 2012-02-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Capteur intègre de mesure de tension ou de courant a base de magnétorésistances
FR2963432A1 (fr) * 2010-07-30 2012-02-03 Commissariat Energie Atomique Capteur integre de mesure de tension ou de courant a base de magnetoresistances
US8269491B2 (en) 2008-02-27 2012-09-18 Allegro Microsystems, Inc. DC offset removal for a magnetic field sensor
US8307649B2 (en) 2007-01-31 2012-11-13 GM Global Technology Operations LLC Arrangement of a two stage turbocharger system for an internal combustion engine
US20140197827A1 (en) * 2013-01-15 2014-07-17 Infineon Technologies Ag XMR-Sensor and Method for Manufacturing the XMR-Sensor
CN104603623A (zh) * 2012-06-27 2015-05-06 森斯泰克有限责任公司 用于电流测量的设备
US9322887B1 (en) 2014-12-01 2016-04-26 Allegro Microsystems, Llc Magnetic field sensor with magnetoresistance elements and conductive-trace magnetic source
US9354284B2 (en) 2014-05-07 2016-05-31 Allegro Microsystems, Llc Magnetic field sensor configured to measure a magnetic field in a closed loop manner
US9529060B2 (en) 2014-01-09 2016-12-27 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
US9812637B2 (en) 2015-06-05 2017-11-07 Allegro Microsystems, Llc Spin valve magnetoresistance element with improved response to magnetic fields
US10153766B2 (en) 2017-02-15 2018-12-11 Infineon Technologies Austria Ag Switch device
US10365329B2 (en) 2016-05-26 2019-07-30 Infineon Technologies Ag Measurements in switch devices
US10620279B2 (en) 2017-05-19 2020-04-14 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US10649043B2 (en) 2014-04-28 2020-05-12 Infineon Technologies Ag Magnetic field sensor device configured to sense with high precision and low jitter
US10649010B2 (en) 2016-12-20 2020-05-12 Infineon Technologies Ag Current sensing
US10935612B2 (en) 2018-08-20 2021-03-02 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
US11022661B2 (en) 2017-05-19 2021-06-01 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US11187764B2 (en) 2020-03-20 2021-11-30 Allegro Microsystems, Llc Layout of magnetoresistance element
US11567108B2 (en) 2021-03-31 2023-01-31 Allegro Microsystems, Llc Multi-gain channels for multi-range sensor
US11719771B1 (en) 2022-06-02 2023-08-08 Allegro Microsystems, Llc Magnetoresistive sensor having seed layer hysteresis suppression
CN113777384B (zh) * 2021-09-28 2023-12-12 南方电网数字电网研究院有限公司 四分裂导线电流检测方法、装置、计算机设备和存储介质
US11994541B2 (en) 2022-04-15 2024-05-28 Allegro Microsystems, Llc Current sensor assemblies for low currents

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930994B1 (fr) * 2008-05-07 2010-06-18 Commissariat Energie Atomique Structure et procede de fabrication d'un capteur de gradient de champ magnetique en technologie integree
DE102008030334B4 (de) * 2008-06-30 2018-02-01 Siemens Aktiengesellschaft Verfahren zur störarmen berührungslosen Messung hoher Ströme und zugehöriger Hochstromsensor
DE102013205474A1 (de) * 2013-03-27 2014-10-02 Siemens Aktiengesellschaft Strommesssensor
DE102013210298A1 (de) * 2013-06-04 2014-12-04 Robert Bosch Gmbh Anordnung zur Ermittlung von Kenngrößen eines elektrochemischen Energiespeichers
CN103487632A (zh) * 2013-10-11 2014-01-01 上海飞轩电子有限公司 屏蔽式开环无聚磁环隧道磁阻传感器
DE102014111416B4 (de) 2014-08-11 2024-03-28 Lisa Dräxlmaier GmbH Absicherung einer Leitung
CN113451995B (zh) * 2021-08-31 2021-12-17 浙江大学杭州国际科创中心 一种短路和过流保护装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0710850A2 (de) * 1994-11-04 1996-05-08 International Business Machines Corporation Magnetfeldfühler und Verfahren zu ihrer Herstellung
DE10046782A1 (de) * 2000-09-21 2002-04-18 Forschungszentrum Juelich Gmbh Magnetisches Schichtsystem sowie ein solches Schichtsystem aufweisendes Bauelement
DE10135428C1 (de) * 2001-07-20 2002-08-08 Siemens Ag Einrichtung zur Signalübertragung mit magnetoresistiven Sensorelementen
EP1304550A1 (de) * 2001-10-17 2003-04-23 Alps Electric Co., Ltd. Präziser Drehwinkelsensor
US20040155644A1 (en) * 2003-02-11 2004-08-12 Jason Stauth Integrated sensor
DE10342260A1 (de) * 2003-09-11 2005-04-28 Hl Planar Technik Gmbh Magnetoresistiver Sensor in Form einer Halb- oder Vollbrückenschaltung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10113131B4 (de) * 2001-03-17 2006-11-16 Sensitec Gmbh Anordnung zur Messung der magnetischen Feldstärke oder von örtlichen Differenzen magnetischer Feldstärken, sowie Schaltungsanordnung für die Auswerteeinheit und Verwendungen der Anordnung und der Schaltungsanordnung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0710850A2 (de) * 1994-11-04 1996-05-08 International Business Machines Corporation Magnetfeldfühler und Verfahren zu ihrer Herstellung
DE10046782A1 (de) * 2000-09-21 2002-04-18 Forschungszentrum Juelich Gmbh Magnetisches Schichtsystem sowie ein solches Schichtsystem aufweisendes Bauelement
DE10135428C1 (de) * 2001-07-20 2002-08-08 Siemens Ag Einrichtung zur Signalübertragung mit magnetoresistiven Sensorelementen
EP1304550A1 (de) * 2001-10-17 2003-04-23 Alps Electric Co., Ltd. Präziser Drehwinkelsensor
US20040155644A1 (en) * 2003-02-11 2004-08-12 Jason Stauth Integrated sensor
DE10342260A1 (de) * 2003-09-11 2005-04-28 Hl Planar Technik Gmbh Magnetoresistiver Sensor in Form einer Halb- oder Vollbrückenschaltung

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777607B2 (en) 2004-10-12 2010-08-17 Allegro Microsystems, Inc. Resistor having a predetermined temperature coefficient
US8629520B2 (en) 2006-01-20 2014-01-14 Allegro Microsystems, Llc Arrangements for an integrated sensor
US7768083B2 (en) 2006-01-20 2010-08-03 Allegro Microsystems, Inc. Arrangements for an integrated sensor
US9859489B2 (en) 2006-01-20 2018-01-02 Allegro Microsystems, Llc Integrated circuit having first and second magnetic field sensing elements
US10069063B2 (en) 2006-01-20 2018-09-04 Allegro Microsystems, Llc Integrated circuit having first and second magnetic field sensing elements
US9082957B2 (en) 2006-01-20 2015-07-14 Allegro Microsystems, Llc Arrangements for an integrated sensor
US8952471B2 (en) 2006-01-20 2015-02-10 Allegro Microsystems, Llc Arrangements for an integrated sensor
US8307649B2 (en) 2007-01-31 2012-11-13 GM Global Technology Operations LLC Arrangement of a two stage turbocharger system for an internal combustion engine
JP2009074908A (ja) * 2007-09-20 2009-04-09 Alps Electric Co Ltd 原点検出装置
US7795862B2 (en) 2007-10-22 2010-09-14 Allegro Microsystems, Inc. Matching of GMR sensors in a bridge
US9046562B2 (en) 2008-02-27 2015-06-02 Allegro Microsystems, Llc Hysteresis offset cancellation for magnetic sensors
US8269491B2 (en) 2008-02-27 2012-09-18 Allegro Microsystems, Inc. DC offset removal for a magnetic field sensor
US7816905B2 (en) 2008-06-02 2010-10-19 Allegro Microsystems, Inc. Arrangements for a current sensing circuit and integrated current sensor
DE102008030332A1 (de) 2008-06-30 2009-12-31 Siemens Aktiengesellschaft Verfahren zur Minimierung der Temperaturabhängigkeit von Messsignalen von Spinvalve-Magnetfeldsensoren und damit aufgebaute intrinsisch temperaturkompensierte GMR/TMR-Brücke
US8063634B2 (en) 2008-07-31 2011-11-22 Allegro Microsystems, Inc. Electronic circuit and method for resetting a magnetoresistance element
US7973527B2 (en) 2008-07-31 2011-07-05 Allegro Microsystems, Inc. Electronic circuit configured to reset a magnetoresistance element
FR2963432A1 (fr) * 2010-07-30 2012-02-03 Commissariat Energie Atomique Capteur integre de mesure de tension ou de courant a base de magnetoresistances
US8994370B2 (en) 2010-07-30 2015-03-31 Peugeot Citroën Automobiles SA Magnetoresistor integrated sensor for measuring voltage or current, and diagnostic system
WO2012013906A1 (fr) 2010-07-30 2012-02-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Capteur intègre de mesure de tension ou de courant a base de magnétorésistances
CN104603623A (zh) * 2012-06-27 2015-05-06 森斯泰克有限责任公司 用于电流测量的设备
US20140197827A1 (en) * 2013-01-15 2014-07-17 Infineon Technologies Ag XMR-Sensor and Method for Manufacturing the XMR-Sensor
US9244134B2 (en) * 2013-01-15 2016-01-26 Infineon Technologies Ag XMR-sensor and method for manufacturing the XMR-sensor
US9581661B2 (en) 2013-01-15 2017-02-28 Infineon Technologies Ag XMR-sensor and method for manufacturing the XMR-sensor
US9529060B2 (en) 2014-01-09 2016-12-27 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
US10347277B2 (en) 2014-01-09 2019-07-09 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
US9804234B2 (en) 2014-01-09 2017-10-31 Allegro Microsystems, Llc Magnetoresistance element with an improved seed layer to promote an improved response to magnetic fields
US9922673B2 (en) 2014-01-09 2018-03-20 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
US11313923B2 (en) 2014-04-28 2022-04-26 Infineon Technologies Ag Method for measuring a magnetic field using a magnetic field sensor device having a second magnetic field sensor between parts of a first magnetic field sensor
US10649043B2 (en) 2014-04-28 2020-05-12 Infineon Technologies Ag Magnetic field sensor device configured to sense with high precision and low jitter
US9354284B2 (en) 2014-05-07 2016-05-31 Allegro Microsystems, Llc Magnetic field sensor configured to measure a magnetic field in a closed loop manner
US9322887B1 (en) 2014-12-01 2016-04-26 Allegro Microsystems, Llc Magnetic field sensor with magnetoresistance elements and conductive-trace magnetic source
US9605979B2 (en) 2014-12-01 2017-03-28 Allegro Microsystems, Llc Magnetic field sensor with magnetoresistance elements and conductive trace magnetic source
US9812637B2 (en) 2015-06-05 2017-11-07 Allegro Microsystems, Llc Spin valve magnetoresistance element with improved response to magnetic fields
US10365329B2 (en) 2016-05-26 2019-07-30 Infineon Technologies Ag Measurements in switch devices
US10649010B2 (en) 2016-12-20 2020-05-12 Infineon Technologies Ag Current sensing
US10153766B2 (en) 2017-02-15 2018-12-11 Infineon Technologies Austria Ag Switch device
US10620279B2 (en) 2017-05-19 2020-04-14 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US11002807B2 (en) 2017-05-19 2021-05-11 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US11022661B2 (en) 2017-05-19 2021-06-01 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US10935612B2 (en) 2018-08-20 2021-03-02 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
US11187764B2 (en) 2020-03-20 2021-11-30 Allegro Microsystems, Llc Layout of magnetoresistance element
US11567108B2 (en) 2021-03-31 2023-01-31 Allegro Microsystems, Llc Multi-gain channels for multi-range sensor
CN113777384B (zh) * 2021-09-28 2023-12-12 南方电网数字电网研究院有限公司 四分裂导线电流检测方法、装置、计算机设备和存储介质
US11994541B2 (en) 2022-04-15 2024-05-28 Allegro Microsystems, Llc Current sensor assemblies for low currents
US11719771B1 (en) 2022-06-02 2023-08-08 Allegro Microsystems, Llc Magnetoresistive sensor having seed layer hysteresis suppression

Also Published As

Publication number Publication date
DE102006021774A1 (de) 2007-01-04
DE102006021774B4 (de) 2014-04-03

Similar Documents

Publication Publication Date Title
DE102006021774B4 (de) Stromsensor zur galvanisch getrennten Strommessung
DE102007032867B4 (de) Magnetoresistive Magnetfeldsensorstrukturen und Herstellungsverfahren
DE102006035661B4 (de) Magnetfelderfassungsvorrichtung und Verfahren zu deren Einstellung
DE69425063T2 (de) Magnetoresistiver linearer weggeber, winkelverschiebungssensor und variabler widerstand
DE102009007479B4 (de) Dünnfilm-Magnetsensor
DE102016102601B4 (de) Magnetsensor
DE19520206C2 (de) Magnetfeldsensor mit einer Brückenschaltung von magnetoresistiven Brückenelementen
DE112008002741T5 (de) Anpassung von GMR-Sensoren in einer Brücke
DE10319319A1 (de) Sensoreinrichtung mit magnetostriktivem Kraftsensor
DE102006046739B4 (de) Verfahren zum Betreiben eines Magnetfeldsensors und zugehöriger Magnetfeldsensor
DE102016105325A1 (de) Magnetsensor
DE102020200177A1 (de) Streufeldrobuster xmr-sensor mit senkrechter anisotropie
WO2007096318A1 (de) Sensoreinrichtung zur erfassung einer magnetfeldgrösse
DE112010002899T5 (de) Verfahren zur Herstellung eines Magnetowiderstandseffektelements, eines Magnetsensors, einer Drehwinkel-Erfassungsvorrichtung
DE102016111256B4 (de) Magnetfeldgenerator, Magnetsensorsystem und Magnetsensor
EP1567878B1 (de) Magnetoresistives sensorelement und verfahren zur reduktion des winkelfehlers eines magnetoresistiven sensorelements
DE102019118167A1 (de) Magnetoresistiver sensor mit reduzierter beanspruchungssensitivität
DE102019113815B4 (de) Magnetsensor
DE19649265A1 (de) GMR-Sensor mit neuartiger Wheatstonebrücke
DE10140043A1 (de) Schichtensystem mit erhöhtem magnetoresistiven Effekt sowie Verwendung desselben
DE102006010652B4 (de) Magnetfeldsensor
DE102019126320B4 (de) Magnetoresistiver Sensor und Fertigungsverfahren für einen magnetoresistiven Sensor
EP1399750A1 (de) Magnetoresistive schichtanordnung und gradiometer mit einer derartigen schichtanordnung
DE102015100226A1 (de) Magnetfeldsensor und Magnetfelderfassungsverfahren
DE102021133302A1 (de) Magnetsensorvorrichtung, wechselrichtergerät und batteriegerät

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06777391

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)