WO2006134802A1 - カメラ本体、カメラシステム - Google Patents

カメラ本体、カメラシステム Download PDF

Info

Publication number
WO2006134802A1
WO2006134802A1 PCT/JP2006/311300 JP2006311300W WO2006134802A1 WO 2006134802 A1 WO2006134802 A1 WO 2006134802A1 JP 2006311300 W JP2006311300 W JP 2006311300W WO 2006134802 A1 WO2006134802 A1 WO 2006134802A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
solid
mirror member
lens
state
Prior art date
Application number
PCT/JP2006/311300
Other languages
English (en)
French (fr)
Inventor
Kyoichi Miyazaki
Kenichi Honjo
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006134802A1 publication Critical patent/WO2006134802A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B19/00Cameras
    • G03B19/02Still-picture cameras
    • G03B19/12Reflex cameras with single objective and a movable reflector or a partly-transmitting mirror
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images

Definitions

  • the present invention relates to a camera body and a camera system for inputting a digital image.
  • digital still cameras and digital video cameras (hereinafter simply referred to as digital cameras) that can convert an optical image of a subject into an electrical image signal and output the signals are rapidly spreading.
  • high-performance specifications such as high image quality and shortening of the distance measurement time required for conventional cameras for silver halide films are also required for digital cameras.
  • Patent Document 1 a single-lens reflex type digital camera (hereinafter simply referred to as a single-lens reflex digital camera) has been proposed (Patent Document 1).
  • FIG. 7 is a schematic cross-sectional view of a single-lens reflex digital camera described in Patent Document 1.
  • the digital camera includes a photographing lens 100, a camera body 200, a solid-state imaging element 201, a main mirror 202, a focal plane shirter 204, a condenser lens 205, a sub-mirror 207, and a condenser lens 208.
  • the optical viewfinder 500 includes an inversion prism 501, an eyepiece lens 502, a photometric device 503, and an in-finder display device 504.
  • the main mirror 202 can move between a position where it is inserted into the imaging optical path and a position where it is retracted from the imaging optical path. In FIG. 7, the main mirror 202 is at a position inserted in the photographing optical path.
  • the distance measuring device 209 is a phase difference detection type focus detection device that forms images of different pupil powers to obtain a defocus amount.
  • the focusing operation is performed by driving some lens elements included in the photographing lens 100 in the optical axis direction so that the defocus amount becomes zero.
  • Such a phase difference detection method can shorten the time until in-focus, and is excellent in rapid photographing properties, as compared with a contrast method used in a compact digital camera or the like.
  • the bent light beam passes through the condenser lens 205 for aligning the exit pupil of the optical viewfinder 500 with the pupil of the observer, and then forms an image on the focusing screen 210.
  • the image formed on the focusing screen 210 is erected by the reversing prism 501 and further magnified and displayed by the eyepiece lens 502.
  • the main mirror 202 and the sub mirror 207 also retract the photographing optical path internal force between the photographing lens 100 and the focal plane shirter 204.
  • the imaging lens 100 forms an optical image of the subject on the solid-state image sensor 201.
  • Patent Document 1 states that it is possible to provide a high-quality and high-quality solid-state imaging camera without significantly changing the structure of a conventional single-lens reflex camera for silver salt film.
  • Patent Document 2 proposes a digital camera including an electronic viewfinder that displays an image output from a solid-state imaging device for imaging and recording as a visible image. Patent Document 2 assumes that information on a subject image captured by a solid-state imaging device and imaging information can be displayed on an electronic viewfinder.
  • Patent Document 1 JP-A-8-262564
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-322791
  • the single-lens reflex digital camera of Patent Document 1 has a problem that the optical viewfinder is required when the observer observes the subject image, and the cost is increased. .
  • the optical viewfinder requires a reversing optical system for displaying an image formed on the focusing screen in an upright manner, and thus there has been a limit to downsizing a single-lens reflex digital camera.
  • the digital camera of Patent Document 2 displays a subject image picked up by a solid-state image pickup device for shooting and recording on a finder, and has not been proposed as a single-lens reflex digital camera. .
  • the focus adjustment in the digital camera of Patent Document 2 Since the difference-type focus detection means and the contrast-type focus detection means are used in combination, the focusing operation cannot be performed at a higher speed than a single-lens reflex digital camera using only the phase difference-type focus detection means. There was a problem.
  • solid-state imaging devices represented by CCD (Charge Coupled Devices) and CMOS (Complementary Metal Oxide Semiconductor) have a narrow light receiving gradation range (dynamic range).
  • CCD Charge Coupled Devices
  • CMOS Complementary Metal Oxide Semiconductor
  • the single-lens reflex digital camera of Patent Document 1 adjusts the shutter speed when the aperture stop diameter is adjusted during shooting and recording, but cannot obtain an optimal exposure image when the subject brightness differs greatly.
  • the digital camera of Patent Document 2 needs to maximize the aperture diameter in order to detect a focus when observing a finder display image.
  • the amount of incident light cannot be adjusted.
  • the digital camera disclosed in Patent Document 2 is used as both a solid-state image sensor for shooting and recording and for finder display. Therefore, when a high-brightness subject is in the screen, the entire screen appears white. There was a problem. Conversely, for low-brightness subjects, the pixel size is small, so there is a problem that the amount of light is insufficient and the entire screen is blackened.
  • the pixels of the solid-state imaging device for shooting and recording tend to be further miniaturized. For this reason, the light receiving area of the solid-state imaging device is further reduced, and the problem of insufficient dynamic range is becoming apparent.
  • an object of the present invention has been made in view of the above problems, and provides a digital camera body and a camera system that achieve high quality of a finder display image and achieve miniaturization. It is in.
  • the object of the present invention is achieved by a camera body having the following configuration.
  • a camera body connectable to the taking lens,
  • the photographic beam emitted from the photographic lens is inserted into the photographic optical path until it goes to the imaging surface,
  • a mirror member movable between an insertion position for reflecting at least a part of the photographing light flux and a retreat position for retreating from the photographing optical path;
  • a first solid-state imaging device that is disposed on a planned image plane of the photographic lens and converts an optical image of a subject into an electrical image signal based on a photographic light beam when the mirror member is in the retracted position;
  • a second solid-state imaging device which is disposed on the planned image plane and converts an optical image of the subject into an electrical image signal based on a photographic light beam reflected by the mirror member when the mirror member is in the insertion position;
  • an image display element that displays a captured image based on an image signal from at least the second solid-state image sensor.
  • the object of the present invention is achieved by a camera system having the following configuration.
  • a camera system having a photographic lens and a camera body capable of exchanging a photographic lens,
  • a mirror member that is inserted into a photographing optical path until the photographing light beam emitted from the photographing lens is directed to the imaging surface, and is movable between an insertion position that reflects at least a part of the photographing light beam and a retreat position that retreats from the photographing optical path.
  • a first solid-state image sensor that converts an optical image of a subject into an electrical image signal based on a photographic light beam when the mirror member is disposed at a planned image plane of the photographic lens and the mirror member is at a retracted position.
  • a second solid-state imaging device that is disposed on the planned image plane and converts an optical image of a subject into an electrical image signal based on a photographic light beam reflected by the mirror member when the mirror member is in the insertion position;
  • an image display element that displays a captured image based on an image signal from at least the second solid-state image sensor.
  • FIG. 1 is a schematic sectional view of a configuration of a camera system according to an embodiment in a normal state. It is.
  • FIG. 2 is a schematic cross-sectional view of the configuration of the camera system according to the embodiment in an exposure state.
  • FIG. 3 is a schematic perspective view of the camera system according to the embodiment.
  • FIG. 4A is a first configuration example of a transmittance variable element included in the embodiment.
  • FIG. 4B is a first configuration example of a transmittance variable element included in the embodiment.
  • FIG. 4C is a first configuration example of a transmittance variable element included in the embodiment.
  • FIG. 5 is a second configuration example of a transmittance variable element included in the embodiment.
  • FIG. 6 is a block diagram relating to control of a transmittance variable element included in the embodiment.
  • FIG. 7 is a schematic sectional view of a conventional camera system.
  • FIG. 1 and 2 are schematic cross-sectional views showing the configuration of the camera system according to the present embodiment.
  • FIG. 3 is a schematic perspective view of the camera system according to the present embodiment.
  • the solid-state imaging camera in FIG. 1 is in a shooting preparation state or in a power-off state (hereinafter referred to as a normal state), and an observer can observe an image displayed on an electronic viewfinder.
  • the solid-state imaging camera in FIG. 2 is in an exposed state, and can capture still images or moving images.
  • the camera system includes a replaceable photographing lens 100, a camera body 200, and the like.
  • the camera body 200 includes a first solid-state image sensor 201, a main mirror 202, a second solid-state image sensor 203, a focal plane shirter 204, a transmittance variable element 206, a sub-mirror 207, and a condenser lens 208.
  • a distance measuring device 209 an electronic viewfinder 300, a first liquid crystal display element 400, and a strobe 603.
  • the taking lens 100 is also configured with one or a plurality of lens element forces, and forms an optical image of a subject.
  • the main mirror 202 is a half mirror that reflects part of incident light and transmits part of it.
  • the main mirror 202 is rotatable about an axis between a position in a normal state (FIG. 1) and a position in an exposure state (FIG. 2).
  • the main mirror 202 In the normal state of FIG. 1, the main mirror 202 is disposed at an angle of approximately 45 degrees upward with respect to the optical axis of the photographing lens 100, and refracts a part of incident object light to the second solid-state image sensor 203. Transmits part of the subject light.
  • the main mirror 202 is retracted from the imaging optical path.
  • the first and second solid-state imaging devices are CCDs, and convert an optical image formed by the photographing lens 100 into an electrical image signal.
  • the first and second solid-state image sensors are CMOS. Also good.
  • the first solid-state imaging device 201 is disposed orthogonal to the optical axis of the photographing lens 100.
  • the second solid-state imaging device 203 is disposed so as to be substantially parallel to the optical axis of the photographing lens 100.
  • the first and second solid-state imaging devices are arranged on the planned image plane of the photographing lens 100, respectively.
  • the first solid-state imaging device 201 is used for photographing a subject image.
  • the second solid-state imaging element 203 is used for observing a subject image by a photographer and has a live view function.
  • the camera system according to the present embodiment has a configuration in which a solid-state imaging device for photographing and recording and a solid-state imaging device for observation are separately provided, and includes two solid-state imaging devices.
  • the second solid-state image sensor 203 has a smaller number of pixels than the first solid-state image sensor 201.
  • the first solid-state imaging device 201 can have a larger pixel size than the second solid-state imaging device 203, and thus a wide dynamic range can be ensured.
  • the observation image obtained by the second solid-state imaging device is hereinafter referred to as a “finder image”.
  • the viewfinder image is the electronic viewfinder 300 and the first image installed outside. It can be displayed on the liquid crystal display element 400.
  • the second solid-state imaging element 203 can omit recording of a still image, the time and power consumption of the pixel signal readout process can be reduced compared to the first solid-state imaging element 201. it can.
  • the second solid-state imaging device can increase the readout speed of the image signal, and can realize a live view function capable of expressing a sufficiently smooth moving object with respect to the movement of the subject.
  • the focal plane shirter 204 is disposed immediately before the subject side of the first solid-state imaging device 201, and adjusts the amount of light taken into the solid-state imaging device.
  • the focal plane shirter 204 is in a fully open state in the exposure state and in a slit aperture scanning state in the high-speed shutter mode, and is configured to perform appropriate exposure to the first solid-state image sensor 201.
  • the sub-mirror 207 reflects incident light and makes it incident on the distance measuring device 209. Similar to the main mirror 202, the sub mirror 207 can be rotated about an axis between a position in a normal state and a position in an exposure state. In the normal state shown in FIG. 1, the sub mirror 207 is disposed at an angle of approximately 45 degrees downward with respect to the optical axis of the taking lens 100, totally reflects the subject light transmitted through the main mirror 202, and passes through the condenser lens 208. The light enters the distance measuring device 209. On the other hand, Figure 2 In the exposure state shown, the sub-mirror 207 moves away from the photographing optical path together with the main mirror 202.
  • the distance measuring device 209 is a phase difference detection type focus detection device that detects a focused state of a subject image.
  • the phase difference detection method is a method for obtaining the defocus amount by forming images of different pupil powers.
  • the distance measuring device 209 includes two separator lenses (not shown) and an image sensor. The two separator lenses re-image the subject image in two regions on the image sensor.
  • the distance measuring device 209 detects the defocus amount by detecting the image interval of the re-imaged subject image. Further, the focusing operation is performed by driving some lens elements included in the photographing lens 100 in the optical axis direction so that the defocus amount becomes zero based on the detection result of the distance measuring device 209.
  • phase difference detection method has an advantage that it can shorten the time until focusing and is excellent in rapid photographing properties, as compared with a contrast method used in a compact digital camera or the like.
  • phase difference detection type distance measuring device can be efficiently arranged in terms of the layout configuration, focus detection can be performed without increasing the size of the camera.
  • the force lens system according to the present embodiment can perform high-speed focusing operation by the phase difference detection method.
  • the strobe 603 is a light emitting unit that performs high-precision photometric control and colorimetric control, and compensates for insufficient luminance of the subject. Since the light emission amount of the strobe 603 is controlled by evaluating the input signal to the second solid-state image sensor 203, a high-performance image can be taken.
  • the electronic viewfinder 300 includes a second liquid crystal display element 301 and an eyepiece lens 302, and electrically displays a subject image.
  • the electronic viewfinder 300 can display various types of information related to shooting.
  • the second liquid crystal display element 301 displays the subject image captured by the second solid-state image sensor 203.
  • the eyepiece 302 enlarges the subject image displayed on the second liquid crystal display element 301, and adjusts the diopter to display a good display for the observer.
  • the display density of the electronic viewfinder 300 can be adjusted by a transmittance variable element 206 described later.
  • the electronic viewfinder 300 can also display an enlarged subject image.
  • the brightness of the image displayed on the viewfinder is secured. Therefore, the F number of the diffusing characteristic of the focusing screen placed just before the optical viewfinder is often set around F4. For this reason, when a bright photographing lens with a large aperture is used, there is a problem that the focusing accuracy is reduced during manual focusing in which the photographer manually adjusts the focus while observing the blur of the image displayed on the viewfinder.
  • the electronic viewfinder 300 can display a magnified subject image, the photographer can focus with high accuracy even during manual focus.
  • the first liquid crystal display element 400 is an external liquid crystal monitor, and is disposed on the back surface of the camera body.
  • the first liquid crystal display element 400 displays the subject image picked up by the second solid-state image pickup device 203, and the photographer can check the live view image of the subject.
  • the first liquid crystal display element 400 can display a setting screen related to the camera and an image captured by the first solid-state image sensor 201.
  • the transmittance variable element 206 is disposed immediately before the optical path of the second solid-state image sensor 203 and adjusts the amount of light incident on the second solid-state image sensor 203. By adjusting the amount of light transmitted through the transmittance variable element 206, the display density of the electronic viewfinder 300 can be made appropriate.
  • 4A to 4C are schematic views showing the configuration of the transmittance variable element in the present embodiment.
  • 4A is a schematic diagram of the configuration of the variable transmittance element in the state where the transmittance is high
  • FIG. 4B is a schematic diagram of the configuration of the variable transmittance element in the state where the transmittance is medium
  • FIG. A schematic diagram of the variable element is shown.
  • the transmittance variable element 206 includes a ⁇ 4 plate 221, a first polarizing plate 222, and a second polarizing plate 223.
  • the light beam reflected by the main mirror 202 is incident on the ⁇ 4 plate 221.
  • the ⁇ ⁇ 4 plate 221 makes incident light in a partially polarized state substantially circularly polarized, and adjusts the amount of light uniformly.
  • the substantially circularly polarized light beam passes through the first polarizing plate 222 that transmits only the linearly polarized light component in the polarization direction, and then enters the second polarizing plate 223.
  • the second polarizing plate 223 is arranged in a configuration that can be rotationally driven around the optical axis of the light reflected from the main mirror 202.
  • the second polarizing plate 223 can change the transmittance of the incident light beam according to the rotation angle, and can make the appropriate amount of light incident on the second solid-state image sensor 203. This configuration enables quick and smooth transmission changes even in low temperature conditions. ⁇ IJ points.
  • the transmittance variable element 206 may have a configuration shown in FIG.
  • the transmittance variable element 206 shown in FIG. 5 is different in that the liquid crystal element 224 is arranged between the first polarizing plate and the second polarizing plate in the configuration of FIGS. That is, the transmittance variable element 206 shown in FIG. 5 can vary the transmittance by electrically controlling the optical rotation angle.
  • This configuration has an advantage that a transducing element having a relatively small size and low cost can be realized since an actuator for rotating the second polarizing plate is not required.
  • 4A to 4C and FIG. 5 when the transmittance variable element 206 is disposed in close contact with the second solid-state imaging device, dust pinholes attached to the polarizing plate may adhere to the polarizing plate. It is desirable to secure an air gap of about lmm with respect to the image sensor.
  • FIG. 6 is a block diagram showing the configuration of the transmittance variable element and the photometric calculation.
  • the light incident on the second solid-state imaging device 203 is output to the photometric calculation unit 230 as an electrical signal.
  • the photometric calculation unit 230 calculates the amount of light received by the second solid-state image sensor 203 from the electrical signal.
  • the CPU 231 controls the operation of the transmittance variable element 206 via the control driver 232 based on the amount of light received by the second solid-state image sensor 203. That is, the transmittance variable element 206 reduces the transmittance in order to limit the amount of light when the amount of light received by the second solid-state imaging device 203 is large.
  • the transmittance variable element 206 changes the transmittance according to the amount of light received by the second solid-state image sensor 203, and makes the appropriate amount of light incident on the second solid-state image sensor 203.
  • the main mirror 202 and the sub mirror 207 are arranged between the photographing lens 100 and the first solid-state imaging device 201. Arranged in the imaging optical path.
  • the light beam that has passed through the photographic lens 100 first enters the main mirror 202.
  • a part of the light beam incident on the main mirror 202 is bent toward the second solid-state image sensor 203 at a substantially right angle, and the remaining light beam is transmitted through the main mirror 202.
  • the light beam reflected by the main mirror 202 is incident on the transmittance variable element 206, and after the amount of transmitted light is adjusted, it is incident on the second solid-state imaging element 203.
  • the light beam incident on the second solid-state image sensor 203 is converted into an electrical signal, and a subject image is displayed on the first and second liquid crystal display elements.
  • the light beam that has passed through the main mirror 202 is bent by the sub mirror 207. Then, the light is guided to the distance measuring device 209 through the condenser lens 208.
  • the main mirror 202 and the sub mirror 207 are disposed at a position where they are retracted from the photographing optical path.
  • the light beam that has passed through the photographic lens 100 is guided to the first solid-state image sensor 201 via a focal plane shirter 204 that is not interfered by the main mirror 202 and the sub mirror 207 in the retracted state.
  • the first solid-state imaging element 201 converts the formed subject image into an electrical image signal and records it as a captured image.
  • the first solid-state imaging device 201 can receive the entire light amount of the subject light transmitted through the photographing lens 100, so that it is possible to obtain a high-quality image with no signal light loss and little signal noise.
  • the solid-state imaging element for photographing and recording and the solid-state imaging element for observation are configured separately, so that the solid-state imaging element suitable for the purpose can be obtained. Specification can be set. This makes it possible to display a high quality viewfinder image with a wide dynamic range and rich gradation. In addition, since the total light amount of the light beam from the photographing lens can be received by the solid-state imaging device for photographing and recording, a high-quality image with little light noise loss and signal noise can be obtained.
  • the camera system according to the present embodiment does not require a reversing optical system for displaying a finder image, so that a miniaturized camera system can be provided.
  • the camera system according to the present embodiment can appropriately adjust the amount of light flux incident on the observation solid-state imaging device. Display is possible.
  • the camera system according to the present embodiment may be capable of capturing a dynamic image shown only for still image capturing.
  • the main mirror is disposed at the position of the exposure state shown in FIG.
  • the main mirror since the number of pixels required for moving image shooting is small, it is also possible to place the main mirror at the normal position shown in Fig. 1 and shoot with the second solid-state image sensor.
  • the main mirror By placing the main mirror at the normal position, phase difference focus detection can be performed even during movie shooting, so the AF moving object tracking function required for movie shooting is improved. More preferred.
  • the first and second liquid crystal display elements display images captured by the second solid-state imaging element for observation, but the present invention is not limited to this.
  • the liquid crystal display element may display a photographed image by the first or second solid-state imaging element so that it can be switched as necessary.
  • the main mirror is retracted, the aperture stop of the photographic lens is narrowed down, and the point where the first solid-state image sensor for photographic recording is desired to focus. May be enlarged.
  • it is possible to display a high-resolution subject image, and it is possible to perform focus adjustment with high accuracy.
  • liquid crystal is used for the display element, but the present invention is not limited to this, and for example, organic EL or the like may be used. Furthermore, if a technology for a display element that replaces liquid crystal appears due to technological advancement or other derived technology, it is natural to display an image using that technology.
  • a single lens reflex camera system in which the photographing lens can be replaced has been described as an example, but the present invention is not limited to this.
  • it may be a fixed camera system in which the taking lens cannot be attached or detached.
  • each component can be arbitrarily combined, for example, various combinations such as a photographing lens, a solid-state image sensor, each processing unit, and a system example in which other components including a display element are physically separated. Think about it.
  • the camera system of the present invention is suitable for a digital camera or the like for which a good finder image display is desired.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Viewfinders (AREA)

Abstract

 ファインダ表示画像の高品質化を図るとともに、小型化を実現したカメラ本体、カメラシステムを提供する。ミラー部材は、撮影レンズを出射した撮影光束が撮像面に向かうまでの撮影光路内に挿入され、撮影光束の少なくとも一部を反射する挿入位置と撮影光路内から退避する退避位置との間を移動可能である。第1固体撮像素子は、撮影レンズの予定像面に配置され、ミラー部材が退避位置にあるとき、撮影光束に基づいて被写体の光学的な像を電気的な画像信号に変換する。第2固体撮像素子は、撮影レンズの予定像面に配置され、ミラー部材が挿入位置にあるとき、ミラー部材により反射された撮影光束に基づいて被写体の光学的な像を電気的な画像信号に変換する。画像表示素子は、少なくとも第2固体撮像素子からの画像信号に基づく撮影画像を表示する。

Description

明 細 書
カメラ本体、カメラシステム 技術分野
[0001] 本発明は、デジタル画像を入力するカメラ本体及びカメラシステムに関する。
背景技術
[0002] 近年、被写体の光学的な像を電気的な画像信号に変換して出力可能なデジタルス チルカメラやデジタルビデオカメラ(以下、単にデジタルカメラという)が、急速に普及 している。特に最近では、従来の銀塩フィルム用カメラに求められていた高画質や測 距時間の短縮ィ匕など高性能の仕様がデジタルカメラにも求められている。
[0003] これらの要望に対して、例えば一眼レフレックスタイプのデジタルカメラ(以下、単に 一眼レフ式デジタルカメラと 、う)が提案されて 、る(特許文献 1)。
[0004] 図 7は、特許文献 1に記載された一眼レフ式デジタルカメラの概略構成断面図であ る。図 7においてデジタルカメラは、撮影レンズ 100と、カメラ本体 200と、固体撮像素 子 201と、メインミラー 202と、フォーカルプレーンシャツタ 204と、コンデンサレンズ 2 05と、サブミラー 207と、集光レンズ 208と、柳』距装置 209と、焦点、板 210と、第 1液 晶表示素子 400と、光学式ビューファインダ 500とを中心に構成される。光学式ビュ 一ファインダ 500には、反転プリズム 501と、接眼レンズ 502と、測光装置 503と、ファ インダ内表示装置 504とが含まれる。メインミラー 202は、撮影光路内に挿入される 位置と撮影光路内から退避する位置との間で移動が可能である。なお図 7において 、メインミラー 202は撮影光路内に挿入された位置にある。
[0005] 図 7に示す一眼レフ式デジタルカメラでは、測距装置 209に入射した光を用いて自 動焦点合わせ (AF)の制御が行われる。測距装置 209は、異なる瞳力 の像をそれ ぞれ結像させてデフォーカス量を求める位相差検出方式の焦点検出装置である。合 焦動作は、デフォーカス量がゼロとなるように撮影レンズ 100に含まれる一部のレン ズ素子を光軸方向に駆動することにより行う。このような位相差検出方式は、コンパク トデジタルカメラ等で用いられるコントラスト方式に比べて、合焦までの時間を短くする ことができ、速写性に優れている。 [0006] 観察者が被写体像を観察する場合、撮影レンズ 100を透過した被写体光束は、メ インミラー 202によりその一部の光束が略直角に屈曲される。屈曲された光束は、観 察者の瞳に光学式ビューファインダ 500の射出瞳を合わせるためのコンデンサレン ズ 205を通過したあと、焦点板 210に結像される。焦点板 210に結像された像は、反 転プリズム 501によって正立され、さらに接眼レンズ 502によって拡大して表示するこ とがでさる。
[0007] 一方、被写体像を撮影する場合、メインミラー 202とサブミラー 207は、撮影レンズ 1 00とフォーカルプレーンシャツタ 204との間の撮影光路内力も退避する。そして、撮 影レンズ 100は、固体撮像素子 201上に被写体の光学的な像を形成する。
[0008] このように特許文献 1は、従来の銀塩フィルム用一眼レフカメラの構造を大幅に変 更することなぐ高品位で高画質な固体撮像カメラを提供することができるとしている
[0009] 一方、特許文献 2は、撮像記録用の固体撮像素子からの画像出力を可視画像とし て表示する電子式ビューファインダを備えるデジタルカメラを提案して ヽる。特許文献 2は、電子式ビューファインダに固体撮像素子により撮像された被写体像の情報や撮 影情報の表示が可能であるとして 、る。
特許文献 1:特開平 8 - 262564号公報
特許文献 2:特開 2003 - 322791号公報
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、特許文献 1の一眼レフ式デジタルカメラは、観察者が被写体像を観 察する場合には光学式ビューファインダが必要となるため、コストが高くなるという問 題があった。また光学式ビューファインダは、焦点板に結像される像を正立させて表 示するための反転光学系を必要とするために、一眼レフ式デジタルカメラの小型化 には限界があった。
[0011] また、特許文献 2のデジタルカメラは、撮影記録用の固体撮像素子によって撮像さ れた被写体像をファインダに表示するものであり、一眼レフ式デジタルカメラにっ 、て は提案されていない。また、特許文献 2のデジタルカメラにおける焦点調整は、位相 差方式焦点検出手段とコントラスト方式焦点検出手段とを併用して行うため、位相差 方式焦点検出手段のみを用いる一眼レフ式デジタルカメラと比べて合焦動作を高速 に行うことができな ヽと 、う問題があった。
[0012] また一般に、 CCD (Charge Coupled Devices)や CMOS (Complementary Metal Oxide Semiconductor)に代表される固体撮像素子は、受光階調の範囲 幅 (ダイナミックレンジ)が狭い。一般的に固体撮像素子のダイナミックレンジは 15BV 以上に対応することが望ましいが、 4BV程度の階調しか表現できない。そのため被 写体輝度が大きく異なるような撮影シーンには対応することが困難である。
[0013] そこで特許文献 1の一眼レフ式デジタルカメラは、撮影記録時に開口絞り径ゃシャ ッタースピードを調整するが、被写体輝度が大きく異なる場合には最適露出画像を 得ることができない。
[0014] また、特許文献 2のデジタルカメラは、ファインダ表示画像の観察時に焦点の検出 を行うため口径絞り径を最大にする必要があり、ファインダ表示画像の観察時におい て、固体撮像素子への入射光量を調整することができない。特に特許文献 2のデジ タルカメラは、撮影記録用とファインダ表示用の固体撮像素子を兼用して使用して ヽ るため、高輝度の被写体が画面の中にある場合には画面全体が白く飛んでしまうと いう問題があった。また逆に、低輝度の被写体に対しては、画素サイズが小さいため に光量が不足し、画面全体が黒くつぶれてしまうという問題があった。
[0015] さらに近年のデジタルカメラの高画質ィ匕に伴い、撮影記録用の固体撮像素子の画 素は、さらに微細化傾向にある。そのため、固体撮像素子の受光面積はさらに小さく なることになり、ダイナミックレンジの不足の課題が顕在化してきている。
[0016] そこで本発明の目的は、上記課題に鑑みてなされたものであり、ファインダ表示画 像の高品質ィ匕を図るとともに、小型化を実現したデジタルカメラ本体及びカメラシステ ムを提供することにある。
課題を解決するための手段
[0017] 本発明の目的は以下の構成を備えるカメラ本体によって達成される。撮影レンズに 接続可能なカメラ本体であって、
撮影レンズを出射した撮影光束が撮像面に向かうまでの撮影光路内に挿入され、 撮影光束の少なくとも一部を反射する挿入位置と撮影光路内から退避する退避位置 との間を移動可能なミラー部材と、
撮影レンズの予定像面に配置され、ミラー部材が退避位置にあるとき撮影光束に基 づ ヽて被写体の光学的な像を電気的な画像信号に変換する第 1固体撮像素子と、 撮影レンズの予定像面に配置され、ミラー部材が挿入位置にあるときミラー部材に より反射された撮影光束に基づいて被写体の光学的な像を電気的な画像信号に変 換する第 2固体撮像素子と、
少なくとも第 2固体撮像素子からの画像信号に基づく撮影画像を表示する画像表 示素子とを備える。
[0018] 本発明の目的は以下の構成を備えるカメラシステムによって達成される。撮影レン ズと撮影レンズを交換可能なカメラ本体とを有するカメラシステムであって、
カメラ本体は、
撮影レンズを出射した撮影光束が撮像面に向かうまでの撮影光路内に挿入され、 撮影光束の少なくとも一部を反射する挿入位置と撮影光路内から退避する退避位置 との間を移動可能なミラー部材と、
撮影レンズの予定像面に配置され、ミラー部材が退避位置にあるとき、撮影光束に 基づ 、て被写体の光学的な像を電気的な画像信号に変換する第 1固体撮像素子と 撮影レンズの予定像面に配置され、ミラー部材が挿入位置にあるとき、ミラー部材 により反射された撮影光束に基づいて被写体の光学的な像を電気的な画像信号に 変換する第 2固体撮像素子と、
少なくとも第 2固体撮像素子からの画像信号に基づく撮影画像を表示する画像表 示素子とを備える。
発明の効果
[0019] 本発明により、ファインダ表示画像の高品質ィ匕を図るとともに、小型化を実現した力 メラ本体及びカメラシステムを提供することができる。 図面の簡単な説明
[0020] [図 1]図 1は、実施の形態に係るカメラシステムの通常状態における構成断面概略図 である。
[図 2]図 2は、実施の形態に係るカメラシステムの露光状態における構成断面概略図 である。
[図 3]図 3は、実施の形態に係るカメラシステムの斜視構成概略図である。
[図 4A]図 4Aは、実施の形態に含まれる透過率可変素子の第 1の構成例である。
[図 4B]図 4Bは、実施の形態に含まれる透過率可変素子の第 1の構成例である。
[図 4C]図 4Cは、実施の形態に含まれる透過率可変素子の第 1の構成例である。
[図 5]図 5は、実施の形態に含まれる透過率可変素子の第 2の構成例である。
[図 6]図 6は、実施の形態に含まれる透過率可変素子の制御に関するブロック図であ る。
[図 7]図 7は、従来のカメラシステムの構成断面概略図である。
符号の説明
100 撮影レンズ
200 カメラ本体
201 第 1固体撮像素子
202 メインミラー
203 第 2固体撮像素子
204 フォーカルプレーンシャツタ
206 透過率可変素子
207 サブミラー
208 集光レンズ
209 測距装置
221 4U
222 第 1偏光板
223 第 2偏光板
224 液晶素子
230 測光演算部
231 CPU 232 制御ドライバ
300 電子式ビューファインダ
301 第 2液晶表示素子
302 接眼レンズ
400 第 1液晶表示素子
603 ストロボ
発明を実施するための最良の形態
[0022] (実施の形態 1)
図 1および図 2は、本実施の形態に係るカメラシステムの構成を示す概略断面図で ある。図 3は、本実施の形態に係るカメラシステムの斜視構成概略図である。図 1の固 体撮像カメラは、撮影準備状態あるいは電源オフの状態 (以下、通常状態という)で あり、観察者は電子式ビューファインダに表示された画像の観察が可能である。一方 、図 2における固体撮像カメラは、露光状態であり、静止画像あるいは動画像の撮影 が可能である。
[0023] 図 1〜図 3においてカメラシステムは、交換可能な撮影レンズ 100と、カメラ本体 20 0とカゝら構成される。またカメラ本体 200は、第 1固体撮像素子 201と、メインミラー 20 2と、第 2固体撮像素子 203と、フォーカルプレーンシャツタ 204と、透過率可変素子 206と、サブミラー 207と、集光レンズ 208と、測距装置 209と、電子式ビューファイン ダ 300と、第 1液晶表示素子 400と、ストロボ 603とを中心に構成される。
[0024] 撮影レンズ 100は、一枚あるいは複数のレンズ素子力も構成され、被写体の光学的 な像を形成する。メインミラー 202は、入射光の一部を反射し、また一部を透過する ハーフミラーである。メインミラー 202は、通常状態(図 1)の位置と露光状態(図 2)の 位置との間で軸を中心に回動可能である。図 1の通常状態においてメインミラー 202 は、撮影レンズ 100の光軸に対して略 45度上向きの角度で配置され、入射する被写 体光の一部を第 2固体撮像素子 203へ屈折させるとともに、被写体光の一部を透過 する。一方、図 2の露光状態ではメインミラー 202は、撮影光路内から退避する。
[0025] 第 1および第 2固体撮像素子は、 CCDであり、撮影レンズ 100が形成する光学的な 像を電気的な画像信号に変換する。なお第 1および第 2固体撮像素子は CMOSで もよい。第 1固体撮像素子 201は、撮影レンズ 100の光軸に対して直交して配置され る。一方、第 2固体撮像素子 203は、撮影レンズ 100の光軸に対して略平行となるよ うに配置される。また、第 1および第 2固体撮像素子は、それぞれ撮影レンズ 100の 予定像面に配置される。
[0026] 第 1固体撮像素子 201は、被写体像の撮影に用いられる。一方、第 2固体撮像素 子 203は、撮影者による被写体像の観察に用いられ、ライブビュー機能を有する。こ のように本実施の形態に係るカメラシステムは、撮影記録用の固体撮像素子と観察 用の固体撮像素子とに別々に分けた構成とし、 2つの固体撮像素子を備える。さらに 、第 2固体撮像素子 203は、第 1固体撮像素子 201と比較して画素数を小さくしてい る。これにより第 1固体撮像素子 201は、第 2固体撮像素子 203よりも画素サイズを大 きくすることができるので、広いダイナミックレンジを確保することができる。なお、本実 施の形態において第 2固体撮像素子により得られた観察用の画像を以下「ファインダ 画像」といい、後述するようにファインダ画像は電子式ビューファインダ 300と外部に 設置された第 1液晶表示素子 400に表示可能である。
[0027] また第 2固体撮像素子 203は、静止画像の記録を省略することができるので、第 1 固体撮像素子 201と比べて画素信号の読み出し処理の時間と電力消費量を低減さ せることができる。これにより第 2固体撮像素子は、画像信号の読み出し速度を高速 化でき、被写体の動きに対して十分に滑らかな動体表現が可能なライブビュー機能 を実現できる。
[0028] フォーカルプレーンシャツタ 204は、第 1固体撮像素子 201の被写体側の直前に配 置され、固体撮像素子に取り込む光の量を調整する。フォーカルプレーンシャツタ 20 4は、露光状態では全開状態、高速シャッター時にはスリット開口走査状態となって おり、第 1固体撮像素子 201への適正な露光が行われる構成としている。
[0029] サブミラー 207は、入射した光を反射し測距装置 209に入射させる。サブミラー 207 は、メインミラー 202と同様に通常状態の位置と露光状態の位置との間で軸を中心に 回動可能である。図 1に示す通常状態においてサブミラー 207は、撮影レンズ 100の 光軸に対して略 45度下向きの角度で配置され、メインミラー 202を透過した被写体 光を全反射させ、集光レンズ 208を介して測距装置 209に入射させる。一方、図 2〖こ 示す露光状態においてサブミラー 207は、メインミラー 202とともに撮影光路内から退 避する。
[0030] 測距装置 209は、被写体像の合焦状態の検出を行う位相差検出方式の焦点検出 装置である。位相差検出方式は、異なる瞳力 の像をそれぞれ結像させてデフォー カス量を求める方式である。測距装置 209は、図示しない 2つのセパレータレンズと 撮像素子とから構成される。二つのセパレータレンズは、撮像素子上の二つの領域 に被写体像をそれぞれ再結像させる。そして測距装置 209は、再結像された被写体 像の像間隔を検出することによりデフォーカス量を検出する。さらに合焦動作は、測 距装置 209の検出結果に基づきデフォーカス量がゼロとなるように撮影レンズ 100に 含まれる一部のレンズ素子を光軸方向に駆動させることにより行う。このような位相差 検出方式は、コンパクトデジタルカメラ等で用いられるコントラスト方式に比べて、合焦 までの時間を短くすることができ、速写性に優れているという利点がある。また位相差 検出方式の測距装置は、レイアウト構成上効率よく配置することができるので、カメラ を大型化することなく焦点検出を行うことができる。このように本実施の形態に係る力 メラシステムは、位相差検出方式により高速な合焦動作が可能である。
[0031] ストロボ 603は、高精度な測光制御および測色制御を行うとともに、被写体の輝度 不足を補うための発光手段である。ストロボ 603の発光量は、第 2固体撮像素子 203 への入力信号を評価することにより制御されるので高性能な画像を撮影することがで きる。
[0032] 電子式ビューファインダ 300は、第 2液晶表示素子 301と接眼レンズ 302とから構 成され、被写体像を電気的に表示する。また電子式ビューファインダ 300は、撮影に 関する各種情報の表示が可能である。第 2液晶表示素子 301は、第 2固体撮像素子 203により撮像された被写体像を表示する。接眼レンズ 302は、第 2液晶表示素子 3 01に表示された被写体像を拡大ある ヽは視度調整を行って観察者に対して良好な 表示を行う。なお電子式ビューファインダ 300の表示濃度は、後述する透過率可変 素子 206によって調整することができる。
[0033] また電子式ビューファインダ 300は、被写体像を拡大して表示することもできる。特 に従来の光学式ビューファインダでは、ファインダに表示される像の明るさを確保す るために光学式ビューファインダの直前に配置される焦点板の拡散特性の Fナンパ 一を F4相当付近に設定することが多い。そのため、開口の大きな明るい撮影レンズ を使用した場合、ファインダに表示される像のボケを撮影者が観察しながら手動で焦 点調整を行うマニュアルフォーカス時においてピント合わせの精度が低下する問題 がある。しカゝしながら、電子式ビューファインダ 300では被写体像を拡大して表示する ことができるので、撮影者はマニュアルフォーカス時にぉ ヽても精度の高 ヽピント合 わせを行うことができる。
[0034] 第 1液晶表示素子 400は、外部液晶モニタであり、カメラ本体の背面に配置される。
第 1液晶表示素子 400は、第 2固体撮像素子 203により撮像された被写体像を表示 し、撮影者は被写体のライブビュー画像を確認することができる。第 1液晶表示素子 400は、カメラに関する設定画面や第 1固体撮像素子 201による撮像画像を表示す ることがでさる。
[0035] 透過率可変素子 206は、第 2固体撮像素子 203の光路直前に配置され、第 2固体 撮像素子 203に入射する光量を調整する。透過率可変素子 206を透過する光量を 調整することにより、電子式ビューファインダ 300の表示濃度を適正にすることができ る。図 4A〜Cは、本実施の形態における透過率可変素子の構成を示す概略図であ る。図 4Aは透過率が大の状態の透過率可変素子の構成概略図、図 4Bは透過率が 中の状態の透過率可変素子の構成概略図、図 4Cは透過率が小の状態の透過率可 変素子の概略図を示している。図 4A〜C中、透過率可変素子 206は、 λ Ζ4板 221 と、第 1偏光板 222と、第 2偏光板 223とから構成される。
[0036] まず、メインミラー 202を反射した光束は、 λ Ζ4板 221に入射する。 λ Ζ4板 221 は、部分偏光の状態にある入射光を略円偏光にし、光量を均一に調整する。次に、 略円偏光にされた光束は、偏光方向の直線偏光成分のみを透過させる第 1偏光板 2 22を通過した後、第 2偏光板 223に入射する。第 2偏光板 223は、メインミラー 202を 反射した光の光軸を中心として回転駆動が可能な構成にて配置されている。したが つて第 2偏光板 223は、回転角度に応じて入射する光束の透過率を可変させ、適正 な光量を第 2固体撮像素子 203に入射させることができる。この構成は、気温が低い 状況においてもレスポンスが早ぐかつ滑らかな透過率変更を行うことができるという 禾 IJ点がある。
[0037] また透過率可変素子 206は、図 5に示す構成としてもよい。図 5に示す透過率可変 素子 206は、図 4A〜Cの構成において第 1偏光板と第 2偏光板との間に液晶素子 2 24を配置した点で異なる。すなわち、図 5に示す透過率可変素子 206は、電気的に 旋光角度を制御することにより透過率を可変させることができる。この構成は、第 2偏 光板を回転させるためのァクチユエータが不要となるため比較的小型でかつ低コスト の透過率可変素子を実現することができるという利点がある。なお、図 4A〜Cおよび 図 5に透過率可変素子 206を第 2固体撮像素子に密着させて配置した場合、偏光板 に付くゴミゃピンホールが偏光板に付着するおそれがあるため、少なくとも固体撮像 素子に対して lmm程度の空気間隔を確保することが望ましい。
[0038] 図 6は、透過率可変素子および測光演算の構成を示すブロック図である。図 6に示 すように第 2固体撮像素子 203に入射した光は、電気信号として測光演算部 230に 出力される。測光演算部 230は、電気信号から第 2固体撮像素子 203での受光量を 演算する。 CPU231は、第 2固体撮像素子 203での受光量に基づいて、制御ドライ バ 232を介して透過率可変素子 206の動作を制御する。すなわち透過率可変素子 2 06は、第 2固体撮像素子 203の受光量が多い場合には光量を制限するために透過 率を減少させる。一方、受光量が少ない場合には透過率を増大させる。このように透 過率可変素子 206は、第 2固体撮像素子 203の受光量に応じて透過率が変更され、 適正な光量を第 2固体撮像素子 203に入射させる。
[0039] このような構成を備えたカメラシステムにより撮影者が撮影画像を観察する場合 (図 1)、メインミラー 202およびサブミラー 207は、撮影レンズ 100と第 1固体撮像素子 20 1との間の撮影光路内に配置される。撮影レンズ 100を透過した光束は、まずメインミ ラー 202に入射する。メインミラー 202に入射した光束のうち一部の光束は、略直角 に第 2固体撮像素子 203側へ屈曲され、残りの光束はメインミラー 202を透過する。メ インミラー 202で反射された光束は、透過率可変素子 206へ入射し、透過光量が調 整された後、第 2固体撮像素子 203に入射する。そして第 2固体撮像素子 203に入 射した光束は、電気的な信号に変換され、第 1および第 2液晶表示素子には被写体 像が表示される。また、メインミラー 202を透過した光束は、サブミラー 207により屈曲 され、集光レンズ 208を介して測距装置 209へ導かれる。
[0040] 一方、被写体像を撮影する場合(図 2)、メインミラー 202およびサブミラー 207は、 撮影光路内から退避する位置に配置される。撮影レンズ 100を透過した光束は、退 避状態にあるメインミラー 202およびサブミラー 207により干渉されることなぐフォー カルプレーンシャツタ 204を経て第 1固体撮像素子 201へ導かれる。第 1固体撮像素 子 201は、結像された被写体像を電気的な画像信号に変換し、撮影画像として記録 する。このように第 1固体撮像素子 201は、撮影レンズ 100を透過した被写体光の全 光量を受光することができるので、光量損失がなく信号ノイズの少な 、高画質な画像 を得ることができる。
[0041] 以上のように、本実施の形態に係るカメラシステムは、撮影記録用の固体撮像素子 と観察用の固体撮像素子とを別々に構成することにより、目的に応じた固体撮像素 子の仕様の設定が可能である。これにより、ダイナミックレンジが広く階調が豊かな高 画質のファインダ画像を表示することができる。また、撮影レンズからの光束の全光量 を撮影記録用の固体撮像素子に受光させることができるので、光量損失がなく信号 ノイズの少ない高画質な画像を得ることができる。
[0042] また本実施の形態に係るカメラシステムは、ファインダ画像を表示するための反転 光学系を必要としないので小型化されたカメラシステムを提供することができる。
[0043] また本実施の形態に係るカメラシステムは、観察用の固体撮像素子に入射する光 束の光量を適正に調整することができるので、画像表示濃度を適正にし高画質のフ アインダ画像の表示が可能である。
[0044] なお本実施の形態に係るカメラシステムは、静止画像の撮影についてのみ示した 力 動画像の撮影を可能としてもよい。かかる場合、光量損失の観点からメインミラー は図 2に示した露光状態の位置に配置されることが望ましい。し力しながら、動画撮 影に求められる画素数は少ないことから、メインミラーを図 1で示した通常状態の位置 に配置し、第 2固体撮像素子で撮影することも可能である。メインミラーを通常状態の 位置に配置することで、動画撮影中にぉ 、ても位相差焦点検出を行うことができるの で、動画撮影に求められる AFの動体追尾機能の高性能化を達成することができ、さ らに好ましい。 [0045] なお、本実施の形態に係るカメラシステムにおいて、第 1および第 2液晶表示素子 には、観察用の第 2固体撮像素子による撮影画像を表示したがこれに限られない。 液晶表示素子には、必要に応じて切り替え可能として第 1または第 2固体撮像素子 による撮影画像を表示してもよい。特に、マニュアルフォーカス時には位相差焦点検 出が不必要となるため、メインミラーを退避させ、撮影レンズの開口絞りを絞り込み、 撮影記録用の第 1固体撮像素子による撮影画像力ゝら合焦したい箇所を拡大表示し てもよい。これにより、解像度の高い被写体像を表示することができるので、精度の高 い焦点調整が可能となる。
[0046] なお、本実施の形態に係るカメラシステムにおいて、表示素子には液晶を用いたが 、これに限られず、例えば有機 EL等を用いてもよい。さらには、技術の進歩又は派生 する別技術により液晶に置き換わる表示素子の技術が登場すれば、当然、その技術 を用いて画像を表示してもよ 、。
[0047] なお、本実施の形態では、撮影レンズを交換可能な一眼レフカメラシステムを例に 説明したが、これに限られない。例えば、撮影レンズを着脱不可能な固定式のカメラ システムでもよい。その他、各構成要素同士は、任意の組み合わせが可能であり、例 えば撮影レンズ、固体撮像素子、各処理部と、表示素子を含むその他の構成が物理 的に分離されたシステム例など様々な組み合わせを考えてもょ 、。
産業上の利用可能性
[0048] 本発明のカメラシステムは、良好なファインダ画像の表示が要望されているデジタ ルカメラ等に好適である。

Claims

請求の範囲
[1] 撮影レンズを接続可能なカメラ本体であって、
前記撮影レンズを出射した撮影光束が撮像面に向かうまでの撮影光路内に挿入さ れ、撮影光束の少なくとも一部を反射する挿入位置と前記撮影光路内から退避する 退避位置との間を移動可能なミラー部材と、
前記撮影レンズの予定像面に配置され、前記ミラー部材が前記退避位置にあると き前記撮影光束に基づいて被写体の光学的な像を電気的な画像信号に変換する第
1固体撮像素子と、
前記撮影レンズの予定像面に配置され、前記ミラー部材が前記挿入位置にあると き前記ミラー部材により反射された前記撮影光束に基づいて被写体の光学的な像を 電気的な画像信号に変換する第 2固体撮像素子と、
少なくとも前記第 2固体撮像素子からの前記画像信号に基づく撮影画像を表示す る画像表示素子とを備える、カメラ本体。
[2] 前記第 1固体撮像素子は、前記ミラー部材が前記退避位置にあるとき、前記画像 信号を記録する、請求項 1に記載のカメラ本体。
[3] 位相差検出方式により前記被写体像の焦点検出を行う焦点検出部と、
前記ミラー部材が前記挿入位置にあるとき、前記撮影光束を前記焦点検出部に反 射するサブミラー部材とをさらに備える、請求項 1に記載のカメラ本体。
[4] 前記画像表示素子は、前記ミラー部材が前記挿入位置にあるとき、前記第 2固体 撮像素子により変換された前記画像信号に基づく撮影画像を順次動画として表示す る、請求項 1に記載のカメラ本体。
[5] 前記第 2固体撮像素子の画素数は、前記第 1固体撮像素子の画素数よりも少ない
、請求項 1に記載のカメラ本体。
[6] 前記挿入位置における前記ミラー部材と前記第 2固体撮像素子との間に、光透過 率を変化させる透過率可変素子と、
前記被写体の輝度に応じて前記透過率可変素子の光透過率を変化させる制御部 とをさらに備える、請求項 1に記載のカメラ本体。
[7] 少なくとも前記第 1固体撮像素子からの前記画像信号に基づく撮影画像を表示す る撮影画像表示素子をさらに備える、請求項 1に記載のカメラ本体。
撮影レンズと前記撮影レンズを交換可能なカメラ本体とを有するカメラシステムであ つて、
前記カメラ本体は、
前記撮影レンズを出射した撮影光束が撮像面に向かうまでの撮影光路内に挿入さ れ、撮影光束の少なくとも一部を反射する挿入位置と前記撮影光路内から退避する 退避位置との間を移動可能なミラー部材と、
前記撮影レンズの予定像面に配置され、前記ミラー部材が前記退避位置にあると き、前記撮影光束に基づ!/ヽて被写体の光学的な像を電気的な画像信号に変換する 第 1固体撮像素子と、
前記撮影レンズの予定像面に配置され、前記ミラー部材が前記挿入位置にあると き、前記ミラー部材により反射された前記撮影光束に基づ!/、て被写体の光学的な像 を電気的な画像信号に変換する第 2固体撮像素子と、
少なくとも前記第 2固体撮像素子からの前記画像信号に基づく撮影画像を表示す る画像表示素子とを備える、カメラシステム。
PCT/JP2006/311300 2005-06-17 2006-06-06 カメラ本体、カメラシステム WO2006134802A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-178434 2005-06-17
JP2005178434 2005-06-17

Publications (1)

Publication Number Publication Date
WO2006134802A1 true WO2006134802A1 (ja) 2006-12-21

Family

ID=37532164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311300 WO2006134802A1 (ja) 2005-06-17 2006-06-06 カメラ本体、カメラシステム

Country Status (1)

Country Link
WO (1) WO2006134802A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102523377A (zh) * 2011-12-19 2012-06-27 深圳桑菲消费通信有限公司 一种反射式手机摄像头模组
CN107465859A (zh) * 2017-09-19 2017-12-12 信利光电股份有限公司 一种摄像模组及电子设备
CN109922179A (zh) * 2019-03-21 2019-06-21 维沃移动通信(杭州)有限公司 一种摄像头模组、摄像头控制方法及终端
US11089193B2 (en) 2017-06-26 2021-08-10 Vivo Mobile Communication Co., Ltd. Camera module, mobile terminal and method of controlling camera module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251381A (ja) * 1985-04-30 1986-11-08 Casio Comput Co Ltd 電子カメラ
JPH0214675A (ja) * 1988-07-01 1990-01-18 Fuji Photo Film Co Ltd 電子撮像装置
JPH11146242A (ja) * 1997-11-13 1999-05-28 Sony Corp カメラ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251381A (ja) * 1985-04-30 1986-11-08 Casio Comput Co Ltd 電子カメラ
JPH0214675A (ja) * 1988-07-01 1990-01-18 Fuji Photo Film Co Ltd 電子撮像装置
JPH11146242A (ja) * 1997-11-13 1999-05-28 Sony Corp カメラ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102523377A (zh) * 2011-12-19 2012-06-27 深圳桑菲消费通信有限公司 一种反射式手机摄像头模组
US11089193B2 (en) 2017-06-26 2021-08-10 Vivo Mobile Communication Co., Ltd. Camera module, mobile terminal and method of controlling camera module
CN107465859A (zh) * 2017-09-19 2017-12-12 信利光电股份有限公司 一种摄像模组及电子设备
CN109922179A (zh) * 2019-03-21 2019-06-21 维沃移动通信(杭州)有限公司 一种摄像头模组、摄像头控制方法及终端

Similar Documents

Publication Publication Date Title
JP3697256B2 (ja) 撮像装置およびレンズ装置
JP4323002B2 (ja) 撮像装置
JP4414486B2 (ja) 撮像装置およびカメラ
JP4834394B2 (ja) 撮像装置およびその制御方法
CN101373254B (zh) 摄影装置及摄影装置的控制方法
JP4040638B2 (ja) 撮像装置
US7665912B2 (en) Image-taking apparatus and control method thereof
US7483072B2 (en) Image-taking apparatus and image-taking system
JP2006197406A (ja) 撮像装置
WO2006134802A1 (ja) カメラ本体、カメラシステム
JP4863370B2 (ja) 撮像装置
JP2007233033A (ja) 焦点調節装置および撮像装置
JP4331523B2 (ja) デジタル一眼レフカメラ
JP4143622B2 (ja) 撮像装置
JP4343753B2 (ja) 撮像装置
JP2004109831A (ja) 光学機器
JP4612800B2 (ja) 撮像装置および撮影システム
JP2005024858A (ja) デジタル一眼レフカメラ
JP4194577B2 (ja) 撮像装置
JP4194542B2 (ja) 撮像装置
JP5347269B2 (ja) 撮像装置
JP4110152B2 (ja) 撮像装置
JP4464180B2 (ja) 撮像装置および撮影システム
JP4438052B2 (ja) 撮像装置
JP2010187265A (ja) 撮像装置および撮像装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06757040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP