WO2006135010A1 - Functional porous filler and process for production thereof - Google Patents

Functional porous filler and process for production thereof Download PDF

Info

Publication number
WO2006135010A1
WO2006135010A1 PCT/JP2006/312043 JP2006312043W WO2006135010A1 WO 2006135010 A1 WO2006135010 A1 WO 2006135010A1 JP 2006312043 W JP2006312043 W JP 2006312043W WO 2006135010 A1 WO2006135010 A1 WO 2006135010A1
Authority
WO
WIPO (PCT)
Prior art keywords
layered
functional filler
inorganic
clay mineral
producing
Prior art date
Application number
PCT/JP2006/312043
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuhiro Kikuchi
Hiroshi Idei
Original Assignee
Akebono Brake Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co., Ltd. filed Critical Akebono Brake Industry Co., Ltd.
Publication of WO2006135010A1 publication Critical patent/WO2006135010A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/405Compounds of aluminium containing combined silica, e.g. mica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/42Clays
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like

Definitions

  • Porous functional filler and method for producing the same
  • the present invention relates to a structure in which layered substances having hydrophobic and uniform pore diameters are sterically bonded, and can be advantageously used for functional products such as friction materials that require high strength and hydrophobicity, and
  • the present invention relates to a method for manufacturing the structure easily and with high reproducibility.
  • Patent Document 1 describes an inorganic material having a planar crystal structure such as fibrous material, My force, and talc as a friction material that can effectively prevent noise during braking while preventing a decrease in braking force as much as possible.
  • a friction material made of a thermosetting resin containing a granular material and a manufacturing method thereof.
  • Patent Document 2 discloses a friction component that has good squeal performance during braking, good fade resistance and wear resistance, as a fiber component, a thermosetting resin component, and a filler powder component.
  • a friction material comprising resin coated vermiculite.
  • Patent Document 3 discloses a non-asbestos for automobiles that includes high-water-absorbing zeolite as a fiber base material, a binder, and a friction modifier as an automobile brake pad that prevents the generation of noise called creep creep. A brake pad is disclosed.
  • Patent Document 1 Japanese Patent No. 2867661
  • Patent Document 2 Japanese Patent No. 2827140
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-38571
  • a layered material generally has high water absorption between layers, when used as a product filler, deformation and cracking occur due to expansion during water absorption.
  • a composite material using a layered substance as a filler is compression-molded, plate-like particles with a high aspect ratio are molded. Since it is oriented perpendicular to the pressure direction, the strength in the direction perpendicular to the molding pressure direction decreases. Therefore, from the two points of water absorption and strength reduction, there is a problem that general layered materials are used as a filler for functional products.
  • porous materials such as zeolite has a problem that the quality of water-absorbing high-friction materials and other fillers deteriorates, and sufficient humidity control is required for storage security.
  • the present invention has been made in view of such a conventional problem, and a structure in which a layered substance having a hydrophobic and uniform pore size is three-dimensionally bonded, and the structure can be obtained simply and easily.
  • the object is to provide a method for manufacturing with good reproducibility.
  • the present invention provides a layered clay mineral by reacting a layered clay mineral or a layered clay mineral powder dispersed in a solvent such as water with a sol (colloid) solution of an inorganic precursor at room temperature or while heating.
  • a three-dimensional framework of thin plate-like particles is formed at the same time that an interlayer crosslinked body of mineral and inorganic material is produced.
  • the wet gelled material on the interlayer and the layer surface undergoes a dehydration condensation reaction depending on the heating conditions to become a mixture of inorganic hydroxide and inorganic oxide or inorganic oxide, and adheres to the surface and interlayer of the clay mineral.
  • Fig. 1 is a layered clay mineral and 2 is an inorganic substance.
  • the porous functional filler according to the present invention has a structure in which a layered substance having a hydrophobic and uniform pore diameter is sterically bonded to absorb water between layers and a direction of molding pressure during compression molding. Therefore, the problems of water absorption and strength reduction are solved.
  • a porous functional filler which is a composite material in which an inorganic substance is inserted between layers of a layered substance and has a structure in which the composite material is sterically bonded.
  • a layered clay mineral and an inorganic cross-linked material are produced by reacting a layered clay mineral dispersed in a solvent, or a colloidal solution of a layered clay mineral and an inorganic precursor at room temperature or while heating.
  • a method for producing a porous functional filler characterized in that a composite material is produced by three-dimensionalizing thin-layered plate-like particles.
  • the layered clay mineral is at least one of natural clay minerals or artificial synthetic clays having a cation exchange capacity such as kaolinite, smectite, vermiculite, mica, brittle mica, chlorite and the like.
  • a method for producing a porous functional filler according to (2) characterized in that:
  • the colloidal solution of the inorganic precursor is Si, Ti, Zr, Sn, Ge, Al, B, Fe, Ga, P, V, Y, As, Sc, Cr, Nb, Mo, Ca, Mg, Pb, Sr, Zn, Cu, Ni, Co, Mn, Be, Ba force
  • organic compounds such as metal and metalloid alkoxides, organic salts, halides, inorganic or organic one kind A porous material as described in (2) above, which is dissolved or dispersed in a solvent or a mixed solvent of two or more of the solvents, or hydrolyzed through aging after dissolution or dispersion A method for producing functional fillers.
  • FIG. 1 is an image view showing a structure of a porous functional filler of the present invention.
  • the layered clay mineral for example, natural clay minerals having artificial cation exchange ability such as kaolinite, smectite, vermiculite, mica, brittle mica, chlorite and artificial synthetic clay are used.
  • the inorganic substance includes Si, Ti, Zr, Sn, Ge, Al, B, Fe, Ga, P, V, Y, As, Sc, Cr, Nb, Mo, Ca, Mg, Pb, Sr.
  • One or more metal and metalloid oxides selected from the group consisting of Zn, Cu, Ni, Co, Mn, Be, and Ba, or a mixture of oxide and hydroxide are used.
  • the sol (colloid) solution of the inorganic precursor is Si, Ti, Zr, Sn, Ge, Al, B, Fe, Ga, P, V, Y, As, Sc, Cr, Nb, Mo, Ca, Mg, Pb, Sr, Zn, Cu, Ni, Co, Mn, Be, Ba force
  • organic compounds such as metal and metalloid alkoxides, organic salts, halides, inorganic or organic 1
  • a solvent that is dissolved or dispersed in a mixed solvent of two or more kinds of solvents, or that is hydrolyzed through aging after dissolution or dispersion is used.
  • the solution may contain polybutyl alcohol, polybutyl butyral, butyl acetate, chlor chloride, methacryl, acrylic, styrene, polyethylene, polypropylene, polyamide, cellulose, isobutylene, A solution obtained by dissolving or dispersing a butyl ether thermoplastic resin is used.
  • the solvent for dispersing the layered clay mineral is one kind of inorganic or organic solvent, or a mixed solvent of two or more kinds of solvents, and a mixture of acid, neutral and alkaline solvents is used.
  • Preferable solvents include ethanol from the viewpoints of safety in work environment and low cost.
  • a test piece containing 25% by volume of phenol resin, 55% by volume of calcium carbonate, and 20% by volume of the filler of the present invention was prepared by compression molding, and a water absorption test, a strength test, and a porosity measurement were performed.
  • a comparative example 1 a synthetic fluorine mica was prepared, and as a comparative example 2, a test piece to which calcium carbonate was added was prepared and subjected to the same test.
  • the test piece to which the filler of the present invention was added was about twice as strong as the test piece to which the synthetic fluorinated mica (Comparative Example 1) was added.
  • the test piece to which Comparative Example 2) was added showed about 1.5 times the strength.
  • the strength of the test piece to which the filler of the present invention was added when the bending test was performed in the same direction as the molding pressure was about twice that of the test piece to which calcium carbonate (Comparative Example 2) was added.
  • the test piece to which Comparative Example 1) was added showed the same strength. Table 1 shows the results of these experiments.
  • the test piece to which the filler of the present invention is added is about twice as large as the test piece to which the pore strength of synthetic fluorine mica (Comparative Example 1) is added, and the test piece to which calcium carbonate (Comparative Example 2) is added.
  • the porosity of several lOnm level was close to 0.
  • the porous functional filler of the present invention is a composite material having a structure in which an inorganic substance is inserted between layers of a layered substance and is sterically bonded, a three-dimensional structure having a hydrophobic and uniform pore size is provided.
  • the characteristics of the layered material with a structurally bonded structure are exhibited, and the disadvantages of the conventional layered material, such as water absorption between layers and orientation perpendicular to the molding direction during compression molding, are suppressed and eliminated.
  • It is a useful filler (filler) that has wide applicability as a friction material for brakes, structural adhesives, structural members, and molding materials for automobiles, railway vehicles, and industrial machinery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Braking Arrangements (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

Disclosed are a functional porous filler having hydrophobic layered substances each of which has a uniform pore size and which are three-dimensionally bound to each other, and a process for producing the functional porous filler readily and with good reproducibility. A functional porous filler comprising composite materials each having an inorganic substance intercalated between layered substances, the composite materials being three-dimensionally bound to each other to form the filler; and a process for producing the functional porous filler comprising the steps of reacting a layered clay mineral dispersed in a solvent or a powder of the layered clay mineral with a colloidal solution of a precursor of an inorganic substance at room temperature or under heating to prepare an interlayer-crosslinked product of the layered clay mineral and the inorganic substance and form a three-dimensional structure of the thin-layered, platy particles.

Description

明 細 書  Specification
多孔質機能性フイラ一及びその製造方法  Porous functional filler and method for producing the same
技術分野  Technical field
[0001] 本発明は、高強度で疎水性を要する摩擦材等の機能性製品に有利に利用され得 る、疎水性で均一な細孔径を持つ層状物質が立体的に結合した構造物、及びその 構造物を簡単にかつ再現性良く製造するための方法に関する。  [0001] The present invention relates to a structure in which layered substances having hydrophobic and uniform pore diameters are sterically bonded, and can be advantageously used for functional products such as friction materials that require high strength and hydrophobicity, and The present invention relates to a method for manufacturing the structure easily and with high reproducibility.
背景技術  Background art
[0002] 制動時に発生するノイズを防止する目的で、摩擦材の原料に配合する摩擦'摩耗 調整成分として、吸水性が高い層状物質ゃゼオライト等を利用する技術が種々開発 されている。例えば、特許文献 1は、制動力の低下を極力防止しながら制動時の鳴き を有効に防止することのできる摩擦材として、繊維質と、マイ力、タルク等の平面状結 晶構造を有する無機物の粉粒体を含む熱硬化性樹脂からなる摩擦材とその製造方 法を開示している。  [0002] For the purpose of preventing noise generated during braking, various techniques have been developed that utilize a layered material having high water absorption, such as zeolite, as a friction and wear adjusting component to be blended with the raw material of the friction material. For example, Patent Document 1 describes an inorganic material having a planar crystal structure such as fibrous material, My force, and talc as a friction material that can effectively prevent noise during braking while preventing a decrease in braking force as much as possible. Discloses a friction material made of a thermosetting resin containing a granular material and a manufacturing method thereof.
[0003] また、特許文献 2は、制動時の鳴き性能が良好で、耐フェード性及び耐摩耗性も良 好な摩擦材として、繊維成分と、熱硬化性樹脂成分と、充填材粉末成分として樹脂コ 一ティングされたバーミキユライトを含む摩擦材を開示している。更に、特許文献 3は 、クリープグローン (グー音)と称するノイズの発生を防止する自動車用ブレーキパッド として、繊維基材、結合材及び摩擦調整材として吸水性の高いゼォライトを含む自動 車用非石綿ブレーキパッドを開示している。  [0003] In addition, Patent Document 2 discloses a friction component that has good squeal performance during braking, good fade resistance and wear resistance, as a fiber component, a thermosetting resin component, and a filler powder component. Disclosed is a friction material comprising resin coated vermiculite. Further, Patent Document 3 discloses a non-asbestos for automobiles that includes high-water-absorbing zeolite as a fiber base material, a binder, and a friction modifier as an automobile brake pad that prevents the generation of noise called creep creep. A brake pad is disclosed.
[0004] 特許文献 1 :特許第 2867661号公報  [0004] Patent Document 1: Japanese Patent No. 2867661
特許文献 2:特許第 2827140号公報  Patent Document 2: Japanese Patent No. 2827140
特許文献 3 :特開 2000— 38571号公報  Patent Document 3: Japanese Patent Laid-Open No. 2000-38571
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 従来、一般的に層状物質は、層間への吸水性が高いため、製品のフイラ一として使 用すると吸水時の膨張により変形及びひび割れが発生する。また、層状物質をフイラ 一として用いた複合材料を圧縮成型すると、アスペクト比の高い板状の粒子が成型 圧力方向に対して垂直に配向するため、成型圧力方向に対して垂直方向の強度が 低下する。従って、吸水性及び強度低下の二点から、一般的な層状物質は、機能性 製品のフイラ一として用いられることに問題があった。 [0005] Conventionally, since a layered material generally has high water absorption between layers, when used as a product filler, deformation and cracking occur due to expansion during water absorption. In addition, when a composite material using a layered substance as a filler is compression-molded, plate-like particles with a high aspect ratio are molded. Since it is oriented perpendicular to the pressure direction, the strength in the direction perpendicular to the molding pressure direction decreases. Therefore, from the two points of water absorption and strength reduction, there is a problem that general layered materials are used as a filler for functional products.
また、ゼォライト等の多孔質材料も吸水性の高さ力 摩擦材、その他フイラ一として の使用に際し品質の低下を招き、貯蔵保安上も十分な湿度管理等を要するという問 題があった。  In addition, the use of porous materials such as zeolite has a problem that the quality of water-absorbing high-friction materials and other fillers deteriorates, and sufficient humidity control is required for storage security.
[0006] 本発明は、このような従来の課題に鑑みてなされたものであり、疎水性で均一な細 孔径を持つ層状物質が立体的に結合した構造物、及びその構造物を簡単にかつ再 現性良く製造するための方法を提供することを目的とする。  [0006] The present invention has been made in view of such a conventional problem, and a structure in which a layered substance having a hydrophobic and uniform pore size is three-dimensionally bonded, and the structure can be obtained simply and easily. The object is to provide a method for manufacturing with good reproducibility.
発明の効果  The invention's effect
[0007] 本発明は、水等の溶媒に分散させた層状粘土鉱物もしくは層状粘土鉱物の粉末と 無機物前駆体のゾル (コロイド)溶液とを、室温でもしくは加熱しながら反応させること により、層状粘土鉱物と無機物の層間架橋体が作製されると同時に、薄層化した板 状粒子の立体骨格が形成される。更に加熱処理すると、層間及び層表面の湿潤ゲ ル化物は、加熱条件により脱水縮合反応して無機水酸化物と無機酸化物の混合体 あるいは無機酸化物となり、粘土鉱物の表面及び層間に付着し膨張した層間の支柱 となるため、吸水による膨潤が抑制される。また一方で、立体骨格を強固に支える無 機結合剤の役割をする。最終的に疎水性で均一な細孔径を持つ層状物質が立体的 に結合した構造物が得られる。  [0007] The present invention provides a layered clay mineral by reacting a layered clay mineral or a layered clay mineral powder dispersed in a solvent such as water with a sol (colloid) solution of an inorganic precursor at room temperature or while heating. A three-dimensional framework of thin plate-like particles is formed at the same time that an interlayer crosslinked body of mineral and inorganic material is produced. When the heat treatment is further performed, the wet gelled material on the interlayer and the layer surface undergoes a dehydration condensation reaction depending on the heating conditions to become a mixture of inorganic hydroxide and inorganic oxide or inorganic oxide, and adheres to the surface and interlayer of the clay mineral. Since it becomes the strut between the expanded layers, swelling due to water absorption is suppressed. On the other hand, it acts as an inorganic binder that firmly supports the three-dimensional skeleton. Finally, a structure in which layered substances having hydrophobic and uniform pore sizes are sterically bonded is obtained.
上記に説明した事項を、構造物のイメージ図として図 1に示す。図 1において、 1は 層状粘土鉱物であり、 2は無機物である。  The matters described above are shown in Fig. 1 as an image of the structure. In Fig. 1, 1 is a layered clay mineral and 2 is an inorganic substance.
課題を解決するための手段  Means for solving the problem
[0008] 本発明の多孔質機能性フイラ一は、疎水性で均一な細孔径を持つ層状物質が立 体的に結合することにより、層間への吸水性及び圧縮成型時の成型圧力方向に対し て垂直に配向することの二つが抑制されるため、吸水性及び強度低下の問題が解決 される。 [0008] The porous functional filler according to the present invention has a structure in which a layered substance having a hydrophobic and uniform pore diameter is sterically bonded to absorb water between layers and a direction of molding pressure during compression molding. Therefore, the problems of water absorption and strength reduction are solved.
[0009] すなわち、本発明は、上記の目的を達成するために下記の構成を有するものであ る。 (1)層状物質の層間に無機物を挿入してなる複合材料であって、該複合材料が立体 的に結合された構造を有することを特徴とする多孔質機能性フイラ一。 That is, the present invention has the following configuration in order to achieve the above object. (1) A porous functional filler, which is a composite material in which an inorganic substance is inserted between layers of a layered substance and has a structure in which the composite material is sterically bonded.
(2)溶媒に分散させた層状粘土鉱物、もしくは層状粘土鉱物の粉末と無機物前駆体 のコロイド溶液とを、室温でもしくは加熱しながら反応させることにより、層状粘土鉱物 と無機物の層間架橋体を作製し、薄層化した板状粒子の立体化を行って複合材料 を製造することを特徴とする多孔質機能性フイラ一の製造方法。  (2) A layered clay mineral and an inorganic cross-linked material are produced by reacting a layered clay mineral dispersed in a solvent, or a colloidal solution of a layered clay mineral and an inorganic precursor at room temperature or while heating. A method for producing a porous functional filler, characterized in that a composite material is produced by three-dimensionalizing thin-layered plate-like particles.
[0010] (3)前記層状粘土鉱物が、カオリナイト、スメクタイト、バーミキユライト、雲母、脆雲母 、緑泥石等の陽イオン交換能を持つ天然粘土鉱物又は人工合成粘土の 1種類以上 であることを特徴とする前記(2)記載の多孔質機能性フイラ一の製造方法。  [0010] (3) The layered clay mineral is at least one of natural clay minerals or artificial synthetic clays having a cation exchange capacity such as kaolinite, smectite, vermiculite, mica, brittle mica, chlorite and the like. A method for producing a porous functional filler according to (2), characterized in that:
(4)前記無機物力 Si, Ti、 Zr, Sn, Ge, Al, B, Fe, Ga, P, V, Y, As, Sc, Cr, Nb, Mo, Ca, Mg, Pb, Sr, Zn, Cu, Ni, Co, Mn, Be, Ba力 選ばれる 1種類以 上の金属及び半金属の酸化物あるいは酸化物と水酸化物の混合体であることを特 徴とする前記(2)記載の多孔質機能性フイラ一の製造方法。  (4) Inorganic strength Si, Ti, Zr, Sn, Ge, Al, B, Fe, Ga, P, V, Y, As, Sc, Cr, Nb, Mo, Ca, Mg, Pb, Sr, Zn, Cu, Ni, Co, Mn, Be, Ba force As described in (2) above, characterized in that it is an oxide of one or more metals and metalloids or a mixture of oxide and hydroxide. A method for producing a porous functional filler.
(5)前記無機物前駆体のコロイド溶液が、 Si, Ti、 Zr, Sn, Ge, Al, B, Fe, Ga, P, V, Y, As, Sc, Cr, Nb, Mo, Ca, Mg, Pb, Sr, Zn, Cu, Ni, Co, Mn, Be, Ba力 ら選ばれる 1種類以上の金属及び半金属のアルコキシド等の有機化合物あるいは無 機塩、ハロゲン化物を無機又は有機の 1種類の溶媒、あるいはその 2種類以上の溶 媒の混合溶媒に溶解又は分散させたもの、あるいは溶解又は分散の後にエージング を経て加水分解させたものであることを特徴とする前記(2)記載の多孔質機能性フィ ラーの製造方法。  (5) The colloidal solution of the inorganic precursor is Si, Ti, Zr, Sn, Ge, Al, B, Fe, Ga, P, V, Y, As, Sc, Cr, Nb, Mo, Ca, Mg, Pb, Sr, Zn, Cu, Ni, Co, Mn, Be, Ba force One or more kinds of organic compounds such as metal and metalloid alkoxides, organic salts, halides, inorganic or organic one kind A porous material as described in (2) above, which is dissolved or dispersed in a solvent or a mixed solvent of two or more of the solvents, or hydrolyzed through aging after dissolution or dispersion A method for producing functional fillers.
(6)前記無機物前駆体のコロイド溶液力 溶液中にポリビュルアルコール、ポリビニ ルブチラール、酢酸ビュル系、塩化ビュル系、メタクリル系、アクリル系、スチレン系、 ポリエチレン系、ポリプロピレン系、ポリアミド系、セルロース系、イソブチレン系、ビニ ルエーテル系の熱可塑性樹脂を溶解又は分散させたものであるあることを特徴とす る前記 (2)記載の多孔質機能性フイラ一の製造方法。  (6) Colloidal solution strength of the above-mentioned inorganic precursor In the solution, polybutyl alcohol, polyvinyl butyral, acetate acetate, butyl chloride, methacryl, acrylic, styrene, polyethylene, polypropylene, polyamide, cellulose, The method for producing a porous functional filler according to (2) above, wherein the thermoplastic resin of isobutylene or vinyl ether is dissolved or dispersed.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]本発明の多孔質機能性フイラ一の構造を示すイメージ図である。 FIG. 1 is an image view showing a structure of a porous functional filler of the present invention.
符号の説明 [0012] 1 層状粘土鉱物 Explanation of symbols [0012] 1 layered clay mineral
2 無機物  2 Inorganic
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 本発明において、層状粘土鉱物としては、例えばカオリナイト、スメクタイト、バーミ キュライト、雲母、脆雲母、緑泥石等の陽イオン交換能を持つ天然粘土鉱物や人工 合成粘土が用いられる。 In the present invention, as the layered clay mineral, for example, natural clay minerals having artificial cation exchange ability such as kaolinite, smectite, vermiculite, mica, brittle mica, chlorite and artificial synthetic clay are used.
本発明において、前記無機物としては、 Si, Ti、 Zr, Sn, Ge, Al, B, Fe, Ga, P, V, Y, As, Sc, Cr, Nb, Mo, Ca, Mg, Pb, Sr, Zn, Cu, Ni, Co, Mn, Be, Ba力 ら選ばれる 1種類以上の金属及び半金属の酸化物あるいは酸化物と水酸化物の混 合体が用いられる。  In the present invention, the inorganic substance includes Si, Ti, Zr, Sn, Ge, Al, B, Fe, Ga, P, V, Y, As, Sc, Cr, Nb, Mo, Ca, Mg, Pb, Sr. One or more metal and metalloid oxides selected from the group consisting of Zn, Cu, Ni, Co, Mn, Be, and Ba, or a mixture of oxide and hydroxide are used.
[0014] 無機物前駆体のゾル(コロイド)溶液は、 Si, Ti、 Zr, Sn, Ge, Al, B, Fe, Ga, P, V, Y, As, Sc, Cr, Nb, Mo, Ca, Mg, Pb, Sr, Zn, Cu, Ni, Co, Mn, Be, Ba力 ら選ばれる 1種類以上の金属及び半金属のアルコキシド等の有機化合物あるいは無 機塩、ハロゲン化物を無機又は有機の 1種類の溶媒、あるいはその 2種類以上の溶 媒の混合溶媒に溶解又は分散させたもの、あるいは溶解又は分散の後にエージング を経て加水分解させたものが用いられる。  [0014] The sol (colloid) solution of the inorganic precursor is Si, Ti, Zr, Sn, Ge, Al, B, Fe, Ga, P, V, Y, As, Sc, Cr, Nb, Mo, Ca, Mg, Pb, Sr, Zn, Cu, Ni, Co, Mn, Be, Ba force One or more kinds of organic compounds such as metal and metalloid alkoxides, organic salts, halides, inorganic or organic 1 A solvent that is dissolved or dispersed in a mixed solvent of two or more kinds of solvents, or that is hydrolyzed through aging after dissolution or dispersion is used.
更に必要に応じて、溶液中にポリビュルアルコールやポリビュルブチラール、酢酸 ビュル系、塩化ビュル系、メタクリル系、アクリル系、スチレン系、ポリエチレン系、ポリ プロピレン系、ポリアミド系、セルロース系、イソブチレン系、ビュルエーテル系の熱可 塑性樹脂を溶解又は分散させたものが用いられる。  Furthermore, if necessary, the solution may contain polybutyl alcohol, polybutyl butyral, butyl acetate, chlor chloride, methacryl, acrylic, styrene, polyethylene, polypropylene, polyamide, cellulose, isobutylene, A solution obtained by dissolving or dispersing a butyl ether thermoplastic resin is used.
これらの無機物前駆体のコロイド溶液(ゾル)は、図 1に示した構造の複合材料にお レ、ては、セラミックスの前駆体や金属酸化物の形態をなしてレ、る。  These inorganic precursor colloidal solutions (sols) are formed in the form of ceramic precursors and metal oxides in the composite material having the structure shown in FIG.
[0015] 層状粘土鉱物を分散させる溶媒は、無機または有機の 1種類の溶媒、あるいはそ の 2種類以上の溶媒の混合溶媒で、酸性から中性及びアルカリ性の溶媒のレ、ずれも が用いられる。好ましい溶媒としては、作業環境の安全性、低コスト性などの点からェ タノールが挙げられる。 [0015] The solvent for dispersing the layered clay mineral is one kind of inorganic or organic solvent, or a mixed solvent of two or more kinds of solvents, and a mixture of acid, neutral and alkaline solvents is used. . Preferable solvents include ethanol from the viewpoints of safety in work environment and low cost.
実施例  Example
[0016] 以下に、本発明を実施例によって詳細かつ具体的に説明するが、本発明は、この 実施例により何等制限されるものではない。 [0016] Hereinafter, the present invention will be described in detail and specifically by way of examples. The embodiment is not limited in any way.
[0017] 実施例 1並びに比較例:!〜 2  [0017] Example 1 and comparative examples:! To 2
合成フッ素雲母 10gを蒸留水 600ミリリットルに投入し良く撹拌した。テトラエトキシ シラン 23gをエタノール 200ミリリットルで希釈し、酢酸 20g、蒸留水 8gを投入し、容積 125ミリリットルになるまで温度 80°C以下で濃縮した後、合成フッ素雲母分散液に投 入し、 75°Cで 5時間撹拌した後、 200°Cの加熱炉で 2時間加熟処理を行った。水洗、 ろ過、乾燥、粉砕処理を経て本発明のフィラーを得た。なお、前記の操作では、テトラ エトキシシランのエタノール溶液に酢酸と蒸留水を投入すると、テトラエトキシシランが 加水分解し、シリカゾノレを形成するが、それを濃縮して濃厚なシリカゾル液を得てい る。  10 g of synthetic fluorine mica was added to 600 ml of distilled water and stirred well. Dilute 23 g of tetraethoxysilane with 200 ml of ethanol, add 20 g of acetic acid and 8 g of distilled water, concentrate at a temperature of 80 ° C or lower until the volume reaches 125 ml, and then add it to the synthetic fluoric mica dispersion. After stirring for 5 hours at C, ripening treatment was performed for 2 hours in a heating furnace at 200 ° C. The filler of the present invention was obtained through washing with water, filtration, drying and pulverization. In the above operation, when acetic acid and distilled water are added to an ethanol solution of tetraethoxysilane, tetraethoxysilane is hydrolyzed to form silica zonole, which is concentrated to obtain a concentrated silica sol solution.
[0018] フエノール樹脂を 25容量%、炭酸カルシウムを 55容量%、本発明のフィラーを 20 容量%添加したテストピースを圧縮成型で作製し、吸水性試験と強度試験及び気孔 率の測定を行った。比較例 1として、合成フッ素雲母、比較例 2として、炭酸カルシゥ ムを添加したテストピースを作製し、同様の試験を行った。  [0018] A test piece containing 25% by volume of phenol resin, 55% by volume of calcium carbonate, and 20% by volume of the filler of the present invention was prepared by compression molding, and a water absorption test, a strength test, and a porosity measurement were performed. . As a comparative example 1, a synthetic fluorine mica was prepared, and as a comparative example 2, a test piece to which calcium carbonate was added was prepared and subjected to the same test.
[0019] (吸水性試験)  [0019] (Water absorption test)
温度 50°C湿度 95%の雰囲気に 72時間放置して吸水性を確認したところ、合成フ ッ素雲母(比較例 1)を使用したテストピースは膨張しひび割れていたのに対し、本発 明のフィラーを添加したテストピースは、炭酸カルシウム(比較例 2)を添加したものと 同様に膨張が小さぐヒビの発生は見られなかった。  When the water absorption was confirmed by leaving it in an atmosphere with a temperature of 50 ° C and humidity of 95% for 72 hours, the test piece using synthetic fluorine mica (Comparative Example 1) was expanded and cracked. The test piece to which the above filler was added did not show cracking with small expansion similar to that to which calcium carbonate (Comparative Example 2) was added.
[0020] (強度試験)  [0020] (Strength test)
成型圧と垂直方向にせん断した時の強度試験では、本発明のフィラーを添加した テストピースの強度が最も高ぐ合成フッ素雲母(比較例 1)を添加したテストピースの 約 2倍、炭酸カルシウム(比較例 2)を添加したテストピースの約 1. 5倍の強度を示し た。また、成型圧と同じ方向に曲げ試験を行った時の本発明のフィラーを添加したテ ストピースの強度は、炭酸カルシウム(比較例 2)を添加したテストピースの約 2倍、合 成フッ素雲母(比較例 1)を添加したテストピースとは同等の強度を示した。これらの 実験結果を第 1表に示す。  In the strength test when sheared in the direction perpendicular to the molding pressure, the test piece to which the filler of the present invention was added was about twice as strong as the test piece to which the synthetic fluorinated mica (Comparative Example 1) was added. The test piece to which Comparative Example 2) was added showed about 1.5 times the strength. The strength of the test piece to which the filler of the present invention was added when the bending test was performed in the same direction as the molding pressure was about twice that of the test piece to which calcium carbonate (Comparative Example 2) was added. The test piece to which Comparative Example 1) was added showed the same strength. Table 1 shows the results of these experiments.
[0021] (気孔率の測定) 本発明のフィラーを添加したテストピースには数 10nmレベルの気孔力 合成フッ 素雲母(比較例 1)を添加したテストピースの約 2倍存在し、炭酸カルシウム(比較例 2 )を添加したテストピースには数 lOnmレベルの気孔は 0に近かった。 [0021] (Measurement of porosity) The test piece to which the filler of the present invention is added is about twice as large as the test piece to which the pore strength of synthetic fluorine mica (Comparative Example 1) is added, and the test piece to which calcium carbonate (Comparative Example 2) is added. On the other hand, the porosity of several lOnm level was close to 0.
[表 1] 第 1表 強度試験結果  [Table 1] Table 1 Strength test results
Figure imgf000008_0001
Figure imgf000008_0001
[0023] 本発明を詳細にまた特定の実施態様を参照して説明した力 本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。 [0023] The present invention has been described in detail and with reference to specific embodiments. It will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. .
本出願は、 2005年 6月 16日出願の日本特許出願(特願 2005— 176655)に基づ くものであり、その内容はここに参照として取り込まれる。  This application is based on a Japanese patent application filed on June 16, 2005 (Japanese Patent Application No. 2005-176655), the contents of which are incorporated herein by reference.
産業上の利用可能性  Industrial applicability
[0024] 本発明の多孔質機能性フイラ一は、層状物質の層間に無機物を揷入して立体的に 結合された構造を有する複合材料であるから、疎水性で均一な細孔径を持つ立体 的に結合した構造の層状物質の特徴を発揮して、層間への吸水性及び圧縮成型時 の成型方向に対して垂直に配向することという従来の層状物質の有する欠点が抑制 、解消されるから、自動車、鉄道車両、産業機械のブレーキ用摩擦材、構造用接着 剤、構造用部材、成形材料として広い利用可能性を有する有用なフィラー(充填材) である。 [0024] Since the porous functional filler of the present invention is a composite material having a structure in which an inorganic substance is inserted between layers of a layered substance and is sterically bonded, a three-dimensional structure having a hydrophobic and uniform pore size is provided. The characteristics of the layered material with a structurally bonded structure are exhibited, and the disadvantages of the conventional layered material, such as water absorption between layers and orientation perpendicular to the molding direction during compression molding, are suppressed and eliminated. It is a useful filler (filler) that has wide applicability as a friction material for brakes, structural adhesives, structural members, and molding materials for automobiles, railway vehicles, and industrial machinery.

Claims

請求の範囲 The scope of the claims
[1] 層状物質の層間に無機物を挿入してなる複合材料であって、該複合材料が立体 的に結合された構造を有することを特徴とする多孔質機能性フイラ一。  [1] A porous functional filler, which is a composite material in which an inorganic substance is inserted between layers of a layered substance and has a structure in which the composite material is sterically bonded.
[2] 溶媒に分散させた層状粘土鉱物、もしくは層状粘土鉱物の粉末と無機物前駆体の コロイド溶液とを、室温でもしくは加熱しながら反応させることにより、層状粘土鉱物と 無機物の層間架橋体を作製し、薄層化した板状粒子の立体化を行って複合材料を 製造することを特徴とする多孔質機能性フイラ一の製造方法。  [2] Layered clay mineral and inorganic layered cross-linked material are prepared by reacting layered clay mineral dispersed in solvent or colloidal solution of layered clay mineral and colloidal solution of inorganic precursor at room temperature or while heating. A method for producing a porous functional filler, characterized in that a composite material is produced by three-dimensionalizing thin plate-like particles.
[3] 前記層状粘土鉱物が、カオリナイト、スメクタイト、バーミキユライト、雲母、脆雲母、 緑泥石等の陽イオン交換能を持つ天然粘土鉱物又は人工合成粘土の 1種類以上で あることを特徴とする請求項 2記載の多孔質機能性フイラ一の製造方法。  [3] The layered clay mineral is one or more of natural clay minerals or artificial synthetic clays having a cation exchange ability such as kaolinite, smectite, vermiculite, mica, brittle mica, chlorite and the like. The method for producing a porous functional filler according to claim 2.
[4] 前記無機物が、 Si, Ti、 Zr, Sn, Ge, Al, B, Fe, Ga, P, V, Y, As, Sc, Cr, Nb [4] The inorganic substance is Si, Ti, Zr, Sn, Ge, Al, B, Fe, Ga, P, V, Y, As, Sc, Cr, Nb
, Mo, Ca, Mg, Pb, Sr, Zn, Cu, Ni, Co, Mn, Be, Ba力ら選ばれる 1種類以上 の金属及び半金属の酸化物あるいは酸化物と水酸化物の混合体であることを特徴と する請求項 2記載の多孔質機能性フイラ一の製造方法。 , Mo, Ca, Mg, Pb, Sr, Zn, Cu, Ni, Co, Mn, Be, Ba, one or more metal and metalloid oxides or a mixture of oxide and hydroxide 3. The method for producing a porous functional filler according to claim 2, wherein the porous functional filler is provided.
[5] 前記無機物前駆体のコロイド溶液力 Si, Ti、 Zr, Sn, Ge, Al, B, Fe, Ga, P, V [5] Colloidal solution force of the inorganic precursor Si, Ti, Zr, Sn, Ge, Al, B, Fe, Ga, P, V
, Y, As, Sc, Cr, Nb, Mo, Ca, Mg, Pb, Sr, Zn, Cu, Ni, Co, Mn, Be, Ba力ら 選ばれる 1種類以上の金属及び半金属のアルコキシド等の有機化合物あるいは無 機塩、ハロゲン化物を無機又は有機の 1種類の溶媒、あるいはその 2種類以上の溶 媒の混合溶媒に溶解又は分散させたもの、あるいは溶解又は分散の後にエージング を経て加水分解させたものであることを特徴とする請求項 2記載の多孔質機能性フィ ラーの製造方法。 , Y, As, Sc, Cr, Nb, Mo, Ca, Mg, Pb, Sr, Zn, Cu, Ni, Co, Mn, Be, Ba force, etc. Organic compounds, organic salts, and halides are dissolved or dispersed in one kind of inorganic or organic solvent, or a mixed solvent of two or more kinds of such solvents, or hydrolyzed through aging after dissolution or dispersion. 3. The method for producing a porous functional filler according to claim 2, wherein the porous functional filler is used.
[6] 前記無機物前駆体のコロイド溶液力 溶液中にポリビュルアルコール、ポリビュル ブチラール、酢酸ビュル系、塩化ビュル系、メタクリル系、アクリル系、スチレン系、ポ リエチレン系、ポリプロピレン系、ポリアミド系、セルロース系、イソブチレン系、ビュル エーテル系の熱可塑性樹脂を溶解又は分散させたものであるあることを特徴とする 請求項 2記載の多孔質機能性フイラ一の製造方法。  [6] Colloidal solution strength of the above-mentioned inorganic precursor In the solution, polybulualcohol, polybutybutyral, acetic acid butyl, chlorinated butyl, methacrylic, acrylic, styrene, polyethylene, polypropylene, polyamide, cellulose 3. The method for producing a porous functional filler according to claim 2, wherein a thermoplastic resin of isobutylene type or butyl ether type is dissolved or dispersed.
PCT/JP2006/312043 2005-06-16 2006-06-15 Functional porous filler and process for production thereof WO2006135010A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-176655 2005-06-16
JP2005176655A JP2006348188A (en) 2005-06-16 2005-06-16 Porous functional filler and method for producing the same

Publications (1)

Publication Number Publication Date
WO2006135010A1 true WO2006135010A1 (en) 2006-12-21

Family

ID=37532364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312043 WO2006135010A1 (en) 2005-06-16 2006-06-15 Functional porous filler and process for production thereof

Country Status (2)

Country Link
JP (1) JP2006348188A (en)
WO (1) WO2006135010A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101380571B (en) * 2007-09-06 2011-09-21 浙江大学 Preparation method of rare earth Yt doped zirconium crosslinking montmorillonite

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009126732A (en) * 2007-11-21 2009-06-11 Akebono Brake Ind Co Ltd Hydrophobic porous material and method for manufacturing the same
JP2009263577A (en) * 2008-04-28 2009-11-12 Akebono Brake Ind Co Ltd Friction modifier, method of producing friction modifier, and friction material
JP2009275063A (en) * 2008-05-12 2009-11-26 Akebono Brake Ind Co Ltd Frictional material
JP5659392B2 (en) * 2011-03-01 2015-01-28 曙ブレーキ工業株式会社 Friction material and friction material manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210566A (en) * 1984-04-02 1985-10-23 工業技術院長 Smectite type mineral fine porous clay material comprising smectite type mineral, neutral high molecule and silica and manufacture thereof
JPS63319277A (en) * 1987-06-19 1988-12-27 Matsushita Electric Works Ltd Production of layered inorg. porous body
JPH03181627A (en) * 1989-09-01 1991-08-07 Sumitomo Electric Ind Ltd Friction material and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210566A (en) * 1984-04-02 1985-10-23 工業技術院長 Smectite type mineral fine porous clay material comprising smectite type mineral, neutral high molecule and silica and manufacture thereof
JPS63319277A (en) * 1987-06-19 1988-12-27 Matsushita Electric Works Ltd Production of layered inorg. porous body
JPH03181627A (en) * 1989-09-01 1991-08-07 Sumitomo Electric Ind Ltd Friction material and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101380571B (en) * 2007-09-06 2011-09-21 浙江大学 Preparation method of rare earth Yt doped zirconium crosslinking montmorillonite

Also Published As

Publication number Publication date
JP2006348188A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
Ma et al. Halloysite nanotubes: green nanomaterial for functional organic‐inorganic nanohybrids
CA2343260C (en) Moniliform silica sol, method for producing it and ink jet recording medium
KR101280076B1 (en) High density nano coating compositions
US8404032B2 (en) Humidity-conditioning sheet
WO2006135010A1 (en) Functional porous filler and process for production thereof
WO2013141189A1 (en) Heat insulator composition, heat insulator using same, and method for manufacturing heat insulator
JP4176417B2 (en) Functional sheet with reinforcement
JP2012503694A (en) Semi-finished metal products
JP2006043699A (en) Monolithic composition and manufacturing method therefor
CN107057273B (en) Phenol-formaldehyde resin modified, composite material and preparation method and application
KR20110089835A (en) High density nano coating compositions
KR20110093970A (en) Composition of nano composite
KR101876318B1 (en) Hybridization nanocomposite, method of preparing the same, and water adsorbent including the same
WO2021181932A1 (en) Thermal insulation material and method for producing same
US6534025B1 (en) Porous materials and methods for forming the same
JP2023164450A (en) High temperature heat insulation material
JP2008024780A (en) Porous functional filler and method for producing the same
Ninago et al. Mild microwave-assisted synthesis of aluminum-pillared bentonites: thermal behavior and potential applications
JP2008137849A (en) Resin impregnated porous filler
Suzuki et al. Inorganic material-based Janus nanosheets: asymmetrically functionalized 2D-inorganic nanomaterials
JP6584213B2 (en) Hollow particles, method for producing the hollow particles, and friction material containing the hollow particles
JP6049012B2 (en) Method for producing modified graphene-like carbon material, modified graphene-like carbon material, and resin composite material
JPS61106687A (en) Frictional material for vehicle
JPS6246489B2 (en)
JP7260285B2 (en) Composite material and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06766777

Country of ref document: EP

Kind code of ref document: A1