WO2006134659A1 - Liquid-type cooling method and cooling device using latent heat material - Google Patents

Liquid-type cooling method and cooling device using latent heat material

Info

Publication number
WO2006134659A1
WO2006134659A1 PCT/JP2005/011114 JP2005011114W WO2006134659A1 WO 2006134659 A1 WO2006134659 A1 WO 2006134659A1 JP 2005011114 W JP2005011114 W JP 2005011114W WO 2006134659 A1 WO2006134659 A1 WO 2006134659A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
cooling
latent heat
storage material
heat storage
Prior art date
Application number
PCT/JP2005/011114
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroki Uchida
Hideshi Tokuhira
Minoru Ishinabe
Hiroaki Date
Jun Taniguchi
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2007521046A priority Critical patent/JPWO2006134659A1/en
Priority to PCT/JP2005/011114 priority patent/WO2006134659A1/en
Publication of WO2006134659A1 publication Critical patent/WO2006134659A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D9/00Devices not associated with refrigerating machinery and not covered by groups F25D1/00 - F25D7/00; Combinations of devices covered by two or more of the groups F25D1/00 - F25D7/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a liquid cooling type cooling method and a cooling apparatus for circulating a cooling liquid containing a latent heat material.
  • an electronic device having an overheated electronic component requires forced cooling.
  • a personal computer will not operate properly unless the installed CPU is cooled to keep the temperature within an appropriate range.
  • electronic equipment uses air-cooled forced cooling.
  • the liquid cooling method is a method in which a circulation flow path is provided that passes through a heat receiving portion that receives heat from the heating element and a heat radiating portion that dissipates heat, and the coolant is circulated forcibly by a pump.
  • Japanese Unexamined Patent Application Publication No. 2003-314936 discloses a cooling method using a cooling liquid containing a latent heat storage material for liquid cooling forced cooling in electronic equipment. Inclusion of a latent heat storage material increases the heat storage capacity of the coolant and slows the temperature rise of the coolant.
  • the cooling method disclosed in the above publication utilizes this action to minimize the operation of the pump. That is, the temperature TJ of the heat generating part is monitored, and the pump is operated only when the temperature TJ of the heat generating part is higher than the set temperature T1.
  • the set temperature T1 is lower than the upper limit of the allowable temperature range of the component and higher than the melting point Tm of the latent heat storage material. According to this cooling method, the energy consumption of the pump can be reduced.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-314936
  • the heat storage action of the latent heat storage material in which the temperature TF of the coolant is higher than the melting point Tm of the latent heat storage material cannot be used. This means that a heat dissipating part with a high heat dissipating capacity that can sufficiently cope with the sudden increase in calorific value is required.
  • the cooling method described above requires a sensor for detecting the temperature TJ of the heat generating portion.
  • some users have to consider that the human power that makes the pump's operating noise or power feel uncomfortable rather than the operating noise always.
  • An object of the present invention is to increase the degree of freedom in the heat radiation design of the circulation flow path through which the cooling liquid flows, in addition to the liquid cooling type forced cooling using the cooling liquid containing the latent heat material.
  • a cooling method for achieving the object of the present invention is a liquid cooling method for cooling a heat generating body using a cooling liquid containing a latent heat storage material, and the heat generating element Arranging a circulation channel having a heat receiving part for receiving heat from the body and a heat radiating part for dissipating the received heat, and circulating the latent heat storage material in the circulation channel to radiate the heat of the heat receiving part. Including the transfer to the part.
  • a more preferable cooling method is that the melting point of the latent heat storage material is an upper limit of the allowable operating environment temperature of the heating element, and the temperature of the cooling liquid when the heating value of the heating element is maximum. The difference from the melting point of the latent heat storage material is less than 10 ° C.
  • the temperature of the operating environment of the heating element is the upper limit of the allowable range, and the heating value of the heating element is the maximum when the maximum cooling capacity is required for the operation of the heating element.
  • the efficiency of heat reception and heat dissipation in the coolant at this time can be maximized.
  • the thermal resistance Rh of the heat dissipation part is expressed by the following equation.
  • Rh (TF-TA) / Q
  • the temperature TF of the coolant can be obtained from the thermal resistance Rh, the amount of heat Q, and the temperature TA of the operating environment.
  • Thermal resistance Rh is This is the sum of the thermal resistance R2 of heat conduction from the coolant to the heat radiating part and the thermal resistance R3 of heat conduction from the heat radiating part to the atmosphere, and is an eigenvalue determined by the configuration of the cooling device.
  • the amount of heat Q is an eigenvalue determined by the configuration of the heating element.
  • the operating environment temperature TA is an indefinite force In the above calculation, the upper limit of the temperature range that guarantees the operation of the heating element should be used.
  • the solid-state to liquid phase at the heat-receiving unit is selected. It is possible to realize an efficient heat exchange in which the phase change and the phase change from the liquid phase to the solid phase in the heat radiating section are evenly generated. Although it is most desirable that the temperature TF of the coolant and the melting point Tm are equal, U, some differences that need not be exactly equal in practice should be tolerated. Specifically, the use of a latent heat storage material having a melting point Tm within a range of ⁇ 10 ° C. with respect to the temperature TF of the coolant obtained by calculation is included in the present invention.
  • FIG. 1 is a diagram showing a configuration of a cooling device according to the present invention.
  • FIG. 2 is a diagram schematically showing a phase change of a latent heat storage material in a heat receiving part and a heat radiating part.
  • FIG. 3 is a diagram showing a relationship between a plurality of temperatures related to cooling and melting points of latent heat storage materials.
  • the present invention can be applied to forced cooling of electrical circuit components that generate a large amount of heat, such as integrated circuit chips typified by microprocessors, power transistors, laser diodes, transformers, and lamps.
  • FIG. 1 shows a configuration of a cooling device 1 according to the present invention.
  • the cooling device 1 is a liquid cooling type forced cooling means including a circulation flow path 10, an air supply fan 20, and a power supply circuit 30.
  • the cooling device 1 is assembled in a device having the electric circuit board 60 and cools the circuit components 61 mounted on the electric circuit board 60.
  • the cooling device 1 is built in a notebook or desktop personal computer, and prevents overheating of circuit components called heat sources such as a CPU including a microprocessor, an arithmetic processor, and a high-speed memory.
  • the circulation flow path 10 includes a heat receiving part 11, a heat radiating part 12, a reserve tank 13, a pump 14, and pipes 15, 16, 17, and 18.
  • the reject liquid 40 has a latent heat storage function.
  • the heat receiving section 11 is made of a metal heat exchange unit having a flow path of a predetermined length inside, and is connected to the circuit component 61 and the heat through a heat conducting material such as silicon grease for reducing heat resistance. Connected. In the heat receiving portion 11, heat is transferred from the circuit component 61 to the coolant 46.
  • the heat radiating unit 12 is composed of a heat exchange unit including metal fins 121. In the heat dissipating part 12, heat is dissipated from the coolant 40 to the atmosphere.
  • the reserve tank 13 fills the inside of the heat receiving part 11 and the heat radiating part 12 with the coolant 40 and plays a role of preventing damage to the circulation flow path 10 due to the volume change of the coolant 40.
  • the pump 14 is a centrifugal micropump with a built-in DC motor, and forcibly causes the coolant 40 to flow.
  • Pipe 15 connects heat receiving part 11 and heat radiating part 12
  • pipe 16 connects heat radiating part 12 and reserve tank 13
  • pipe 17 connects reserve tank 13 and pump 14, and pipe 18 Connects the pump 14 and the heat receiving part 11.
  • a flexible tube made of rubber or other resin, or a hard bag represented by a copper bar can be used.
  • the blower fan 20 forcibly convects the atmosphere around the fins 121 in order to improve the heat dissipation performance of the heat dissipation unit 12.
  • the blower fan 20 can be omitted, and the cooling device 1 can have a fanless configuration with excellent silence.
  • the power supply circuit 30 supplies predetermined drive power to each of the pump 14 and the blower fan 20.
  • the value of the drive power supplied is fixed, and the pump 14 and the blower fan 20 perform a certain operation according to the amount of power supplied.
  • the power supply by the power supply circuit 30 is linked with the power supply circuit 65 for supplying power to the circuit component 61, and the pump 14 and the blower fan 20 are always operated while the power is supplied to the circuit component 61.
  • the pump 14 causes the coolant 40 to flow at a constant speed
  • the blower fan 20 is constant toward the fins 121 regardless of the amount of heat generated (corresponding to the power consumption). Create a flow of air at a flow rate.
  • the coolant 40 continues to circulate and return to the heat receiving unit 11 through the heat receiving unit 11, the heat radiating unit 12, the reserve tank 13, and the pump amount 14 in the order of description. Carries the heat of part 61 to heat dissipation part 12.
  • the cooling liquid 40 is mixed with latent heat microcapsules as a latent heat material. That is, the cooling liquid 40 is a mixed liquid in which latent heat microcapsules are dispersed in water or antifreeze.
  • a latent heat microcapsule is a fine particle having a particle size of 2 or less, in which a latent heat storage material is coated with a heat-resistant synthetic resin.
  • latent heat microcapsules in which norafine is coated with melamine resin.
  • the latent heat storage material is less likely to be deteriorated and restrictions on the material of the dispersion medium are smaller than simply mixing the latent heat storage material.
  • FIG. 2 schematically shows a phase change of the latent heat material in the heat receiving part and the heat radiating part.
  • the coolant 40 circulating in the circulation channel 10 includes two types of latent heat microcapsules 41A and 41B in different states.
  • One latent heat microcapsule 41A is composed of a solid phase latent heat storage material 43A and a resin film 42 covering it.
  • the other latent heat microcapsule 41B includes a liquid phase latent heat storage material 43B and a resin film 42 covering the latent heat storage material 43B.
  • the latent heat microcapsule 41A flows into the heat receiving part 11 from the pipe 18.
  • This latent heat microphone mouth capsule 41A absorbs the heat of the dispersion medium and changes to latent heat microcapsule 41B. That is, the solid phase latent heat storage material 43A melts to become a liquid phase latent heat storage material 43B. In the process, latent heat is stored by the latent heat storage material.
  • the stored latent heat microcapsule 41B flows from the heat receiving portion 11 to the heat radiating portion 12.
  • the latent heat microcapsule 41B returns to the latent heat microcapsule 41A. That is, the heat stored in the latent heat storage material 43B is released to the atmosphere through the dispersion medium, and the solid phase latent heat storage material 43B changes into a solid phase latent heat storage material 43A.
  • the latent heat microcapsule 41A that has released the heat is sent to the heat receiving unit 11 again.
  • FIG. 2 shows a case where the entire latent heat storage material in one latent heat microcapsule undergoes a phase change.
  • some of the latent heat storage materials may change phase, and the proportion of the phase change portion varies among many latent heat microcapsules.
  • the latent heat storage material in all the latent heat microcapsules is in a solid phase at the time of flowing into the heat receiving unit 11, and from the heat receiving unit 11.
  • Latent heat storage material in all latent heat microcapsules at the time of outflow The cooling efficiency is maximized when is in the liquid phase. In other words, maximum heat storage is performed under the condition that the circulation flow rate is constant, and heat dissipation corresponding to the heat storage is performed. At this time, the temperature of the cooling liquid 40 is almost equal to the melting point of the latent heat storage material.
  • the cooling device 1 is configured so that the cooling efficiency is maximized in the harshest situation in use.
  • a latent heat storage material having an optimum melting point is mixed in the coolant 40.
  • the procedure for selecting the latent heat storage material is as follows. Assuming that a coolant that does not contain latent heat storage materials is used, the circulation channel 10 is configured to determine how many times the temperature of the coolant flowing through the circulation channel 10 at a predetermined speed is the most severe. It is obtained by calculation based on the thermal property data of the part to be used or by experiment. Use a latent heat storage material with a melting point equal to or close to the temperature found in this way.
  • the line-up power of latent heat storage materials that can select the melting point in increments of 5 ° C up to 60 ° C, if there is one with a melting point that matches the determined temperature Select it, if not, select the one with the melting point closest.
  • the temperature is controlled from room temperature to about 100 ° C, a difference of about ⁇ 10 ° C is acceptable for the obtained temperature.
  • the most severe situation is a situation in which the environmental temperature is the upper limit of the environmental temperature range determined by the specifications of the equipment including the circuit component 61, and the amount of heat generated by the circuit component 61 is the maximum. is there.
  • the device is a computer
  • the ambient temperature range is -10 ° C to 40 ° C
  • the circuit component 61 is a CPU
  • the ambient temperature is 40 ° C
  • the CPU operating rate is 100%. The situation is the most severe.
  • FIG. 3 shows the relationship between a plurality of temperatures related to cooling and the melting point of the latent heat storage material.
  • the heat (heat quantity Qmax) generated by the circuit component 61 is transferred to the atmosphere (temperature TAmax) through the coolant 40 and the heat radiating section 12. Therefore, there is a thermal resistance Rl between the circuit component 61 and the coolant 40, a thermal resistance R2 between the coolant 40 and the radiator 12, and a thermal resistance R3 between the radiator 12 and the atmosphere. Therefore, the surface temperature T Jmax of the circuit component 61, the temperature TF of the coolant 40, the temperature TF of the heat dissipating part 12, and the temperature TAmax of the atmosphere
  • the melting point Tm of the latent heat storage material is selected so as to maximize the cooling efficiency in the harshest situation, and the melting point Tm is the temperature TF (strictly speaking, the temperature of the coolant 40). Equal to the estimated value).
  • the configuration of the cooling device 1 can be changed as appropriate within the spirit of the present invention.
  • the heat source may be single or plural.
  • the type and capacity of pump 14 can also be selected according to the application. When a variable capacity pump is used, the power supplied to the pump can be increased or decreased so that the coolant circulates at an appropriate flow rate according to the heat generation amount of the heating element and the thermal characteristics of the circulation flow path.
  • the ventilation output of the blower fan 20 may be variable.
  • the present invention can be used for forced cooling of a heating element, and is particularly suitable for local cooling in a device used in a normal temperature region such as an information processing device such as a personal computer or a server computer. is there.

Abstract

A liquid-type cooling method includes installing on a heat production body (61) a circulation channel (10) having a heat reception section (11) for receiving heat from the heat production body (61) and also having a heat radiation section (12) for radiating the received heat, and also includes transferring heat of the heat reception section (11) to the heat radiation section (12) by always circulating, as long as the heat production section (61) radiates heat, latent heat storage substances (41A, 41B) in the circulation channel (10).

Description

明 細 書  Specification
潜熱材を用いる液冷式の冷却方法および冷却装置  Liquid cooling type cooling method and cooling device using latent heat material
技術分野  Technical field
[0001] 本発明は、潜熱材を含んだ冷却液を循環させる液冷式の冷却方法および冷却装 置に関する。  TECHNICAL FIELD [0001] The present invention relates to a liquid cooling type cooling method and a cooling apparatus for circulating a cooling liquid containing a latent heat material.
背景技術  Background art
[0002] 自然放熱では過熱する電子部品をもった電子機器は強制冷却を必要とする。例え ば、パーソナルコンピュータは、搭載された CPUを適切な範囲内の温度に保つよう に冷却しなければ正常に動作しない。一般に、電子機器では空冷式の強制冷却が 行われている。  [0002] In natural heat dissipation, an electronic device having an overheated electronic component requires forced cooling. For example, a personal computer will not operate properly unless the installed CPU is cooled to keep the temperature within an appropriate range. In general, electronic equipment uses air-cooled forced cooling.
[0003] 近年、電子機器における強制冷却の方式として、空冷式と比べて冷却能力に優れ る液冷式が注目されている。ここでいう液冷式は、発熱体から熱を受ける受熱部と熱 を発散させる放熱部とを通る循環流路を設け、ポンプによって冷却液を強制的に循 環させる方式である。  [0003] In recent years, a liquid cooling method that is superior in cooling capacity as compared with an air cooling method has attracted attention as a method of forced cooling in electronic devices. The liquid cooling method here is a method in which a circulation flow path is provided that passes through a heat receiving portion that receives heat from the heating element and a heat radiating portion that dissipates heat, and the coolant is circulated forcibly by a pump.
[0004] 電子機器における液冷式の強制冷却に関して、潜熱蓄熱物質を含んだ冷却液を 使用する冷却方法が特開 2003— 314936号公報よつて開示されている。潜熱蓄熱 物質を含むことによって冷却液の蓄熱容量が増大し、冷却液の温度上昇が緩慢にな る。上記公報で開示された冷却方法は、この作用を利用してポンプの稼動を最小限 にする。すなわち、発熱部の温度 TJを監視し、発熱部の温度 TJが設定温度 T1よりも 高いときだけポンプを稼動する。設定温度 T1は、部品の許容温度範囲の上限よりも 低くかつ潜熱蓄熱物質の融点 Tmよりも高い。この冷却方法によれば、ポンプの消費 エネルギーを低減することができる。  [0004] Japanese Unexamined Patent Application Publication No. 2003-314936 discloses a cooling method using a cooling liquid containing a latent heat storage material for liquid cooling forced cooling in electronic equipment. Inclusion of a latent heat storage material increases the heat storage capacity of the coolant and slows the temperature rise of the coolant. The cooling method disclosed in the above publication utilizes this action to minimize the operation of the pump. That is, the temperature TJ of the heat generating part is monitored, and the pump is operated only when the temperature TJ of the heat generating part is higher than the set temperature T1. The set temperature T1 is lower than the upper limit of the allowable temperature range of the component and higher than the melting point Tm of the latent heat storage material. According to this cooling method, the energy consumption of the pump can be reduced.
特許文献 1:特開 2003 - 314936号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-314936
発明の開示  Disclosure of the invention
[0005] しかし、ポンプをオンオフ制御する上記冷却方法では、発熱部の温度 TJが潜熱蓄 熱物質の融点 Tmよりも高いけれどもポンプはオフであるというときには、すなわち冷 却液の温度 TFが潜熱蓄熱物質の融点 Tmよりも高くかつ設定温度 T1よりも低いとき には、潜熱蓄熱物質の固相から液相への相変化が起こるのみで逆の相変化は起こ らない。そして、全ての潜熱蓄熱物質が液相になって冷却液の温度 TFが設定温度 T1を超えなければ、ポンプはオンにされない。つまり、強制冷却を開始する時点では 冷却液の温度 TFが潜熱蓄熱物質の融点 Tmよりも高ぐ潜熱蓄熱物質の蓄熱作用 は利用できない。このことは、たとえ発熱量が急増したとしても十分に対応し得るよう な高い放熱能力をもつ放熱部が必要であることを意味する。 [0005] However, in the above cooling method that controls the pump on / off, when the temperature TJ of the heat generating part is higher than the melting point Tm of the latent heat storage material but the pump is off, that is, the temperature TF of the cooling liquid is the latent heat storage. When the melting point of the substance is higher than Tm and lower than the set temperature T1 In this case, only the phase change of the latent heat storage material from the solid phase to the liquid phase occurs, but not the reverse phase change. The pump is not turned on unless all the latent heat storage materials are in the liquid phase and the coolant temperature TF exceeds the set temperature T1. In other words, at the time when forced cooling starts, the heat storage action of the latent heat storage material in which the temperature TF of the coolant is higher than the melting point Tm of the latent heat storage material cannot be used. This means that a heat dissipating part with a high heat dissipating capacity that can sufficiently cope with the sudden increase in calorific value is required.
[0006] また、上記冷却方法では、発熱部の温度 TJを検出するセンサが必要である。さらに 、使用者の中にはポンプの稼動音がしたりしな力つたりするのを常に稼動音がするの よりも不快に感じる人力^、ると 、う配慮すべき点がある。  [0006] The cooling method described above requires a sensor for detecting the temperature TJ of the heat generating portion. In addition, some users have to consider that the human power that makes the pump's operating noise or power feel uncomfortable rather than the operating noise always.
[0007] 本発明の目的は、潜熱材を含んだ冷却液を用いる液冷式の強制冷却にぉ 、て、 冷却液が流動する循環流路の放熱設計の自由度を高めることである。  [0007] An object of the present invention is to increase the degree of freedom in the heat radiation design of the circulation flow path through which the cooling liquid flows, in addition to the liquid cooling type forced cooling using the cooling liquid containing the latent heat material.
[0008] 本発明の目的を達成する冷却方法は、潜熱蓄熱物質を含んだ冷却液を用いて発 熱体を冷却する液冷式の冷却方法であって、前記発熱体に対して、当該発熱体から 熱を受ける受熱部と受けた熱を発散させる放熱部とを有した循環流路を配置すること 、および前記循環流路において前記潜熱蓄熱物質を循環させて前記受熱部の熱を 前記放熱部に移送させることを含む。より好ましい冷却方法は、さらに前記潜熱蓄熱 物質の融点が前記発熱体の動作環境温度の許容範囲の上限であること、および前 記発熱体の発熱量が最大であるときの前記冷却液の温度と前記潜熱蓄熱物質の融 点との差が士 10°Cよりも小さ!/、ことを含む。  [0008] A cooling method for achieving the object of the present invention is a liquid cooling method for cooling a heat generating body using a cooling liquid containing a latent heat storage material, and the heat generating element Arranging a circulation channel having a heat receiving part for receiving heat from the body and a heat radiating part for dissipating the received heat, and circulating the latent heat storage material in the circulation channel to radiate the heat of the heat receiving part. Including the transfer to the part. A more preferable cooling method is that the melting point of the latent heat storage material is an upper limit of the allowable operating environment temperature of the heating element, and the temperature of the cooling liquid when the heating value of the heating element is maximum. The difference from the melting point of the latent heat storage material is less than 10 ° C.
[0009] 発熱体の動作環境の温度が許容範囲の上限でありかつ前記発熱体の発熱量が最 大であるときは、発熱体の動作の上で最大の冷却能力が必要なときである。本発明 の冷却方法においては、このときの冷却液における受熱と放熱の効率を最大にする ことができる。  [0009] The temperature of the operating environment of the heating element is the upper limit of the allowable range, and the heating value of the heating element is the maximum when the maximum cooling capacity is required for the operation of the heating element. In the cooling method of the present invention, the efficiency of heat reception and heat dissipation in the coolant at this time can be maximized.
[0010] 動作環境の温度を TA、冷却液の温度を TF、発熱体から受ける熱量を Qとすると、 放熱部の熱抵抗 Rhは次式で表される。  [0010] When the temperature of the operating environment is TA, the temperature of the coolant is TF, and the amount of heat received from the heating element is Q, the thermal resistance Rh of the heat dissipation part is expressed by the following equation.
[0011] Rh= (TF-TA) /Q [0011] Rh = (TF-TA) / Q
この式を変形すると、 TF=Rh X Q+TAとなる。すなわち、冷却液の温度 TFは、熱 抵抗 Rh、熱量 Q、および動作環境の温度 TAから求めることができる。熱抵抗 Rhは、 冷却液から放熱部への熱伝導の熱抵抗 R2と、放熱部から大気への熱伝導の熱抵抗 R3との和であって、冷却装置の構成によって決まる固有値である。熱量 Qは発熱体 の構成によって決まる固有値である。動作環境の温度 TAは不定である力 上記計 算においては発熱体の動作を保証する温度範囲の上限とすべきである。 Transforming this equation yields TF = Rh X Q + TA. That is, the temperature TF of the coolant can be obtained from the thermal resistance Rh, the amount of heat Q, and the temperature TA of the operating environment. Thermal resistance Rh is This is the sum of the thermal resistance R2 of heat conduction from the coolant to the heat radiating part and the thermal resistance R3 of heat conduction from the heat radiating part to the atmosphere, and is an eigenvalue determined by the configuration of the cooling device. The amount of heat Q is an eigenvalue determined by the configuration of the heating element. The operating environment temperature TA is an indefinite force In the above calculation, the upper limit of the temperature range that guarantees the operation of the heating element should be used.
[0012] 計算で求められた冷却液の推定温度 TFと等 、かそれに近 、融点 Tmをもつ潜熱 蓄熱物質を冷却液の要素として選択することによって、受熱部での固相から液相へ の相変化と放熱部での液相から固相への相変化とが均等に生じる効率的な熱交換 を実現することができる。冷却液の温度 TFと融点 Tmとが等 、のが最も望ま U、が 、実際上は厳密に等しくする必要はなぐ多少の差異は容認されるべきである。具体 的には、計算で求められた冷却液の温度 TFに対する ± 10°Cの範囲内の融点 Tmを もつ潜熱蓄熱物質を使用することは本発明に含まれる。  [0012] By selecting a latent heat storage material having a melting point Tm, which is equal to or close to the estimated temperature TF of the coolant obtained by calculation, the solid-state to liquid phase at the heat-receiving unit is selected. It is possible to realize an efficient heat exchange in which the phase change and the phase change from the liquid phase to the solid phase in the heat radiating section are evenly generated. Although it is most desirable that the temperature TF of the coolant and the melting point Tm are equal, U, some differences that need not be exactly equal in practice should be tolerated. Specifically, the use of a latent heat storage material having a melting point Tm within a range of ± 10 ° C. with respect to the temperature TF of the coolant obtained by calculation is included in the present invention.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]本発明に係る冷却装置の構成を示す図である。  FIG. 1 is a diagram showing a configuration of a cooling device according to the present invention.
[図 2]受熱部および放熱部における潜熱蓄熱物質の相変化を模式的に示す図であ る。  FIG. 2 is a diagram schematically showing a phase change of a latent heat storage material in a heat receiving part and a heat radiating part.
[図 3]冷却に係る複数の温度と潜熱蓄熱物質の融点との関係を示す図である。  FIG. 3 is a diagram showing a relationship between a plurality of temperatures related to cooling and melting points of latent heat storage materials.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 本発明は、マイクロプロセッサに代表される集積回路チップ、パワートランジスタ、レ 一ザダイオード、トランス、ランプなどの発熱量の多い電気回路部品の強制冷却に適 用することができる。 [0014] The present invention can be applied to forced cooling of electrical circuit components that generate a large amount of heat, such as integrated circuit chips typified by microprocessors, power transistors, laser diodes, transformers, and lamps.
[0015] 第 1図は本発明に係る冷却装置 1の構成を示す。冷却装置 1は、循環流路 10、送 風ファン 20、および電源回路 30を備える液冷式の強制冷却手段である。冷却装置 1 は、電気回路基板 60をもつ機器に組み付けられ、電気回路基板 60に実装された回 路部品 61を冷却する。例えば、冷却装置 1はノート型またはデスクトップ型のパーソ ナルコンピュータに内蔵され、マイクロプロセッサを含む CPU、演算プロセッサ、高速 メモリなどのヒートソースと呼称される回路部品の過熱を防ぐ。  FIG. 1 shows a configuration of a cooling device 1 according to the present invention. The cooling device 1 is a liquid cooling type forced cooling means including a circulation flow path 10, an air supply fan 20, and a power supply circuit 30. The cooling device 1 is assembled in a device having the electric circuit board 60 and cools the circuit components 61 mounted on the electric circuit board 60. For example, the cooling device 1 is built in a notebook or desktop personal computer, and prevents overheating of circuit components called heat sources such as a CPU including a microprocessor, an arithmetic processor, and a high-speed memory.
[0016] 循環流路 10は、受熱部 11、放熱部 12、リザーブタンク 13、ポンプ 14、および配管 15, 16, 17, 18から構成される。冷却装置 1において、循環流路 10に収容される冷 却液 40は潜熱蓄熱機能をもつ。 The circulation flow path 10 includes a heat receiving part 11, a heat radiating part 12, a reserve tank 13, a pump 14, and pipes 15, 16, 17, and 18. In the cooling device 1, the cooling accommodated in the circulation channel 10 The reject liquid 40 has a latent heat storage function.
[0017] 受熱部 11は、内部に所定長さの流路をもつ金属製の熱交換ユニットからなり、熱抵 抗を低減するためのシリコングリスなどの熱伝導材を介して回路部品 61と熱的に接 続される。受熱部 11において、回路部品 61から冷却液 46へ熱が伝わる。 [0017] The heat receiving section 11 is made of a metal heat exchange unit having a flow path of a predetermined length inside, and is connected to the circuit component 61 and the heat through a heat conducting material such as silicon grease for reducing heat resistance. Connected. In the heat receiving portion 11, heat is transferred from the circuit component 61 to the coolant 46.
[0018] 放熱部 12は、金属製のフィン 121を備えた熱交換ユニットからなる。放熱部 12にお いて、冷却液 40から大気へ熱が発散する。 The heat radiating unit 12 is composed of a heat exchange unit including metal fins 121. In the heat dissipating part 12, heat is dissipated from the coolant 40 to the atmosphere.
[0019] リザーブタンク 13は、受熱部 11および放熱部 12の内部を冷却液 40で満たし、力 つ冷却液 40の体積変化による循環流路 10の破損を防止する役割を担う。 The reserve tank 13 fills the inside of the heat receiving part 11 and the heat radiating part 12 with the coolant 40 and plays a role of preventing damage to the circulation flow path 10 due to the volume change of the coolant 40.
[0020] ポンプ 14は、直流モータを内蔵した遠心式マイクロポンプであり、冷却液 40を強制 的に流動させる。 [0020] The pump 14 is a centrifugal micropump with a built-in DC motor, and forcibly causes the coolant 40 to flow.
[0021] 配管 15は受熱部 11と放熱部 12とを連結し、配管 16は放熱部 12とリザーブタンク 1 3とを連結し、配管 17はリザーブタンク 13とポンプ 14とを連結し、配管 18はポンプ 14 と受熱部 11とを連結する。これらとして、ゴムまたは他の榭脂からなるフレキシブルチ ユーブ、または銅菅に代表される硬質の菅を用いることができる。  [0021] Pipe 15 connects heat receiving part 11 and heat radiating part 12, pipe 16 connects heat radiating part 12 and reserve tank 13 and pipe 17 connects reserve tank 13 and pump 14, and pipe 18 Connects the pump 14 and the heat receiving part 11. As these, a flexible tube made of rubber or other resin, or a hard bag represented by a copper bar can be used.
[0022] 送風ファン 20は、放熱部 12の放熱性を高めるために、フィン 121の周囲の大気を 強制的に対流させる。なお、自然放熱で所望の放熱能力が得られる場合には、送風 ファン 20を省略し、冷却装置 1を静寂性に優れるファンレス構成にすることができる。  The blower fan 20 forcibly convects the atmosphere around the fins 121 in order to improve the heat dissipation performance of the heat dissipation unit 12. In addition, when a desired heat dissipation capability can be obtained by natural heat dissipation, the blower fan 20 can be omitted, and the cooling device 1 can have a fanless configuration with excellent silence.
[0023] 電源回路 30は、ポンプ 14および送風ファン 20のそれぞれに所定の駆動電力を供 給する。供給される駆動電力の値は固定であり、ポンプ 14および送風ファン 20は供 給電力量に応じた一定の動作をする。電源回路 30による電力供給は、回路部品 61 に電力を供給する電源回路 65と連動し、回路部品 61に電力が供給されている間は 常にポンプ 14および送風ファン 20を稼動させる。つまり、回路部品 61が動作してい る間はその発熱量 (消費電力に対応する)に係わらず、ポンプ 14は冷却液 40を一定 の速度で流動させ、送風ファン 20はフィン 121に向けて一定流量の空気流を生じさ せる。  [0023] The power supply circuit 30 supplies predetermined drive power to each of the pump 14 and the blower fan 20. The value of the drive power supplied is fixed, and the pump 14 and the blower fan 20 perform a certain operation according to the amount of power supplied. The power supply by the power supply circuit 30 is linked with the power supply circuit 65 for supplying power to the circuit component 61, and the pump 14 and the blower fan 20 are always operated while the power is supplied to the circuit component 61. In other words, while the circuit component 61 is operating, the pump 14 causes the coolant 40 to flow at a constant speed, and the blower fan 20 is constant toward the fins 121 regardless of the amount of heat generated (corresponding to the power consumption). Create a flow of air at a flow rate.
[0024] 以上の構成の冷却装置 1において、冷却液 40は、受熱部 11、放熱部 12、リザーブ タンク 13、およびポンプ量 14を記述の順に通って受熱部 11に戻る循環流動を続け 、回路部品 61の熱を放熱部 12へ運ぶ。 [0025] 熱の運搬を効率化するため、冷却液 40には潜熱材として潜熱マイクロカプセルが 混合されている。すなわち、冷却液 40は水または不凍液に潜熱マイクロカプセルが 分散した混合液である。潜熱マイクロカプセルは、潜熱蓄熱物質を耐熱性の合成榭 脂で被覆した粒径 2 以下の微粒子である。市販品としては、ノラフィンをメラミン榭 脂で被覆した潜熱マイクロカプセルがある。カプセル状の潜熱材を用いることにより、 単純に潜熱蓄熱物質を混合するのと比べて、潜熱蓄熱物質が劣化しにくくなるととも に、分散媒体の材質についての制約が小さくなる。 In the cooling device 1 configured as described above, the coolant 40 continues to circulate and return to the heat receiving unit 11 through the heat receiving unit 11, the heat radiating unit 12, the reserve tank 13, and the pump amount 14 in the order of description. Carries the heat of part 61 to heat dissipation part 12. [0025] In order to increase the efficiency of heat transport, the cooling liquid 40 is mixed with latent heat microcapsules as a latent heat material. That is, the cooling liquid 40 is a mixed liquid in which latent heat microcapsules are dispersed in water or antifreeze. A latent heat microcapsule is a fine particle having a particle size of 2 or less, in which a latent heat storage material is coated with a heat-resistant synthetic resin. Commercially available products include latent heat microcapsules in which norafine is coated with melamine resin. By using a capsule-like latent heat material, the latent heat storage material is less likely to be deteriorated and restrictions on the material of the dispersion medium are smaller than simply mixing the latent heat storage material.
[0026] 第 2図は受熱部および放熱部における潜熱材の相変化を模式的に示す。  FIG. 2 schematically shows a phase change of the latent heat material in the heat receiving part and the heat radiating part.
[0027] 循環流路 10内で循環する冷却液 40は、状態の異なる 2種の潜熱マイクロカプセル 41A, 41Bを含む。一方の潜熱マイクロカプセル 41Aは、固相の潜熱蓄熱物質 43A とそれを被覆する榭脂膜 42とで構成される。他方の潜熱マイクロカプセル 41Bは、液 相の潜熱蓄熱物質 43Bとそれを被覆する榭脂膜 42とで構成される。  [0027] The coolant 40 circulating in the circulation channel 10 includes two types of latent heat microcapsules 41A and 41B in different states. One latent heat microcapsule 41A is composed of a solid phase latent heat storage material 43A and a resin film 42 covering it. The other latent heat microcapsule 41B includes a liquid phase latent heat storage material 43B and a resin film 42 covering the latent heat storage material 43B.
[0028] 受熱部 11には配管 18から潜熱マイクロカプセル 41Aが流入する。この潜熱マイク 口カプセル 41Aは、分散媒体力 熱を吸収して潜熱マイクロカプセル 41Bに変わる。 すなわち、固相の潜熱蓄熱物質 43Aが溶融して液相の潜熱蓄熱物質 43Bになる。 その過程で潜熱が潜熱蓄熱物質によって蓄えられる。  [0028] The latent heat microcapsule 41A flows into the heat receiving part 11 from the pipe 18. This latent heat microphone mouth capsule 41A absorbs the heat of the dispersion medium and changes to latent heat microcapsule 41B. That is, the solid phase latent heat storage material 43A melts to become a liquid phase latent heat storage material 43B. In the process, latent heat is stored by the latent heat storage material.
[0029] 蓄熱した潜熱マイクロカプセル 41Bは受熱部 11から放熱部 12へ流動する。放熱部 12では潜熱マイクロカプセル 41Bが潜熱マイクロカプセル 41Aに戻る。すなわち、潜 熱蓄熱物質 43Bに蓄えられた熱が分散媒体を介して大気中へ放出され、固相の潜 熱蓄熱物質 43Bが固相の潜熱蓄熱物質 43Aへ相変化する。熱を放出した潜熱マイ クロカプセル 41Aは再び受熱部 11へ送られる。  [0029] The stored latent heat microcapsule 41B flows from the heat receiving portion 11 to the heat radiating portion 12. In the heat radiating section 12, the latent heat microcapsule 41B returns to the latent heat microcapsule 41A. That is, the heat stored in the latent heat storage material 43B is released to the atmosphere through the dispersion medium, and the solid phase latent heat storage material 43B changes into a solid phase latent heat storage material 43A. The latent heat microcapsule 41A that has released the heat is sent to the heat receiving unit 11 again.
[0030] 第 2図では 1つの潜熱マイクロカプセルにおける潜熱蓄熱物質の全体が相変化す る場合が示されている。しかし、実際には、潜熱蓄熱物質の一部が相変化する場合 もあり、多数の潜熱マイクロカプセルの間で相の変わる部分の割合にばらつきがある  FIG. 2 shows a case where the entire latent heat storage material in one latent heat microcapsule undergoes a phase change. However, in reality, some of the latent heat storage materials may change phase, and the proportion of the phase change portion varies among many latent heat microcapsules.
[0031] このような潜熱を利用する液冷式の強制冷却においては、受熱部 11に流入する時 点では全ての潜熱マイクロカプセルにおける潜熱蓄熱物質が固相であって、かつ受 熱部 11から流出する時点では全ての潜熱マイクロカプセルにおける潜熱蓄熱物質 が液相であるときに、冷却効率が最大となる。すなわち、循環流量が一定という条件 化での最大限の蓄熱が行われ、かつ蓄熱に相応する放熱が行われる。このとき、冷 却液 40の温度は潜熱蓄熱物質の融点とほぼ等しい。 In such liquid cooling type forced cooling using latent heat, the latent heat storage material in all the latent heat microcapsules is in a solid phase at the time of flowing into the heat receiving unit 11, and from the heat receiving unit 11. Latent heat storage material in all latent heat microcapsules at the time of outflow The cooling efficiency is maximized when is in the liquid phase. In other words, maximum heat storage is performed under the condition that the circulation flow rate is constant, and heat dissipation corresponding to the heat storage is performed. At this time, the temperature of the cooling liquid 40 is almost equal to the melting point of the latent heat storage material.
[0032] 冷却装置 1は、使用における最も過酷な状況において冷却効率が最大となるように 構成されている。詳しくは、最適の融点をもつ潜熱蓄熱物質が冷却液 40に混合され ている。潜熱蓄熱物質の選定の手順は次のとおりである。潜熱蓄熱物質を含まない 冷却液を用いると仮定して、循環流路 10を所定速度で流れる冷却液の温度が最も 過酷な状況にぉ 、て何度であるかを、循環流路 10を構成する部品の熱特性データ に基づく計算によってまたは実験によって求める。こうして求まった温度と等しいか近 い融点をもつ潜熱蓄熱物質を使用する。例えば、 40°C力も 60°Cまで 5°C刻みで融点 を選択することができる潜熱蓄熱物質のラインナップ力 選択する場合にぉ 、て、求 まった温度と一致する融点をもつものがあればそれを選択し、なければ最も近 、融点 をもつものを選択する。実際上は、常温から 100°C程度までの温度域の制御であれ ば、求まった温度に対して ± 10°C程度の差は許容される。  The cooling device 1 is configured so that the cooling efficiency is maximized in the harshest situation in use. Specifically, a latent heat storage material having an optimum melting point is mixed in the coolant 40. The procedure for selecting the latent heat storage material is as follows. Assuming that a coolant that does not contain latent heat storage materials is used, the circulation channel 10 is configured to determine how many times the temperature of the coolant flowing through the circulation channel 10 at a predetermined speed is the most severe. It is obtained by calculation based on the thermal property data of the part to be used or by experiment. Use a latent heat storage material with a melting point equal to or close to the temperature found in this way. For example, when selecting the line-up power of latent heat storage materials that can select the melting point in increments of 5 ° C up to 60 ° C, if there is one with a melting point that matches the determined temperature Select it, if not, select the one with the melting point closest. In practice, if the temperature is controlled from room temperature to about 100 ° C, a difference of about ± 10 ° C is acceptable for the obtained temperature.
[0033] ここで、最も過酷な状況とは、環境温度が回路部品 61を備える機器の仕様で決ま る環境温度範囲の上限であり、かつ回路部品 61の発熱量が最大であるとという状況 である。例えば、機器がコンピュータで、環境温度範囲が— 10°C〜40°Cで、回路部 品 61が CPUである場合では、環境温度が 40°Cで CPUの稼働率が 100%であると いう状況が最も過酷である。  [0033] Here, the most severe situation is a situation in which the environmental temperature is the upper limit of the environmental temperature range determined by the specifications of the equipment including the circuit component 61, and the amount of heat generated by the circuit component 61 is the maximum. is there. For example, if the device is a computer, the ambient temperature range is -10 ° C to 40 ° C, and the circuit component 61 is a CPU, the ambient temperature is 40 ° C and the CPU operating rate is 100%. The situation is the most severe.
[0034] 第 3図は冷却に係る複数の温度と潜熱蓄熱物質の融点との関係を示す。  FIG. 3 shows the relationship between a plurality of temperatures related to cooling and the melting point of the latent heat storage material.
[0035] 上記の最も過酷な状況において、回路部品 61が発する熱 (熱量 Qmax)は、冷却 液 40および放熱部 12を経て大気 (温度 TAmax)へ伝わる。それにおいて、回路部 品 61と冷却液 40との間の熱抵抗 Rl、冷却液 40と放熱部 12との間の熱抵抗 R2、お よび放熱部 12と大気との間の熱抵抗 R3が存在するので、回路部品 61の表面温度 T Jmaxと冷却液 40の温度 TFと放熱部 12の温度 THと大気の温度 TAmaxとについて [0035] In the most severe situation described above, the heat (heat quantity Qmax) generated by the circuit component 61 is transferred to the atmosphere (temperature TAmax) through the coolant 40 and the heat radiating section 12. Therefore, there is a thermal resistance Rl between the circuit component 61 and the coolant 40, a thermal resistance R2 between the coolant 40 and the radiator 12, and a thermal resistance R3 between the radiator 12 and the atmosphere. Therefore, the surface temperature T Jmax of the circuit component 61, the temperature TF of the coolant 40, the temperature TF of the heat dissipating part 12, and the temperature TAmax of the atmosphere
、図のとぉり丁】!11& >丁?>1¾>丁八111& の関係が生じる。 , Figure's Tori Ding]! 11 &> Ding? > 1¾> Dinghachi 111 & relationship arises.
[0036] 上述のとおり、冷却装置 1では最も過酷な状況で冷却効率が最大になるように潜熱 蓄熱物質の融点 Tmが選定されており、融点 Tmは冷却液 40の温度 TF (厳密にはそ の推定値)と等しい。 [0036] As described above, in the cooling device 1, the melting point Tm of the latent heat storage material is selected so as to maximize the cooling efficiency in the harshest situation, and the melting point Tm is the temperature TF (strictly speaking, the temperature of the coolant 40). Equal to the estimated value).
[0037] 以上の実施形態において、冷却装置 1の構成は、本発明の趣旨に沿って適宜変更 することができる。循環流路 10の構成要素について、材質、形状、熱容量および熱 特性に限定はない。ヒートソースは単一でも複数でもよい。ポンプ 14の形式および能 力も用途に応じて選定することができる。能力可変のポンプを用いる場合は、発熱体 の発熱量および循環流路の熱特性に応じて、適切な流速で冷却液が循環するように ポンプに対する供給電力を増減することもできる。送風ファン 20の送風出力を可変と してちよい。  [0037] In the above embodiment, the configuration of the cooling device 1 can be changed as appropriate within the spirit of the present invention. There are no limitations on the material, shape, heat capacity, and thermal characteristics of the components of the circulation channel 10. The heat source may be single or plural. The type and capacity of pump 14 can also be selected according to the application. When a variable capacity pump is used, the power supplied to the pump can be increased or decreased so that the coolant circulates at an appropriate flow rate according to the heat generation amount of the heating element and the thermal characteristics of the circulation flow path. The ventilation output of the blower fan 20 may be variable.
産業上の利用可能性  Industrial applicability
[0038] 本発明は、発熱体の強制冷却に利用することができ、特にパーソナルコンピュータ 、サーバー用コンピュータなどの情報処理装置をはじめとする常温域で使用される機 器における局所的冷却に好適である。  [0038] The present invention can be used for forced cooling of a heating element, and is particularly suitable for local cooling in a device used in a normal temperature region such as an information processing device such as a personal computer or a server computer. is there.

Claims

請求の範囲 The scope of the claims
[1] 潜熱蓄熱物質を含んだ冷却液を用いて発熱体を冷却する液冷式の冷却方法であ つて、  [1] A liquid cooling method for cooling a heating element using a cooling liquid containing a latent heat storage material,
前記発熱体に対して、当該発熱体から熱を受ける受熱部と受けた熱を発散させる 放熱部とを有した循環流路を配置し、  With respect to the heating element, a circulation channel having a heat receiving part for receiving heat from the heating element and a heat radiating part for radiating the received heat is arranged,
前記発熱体が発熱している間は常に、前記循環流路において前記潜熱蓄熱物質 を循環させて、前記受熱部の熱を前記放熱部に移送させる  While the heat generating element is generating heat, the latent heat storage material is circulated in the circulation channel to transfer the heat of the heat receiving part to the heat radiating part.
ことを特徴とする冷却方法。  A cooling method characterized by that.
[2] 前記潜熱蓄熱物質の融点は前記発熱体の動作環境温度の許容範囲の上限であり 、且つ前記発熱体の発熱量が最大であるときの前記冷却液の温度と前記潜熱蓄熱 物質の融点との差が、 ± 10°Cよりも小さい  [2] The melting point of the latent heat storage material is the upper limit of the allowable operating environment temperature of the heating element, and the temperature of the coolant and the melting point of the latent heat storage material when the heating value of the heating element is maximum. Is less than ± 10 ° C
請求項 1に記載の冷却方法。  The cooling method according to claim 1.
[3] 前記潜熱蓄熱物質を含む前記冷却液の循環速度が定速である [3] The circulation rate of the coolant containing the latent heat storage material is constant.
請求項 1または請求項 2に記載の冷却方法。  The cooling method according to claim 1 or 2.
[4] 潜熱蓄熱物質を含んだ冷却液を用いて発熱体を冷却する液冷式の冷却装置であ つて、 [4] A liquid cooling type cooling device that cools the heating element using a cooling liquid containing a latent heat storage material,
受熱部および放熱部を含んで構成される循環流路と、  A circulation flow path including a heat receiving portion and a heat radiating portion;
前記循環流路の中に前記受熱部の熱を蓄熱して前記放熱部に熱を移送する潜熱 蓄熱物質を含んだ冷却液と、を有する  A cooling liquid containing a latent heat storage material that stores heat in the heat receiving section and transfers the heat to the heat radiating section in the circulation flow path.
ことを特徴とする冷却装置。  A cooling device characterized by that.
[5] 前記冷却液は、潜熱蓄熱物質を榭脂で被覆したカプセル状潜熱材を含む液体で ある [5] The cooling liquid is a liquid containing a capsule-like latent heat material in which a latent heat storage material is coated with a resin.
請求項 4に記載の冷却装置。  The cooling device according to claim 4.
PCT/JP2005/011114 2005-06-17 2005-06-17 Liquid-type cooling method and cooling device using latent heat material WO2006134659A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007521046A JPWO2006134659A1 (en) 2005-06-17 2005-06-17 Liquid cooling type cooling method and cooling device using latent heat material
PCT/JP2005/011114 WO2006134659A1 (en) 2005-06-17 2005-06-17 Liquid-type cooling method and cooling device using latent heat material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/011114 WO2006134659A1 (en) 2005-06-17 2005-06-17 Liquid-type cooling method and cooling device using latent heat material

Publications (1)

Publication Number Publication Date
WO2006134659A1 true WO2006134659A1 (en) 2006-12-21

Family

ID=37532031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011114 WO2006134659A1 (en) 2005-06-17 2005-06-17 Liquid-type cooling method and cooling device using latent heat material

Country Status (2)

Country Link
JP (1) JPWO2006134659A1 (en)
WO (1) WO2006134659A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131763A (en) * 2013-01-21 2013-07-04 Fuji Electric Co Ltd Internal air temperature estimation method of closed type electric power conversion unit and cooling system of electric power conversion apparatus
WO2017208461A1 (en) * 2016-06-03 2017-12-07 株式会社日立製作所 Boiling cooling device and electronic device having same mounted thereon

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275456A (en) * 2001-03-16 2002-09-25 Osaka Gas Co Ltd Heat-transporting material and heat-transporting system using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275456A (en) * 2001-03-16 2002-09-25 Osaka Gas Co Ltd Heat-transporting material and heat-transporting system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131763A (en) * 2013-01-21 2013-07-04 Fuji Electric Co Ltd Internal air temperature estimation method of closed type electric power conversion unit and cooling system of electric power conversion apparatus
WO2017208461A1 (en) * 2016-06-03 2017-12-07 株式会社日立製作所 Boiling cooling device and electronic device having same mounted thereon

Also Published As

Publication number Publication date
JPWO2006134659A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
TWI324041B (en) System for efficiently cooling a processor
US8522570B2 (en) Integrated circuit chip cooling using magnetohydrodynamics and recycled power
US6351382B1 (en) Cooling method and device for notebook personal computer
US7474527B2 (en) Desktop personal computer and thermal module thereof
TW457665B (en) A cooling unit for an integrated circuit package
US20050217278A1 (en) Apparatus to use a magnetic based refrigerator in mobile computing device
JP5353577B2 (en) heatsink
US20080229759A1 (en) Method and apparatus for cooling integrated circuit chips using recycled power
EP2080082B1 (en) Embedded thermal-electric cooling modules for surface spreading of heat
JP2006234255A (en) Radiator and liquid cooling system comprising the same
JP2004295718A (en) Liquid cooling system for information processor
JP2010067660A (en) Electronic device and component for the same
WO2006134659A1 (en) Liquid-type cooling method and cooling device using latent heat material
JP2010140194A (en) Portable information processor, docking station and information processor
JP2009193350A (en) Electronic device
JP2003314936A (en) Cooling device
US20090272512A1 (en) Liquid cooling heat dissipating device
JP2002163041A (en) Portable information equipment
JP2007227413A (en) Electronic device
JP4325026B2 (en) Cooling device and electronic equipment
JPH11312883A (en) Electronic equipment
US20070064393A1 (en) Heat dissipating system
JP2003022148A (en) Liquid cooling system for notebook-sized computer
KR101069506B1 (en) Cooling module for electric appliance
CN218244190U (en) Heat radiation structure and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007521046

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05751498

Country of ref document: EP

Kind code of ref document: A1