WO2006136311A1 - Metabolic engineering of q10 production in yeasts of the genus sporidiobolus - Google Patents

Metabolic engineering of q10 production in yeasts of the genus sporidiobolus Download PDF

Info

Publication number
WO2006136311A1
WO2006136311A1 PCT/EP2006/005671 EP2006005671W WO2006136311A1 WO 2006136311 A1 WO2006136311 A1 WO 2006136311A1 EP 2006005671 W EP2006005671 W EP 2006005671W WO 2006136311 A1 WO2006136311 A1 WO 2006136311A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
sporidiobolus
dna
expression
genes
Prior art date
Application number
PCT/EP2006/005671
Other languages
German (de)
French (fr)
Inventor
Rupert Pfaller
Original Assignee
Consortium für elektrochemische Industrie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consortium für elektrochemische Industrie GmbH filed Critical Consortium für elektrochemische Industrie GmbH
Publication of WO2006136311A1 publication Critical patent/WO2006136311A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the invention relates to a system for the expression of genes from the Q10 biosynthesis pathway in yeasts of the genus Sporidiobolus.
  • metabolite engineering is defined in a general form such that a genetic expression system is used to purposefully increase the yield of a desired metabolite in a host organism used for production.
  • This can be done in one embodiment by the fact that enzymes of a metabolic pathway in recombinant form increasingly produced and thereby increased yields of the product are obtained from the metabolic pathway.
  • the production of individual enzymes of a metabolic pathway (for example negative regulators) or of enzymes of competing metabolic pathways is purposefully reduced or suppressed in order to increase the production yield of the desired metabolic product.
  • the host organism used for the metabolization engineering will usually be selected from among those from which the desired metabolite can be obtained in the correct form and already with naturally high yields.
  • Strains of the genus Sporidiobolus are suitable for the metabolism engineering of the Q10 metabolism.
  • a prerequisite for the metabolism engineering of the Q10 metabolic pathway in strains of the genus Sporidiobolus is thus a genetic expression system.
  • Genetic expression systems are known for various prokaryotic and eukaryotic microorganisms. These gene expression systems are characterized by the fact that they can be used to produce individual proteins in recombinant form. However, as already mentioned, metabolic engineering preferably selects a production host with, of course, already relatively high yields, and as a rule it is not possible to resort to an already available genetic expression system. Instead, a genetic expression system for strain improvement by metabolism engineering has to be newly developed.
  • prokaryotic expression systems examples include Escherichia coli and Bacillus subtilis. The methods for the genetic manipulation of these organisms are well established. However, specific disadvantages of these expression systems are the often low production rates of enzymatically active protein due to the folding of the produced proteins in non-active form or the lack of post-translational modification of the expressed proteins (e.g., lack of incorporation of prosthetic groups or lack of glycosylation).
  • eukaryotic expression systems include cell culture systems of both mammalian cells and insect cells, as well as eukaryotic microorganisms such as yeasts or filamentous fungi. While in these expression systems the protein to be expressed is generally formed in active form, the production rate is in many cases too low, in particular in the expression of heterologous proteins. As an example, the expression in the yeasts Saccharomyces cerevisiae or Pichia pastoris serve, or in filamentous fungi of the genus Aspergillus. Filamentous mushrooms often cause problems in fermentative protein production.
  • Basidiomycete yeasts of the genus Sporidiobolus have been described early as good producers of Q10 (US 4070244). By contrast, no technical use was reported.
  • EP 1469078 (corresponding to US Application Serial Number 10/803841) discloses a method for improving Q10 production in Sporidiobolus by classical strain optimization by means of mutagenesis and selection and subsequent fermentation. This method is suitable for producing Sporidiobolus strains with a Q10 productivity of 1.38 mg / g dry biomass or more.
  • Yeasts of the genus Sporidiobolus belong to the higher developed fungi of the genus Basidiomycetes.
  • the sporidiobolus expression system according to the invention is therefore suitable not only for metabolism engineering but also for the production of proteins which can not be produced with other expression systems or only with poor yields. Little is known about the genetic engineering of fungi and yeasts of the Basidiomycete genus. For a sporidobolysis expression system, the prior art does not provide instructions for technical action. Wery et al. (Biotechnology Techniques (1998) 12 1 399-405) z. B.
  • the benefit of the Phaffia expression system for optimizing astaxanthin production has been low.
  • Another disadvantage of the P. rhodozyma expression system is that the fermentation must be carried out at comparatively low temperatures of 20 ° C., which makes the technical implementation more difficult.
  • EP 0340986 B describes the use of the enhancer protein ADRI for enhancing heterologous, recombinant protein expression, based on a prior art genetic expression system, in the baker's yeast Saccharomyces cerevisiae, a yeast from the class of the Ascomycetes.
  • the enhancer function of ADRI is assigned a general validity, including to enhance heterologous gene expression in yeasts of the genus Sporidiobolus.
  • the person skilled in the art will not receive instructions for action from this invention in order to develop a genetic expression system for strains of the genus Sporidobus and how this could be used to improve Q10 production. Neither is an ADR1 gene from Sporidiobolus known nor is it disclosed how it could be isolated.
  • EP 1066393 z. B. describes a method for the transformation of Trametes versicolor and the use of this expression system for the production of the enzyme laccase for industrial applications.
  • Phanerochaete chrysosporium has also been described as a method of genetic transformation (Alic et al (1991) Curr Genet 19, 491-494), as well as Pleurotus ostreatus (Yanai, K., et al., (1996) Biosci Biotech. Biochem 60, 472-475).
  • US 5362640 describes DNA vectors for the transformation of Basidiomyceten Coriolus hirsutus.
  • the filamentous fungi-based expression systems are usually characterized by only a low transformation rate. In addition, the transformation process is very complex. These expression systems also have the disadvantage that the fermentation on an industrial scale is often difficult because of the filamentous cell growth and high viscosity of the fermented biomass.
  • the object of the present invention was to provide a genetic expression system for yeasts of the genus Sporidiobolus which makes it possible to improve the production of the economically valuable metabolite coenzyme Q10 by metabolite engineering.
  • an expression system consisting of a host organism of the genus Sporidiobolus and a DNA vector which contains a selection marker gene which is suitable for encodes a protein which after transformation of the host organism allows selection of positive transformants and is selected from the group of antibiotic resistance genes, the genes which complement an auxotrophy of the host organism and the genes which code for a protein that belong to a host in which the expression of the selection marker gene is controlled by at least one genetic regulatory element active in the host organism, characterized in that a DNA vector contains a gene to be expressed which codes for a protein in which the gene to be expressed is a gene from the Q10 biosynthesis pathway and in which the expression of the gene from the Q10 biosynthesis pathway is controlled by at least one genetic regulation element active in the host organism.
  • the selection marker gene and the gene from the Q10 biosynthesis pathway are contained together on a DNA vector, the expression of the two genes being controlled by at least one genetic regulatory element active in the host organism.
  • both vectors are transformed simultaneously (co-transformation).
  • Particularly preferred host organisms for the expression system according to the invention are strains of the species Sporidiobolus ruineniae.
  • strain Sporidiobolus ruineniae is particularly preferred.
  • the invention is characterized by a DNA vector which contains a selection marker gene selected from the group of antibiotic resistance genes.
  • the expression system according to the invention is characterized in that the host organism is sensitive to an antibiotic and in its presence is no longer capable of growth and the selection marker gene is selected such that its expression after transformation of the host organism causes resistance to the antibiotic and allows growth under selective conditions.
  • antibiotic resistance genes which confer resistance to an antibiotic conferment hen selected from the group Hygromy- cin, G418, geneticin ®, glyphosate, cycloheximide, bialaphos, Ka namycin, bleomycin, oligomycin, Zeocin TM, benomyl, nystatin and phleomycin.
  • Antibiotikarestistenzgene that Resis- competence to an antibiotic selected from the group Hygromy- cin, G418, give Geneticin ®, glyphosate, bialaphos or cycloheximide.
  • antibiotic resistance genes against hygromycin are especially preferred.
  • G418, Geneticin® are especially preferred.
  • antibiotic resistance genes against hygromycin are especially preferred.
  • the expression system is characterized in that the host organism selected from the genus Sporidiobolus possesses a genetic defect in metabolic metabolism (auxotrophy), as a result of which one or more metabolic metabolites essential for growth are no longer synthesized and the host organism is no longer capable of growth on minimal media without the addition of this or that metabolic metabolite and the selection marker gene is selected such that it complements the auxotrophic gene defect of the host organism.
  • auxotrophy metabolic metabolism
  • selection radar genes which can complement an auxotrophic gene defect in the host organism are the pyrG gene (encoded by the enzyme orotidine-5'-phosphate decarboxylase, Goosen et al., Curr. Genet.
  • the pyrF gene codes for the enzyme orotic acid phosphoribosyltransferase, DE 199 34 408
  • the OCT gene codes for the enzyme ornithine carbamoyltransferase, US Pat. No. 5,362,640
  • the trpC gene a gene , whose trifunctional gene product has enzyme activity for phosphoribosyl-anthranilic acid isomerase, glutamine amido transferase and indole-glycerol phosphate synthase, Yelton et al., Proc Natl. Acad. Sci. USA (1984) 81: 1470-1474).
  • selection marker genes are suitable which code for proteins which are capable of a coloring reaction, for.
  • the glucuronidase gene the gene for the green fluorescent protein (GFP) (including the genetic variants derived therefrom) or the gene of a laccase.
  • GFP green fluorescent protein
  • the invention also relates to DNA vectors which are suitable for the production of the expression system according to the invention.
  • a DNA vector is characterized in that it contains the selection marker gene, preferably from the group of antibiotic resistance genes.
  • suitable selection marker genes are the resistance genes for the following antibiotics:
  • Hygromycin The hygromycin B phosphotransferase gene from E. coli (Gritz and Davis, Gene (1983) 25: 179-188) or from Streptomyces hygroscopicus (Malpartida et al., Biochem. Biophys. Res. Commun. (1983) 117: 6-12).
  • Glyphosate The 5-enolpyruvylshikimate-3-phosphate synthase gene
  • EPSP E. coli
  • Bialaphos The Bialaphos resistance gene (Bar gene) from Streptomyces hygroscopicus (Avalos et al., Curr. Genet. (1989) 16: 369-372).
  • the DNA vector according to the invention for expression of the selection marker gene additionally contains at least one genetic regulatory element active in the host organism (promoter, terminator) which, functionally linked to the selection marker gene, expresses it ensured in the host organism.
  • Suitable for the expression of the selection marker gene are the promoter and terminator elements for the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH gene), for example from yeasts or filamentous fungi from the class of Basidiomycetes.
  • the GAPDH gene can be homologous from a yeast of the genus Sporidiobolus or heterologous from a yeast or a fungus from the class of Basidiomycetes, z. From Phaffia rhodozyma, Ustilago maydis, Schizophyllum commune, Trametes verisicolor, Agaricus bisporus or Phanerochaete chrysosporium.
  • promoter and terminator elements of the GAPDH gene from Sporidiobolus ruineniae characterized by the sequences SEQ ID NO: 1 and SEQ ID NO: 2, as well as the GAPDH gene from Phaffia rhodozyma.
  • the promoter structures for the Phaffia rhodozyma GAPDH gene are disclosed in Verdoes et al. , Yeast (1997) 13: 1231-1242. This shows a comparison of
  • promoter and terminator elements of the GAPDH gene from Sporidiobolus ruineniae characterized by the sequences SEQ ID NO: 1 and SEQ ID NO: 2.
  • the invention thus also relates to the promoter and terminator elements of the Sporidiobolus GAPDH gene, disclosed for the GAPDH clone Gap5 in SEQ ID NO: 1, bp 1 - 1050 (promoter), or bp 2997 - 3500 (terminator) and for the GAPDH clone Gapl8 in SEQ ID NO: 2, bp 1-790 (promoter) and DNA sequences derived therefrom by extension, truncation or alteration, which can be active in Sporidiobolus as promoter or terminator.
  • the invention relates in particular to the promoter and terminator elements of the Sporidiobolus GAPDH gene, disclosed for the GAPDH clone Gap5 in SEQ ID NO: 1, bp 1-1050 (promoter) or bp 2997-3500 (terminator) and for the GAPDH clone Gapl8 in SEQ ID NO: 2, bp 1-790 (promoter).
  • the invention further relates to a DNA vector which contains at least one selection marker gene which codes for a protein which, after transformation of a yeast of the genus Sporidiobolus, permits a selection of positive transformants, characterized in that the selection marker gene is selected from the group of antibiotic resistance genes coding for proteins that abolish the anti-growth effect of antibiotics against which the host organism is not resistant, the genes that complement a genetic defect of the host organism (auxotrophy), and the genes that produce encode proteins which are capable of a coloring reaction, and that the selection marker gene is controlled by at least one genetic regulatory element active in the host organism.
  • the DNA vectors of the invention allow the selection of positive transformants of yeasts of the genus Sporidiobolus due to the acquired after transformation antibiotic resistance in the host organism.
  • the invention furthermore comprises a DNA vector which is suitable for expressing at least one gene coding for a protein, preferably from the Q10 biosynthesis pathway, in the host organism.
  • genes coding for proteins are also to be understood as meaning the cDNA genes of the proteins derived from the structural genes, as well as mutated genes.
  • the proteins can be proteins which are heterologous to the host organism or homologous proteins for the host organism, which moreover can be present either intracellularly or extracellularly (secreted proteins).
  • the DNA vector according to the invention thus preferably contains at least one gene to be expressed which codes for a protein, preferably from the Q10 biosynthesis pathway.
  • the gene to be expressed is not limited to a protein from the Q10 protein.
  • Biosynthetic pathway restricted Rather, the gene to be expressed can code for any protein to be used for a technical or pharmaceutical application or else for an enzyme from any biosynthetic pathway other than the Q10 pathway.
  • the biosynthetic pathway can already be created in the host organism and the gene to be expressed alters the production efficiency (yield) for the desired metabolite, or a new metabolic pathway is created by the gene to be expressed, as a result of which the recombinant host organism produces new metabolite.
  • the gene to be expressed is a gene from the Q10 biosynthesis pathway.
  • An overview of the known QlO biosynthesis genes is given by Meganathan, FEMS Microbiol Lett. (2001) 203: 131-139. Tzagoloff and Dieckmann, Microbiological Reviews (1990) 54: 211-225, describe eight complementation groups from baker's yeast called CoQ1-CoQ8, which define ubiquinone biosynthetic genes.
  • genes from the Q10 biosynthesis pathway are the genes for acetoacetyl-CoA thiolase, hydroxymethyl-glutaryl-CoA synthase (HMG-CoA synthase), hydroxymethyl-glutaryl-CoA reductase (HMG-CoA reductase), mevalonate kinase, phosphomevalo - natkinase, diphosphomevalonate decarboxylase, isopentenyl diphosphate isomerase, farnesyl diphosphate synthase, chorismate
  • CoQ1 gene is the gene for decaprenyl diphosphate synthase (DPS) from the yeast Rhodotorula minuta disclosed in EP 1336657 A, SEQ ID NO: 1.
  • DPS decaprenyl diphosphate synthase
  • the Q10 biosynthesis genes may be homologous from Sporidiobolu ⁇ or heterologous from another organism.
  • these genes are homologous genes from the Q10 biosynthetic pathway of the genus Sporidiobolus.
  • the protein coding gene is operably linked to genetic regulatory elements such as a promoter or terminator.
  • the promoter can be derived from the gene to be expressed, or the promoter of a foreign gene can also be used, which is functionally linked to the coding region of the gene to be expressed.
  • the DNA vector according to the invention thus preferably also contains a promoter for the expression of the protein-encoding gene.
  • the DNA vector according to the invention preferably contains as promoter for the expression of the protein-encoding gene a promoter which ensures a high expression performance.
  • a promoter used particularly preferably for this purpose is the promoter of the gene for the GAPDH gene, and in this case especially the GAPDH promoter from Sporidiobolus ruineniae (SEQ ID NO: 1, bp 1 - 1050 and SEQ ID NO: 2, bp 1 - 790).
  • the DNA vector according to the invention preferably also contains a transcription terminator for the protein-coding gene.
  • the terminator of the protein-coding gene to be expressed or else the terminator of a foreign gene can be used as transcription terminator.
  • the transcription terminator is a GAPDH gene, in particular the GAPDH gene from Sporidiobolus ruineniae (SEQ ID NO: 1, bp 2997-3500).
  • the promoter of the GAPDH gene especially of the GAPDH gene from Sporidiopus ruineniae (SEQ ID NO: 1, bp 1 - 1050 or SEQ ID NO: 2, bp 1-790) and the like, is used Extension, truncation, or alteration-derived DNA sequences present in Sporidiobolus Promoter can be active.
  • the isolation of the Sporidiobolus GAPDH gene is described in Example 4.
  • the invention thus also relates to an active in Sporidiobolus regulatory element which is characterized in that it contains the SEQ ID NO: 1 sequence section of base 1 - 1050, or contained in SEQ ID NO: 2 sequence section of base 1 - 790 and thereof by extension, truncation or alteration derived DNA sequences which may be active in Sporidi obolus as a promoter.
  • GAPDH used in the 5th example.
  • PRGPDGENE. gb_pl, bp 1-717 which is 37% identical to the sequence segment of base 1 - 1050 contained in SEQ ID NO: 1, or to the sequence segment from base 1 - 790 to 35 contained in SEQ ID NO: 2 % is identical and is suitable as a heterologous promoter for regulating gene expression in S. ruineniae.
  • a DNA vector for the transformation of Sporidiobolus contains no genetic element that ensures its autonomous replication in the host organism. Therefore, after transformation, the DNA vector must be integrated into the genome of the host organism. The integration into the host genome can be carried out undirected by random recombination or else by homologous recombination.
  • rDNA which codes for ribosomal RNA and from which approximately 100 copies are present in the genome of the host organism, is suitable as an integration site for homologous recombination. are holding. From short, published sequences for sections of the S. ruineniae rDNS, an rDNA fragment for homologous recombination was isolated (SEQ ID NO: 3). The isolation of a sporidiobolus rDNA fragment is described in Example 2.
  • a DNA vector according to the invention thus preferably also contains an RNA fragment from S. ruineniae (SEQ ID NO: 3).
  • DNA vectors according to the invention are carried out by means known in the art. Various possibilities are set forth in the examples. The methods described there can be applied by the skilled person to any other vectors, resistance genes, regulatory elements and structural genes.
  • the DNA vectors according to the invention are suitable for the production of Sporidiobolus strains which are capable of efficient gene expression.
  • the invention therefore also relates to methods of producing Sporidiobolus strains capable of efficient gene expression.
  • This method is characterized in that a yeast of the genus Sporidiobolus is used as the host organism, which is transformed with a DNA vector which has a gene to be expressed and an antibiotic resistance gene, and transforms from the transformation batch with the DNA vector selected clones are selected by selection of antibiotics-resistant transformants, the expression of the gene to be expressed and of the antibiotic resistance gene in the host strain being respectively controlled by at least one genetic regulatory element which is active in the host strain.
  • the gene to be transformed can also be cloned into an expression vector without selection marker gene and together with a vector expressing the selection marker gene used to generate transformants (co-transformation).
  • the gene to be transformed is cloned in a known manner into a DNA vector according to the invention and introduced into a yeast of the genus Sporidiobolus by means of the methods mentioned.
  • the relevant yeast strain of the genus Sporidiobolus may be a monocaryontic or else a dikaryontisean strain.
  • a host for gene expression is a yeast of the species Sporidiobolus ruineniae.
  • Particularly preferred as a host for gene expression is the strain Sporidiobolus ruineniae DSM 15553.
  • the transformation of the host strain is carried out according to methods that correspond to the state of the art. These methods include transformation with the lithium acetate method, transformation by electroporation or biolistic transformation by bombardment with DNA-containing microprojectiles, or a combination of the methods mentioned. These methods are described in standard textbooks.
  • the selection of positive transformants is carried out, for example, by sporidiobolus cells after transformation with vector DNA on a medium to which antibiotic was added in amounts which suppresses the growth of wild-type strain and which allows the selection of antibiotic-resistant transformants.
  • a method for the inventive transformation of Sporidiobolus is described in the 8th example.
  • the yeast Sporidiobolus ruineniae is transformed in the manner mentioned above with the gene of one or more Q10 biosynthesis enzymes. This results in an increase in the expression rate for the said gene and significantly improves the Q10 production rate.
  • the Q10 biosynthesis genes may be derived from yeasts of the genus Sporidiobolus, or other Q10 biosynthesis genes may also be used.
  • the sporidiobolus expression system according to the invention is particularly suitable for expressing one or more of the described genes from the Q10 biosynthesis pathway.
  • the application of the expression system according to the invention for improving Q10 production is described in the 12th example.
  • the invention thus also relates to a method for using the expression system according to the invention, characterized in that a strain of the yeast Sporidiobolus, which was produced by the process according to the invention, is cultivated in a manner known per se and the product, whether it is a recombinantly produced protein or a metabolic product synthesized with the aid of the recombinantly produced protein, including preferably Q10, isolated.
  • the invention includes not only the use of the expression system for the genetic optimization of Q10 production.
  • the expression system can also be used to genetically engineer or optimize any other metabolic pathway in strains of the genus Sporidiobolus. Examples include the production of steroids, carotenes, terpenes and polyunsaturated fatty acids (omega fatty acids).
  • the expression system according to the invention is also suitable for heterologous or homologous production of proteins in recombinant form. These recombinantly produced proteins find use, for. B. as therapeutic proteins in medicine, in biotransformations in the enzyme-catalyzed organic-chemical synthesis or as technical enzymes in various industrial applications. As an example Games are called the detergent, paper, food or animal feed industries.
  • the strain Sporidiobolus ruineniae Sr-1 (deposited with the DSMZ German Collection of Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig under the number DSM 15553) was used.
  • Antibiotic sensitivity tests were performed with the antibiotic G418 (also known under the brand name Geneticin ®; Invitrogen), hygromycin B (Calbiochem) and glyphosate (N- (phosphonomethyl) - Glycine, Sigma, known as herbicide under the trade name RoundUp ").
  • G418 Selection conditions for G418: YNB plates with a G418 concentration of 50 ⁇ g / ml, 100 ⁇ g / ml, 150 ⁇ g / ml and 200 ⁇ g / ml were prepared, Sr-1 was plated thereon and incubated at 28 ° C. Compared with control plates without G418, a significantly reduced growth was observed at a G418 concentration of 100 ⁇ g / ml and no growth of the strain Sr-1 at 200 ⁇ g / ml. For transformation experiments, YNB plates with a G418 concentration of 100 ⁇ g / ml and 150 ⁇ g / ml were used as the selective medium.
  • YNB plates having a hygromycin B concentration of 40 ⁇ g / ml, 60 ⁇ g / ml, 80 ⁇ g / ml and 100 ⁇ g / ml were prepared, Sr-1 was plated thereon and incubated at 28 ° C. Compared with control plates without hygro- mycin B, a significantly reduced growth was observed at a hygromycin B concentration of 60 ⁇ g / ml and no growth of the strain Sr-1 at 100 ⁇ g / ml. For transformation experiments, YNB plates with a hygromycin B concentration of 80 ⁇ g / ml and 100 ⁇ g / ml were used as the selective medium.
  • glyphosate concentration 1 mg / ml, 1.25 mg / ml, 1.5 mg / ml 1.75 mg / ml and 2 mg / ml, Sr-1 on top plated and incubated at 28 ° C. Compared to control plates without glyphosate, a markedly reduced growth was observed at a glyphosate concentration of 1.25 mg / ml and no growth of the strain Sr-1 at 1.75 mg / ml.
  • Sr-1 was cultured in YPD liquid medium for 2 days as described in Example 1. The Sr-1 cells were then isolated by centrifugation (10 min 3000 rpm, Heraeus Megafuge 1.0R). DNA was isolated from the Sr-1 cells using the Qiagen Genomic Tip kit for genomic DNA extraction.
  • rDNA ribosomal DNA
  • DNA sequences of short fragments of S. ruineniae rDNA are stored in gene databases under accession numbers abO21696.gb_pl and af070438.gb_pl. These DNA sequences were used to make sequence comparisons with the known rDNS region of the baker's yeast Saccharomyces cerevisiae (gene database accession number scylrl54c .gb_pll). The computer program "Wisconsin Package Version 10.3, Accelrys Inc.” was used for the search and analysis of DNA sequences. used. Based on this comparison, the PCR primers SrRDIf (SEQ ID NO: 4) and SrRD2r (SEQ ID NO: 5) were selected whose DNA sequences in S. cerevisiae and S. ruineniae are identical.
  • the primers had the following sequences:
  • Primer SrRD1f 5 '-GCTTGTCTCAAAGATTAAGC-3' (SEQ ID NO: 4)
  • Primer SrRD2r 5 '-GGTCCGTGTTTCAAGACGGG-3' (SEQ ID NO: 5)
  • PCR reactions with the primers SrRDIf and SrRD2r with genomic DNA from S. ruineniae Sr-1 were carried out according to the prior art with a GenAmp PCR System 2400 from Applied Biosystems.
  • the Taq Core PCR kit (Qiagen) was used with the following PCR program: After incubation of the PCR mixture for 1 'at 94 ° C, 30 reaction cycles of l ' 94 ° C, 30 '' 5O ° C and 2, 5 '72 ° C and the reaction with an incubation for 5' at 72 ° C ended.
  • the resulting PCR product was purified by preparative agarose gel electrophoresis. The size of the DNA fragment formed was 3 kb.
  • the 3 kb DNA fragment was inserted into the vector PCR script
  • genomic DNA was isolated from the cells of three shake flask cultures (50 ml each YPD medium, 24 h, 140 rpm, 28 ° C.). For this purpose, the cells from the culture were first freeze-dried (lyophilizer Christ alpha 2-4) and the genomic DNA was isolated therefrom using the Qiagen "Genomic-tip" DNA isolation kit, following the instructions of the manufacturer. The yield was 100 ⁇ g of genomic DNA.
  • chromosomal gene bank 100 ⁇ g of chromosomal DNA from Sporidiobolus ruineniae Sr-1 were cut in a partial digestion with Sau 3A and fractionated by agarose gel electrophoresis.
  • the chromosomal DNA fragments were isolated in the size range from 1 to 20 kb and, according to the manufacturer's instructions, each cloned into Lambn phage pre-cut with Barn HI (Stratagene cloning system "Lambda ZAP Express") From 1 to 20 kb of DNA fraction, 2.5 x 10 6 phage / ⁇ g of vector DNA were obtained and phage were amplified by infection of E. coli strain XL-I Blue MRF '.
  • PCR amplifications were carried out according to the prior art: In a PCR reaction, 200 ng chromosomal Sporidiobolus ruineniae DNA were used in a 50 ⁇ l PCR reaction containing the buffer provided by the manufacturer and additionally 1.25 U Taq polymerase, 1, 25 mM MgCl 2 , 0.2 mM each of the four dNTPs (dATP, dCTP, cGTP, dTTP) and in each case 100 pmol of the primers srgapl and srgap2r.
  • the PCR product was purified by agarose gel electrophoresis, cloned into the vector PCR-Script SK (+) (Stratagene) and transformed into E. coli Top 10F '.
  • the plasmid was isolated from the culture of transformed E. coli. DNA sequence analysis confirmed that the cloned DNA fragment was the fragment of the GAPDH gene from S. ruineniae.
  • the GAPDH-specific PCR fragment was excised by treatment with Not I and Eco RI, isolated by agarose electrophoresis and labeled with the "AlkPhos Direct" DNA labeling kit. Amersham Biosciences), as recommended by the manufacturer.
  • the chromosomal gene bank of Sporidiobolus ruineniae Sr-I described in Example 3 was used.
  • the screening for the chromosomal GAPDH gene was carried out according to the prior art. In a first round of screening, cells of E. coli XL-1 Blue MRF 'were first cultured on 6 petri dishes and then infected with 50,000 phages of the Genbank per petri dish. After incubation at 37 ° C overnight, the newly formed phage were transferred to nylon filters (Hybond-N + , Amersham Biosciences). The filters were then hybridized to the labeled GAPDH-specific probe (see Section A) according to the manufacturer's recommendations. The hybridization temperature was 6O ° C.
  • the washing temperature was 6O ° C.
  • the detection of positive clones was carried out by chemiluminescence (CDP-Star detection kit from Amersham Biosciences) and autoradiography. 18 positive clones were picked. These were purified by repeating the screening procedure. After three rounds of singling were at the
  • the start ATG codon of the GAPDH gene was determined by the expert's 5'-RACE analysis (Generacer Kit from Invitrogen). The test instructions provided by the manufacturer were followed. They involved in the production of the cDNA required RNA was isolated with the "peqGOLD TriFast" reagent (PeqLab) The gene-specific primer srgaplOR, which was furthermore required for the PCR reaction, had the following sequence:
  • the corresponding promoter regions are thus bp 1 - 1050 in clone Gap5 (SEQ ID NO: 1), or bp 1-790 in clone Gap18 (SEQ ID NO: 2).
  • As terminator region the DNA sequence bp 2997-3500 in clone Gap5 (SEQ ID NO: 1) was determined.
  • the GAPDH gene from Phaffia rhodozyma is known (gene designation in the GCG gene database: PRGPDGENE .gb_pl) and its use for the transfomation of Phaffia rhodozyma is described (Wery et al., Biotechnology Techniques (1998) 12: 399-405).
  • the G418 resistance gene from the E. coli transposon Tn903 is contained in the Saccharomyces cerevisiae expression vector.
  • pUG6 described in Gueldener et al., Nucleic Acids Res. (1996) 24: 2519-2524; the DNA sequence is stored in the GCG gene database under accession number AF298793).
  • Promoter and terminator of the GAPDH gene were amplified by PCR
  • the primers prgapl and prgap2r were used.
  • the primers prgap3 and prgap4r were used to isolate the terminator.
  • the primers had the following DNA sequences:
  • PCR reactions with genomic P. rhodozyma DNA and the prgapl and prgap2r, prgap3 and prgap4r primers were carried out as described in Example 2. The following PCR program was used: After incubation of the PCR mixture for 1 'at 94 ° C 30 reaction cycles of 1' 94 ° C, 30 '' 5O ° C and 30 '' 72 ° C were carried out and the reaction with incubated for 5 'at 72 ° C. The resulting PCR products were analyzed by agarose gel electrophoresis. The size of the promoter DNA fragment (primer prgapl and prgap2r) was 0.7 kb. The size of the terminator DNA fragment (primer prgap3 and prgap4r) was 0.4 kb. The two DNA fragments were purified by preparative agarose gel electrophoresis.
  • the isolated promoter DNA fragment was digested with Hind III (cleavage was in primer prgapl) and Barn HI
  • the isolated terminator DNA fragment was cloned into the PCR Script Vector (Stratagene). This resulted in the 3.4 kb vector pPRgap-term.
  • a clone was selected in which the Bam HI cleavage site was located from the prgap4r primer next to the Bam HI cleavage site of the PCR script vector.
  • Vector pPRgap-pro was cut with Sac II and Bam HI and the linearized vector was dephosphorylated.
  • Vector pPRgap-term was cut with Sac II and Bam HI and the resulting 0.4 kb terminator fragment isolated by preparative agarose gel electrophoresis.
  • the pPRgap-pro vector fragment and the terminator fragment were ligated and transformed into E. coli Top10F '(Invitrogen). The result was the 3.8 kb vector pPRgap.
  • Vector pPRgap was first cut with Sac II and the overhanging end filled in by reaction with Pfu DNA polymerase (Stratagene). Then the vector was cut with Nco I. The linearized 3.8 kb vector fragment was subsequently dephosphorylated.
  • the G4l8 resistance gene was excised from the pUG6 vector by digestion with Nco I and Sca I as a 0.8 kb fragment. and isolated by preparative agarose gel electrophoresis.
  • the linearized 3.8 kb pPRgap vector fragment was ligated with the 0.8 kb G418 resistance gene fragment and transformed into E. coli Top 10F '. This resulted in the 4.6 kb vector pprG418, in which the G418 resistance gene is functionally linked to the GapDH promoter and terminator from Phaffia rhodozyma (FIG. 2).
  • Vector pprG418 with the G418 selection marker gene was cut with AfI II and Barn HI.
  • the resulting 1.9 kb DNA fragment containing the expression cassette consisting of P. rhodocyma GapDH promoter, G418 resistance gene and P. rhodozyma GapDH terminator was isolated by agarose gel electrophoresis.
  • Vector pSrrDNA was cut with AfI II and Bgl II, which was thereby isolated linearized 5.9 kb vector fragment by agarose gel electrophoresis and dephosphorylated with alkaline phosphatase.
  • pG418Sr is a novel expression vector suitable for the transformation of Sporidiobolu ⁇ ruineniae and for the selection of G418-resistant transformants.
  • the 3.8 kb vector fragment described in Example 3 was used, which was prepared by digestion with Sac II Pfu DNA polymerase, digestion with Nco I and dephosphorylation had been made.
  • Hygromycin resistance gene The sequence of the hygromycin resistance gene from E. coli is stored in the GCG database under the file "ECAPH4" (Kaster et al., Nucleic Acids Res. (1983) 11, 6895-6911) Resistance gene was prepared from E. coli DNA by PCR with Pfu DNA polymerase (Stratagene) and the primers hphlf and hph2r, and hphlf and hph2r primers had the following DNA sequence:
  • the 3.8 kb pPRgap vector fragment was ligated with the 1 kb DNA fragment of the hygromycin resistance gene and transformed into E. coli Top 10F '. This gave rise to the 4.8 kb vector pprHPH (FIG. 4).
  • Vector pprHPH with the hygromycin B selection marker gene was cut with AfI II and Barn HI.
  • the resulting 2.1 kb DNA fragment containing the expression cassette consisting of P. rhodozyma GapDH promoter, hygromycin B resistance gene and P. rhodozyma GapDH terminator was isolated by agarose gel electrophoresis.
  • Vector pSrrDNA was cut with AfI II and Bgl II, which was thereby isolated linearized 5.9 kb vector fragment by agarose gel electrophoresis and dephosphorylated with alkaline phosphatase.
  • the 2.1 kb DNA fragment from the vector pprG418 (containing the expression cassette with the hygromycin B resistance gene) was ligated with the 5.9 kb pSrrDNA vector fragment and transformed into E. coli ToplO F ' (Invitrogen). This resulted in the 8 kb expression vector pHPHsr (FIG. 5).
  • pHPHsr is a novel expression vector suitable for the transformation of Sporidiobulus ruineniae and for the selection of hygromycin B-resistant transformants.
  • Vector pprG418 (see 5th example) was cut with AfI II and Nco I to remove the P. rhodozyma GAPDH promoter. This resulted in a 3.9 kb vector fragment which was isolated by agarose gel electrophoresis and dephosphorylated with alkaline phosphatase.
  • Genomic DNA of the S. ruineniae GAPDH clone Gap5 was used in a PCR reaction (Taq DNA polymerase, Qiagen Taq Core Kit) together with the primers srgap5 and srgap6.
  • srgap5 forward
  • srgap6 reverse
  • the two primers had the following sequences:
  • Primer srgap5 5'-GATCTTAAGGAAGAGTCGCTCACTC-3 'SEQ ID NO: 15
  • the conditions for the PCR reaction were: 1 '94 ° C, followed by 30 cycles of 30 "94 ° C, 30" 52 ° C, 60' 72 ° C, and finally 5 '72 ° C.
  • the 1 kb formed in the PCR reaction DNA fragment of the GAPDH promoter was isolated and cut with AfI II and Nco I.
  • Vector pGapPromG418 was cut with Not I and Barn HI, removing the 0.4 kb P. rhodozyma GAPDH terminator fragment.
  • the 4.5 kb vector fragment was isolated by agarose gel electrophoresis and dephosphorylated by phosphatase treatment.
  • Genomic DNA of the S. ruineniae GAPDH clone Gap5 was used in a PCR reaction (Taq DNA polymerase, Qiagen Taq Core Kit) together with the primers srgapllf and srgapl2r, srgapllf contains a Not I site for linkage with the 3 'end of the G418 resistance gene and contains the sequence after the first possible stop codon of the GAPDH gene (see 4th example). srgapl2r contains a Bam HI site and is derived from the sequenced 3 'end of the Gap5 clone.
  • the two primers had the following sequence:
  • Primer srgapl2r 5'-TATGGATCCCAGGGCTGATCGCTCGTTGC-3 'SEQ ID NO: 18
  • the conditions for the PCR reaction were: 1 '94 ° C, followed by 30 cycles of 30''94 ° C, 30''52 ° C, 30''72 ° C and finally 5' 72 ° C.
  • the 0.42 kb DNA fragment of the GAPDH promoter formed in the PCR reaction was isolated and cut with Not I and Bam HI.
  • the 4.5 kb Not I / Bam HI cut pGapPromG418 vector fragment and the 0.42 kb Not I / Bam HI cut GAPDH terminator fragment were ligated and transformed into E. coli Top 10F '.
  • the 4.9 kb vector pG418G5 (FIG. 6) was created, in which the promoter and terminator of the Gap5 GAPDH clone are functionally linked to the G418 resistance gene.
  • Genomic DNA of the S. ruineniae GAPDH clone Gapl8 was used in a PCR reaction (Taq DNA polymerase, Qiagen Taq Core Kit, see vector pG418G5) together with the primers srgap13f and srgap15r. srgap13f binds to the beginning of the promoter sequence, srgapl5r at its end.
  • the two primers had the following sequences:
  • srgapl5r 5'-TATCCATGGTGTGGTTGATCGAGTAG-3 '(SEQ ID NO: 20)
  • the 0.8 kb Gap18 promoter fragment formed in the PCR reaction was gel isolated and cut with AfI II and Nco I.
  • Vector pG418G5 was cut with AfI II and Nco I and the 3.9 kb vector fragment gel isolated and dephosphorylated.
  • the G418 expression cassette was excised by digestion with Xma I and Bsp EI as a 2.1 kb DNA fragment and isolated by agarose gel electrophoresis.
  • Vector pSrrDNA was cut with Xma I, the 5.8 kb vector fragment was isolated by agarose gel electrophoresis and dephosphorylated. The two DNA fragments were ligated and transformed into E. coli Top 10F '. The result was the 7.9 kb vector pG418G18R (FIG. 8).
  • pG418G18R is a novel expression vector suitable for the transformation of yeasts of the genus Sporidiobolus.
  • Cells from S. ruineniae strain Sr-1 were prepared in a pre-culture in YPD medium (28 ° C., 140 rpm, 2 days' growth) as described in Example 1.
  • the preculture was used to inoculate a daily culture of 200 ml YPD medium to a cell density OD 600nm of 0.2.
  • the daily culture was then incubated at 28 ° C. and 140 rpm until a cell density OD 600 nm of 1.0-1.5 was reached.
  • the cells were then harvested by centrifugation (10 min 3000 rpm, Heraeus Megafuge 1.0R).
  • the cell pellet was suspended in 40 ml of DTT buffer (100 mM lithium acetate, 10 mM Tris-HCl, pH 7.5, 10 mM dithiothreitol, 0.6 M mannitol) and incubated for 15 min at 28 ° C and 140 rpm. Thereafter, the cells were isolated by centrifugation and the cell pellet washed twice with 200 ml of ice-cold 0.9 M mannitol and the cell pellet finally taken up in 1 ml of 0.9 M mannitol. The cells thus prepared were used for transformation by electroporation.
  • the transformation mixture was admixed with 1 ml of YNB medium and incubated overnight at 28 ° C. with gentle shaking.
  • the cells were then isolated by centrifugation (Eppendorf microcentrifuge 2 min 13,000 rpm), taken up in 1 ml of YNB medium and plated out in aliquots of 0.25 ml each on 4 selective agar plates.
  • Selective agar plates each contained YNB medium with the appropriate antibiotic.
  • G418 selection the agar plates contained G418 in a concentration of 100-150 ⁇ g / ml (depending on the respective antibiotic batch).
  • Hygromycin selection contained the agar plates Hygromycin B in a concentration of 60 - 100 ug / ml (depending on the respective antibiotic lot).
  • transformants plated on selective plates were incubated at 28 ° C. Colonies of antibiotic-resistant transformants were observed after an incubation period of 5 to 10 days.
  • Obtained transformants were first inoculated onto selective plates and incubated at 28 ° C to confirm the expression of the antibiotic-resistant phenotype. Of the fastest growing transfoments, selective smears were then made on selective plates.
  • Typical transformation rates from transformation experiments with the expression constructs pG418Sr, pHPHsr and pG418G18R are given in Table 1. As shown in Tab. 1, significantly higher transformation rates were achieved with the homologous Sporidiobolus GAPDH promoter (construct pG418G18R) than with the heterologous P. rhodozyma promoter (constructs pG418Sr, pHPHsr). To control the background, transformation approaches without DNA were carried out in an equivalent manner. In doing so, observed only in the case of G418 selection background clones.
  • Biosynthesis gene can be used to improve Q10 production.
  • Transformants of Sporidiobolus ruineniae were analyzed by PCR and Southern blot analysis for the integration of plasmids pG418Sr, pHPHsr, and pG418G18R, respectively. Genomic DNA was isolated from various transformants with the plasmids pG418Sr, pG418G18R, pHPHsr and as control of the strain Sr-1 after culturing in YPD medium (see Example 1) as described in Example 2.
  • Plasmids pG418Sr and pG418G18R Of the G418-resistant strains, 1 ⁇ g each of the genomic DNA and 50 ng of the plasmid pG418Sr with Nco I and Not I, then separated by agarose gel electrophoresis, blotted onto nylon filters (Hybond +, Amersham Biosciences) and hybridized with a DNA probe specific for the G418 resistance gene.
  • the DNA probe was prepared by cutting the plasmid pG418Sr with Nco I and Not I and isolating the resultant 0.8 kb DNA fragment (containing the G418 resistance gene) by preparative gel electrophoresis.
  • the 0.8 kb G418-specific DNA fragment was labeled according to the manufacturer's instructions with the AlkPhos DNA labeling kit from Amersham Biosciences.
  • the hybridization temperature for DNA spiked on nylon filters (Hybond +, Amersham Biosciences) with the labeled DNA probe was 60 ° C.
  • Hybridized DNA probe detection was carried out using the Amersham Biosciences "CDP Star Detection Kit", which complied with the Southernblot conditions described in the technical literature and by the manufacturer, and was evaluated by autoradiography In this case, the 0.8 kb G418-specific DNA fragment could only be detected in the transformants, but not in the Sr-I wild-type strain.
  • Plasmid pHPHsr Genomic DNA of hygromycin resistant transformants (200 ng each) and S. ruineniae Sr-I (200 ng, negative control) and pHPHsr plasmid DNA (50 ng, positive control) were used in PCR reactions (Taq Core Kit, Qiagen) with the primers hphlf (SEQ ID NO: 13) and hph2r (SEQ ID NO: 14). The conditions of the PCR reaction were: 1 '94 ° C followed by 30 cycles of 30' '94 ° C, 30' '55 ° C, 1'
  • Sporidiobolus ruineniae Sr-I was transformed with the expression vectors pG418Sr and pG418G18R as described in Example 8. Selected clones of transformation were cultured in YPG medium as described in Example 1. RNA from the cells of the culture was isolated with the "peqGOLD TriFast" reagent (PeqLab) according to the manufacturer's instructions RNA of the heterologously expressed G418 resistance gene was synthesized by reverse transcription combined with a PCR reaction (so-called RT-PCR). was detected as cDNA and the "SuperScript TM II Reverse Transcriptase" RT-PCR cloning kit from Invitrogen was used. RNA was first treated with DNase I to remove any remaining DNA residues.
  • RNA 500 ng of the RNA thus obtained were then used for the RT-PCR and followed the manufacturer's protocol for the RT-PCR cloning kit.
  • the cDNA obtained in this way was used in PCR reactions (Taq Core Kit, Qiagen) with the primers Greslf and Gres2r to detect the G418 resistance gene.
  • the primers Greslf and Gres2r originated from the 5 'and 3' ends, respectively, of the 0.8 kb G418 resistance gene (see 5th example) and had the following sequences: Primer Greslf:
  • Gres2r 5'-TTAGAAAAACTCATCGAGCATC-3 '(SEQ ID NO: 22).
  • RT-PCR reactions were carried out with RNA samples isolated from the wild-type strain S. ruineniae Sr-I and from G418-resistant clones of S. ruineniae transformation with the expression vectors pG418Sr and pG418G18R, respectively.
  • the cDNA products from the RT-PCR were analyzed by agarose gel electrophoresis.
  • the expected 0.8 kb cDNA fragment could be detected, but not in RNA from nontransformed S. ruineniae Sr-I cells.
  • G418-resistant transformants of S. ruineniae strain Sr-I were purified on G418-selective YNB plates. Purified strains were used for cultivation in shake flasks. Legal media were YNB medium (non-selective) and YNB medium with G418 (selective). Growth conditions were 28 ° C on an orbital shaker (Infors, 140 rpm). Cell growth was measured by photometric determination of the cell density OD at 600 nm. The control strain used was untransformed S. ruineniae Sr-I. The result is shown in Tab. 2 (cell growth after six days of cultivation). While everyone
  • DPS gene Isolation of the decaprenyl diphosphate synthase gene (DPS gene) from Rhodotorula minuta.
  • the DNA sequence DPS gene from Rhodotorula minuta is disclosed in EP 1336657 A, SEQ ID NO: 1.
  • the strain Rhodotorula minuta DSM 3016 (available from the DSMZ German Collection of Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig) was cultured at 28 ° C. in YPD medium (see Example 1) and genomic DNA was isolated from the resulting cells (see 2nd example).
  • the DPS gene was isolated from genomic R. minuta DNA, according to the prior art, by PCR (Qiagen Taq Core Kit) with the primers rmlf and rm2r as a 1.6 kb DNA fragment.
  • the primers rmlf and rm2r had the following DNA sequences:
  • Primer rm2r 5'-TATGCGGCCGCTACTTTGTTCGGTTGAGCAC-3 '(SEQ ID NO: 24)
  • the PCR generated DNA fragment of the DPS gene was purified by preparative agarose gel electrophoresis and cut with Ex HI and Not I (the cleavage sites were contained in the primers rmlf and rm2r) and in the vector cut with Nco I and Not I pG418G5 (see 7th example).
  • the result was the 5.8 kb vector pDPSrmGap (FIG. 9), in which the R. minuta DPS gene had been cloned behind the S. ruineniae GAPDH promoter.
  • the strain Sr220-159 disclosed in DE 10317877, 5th example was used.
  • the transformation with the vector pDPSrm linearized by digestion with Bsr GI was carried out as described in the 8th example.
  • 100 G418-resistant transformants were isolated, purified and analyzed for Q10 production by cultivation in a shake flask, as described in DE 10317877, 5th example. From the master comparison, the recom- binary strain DPSrm-65 was selected for the fermentation analysis.

Abstract

The invention relates to an expression system comprised of a host organism of the species Sporidiobolus and of a DNA vector of the one selection marker gene, which codes for a protein that, after transformation of the host organism, enables a selection of positive transformants and is selected from the group consisting of antibiotic-resistant genes, the genes, which complement an auxotrophy of the host organism, and the genes, which code for a protein, which are capable of entering a chromophoric reaction, whereby the expression of the selection marker gene is controlled by at least one genetic regulation element active in the host organism. The invention is characterized in that the DNA vector contains a gene to be expressed, which codes for a protein, whereby the gene to be expressed is a gene from the Q-10 biosynthetic pathway.

Description

Metabolie Engineering der QlO -Produktion in Hefen der Gattung SporidiobolusMetabolism engineering of QlO production in yeasts of the genus Sporidiobolus
Die Erfindung betrifft ein System zur Expression von Genen aus dem Q10-Biosyntheseweg in Hefen der Gattung Sporidiobolus .The invention relates to a system for the expression of genes from the Q10 biosynthesis pathway in yeasts of the genus Sporidiobolus.
Stämme der Art Sporidiobolus ruineniae sind bekannt dafür, dass sie in der Lage sind, natürlicherweise große Mengen des wirtschaftlich wertvollen Naturstoffs Coenzym Q10 (auch Ubi- chinon genannt, in der Folge als Q10 bezeichnet) zu produzie- ren (siehe z.B. US 4070244, EP 1469078 A). Jedoch sind die er- zielten Q10 Ausbeuten für eine industrielle Nutzung noch zu niedrig.Strains of the species Sporidiobolus ruineniae are known to be capable of naturally producing large quantities of the economically valuable natural product coenzyme Q10 (also called ubiquinone, hereinafter referred to as Q10) (see, for example, US Pat. No. 4,070,244, EP 1469078 A). However, the achieved Q10 yields are still too low for industrial use.
Eine Möglichkeit, die Q10 Ausbeuten zu erhöhen, bietet ein Me- tabolie Engineering von Stämmen der Gattung Sporidiobolus.One way to increase Q10 yields is metabolic engineering of strains of the genus Sporidiobolus.
Metabolie Engineering ist dabei in einer allgemeinen Form so definiert, dass ein genetisches Expressionssystem dazu verwen- det wird, die Ausbeute eines gewünschten Stoffwechselproduktes in einem zur Produktion verwendeten Wirtsorganismus gezielt zu erhöhen. Dies kann in einer Ausführung dadurch bewerkstelligt werden, dass Enzyme eines Stoffwechselweges in rekombinanter Form vermehrt produziert und dadurch erhöhte Ausbeuten des Produktes aus dem Stoffwechselweg erzielt werden. In einer an- deren Ausführung wird die Produktion einzelner Enzyme eines Stoffwechselweges (z.B. negative Regulatoren), bzw. von Enzy- men konkurrierender Stoffwechselwege gezielt vermindert, bzw. unterdrückt, um die Produktionsausbeute des gewünschten Stoff- Wechselproduktes zu erhöhen.In this case, metabolite engineering is defined in a general form such that a genetic expression system is used to purposefully increase the yield of a desired metabolite in a host organism used for production. This can be done in one embodiment by the fact that enzymes of a metabolic pathway in recombinant form increasingly produced and thereby increased yields of the product are obtained from the metabolic pathway. In another embodiment, the production of individual enzymes of a metabolic pathway (for example negative regulators) or of enzymes of competing metabolic pathways is purposefully reduced or suppressed in order to increase the production yield of the desired metabolic product.
Der für das Metabolie Engineering verwendete Wirtsorganismus wird dabei üblicherweise unter solchen ausgewählt werden, aus denen sich das gewünschte Stoffwechselprodukt in der richtigen Form und bereits mit natürlicherweise hohen Ausbeuten gewinnen lässt. Für das Metabolie Engineering des Q10-Stoffwechsels bieten sich Stämme der Gattung Sporidiobolus an. Voraussetzung für das Metabolie Engineering des Q10- Stoffwechselweges in Stämmen der Gattung Sporidiobolus ist al- so ein genetisches Expressionssystem.The host organism used for the metabolization engineering will usually be selected from among those from which the desired metabolite can be obtained in the correct form and already with naturally high yields. Strains of the genus Sporidiobolus are suitable for the metabolism engineering of the Q10 metabolism. A prerequisite for the metabolism engineering of the Q10 metabolic pathway in strains of the genus Sporidiobolus is thus a genetic expression system.
Genetische Expressionssysteme sind für verschiedene prokaryon- tische und eukaryontische Mikroorganismen bekannt. Diese Sys- teme zur Genexpression sind dadurch charakterisiert, dass sie dazu verwendet werden können, einzelne Proteine in rekombinan- ter Form zu produzieren. Wie bereits erwähnt, wird beim Meta- bolic Engineering jedoch bevorzugt ein Produktionswirt mit na- türlicherweise bereits relativ hohen Ausbeuten ausgewählt und es kann im Regelfall nicht auf ein bereits verfügbares geneti- sches Expressionssystem zurückgegriffen werden. Es muss viel- mehr ein genetisches Expressionssystem zur Stammverbesserung durch Metabolie Engineering erst neu entwickelt werden.Genetic expression systems are known for various prokaryotic and eukaryotic microorganisms. These gene expression systems are characterized by the fact that they can be used to produce individual proteins in recombinant form. However, as already mentioned, metabolic engineering preferably selects a production host with, of course, already relatively high yields, and as a rule it is not possible to resort to an already available genetic expression system. Instead, a genetic expression system for strain improvement by metabolism engineering has to be newly developed.
Beispiele bekannter prokaryontischer Expressionssysteme sind Escherichia coli und Bacillus subtilis. Die Methoden zur gene- tischen Manipulation dieser Organismen sind wohl etabliert. Spezifische Nachteile dieser Expressionssysteme sind jedoch die oft niedrigen Produktionsraten von enzymatisch aktivem Protein, bedingt durch die Faltung der produzierten Proteine in nicht aktiver Form oder durch das Fehlen der posttranslati- onalen Modifikation der exprimierten Proteine (z.B. fehlender Einbau prosthetischer Gruppen oder fehlende Glykosilierung).Examples of known prokaryotic expression systems are Escherichia coli and Bacillus subtilis. The methods for the genetic manipulation of these organisms are well established. However, specific disadvantages of these expression systems are the often low production rates of enzymatically active protein due to the folding of the produced proteins in non-active form or the lack of post-translational modification of the expressed proteins (e.g., lack of incorporation of prosthetic groups or lack of glycosylation).
Diese Nachteile prokaryontischer Expressionssysteme können durch Verwendung eukaryontischer Expressionssysteme umgangen werden. Zu den eukaryontisehen Expressionssystemen mit breiter Anwendung gehören Zellkultursysteme sowohl von Säugerzellen wie auch Insektenzellen sowie eukaryontische Mikroorganismen wie Hefen oder filamentöse Pilze. Während bei diesen Expressi- onssystemen das zu exprimierende Protein in der Regel in akti- ver Form gebildet wird, ist die Produktionsrate vor allem bei der Expression heterologer Proteine in vielen Fällen zu nied- rig. Als Beispiel hierfür kann die Expression in den Hefen Saccharomyces cerevisiae oder Pichia pastoris dienen, bzw. bei filamentösen Pilzen der Gattung Aspergillus. Filamentöse Pilze bereiten dazu oft Probleme bei der fermentativen Proteinpro- duktion.These disadvantages of prokaryotic expression systems can be circumvented by using eukaryotic expression systems. Common eukaryotic expression systems include cell culture systems of both mammalian cells and insect cells, as well as eukaryotic microorganisms such as yeasts or filamentous fungi. While in these expression systems the protein to be expressed is generally formed in active form, the production rate is in many cases too low, in particular in the expression of heterologous proteins. As an example, the expression in the yeasts Saccharomyces cerevisiae or Pichia pastoris serve, or in filamentous fungi of the genus Aspergillus. Filamentous mushrooms often cause problems in fermentative protein production.
Aus den genannten Gründen eignen sich die etablierten prokary- ontischen und eukaryontischen Expressionssysteme oft nicht zur gentechnischen Optimierung eines Stoffwechselweges durch Meta- bolie Engineering. Speziell, was die Produktion von Q10 be- trifft, wird dieses Ubichinon z. B. in E. coli (Q8) , Bäckerhe- fe (Q6) , Pichia pastoris (Q8) oder Bacillus (Q8) nicht in der richtigen Form produziert, so dass eine gentechnische Optimie- rung mit großem Aufwand- verbunden ist, da erst der Stoffwech- selweg zum Q10 etabliert werden muss.For the reasons mentioned above, the established prokaryotic and eukaryotic expression systems are often not suitable for the genetic optimization of a metabolic pathway by metabolic engineering. Specifically, as far as the production of Q10 is concerned, this ubiquinone z. B. in E. coli (Q8), baker's yeast (Q6), Pichia pastoris (Q8) or Bacillus (Q8) is not produced in the correct form, so that a genetic optimization with great effort connected, since only the metabolic pathway to the Q10 has to be established.
Basidiomycete Hefen der Gattung Sporidiobolus wurden schon früh als gute Produzenten von Q10 beschrieben (US 4070244) . Von einer technischen Nutzung wurde dagegen nicht berichtet. EP 1469078 (entspricht der US Anmeldung mit der Serial Number 10/803841) offenbart ein Verfahren zur Verbesserung der Q10- Produktion in Sporidiobolus durch klassische Stammoptimierung mittels Mutagenese und Selektion und anschließende Fermentati- on. Dieses Verfahren ist dazu geeignet, Sporidiobolus Stämme mit einer Q10-Produktivität von 1,38 mg/g Trockenbiomasse oder mehr herzustellen.Basidiomycete yeasts of the genus Sporidiobolus have been described early as good producers of Q10 (US 4070244). By contrast, no technical use was reported. EP 1469078 (corresponding to US Application Serial Number 10/803841) discloses a method for improving Q10 production in Sporidiobolus by classical strain optimization by means of mutagenesis and selection and subsequent fermentation. This method is suitable for producing Sporidiobolus strains with a Q10 productivity of 1.38 mg / g dry biomass or more.
Speziell die dort berichtet guten Fermentationseigenschaften machen S. ruineniae nicht nur zu einem interessanten Wirtsor- ganismus für die Q10 -Produktion, sondern generell für das Me- tabolie Engineering und auch für die rekombinante Proteinex- pression.Specifically, the good fermentation properties reported there make S. ruineniae not only an interesting host organism for Q10 production, but generally for metabolite engineering and also for recombinant protein expression.
Hefen der Gattung Sporidiobolus gehören zu den höher entwi- ckelten Pilzen aus der Klasse der Basidiomyceten. Das erfin- dungsgemäße Sporidiobolus Expressionssystem eignet sich daher neben dem Metabolie Engineering auch zur Produktion von Prote- inen, die mit anderen Expressionssystemen nicht oder nur mit schlechten Ausbeuten produziert werden können. Über gentechnische Arbeiten mit Pilzen und Hefen aus der Klas- se der Basidiomyceten ist nur wenig bekannt. Für ein Sporidio- boluε Expressionssystem liefert der Stand der Technik keine Anleitung zum technischen Handeln. Wery et al . (Biotechnology Techniques (1998) 121 399-405) z. B. berichten über ein Ex- pressionssystem für die Hefe Phaffia rhodozyma (synonym auch als Xanthophyllomyces dendrorhous bezeichnet) , die zur mikro- biellen Produktion von Astaxanthin (einem Carotin) diskutiert wird. Dort werden zur Selektion von Transformanten geeignete DNS-Vektoren beschrieben. Es werden vergleichsweise hoheYeasts of the genus Sporidiobolus belong to the higher developed fungi of the genus Basidiomycetes. The sporidiobolus expression system according to the invention is therefore suitable not only for metabolism engineering but also for the production of proteins which can not be produced with other expression systems or only with poor yields. Little is known about the genetic engineering of fungi and yeasts of the Basidiomycete genus. For a sporidobolysis expression system, the prior art does not provide instructions for technical action. Wery et al. (Biotechnology Techniques (1998) 12 1 399-405) z. B. report an expression system for the yeast Phaffia rhodozyma (synonymously also called Xanthophyllomyces dendrorhous), which is discussed for the microbial production of astaxanthin (a carotene). There, suitable DNA vectors are described for the selection of transformants. It will be comparatively high
Transformationsraten von >1000 Transformanten/μg Vektor-DNS erzielt. Der Nutzen des Phaffia Expressionssystems zur Opti- mierung der Astaxanthinproduktion ist jedoch bisher gering. Nachteil des P. rhodozyma Expressionssystems ist auch, dass die Fermentation bei vergleichsweise niedrigen Temperaturen von 20°C durchgeführt werden muss, was die technische Umset- zung erschwert .Transformation rates of> 1000 transformants / μg vector DNA scored. However, the benefit of the Phaffia expression system for optimizing astaxanthin production has been low. Another disadvantage of the P. rhodozyma expression system is that the fermentation must be carried out at comparatively low temperatures of 20 ° C., which makes the technical implementation more difficult.
EP 0340986 B beschreibt die Verwendung des Enhancerproteins ADRl zur Verstärkung der heterologen, rekombinanten Proteinex- pression, auf Basis eines dem Stand der Technik entsprechenden genetischen Expressionssystems, in der Bäckerhefe Saccharomy- ces cerevisiae, einer Hefe aus der Klasse der Ascomyceten. Der Enhancerfunktion von ADRl wird eine allgemeine Gültigkeit zu- geordnet, so auch zur Verstärkung der heterologen Genexpressi- on in Hefen der Gattung Sporidiobolus. Der Fachmann erhält aus dieser Erfindung jedoch keine Anleitung zum Handeln, um ein genetisches Expressionssystem für Stämme der Gattung Sporido- bolus zu entwickeln und wie dieses zur Verbesserung der Q10 Produktion eingesetzt werden könnte. Weder ist ein ADRl-Gen aus Sporidiobolus bekannt noch wird offenbart, wie es isoliert werden könnte. Auch werden keine in Sporidiobolus aktiven ge- netischen Regulationselemente (Promotoren, Terminatoren) of- fenbart. Von den beschriebenen Expressionsvektoren und der Transformationsmethode ist nicht bekannt, ob sie für Sporidio- bolus geeignet sind. Vielmehr erwartet der Fachmann, dass die Übertragung eines für Hefen aus der Klasse der Ascomyceten entwickelten genetischen Expressionssystems auf eine Hefe aus der Klasse der Basidiomyceten nicht möglich ist .EP 0340986 B describes the use of the enhancer protein ADRI for enhancing heterologous, recombinant protein expression, based on a prior art genetic expression system, in the baker's yeast Saccharomyces cerevisiae, a yeast from the class of the Ascomycetes. The enhancer function of ADRI is assigned a general validity, including to enhance heterologous gene expression in yeasts of the genus Sporidiobolus. However, the person skilled in the art will not receive instructions for action from this invention in order to develop a genetic expression system for strains of the genus Sporidobus and how this could be used to improve Q10 production. Neither is an ADR1 gene from Sporidiobolus known nor is it disclosed how it could be isolated. Also, no sporidiobolus active genetic regulatory elements (promoters, terminators) are disclosed. Of the described expression vectors and the transformation method it is not known whether they are suitable for Sporidio bolus. Rather, the skilled artisan expects the transfer of one for yeasts from the class of ascomycetes developed genetic expression system on a yeast from the class of Basidiomycetes is not possible.
Für verschiedene filamentöse Pilze aus der Klasse der Basidio- myceten wurden DNS-Vektoren beschrieben, die zur Transformati- on und Selektion von Transformanten geeignet sind. EP 1066393 z. B. beschreibt ein Verfahren zur Transformation von Trametes versicolor und die Verwendung dieses Expressionssystems für die Produktion des Enzyms Laccase für technische Anwendungen.For various filamentous fungi of the basidiomycete genus, DNA vectors suitable for the transformation and selection of transformants have been described. EP 1066393 z. B. describes a method for the transformation of Trametes versicolor and the use of this expression system for the production of the enzyme laccase for industrial applications.
Für Phanerochaete chrysosporium wurde ebenfalls ein Verfahren zur genetischen Transformation beschrieben (M. Alic et al. (1991) Curr. Genet . 19, 491 -494), ebenso für Pleurotus ostreatus (K. Yanai et al . (1996) Biosci. Biotech. Biochem. 60, 472 - 475) . US 5362640 beschreibt DNS-Vektoren für die Transformation des Basidiomyceten Coriolus hirsutus.Phanerochaete chrysosporium has also been described as a method of genetic transformation (Alic et al (1991) Curr Genet 19, 491-494), as well as Pleurotus ostreatus (Yanai, K., et al., (1996) Biosci Biotech. Biochem 60, 472-475). US 5362640 describes DNA vectors for the transformation of Basidiomyceten Coriolus hirsutus.
Die auf filamentösen Pilzen basierenden Expressionssysteme sind üblicherweise durch eine nur geringe Transformationsrate charakterisiert. Außerdem ist das Transformationsverfahren sehr aufwändig. Diese Expressionssysteme haben außerdem den Nachteil, dass die Fermentation im technischen Maßstab oft schwierig ist wegen des filamentösen Zellwachstums und hoher Viskosität der fermentierten Biomasse.The filamentous fungi-based expression systems are usually characterized by only a low transformation rate. In addition, the transformation process is very complex. These expression systems also have the disadvantage that the fermentation on an industrial scale is often difficult because of the filamentous cell growth and high viscosity of the fermented biomass.
Aus dem vorliegenden Stand der Technik konnte also eine Anlei- tung für ein Expressionssystem von Hefen der Gattung Sporidio- bolus nicht abgeleitet werden.An instruction for an expression system of yeasts of the genus Sporidio- bolus could therefore not be derived from the present state of the art.
Aufgabe der vorliegenden Erfindung war es, ein genetisches Ex- pressionssystem für Hefen der Gattung Sporidiobolus zur Verfü- gung zu stellen welches die Verbesserung der Produktion des wirtschaftlich wertvollen Stoffwechselproduktes Coenzym Q10 durch Metabolie Engineering ermöglicht.The object of the present invention was to provide a genetic expression system for yeasts of the genus Sporidiobolus which makes it possible to improve the production of the economically valuable metabolite coenzyme Q10 by metabolite engineering.
Die Aufgabe wird gelöst durch ein Expressionssystem bestehend aus einem Wirtsorganismus der Gattung Sporidiobolus und einem DNS-Vektor der ein Selektionsmarkergen enthält, welches für ein Protein kodiert das nach Transformation des Wirtsorganis- mus eine Selektion positiver Transformanten erlaubt und ausge- wählt ist aus der Gruppe der Antibiotikaresistenzgene, der Ge- ne, die eine Auxotrophie des Wirtsorganismus komplementieren und der Gene, die für ein Protein kodieren, die zu einer farb- gebenden Reaktion befähigt sind, wobei die Expression des Se- lektionsmarkergens durch mindestens ein im Wirtsorganismus ak- tives genetisches Regulationselement kontrolliert wird, da- durch gekennzeichnet, dass ein DNS-Vektor ein zu exprimieren- des Gen enthält, das für ein Protein kodiert, wobei das zu ex- primierende Gen ein Gen aus dem Q10-Biosyntheseweg ist und wo- bei die Expression des Gens aus dem Q10-Biosyntheseweg durch mindestens ein im Wirtsorganismus aktives genetisches Regula- tionselement kontrolliert wird.The object is achieved by an expression system consisting of a host organism of the genus Sporidiobolus and a DNA vector which contains a selection marker gene which is suitable for encodes a protein which after transformation of the host organism allows selection of positive transformants and is selected from the group of antibiotic resistance genes, the genes which complement an auxotrophy of the host organism and the genes which code for a protein that belong to a host in which the expression of the selection marker gene is controlled by at least one genetic regulatory element active in the host organism, characterized in that a DNA vector contains a gene to be expressed which codes for a protein in which the gene to be expressed is a gene from the Q10 biosynthesis pathway and in which the expression of the gene from the Q10 biosynthesis pathway is controlled by at least one genetic regulation element active in the host organism.
In einer bevorzugten Ausführung der Erfindung sind das Selek- tionsmarkergen und das Gen aus dem Q10-Biosyntheseweg zusammen auf einem DNS-Vektor enthalten, wobei die Expression der bei- den Gene durch jeweils mindestens ein im Wirtsorganismus akti- ves genetisches Regulationselement kontrolliert wird.In a preferred embodiment of the invention, the selection marker gene and the gene from the Q10 biosynthesis pathway are contained together on a DNA vector, the expression of the two genes being controlled by at least one genetic regulatory element active in the host organism.
Sind die beiden Gene auf verschiedenen DNS-Vektoren vorhanden, werden beide Vektoren gleichzeitig transformiert (Co- Transformation) .If the two genes are present on different DNA vectors, both vectors are transformed simultaneously (co-transformation).
Für das erfindungsgemäße Expressionssystem besonders bevorzug- te Wirtsorganismen sind Stämme der Art Sporidiobolus ruineni- ae.Particularly preferred host organisms for the expression system according to the invention are strains of the species Sporidiobolus ruineniae.
Insbesondere bevorzugt ist der Stamm Sporidiobolus ruineniaeParticularly preferred is the strain Sporidiobolus ruineniae
DSM 15553 (hinterlegt bei der DSMZ Deutschen Sammlung von Mik- roorganismen und Zellkulturen GmbH, D-38124 Braunschweig) .DSM 15553 (deposited with the DSMZ German Collection of Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig).
In einer weiteren bevorzugten Ausführung ist die Erfindung durch einen DNS -Vektor gekennzeichnet, der ein Selektionsmar- kergen ausgewählt aus der Gruppe der Antibiotikaresistenzgene enthält. In dieser Ausführungsform der Erfindung ist das erfindungsge- mäße Expressionssystem dadurch gekennzeichnet, dass der Wirts- organismus sensitiv gegen ein Antibiotikum ist und in dessen Gegenwart nicht mehr zum Wachstum befähigt ist und das Selek- tionsmarkergen derart ausgewählt ist, dass dessen Expression nach Transformation des Wirtsorganismus eine Resistenz gegen das Antibiotikum bewirkt und das Wachstum unter selektiven Be- dingungen ermöglicht.In a further preferred embodiment, the invention is characterized by a DNA vector which contains a selection marker gene selected from the group of antibiotic resistance genes. In this embodiment of the invention, the expression system according to the invention is characterized in that the host organism is sensitive to an antibiotic and in its presence is no longer capable of growth and the selection marker gene is selected such that its expression after transformation of the host organism causes resistance to the antibiotic and allows growth under selective conditions.
Geeignet sind Antibiotikaresistenzgene, die Resistenz verlei- hen gegen ein Antibiotikum ausgewählt aus der Gruppe Hygromy- cin, G418, Geneticin®, Glyphosat, Cycloheximid, Bialaphos, Ka- namycin, Bleomycin, Oligomycin, Zeocin™, Benomyl, Nystatin und Phleomycin.Are suitable antibiotic resistance genes which confer resistance to an antibiotic conferment hen selected from the group Hygromy- cin, G418, geneticin ®, glyphosate, cycloheximide, bialaphos, Ka namycin, bleomycin, oligomycin, Zeocin ™, benomyl, nystatin and phleomycin.
Bevorzugt geeignet sind Antibiotikarestistenzgene, die Resis- tenz gegen ein Antibiotikum ausgewählt aus der Gruppe Hygromy- cin, G418, Geneticin®, Glyphosat, Bialaphos oder Cycloheximid verleihen.Preferably suitable are Antibiotikarestistenzgene that Resis- competence to an antibiotic selected from the group Hygromy- cin, G418, give Geneticin ®, glyphosate, bialaphos or cycloheximide.
Besonders bevorzugt sind Antibiotikaresistenzgene gegen Hygro- mycin, G418, Geneticin®, und Glyphosat.Especially preferred are antibiotic resistance genes against hygromycin, G418, Geneticin® , and glyphosate.
Insbesondere bevorzugt sind Antibiotikaresistenzgene gegen Hy- gromycin.Especially preferred are antibiotic resistance genes against hygromycin.
In einer anderen Ausführungsform der Erfindung ist das Expres- sionssystem dadurch gekennzeichnet, dass der Wirtsorganismus, ausgewählt aus der Gattung Sporidiobolus, einen genetischen Defekt im StoffWechselmetabolismus (Auxotrophie) besitzt, auf- grund dessen einer oder mehrere für das Wachstum essentielle Stoffwechselmetaboliten nicht mehr synthetisiert werden können und der Wirtsorganismus auf Minimalmedien ohne Zusatz dieses oder dieser Stoffwechselmetaboliten nicht mehr zum Wachstum befähigt ist und das Selektionsmarkergen derart ausgewählt ist, dass es den auxotrophen Gendefekt des Wirtsorganismus komplementiert . Beispiele für Selektionsraarkergene, die einen auxotrophen Gen- defekt im Wirtsorganismus komplementieren können, sind das pyrG-Gen (kodiert für das Enzym Orotidin-5' -Phosphat Decarbo- xylase, Goosen et al . , Curr. Genet . (1987) 11: 499 - 503), das pyrF-Gen (kodiert für das Enzym Orotsäure-Phosphoribosyltrans- ferase, DE 199 34 408) , das OCT-Gen (kodiert für das Enzym Or- nithin-Carbamoyltransferase, US 5362640) oder das trpC Gen (ein Gen, dessen trifunktionales Genprodukt Enzymaktivität für Phosphoribosyl-Anthranilsäureisomerase, Glutamin-Amido- transferase und Indol-Glycerinphosphatsynthase besitzt, Yelton et al., Proc Natl. Acad. Sei. USA (1984) 81: 1470 - 1474).In another embodiment of the invention, the expression system is characterized in that the host organism selected from the genus Sporidiobolus possesses a genetic defect in metabolic metabolism (auxotrophy), as a result of which one or more metabolic metabolites essential for growth are no longer synthesized and the host organism is no longer capable of growth on minimal media without the addition of this or that metabolic metabolite and the selection marker gene is selected such that it complements the auxotrophic gene defect of the host organism. Examples of selection radar genes which can complement an auxotrophic gene defect in the host organism are the pyrG gene (encoded by the enzyme orotidine-5'-phosphate decarboxylase, Goosen et al., Curr. Genet. (1987) 11: 499 - 503), the pyrF gene (codes for the enzyme orotic acid phosphoribosyltransferase, DE 199 34 408), the OCT gene (codes for the enzyme ornithine carbamoyltransferase, US Pat. No. 5,362,640) or the trpC gene (a gene , whose trifunctional gene product has enzyme activity for phosphoribosyl-anthranilic acid isomerase, glutamine amido transferase and indole-glycerol phosphate synthase, Yelton et al., Proc Natl. Acad. Sci. USA (1984) 81: 1470-1474).
Weiterhin sind auch Selektionsmarkergene geeignet, die für Proteine kodieren, die zu einer farbgebenden Reaktion befähigt sind, z. B. das Glucuronidasegen, das Gen für das grün fluo- reszierende Protein (GFP) (einschließlich der davon abgeleite- ten genetischen Varianten) oder das Gen einer Laccase.Furthermore, selection marker genes are suitable which code for proteins which are capable of a coloring reaction, for. For example, the glucuronidase gene, the gene for the green fluorescent protein (GFP) (including the genetic variants derived therefrom) or the gene of a laccase.
Die Erfindung betrifft auch DNS-Vektoren, die zur Herstellung des erfindungsgemäßen Expressionssystems geeignet sind. Ein solcher DNS-Vektor ist dadurch gekennzeichnet, dass er das Se- lektionsmarkergen, bevorzugt aus der Gruppe der Antibiotikare- sistenzgene, enthält.The invention also relates to DNA vectors which are suitable for the production of the expression system according to the invention. Such a DNA vector is characterized in that it contains the selection marker gene, preferably from the group of antibiotic resistance genes.
Insbesonders für das erfindungsgemäße Expressionssystem geeig- nete Selektionsmarkergene sind die Resistenzgene für folgende Antibiotika:Especially for the expression system according to the invention suitable selection marker genes are the resistance genes for the following antibiotics:
G418, bzw. Geneticin": Das Kanamycin (G418) -Resistenzgen aus dem E. coli Transposon Tn903 (Webster and Dickson, Gene (1983) 26: 243-252) .G418, or Geneticin ": The kanamycin (G418) resistance gene from the E. coli transposon Tn903 (Webster and Dickson, Gene (1983) 26: 243-252).
Hygromycin: Das Hygromycin B Phosphotransferasegen aus E. coli (Gritz and Davis, Gene (1983) 25: 179-188) oder aus Streptomy- ces hygroscopicus (Malpartida et al . , Biochem. Biophys . Res. Commun. (1983) 117: 6-12). Glyphosat: Das 5-Enolpyruvylshikimat-3-PhosphatsynthasegenHygromycin: The hygromycin B phosphotransferase gene from E. coli (Gritz and Davis, Gene (1983) 25: 179-188) or from Streptomyces hygroscopicus (Malpartida et al., Biochem. Biophys. Res. Commun. (1983) 117: 6-12). Glyphosate: The 5-enolpyruvylshikimate-3-phosphate synthase gene
(EPSP) aus E. coli (Kunze et al . , Curr. Genet. (1989) 15: 91- 98) . Es ist jedoch auch jedes andere EPSP-Gen geeignet, bzw. mutierte EPSP-Gene mit erhöhter Resistenz gegen Glyphosat. Bialaphos: Das Bialaphos Resistenzgen (Bar-Gen) aus Streptomy- ces hygroscopicus (Avalos et al., Curr. Genet. (1989) 16: 369- 372) .(EPSP) from E. coli (Kunze et al., Curr Genet. (1989) 15: 91-98). However, any other EPSP gene is suitable, or mutated EPSP genes with increased resistance to glyphosate. Bialaphos: The Bialaphos resistance gene (Bar gene) from Streptomyces hygroscopicus (Avalos et al., Curr. Genet. (1989) 16: 369-372).
Der erfindungsgemäße DNS-Vektor zur Expression des Selektions- markergens, ausgewählt aus der Gruppe der Antibiotikare- sistenzgene, enthält außerdem mindestens ein im Wirtsorganis- mus aktives genetisches Regulationselement (Promotor, Termina- tor) , das, funktional mit dem Selektionsmarkergen verknüpft, dessen Expression im Wirtsorganismus gewährleistet.The DNA vector according to the invention for expression of the selection marker gene, selected from the group of antibiotic resistance genes, additionally contains at least one genetic regulatory element active in the host organism (promoter, terminator) which, functionally linked to the selection marker gene, expresses it ensured in the host organism.
Für die Expression des Selektionsmarkergens geeignet sind die Promotor- und Terminatorelemente für das Glycerinaldehyd-3- Phosphat Dehydrogenasegen (GAPDH Gen) beispielsweise aus Hefen oder filamentösen Pilzen aus der Klasse der Basidiomyceten. Das GAPDH Gen kann dabei homolog aus einer Hefe der Gattung Sporidiobolus oder heterolog aus einer Hefe oder einem Pilz aus der Klasse der Basidiomyceten sein, z. B. aus Phaffia rho- dozyma, Ustilago maydis, Schizophyllum commune, Trametes ver- sicolor, Agaricus bisporus oder Phanerochaete chrysosporium.Suitable for the expression of the selection marker gene are the promoter and terminator elements for the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH gene), for example from yeasts or filamentous fungi from the class of Basidiomycetes. The GAPDH gene can be homologous from a yeast of the genus Sporidiobolus or heterologous from a yeast or a fungus from the class of Basidiomycetes, z. From Phaffia rhodozyma, Ustilago maydis, Schizophyllum commune, Trametes verisicolor, Agaricus bisporus or Phanerochaete chrysosporium.
Es eignen sich jedoch auch alle anderen in Sporidiobolus akti- ven Promotor- und Terminatorelemente zur Herstellung der er- findungsgemässen DNS-Vektoren.However, all other sporidiobolus-active promoter and terminator elements are also suitable for the preparation of the DNA vectors according to the invention.
Besonders geeignet sind Promotor- und Terminatorelemente des GAPDH Gens aus Sporidiobolus ruineniae, gekennzeichnet durch die Sequenzen SEQ ID NO :1 und SEQ ID NO: 2, sowie des GAPDH Gens aus Phaffia rhodozyma. Die Promotorstrukturen für das Phaffia rhodozyma GAPDH Gen sind offenbart in Verdoes et al . , Yeast (1997) 13: 1231-1242. Dabei zeigt ein Vergleich derEspecially suitable are promoter and terminator elements of the GAPDH gene from Sporidiobolus ruineniae, characterized by the sequences SEQ ID NO: 1 and SEQ ID NO: 2, as well as the GAPDH gene from Phaffia rhodozyma. The promoter structures for the Phaffia rhodozyma GAPDH gene are disclosed in Verdoes et al. , Yeast (1997) 13: 1231-1242. This shows a comparison of
Transformationsraten (in den Beispielen beschrieben) , dass die homologen Expressionssignale des Sporidiobolus GAPDH-Gens den heterologen Expressionssignalen des P. rhodozyma GAPDH-Gens deutlich überlegen sind.Transformation rates (described in the Examples) that the homologous expression signals of the Sporidiobolus GAPDH gene are clearly superior to the heterologous expression signals of the P. rhodozyma GAPDH gene.
Insbesondere geeignet sind Promotor- und Terminatorelemente des GAPDH Gens aus Sporidiobolus ruineniae, gekennzeichnet durch die Sequenzen SEQ ID NO :1 und SEQ ID NO: 2. Die Erfindung betrifft somit auch die Promotor- und Terminato- relemente des Sporidiobolus GAPDH-Gens, offenbart für den GAPDH-Klon Gap5 in SEQ ID NO: 1, bp 1 - 1050 (Promotor) , bzw. bp 2997 - 3500 (Terminator) sowie für den GAPDH-Klon Gapl8 in SEQ ID NO: 2, bp 1 - 790 (Promotor) und davon durch Verlänge- rung, Verkürzung oder Veränderung abgeleitete DNS-Sequenzen, die in Sporidiobolus als Promotor oder Terminator aktiv sein können .Especially suitable are promoter and terminator elements of the GAPDH gene from Sporidiobolus ruineniae, characterized by the sequences SEQ ID NO: 1 and SEQ ID NO: 2. The invention thus also relates to the promoter and terminator elements of the Sporidiobolus GAPDH gene, disclosed for the GAPDH clone Gap5 in SEQ ID NO: 1, bp 1 - 1050 (promoter), or bp 2997 - 3500 (terminator) and for the GAPDH clone Gapl8 in SEQ ID NO: 2, bp 1-790 (promoter) and DNA sequences derived therefrom by extension, truncation or alteration, which can be active in Sporidiobolus as promoter or terminator.
Die Erfindung betrifft insbesondere die Promotor- und Termina- torelemente des Sporidiobolus GAPDH-Gens, offenbart für den GAPDH-Klon Gap5 in SEQ ID NO: 1, bp 1 - 1050 (Promotor), bzw. bp 2997 - 3500 (Terminator) sowie für den GAPDH-Klon Gapl8 in SEQ ID NO: 2 , bp 1 - 790 (Promotor).The invention relates in particular to the promoter and terminator elements of the Sporidiobolus GAPDH gene, disclosed for the GAPDH clone Gap5 in SEQ ID NO: 1, bp 1-1050 (promoter) or bp 2997-3500 (terminator) and for the GAPDH clone Gapl8 in SEQ ID NO: 2, bp 1-790 (promoter).
Die Erfindung betrifft weiterhin einen DNS-Vektor, der mindes- tens ein Selektionsmarkergen enthält, welches für ein Protein kodiert, das nach Transformation einer Hefe der Gattung Spori- diobolus eine Selektion positiver Transformanten erlaubt, da- durch gekennzeichnet, dass das Selektionsmarkergen ausgewählt ist aus der Gruppe der Antibiotikaresistenzgene, die für Pro- teine kodieren, die die wachstumshhemmende Wirkung von Antibi- otika aufheben, gegen die der Wirtsorganismus nicht resistent ist, der Gene, die einen genetischen Defekt des Wirtsorganis- mus (Auxotrophie) komplementieren und der Gene, die für Prote- ine kodieren, die zu einer farbgebenden Reaktion befähigt sind, und daß das Selektionsmarkergen durch mindestens ein im Wirtsorganismus aktives genetisches Regulationselement kon- trolliert wird.The invention further relates to a DNA vector which contains at least one selection marker gene which codes for a protein which, after transformation of a yeast of the genus Sporidiobolus, permits a selection of positive transformants, characterized in that the selection marker gene is selected from the group of antibiotic resistance genes coding for proteins that abolish the anti-growth effect of antibiotics against which the host organism is not resistant, the genes that complement a genetic defect of the host organism (auxotrophy), and the genes that produce encode proteins which are capable of a coloring reaction, and that the selection marker gene is controlled by at least one genetic regulatory element active in the host organism.
In einer bevorzugten Ausführung erlauben die erfindungsgemäßen DNS-Vektoren die Selektion positiver Transformanten von Hefen der Gattung Sporidiobolus aufgrund der nach der Transformation erworbenen Antibiotikaresistenz im Wirtsorganismus.In a preferred embodiment, the DNA vectors of the invention allow the selection of positive transformants of yeasts of the genus Sporidiobolus due to the acquired after transformation antibiotic resistance in the host organism.
Insbesondere bevorzugt wird die Selektion von Transformanten der Hefe Sporidiobolus ruineniae durch erfindungsgemäße DNS- Vektoren ermöglicht, welche die als bevorzugt geeignet genann- ten Antibiotikaresistenzgene enthalten.Particularly preferred is the selection of transformants of the yeast Sporidiobolus ruineniae by DNA according to the invention. Enables vectors containing the antibiotic resistance genes which are considered to be preferred.
Die Erfindung umfasst weiterhin einen DNS-Vektor, der zur Ex- pression von mindestens einem für ein Protein kodierendes Gen, bevorzugt aus dem Q10-Biosyntheseweg, im Wirtsorganismus ge- eignet ist. Unter Genen, die für Proteine kodieren, sind im Sinne der Erfindung auch die von den Strukturgenen abgeleite- ten cDNS-Gene der Proteine, sowie mutierte Gene zu verstehen. Bei den Proteinen kann es sich um für den Wirtsorganismus he- terologe Proteine oder um für den Wirtsorganismus homologe Proteine handeln, die darüberhinaus entweder intrazellulär o- der extrazellulär (sekretierte Proteine) vorliegen können.The invention furthermore comprises a DNA vector which is suitable for expressing at least one gene coding for a protein, preferably from the Q10 biosynthesis pathway, in the host organism. For the purposes of the invention, genes coding for proteins are also to be understood as meaning the cDNA genes of the proteins derived from the structural genes, as well as mutated genes. The proteins can be proteins which are heterologous to the host organism or homologous proteins for the host organism, which moreover can be present either intracellularly or extracellularly (secreted proteins).
Der erfindungsgemäße DNS-Vektor enthält somit vorzugsweise mindestens ein zu exprimierendes Gen, das für ein Protein, vorzugsweise aus dem Q10-Biosyntheseweg, kodiert.The DNA vector according to the invention thus preferably contains at least one gene to be expressed which codes for a protein, preferably from the Q10 biosynthesis pathway.
Für den Fachmann ist es offensichtlich, dass das zu exprimie- rende Gen sich nicht nur auf ein Protein aus dem Q10-It is obvious to a person skilled in the art that the gene to be expressed is not limited to a protein from the Q10 protein.
Biosyntheseweg beschränkt. Vielmehr kann das zu exprimierende Gen für jedes für eine technische oder pharmazeutische Anwen- dung zu verwendende Protein kodieren oder aber auch für ein Enzym aus einem beliebigen biosynthetischen Stoffwechselweg verschieden vom Q10-Stoffwechselweg. Dabei kann der biosynthe- tische Stoffwechselweg bereits im Wirtsorganismus angelegt sein und das zu exprimierende Gen verändert die Produktions- leistung (Ausbeute) für das gewünschte StoffWechselprodukt, oder aber durch das zu exprimierende Gen wird ein neuer Stoff- wechselweg angelegt, wodurch der rekombinante Wirtsorganismus ein neues Stoffwechselprodukt herstellt. Beispiele betroffener biosynthetischer Stoffwechselwege sind der Steroidstoffwech- sel, der CarotinstoffWechsel, der Stoffwechsel mehrfach unge- sättigter Fettsäuren (auch als PUFA oder Omega-Fettsäuren be- zeichnet) und der Polyketidstoffwechsel (allgemein der Ter- penstoffwechsel) . In einer bevorzugten Ausführung handelt es sich bei dem zu ex- primierenden Gen um ein Gen aus dem Q10-Biosyntheseweg. Einen Überblick über die bekannten QlO-Biosynthesegene gibt Mega- nathan, FEMS Microbiol Lett . (2001) 203: 131-139. Tzagoloff and Dieckmann, Microbiological Reviews (1990) 54: 211-225 be- schreiben acht, als CoQl - CoQ8 bezeichnete Komplementati - onsgruppen aus der Bäckerhefe, durch die Ubichinon- Biosynthesegene definiert werden.Biosynthetic pathway restricted. Rather, the gene to be expressed can code for any protein to be used for a technical or pharmaceutical application or else for an enzyme from any biosynthetic pathway other than the Q10 pathway. In this case, the biosynthetic pathway can already be created in the host organism and the gene to be expressed alters the production efficiency (yield) for the desired metabolite, or a new metabolic pathway is created by the gene to be expressed, as a result of which the recombinant host organism produces new metabolite. Examples of affected biosynthetic metabolic pathways are the steroid metabolism, the carotenoid metabolism, the metabolism of polyunsaturated fatty acids (also referred to as PUFA or omega fatty acids) and the polyketide metabolism (generally the metabolism of the metabolites). In a preferred embodiment, the gene to be expressed is a gene from the Q10 biosynthesis pathway. An overview of the known QlO biosynthesis genes is given by Meganathan, FEMS Microbiol Lett. (2001) 203: 131-139. Tzagoloff and Dieckmann, Microbiological Reviews (1990) 54: 211-225, describe eight complementation groups from baker's yeast called CoQ1-CoQ8, which define ubiquinone biosynthetic genes.
Beispiele für Gene aus dem QlO -Biosyntheseweg sind die Gene für die Acetoacetyl-CoA Thiolase, Hydroxymethyl-Glutaryl-CoA- Synthase (HMG-CoA-Synthase) , Hydroxymethyl-Glutaryl-CoA- Reduktase (HMG-CoA Reduktase) , Mevalonatkinase, Phosphomevalo- natkinase, Diphosphomevalonat-Decarboxylase, Isopentenyl- diphosphatisomerase, Farnesyldiphosphatsynthase, Chorismat-Examples of genes from the Q10 biosynthesis pathway are the genes for acetoacetyl-CoA thiolase, hydroxymethyl-glutaryl-CoA synthase (HMG-CoA synthase), hydroxymethyl-glutaryl-CoA reductase (HMG-CoA reductase), mevalonate kinase, phosphomevalo - natkinase, diphosphomevalonate decarboxylase, isopentenyl diphosphate isomerase, farnesyl diphosphate synthase, chorismate
Pyruvatlyase, Dekaprenyldiphosphatsynthase (DPS, CoQl -Gen) , p- Hydroxybenzoesäure-Dekaprenyldiphosphattransferase (CoQ2-Gen) , 3,4-Dihydroxy-5-Dekaprenylbenzoatmethylase (CoQ3-Gen) , eine C- Methyltransferase (CoQ5-Gen) , eine Flavin-abhängige Monooxyge- nase (CoQ6) , 5-Demethoxyubichinonhydroxylase (CoQ7) , ein po- tentielles QlO-Transportprotein (CoQ10, Barros et al . , J. Bi- ol. Chem. (2005) 280: 42627-42635.) sowie die bisher nicht nä- her charakterisierten Gene CoQ4, CoQ8 und CoQ9 (Johnson et al., J. Biol. Chem. (2005) 280: 31397-31404). Die erfindungs- gemässen Gene des Q10-Biosyntheseweges sind jedoch nicht nur auf diese Beispiele beschränkt.Pyruvate lyase, decaprenyl diphosphate synthase (DPS, CoQ1 gene), p-hydroxybenzoic acid decaprenyl diphosphate transferase (CoQ2 gene), 3,4-dihydroxy-5-decaprenyl benzoate methylase (CoQ3 gene), a C-methyltransferase (CoQ5 gene), a flavin dependent monooxygenase (CoQ6), 5-demethoxyubichinone hydroxylase (CoQ7), a potential QlO transport protein (CoQ10, Barros et al., J. Biol. Chem. (2005) 280: 42627-42635.) and the hitherto not further characterized genes CoQ4, CoQ8 and CoQ9 (Johnson et al., J. Biol. Chem. (2005) 280: 31397-31404). However, the genes of the Q10 biosynthetic pathway according to the invention are not limited to these examples.
Ein Beispiel für ein CoQl Gen ist das in EP 1336657 A, SEQ ID NO: 1 offenbarte Gen für die Dekaprenyldiphosphatsynthase (DPS) aus der Hefe Rhodotorula minuta.An example of a CoQ1 gene is the gene for decaprenyl diphosphate synthase (DPS) from the yeast Rhodotorula minuta disclosed in EP 1336657 A, SEQ ID NO: 1.
Die Q10-Biosynthesegene können dabei homolog aus Sporidioboluε stammen oder heterolog aus einem anderen Organismus.The Q10 biosynthesis genes may be homologous from Sporidioboluε or heterologous from another organism.
Bevorzugt handelt es sich bei diesen Genen um homologe Gene aus dem Q10-Biosyntheseweg der Gattung Sporidiobolus . Für die Expression im Wirtsorganismus wird das proteinkodie- rende Gen funktional mit genetischen Regulationselementen wie einem Promotor oder einem Terminator verknüpft.Preferably, these genes are homologous genes from the Q10 biosynthetic pathway of the genus Sporidiobolus. For expression in the host organism, the protein coding gene is operably linked to genetic regulatory elements such as a promoter or terminator.
Der Promotor kann von dem zu exprimierenden Gen stammen oder es kann auch der Promotor eines fremden Gens, mit dem kodie- renden Bereich des zu exprimierenden Gens funktionell ver- knüpft , verwendet werden .The promoter can be derived from the gene to be expressed, or the promoter of a foreign gene can also be used, which is functionally linked to the coding region of the gene to be expressed.
Der erfindungsgemäße DNS-Vektor enthält somit vorzugsweise auch einen Promotor für die Expression des proteinkodierenden Gens .The DNA vector according to the invention thus preferably also contains a promoter for the expression of the protein-encoding gene.
Bevorzugt enthält der erfindungsgemäße DNS-Vektor als Promotor für die Expression des proteinkodierenden Gens einen Promotor, der eine hohe Expressionsleistung gewährleistet.The DNA vector according to the invention preferably contains as promoter for the expression of the protein-encoding gene a promoter which ensures a high expression performance.
Ein zu diesem Zweck besonders bevorzugt verwendeter Promotor ist der Promotor des Gens für das GAPDH-Gen, und hier insbe- sondere bevorzugt der GAPDH-Promotor aus Sporidiobolus ruineniae (SEQ ID NO: 1, bp 1 - 1050 und SEQ ID NO: 2 , bp 1 - 790) .A promoter used particularly preferably for this purpose is the promoter of the gene for the GAPDH gene, and in this case especially the GAPDH promoter from Sporidiobolus ruineniae (SEQ ID NO: 1, bp 1 - 1050 and SEQ ID NO: 2, bp 1 - 790).
Der erfindungsgemäße DNS-Vektor enthält vorzugsweise auch ei- nen Transkriptionsterminator für das proteinkodierende Gen.The DNA vector according to the invention preferably also contains a transcription terminator for the protein-coding gene.
Als Transkriptionsterminator kann der Terminator des zu expri- mierenden proteinkodierenden Gens verwendet werden oder aber der Terminator eines fremden Gens. Bevorzugt ist der Transkriptionsterminator aus einem GAPDH-Gen, insbesondere des GAPDH-Gens aus Sporidiobolus ruineniae (SEQ ID NO: 1, bp 2997 - 3500) .The terminator of the protein-coding gene to be expressed or else the terminator of a foreign gene can be used as transcription terminator. Preferably, the transcription terminator is a GAPDH gene, in particular the GAPDH gene from Sporidiobolus ruineniae (SEQ ID NO: 1, bp 2997-3500).
In einer besonders bevorzugten Ausführung verwendet man den Promotor des GAPDH-Gens, speziell des GAPDH-Gens aus Sporidio- bolus ruineniae (SEQ ID NO: 1, bp 1 - 1050 oder SEQ ID NO: 2, bp 1 - 790) und davon durch Verlängerung, Verkürzung oder Ver- änderung abgeleitete DNS-Sequenzen, die in Sporidiobolus als Promotor aktiv sein können. Die Isolierung des Sporidiobolus GAPDH-Gens wird im 4. Beispiel beschrieben.In a particularly preferred embodiment, the promoter of the GAPDH gene, especially of the GAPDH gene from Sporidiopus ruineniae (SEQ ID NO: 1, bp 1 - 1050 or SEQ ID NO: 2, bp 1-790) and the like, is used Extension, truncation, or alteration-derived DNA sequences present in Sporidiobolus Promoter can be active. The isolation of the Sporidiobolus GAPDH gene is described in Example 4.
Die Erfindung betrifft somit auch ein in Sporidiobolus aktives Regulationselement welches dadurch gekennzeichnet ist, dass es den in SEQ ID NO: 1 enthaltenen Sequenzabschnitt von Base 1 - 1050, bzw. den in SEQ ID NO: 2 enthaltenen Sequenzabschnitt von Base 1 - 790 und davon durch Verlängerung, Verkürzung oder Veränderung abgeleitete DNS-Sequenzen enthält, die in Sporidi- obolus als Promotor aktiv sein können.The invention thus also relates to an active in Sporidiobolus regulatory element which is characterized in that it contains the SEQ ID NO: 1 sequence section of base 1 - 1050, or contained in SEQ ID NO: 2 sequence section of base 1 - 790 and thereof by extension, truncation or alteration derived DNA sequences which may be active in Sporidi obolus as a promoter.
Ein Beispiel dafür ist der im 5. Beispiel verwendete GAPDH-An example of this is the GAPDH used in the 5th example.
Promotor aus Phaffia rhodozyma (Gendatenbank ZugangsnummerPromoter from Phaffia rhodozyma (gene database accession number
„ PRGPDGENE. gb_pl, bp 1 - 717), der zum in SEQ ID NO: 1 enthal- tenen Sequenzabschnitt von Base 1 - 1050 zu 37 % identisch ist, bzw. zu dem in SEQ ID NO: 2 enthaltenen Sequenzabschnitt von Base 1 - 790 zu 35 % identisch ist und als heterologer Promotor zur Regulierung der Genexpression in S. ruineniae ge- eignet ist."PRGPDGENE. gb_pl, bp 1-717), which is 37% identical to the sequence segment of base 1 - 1050 contained in SEQ ID NO: 1, or to the sequence segment from base 1 - 790 to 35 contained in SEQ ID NO: 2 % is identical and is suitable as a heterologous promoter for regulating gene expression in S. ruineniae.
Zur Analyse von DNS-Sequenzen wurde dabei das Computerprogramm "Wisconsin Package Version 10.3, Accelrys Inc." verwendet. Die Homologiebestimmung erfolgte durch Vergleich der DNS-Sequenzen mit dem Unterprogramm "Gap" . Hierbei werden die voreingestell- ten Parameter "gap creation penalty 50" und "gap extension pe- nalty 3" verwendet.To analyze DNA sequences, the computer program "Wisconsin Package Version 10.3, Accelrys Inc." was used. used. The homology determination was carried out by comparison of the DNA sequences with the subprogram "Gap". Here, the default parameters "gap creation penalty 50" and "gap extension penalty 3" are used.
Ein DNS-Vektor zur Transformation von Sporidiobolus enthält kein genetisches Element, das dessen autonome Replikation im Wirtsorganismus gewährleistet. Daher muss der DNS-Vektor nach Transformation in das Genom des Wirtsorganismus integriert werden. Die Integration in das Wirtsgenom kann ungerichtet durch zufällige Rekombination oder aber gerichtet durch homo- loge Rekombination erfolgen.A DNA vector for the transformation of Sporidiobolus contains no genetic element that ensures its autonomous replication in the host organism. Therefore, after transformation, the DNA vector must be integrated into the genome of the host organism. The integration into the host genome can be carried out undirected by random recombination or else by homologous recombination.
Als Integrationsort für die homologe Rekombination eignet sich der Genbereich der sog. rDNS, der für ribosomale RNS kodiert und von dem im Genom des Wirtsorganismus ca. 100 Kopien ent- halten sind. Aus kurzen, publizierten Sequenzen für Abschnitte der rDNS von S. ruineniae wurde ein rDNS-Fragment für die ho- mologe Rekombination isoliert (SEQ ID NO: 3). Die Isolierung eines Sporidiobolus rDNS-Fragments wird im 2. Beispiel be- schrieben.The gene region of the so-called rDNA, which codes for ribosomal RNA and from which approximately 100 copies are present in the genome of the host organism, is suitable as an integration site for homologous recombination. are holding. From short, published sequences for sections of the S. ruineniae rDNS, an rDNA fragment for homologous recombination was isolated (SEQ ID NO: 3). The isolation of a sporidiobolus rDNA fragment is described in Example 2.
Ein erfindungsgemässer DNS-Vektor enthält somit vorzugsweise auch ein rDNS Fragment aus S. ruineniae (SEQ ID NO: 3) .A DNA vector according to the invention thus preferably also contains an RNA fragment from S. ruineniae (SEQ ID NO: 3).
Die Herstellung der erfindungsgemäßen DNS-Vektoren erfolgt mittels im Stand der Technik bekannter Verfahren. Verschiedene Möglichkeiten sind in den Beispielen dargelegt. Die dort be- schriebenen Verfahren lassen sich vom Fachmann auf beliebige andere Vektoren, Resistenzgene, Regulationselemente und Struk- turgene anwenden.The preparation of the DNA vectors according to the invention is carried out by means known in the art. Various possibilities are set forth in the examples. The methods described there can be applied by the skilled person to any other vectors, resistance genes, regulatory elements and structural genes.
Die erfindungsgemäßen DNS-Vektoren eignen sich zur Herstellung von Sporidiobolus Stämmen, die zur effizienten Genexpression befähigt sind.The DNA vectors according to the invention are suitable for the production of Sporidiobolus strains which are capable of efficient gene expression.
Die Erfindung betrifft daher auch Verfahren zur Herstellung von Sporidiobolus Stämmen, die zur effizienten Genexpression befähigt sind.The invention therefore also relates to methods of producing Sporidiobolus strains capable of efficient gene expression.
Dieses Verfahren ist dadurch gekennzeichnet, dass als Wirtsor- ganismus eine Hefe der Gattung Sporidiobolus verwendet wird, welche mit einem DNS-Vektor, der ein zu exprimierendes Gen und ein Antibiotika Resistenzgen besitzt, transformiert wird und aus dem Transformationsansatz die mit dem DNS-Vektor transfor- mierten Klone durch Selektion Antibiotika resistenter Trans- formanten ausgewählt werden, wobei die Expression des zu ex- primierenden Gens und des Antibiotika Resistenzgens im Wirts- stamm jeweils durch mindestens ein genetisches Regulationsele- ment kontrolliert wird, das im Wirtsstamm aktiv ist.This method is characterized in that a yeast of the genus Sporidiobolus is used as the host organism, which is transformed with a DNA vector which has a gene to be expressed and an antibiotic resistance gene, and transforms from the transformation batch with the DNA vector selected clones are selected by selection of antibiotics-resistant transformants, the expression of the gene to be expressed and of the antibiotic resistance gene in the host strain being respectively controlled by at least one genetic regulatory element which is active in the host strain.
Das zu transformierende Gen kann aber auch in einen Expressi- onsvektor ohne Selektionsmarkergen kloniert werden und zusam- men mit einem das Selektionsmarkergen exprimierenden Vektor zur Erzeugung von Transformanten verwendet werden (Co- Transformation) .However, the gene to be transformed can also be cloned into an expression vector without selection marker gene and together with a vector expressing the selection marker gene used to generate transformants (co-transformation).
Das zu transformierende Gen wird in bekannter Art und Weise in einen erfindungsgemäßen DNS-Vektor kloniert und mittels der genannten Methoden in eine Hefe der Gattung Sporidiobolus ein- gebracht .The gene to be transformed is cloned in a known manner into a DNA vector according to the invention and introduced into a yeast of the genus Sporidiobolus by means of the methods mentioned.
Bei dem betreffenden Hefestamm aus der Gattung Sporidiobolus kann es sich dabei um einen monokaryontisehen oder aber auch um einen dikaryontisehen Stamm handeln.The relevant yeast strain of the genus Sporidiobolus may be a monocaryontic or else a dikaryontisean strain.
Besonders bevorzugt als Wirt für die Genexpression ist eine Hefe der Art Sporidiobolus ruineniae.Particularly preferred as a host for gene expression is a yeast of the species Sporidiobolus ruineniae.
Insbesonders bevorzugt als Wirt für die Genexpression ist der Stamm Sporidiobolus ruineniae DSM 15553.Particularly preferred as a host for gene expression is the strain Sporidiobolus ruineniae DSM 15553.
Die Transformation des Wirtsstammes erfolgt nach Methoden, die dem Stand der Technik entsprechen. Zu diesen Methoden gehören die Transformation mit der Lithiumacetatmethode, die Transfor- mation durch Elektroporation oder die biolistische Transforma- tion durch Beschuss mit DNS-haltigen Mikroprojektilen, bzw. eine Kombination der genannten Methoden. Diese Verfahren sind in Standardlehrbüchern beschrieben.The transformation of the host strain is carried out according to methods that correspond to the state of the art. These methods include transformation with the lithium acetate method, transformation by electroporation or biolistic transformation by bombardment with DNA-containing microprojectiles, or a combination of the methods mentioned. These methods are described in standard textbooks.
Die Selektion positiver Transformanten erfolgt beispielsweise, indem Sporidiobolus Zellen nach der Transformation mit Vektor DNS auf einem Medium ausgebracht werden, welchem Antibiotikum in Mengen zugefügt wurde, welche das Wachstum des Wildtypstam- mes unterdrückt und welches die Selektion von Antibiotika re- sistenten Transformanten erlaubt. Ein Verfahren zur erfin- dungsgemäßen Transformation von Sporidiobolus wird im 8. Bei- spiel beschrieben.The selection of positive transformants is carried out, for example, by sporidiobolus cells after transformation with vector DNA on a medium to which antibiotic was added in amounts which suppresses the growth of wild-type strain and which allows the selection of antibiotic-resistant transformants. A method for the inventive transformation of Sporidiobolus is described in the 8th example.
In einer bevorzugten Ausführung der Erfindung wird die Hefe Sporidiobolus ruineniae in der oben genannten Weise mit dem Gen eines oder mehrerer Q10-Biosyntheseenzyme transformiert. Dadurch wird eine Steigerung der Expressionsrate für das be- sagte Gen erzielt und die Q10-Produktionsrate signifikant ver- bessert. Dabei können die Q10-Biosynthesegene aus Hefen der Gattung Sporidiobolus stammen oder es können auch andere Q10- Biosynthesegene verwendet werden.In a preferred embodiment of the invention, the yeast Sporidiobolus ruineniae is transformed in the manner mentioned above with the gene of one or more Q10 biosynthesis enzymes. This results in an increase in the expression rate for the said gene and significantly improves the Q10 production rate. The Q10 biosynthesis genes may be derived from yeasts of the genus Sporidiobolus, or other Q10 biosynthesis genes may also be used.
Das erfindungsgemäße Sporidiobolus Expressionssystem eignet sich insbesondere zur Expression eines oder mehrerer der be- schriebenen Gene aus dem Q10-Biosyntheseweg. Die Anwendung des erfindungsgemässen Expressionssystems zur Verbesserung der Q10-Produktion ist im 12. Beispiel beschrieben.The sporidiobolus expression system according to the invention is particularly suitable for expressing one or more of the described genes from the Q10 biosynthesis pathway. The application of the expression system according to the invention for improving Q10 production is described in the 12th example.
Die Erfindung betrifft somit auch ein Verfahren zur Verwendung des erfindungsgemäßen Expressionssystems, dadurch gekennzeich- net, dass ein Stamm der Hefe Sporidiobolus, der nach dem er- findungsgemäßen Verfahren hergestellt wurde, in an sich be- kannter Art und Weise kultiviert wird und das Produkt, sei es ein rekombinant hergestelltes Protein oder ein mit Hilfe des rekombinant hergestellten Proteins synthetisiertes Stoffwech- selprodukt, darunter vorzugsweise Q10, isoliert wird.The invention thus also relates to a method for using the expression system according to the invention, characterized in that a strain of the yeast Sporidiobolus, which was produced by the process according to the invention, is cultivated in a manner known per se and the product, whether it is a recombinantly produced protein or a metabolic product synthesized with the aid of the recombinantly produced protein, including preferably Q10, isolated.
Solche Herstellungsverfahren sind beispielsweise bekannt aus EP 1469078 A oder aus US 4070244.Such production methods are known, for example, from EP 1469078 A or from US 4070244.
Die Erfindung umfasst jedoch nicht nur die Verwendung des Ex- pressionssystems zur gentechnischen Optimierung der Q10- Produktion. Das Expressionssystem kann auch dazu verwendet werden, jeden anderen Stoffwechselweg in Stämmen der Gattung Sporidiobolus gentechnisch zu verändern oder zu optimieren. Beispiele dafür sind die Produktion von Steroiden, Carotinen, Terpenen und polyungesättigter Fettsäuren (Omega-Fettsäuren) . Darüber hinaus eignet sich das erfindungsgemäße Expressions- system auch zur heterologen, bzw. homologen Produktion von Proteinen in rekombinanter Form. Diese rekombinant produzier- ten Proteine finden Verwendung z. B. als therapeutische Prote- ine in der Medizin, bei Biotransformationen in der enzymkata- lyisierten organisch-chemischen Synthese oder als technische Enzyme in verschiedenen industriellen Anwendungen. Als Bei- spiele seien genannt die Waschmittel-, Papier-, Nahrungsmit- tel- oder Futtermittelindustrie.However, the invention includes not only the use of the expression system for the genetic optimization of Q10 production. The expression system can also be used to genetically engineer or optimize any other metabolic pathway in strains of the genus Sporidiobolus. Examples include the production of steroids, carotenes, terpenes and polyunsaturated fatty acids (omega fatty acids). In addition, the expression system according to the invention is also suitable for heterologous or homologous production of proteins in recombinant form. These recombinantly produced proteins find use, for. B. as therapeutic proteins in medicine, in biotransformations in the enzyme-catalyzed organic-chemical synthesis or as technical enzymes in various industrial applications. As an example Games are called the detergent, paper, food or animal feed industries.
Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung. Die in den Beispielen verwendeten Standardmethoden zur Behandlung von DNS oder RNS, wie die Behandlung mit Re- striktionsendonukleasen, DNS Polymerasen, Reverser Transkrip- tase etc. sowie die Standardverfahren wie Transformation von Bakterien, Southern und Northern Analyse, DNS Sequenzierung, Markierung von DNS-Sonden, Screening und PCR-Technologie wur- den, wenn nicht anders angegeben, durchgeführt wie vom Her- steller empfohlen oder wenn keine Herstelleranleitung vorhan- den war entsprechend dem aus den Standardlehrbüchern bekannten Stand der Technik.The following examples serve to further illustrate the invention. The standard methods used in the examples for the treatment of DNA or RNA, such as the treatment with restriction endonucleases, DNA polymerases, reverse transcriptase, etc. as well as the standard methods such as transformation of bacteria, Southern and Northern analysis, DNA sequencing, labeling of DNA Probes, screening and PCR technology were performed as recommended by the manufacturer, unless otherwise stated, or if no manufacturer's instructions were available according to the state of the art known from standard textbooks.
1. Beispiel:1st example:
Anzucht von Sporidiobolus ruineniae auf Minimalmedium in Ge- genwart von AntibiotikaCultivation of Sporidiobolus ruineniae on minimal medium in the presence of antibiotics
Verwendet wurde der Stamm Sporidiobolus ruineniae Sr-1 (hin- terlegt bei der DSMZ Deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH, D-38124 Braunschweig unter der Nummer DSM 15553) .The strain Sporidiobolus ruineniae Sr-1 (deposited with the DSMZ German Collection of Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig under the number DSM 15553) was used.
Anzucht von Sporidiobolus ruineniae Sr-1: Als Kulturmedien verwendet wurden YPD-Medium (1 % Hefeextrakt, 2 % Pepton, 2 % Glucose) , YPG-Medium (1 % Hefeextrakt, 2 % Pepton, 5 % Glyce- rin) oder YNB-Minimalmedium (1,34 % „Yeast Nitrogen Base", 2 % Glucose) . Die Anzucht erfolgte in Flüssigmedien oder auf A- garplatten (YPD-, YPG- bzw. YNB-Medium mit jeweils 2 % Agar), jeweils für 2 bis 5 Tage bei 28°C. Flüssigkulturen wurden un- ter diesen Bedingungen bei 140 rpm auf einem Orbitalschüttler (Infors) geschüttelt.Cultivation of Sporidiobolus ruineniae Sr-1: Culture media used were YPD medium (1% yeast extract, 2% peptone, 2% glucose), YPG medium (1% yeast extract, 2% peptone, 5% glycerol) or YNB- Minimal medium (1.34% "Yeast Nitrogen Base", 2% glucose) Cultivated in liquid media or on agar plates (YPD, YPG or YNB medium with 2% agar each), for 2 to 5 in each case Days at 28 ° C. Liquid cultures were shaken under these conditions at 140 rpm on an orbital shaker (Infors).
Antibiotika-Sensitivitätstests wurden mit den Antibiotika G418 (auch bekannt unter dem Markennamen Geneticin®; Invitrogen), Hygromycin B (Calbiochem) und Glyphosat (N- (Phosphonomethyl) - Glycin, Sigma, bekannt als Herbizid unter dem Markennamen RoundUp") durchgeführt .Antibiotic sensitivity tests were performed with the antibiotic G418 (also known under the brand name Geneticin ®; Invitrogen), hygromycin B (Calbiochem) and glyphosate (N- (phosphonomethyl) - Glycine, Sigma, known as herbicide under the trade name RoundUp ").
Selektionsbedingungen für G418: Es wurden YNB-Platten mit ei- ner G418 Konzentration von 50 μg/ml, 100 μg/ml, 150 μg/ml und 200 μg/ml hergestellt, Sr-1 darauf ausplattiert und bei 28°C inkubiert. Gegenüber Kontrollplatten ohne G418 wurde ab einer G418-Konzentration von 100 μg/ml ein deutlich reduziertes Wachstum und bei 200 μg/ml kein Wachstum des Stammes Sr-1 mehr beobachtet. Für Transformationsexperimente wurden YNB-Platten mit einer G418-Konzentration von 100 μg/ml und 150 μg/ml als Selektivmedium verwendet.Selection conditions for G418: YNB plates with a G418 concentration of 50 μg / ml, 100 μg / ml, 150 μg / ml and 200 μg / ml were prepared, Sr-1 was plated thereon and incubated at 28 ° C. Compared with control plates without G418, a significantly reduced growth was observed at a G418 concentration of 100 μg / ml and no growth of the strain Sr-1 at 200 μg / ml. For transformation experiments, YNB plates with a G418 concentration of 100 μg / ml and 150 μg / ml were used as the selective medium.
Selektionsbedingungen für Hygromycin B: Es wurden YNB-Platten mit einer Hygromycin B Konzentration von 40 μg/ml, 60 μg/ml, 80 μg/ml und 100 μg/ml hergestellt, Sr-1 darauf ausplattiert und bei 28°C inkubiert. Gegenüber Kontrollplatten ohne Hygro- mycin B wurde ab einer Hygromycin B-Konzentration von 60 μg/ml ein deutlich reduziertes Wachstum und bei 100 μg/ml kein Wach- stum des Stammes Sr-1 mehr beobachtet. Für Transformationsex- perimente wurden YNB-Platten mit einer Hygromycin B- Konzentration von 80 μg/ml und 100 μg/ml als Selektivmedium verwendet .Selection conditions for hygromycin B: YNB plates having a hygromycin B concentration of 40 μg / ml, 60 μg / ml, 80 μg / ml and 100 μg / ml were prepared, Sr-1 was plated thereon and incubated at 28 ° C. Compared with control plates without hygro- mycin B, a significantly reduced growth was observed at a hygromycin B concentration of 60 μg / ml and no growth of the strain Sr-1 at 100 μg / ml. For transformation experiments, YNB plates with a hygromycin B concentration of 80 μg / ml and 100 μg / ml were used as the selective medium.
Selektionsbedingungen für Glyphosat : Es wurden YNB-Platten mit einer Glyphosat-Konzentration von 1 mg/ml, 1,25 mg/ml, 1,5 mg/ml 1,75 mg/ml und 2 mg/ml hergestellt, Sr-1 darauf ausplat- tiert und bei 28°C inkubiert. Gegenüber Kontrollplatten ohne Glyphosat wurde ab einer Glyphosat-Konzentration von 1,25 mg/ml ein deutlich reduziertes Wachstum und bei 1,75 mg/ml kein Wachstum des Stammes Sr-1 mehr beobachtet.Selection conditions for glyphosate: YNB plates were prepared with a glyphosate concentration of 1 mg / ml, 1.25 mg / ml, 1.5 mg / ml 1.75 mg / ml and 2 mg / ml, Sr-1 on top plated and incubated at 28 ° C. Compared to control plates without glyphosate, a markedly reduced growth was observed at a glyphosate concentration of 1.25 mg / ml and no growth of the strain Sr-1 at 1.75 mg / ml.
2. Beispiel Isolierung eines Genfragments der ribosomalen DNS (rDNS) aus Sporidiobolus ruineniaeExample 2 Isolation of a gene fragment of ribosomal DNA (rDNA) from Sporidiobolus ruineniae
Isolierung von genomischer DNS aus S. ruineniae Sr-1: Sr-1 wurde für 2 Tage in YPD- Flüssigmedium kultiviert, wie im 1. Beispiel beschrieben. Die Sr-1 Zellen wurden danach durch Zentrifugation isoliert (10 min 3000 rpm, Heraeus Megafuge 1.0R) . DNS wurde aus den Sr-1 Zellen mit dem Qiagen „Genomic Tip" Kit zur Extraktion genomischer DNS isoliert.Isolation of genomic DNA from S. ruineniae Sr-1: Sr-1 was cultured in YPD liquid medium for 2 days as described in Example 1. The Sr-1 cells were then isolated by centrifugation (10 min 3000 rpm, Heraeus Megafuge 1.0R). DNA was isolated from the Sr-1 cells using the Qiagen Genomic Tip kit for genomic DNA extraction.
Isolierung eines DNS-Fragments der ribosomalen DNS (rDNS) ausIsolation of a DNA fragment of ribosomal DNA (rDNA)
S. ruineniae:S. ruineniae:
DNS-Sequenzen kurzer Fragmente der S. ruineniae rDNS sind in Gendatenbanken hinterlegt unter den Zugangsnummern abO21696.gb_pl und af070438.gb_pl . Diese DNS-Sequenzen wurden dazu verwendet, Sequenzvergleiche mit dem bekannten rDNS- Bereich der Bäckerhefe Saccharomyces cerevisiae (Gendatenbank Zugangsnummer scylrl54c .gb_pll) zu machen. Zur Suche und Ana- lyse von DNS-Sequenzen wurde dabei das Computerprogramm "Wis- consin Package Version 10.3, Accelrys Inc." verwendet. Anhand dieses Vergleiches wurden die PCR-Primer SrRDIf (SEQ ID NO: 4) und SrRD2r (SEQ ID NO: 5) ausgewählt, deren DNS-Sequenzen in S. cerevisiae und S. ruineniae identisch sind.DNA sequences of short fragments of S. ruineniae rDNA are stored in gene databases under accession numbers abO21696.gb_pl and af070438.gb_pl. These DNA sequences were used to make sequence comparisons with the known rDNS region of the baker's yeast Saccharomyces cerevisiae (gene database accession number scylrl54c .gb_pll). The computer program "Wisconsin Package Version 10.3, Accelrys Inc." was used for the search and analysis of DNA sequences. used. Based on this comparison, the PCR primers SrRDIf (SEQ ID NO: 4) and SrRD2r (SEQ ID NO: 5) were selected whose DNA sequences in S. cerevisiae and S. ruineniae are identical.
Die Primer hatten folgende Sequenzen:The primers had the following sequences:
Primer SrRD1f: 5' -GCTTGTCTCAAAGATTAAGC-3 ' (SEQ ID NO:4)Primer SrRD1f: 5 '-GCTTGTCTCAAAGATTAAGC-3' (SEQ ID NO: 4)
Primer SrRD2r: 5' -GGTCCGTGTTTCAAGACGGG-3 ' (SEQ ID NO: 5)Primer SrRD2r: 5 '-GGTCCGTGTTTCAAGACGGG-3' (SEQ ID NO: 5)
PCR-Reaktionen mit den Primern SrRDIf und SrRD2r mit genomi- scher DNS aus S. ruineniae Sr-1 wurden nach dem Stand der Technik mit einem GenAmp PCR System 2400 der Fa. Applied Bio- systems durchgeführt. Verwendet wurde der Taq Core PCR-Kit (Qiagen) mit dem folgenden PCR-Programm: Nach Inkubation des PCR-Ansatzes für 1' bei 94°C wurden 30 Reaktionszyklen von l' 94°C, 30 '' 5O°C und 2,5' 72°C durchgeführt und die Reaktion mit einer Inkubation für 5' bei 72°C beendet. Das gebildete PCR-Produkt wurde durch präparative Agarose Gelelektrophorese gereinigt. Die Grosse des gebildeten DNS-Fragments war 3 kb.PCR reactions with the primers SrRDIf and SrRD2r with genomic DNA from S. ruineniae Sr-1 were carried out according to the prior art with a GenAmp PCR System 2400 from Applied Biosystems. The Taq Core PCR kit (Qiagen) was used with the following PCR program: After incubation of the PCR mixture for 1 'at 94 ° C, 30 reaction cycles of l ' 94 ° C, 30 '' 5O ° C and 2, 5 '72 ° C and the reaction with an incubation for 5' at 72 ° C ended. The resulting PCR product was purified by preparative agarose gel electrophoresis. The size of the DNA fragment formed was 3 kb.
Vektor pSrrDNA:Vector pSrrDNA:
Das 3 kb grosse DNS-Fragment wurde in den Vektor PCR-ScriptThe 3 kb DNA fragment was inserted into the vector PCR script
SK(+) (Stratagene) kloniert . Dabei entstand der Vektor pSrrDNA (Fig. 1) . Die Sequenzanalyse des klonierten DNS-Fragments von Vektor pSrrDNA (SEQ ID NO: 3) bestätigte, dass es sich um das erwartete Fragment der ribosomalen DNS von S. ruineniae han- delte.SK (+) (Stratagene) cloned. The result was the vector pSrrDNA (Fig. 1). Sequence analysis of the cloned DNA fragment of vector pSrrDNA (SEQ ID NO: 3) confirmed that it was the expected fragment of ribosomal DNA of S. ruineniae.
3. Beispiel3rd example
Herstellung einer chromosomalen Genbank aus Sporidiobolus rui- neniae.Preparation of a chromosomal gene bank from Sporidiobolus ruiniae.
Genomische DNS von S. ruineniae wurde aus den Zellen von drei Schüttelkolbenkulturen (je 50 ml YPD-Medium, 24 h, 140 rpm, 28°C) isoliert. Dazu wurden die Zellen aus der Anzucht zuerst gefriergetrocknet (Gefriertrockner Christ alpha 2-4) und dar- aus mit dem Qiagen „Genomic-tip" DNS-Isolierungskit die geno- mische DNS isoliert. Dabei wurde nach den Angaben des Herstel- lers verfahren. Die Ausbeute betrug 100 μg genomische DNS.S. ruineniae genomic DNA was isolated from the cells of three shake flask cultures (50 ml each YPD medium, 24 h, 140 rpm, 28 ° C.). For this purpose, the cells from the culture were first freeze-dried (lyophilizer Christ alpha 2-4) and the genomic DNA was isolated therefrom using the Qiagen "Genomic-tip" DNA isolation kit, following the instructions of the manufacturer. The yield was 100 μg of genomic DNA.
Zur Herstellung der chromosomalen Genbank wurden 100 μg chro- mosomale DNS von Sporidiobolus ruineniae Sr-1 in einem Parti - alverdau mit Sau 3A geschnitten und durch Agarose Gele- lektrophorese aufgetrennt. Die chromosomalen DNS-Fragmente wurden im Größenbereich von 1 - 20 kb isoliert und, entspre- chend den Angaben des Herstellers, jeweils in mit Barn HI vor- geschnittene Lambda-Phagen kloniert (Stratagene Klonierungs- system „Lambda ZAP Express") . Von der 1 - 20 kb DNS-Fraktion wurden 2,5 x 106 Phagen/μg Vektor-DNS erhalten. Die Phagen wurden durch Infektion des E. coli Stammes XL-I Blue MRF' amplifiziert .To prepare the chromosomal gene bank, 100 μg of chromosomal DNA from Sporidiobolus ruineniae Sr-1 were cut in a partial digestion with Sau 3A and fractionated by agarose gel electrophoresis. The chromosomal DNA fragments were isolated in the size range from 1 to 20 kb and, according to the manufacturer's instructions, each cloned into Lambn phage pre-cut with Barn HI (Stratagene cloning system "Lambda ZAP Express") From 1 to 20 kb of DNA fraction, 2.5 x 10 6 phage / μg of vector DNA were obtained and phage were amplified by infection of E. coli strain XL-I Blue MRF '.
4. Beispiel4th example
Klonierung des S. ruineniae GAPDH-GensCloning of the S. ruineniae GAPDH gene
A. Isolierung einer GAPDH DNS-Sonde aus Sporidiobolus ruineni- ae: Es wurde der Stamm Sporidiobolus ruineniae Sr-1 (siehe 1. Bei- spiel) verwendet. Genomische DNS wurde isoliert wie im 2. Bei- spiel beschrieben.A. Isolation of a GAPDH DNA probe from Sporidiobolus ruineni ae: The strain Sporidiobolus ruineniae Sr-1 (see Example 1) was used. Genomic DNA was isolated as described in the 2nd example.
Anhand der publizierten DNS-Sequenzen des GAPDH-Gens aus Pha- nerochaete chrysosporium (M. C. Harmsen et al . (1992), Curr. Genet . 22, 447 - 454) und des GAPDH-Gens aus Coriolus hirsutus (JP 9-47289) und Phaffia rhodozyma (J. C. Verdoes et al . (1997), Yeast 13, 1231 - 1242) wurden Primer zur PCR- Amplifikation eines GAPDH- spezifischen Genfragments kon- struiert. Die Primer hatten die folgenden DNS-Sequenzen:From the published DNA sequences of the GAPDH gene from Phaserochaete chrysosporium (MC Harmsen et al., (1992) Curr Genet., 22, 447-454) and the GAPDH gene from Coriolus hirsutus (JP 9-47289) and Phaffia rhodozyma (JC Verdoes et al. (1997), Yeast 13, 1231-1242) primers were designed for PCR amplification of a GAPDH-specific gene fragment. The primers had the following DNA sequences:
Primer srgapl:Primer srgapl:
5 ' -CTTGAGTACATGGTCTACATGTTC-3 ' (SEQ ID NO: 6).5 '-CTTGAGTACATGGTCTACATGTTC-3' (SEQ ID NO: 6).
Primer srgap2r:Primer srgap2r:
5 ' -TTAACACCGCAGACGAACATGG-3 ' (SEQ ID NO: 7).5'-TTAACACCGCAGACGAACATGG-3 '(SEQ ID NO: 7).
PCR-Amplifikationen wurden entsprechend dem Stand der Technik durchgeführt: In einer PCR Reaktion wurden 200 ng chromosoma- ler Sporidiobolus ruineniae DNS in einer 50 μl PCR Reaktion eingesetzt, die den vom Hersteller bereitgestellten Puffer enthielt und darüberhinaus 1,25 U Taq Polymerase, 1,25 mM MgC12, je 0,2 mM der vier dNTPs (dATP, dCTP, cGTP, dTTP) und jeweils 100 pmol der Primer srgapl und srgap2r. Die weiteren Bedingungen zur spezifischen Amplifikation des gewünschten PCR-Produkts waren: 5 min bei 94°C, gefolgt von 30 Zyklen von 0,5 min bei 94°C, 1 min bei 50°C und 1 min bei 72°C. Es wurde ein PCR-Produkt von ca. 0,3 kb erhalten.PCR amplifications were carried out according to the prior art: In a PCR reaction, 200 ng chromosomal Sporidiobolus ruineniae DNA were used in a 50 μl PCR reaction containing the buffer provided by the manufacturer and additionally 1.25 U Taq polymerase, 1, 25 mM MgCl 2 , 0.2 mM each of the four dNTPs (dATP, dCTP, cGTP, dTTP) and in each case 100 pmol of the primers srgapl and srgap2r. Further conditions for specific amplification of the desired PCR product were: 94 ° C for 5 min followed by 30 cycles of 94 ° C for 0.5 min, 50 ° C for 1 min, and 72 ° C for 1 min. A PCR product of about 0.3 kb was obtained.
Das PCR-Produkt wurde durch Agarose Gelelektrophorese gerei- nigt, in den Vektor PCR-Script SK(+) (Stratagene) kloniert und E. coli Top 10F' transformiert. Aus der Anzucht transformier- ter E. coli wurde das Plasmid isoliert. DNS-Sequenzanalyse be- stätigte, daß es sich bei dem klonierten DNS-Fragment um das Fragment des GAPDH-Gens aus S. ruineniae handelte. Zur Vorbereitung der DNS-Sonde für das Screening des GAPDH- Gens wurde das GAPDH-spezifische PCR-Fragment durch Behandlung mit Not I und Eco RI ausgeschnitten, über Agarose Elektropho- rese isoliert und mit dem „AlkPhos Direct" DNS-Markierungs-Kit (Amersham Biosciences) markiert, wie vom Hersteller empfohlen.The PCR product was purified by agarose gel electrophoresis, cloned into the vector PCR-Script SK (+) (Stratagene) and transformed into E. coli Top 10F '. The plasmid was isolated from the culture of transformed E. coli. DNA sequence analysis confirmed that the cloned DNA fragment was the fragment of the GAPDH gene from S. ruineniae. To prepare the DNA probe for the screening of the GAPDH gene, the GAPDH-specific PCR fragment was excised by treatment with Not I and Eco RI, isolated by agarose electrophoresis and labeled with the "AlkPhos Direct" DNA labeling kit. Amersham Biosciences), as recommended by the manufacturer.
B: Isolierung eines chromosomalen GAPDH-Gens aus S. ruineniae:B: Isolation of a chromosomal GAPDH gene from S. ruineniae:
Es wurde die im 3. Beispiel beschriebene chromosomale Genbank von Sporidiobolus ruineniae Sr-I verwendet. Das Screening nach dem chromosomalen GAPDH-Gen wurde nach dem Stand der Technik durchgeführt. In einer ersten Screeningrunde wurden Zellen von E. coli XL-1 Blue MRF' auf 6 Petrieschalen zuerst kultiviert und dann mit 50.000 Phagen der Genbank pro Petrieschale infi- ziert. Nach Inkubation bei 37°C über Nacht wurden die neu ge- bildeten Phagen auf Nylonfilter (Hybond-N+, Amersham Bioscien- ces) transferiert. Die Filter wurden dann entsprechend den Empfehlungen des Herstellers mit der markierten GAPDH- spezifischen Sonde (siehe Abschnitt A) hybridisiert. Die Hy- bridisierungstemperatur betrug 6O°C. Die Waschtemperatur be- trug 6O°C. Die Detektion positiver Klone erfolgte durch Chemi- luminiszenz (CDP-Star Detektions-Kit der Fa. Amersham Bios- ciences) und Autoradiographie. 18 positive Klone wurden ge- pickt. Diese wurden durch Wiederholung des Screeningverfahrens gereinigt. Nach drei Runden der Vereinzelung wurden bei demThe chromosomal gene bank of Sporidiobolus ruineniae Sr-I described in Example 3 was used. The screening for the chromosomal GAPDH gene was carried out according to the prior art. In a first round of screening, cells of E. coli XL-1 Blue MRF 'were first cultured on 6 petri dishes and then infected with 50,000 phages of the Genbank per petri dish. After incubation at 37 ° C overnight, the newly formed phage were transferred to nylon filters (Hybond-N + , Amersham Biosciences). The filters were then hybridized to the labeled GAPDH-specific probe (see Section A) according to the manufacturer's recommendations. The hybridization temperature was 6O ° C. The washing temperature was 6O ° C. The detection of positive clones was carried out by chemiluminescence (CDP-Star detection kit from Amersham Biosciences) and autoradiography. 18 positive clones were picked. These were purified by repeating the screening procedure. After three rounds of singling were at the
Screening fünf stark hybridisierende Phagenklone isoliert, die nach einer Vorschrift des Herstellers (Stratagene) durch "in vivo excision" in den pBK CMV Vektor (Stratagene) umkloniert wurden. Analyse der Klone durch Verdau mit Restriktionsendo- nucleasen und DNS-Sequenzierung ergab, daß es sich bei vier der fünf Klone um GAPDH-Klone handelte. Zwei allelische Klone, bezeichnet als Gap5 (SEQ ID NO: 1), und Gap18 (SEQ ID NO: 2) wurden sequenziert.Screening five strongly hybridizing phage clones isolated, which according to a manufacturer's instructions (Stratagene) by "in vivo excision" in the pBK CMV vector (Stratagene) were recloned. Analysis of the clones by digestion with restriction endonucleases and DNA sequencing revealed that four of the five clones were GAPDH clones. Two allelic clones, designated Gap5 (SEQ ID NO: 1), and Gap18 (SEQ ID NO: 2) were sequenced.
Das Start ATG-Codon des GAPDH-Gens wurde durch die dem Fach- mann geläufige 5'-RACE Analyse (Generacer Kit von Invitrogen) bestimmt. Es wurde der vom Hersteller bereitgestellten Ver- suchsanleitung gefolgt. Die dabei zur Herstellung der cDNS be- nötigte RNS wurde mit dem „peqGOLD TriFast" Reagens (PeqLab) isoliert. Der weiterhin für die PCR-Reaktion benötigte genspe- zifische Primer srgaplOr hatte folgende Sequenz:The start ATG codon of the GAPDH gene was determined by the expert's 5'-RACE analysis (Generacer Kit from Invitrogen). The test instructions provided by the manufacturer were followed. They involved in the production of the cDNA required RNA was isolated with the "peqGOLD TriFast" reagent (PeqLab) The gene-specific primer srgaplOR, which was furthermore required for the PCR reaction, had the following sequence:
Primer srgaplOr:Primer srgaplOr:
5' -TTGAACATGTAGACCATGTACTCGAG-3 ' (SEQ ID NO: 8).5 '-TTGAACATGTAGACCATGTACTCGAG-3' (SEQ ID NO: 8).
Ein Vergleich der DNS-Sequenz des 5'-RACE cDNS Fragments mit den Sequenzen der Gap5 und Gapl8 Klone ergab, dass das Start ATG-Codon durch ein Intron unterbrochen wird. Die entsprechen- den Promotorregionen sind somit bp 1 - 1050 im Klon Gap5 (SEQ ID NO: 1), bzw. bp 1 - 790 im Klon Gap18 (SEQ ID NO: 2) . Als Terminatorregion wurde die DNS-Sequenz bp 2997 - 3500 im Klon Gap5 (SEQ ID NO: 1) bestimmt.A comparison of the DNA sequence of the 5'-RACE cDNA fragment with the sequences of the Gap5 and Gapl8 clones revealed that the start ATG codon is interrupted by an intron. The corresponding promoter regions are thus bp 1 - 1050 in clone Gap5 (SEQ ID NO: 1), or bp 1-790 in clone Gap18 (SEQ ID NO: 2). As terminator region, the DNA sequence bp 2997-3500 in clone Gap5 (SEQ ID NO: 1) was determined.
Ein Sequenzvergleich der DNS der verfügbaren kodierenden Be- reiche (einschliesslich Intronsequenzen) des Gap5 Klons (SEQ ID NO: 1, bp 1051 - 2996) und des Gapl8 Klons (SEQ ID NO: 2, bp 791 - 2126) ergab eine 97,8 % Identität. Dagegen waren die oben genannten Promotorbereiche nur zu 41,8 % identisch. In der vorliegenden Erfindung beziehen sich alle erwähnten Homo- logiewerte auf Ergebnisse, die mit dem Computerprogramm "Wis- consin Package Version 10.3, Accelrys Inc." erhalten wurden. Die Homologiebestimmung erfolgte durch Vergleich der DNS- Sequenzen mit dem Unterprogramm "gap" . Hierbei werden die vor- eingestellten Parameter "gap creation penalty 50" und "gap ex- tension penalty 3" verwendet.Sequence comparison of the DNA of the available coding regions (including intron sequences) of the Gap5 clone (SEQ ID NO: 1, bp 1051-2996) and the Gapl8 clone (SEQ ID NO: 2, bp 791-21226) gave a 97.8 % Identity. By contrast, the promoter regions mentioned above were only 41.8% identical. In the present invention, all homology values mentioned refer to results obtained with the computer program "Wisconsin Package Version 10.3, Accelrys Inc." were obtained. Homology was determined by comparing the DNA sequences with the subprogram "gap". The preset parameters "gap creation penalty 50" and "gap extension penalty 3" are used here.
5. Beispiel Expressionsvektor pprG418Sr für die Transformation von S. rui - neniaeExample 5 Expression vector pprG418Sr for the transformation of S. rueneiae
Das GAPDH-Gen aus Phaffia rhodozyma ist bekannt (Genbezeich- nung in der GCG-Gendatenbank: PRGPDGENE .gb_pl) und seine Ver- wendung zur Transfromation von Phaffia rhodozyma ist beschrie- ben (Wery et al . , Biotechnology Techniques (1998) 12: 399- 405). Das G418 Resistenzgen aus dem E. coli Transposon Tn903 ist enthalten in dem Saccharomyces cerevisiae Expressionsvek- tor pUG6 (beschrieben in Gueldener et al . , Nucleic Acids Res . (1996) 24: 2519-2524; die DNS-Sequenz ist in der GCG- Gendatenbank abgelegt unter der Zugangsnummer AF298793) .The GAPDH gene from Phaffia rhodozyma is known (gene designation in the GCG gene database: PRGPDGENE .gb_pl) and its use for the transfomation of Phaffia rhodozyma is described (Wery et al., Biotechnology Techniques (1998) 12: 399-405). The G418 resistance gene from the E. coli transposon Tn903 is contained in the Saccharomyces cerevisiae expression vector. pUG6 (described in Gueldener et al., Nucleic Acids Res. (1996) 24: 2519-2524; the DNA sequence is stored in the GCG gene database under accession number AF298793).
Promoter und Terminator des GAPDH-Gens wurden durch PCR-Promoter and terminator of the GAPDH gene were amplified by PCR
Reaktionen aus genomischer DNS des Stammes Phaffia rhodozyma CBS 6938 (erhältlich von der Stammsammlung Centraalbureau voor Schimmelcultures, Utrecht, Niederlande) isoliert. Genomische DNS von P. rhodozyma wurde isoliert, wie im 2. Beispiel für S. ruineniae beschrieben.Reactions isolated from genomic DNA of strain Phaffia rhodozyma CBS 6938 (available from the strain collection Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands). Genomic DNA of P. rhodozyma was isolated as described in Example 2 for S. ruineniae.
Zur Isolierung des Promotor DNS-Fragments wurden die Primer prgapl und prgap2r verwendet. Zur Isolierung des Terminators wurden die Primer prgap3 und prgap4r verwendet. Die Primer hatten folgende DNS-Sequenzen:To isolate the promoter DNA fragment, the primers prgapl and prgap2r were used. The primers prgap3 and prgap4r were used to isolate the terminator. The primers had the following DNA sequences:
Primer prgapl :Primer prgapl:
5' -CCGAAGCTTAAGTCGAGGGAACCCGAG-3 ' (SEQ ID NO: 9).5'-CCGAAGCTTAAGTCGAGGGAACCCGAG-3 '(SEQ ID NO: 9).
Primer prgap2r:Primer prgap2r:
5' -TTCGGATCCCCGCGGCCATGGTGGTAAGAGTGTTAG-3 ' (SEQ ID NO: 10).5 '-TTCGGATCCCCGCGGCCATGGTGGTAAGAGTGTTAG-3' (SEQ ID NO: 10).
Primer prgap3 :Primer prgap3:
5' -ACGGTTCTCTCCAAACCCTC-3 ' (SEQ ID NO: 11).5'-ACGGTTCTCTCCAAACCCTC-3 '(SEQ ID NO: 11).
Primer prgap4r:Primer prgap4r:
5' -GGATCCCGGAGATGATGGTGATG-3 ' (SEQ ID NO: 12).5 '-GGATCCCGGAGATGATGGTGATG-3' (SEQ ID NO: 12).
PCR-Reaktionen mit genomischer P. rhodozyma DNS und den Pri- mern prgapl und prgap2r, bzw. prgap3 und prgap4r wurden durch- geführt wie im 2. Beispiel beschrieben. Verwendet wurde fol- gendes PCR-Programm: Nach Inkubation des PCR-Ansatzes für 1' bei 94°C wurden 30 Reaktionszyklen von 1' 94°C, 30' ' 5O°C und 30'' 72°C durchgeführt und die Reaktion mit einer Inkubation für 5' bei 72°C beendet. Die gebildeten PCR-Produkte wurden durch Agarose Gelelektrophorese analysiert. Die Grosse des Promotor DNS-Fragments (Primer prgapl und prgap2r) war 0,7 kb. Die Grosse des Terminator DNS-Fragments (Primer prgap3 und prgap4r) war 0,4 kb. Die beiden DNS-Fragmente wurden durch präparative Agarose Gelelektrophorese gereinigt.PCR reactions with genomic P. rhodozyma DNA and the prgapl and prgap2r, prgap3 and prgap4r primers were carried out as described in Example 2. The following PCR program was used: After incubation of the PCR mixture for 1 'at 94 ° C 30 reaction cycles of 1' 94 ° C, 30 '' 5O ° C and 30 '' 72 ° C were carried out and the reaction with incubated for 5 'at 72 ° C. The resulting PCR products were analyzed by agarose gel electrophoresis. The size of the promoter DNA fragment (primer prgapl and prgap2r) was 0.7 kb. The size of the terminator DNA fragment (primer prgap3 and prgap4r) was 0.4 kb. The two DNA fragments were purified by preparative agarose gel electrophoresis.
Das isolierte Promotor DNS-Fragment wurde mit Hind III (Schnittstelle war in Primer prgapl enthalten) und Barn HIThe isolated promoter DNA fragment was digested with Hind III (cleavage was in primer prgapl) and Barn HI
(Schnittstelle war in Primer prgap2r enthalten) geschnitten und in den mit Hind III und Bam HI geschnittenen und dephosphorylierten pUC18 Vektor (Amersham Biosciences) klo- niert. Dabei entstand der 3,4 kb grosse Vektor pPRgap-pro.(Cleavage site contained prgap2r primer) and cloned into the Hind III and Bam HI cut and dephosphorylated pUC18 vector (Amersham Biosciences). The result was the 3.4 kb vector pPRgap-pro.
Das isolierte Terminator DNS-Fragment wurde in den PCR-Script Vektor (Stratagene) kloniert. Dabei entstand der 3,4 kb grosse Vektor pPRgap-term. Für die nachfolgenden Arbeiten wurde ein Klon ausgewählt, bei dem die Bam HI Schnittstelle aus dem Pri- mer prgap4r neben der Bam HI Schnittstelle des PCR-Script Vek- tors lag.The isolated terminator DNA fragment was cloned into the PCR Script Vector (Stratagene). This resulted in the 3.4 kb vector pPRgap-term. For the subsequent work, a clone was selected in which the Bam HI cleavage site was located from the prgap4r primer next to the Bam HI cleavage site of the PCR script vector.
Vektor pPRgap :Vector pPRgap:
Vektor pPRgap-pro wurde mit Sac II und Bam HI geschnitten und der linerisierte Vektor dephosphoryliert .Vector pPRgap-pro was cut with Sac II and Bam HI and the linearized vector was dephosphorylated.
Vektor pPRgap-term wurde mit Sac II und Bam HI geschnitten und das entstehende 0,4 kb Terminatorfragment durch präparative Agarose Gelelelektrophorese isoliert.Vector pPRgap-term was cut with Sac II and Bam HI and the resulting 0.4 kb terminator fragment isolated by preparative agarose gel electrophoresis.
Das pPRgap-pro Vektorfragment und das Terminatorfragment wur- den ligiert und E. coli Top10F' (Invitrogen) transformiert. Es entstand der 3,8 kb große Vektor pPRgap.The pPRgap-pro vector fragment and the terminator fragment were ligated and transformed into E. coli Top10F '(Invitrogen). The result was the 3.8 kb vector pPRgap.
Herstellung des Vektors pprG418:Preparation of the vector pprG418:
Vektor pPRgap wurde zuerst mit Sac II geschnitten und das ü- berhängende Ende durch Reaktion mit der Pfu DNS-Polymerase (Stratagene) aufgefüllt. Dann wurde der Vektor mit Nco I ge- schnitten. Das so linearisierte 3,8 kb grosse Vektorfragment wurde anschliessend dephosphoryliert.Vector pPRgap was first cut with Sac II and the overhanging end filled in by reaction with Pfu DNA polymerase (Stratagene). Then the vector was cut with Nco I. The linearized 3.8 kb vector fragment was subsequently dephosphorylated.
Das G4l8-Resistenzgen wurde aus dem Vektor pUG6 durch Verdau mit Nco I und Sca I als 0,8 kb grosses Fragment herausge- schnitten und durch präparative Agarose Gelelektrophorese iso- liert.The G4l8 resistance gene was excised from the pUG6 vector by digestion with Nco I and Sca I as a 0.8 kb fragment. and isolated by preparative agarose gel electrophoresis.
Das linearisierte 3,8 kb pPRgap Vektorfragment wurde mit dem 0,8 kb G418-Resistenz Genfragment ligiert und E. coli Top 10F' transformiert. Dabei entstand der 4,6 kb grosse Vektor pprG418, in dem das G418-Resistenzgen funktionell mit dem GapDH-Promotor und -Terminator aus Phaffia rhodozyma verknüpft ist (Fig. 2) .The linearized 3.8 kb pPRgap vector fragment was ligated with the 0.8 kb G418 resistance gene fragment and transformed into E. coli Top 10F '. This resulted in the 4.6 kb vector pprG418, in which the G418 resistance gene is functionally linked to the GapDH promoter and terminator from Phaffia rhodozyma (FIG. 2).
Herstellung des Expressionsvektors pG418Sr:Preparation of expression vector pG418Sr:
Vektor pprG418 mit dem G418 Selektionsmarkergen wurde mit AfI II und Barn HI geschnitten. Das dadurch erzeugte 1,9 kb DNS- Fragment, das die Expressionskassette bestehend aus P. rhodo- zyma GapDH-Promotor, G418 Resistenzgen und P. rhodozyma GapDH- Terminator enthielt, wurde durch Agarose Gelelektrophorese i- soliert.Vector pprG418 with the G418 selection marker gene was cut with AfI II and Barn HI. The resulting 1.9 kb DNA fragment containing the expression cassette consisting of P. rhodocyma GapDH promoter, G418 resistance gene and P. rhodozyma GapDH terminator was isolated by agarose gel electrophoresis.
Vektor pSrrDNA wurde mit AfI II und BgI II geschnitten, das dadurch linearisierte 5,9 kb Vektorfragment durch Agarose Ge- lelektrophorese isoliert und mit alkalischer Phosphatase dephosphoryliert.Vector pSrrDNA was cut with AfI II and Bgl II, which was thereby isolated linearized 5.9 kb vector fragment by agarose gel electrophoresis and dephosphorylated with alkaline phosphatase.
Das 1,9 kb DNS-Fragment aus dem Vektor pprG418 wurde mit dem 5,9 kb pSrrDNA Vektorfragment ligiert und E. coli ToplO F' transformiert. Dabei entstand der 7,8 kb grosse Expressions- vektor pG418Sr (Fig. 3). pG418Sr ist ein neuer Expressionsvek- tor, der sich zur Transformation von Sporidioboluε ruineniae und zur Selektion von G418 -resistenten Transformanten eignet.The 1.9 kb DNA fragment from the vector pprG418 was ligated with the 5.9 kb pSrrDNA vector fragment and transformed into E. coli ToplO F '. This gave rise to the 7.8 kb expression vector pG418Sr (FIG. 3). pG418Sr is a novel expression vector suitable for the transformation of Sporidioboluε ruineniae and for the selection of G418-resistant transformants.
6. Beispiel6th example
Expressionsvektor pprHPHsr für die Transformation von S. rui- neniaeExpression vector pprHPHsr for the transformation of S. ruineniae
Vektor pPRgap:Vector pPRgap:
Verwendet wurde das im 3. Beispiel beschriebene 3,8 kb Vektor- fragment, das durch Verdau mit Sac II, Auffüllreaktion mit der Pfu DNS-Polymerase, Verdau mit Nco I und Dephosphorylierung hergestellt worden war.The 3.8 kb vector fragment described in Example 3 was used, which was prepared by digestion with Sac II Pfu DNA polymerase, digestion with Nco I and dephosphorylation had been made.
Hygromycin Resistenzgen (HPH) : Die Sequenz des Hygromycin Resistenzgens aus E. coli ist in der GCG-Datenbank unter der Datei „ECAPH4" abgelegt (Kaster et al., Nucleic Acids Res . (1983) 11, 6895-6911). Das Hygromycin Resistenzgen wurde aus E. coli DNS durch PCR mit der Pfu DNS- Polymerase (Stratagene) und den Primern hphlf und hph2r herge- stellt. Primer hphlf und hph2r hatten folgende DNS-Sequenz:Hygromycin resistance gene (HPH): The sequence of the hygromycin resistance gene from E. coli is stored in the GCG database under the file "ECAPH4" (Kaster et al., Nucleic Acids Res. (1983) 11, 6895-6911) Resistance gene was prepared from E. coli DNA by PCR with Pfu DNA polymerase (Stratagene) and the primers hphlf and hph2r, and hphlf and hph2r primers had the following DNA sequence:
Primer hphlf:Primer hphlf:
5' -GAGTCATGAAAAAGCCTGAACTCAC-3' (SEQ ID NO: 13).5'-GAGTCATGAAAAAGCCTGAACTCAC-3 '(SEQ ID NO: 13).
Primer hph2r:Primer hph2r:
5' -TACTCTATTCCTTTGCCCTCGG-3 ' (SEQ ID NO: 14).5'-TACTCTATTCCTTTGCCCTCGG-3 '(SEQ ID NO: 14).
Bei der PCR-Reaktion entstand ein 1 kb grosses DNS-Fragment, das mit Bsp HI (im Primer hphlf enthalten) geschnitten wurde.In the PCR reaction, a 1 kb DNA fragment was generated, which was cut with Ex. HI (contained in the primer hphlf).
Herstellung des Vektors pprHPH:Preparation of the vector pprHPH:
Das 3,8 kb grosse pPRgap Vektorfragment wurde mit dem 1 kb grossen DNS-Fragment des Hygromycin Resistenzgens ligiert und E. coli Top 10F' transformiert. Dadurch entstand der 4,8 kb grosse Vektor pprHPH (Fig. 4) .The 3.8 kb pPRgap vector fragment was ligated with the 1 kb DNA fragment of the hygromycin resistance gene and transformed into E. coli Top 10F '. This gave rise to the 4.8 kb vector pprHPH (FIG. 4).
Herstellung des Expressionsvektor pHPHsr:Preparation of the expression vector pHPHsr:
Vektor pprHPH mit dem Hygromycin B-Selektionsmarkergen wurde mit AfI II und Barn HI geschnitten. Das dabei entstandene 2,1 kb DNS - Fragment , das die Expressionskassette bestehend aus P. rhodozyma GapDH- Promotor, Hygromycin B-Resistenzgen und P. rhodozyma GapDH-Terminator enthielt, wurde durch Agarose Gele- lektrophorese isoliert.Vector pprHPH with the hygromycin B selection marker gene was cut with AfI II and Barn HI. The resulting 2.1 kb DNA fragment containing the expression cassette consisting of P. rhodozyma GapDH promoter, hygromycin B resistance gene and P. rhodozyma GapDH terminator was isolated by agarose gel electrophoresis.
Vektor pSrrDNA wurde mit AfI II und BgI II geschnitten, das dadurch linearisierte 5,9 kb Vektorfragment durch Agarose Ge- lelektrophorese isoliert und mit alkalischer Phosphatase dephosphoryliert . Das 2,1 kb DNS-Fragment aus dem Vektor pprG418 (enthält die Expressionskassette mit dem Hygromycin B-Resistenzgen) wurde mit dem 5,9 kb pSrrDNA Vektorfragment ligiert und E. coli ToplO F' (Invitrogen) transformiert. Dabei entstand der 8 kb grosse Expressionsvektor pHPHsr (Fig. 5) . pHPHsr ist ein neuer Expressionsvektor, der sich zur Transformation von Sporidiobo- lus ruineniae und zur Selektion von Hygromycin B-resistenten Transformanten eignet.Vector pSrrDNA was cut with AfI II and Bgl II, which was thereby isolated linearized 5.9 kb vector fragment by agarose gel electrophoresis and dephosphorylated with alkaline phosphatase. The 2.1 kb DNA fragment from the vector pprG418 (containing the expression cassette with the hygromycin B resistance gene) was ligated with the 5.9 kb pSrrDNA vector fragment and transformed into E. coli ToplO F ' (Invitrogen). This resulted in the 8 kb expression vector pHPHsr (FIG. 5). pHPHsr is a novel expression vector suitable for the transformation of Sporidiobulus ruineniae and for the selection of hygromycin B-resistant transformants.
7. Beispiel7th example
Expressionsvektor pG418G18R für die Transformation von S. rui- neniaeExpression vector pG418G18R for the transformation of S. ruineniae
Herstellung des Vektors pG418G5:Preparation of vector pG418G5:
Vektor pprG418 (siehe 5. Beispiel) wurde mit AfI II und Nco I geschnitten, um den P. rhodozyma GAPDH-Promotor zu entfernen. Dabei entstand ein 3,9 kb Vektorfragment, das durch Agarosege- lelektrophorese isoliert und mit alkalischer Phosphatase dephosphoryliert wurde.Vector pprG418 (see 5th example) was cut with AfI II and Nco I to remove the P. rhodozyma GAPDH promoter. This resulted in a 3.9 kb vector fragment which was isolated by agarose gel electrophoresis and dephosphorylated with alkaline phosphatase.
Genomische DNS des S. ruineniae GAPDH-Klons Gap5 (siehe 4. Beispiel) wurde in einer PCR-Reaktion (Taq DNS-Polymerase, Qiagen Taq Core Kit) zusammen mit den Primern srgap5 und srgap6 eingesetzt. srgap5 (forward) bindet an den Beginn des Promotor Sequenzabschnitts, srgap6 (reverse) an dessen Ende. Die beiden Primer hatten folgende Sequenzen:Genomic DNA of the S. ruineniae GAPDH clone Gap5 (see Example 4) was used in a PCR reaction (Taq DNA polymerase, Qiagen Taq Core Kit) together with the primers srgap5 and srgap6. srgap5 (forward) binds to the beginning of the promoter sequence segment, srgap6 (reverse) at its end. The two primers had the following sequences:
Primer srgap5 : 5' -GATCTTAAGGAAGAGTCGCTCACTC-3 ' SEQ ID NO: 15Primer srgap5: 5'-GATCTTAAGGAAGAGTCGCTCACTC-3 'SEQ ID NO: 15
Primer srgap6 :Primer srgap6:
5' -CTTCCATGGTGAGGTTGATCCGCTG-3 ' SEQ ID NO: 165 '-CTTCCATGGTGAGGTTGATCCGCTG-3' SEQ ID NO: 16
Die Bedingungen für die PCR-Reaktion waren: 1' 94 °C, gefolgt von 30 Zyklen zu je 30" 94°C, 30" 52°C, 60' 72°C und schliesslich 5' 72°C. Das bei der PCR-Reaktion gebildete 1 kb DNS-Fragment des GAPDH-Promotors wurde isoliert und mit AfI II und Nco I geschnitten.The conditions for the PCR reaction were: 1 '94 ° C, followed by 30 cycles of 30 "94 ° C, 30" 52 ° C, 60' 72 ° C, and finally 5 '72 ° C. The 1 kb formed in the PCR reaction DNA fragment of the GAPDH promoter was isolated and cut with AfI II and Nco I.
Das 3,9 kb AfI II/Nco I geschnittene pprG418 Vektorfragment und das 1 kb AfI II/Nco I-geεchnittene GAPDH-Promotorfragment wurden ligiert und in E. coli Top 10F' transformiert. Es ent- stand der 4,9 kb grosse Vektor pGapPromG418 , in dem der Gap5- Promotor mit dem G418-Resistenzgen verknüpft war.The 3.9 kb AfI II / Nco I cut pprG418 vector fragment and the 1 kb AfI II / Nco I-cut GAPDH promoter fragment were ligated and transformed into E. coli Top 10F '. This resulted in the 4.9 kb vector pGapPromG418, in which the Gap5 promoter was linked to the G418 resistance gene.
Vektor pGapPromG418 wurde mit Not I und Barn HI geschnitten, wobei das 0,4 kb P. rhodozyma GAPDH-Terminatorfragment ent- fernt wurde. Das 4,5 kb Vektorfragment wurde durch Agarose Ge- lelektrophorese isoliert und durch Phosphatasebehandlung dephosphoryliert .Vector pGapPromG418 was cut with Not I and Barn HI, removing the 0.4 kb P. rhodozyma GAPDH terminator fragment. The 4.5 kb vector fragment was isolated by agarose gel electrophoresis and dephosphorylated by phosphatase treatment.
Genomische DNS des S. ruineniae GAPDH-Klons Gap5 (siehe 4. Beispiel) wurde in einer PCR-Reaktion (Taq DNS-Polymerase, Qiagen Taq Core Kit) zusammen mit den Primern srgapllf und srgapl2r eingesetzt, srgapllf enthält eine Not I Schnittstelle zur Verknüpfung mit dem 3' -Ende des G418 Resistenzgens und enthält die Sequenz nach dem ersten möglichen Stop-Codon des GAPDH-Gens (siehe 4. Beispiel). srgapl2r enthält eine Bam HI Schnittstelle und stammt vom sequenzierten 3 '-Ende des Gap5 Klons . Die beiden Primer hatten folgende Sequenz :Genomic DNA of the S. ruineniae GAPDH clone Gap5 (see Example 4) was used in a PCR reaction (Taq DNA polymerase, Qiagen Taq Core Kit) together with the primers srgapllf and srgapl2r, srgapllf contains a Not I site for linkage with the 3 'end of the G418 resistance gene and contains the sequence after the first possible stop codon of the GAPDH gene (see 4th example). srgapl2r contains a Bam HI site and is derived from the sequenced 3 'end of the Gap5 clone. The two primers had the following sequence:
Primer srgapllf:Primer srgapllf:
5' -TATGCGGCCGCTATGCGCCGTGTAAAGCGTG-3' SEQ ID NO: 175 '-TATGCGGCCGCTATGCGCCGTGTAAAGCGTG-3' SEQ ID NO: 17
Primer srgapl2r: 5' -TATGGATCCCAGGGCTGATCGCTCGTTGC-3 ' SEQ ID NO: 18Primer srgapl2r: 5'-TATGGATCCCAGGGCTGATCGCTCGTTGC-3 'SEQ ID NO: 18
Die Bedingungen für die PCR-Reaktion waren: 1' 94 °C, gefolgt von 30 Zyklen zu je 30'' 94°C, 30'' 52°C, 30'' 72°C und schliesslich 5' 72°C. Das bei der PCR-Reaktion gebildete 0,42 kb DNS-Fragment des GAPDH-Promotors wurde isoliert und mit Not I und Bam HI geschnitten. Das 4 , 5 kb Not I/Bam HI geschnittene pGapPromG418 Vektorfrag- ment und das 0,42 kb Not I/Bam HI geschnittene GAPDH- Terminatorfragment wurden ligiert und in E. coli Top 10F' transformiert. Es entstand der 4,9 kb grosse Vektor pG418G5 (Fig. 6), in dem der Promotor und Terminator des Gap5 GAPDH- Klons funktionell mit dem G418-Resistenzgen verknüpft sind.The conditions for the PCR reaction were: 1 '94 ° C, followed by 30 cycles of 30''94 ° C, 30''52 ° C, 30''72 ° C and finally 5' 72 ° C. The 0.42 kb DNA fragment of the GAPDH promoter formed in the PCR reaction was isolated and cut with Not I and Bam HI. The 4.5 kb Not I / Bam HI cut pGapPromG418 vector fragment and the 0.42 kb Not I / Bam HI cut GAPDH terminator fragment were ligated and transformed into E. coli Top 10F '. The 4.9 kb vector pG418G5 (FIG. 6) was created, in which the promoter and terminator of the Gap5 GAPDH clone are functionally linked to the G418 resistance gene.
Vektor pG418G18Vector pG418G18
Genomische DNS des S. ruineniae GAPDH-Klons Gapl8 (siehe 4. Beispiel) wurde in einer PCR-Reaktion (Taq DNS-Polymerase, Qiagen Taq Core Kit, siehe Vektor pG418G5) zusammen mit den Primern srgap13f und srgap15r eingesetzt. srgap13f bindet an den Beginn des Promotor Sequenzabschnitts, srgapl5r an dessen Ende. Die beiden Primer hatten folgende Sequenzen:Genomic DNA of the S. ruineniae GAPDH clone Gapl8 (see Example 4) was used in a PCR reaction (Taq DNA polymerase, Qiagen Taq Core Kit, see vector pG418G5) together with the primers srgap13f and srgap15r. srgap13f binds to the beginning of the promoter sequence, srgapl5r at its end. The two primers had the following sequences:
srgapl3f :srgapl3f:
5' -TATCTTAAGTCCGGACGATTTCGTCCTC-3 ' (SEQ ID NO: 19)5'-TATCTTAAGTCCGGACGATTTCGTCCTC-3 '(SEQ ID NO: 19)
srgapl5r: 5' -TATCCATGGTGTGGTTGATCGAGTAG-3' (SEQ ID NO: 20)srgapl5r: 5'-TATCCATGGTGTGGTTGATCGAGTAG-3 '(SEQ ID NO: 20)
Das bei der PCR-Reaktion gebildete 0,8 kb Gap18 Promotorfrag- ment wurde gelisoliert und mit AfI II und Nco I geschnitten. Vektor pG418G5 wurde mit AfI II und Nco I geschnitten und das 3,9 kb Vektorfragment gelisoliert und dephosphoryliert . DasThe 0.8 kb Gap18 promoter fragment formed in the PCR reaction was gel isolated and cut with AfI II and Nco I. Vector pG418G5 was cut with AfI II and Nco I and the 3.9 kb vector fragment gel isolated and dephosphorylated. The
0,8 kb Gap18 Promotorfragment wurde in das 3 , 9 kb Vektorfrag- ment kloniert, wodurch der 4 , 7 kb Vektor pG418G18 entstand (Fig. 7) .0.8 kb of Gap18 promoter fragment was cloned into the 3.9 kb vector fragment, resulting in the 4.7 kb vector pG418G18 (Figure 7).
Herstellung des Vektors pG418G18R:Preparation of vector pG418G18R:
Aus dem Vektor pG418G18 wurde die G418-Expressionskassette durch Verdau mit Xma I und Bsp EI als 2,1 kb grosses DNS- Fragment herausgeschnitten und durch Agarose Gelelektrophorese isoliert .From the vector pG418G18, the G418 expression cassette was excised by digestion with Xma I and Bsp EI as a 2.1 kb DNA fragment and isolated by agarose gel electrophoresis.
Vektor pSrrDNA wurde mit Xma I geschnitten, das 5,8 kb Vektor- fragment durch Agarose Gelelektrophorese isoliert und dephosphoryliert . Die beiden DNS-Fragmente wurden ligiert und in E. coli Top 1OF' transformiert. Es entstand der 7,9 kb grosse Vektor pG418G18R (Fig. 8) . pG418G18R ist ein neuartiger Expressionsvektor, der sich zur Transformation von Hefen der Gattung Sporidiobolus eignet .Vector pSrrDNA was cut with Xma I, the 5.8 kb vector fragment was isolated by agarose gel electrophoresis and dephosphorylated. The two DNA fragments were ligated and transformed into E. coli Top 10F '. The result was the 7.9 kb vector pG418G18R (FIG. 8). pG418G18R is a novel expression vector suitable for the transformation of yeasts of the genus Sporidiobolus.
8. Beispiel8th example
Transformation von Sporidiobolus ruineniaeTransformation of Sporidiobolus ruineniae
Zellen von dem S. ruineniae Stamm Sr-1 wurden in einer Vorkul- tur in YPD-Medium (28°C, 140 rpm, 2 d Anzuchtsdauer) herge- stellt, wie im 1. Beispiel beschrieben. Die Vorkultur wurde verwendet, um eine Tageskultur von 200 ml YPD-Medium auf eine Zelldichte OD600nm von 0,2 zu beimpfen. Die Tageskultur wurde dann bei 28°C und 140 rpm inkubiert, bis eine Zelldichte OD600nm von 1,0 - 1,5 erreicht wurde.Cells from S. ruineniae strain Sr-1 were prepared in a pre-culture in YPD medium (28 ° C., 140 rpm, 2 days' growth) as described in Example 1. The preculture was used to inoculate a daily culture of 200 ml YPD medium to a cell density OD 600nm of 0.2. The daily culture was then incubated at 28 ° C. and 140 rpm until a cell density OD 600 nm of 1.0-1.5 was reached.
Die Zellen wurden anschliessend durch Zentrifugation geerntet (10 min 3000 rpm, Heraeus Megafuge 1.0R). Das Zellpellet wurde in 40 ml DTT-Puffer (100 mM Lithiumacetat ; 10 mM Tris-HCl, pH 7,5; 10 mM Dithiotreitol , 0,6 M Mannitol) suspendiert und 15 min bei 28 °C und 140 rpm inkubiert. Danach wurden die Zellen durch Zentrifugation isoliert und das Zellpellet zweimal mit 200 ml eiskaltem 0,9 M Mannitol gewaschen und das Zellpellet schließlich in 1 ml 0,9 M Mannitol aufgenommen. Die so vorbe- reiteten Zellen wurden für die Transformation durch Elektropo- ration verwendet.The cells were then harvested by centrifugation (10 min 3000 rpm, Heraeus Megafuge 1.0R). The cell pellet was suspended in 40 ml of DTT buffer (100 mM lithium acetate, 10 mM Tris-HCl, pH 7.5, 10 mM dithiothreitol, 0.6 M mannitol) and incubated for 15 min at 28 ° C and 140 rpm. Thereafter, the cells were isolated by centrifugation and the cell pellet washed twice with 200 ml of ice-cold 0.9 M mannitol and the cell pellet finally taken up in 1 ml of 0.9 M mannitol. The cells thus prepared were used for transformation by electroporation.
Für einen Elektroporationsansatz wurden 100 μl Zellen mit 1 - 10 μg DNS (maximal 10 μl Volumen) in einer Elektroporationskü- vette gemischt und auf Eis gekühlt. Die DNS wurde vorher durch Verdau mit Nhe I linearisiert . Bei der zu transformierenden DNS handelte es sich um die Vektoren pG418Sr (5. Beispiel, G418 Selektion), pHPHsr (6. Beispiel, Hygromycin B Selektion) und pG418G18R (7. Beispiel, G418 Selektion). In einem Kon- trollansatz wurden Zellen ohne zugesetzte DNS verwendet. Zur Elektroporation wurde ein Gene Pulser der Firma BioRad verwendet. Die Bedingungen der Elektroporation waren: Spannung 7,5 kV/cm; Kapazität 25 μF und ein Widerstand von 200 Ohm. Die Entladungszeit betrug ca. 4 msec.For an electroporation approach, 100 μl cells were mixed with 1-10 μg DNA (maximum 10 μl volume) in an electroporation cuvette and cooled on ice. The DNA was previously linearized by digestion with Nhe I. The DNA to be transformed was the vectors pG418Sr (5th example, G418 selection), pHPHsr (6th example, hygromycin B selection) and pG418G18R (7th example, G418 selection). In a control approach, cells without added DNA were used. For electroporation, a Gene Pulser from BioRad was used. Conditions of electroporation were: voltage 7.5 kV / cm; Capacity 25 μF and a resistance of 200 ohms. The discharge time was about 4 msec.
Nach der Elektroporation wurde der Transformationsansatz mit 1 ml YNB-Medium versetzt und unter leichtem Schütteln bei 28°C über Nacht inkubiert. Anschließend wurden die Zellen durch Zentrifugation (2 min 13.000 rpm, Eppendorf Mikrozentrifuge) isoliert, in 1 ml YNB-Medium aufgenommen und in Aliquots zu je 0,25 ml auf 4 selektiven Agarplatten ausplattiert. Selektive Agarplatten enthielten jeweils YNB-Medium mit dem entsprechen- den Antibiotikum. Bei der G418 Selektion enthielten die A- garplatten G418 in einer Konzentration von 100 - 150 μg/ml (abhängig von der jeweiligen Antibiotikumscharge) . Bei derAfter electroporation, the transformation mixture was admixed with 1 ml of YNB medium and incubated overnight at 28 ° C. with gentle shaking. The cells were then isolated by centrifugation (Eppendorf microcentrifuge 2 min 13,000 rpm), taken up in 1 ml of YNB medium and plated out in aliquots of 0.25 ml each on 4 selective agar plates. Selective agar plates each contained YNB medium with the appropriate antibiotic. In G418 selection, the agar plates contained G418 in a concentration of 100-150 μg / ml (depending on the respective antibiotic batch). In the
Hygromycin Selektion enthielten die Agarplatten Hygromycin B in einer Konzentration von 60 - 100 μg/ml (abhängig von der jeweiligen Antibiotikumscharge) .Hygromycin selection contained the agar plates Hygromycin B in a concentration of 60 - 100 ug / ml (depending on the respective antibiotic lot).
Die auf selektiven Platten ausplattierten Transformationsan- sätze wurden bei 28°C inkubiert. Kolonien von Antibiotika- resistenten Transformanten wurden nach einer Inkubationsdauer von 5 bis 10 Tagen beobachtet.The transformants plated on selective plates were incubated at 28 ° C. Colonies of antibiotic-resistant transformants were observed after an incubation period of 5 to 10 days.
Erhaltene Transformanten wurden zuerst auf selektive Platten überimpft und bei 28°C bebrütet, um die Ausprägung des Antibi- otika- resistenten Phänotyps zu bestätigen. Von den am besten wachsenden Transfomanten wurden dann auf selektiven Platten Reinigungsausstriche gemacht.Obtained transformants were first inoculated onto selective plates and incubated at 28 ° C to confirm the expression of the antibiotic-resistant phenotype. Of the fastest growing transfoments, selective smears were then made on selective plates.
Typische Transformationsraten aus Transformationsexperimenten mit den Expressionskonstrukten pG418Sr, pHPHsr und pG418G18R sind in Tab. 1 angegeben. Wie in Tab. 1 dargestellt, wurden mit dem homologen Sporidiobolus GAPDH-Promotor (Konstrukt pG418G18R) deutlich höhere Transformationsraten erzielt als mit dem heterologen P. rhodozyma Promotor (Konstrukte pG418Sr, pHPHsr) . Zur Kontrolle des Hintergrunds wurden in equivalenter Weise Transformationsansätze ohne DNS durchgeführt. Dabei wur- den nur im Falle der G418-Selektion Hintergrundklone beobach- tet.Typical transformation rates from transformation experiments with the expression constructs pG418Sr, pHPHsr and pG418G18R are given in Table 1. As shown in Tab. 1, significantly higher transformation rates were achieved with the homologous Sporidiobolus GAPDH promoter (construct pG418G18R) than with the heterologous P. rhodozyma promoter (constructs pG418Sr, pHPHsr). To control the background, transformation approaches without DNA were carried out in an equivalent manner. In doing so, observed only in the case of G418 selection background clones.
Figure imgf000036_0001
Figure imgf000036_0001
Durch die spezielle Kombination der erfindungsgemässen Expres- sionsvektoren, bestehend aus Promotor, Terminator, Antibioti- kumsresistenzgen und rDMS, gelang es in unerwarteter Weise, einen Hefestamm aus der Gattung Sporidiobolus zu transformie- ren. Dieses Transformationssystem bildet die Grundlage zur er- findungsgemässen gentechnischen Optimierung der Q10-Produktion in Sporidiobolus. pG418sr, PG418G18R und pHPHsr sind also neu- artige Expressionsvektoren, die sich zur Transformation von S. ruineniae eignen und in Kombination mit einem Q10-Due to the special combination of the expression vectors according to the invention, consisting of promoter, terminator, antibiotic resistance gene and rDMS, it was possible to transform a yeast strain of the genus Sporidiobolus in an unexpected manner. This transformation system forms the basis for the genetic optimization according to the invention Q10 production in Sporidiobolus. pG418sr, PG418G18R and pHPHsr are thus novel expression vectors suitable for the transformation of S. ruineniae and, in combination with a Q10
Biosynthesegen zur Verbesserung der Q10-Produktion eingesetzt werden können.Biosynthesis gene can be used to improve Q10 production.
9. Beispiel9th example
Genetische Analyse der TransformantenGenetic analysis of the transformants
Transformanten von Sporidiobolus ruineniae, wie im 8. Beispiel erhalten, wurden mittels PCR und Southernblot Analyse auf die Integration der Plasmide pG418Sr, pHPHsr, bzw. pG418G18R un- tersucht . Von verschiedenen Transformanten mit den Plasmiden pG418Sr, pG418G18R, pHPHsr und als Kontrolle vom Stamm Sr-I wurde nach Anzucht in YPD-Medium (siehe 1. Beispiel) genomi- sche DNS isoliert wie im 2. Beispiel beschrieben.Transformants of Sporidiobolus ruineniae, as obtained in Example 8, were analyzed by PCR and Southern blot analysis for the integration of plasmids pG418Sr, pHPHsr, and pG418G18R, respectively. Genomic DNA was isolated from various transformants with the plasmids pG418Sr, pG418G18R, pHPHsr and as control of the strain Sr-1 after culturing in YPD medium (see Example 1) as described in Example 2.
Plasmide pG418Sr und pG418G18R: Von den G418-resistenten Stäm- men wurden je 1 μg der genomischen DNS und 50 ng des Plasmids pG418Sr mit Nco I und Not I geschnitten, anschließend durch Agarose Gelelektrophorese getrennt, auf Nylonfilter (Hybond+, Amersham Biosciences) geblottet und mit einer DNS-Sonde hybri- disiert, die spezifisch für das G418 Resistenzgen war.Plasmids pG418Sr and pG418G18R: Of the G418-resistant strains, 1 μg each of the genomic DNA and 50 ng of the plasmid pG418Sr with Nco I and Not I, then separated by agarose gel electrophoresis, blotted onto nylon filters (Hybond +, Amersham Biosciences) and hybridized with a DNA probe specific for the G418 resistance gene.
Die DNS-Sonde wurde vorbereitet, indem das Plasmid pG418Sr mit Nco I und Not I geschnitten und das dabei entstandene 0,8 kb lange DNS-Fragment (enthält das G418 Resistenzgen) durch prä- parative Gelelektrophorese isoliert wurde. Das 0,8 kb lange G418-spezifische DNS-Fragment wurde entsprechend den Angaben des Herstellers mit dem AlkPhos DNS-Markierungskit der Firma Amersham Biosciences markiert. Die Hybridisierungstemperatur für die auf Nylonfilter (Hybond+, Amersham Biosciences) geb- lottete DNS mit der markierten DNS-Sonde betrug 6O°C. Zur De- tektion von hybridisierter DNS-Sonde wurde der „CDP Star De- tection-Kit" der Firma Amersham Biosciences verwendet. Es wur- den die in der Fachlitertur und vom Hersteller beschriebenen Bedingungen für Southernblots eingehalten. Southernblots wur- den durch Autoradiographie ausgewertet. Dabei konnte das 0,8 kb lange G418-spezifische DNS-Fragment nur in den Transforman- ten, nicht jedoch in dem Sr-I Wildtypstamm nachgewiesen wer- den.The DNA probe was prepared by cutting the plasmid pG418Sr with Nco I and Not I and isolating the resultant 0.8 kb DNA fragment (containing the G418 resistance gene) by preparative gel electrophoresis. The 0.8 kb G418-specific DNA fragment was labeled according to the manufacturer's instructions with the AlkPhos DNA labeling kit from Amersham Biosciences. The hybridization temperature for DNA spiked on nylon filters (Hybond +, Amersham Biosciences) with the labeled DNA probe was 60 ° C. Hybridized DNA probe detection was carried out using the Amersham Biosciences "CDP Star Detection Kit", which complied with the Southernblot conditions described in the technical literature and by the manufacturer, and was evaluated by autoradiography In this case, the 0.8 kb G418-specific DNA fragment could only be detected in the transformants, but not in the Sr-I wild-type strain.
Plasmid pHPHsr: Genomische DNS von Hygromycin-resistenten Transformanten (jeweils 200 ng) und von S. ruineniae Sr-I (200 ng, Negativ-Kontrolle) sowie pHPHsr Plasmid DNS (50 ng, Posi- tiv-Kontrolle) wurden in PCR-Reaktionen (Taq Core Kit, Qiagen) mit den Primern hphlf (SEQ ID NO: 13) und hph2r (SEQ ID NO: 14) eingesetzt. Die Bedingungen der PCR-Reaktion waren: 1' 94°C gefolgt von 30 Zyklen mit je 30'' 94°C, 30'' 55°C, 1'Plasmid pHPHsr: Genomic DNA of hygromycin resistant transformants (200 ng each) and S. ruineniae Sr-I (200 ng, negative control) and pHPHsr plasmid DNA (50 ng, positive control) were used in PCR reactions (Taq Core Kit, Qiagen) with the primers hphlf (SEQ ID NO: 13) and hph2r (SEQ ID NO: 14). The conditions of the PCR reaction were: 1 '94 ° C followed by 30 cycles of 30' '94 ° C, 30' '55 ° C, 1'
72°C sowie schliesslich 5' 72°C. Aliquots der PCR-Reaktionen wurden durch Agarose Gelelektrophorese analysiert. Das Hygro- mycin Resistenzgen wurde als 1 kb PCR-Fragment (siehe 6. Bei- spiel) nur in Transformanten und in der pHPHsr Positivkontrol- Ie beobachtet, nicht dagegen in der nicht-transformierten S. ruineniae Sr-1 Negativkontrolle. Diese Ergebnisse bestätigen, daß bei der Transformation des Stammes Sporidiobolus ruineniae Sr-I das G418-, bzw. das Hy- gromycin Resistenzgen aus den Expressionsvektoren pG418Sr und PG418G18R, bzw. pHPHsr, in das Genom integriert worden war und zur produktiven Expression des G418-, bzw. Hygromycin Re- sistenzgens führte, wodurch Transformanten auf G418-, bzw. Hy- gromycin B Antibiotikum enthaltenden Medien wachsen konnten. Überraschenderweise wurde dabei auch erstmals festgestellt, daß die Expressionssignale des GAPDH-Gens aus der Basidiomyce- ten-Hefe Phaffia rhodozyma auch in Sporidiobolus ruineniae funktionsfähig sind, wenngleich die Transformationseffizienz mit dem heterologen Expressionssignalen deutlich niedriger war (siehe 8. Beispiel).72 ° C and finally 5 '72 ° C. Aliquots of the PCR reactions were analyzed by agarose gel electrophoresis. The hygromycin resistance gene was observed as a 1 kb PCR fragment (see Example 6) only in transformants and in the pHPHsr positive control, but not in the non-transformed S. ruineniae Sr-1 negative control. These results confirm that, in the transformation of the strain Sporidiobolus ruineniae Sr-I, the G418 or hygromycin resistance gene from the expression vectors pG418Sr and PG418G18R, or pHPHsr, was integrated into the genome and used for the productive expression of the G418 gene. or hygromycin resistance gene, which allowed transformants to grow on G418 or hygromycin B antibiotic-containing media. Surprisingly, it was also found for the first time that the expression signals of the GAPDH gene from the basidiomycete yeast Phaffia rhodozyma are also functional in Sporidiobolus ruineniae, even though the transformation efficiency with the heterologous expression signals was markedly lower (see Example 8).
10. Beispiel10th example
RNS-Analyse von Sporidiobolus TransformantenRNA analysis of Sporidiobolus transformants
Sporidiobolus ruineniae Sr-I wurde mit den Expressionsvektoren pG418Sr und pG418G18R transformiert, wie im 8. Beispiel be- schrieben. Ausgewählte Klone der Transformation wurden in YPG- Medium kultiviert wie im 1. Beispiel beschrieben. Aus den Zel- len der Anzucht wurde RNS mit dem „peqGOLD TriFast" Reagens (PeqLab) entsprechend den Angaben des Herstellers isoliert. RNS des heterolog exprimierten G418 Resistenzgens wurde durch reverse Transkription, kombiniert mit einer PCR-Reaktion (sog. RT-PCR) , als cDNS nachgewiesen. Es wurde der „SuperScript™ II Reverse Transcriptase" RT-PCR Klonierungskit der Fa. Invitro- gen verwendet . RNS wurde zuerst mit DNase I behandelt, um möglicherweise noch vorhandene Reste von DNS zu entfernen. 500 ng der so gewonne- nen RNS wurden dann für die RT-PCR eingesetzt und dem Proto- koll des Herstellers für den RT-PCR Klonierungskit gefolgt. Die auf diese Weise gewonnene cDNS wurde in PCR-Reaktionen (Taq Core Kit, Qiagen) mit den Primern Greslf und Gres2r ein- gesetzt, um das G418-Resistenzgen nachzuweisen. Die Primer Greslf und Gres2r stammten vom 5'-, bzw. 3 '-Ende des 0,8 kb G418-Resistenzgens (siehe 5. Beispiel) und hatten folgende Se- quenzen: Primer Greslf:Sporidiobolus ruineniae Sr-I was transformed with the expression vectors pG418Sr and pG418G18R as described in Example 8. Selected clones of transformation were cultured in YPG medium as described in Example 1. RNA from the cells of the culture was isolated with the "peqGOLD TriFast" reagent (PeqLab) according to the manufacturer's instructions RNA of the heterologously expressed G418 resistance gene was synthesized by reverse transcription combined with a PCR reaction (so-called RT-PCR). was detected as cDNA and the "SuperScript ™ II Reverse Transcriptase" RT-PCR cloning kit from Invitrogen was used. RNA was first treated with DNase I to remove any remaining DNA residues. 500 ng of the RNA thus obtained were then used for the RT-PCR and followed the manufacturer's protocol for the RT-PCR cloning kit. The cDNA obtained in this way was used in PCR reactions (Taq Core Kit, Qiagen) with the primers Greslf and Gres2r to detect the G418 resistance gene. The primers Greslf and Gres2r originated from the 5 'and 3' ends, respectively, of the 0.8 kb G418 resistance gene (see 5th example) and had the following sequences: Primer Greslf:
Greslf: 5' -GGTAAGGAAAAGACTCACGT-3' (SEQ ID NO: 21).Greslf: 5 '-GGTAAGGAAAAGACTCACGT-3' (SEQ ID NO: 21).
Primer Gres2r:Primer Gres2r:
Gres2r: 5'-TTAGAAAAACTCATCGAGCATC-3' (SEQ ID NO: 22).Gres2r: 5'-TTAGAAAAACTCATCGAGCATC-3 '(SEQ ID NO: 22).
RT-PCR Reaktionen wurden mit RNS-Proben, die aus dem Wildtyp- stamm S. ruineniae Sr-I sowie aus G418-resistenten Klonen der Transformation von S. ruineniae mit den Expressionsvektoren pG418Sr, bzw. pG418G18R isoliert worden waren, durchgeführt. Die cDNS-Produkte aus der RT-PCR wurden durch Agarose Gele- lektrophorese analysiert. In RNS der G418 -resistenten Trans- formanten konnte das erwartete 0,8 kb cDNS-Fragment nachgewie- sen werden, dagegen nicht in RNS aus nicht-transformierten S. ruineniae Sr-I Zellen.RT-PCR reactions were carried out with RNA samples isolated from the wild-type strain S. ruineniae Sr-I and from G418-resistant clones of S. ruineniae transformation with the expression vectors pG418Sr and pG418G18R, respectively. The cDNA products from the RT-PCR were analyzed by agarose gel electrophoresis. In RNA of the G418-resistant transformants, the expected 0.8 kb cDNA fragment could be detected, but not in RNA from nontransformed S. ruineniae Sr-I cells.
Dieses Ergebnis zeigt, dass S. ruineniae mit den erfindungsge- mässen Expressionsvektoren pG418Sr, pG418G18R und pHPHsr transformiert werden kann, was in der funktionellen Expression eines heterologen Gens resultiert.This result shows that S. ruineniae can be transformed with the expression vectors pG418Sr, pG418G18R and pHPHsr according to the invention, resulting in the functional expression of a heterologous gene.
11. Beispiel11. Example
Phänotypische Analyse von Sporidiobolus TransformantenPhenotypic analysis of Sporidiobolus transformants
G418-resistente Transformanten von S. ruineniae Stamm Sr-I wurden auf G418-selektiven YNB-Platten gereinigt. Gereinigte Stämme wurden zur Anzucht in Schüttelkolben verwendet. An- zuchtsmedien waren YNB-Medium (nicht selektiv) und YNB-Medium mit G418 (selektiv) . Anzuchtsbedingungen waren 28°C auf einem Orbitalschüttler (Infors, 140 rpm) . Das Zellwachstum wurde durch photometrische Bestimmung der Zelldichte OD bei 600 nm gemessen. Als Kontrollstamm wurde nicht transformierter S. ruineniae Sr-I verwendet. Das Ergebnis ist in Tab. 2 (ZeIl- Wachstum nach sechs Tagen Anzucht) aufgeführt. Während alleG418-resistant transformants of S. ruineniae strain Sr-I were purified on G418-selective YNB plates. Purified strains were used for cultivation in shake flasks. Legal media were YNB medium (non-selective) and YNB medium with G418 (selective). Growth conditions were 28 ° C on an orbital shaker (Infors, 140 rpm). Cell growth was measured by photometric determination of the cell density OD at 600 nm. The control strain used was untransformed S. ruineniae Sr-I. The result is shown in Tab. 2 (cell growth after six days of cultivation). While everyone
Stämme in nichtselektivem Medium gutes Zellwachstum aufwiesen (Spalte YNB ohne G418 in Tab. 2), konnte beim Wildtypstamm in selektivem Medium, wie erwartet, kein Wachstum beobachtet wer- den. Transforraanten hingegen konnten nach einer anfänglichen Lag-Phase von ca. zwei Tagen auch auf selektivem Medium wach- sen. Dies zeigt, dass das G418 -Resistenzgen in transformierten S. ruineniae Stämmen funktionsfähig exprimiert wird, was zur Inaktivierung des G418 -Antibiotikums und zum Wachstum der Transformanten führt.Strains in nonselective medium had good cell growth (column YNB without G418 in Tab. 2), no growth could be observed in the wild-type strain in selective medium, as expected. the. On the other hand, transforra- nants could also grow on selective medium after an initial lag phase of about two days. This demonstrates that the G418 resistance gene is operatively expressed in transformed S. ruineniae strains, resulting in inactivation of the G418 antibiotic and growth of the transformants.
Figure imgf000040_0001
Figure imgf000040_0001
Dieser Versuch zeigt, dass S. ruineniae transformiert werden kann und unter Kontrolle des homologen S. ruineniae GAPDH- Promotors, bzw. des heterologen P. rhodozyma GAPDH-Promotors ein heterologes Gen in aktiver Form exprimiert wird, was den Transformanten einen Antibiotika-resistenten Phänotyp ver- leiht.This experiment shows that S. ruineniae can be transformed and, under the control of the homologous S. ruineniae GAPDH promoter or the heterologous P. rhodozyma GAPDH promoter, a heterologous gene is expressed in an active form, giving the transformants an antibiotic-resistant phenotype lent.
12. Beispiel12. Example
Verbesserung der QlO -Produktion in S. ruineniae durch Metabolie EngineeringImprovement of QlO Production in S. ruineniae by Metabolism Engineering
A: Isolierung des Dekaprenyldiphosphatsynthasegens (DPS-Gens) aus Rhodotorula minuta.A: Isolation of the decaprenyl diphosphate synthase gene (DPS gene) from Rhodotorula minuta.
Die DNS-Sequenz DPS-Gen aus Rhodotorula minuta ist in EP 1336657 A, SEQ ID NO: 1 offenbart. Der Stamm Rhodotorula minu- ta DSM 3016 (erhältlich bei der DSMZ Deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH, D-38124 Braunschweig) wurde bei 28°C in YPD-Medium (siehe 1. Beispiel) kultiviert und genomische DNS aus den resultierenden Zellen isoliert (siehe 2. Beispiel). Das DPS-Gen wurde aus genomischer R. minuta DNS, dem Stand der Technik entsprechend, durch PCR (Qiagen Taq Core Kit) mit den Primern rmlf und rm2r als 1,6 kb grosses DNS-Fragment iso- liert. Die Primer rmlf und rm2r hatten folgende DNS-Sequenzen:The DNA sequence DPS gene from Rhodotorula minuta is disclosed in EP 1336657 A, SEQ ID NO: 1. The strain Rhodotorula minuta DSM 3016 (available from the DSMZ German Collection of Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig) was cultured at 28 ° C. in YPD medium (see Example 1) and genomic DNA was isolated from the resulting cells (see 2nd example). The DPS gene was isolated from genomic R. minuta DNA, according to the prior art, by PCR (Qiagen Taq Core Kit) with the primers rmlf and rm2r as a 1.6 kb DNA fragment. The primers rmlf and rm2r had the following DNA sequences:
Primer rmlf:Primer rmlf:
5 ' -TATATCATGATGCACCGACAAGCTGC-3 ' (SEQ ID NO : 23)5'-TATATCATGATGCACCGACAAGCTGC-3 '(SEQ ID NO: 23)
Primer rm2r: 5'-TATGCGGCCGCTACTTTGTTCGGTTGAGCAC-3 ' (SEQ ID NO: 24)Primer rm2r: 5'-TATGCGGCCGCTACTTTGTTCGGTTGAGCAC-3 '(SEQ ID NO: 24)
B: Herstellung des Vektors pDPSrmGapB: Preparation of vector pDPSrmGap
Das durch PCR erzeugte DNS-Fragment des DPS-Gens wurde durch präparative Agarose Gelelektrophorese gereinigt und mit Bsp HI und Not I geschnitten (die Schnittstellen waren in den Primern rmlf und rm2r enthalten) und in den mit Nco I und Not I ge- schnittenen Vektor pG418G5 (siehe 7. Beispiel) kloniert. Es entstand der 5,8 kb grosse Vektor pDPSrmGap (Fig. 9), in dem das R. minuta DPS-Gen hinter den S. ruineniae GAPDH-Promotor kloniert worden war. Durch DNS-Sequenzanalyse wurde überprüft, dass das DPS-Gen korrekt aus der genomischen R. minuta DNS i- soliert worden war.The PCR generated DNA fragment of the DPS gene was purified by preparative agarose gel electrophoresis and cut with Ex HI and Not I (the cleavage sites were contained in the primers rmlf and rm2r) and in the vector cut with Nco I and Not I pG418G5 (see 7th example). The result was the 5.8 kb vector pDPSrmGap (FIG. 9), in which the R. minuta DPS gene had been cloned behind the S. ruineniae GAPDH promoter. By DNA sequence analysis, it was verified that the DPS gene was correctly isolated from the genomic R. minuta DNA.
C: Herstellung des Vektors pDPSrm Aus dem Vektor pDPSrmGap wurde die Expressionskassette durch Verdau mit AfI II und Bam HI als 3,1 kb DNS-Fragment isoliert und in den mit AfI II und BgI II geschnittenen Vektor pG418G18R (siehe 7. Beispiel) kloniert. Es entstand der 11 kb Expressionsvektor pDPSrm (Fig. 10) .C: Production of the vector pDPSrm The expression cassette was isolated from the vector pDPSrmGap by digestion with AfI II and Bam HI as a 3.1 kb DNA fragment and cloned into the vector pG418G18R cleaved with AfI II and Bgl II (see Example 7). The result was the 11 kb expression vector pDPSrm (FIG. 10).
D: Transformation von S. ruineniaeD: Transformation of S. ruineniae
Verwendet wurde der in DE 10317877, 5. Beispiel, offenbarte Stamm Sr220-159. Die Transformation mit dem durch Verdau mit Bsr GI linearisierten Vektor pDPSrm wurde durchgeführt wie im 8. Beispiel beschrieben. 100 G418-resistente Transformanten wurden isoliert, gereinigt und die Q10-Produktion durch An- zucht im Schüttelkolben analysiert, wie in DE 10317877, 5. Beispiel, beschrieben. Aus dem Stammvergleich wurde der rekom- binante Stamm DPSrm-65 für die Fermentationsanalyse ausge- wählt.The strain Sr220-159 disclosed in DE 10317877, 5th example, was used. The transformation with the vector pDPSrm linearized by digestion with Bsr GI was carried out as described in the 8th example. 100 G418-resistant transformants were isolated, purified and analyzed for Q10 production by cultivation in a shake flask, as described in DE 10317877, 5th example. From the master comparison, the recom- binary strain DPSrm-65 was selected for the fermentation analysis.
E: Fermentationsanalyse Die Fermentationsanalyse des rekombinanten Stammes DPSrm-65 wurde durchgeführt wie in DE 10317877, 7. Beispiel, offenbart. Für den Stamm DPSrm-65 betrug die Biomasse zum Ende der Fer- mentation 80,3 g/l und die Q10-Ausbeute betrug 4,5 mg/g Tro- ckenbiomasse. Dies entspricht einer deutlichen Steigerung ge- genüber dem in DE 10317877, 5. Beispiel, offenbarten Stand der Technik für S. ruineniae. E: Fermentation analysis The fermentation analysis of the recombinant strain DPSrm-65 was carried out as disclosed in DE 10317877, 7th example. For the strain DPSrm-65, the biomass at the end of the fermentation was 80.3 g / l and the Q10 yield was 4.5 mg / g dry biomass. This corresponds to a marked increase compared to the prior art disclosed in DE 10317877, 5th example, for S. ruineniae.
Original (für EINREICHUNG )Original (for SUBMISSION)
0-1 Formular PCT/RO/134 (SAFE) Angaben zu einem hinterlegten Mikroorganismus und/oder anderem hinterlegten biologischen Material0-1 Form PCT / RO / 134 (SAFE) Information on a deposited microorganism and / or other stored biological material
0-1-1 erstellt mit PCT- SAFE [EASY mode] Version 3 . 51 . 005 . 180 MT/FOP 20060401/0 . 20 . 4rc . 2 .70-1-1 created with PCT-SAFE [EASY mode] Version 3. 51. 005. 180 MT / FOP 20060401/0. 20. 4rc. 2 .7
0-2 Internationales Aktenzeichen0-2 International file number
0-3 Aktenzeichen des Anmelders oder Co 10432 Anwalts0-3 file number of the applicant or Co 10432 lawyer
1 Die nachstehenden Angaben betreffen den Mikroorganismus und/ oder anderes biologisches Material, der/das in der Beschreibung genannt ist1 The following information relates to the micro-organism and / or other biological material mentioned in the description
1-1 Seite 61-1 page 6
1-2 Zeile 30 - 321-2 lines 30 - 32
1-3 Angaben betr. Hinterlegung1-3 Details concerning deposit
1-3-1 Name der Hinterlegungsstelle DSMZ DSMZ -Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH1-3-1 Name of the depository DSMZ DSMZ -German collection of microorganisms and cell cultures GmbH
1-3-2 Anschrift der Hinterlegungsstelle Mascheroder Weg Ib, D- 381241-3-2 Address of the depository Mascheroder Weg Ib, D-38124
Braunschweig, GeπnanyBrunswick, Geπnany
1-3-3 Datum der Hinterlegung 07 . April 2003 ( 07 . 04 . 2003 )1-3-3 Date of deposit 07. April 2003 (07-04-2003)
1-3-4 Eingangsnummer DSMZ 155531-3-4 entry number DSMZ 15553
1-5 Bestimmungsstaaten, für die alle Bestimmungsstaaten besondere Angaben gemacht werden1-5 States of destination for which special information is given to all the countries of destination
VOM ANMELDEAMT AUSZUFÜLLENTO BE COMPLETED BY THE REGISTRATION OFFICE
0-4 Dieses Formular ist mit der internaJA tionalen Anmeldung eingegangen (ja oder nein)0-4 This form has been received by the international application (yes or no)
0-4-1 Bevollmächtigter Bediensteter0-4-1 authorized agent
Delimon, KristaDelimon, Krista
VOM INTERNATIONALEN BÜRO AUSZUFÜLLEN -5 Dieses Formular ist an folgendem Datum beim internationalen Büro eingegangen -5-1 Bevollmächtigter Bediensteter TO BE COMPLETED BY THE INTERNATIONAL OFFICE -5 This form was received by the International Bureau on the following date: -5-1 Authorized Agent
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000044_0001
Figure imgf000045_0001

Claims

Patentansprüche : Claims:
1. Expressionssystem bestehend aus einem Wirtsorganismus der Gattung Sporidiobolus und einem DNS-Vektor der ein Selek- tionsmarkergen enthält, welches für ein Protein kodiert das nach Transformation des Wirtsorganismus eine Selekti- on positiver Transformanten erlaubt und ausgewählt ist aus der Gruppe der Antibiotikaresistenzgene, der Gene, die eine Auxotrophie des Wirtsorganismus komplementieren und der Gene, die für ein Protein kodieren, die zu einer farbgebenden Reaktion befähigt sind, wobei die Expression des Selektionsmarkergens durch mindestens ein im Wirtsor- ganismus aktives genetisches Regulationselement kontrol- liert wird, dadurch gekennzeichnet, dass ein DNS-Vektor ein zu exprimierendes Gen enthält, das für ein Protein kodiert, wobei das zu exprimierende Gen ein Gen aus dem Q10-Biosyntheseweg ist und wobei die Expression des Gens aus dem Q10 -Biosyntheseweg durch mindestens ein im Wirts- Organismus aktives genetisches Regulationselement kon- trolliert wird.1. Expression system consisting of a host organism of the genus Sporidiobolus and a DNA vector which contains a selection marker gene which codes for a protein which, after transformation of the host organism, permits a selection of positive transformants and is selected from the group of antibiotic resistance genes, the genes which complement an auxotrophy of the host organism and the genes coding for a protein which are capable of a coloring reaction, wherein the expression of the selection marker gene is controlled by at least one genetic regulatory element active in the host organism, characterized in that DNA vector containing a gene to be expressed which codes for a protein, wherein the gene to be expressed is a gene from the Q10 biosynthesis pathway and wherein the expression of the gene from the Q10 biosynthesis pathway by at least one in the host organism active genetic regulatory element kon - is trolled.
2. Expressionssystem gemäß Anspruch 1, dadurch gekennzeich- net, dass das Selektionsmarkergen und das Gen aus dem Q10-Biosyntheseweg zusammen auf einem DNS-Vektor enthal- ten sind, wobei die Expression der beiden Gene durch je- weils mindestens ein im Wirtsorganismus aktives geneti- sches Regulationselement kontrolliert wird.2. Expression system according to claim 1, characterized in that the selection marker gene and the gene from the Q10 biosynthetic pathway are contained together on a DNA vector, wherein the expression of the two genes by at least one active in the host organism geneti - Controlling regulatory element is controlled.
3. Expressionssystem gemäß Anspruch 1 oder 2, dadurch ge- kennzeichnet, dass der Wirtsorganismus ein Stamm der Art Sporidiobolus ruineniae ist.3. Expression system according to claim 1 or 2, character- ized in that the host organism is a strain of the species Sporidiobolus ruineniae.
4. Expressionssystem gemäß Anspruch 1, 2 oder 3, dadurch ge- kennzeichnet, dass der DNS-Vektor ein Selektionsmarkergen ausgewählt aus der Gruppe der Antibiotikaresistenzgene enthält. 4. Expression system according to claim 1, 2 or 3, character- ized in that the DNA vector contains a selection marker gene selected from the group of antibiotic resistance genes.
5. Expressionssystem gemäß einem der Ansprüche 2 bis 4, da- durch gekennzeichnet, dass die Antibiotikaresistenzgene Resistenz verleihen gegen ein Antibiotikum ausgewählt aus der Gruppe Hygromycin, G418, Geneticin®, Glyphosat, Cyc- loheximid, Bialaphos, Kanamycin, Bleomycin, Oligomycin, Zeocin™, Benomyl, Nystatin und Phleomycin.5. Expression system according to one of claims 2 to 4, data carried in that the antibiotic resistance genes confer resistance to an antibiotic selected from the group hygromycin, G418, loheximid Geneticin ®, glyphosate, Cyc-, bialaphos, kanamycin, bleomycin, oligomycin, Zeocin ™, benomyl, nystatin and phleomycin.
6. Expressionssystem gemäß Anspruch 5, dadurch gekennzeich- net, dass die Antibiotikaresistenzgene Resistenz verlei- hen gegen ein Antibiotikum ausgewählt aus der Gruppe Hy- gromycin, G418, Geneticin® und Glyphosat.6. Expression System to claim 5, characterized net gekennzeich- accordance that the antibiotic resistance genes resistance conferment hen to an antibiotic selected from the group hy- gromycin, G418, geneticin ® and glyphosate.
7. Expressionssystem gemäß Anspruch 1 bis 6, dadurch gekenn- zeichnet, dass der Vektor als Promotor- oder Terminatore- lemente die Promotor- oder Terminatorelemente des GAPDH7. Expression system according to claim 1 to 6, characterized in that the vector as promoter or Terminatore- ele- ments the promoter or terminator elements of GAPDH
Gens aus Sporidiobolus ruineniae, oder des GAPDH Gens aus Phaffia rhodozyma, Ustilago maydis, Schizophyllum commu- ne, Trametes versicolor, Agaricus bisporus oder Phanero- chaete chrysosporium umfasst.From Sporidiobolus ruineniae, or the GAPDH gene from Phaffia rhodozyma, Ustilago maydis, Schizophyllum commune, Trametes versicolor, Agaricus bisporus or Phanero chaete chrysosporium.
8. Expressionssystem gemäß Anspruch 7 dadurch gekennzeich- net, dass die in Sporidiobolus aktiven Promotorelemente ausgewählt sind aus den DNS Sequenzen SEQ ID NO: 1, bp 1 bis bp 1050 oder SEQ ID NO : 2, bp 1 bis bp 790.8. Expression system according to claim 7, characterized in that the active in Sporidiobolus promoter elements are selected from the DNA sequences SEQ ID NO: 1, bp 1 to bp 1050 or SEQ ID NO: 2, bp 1 to bp 790th
9. Expressionssystem gemäß Anspruch 1 bis 8, dadurch gekenn- zeichnet, dass das zu exprimierende Gen aus dem QlO- Biosyntheseweg ausgewählt ist aus der Gruppe Acetoacetyl- CoA Thiolase, HMG-CoA-Synthase, HMG-CoA Reduktase, Meva- lonatkinase, Phosphomevalonatkinase, Diphosphomevalonat- Decarboxylase, Isopentenyldiphosphatisomerase, Farnesyl- diphosphatsynthase, Chorismat-Pyruvatlyase sowie den Ge- nen CoQl bis CoQlO.9. Expression system according to claim 1 to 8, characterized in that the gene to be expressed from the QlO biosynthetic pathway is selected from the group acetoacetyl-CoA thiolase, HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase , Diphosphomevalonate decarboxylase, isopentenyl diphosphate isomerase, farnesyl diphosphate synthase, chorismate pyruvate lyase and the genes CoQ1 to CoQ10.
10. Verfahren zur Herstellung von Sporidiobolus Stämmen, die zur effizienten Genexpression und Produktion von Pro- teinen befähigt sind, dadurch gekennzeichnet, dass als Wirtsorganismus eine Hefe der Gattung Sporidiobolus ver- wendet wird, welche mit einem DNS-Vektor, der ein zu ex- primierendes Gen und ein Antibiotika Resistenzgen be- sitzt, transformiert wird und aus dem Transformationsan- satz die mit dem DNS-Vektor transformierten Klone durch Selektion Antibiotika resistenter Transformanten ausge- wählt werden, wobei die Expression des zu exprimierenden Gens und des Antibiotika Resistenzgens im Wirtsstamm je- weils durch ein genetisches Regulationselement kontrol- liert wird, das im Wirtsstamm aktiv ist.10. A process for the production of Sporidiobolus strains which are capable of efficiently gene expression and production of proteins, characterized in that a yeast of the genus Sporidiobolus is used as the host organism. which is transformed with a DNA vector which has a gene to be expressed and an antibiotic resistance gene, and from the transformation batch the clones transformed with the DNA vector are selected by selection of antibiotics of resistant transformants In each case, the expression of the gene to be expressed and of the antibiotic resistance gene in the host strain is controlled by a genetic regulatory element that is active in the host strain.
11. Verfahren zur Herstellung von Proteinen, dadurch ge- kennzeichnet, dass ein Expressionssystem gemäß einem der Ansprüche 1 bis 9 zur Proteinproduktion eingesetzt wird.11. Process for the production of proteins, characterized in that an expression system according to one of claims 1 to 9 is used for protein production.
12. Verfahren nach Anspruch 11 dadurch gekennzeichnet, dass eines oder mehrere Gene ausgewählt aus der Gruppe Acetoacetyl-CoA Thiolase, HMG-CoA-Synthase, HMG-CoA Re- duktase, Mevalonatkinase, Phosphomevalonatkinase, Diphosphomevalonat-Decarboxylase, Isopentenyldiphosphati- somerase, Farnesyldiphosphatsynthase, Chorismat-12. The method according to claim 11, characterized in that one or more genes selected from the group acetoacetyl-CoA thiolase, HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase, diphosphomevalonate decarboxylase, isopentenyl diphosphatidase, farnesyl diphosphate synthase, chorismate
Pyruvatlyase sowie CoQl bis CoQ10 exprimiert werden.Pyruvatlyase and CoQl to CoQ10 are expressed.
13. Promotor- und Terminatorelemente des Sporidiobolus GAPDH-Gens, dadurch gekennzeichnet, dass sie eine Sequenz ausgewählt aus der Gruppe SEQ ID NO: 1, bp 1 - 1050 (Pro- motor) , SEQ ID NO: 2 , bp 1 - 790 (Promotor) und SEQ ID NO: 1 bp 2997 - 3500 (Terminator) , sowie davon durch Verlän- gerung, Verkürzung oder Veränderung abgeleitete DNS- Sequenzen, die in Sporidiobolus als Promotor oder Termi- nator aktiv sein können umfassen.13. promoter and terminator elements of the sporidiobolus GAPDH gene, characterized in that they have a sequence selected from the group SEQ ID NO: 1, bp 1-1050 (promoter), SEQ ID NO: 2, bp 1-790 ( Promoter) and SEQ ID NO: 1 bp 2997-3500 (terminator), as well as DNA sequences derived therefrom by prolongation, truncation or alteration, which may be active in Sporidiobolus as promoter or terminator.
14. DNS-Vektor, der mindestens ein Selektionsmarkergen enthält, welches für ein Protein kodiert, das nach Trans- formation einer Hefe der Gattung Sporidiobolus eine Se- lektion positiver Transformanten erlaubt, dadurch gekenn- zeichnet, dass das Selektionsmarkergen ausgewählt ist aus der Gruppe der Antibiotikaresistenzgene, die für Proteine kodieren, die die wachstumshhemmende Wirkung von Antibio- tika aufheben, gegen die der Wirtsorganismus nicht resis- tent ist, der Gene, die einen genetischen Defekt des Wirtsorganismus (Auxotrophie) komplementieren und der Ge- ne, die für Proteine kodieren, die zu einer farbgebenden Reaktion befähigt sind, und daß das Selektionsmarkergen durch mindestens ein im Wirtsorganismus aktives geneti- sches Regulationselement kontrolliert wird. 14. DNA vector which contains at least one selection marker gene which codes for a protein which, after transformation of a yeast of the genus Sporidiobolus, allows a selection of positive transformants, characterized in that the selection marker gene is selected from the group of Antibiotic resistance genes encoding proteins that inhibit the growth inhibition of antibiotics abrogate the host organism, the genes that complement a genetic defect of the host organism (auxotrophy) and the genes that code for proteins that are capable of a color-producing reaction, and that the selection marker gene at least one active in the host organism genetic regulatory element is controlled.
PCT/EP2006/005671 2005-06-23 2006-06-13 Metabolic engineering of q10 production in yeasts of the genus sporidiobolus WO2006136311A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005029170A DE102005029170A1 (en) 2005-06-23 2005-06-23 Expression system, useful in the production of protein, comprises a host organism of Sporidiobolus and a DNA vector containing selection marker gene, which codes for a protein
DE102005029170.8 2005-06-23

Publications (1)

Publication Number Publication Date
WO2006136311A1 true WO2006136311A1 (en) 2006-12-28

Family

ID=37027762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/005671 WO2006136311A1 (en) 2005-06-23 2006-06-13 Metabolic engineering of q10 production in yeasts of the genus sporidiobolus

Country Status (2)

Country Link
DE (1) DE102005029170A1 (en)
WO (1) WO2006136311A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009118438A1 (en) * 2008-03-25 2009-10-01 Neuron Biopharma, S.A. Improved biodiesel production method
WO2012169969A1 (en) 2011-06-10 2012-12-13 Temasek Life Sciences Laboratory Limited Genetic manipulation and expression systems for pucciniomycotina and us tilaginom ycotina subphyla

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163945A1 (en) * 2014-04-25 2015-10-29 BP Biofuels UK Limited Development of molecular biology tools for basidiomycete 'red' yeast, sporidiobolus pararoseus engineering

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070244A (en) * 1976-02-27 1978-01-24 Takeda Chemical Industries, Ltd. Method for producing ubiquinone-10
US4220719A (en) * 1978-03-20 1980-09-02 Ko Aida Process for the production of Coenzyme Q10
EP1469078A1 (en) * 2003-04-17 2004-10-20 Consortium für elektrochemische Industrie GmbH Method for preparing Sporodiobolus strains with an improved coenzyme Q10 production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1324969C (en) * 1988-05-06 1993-12-07 Jeffrey R. Shuster High level expression of proteins in yeast

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070244A (en) * 1976-02-27 1978-01-24 Takeda Chemical Industries, Ltd. Method for producing ubiquinone-10
US4220719A (en) * 1978-03-20 1980-09-02 Ko Aida Process for the production of Coenzyme Q10
EP1469078A1 (en) * 2003-04-17 2004-10-20 Consortium für elektrochemische Industrie GmbH Method for preparing Sporodiobolus strains with an improved coenzyme Q10 production

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VERDOES JAN C ET AL: "Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma).", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 69, no. 7, July 2003 (2003-07-01), pages 3728 - 3738, XP002401676, ISSN: 0099-2240 *
WERY J ET AL: "EFFICIENT TRANSFORMATION OF THE ASTAXANTHIN-PRODUCING YEAST PHAFFIARHODOZYMA", BIOTECHNOLOGY TECHNIQUES, CHAPMAN & HALL, vol. 12, no. 5, May 1998 (1998-05-01), pages 399 - 405, XP000985864, ISSN: 0951-208X *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009118438A1 (en) * 2008-03-25 2009-10-01 Neuron Biopharma, S.A. Improved biodiesel production method
US8647849B2 (en) 2008-03-25 2014-02-11 Neol Biosolutions, S.A. Biodiesel production method
WO2012169969A1 (en) 2011-06-10 2012-12-13 Temasek Life Sciences Laboratory Limited Genetic manipulation and expression systems for pucciniomycotina and us tilaginom ycotina subphyla
EP2718442A4 (en) * 2011-06-10 2015-05-27 Temasek Life Sciences Lab Ltd Genetic manipulation and expression systems for pucciniomycotina and ustilaginomycotina subphyla

Also Published As

Publication number Publication date
DE102005029170A1 (en) 2006-12-28

Similar Documents

Publication Publication Date Title
DE69832624T2 (en) HEFESTAMMS FOR THE PREPARATION OF MILKY ACID
DE69822142T2 (en) TRANSFORMATION OF MOLDES BY AGROBACTERIUM, ESPECIALLY OF THE GENUS ASPERGILLUS
DE69631924T2 (en) Fermentative production of carotenoids
DE60222857T2 (en) CONCATEMERE DIFFERENT EXPRESSED MULTIPLE GENES
EP0751995B1 (en) Riboflavin synthesis in fungi
EP2571991A1 (en) Method of producing isoprenoid compounds in yeast
WO2006136311A1 (en) Metabolic engineering of q10 production in yeasts of the genus sporidiobolus
EP1040193A1 (en) Promoter from ashbya gossypii
AU754951B2 (en) Yeast transformation cassette
DE60313631T2 (en) PRODUCTION OF ZEAXANTHIN AND BETA-CRYPTOXANTHINE BY PHAFFIA
Alic et al. Genetics and molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium
DE102011056290A1 (en) MUSHROOMS WITH GENETIC MODIFICATION CONCERNING A CARBONIC ACID TRANSPORTER
EP1066393B1 (en) Expression system for producing proteins
EP1918379B1 (en) Expression vectors for multiple gene integration and Overexpression of homologous and heterologous proteins in yeasts of the species Arxula
EP1504103B1 (en) Promoters having a modified transcription efficiency and derived from methylotrophic yeast
EP1196592B1 (en) Expression system for the production of proteins in fungi
WO2000068400A1 (en) Method for producing a recombinant protein
DE69823188T2 (en) CLONING UPD GALACTOSEPIMERASE
EP1472355A1 (en) Method for the production of zymosterol and/or the biosynthetic intermediate and/or subsequent products thereof in transgenic organisms
DE10046932B4 (en) Expression system for the overexpression of copper-dependent secreted proteins in eukaryotic cells
EP0930367B1 (en) Fungi of the genus Ashbya for the production of riboflavin
WO2004083407A1 (en) Method for producing ergosta-5,7-dienol and/or biosynthetic intermediate and/or secondary products thereof in transgenic organisms
DE102014210308A1 (en) Yeast strain for the production of carotenoids
WO2014191205A1 (en) Yeast strain and method for producing lycopene
DE10116101A1 (en) New nucleic acid construct, useful for transforming microorganism for fermentation, contains sequences for increased production and transport of sulfite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06754337

Country of ref document: EP

Kind code of ref document: A1