WO2006132188A1 - Method for producing inorganic crystal - Google Patents

Method for producing inorganic crystal Download PDF

Info

Publication number
WO2006132188A1
WO2006132188A1 PCT/JP2006/311239 JP2006311239W WO2006132188A1 WO 2006132188 A1 WO2006132188 A1 WO 2006132188A1 JP 2006311239 W JP2006311239 W JP 2006311239W WO 2006132188 A1 WO2006132188 A1 WO 2006132188A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
precursor
particles
crystal
nitride
Prior art date
Application number
PCT/JP2006/311239
Other languages
French (fr)
Japanese (ja)
Inventor
Naoto Hirosaki
Takayuki Suehiro
Original Assignee
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science filed Critical National Institute For Materials Science
Priority to JP2007520093A priority Critical patent/JP5212691B2/en
Publication of WO2006132188A1 publication Critical patent/WO2006132188A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0602Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with two or more other elements chosen from metals, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0821Oxynitrides of metals, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres

Definitions

  • the present invention relates to the production of nitride or oxynitride powders. More specifically, phosphor applications such as CaAISi N crystal powder or CaAlSiN crystal activated with optically active elements
  • Phosphors are used in fluorescent display tubes (VFD), field emission displays (FED), plasma display panels (PDP), cathode ray tubes (CRT), white light emitting diodes (LEDs), and the like.
  • VFD fluorescent display tubes
  • FED field emission displays
  • PDP plasma display panels
  • CRT cathode ray tubes
  • LEDs white light emitting diodes
  • the phosphor in order for the phosphor to emit light, it is necessary to supply the phosphor with energy for exciting the phosphor, and the phosphor is not suitable for vacuum ultraviolet rays, ultraviolet rays, electron beams, blue light, etc. It is excited by a high energy excitation source and emits visible light.
  • the luminance of the phosphor tends to decrease.
  • sialon phosphors have been proposed as phosphors with little reduction in luminance in place of phosphors such as conventional silicate phosphors, phosphate phosphors, aluminate phosphors, and sulfide phosphors. .
  • Patent Document 1 a phosphor based on a CaAlSiN crystal was synthesized from a nitride powder such as calcium nitride, aluminum nitride, silicon nitride, and europium nitride. .
  • a nitride powder such as calcium nitride, aluminum nitride, silicon nitride, and europium nitride.
  • calcium nitride and europium nitride are unstable in the air, and the powder mixing and preparation work must be performed in a glove box that is shut off from the air, and the production process is complicated. It was.
  • calcium nitride and europium nitride powder are difficult to obtain high-purity and high-quality raw materials, and the quality of synthetic products is reduced.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-8721
  • Patent Document 2 Japanese Patent Publication No. 4-60050
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-306692
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-97006
  • Patent Document 5 Japanese Patent Publication No. 7-91043
  • An object of the present invention is to provide a fine nitride or oxynitride powder which is suitable for phosphor use and has no coloration due to contamination with impurities.
  • the present inventors have conducted extensive research on a method of reacting a gas in a reducing nitriding atmosphere with a precursor compound containing an element constituting nitride or oxynitride. Those with a specific precursor composition are fired by the firing reaction such as CaAlSiN crystals.
  • At least an element of M, Si, Al, or O (where M is one or more elements selected from Mg, Ca, Sr, and Ba), and if necessary, R Element (where R is Mn, Ce, Pr, Nd, Eu, Tb, Dy, Er, Tm, Yb or more)
  • M is one or more elements selected from Mg, Ca, Sr, and Ba
  • R Element where R is Mn, Ce, Pr, Nd, Eu, Tb, Dy, Er, Tm, Yb or more
  • the precursor compound is synthesized by heat treatment in a reducing nitriding atmosphere to reduce the oxygen content in the precursor and increase the nitrogen content.
  • An inorganic crystal mainly composed of the nitride or oxynitride is CaAlSiN or SrAl
  • An inorganic crystal mainly composed of the nitride or oxynitride is CaAlSiN, SrAlSiN,
  • a compound in which the precursor compound becomes silicon dioxide, silicon oxynitride or silicon nitride by heating SiH compound SiX
  • M oxide, oxynitride or nitride by heating A compound (compound MX) which becomes aluminum oxide, aluminum oxynitride or aluminum nitride by heating (Ich compound A1X), and, if necessary, an R oxide, oxynitride or nitride by heating.
  • Compound SiX is silicon dioxide (SiO 2), silicon oxynitride (Si N O), silicon nitride (Si N
  • Force is one or a mixture of two or more selected, compound MX, M oxide, water
  • Compound A1X Strength Aluminum oxides, hydroxides, alkoxides, carbonates One or a mixture of two or more selected from salts, nitrates, and chlorides.
  • the method for producing an inorganic crystal according to (8) above which is one or a mixture of two or more selected from oxides, hydroxides, alkoxides, carbonates, nitrates, and chlorides of R.
  • the precursor compound is obtained by dispersing SiX particles in a solution in which MX, A1X, and RX as required are dissolved in a solvent, and then drying and removing the solvent. M on the particle surface,
  • the precursor compound is dissolved in an aqueous solution in which MX, A1X, and RX as necessary are dissolved.
  • the precursor compound is dissolved in an aqueous solution in which MX, A1X, and RX as necessary are dissolved.
  • the compound of (8) to (13) above which is a compound obtained by carrying out a caloric heat treatment on a complex citrate by decomposing and removing the citrate by adding citrate after dispersing X, drying and dehydrating.
  • M is an element of R relative to an inorganic compound containing one or more elements selected from Mg, Ca, Sr, and Ba (where R is Mn, Ce, Pr, After adding a compound containing one or more elements selected from Nd, Eu, Tb, Dy, Er, Tm, and Yb, firing is performed at a temperature of 1200 ° C to 2000 ° C in a nitrogen-containing atmosphere.
  • R is Mn, Ce, Pr
  • a method for producing an inorganic crystal characterized in that a phosphor having R activated in 3 is obtained.
  • the inorganic crystalline phosphor obtained by the production method of the present invention is finer and higher in purity than the conventional inorganic crystalline powder, and is suitable as a phosphor.
  • Such fine phosphor powder is suitable for VFD, FED, PDP, CRT, white LED, etc., and it is highly significant to provide novel and useful materials in material design in this kind of field. It is expected to greatly contribute to the development of
  • FIG. 1 is an SEM photograph of the precursor of Example 1.
  • FIG. 2 is an X-ray diffraction pattern of the composite of Example 1.
  • FIG. 3 is an X-ray diffraction pattern of the composite of Example 2.
  • FIG. 4 is a flowchart showing the procedure of Example 1.
  • FIG. 5 is an excitation emission spectrum of the synthesized product of Example 7.
  • the precursor compound contains at least an element of M, Si, Al, O (wherein M is one or more elements selected from Mg, Ca, Sr, Ba), As needed Element (where R is Mn, Ce, Pr, Nd, Eu, Tb, Dy, Er, Tm, Yb, or one element selected from two or more elements), and optionally N element Use things. Since oxides, hydroxides, or a mixture thereof can provide high-purity raw materials, when these are used as precursors, high-purity inorganic crystals suitable for optical applications can be obtained.
  • the elements M, Si, and Al are metal elements that constitute an inorganic crystal for optical use.
  • an inorganic crystal an inorganic crystal having the same crystal structure as CaAlSiN or SrAlSiN is synthesized.
  • nitride or oxynitride suitable for the phosphor or the host crystal for the phosphor can be obtained.
  • the form of an inorganic crystal mainly composed of a nitride or oxynitride as a main component is not limited.
  • a powder form is desirable.
  • the particle size varies depending on the application.
  • nanophosphors it is recommended to use nanopowders of about 50 nm to 500 nm as starting materials.
  • a raw material powder with a particle size of 50nm to 5 ⁇ m is used, and a particle size of 1 ⁇ m to 10zm during the heat treatment. It can be made to grow. Further, the grain growth treatment may be performed by performing a heat treatment at a higher temperature after the heat treatment.
  • the precursor compound a mixture of compounds of respective elements of M, R, Si, and Al can be used, and a plurality of elements such as M—A1— ⁇ and Si—A1— ⁇ —N can be used. Inorganic compounds and mixtures thereof can be used.
  • the precursor compound when a mixture of compounds of respective elements of M, R, Si, and Al is used, the precursor compound can be prepared by the following method.
  • a compound that becomes silicon dioxide, silicon oxynitride, or silicon nitride by heating SiH compound SiX
  • SiH compound SiX silicon dioxide, silicon oxynitride, or silicon nitride by heating
  • oxide, oxynitride, or nitride of M by heating.
  • a compound (compound MX) a compound that becomes aluminum oxide, aluminum oxynitride or aluminum nitride by heating, and an R oxide, oxynitride or nitride by heating if necessary.
  • the compound that becomes silicon dioxide by heating is a compound that becomes silicon dioxide when heated in air, an atmosphere containing oxygen, or in an inert atmosphere, and is heated to oxynitride or nitride.
  • SiX Element (SiO: silica glass, silica sol, silica gel, crystalline silica, etc.), silicon oxynitride (Si
  • silicon nitride Si N: diamond crystal, / 3 crystal, amorphous, etc.
  • the compound that becomes an oxide of M by heating is a compound that becomes an oxide of M when heated in air, an atmosphere containing oxygen, or an inert atmosphere.
  • a compound that becomes a nitride is a compound that becomes an oxynitride or nitride of M when heated in an atmosphere containing a nitrogen element in a gas or an inert atmosphere that constitutes a gas such as nitrogen or ammonia.
  • MX include M oxide, hydroxide, anoloxide, carbonate, nitrate, chloride, fluoride, organic acid salt, and citrate salt.
  • the compound that becomes aluminum oxide by heating is a compound that becomes aluminum oxide when heated in air, in an atmosphere containing oxygen, or in an inert atmosphere, and is heated to aluminum oxynitride or aluminum nitride.
  • A1X include A1 oxides, hydroxides, alkoxides, carbonates, nitrates, chlorides, fluorides, organic acid salts, citrates, and the like.
  • the compound that becomes an oxide of R when heated is a compound that becomes an oxide of R when heated in air, an atmosphere containing oxygen, or in an inert atmosphere.
  • a compound that becomes a nitride is a compound that becomes an oxynitride or nitride when heated in an atmosphere containing a nitrogen element in a molecule constituting a gas such as nitrogen or ammonia or in an inert atmosphere. It is.
  • RX it is possible to list R oxides, hydroxides, alkoxides, carbonates, nitrates, chlorides, fluorides, organic acid salts, citrates, and the like.
  • the crystalline or amorphous material represented by 1) or a mixture thereof is preferable because the composition close to the target composition can be selected and the target product can be obtained in high yield.
  • the target product can be obtained in high yield.
  • the ratio of O to N in the precursor is preferably a composition in which O is larger than the proportion of the final product.
  • the ability to obtain a predetermined composition by terminating the reaction when the ⁇ / N ratio reaches a predetermined value controlled by the time of the firing reaction. S can.
  • the amount of oxygen and nitrogen contained in the inorganic crystal containing nitride or oxynitride as a main component as a main component is
  • a composition satisfying this relationship is preferable for optical applications because the luminance when the phosphor host is used is increased.
  • the average particle size of SiX is 2
  • MX and A1X react on the Si X surface during heating, and the target inorganic crystals are efficiently formed at a relatively low temperature. Nearly fine inorganic crystals can be synthesized.
  • silicon dioxide and silicon nitride are particularly excellent starting materials because SiX provides reactivity and fine powder.
  • the particle diameter is defined as the diameter of a sphere with an equivalent settling velocity in the measurement by the settling method, and as the diameter of a sphere with an equivalent scattering characteristic in the laser scattering method.
  • the particle size distribution is referred to as particle size distribution.
  • the average particle size D50 is defined as the particle size when the sum of masses larger than a certain particle size occupies 50% of the total powder.
  • the sample was dispersed in water to which sodium hexamethacrylate was added as a dispersant, and the volume-based integrated frequency distribution with respect to the particle diameter was measured using a laser scattering type measuring device.
  • the volume and weight distributions are the same.
  • the particle diameter corresponding to 50% in this cumulative (cumulative) frequency distribution was determined and used as the average particle diameter D50.
  • the average particle diameter is based on the median value (D50) of the particle size distribution measured by the particle size distribution measuring means by the laser scattering method described above.
  • D50 median value
  • Various means other than those described above have been developed to determine the average particle diameter, and there are still some differences in the measured values. The meaning and significance are clear and are not necessarily limited to the above means.
  • the method for obtaining the precursor in such a form is not particularly defined.
  • a precursor in which the adhesion form is efficiently controlled can be obtained.
  • SiX particles preferably silicon dioxide or silicon nitride particles
  • a precursor compound in the form of M, R and A1 salts attached to the surface is obtained.
  • MX, RX, and A1X in an aqueous solution SiX is uniformly dispersed, and citrate is added while stirring to add MX, RX, and A1X citrate to the surface of the SiX particles. It is possible to cite a method of baking and synthesizing a compound compound precursor compound obtained by drying and dehydrating after depositing the salt.
  • MX used here may be M nitrate or chloride
  • RX may be R nitrate or chloride
  • A1X may be aluminum nitrate or chloride.
  • MX, RX, and A1X were dissolved in water or solvent, and SiX was uniformly dispersed in this, and then MX, RX, and A1X adhered to the surface of the SiX particles obtained by spray drying.
  • a method of firing the precursor compound can be mentioned.
  • the precursor compound is subjected to a heat treatment in a reducing nitridation atmosphere to reduce the oxygen content in the precursor and increase the nitrogen content, so that the oxynitride or nitride is reduced.
  • Reduction nitriding treatment for generating inorganic crystals is performed.
  • the atmospheric gas used for the reductive nitriding treatment may be a mixed gas of a gas containing nitrogen element and a reducing gas such as hydrogen or hydrocarbon.
  • Ammonia gas or a mixed gas of ammonia gas and hydrocarbon gas is preferred.
  • it can be set as mixed gas with comparatively inert gas, such as nitrogen gas and a noble gas (for example, argon gas) as needed.
  • a noble gas for example, argon gas
  • ammonia gas it is considered that hydrogen in ammonia removes oxygen in the precursor, and nitrogen in ammonia is taken into the precursor instead.
  • a mixed gas of ammonia gas and hydrocarbon gas is used, the hydrocarbon gas and oxygen in the precursor react to be removed as H0 and CO, and nitrogen in ammonia is taken into the precursor instead.
  • the hydrocarbon gas needs to be a gas under the reaction conditions, and a short-chain hydrocarbon gas such as methane, propane or LNG is used.
  • the ratio of hydrocarbon to ammonia in the mixed gas is preferably 3% by volume or less. If it exceeds 3% by volume, carbon may precipitate during firing and remain in the powder.
  • the optimum gas flow rate which varies depending on the reaction vessel, is generally considered to be a value of 0.01 to 0.1 lm / sec.
  • the reaction temperature is 1200 ° C to 1800 ° C, preferably 1300 ° C to 1600 ° C. Within this temperature range, fine powders can be obtained when fired at low temperatures, and powders with a slightly larger particle size and good crystallinity can be obtained when fired at high temperatures.
  • reaction time varies depending on the composition and type of the raw material powder, it should end when the oxygen content reduction and nitrogen content increase due to gas reduction nitriding reach the theoretical value of the target inorganic crystals.
  • the typical reaction time is preferably 0.5 to 5 hours.
  • a fluoride, chloride, sulfate, phosphate, boron of an element selected from calcium, potassium, and aluminum is used as a precursor compound in order to promote a gas reduction nitridation reaction.
  • Reduced nitriding atmosphere after adding one or more reaction accelerators Heat treatment can be performed in an atmosphere. Since these reaction accelerators generate a liquid phase at high temperatures and diffusion becomes active, the reaction proceeds efficiently. In addition, since grain growth is also promoted, it is better to add these reaction accelerators, especially when producing powders with large particle sizes.
  • the ratio should be in the range of 0.5g to 20g per 100g of precursor compound.
  • the amount is less than 5 g, the reaction promoting effect is small.
  • the amount is more than 20 g, another composition is easily formed, which is not preferable.
  • a solvent water, organic solvent, acid
  • an aqueous solution of one or more of hydrofluoric acid, sulfuric acid, hydrochloric acid, and nitric acid has a high effect of removing the reaction accelerator.
  • the kind and composition of the inorganic crystals to be synthesized are not particularly limited.
  • An inorganic crystal with the same crystal structure as CaAlSiN or SrAlSiN are not particularly limited.
  • the composition should contain at least Ca or Sr. be able to .
  • Eu is contained in R, a phosphor with high luminance can be easily obtained.
  • a powder having a composition satisfying the above relationship becomes a phosphor emitting red light.
  • the divalent Eu ion is the emission center
  • M is an element of R after synthesizing one or more elements selected from Mg, Ca, Sr, and Ba (where R is Mn, Ce, Pr, Nd, Eu, Tb, Dy, There is a method in which a compound containing one or more elements selected from Er, Tm, and Yb) is added, followed by firing at a temperature of 1200 ° C to 2000 ° C in a nitrogen-containing atmosphere. According to this method, synthesis of an MSiAIN crystal with a low carbon content and synthesis of a phosphor activated with R can be performed separately.
  • the phosphor activated with R is synthesized at a temperature of 1200 ° C or higher and 2000 ° C or lower in a nitrogen-containing atmosphere. Since the reaction does not proceed sufficiently at temperatures lower than 1200 ° C, the R element is an MSiAIN crystal.
  • the nitrogen-containing atmosphere include nitrogen gas, ammonia gas, and a mixed gas of nitrogen and hydrogen.
  • a hydrocarbon gas such as methane gas can be further mixed.
  • firing temperature is high, firing can be performed in nitrogen gas at a high pressure of about 2 to 100 atm.
  • FIG. 4 summarizes the synthesis flow of Example 1.
  • Spherical amorphous silicon dioxide powder with an average particle size of 0.3 zm obtained by sol-gel synthesis from high-purity alkoxysilane, is added to an aqueous solution containing Ca and A1, and citrate is added while stirring and mixing. Added.
  • Ca and A1 citrates were adsorbed on the silicon dioxide surface, and then heated with stirring to remove moisture and dry (drying of water). Then, the citrate was converted to oxide by heating to 700 ° C in air.
  • the obtained calcined product was loosened with an agate mortar to obtain a powdery precursor compound.
  • the composition of the precursor (unit mol%) is
  • the obtained composite retained the form of the precursor and could be easily loosened with an agate mortar.
  • Fig. 2 X-ray diffraction pattern of the obtained powder
  • a spherical amorphous silicon dioxide powder with an average particle size of 0.3 ⁇ m obtained by sol-gel synthesis from high-purity alkoxysilane was added to an aqueous solution containing Ca and A1, and stirred and mixed. The acid was added. By this operation, Ca and A1 citrates were adsorbed on the silicon dioxide surface, and then heated with stirring to remove moisture and dried. Then, the citrate was converted to oxide by heating to 700 ° C in air. The obtained calcined product was loosened with an agate mortar to obtain a powdery precursor compound.
  • the composition of the precursor (unit mol%) is
  • the obtained composite retained the form of the precursor and could be easily loosened with an agate mortar.
  • the mixture of CaAlSiN and A1N As a result of examining the X-ray diffraction pattern (Fig. 3) of the obtained powder, the mixture of CaAlSiN and A1N
  • Table 1 The powder shown in Table 1 was obtained.
  • Table 2 summarizes the weight ratio of oxygen content to the total nitrogen content and oxygen content.
  • Example 1 About 0.5 g of the same precursor compound as in Example 1 was placed in an ananoremina boat, placed in an alumina core tube having an inner diameter of 24 mm, and set in a tubular furnace having a heating element outside the core tube. Ammonia gas was introduced from one end of the reactor core tube at a flow rate of 325 ml / min, and the temperature was raised to 700 ° C at a rate of 500 ° C / hour. From this temperature, the ammonia gas flow rate was set to 1300 ml / min.
  • methane gas was introduced into the furnace at a flow rate of 19.5 ml / min, and then the temperature was increased to 1375 ° C at a rate of 200 ° C / hr. After holding at this temperature for 4 hours, the supply of methane gas was stopped, and it was cooled to room temperature in an ammonia stream. The resulting composite retained the precursor form and could be easily loosened in an agate mortar. As a result of examining the X-ray diffraction pattern of the obtained powder, it was a mixture of CaAlSiN and A1N, and SiO, Al 2 O, Ca 0 and the like were not detected.
  • Ammonia gas was introduced from one end of the reactor core tube at a flow rate of 325 ml / min, and the temperature was raised to 700 ° C at a rate of 500 ° CZ. At this temperature, the ammonia gas flow rate is set to 1300 ml / min and methane gas is introduced into the furnace at a flow rate of 19.5 ml / min. Subsequently, the temperature was increased to 1500 ° C at a rate of 200 ° C / hour. After holding at this temperature for 15 minutes, the supply of methane gas was stopped, and it was cooled to room temperature in an ammonia stream.
  • the obtained composite maintains the precursor form, and can be easily loosened with an agate mortar.
  • the excitation spectrum and fluorescence spectrum of the resulting compound were measured using a fluorescence spectrophotometer F4500 manufactured by Hitachi High-Technologies, and as shown in Fig. 5, from 3 OOnm to 450nm ultraviolet to blue light. When excited, it was confirmed to be a red phosphor having an emission peak wavelength at 620 nm. Therefore, it can be seen that this can be applied to white LED lighting fixtures in combination with blue LEDs.
  • Example 3 1 350 2. 0 200 Ca 2 AISi30 AIN 1 7. 8 1 1.80
  • Example 4 1 375 2. 0 200 Ca 2 AISi30 AIN 1 8. 4 1 2.
  • 80 example 5 1 365 4. 0 200 CaAISiNa. AIN 30. 0 2. 02 example 6 1375 3. 0 200 CaAISiN 3l AIN 5. 01

Abstract

Disclosed is an inorganic crystal powder mainly composed of a fine nitride or oxynitride which is free from coloring due to impurity inclusion and suitable for use as phosphors. The inorganic crystal powder is synthesized by heat-treating a precursor compound, which contains at least elements M, Si, Al and O (with M being one or more elements selected from Mg, Ca, Sr and Ba), if necessary an element R (with R being one or more elements selected from Mn, Ce, Pr, Nd, Eu, Tb, Dy, Er, Tm and Yb) and also if necessary an element N, in a reducing nitriding atmosphere so that the oxygen content is reduced and the nitrogen content is increased in the precursor.

Description

明 細 書  Specification
無機結晶の製造方法  Method for producing inorganic crystals
技術分野  Technical field
[0001] 本発明は、窒化物または酸窒化物粉末の製造に関する。さらに詳細には、 CaAISi N結晶粉末、または光学活性な元素を付活した CaAlSiN結晶などの、蛍光体用途 [0001] The present invention relates to the production of nitride or oxynitride powders. More specifically, phosphor applications such as CaAISi N crystal powder or CaAlSiN crystal activated with optically active elements
3 3 3 3
に適した粉末の製造に関する。  Related to the production of suitable powders.
背景技術  Background art
[0002] 蛍光体は、蛍光表示管 (VFD)、フィールドェミッションディスプレイ(FED)、プラズ マディスプレイパネル (PDP)、陰極線管(CRT)、白色発光ダイオード (LED)などに 用いられている。これらのいずれの用途においても、蛍光体を発光させるためには、 蛍光体を励起するためのエネルギーを蛍光体に供給する必要があり、蛍光体は真空 紫外線、紫外線、電子線、青色光などの高いエネルギーを有した励起源により励起 されて、可視光線を発する。し力しながら、蛍光体は前記のような励起源に曝される 結果、蛍光体の輝度が低下しがちであるため、輝度低下のない蛍光体が求められて いる。そのため、従来のケィ酸塩蛍光体、リン酸塩蛍光体、アルミン酸塩蛍光体、硫 化物蛍光体などの蛍光体に代わり、輝度低下の少ない蛍光体として、サイアロン蛍 光体が提案されている。  [0002] Phosphors are used in fluorescent display tubes (VFD), field emission displays (FED), plasma display panels (PDP), cathode ray tubes (CRT), white light emitting diodes (LEDs), and the like. In any of these applications, in order for the phosphor to emit light, it is necessary to supply the phosphor with energy for exciting the phosphor, and the phosphor is not suitable for vacuum ultraviolet rays, ultraviolet rays, electron beams, blue light, etc. It is excited by a high energy excitation source and emits visible light. However, as a result of the phosphor being exposed to the excitation source as described above, the luminance of the phosphor tends to decrease. Therefore, there is a need for a phosphor that does not have a decrease in luminance. For this reason, sialon phosphors have been proposed as phosphors with little reduction in luminance in place of phosphors such as conventional silicate phosphors, phosphate phosphors, aluminate phosphors, and sulfide phosphors. .
[0003] 青色 LEDを励起源とする白色 LEDにおいては、演色性向上のため青色光で励起 されて、橙色や赤色に発光する蛍光体が求められている。  [0003] For white LEDs using blue LEDs as excitation sources, there is a demand for phosphors that are excited by blue light and emit orange or red light for improved color rendering.
[0004] 発明者の一人(広崎)は、このような要望に応えるものとして、耐熱材料として知られ る CaAlSiN結晶と同一の結晶構造を有する無機化合物を母体結晶とし、光学活性  [0004] One of the inventors (Hirosaki) responded to such a demand by using an inorganic compound having the same crystal structure as a CaAlSiN crystal known as a heat-resistant material as a base crystal and optically active.
3  Three
な元素、なかでも Euを添加した結晶は、青色光で効率よく励起されて 600nmから 68 Onmの赤色光を発する蛍光体となることを見出した。さらに、この蛍光体を用いること により、高輝度で赤味成分に富む高演色性の白色 LEDが得られる知見に基づき特 許出願が先になされた (例えば、特許文献 1)。  It has been found that crystals added with such elements, especially Eu, become phosphors that are excited efficiently by blue light and emit red light of 600 nm to 68 Onm. Furthermore, a patent application was filed earlier based on the knowledge that a high color rendering white LED with high luminance and rich redness component can be obtained by using this phosphor (for example, Patent Document 1).
[0005] 特許文献 1では、窒化カルシウムと、窒化アルミニウムと、窒化ケィ素と、窒化ユーロ ピウムなどの窒化物粉末を原料として CaAlSiN結晶を母体とする蛍光体を合成した 。しかしながら、これらの原料の中で、窒化カルシウムと窒化ユーロピウムは空気中で 不安定であり、粉末の混合調製作業は空気を遮断したグローブボックスの中で行う必 要があり、生産工程が複雑であった。さらに、窒化カルシウムゃ窒化ユーロピウム粉 末は、高純度で高品質の原料を入手することが困難であり、合成製品の品質が低下 しゃすい。 [0005] In Patent Document 1, a phosphor based on a CaAlSiN crystal was synthesized from a nitride powder such as calcium nitride, aluminum nitride, silicon nitride, and europium nitride. . However, among these raw materials, calcium nitride and europium nitride are unstable in the air, and the powder mixing and preparation work must be performed in a glove box that is shut off from the air, and the production process is complicated. It was. In addition, calcium nitride and europium nitride powder are difficult to obtain high-purity and high-quality raw materials, and the quality of synthetic products is reduced.
[0006] 一方、酸化物原料を用いて酸窒化物粉末を合成する手法として、炭素粉末を利用 した還元窒化法が提案されている。例えば、 ひサイアロンの製造方法として、酸化ケ ィ素、酸化アルミニウム、 M金属の酸化物にカーボン粉末を添加したものを窒素気流 中で 1400〜: 1700°Cに加熱して粉末を得る炭素還元窒化法 (例えば、特許文献 2) が知られている。しかしながら、炭素還元窒化法では粒径 0.:!〜 2 x mの微細な α— サイアロン粉体が得られるものの、添加したカーボンが最終生成物に残るため着色を 引き起こし、光学用途には適するとは限らない。  [0006] On the other hand, as a method of synthesizing oxynitride powder using an oxide raw material, a reduction nitriding method using carbon powder has been proposed. For example, as a manufacturing method for Hsialon, carbon reduction nitridation obtained by heating carbon oxide to carbon oxide to aluminum oxide, M metal oxide in a nitrogen stream to 1400 ~: 1700 ° C. Laws (for example, Patent Document 2) are known. However, the carbon reduction nitridation method produces fine α-sialon powder with a particle size of 0.:! To 2 xm, but the added carbon remains in the final product, causing coloration and is not suitable for optical applications. Not exclusively.
[0007] 光学用途に適した着色がない粉末を得る方法として、発明者らは、クェン酸を用い たゾルゲル法で合成した複合酸化物を出発原料とするガス還元窒化法を提案した。 この方法を利用して、 6. 9%CaO- 10. 34%A1 O—82. 76%SiO組成の酸化 [0007] As a method for obtaining a powder having no color suitable for optical use, the inventors have proposed a gas reduction nitriding method using a composite oxide synthesized by a sol-gel method using citrate as a starting material. Using this method, 6.9% CaO-10.34% A1 O—82.76% SiO composition oxidation
2 3 2  2 3 2
物混合物を前駆体として、アンモニアガスとメタンガスを流しながら 1500°Cまで 2時 間熱処理することにより、前駆体中の酸素含有量が減少すると同時に窒素含有量が 増加して、 Ca— ひ一サイアロン(Ca— Si—Al— O— N)を合成することに成功した( 例えば、特許文献 3)。  By using a mixture of materials as a precursor and heat-treating to 1500 ° C for 2 hours while flowing ammonia gas and methane gas, the oxygen content in the precursor decreases and at the same time the nitrogen content increases. (Ca-Si-Al-O-N) was successfully synthesized (for example, Patent Document 3).
[0008] ひサイアロン以外の高純度窒化物粉末の合成法としては、酸化アルミニウム粉末を アンモニア及び炭化水素の混合ガス中で還元窒化して窒化アルミニウム粉末を得る 方法 (例えば、特許文献 4)が知られている。さらに、酸化ケィ素粉末をアンモニア及 び炭化水素の混合ガス中で還元窒化して窒化ケィ素粉末を得る方法 (例えば、特許 文献 5)が報告されている。  [0008] As a method for synthesizing high-purity nitride powder other than Hysialon, a method of obtaining aluminum nitride powder by reducing and nitriding aluminum oxide powder in a mixed gas of ammonia and hydrocarbon (for example, Patent Document 4) is known. It has been. Furthermore, a method for obtaining a nitrided silicon powder by reducing and nitriding the oxidized oxide powder in a mixed gas of ammonia and hydrocarbon (for example, Patent Document 5) has been reported.
特許文献 1 :特開 2006— 8721号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2006-8721
特許文献 2:特公平 4一 60050号公報  Patent Document 2: Japanese Patent Publication No. 4-60050
特許文献 3 :特開 2005— 306692号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-306692
特許文献 4 :特開 2002— 97006号公報 特許文献 5:特公平 7 - 91043号公報 Patent Document 4: Japanese Patent Laid-Open No. 2002-97006 Patent Document 5: Japanese Patent Publication No. 7-91043
[0009] しかしながら、 ひサイアロン以外の多成分の窒化物や酸窒化物の無機結晶につい ては、酸化物原料を用いて光学用途に適した着色が少なレ、ものを合成する手法は 開発されていなかった。 [0009] However, with respect to inorganic crystals of multi-component nitrides and oxynitrides other than hysialon, a method for synthesizing them with less coloring suitable for optical applications using oxide raw materials has been developed. There wasn't.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 本発明は、蛍光体用途に適した、不純物混入による着色のない微細な窒化物や酸 窒化物粉末を提供することを目的とする。 [0010] An object of the present invention is to provide a fine nitride or oxynitride powder which is suitable for phosphor use and has no coloration due to contamination with impurities.
課題を解決するための手段  Means for solving the problem
[0011] 本発明者らは、かかる状況下、窒化物や酸窒化物を構成する元素を含む前駆体化 合物に対して、還元窒化雰囲気のガスを反応させる手法について鋭意研究を重ねた 結果、特定の前駆体組成を有するものは、焼成反応により CaAlSiN結晶などの蛍  [0011] Under such circumstances, the present inventors have conducted extensive research on a method of reacting a gas in a reducing nitriding atmosphere with a precursor compound containing an element constituting nitride or oxynitride. Those with a specific precursor composition are fired by the firing reaction such as CaAlSiN crystals.
3  Three
光体用途に適した窒化物や酸窒化物粉末となることを見出し、この知見を押し進め た結果、以下(1)〜(20)に記載する構成を講ずることによって、微細で光学特性に 影響を及ぼす炭素不純物が少ない粉末が得られることを知見したものである。本発 明は、この知見に基づいてなされたものである。その構成は、以下(1)から(20)に記 載のとおりである。  As a result of finding this nitride and oxynitride powder suitable for optical body applications and pushing forward with this knowledge, the configuration described in (1) to (20) below can be used to affect the optical properties in a fine manner. It has been found that a powder with less carbon impurities is obtained. This invention has been made based on this finding. The configuration is as described in (1) to (20) below.
[0012] (1) M、 Si、 Al、 Oの元素(ただし、 Mは、 Mg、 Ca、 Sr、 Baから選ばれる 1種または 2 種以上の元素)を少なくとも含み、必要に応じて Rの元素(ただし、 Rは、 Mn、 Ce、 Pr 、 Nd、 Eu、 Tb、 Dy、 Er、 Tm、 Ybから選ばれる 1種または 2種以上の元素)を含み、 必要に応じて Nの元素を含む前駆体化合物に対して、還元窒化雰囲気中で加熱処 理を施し、前駆体中の酸素含有量を減少させるとともに窒素含有量を増加させること により合成する、窒化物または酸窒化物を主成分とする無機結晶の製造方法。  [0012] (1) At least an element of M, Si, Al, or O (where M is one or more elements selected from Mg, Ca, Sr, and Ba), and if necessary, R Element (where R is Mn, Ce, Pr, Nd, Eu, Tb, Dy, Er, Tm, Yb or more) The precursor compound is synthesized by heat treatment in a reducing nitriding atmosphere to reduce the oxygen content in the precursor and increase the nitrogen content. A method for producing inorganic crystals.
[0013] (2)該前駆体化合物中に含まれる M、 R、 Si、 Al、〇、 Nの原子数の比、 a、 b、 c、 d、 e 、 f (ただし、 a + b + c + d + e + f= l)が、  [0013] (2) The ratio of the number of atoms of M, R, Si, Al, ○, N contained in the precursor compound, a, b, c, d, e, f (where a + b + c + d + e + f = l)
0. 1 ≤ a ≤ 0. 3  0. 1 ≤ a ≤ 0. 3
0 ≤ b ≤ 0. 1  0 ≤ b ≤ 0. 1
0. 1 ≤ c ≤ 0. 3 0. 1 ≤ d ≤ 0. 3 0. 1 ≤ c ≤ 0. 3 0. 1 ≤ d ≤ 0. 3
0. 01 ≤ e ≤ 0. 6  0. 01 ≤ e ≤ 0.6
0 ≤ f ≤ 0. 6  0 ≤ f ≤ 0. 6
の関係を満たす、前記(1)に記載の無機結晶の製造方法。  The method for producing an inorganic crystal according to (1), wherein the relationship is satisfied.
[0014] (3)該前駆体化合物が、酸化物または水酸化物の混合物である、上記(1)または(2(3) The above (1) or (2), wherein the precursor compound is an oxide or a mixture of hydroxides.
)に記載の無機結晶の製造方法。 The manufacturing method of the inorganic crystal as described in).
[0015] (4)合成物である窒化物または酸窒化物を主成分とする無機結晶中に含まれる酸素 と窒素の量が、 (4) The amount of oxygen and nitrogen contained in the inorganic crystal mainly composed of a nitride or oxynitride that is a composite is
0 ≤ O / (〇 + N) ≤ 0. 20  0 ≤ O / (〇 + N) ≤ 0. 20
の関係を満たす、上記(1)から(3)のいずれ力 1項に記載の無機結晶の製造方法。  The method for producing an inorganic crystal according to any one of the above (1) to (3), which satisfies the relationship:
[0016] (5)合成物である窒化物または酸窒化物を主成分とする無機結晶が、粉末形態であ る前記 (4)に記載の無機結晶の製造方法。 [0016] (5) The method for producing an inorganic crystal as described in (4) above, wherein the inorganic crystal mainly composed of nitride or oxynitride which is a composite is in a powder form.
[0017] (6)該窒化物または酸窒化物を主成分とする無機結晶が、 CaAlSiNあるいは SrAl [0017] (6) An inorganic crystal mainly composed of the nitride or oxynitride is CaAlSiN or SrAl
3  Three
SiNと同一の結晶構造を有する無機結晶である、上記 (4)に記載の無機結晶の製 The production of the inorganic crystal according to (4) above, which is an inorganic crystal having the same crystal structure as SiN.
3 Three
造方法。  Manufacturing method.
[0018] (7)該窒化物または酸窒化物を主成分とする無機結晶が、 CaAlSiN、 SrAlSiN、  [0018] (7) An inorganic crystal mainly composed of the nitride or oxynitride is CaAlSiN, SrAlSiN,
3 3 または(Ca、 Sr)AlSiN結晶、あるいはそれらの固溶体結晶である、上記(6)に記載  3 3 or (Ca, Sr) AlSiN crystal, or a solid solution crystal thereof, described in (6) above
3  Three
の無機結晶の製造方法。  A method for producing an inorganic crystal.
[0019] (8)前駆体化合物が、加熱により二酸化ケイ素、酸窒化ケィ素あるいは窒化ケィ素と なる化合物(ィヒ合物 SiX)と、加熱により Mの酸化物、酸窒化物あるいは窒化物となる 化合物 (化合物 MX)と、加熱により酸化アルミニウム、酸窒化アルミニウムあるいは窒 化アルミニウムとなる化合物(ィヒ合物 A1X)と、必要に応じて加熱により Rの酸化物、 酸窒化物あるいは窒化物となる化合物(ィヒ合物 RX)とを少なくとも含む混合物である 、上記(1)から(7)のいずれ力 4項に記載の無機結晶の製造方法。  [0019] (8) A compound in which the precursor compound becomes silicon dioxide, silicon oxynitride or silicon nitride by heating (SiH compound SiX), and M oxide, oxynitride or nitride by heating. A compound (compound MX) which becomes aluminum oxide, aluminum oxynitride or aluminum nitride by heating (Ich compound A1X), and, if necessary, an R oxide, oxynitride or nitride by heating. The method for producing an inorganic crystal as described in any one of (1) to (7) above, which is a mixture containing at least the compound (Ich compound RX).
[0020] (9)化合物 SiXが二酸化ケイ素(SiO )、酸窒化ケィ素(Si N O)、窒化ケィ素(Si N  [9] (9) Compound SiX is silicon dioxide (SiO 2), silicon oxynitride (Si N O), silicon nitride (Si N
2 2 2 3 2 2 2 3
)力 選ばれる 1種または 2種以上の混合物であり、化合物 MXが、 Mの酸化物、水) Force is one or a mixture of two or more selected, compound MX, M oxide, water
4 Four
酸化物、アルコキシド、炭酸塩、硝酸塩、塩化物から選ばれる 1種または 2種以上の 混合物であり、化合物 A1X力 アルミニウムの酸化物、水酸化物、アルコキシド、炭酸 塩、硝酸塩、塩化物から選ばれる 1種または 2種以上の混合物であり、化合物 RX力One or a mixture of two or more selected from oxides, alkoxides, carbonates, nitrates, and chlorides. Compound A1X Strength Aluminum oxides, hydroxides, alkoxides, carbonates One or a mixture of two or more selected from salts, nitrates, and chlorides.
Rの酸化物、水酸化物、アルコキシド、炭酸塩、硝酸塩、塩化物から選ばれる 1種ま たは 2種以上の混合物である、上記(8)に記載の無機結晶の製造方法。 The method for producing an inorganic crystal according to (8) above, which is one or a mixture of two or more selected from oxides, hydroxides, alkoxides, carbonates, nitrates, and chlorides of R.
[0021] (10) SiXの平均粒径が 500nm以下である、上記(8)または(9)のいずれ力 4項に記 載の無機結晶の製造方法。 [0021] (10) The method for producing an inorganic crystal as described in any one of the above (8) and (9), wherein the average particle diameter of SiX is 500 nm or less.
[0022] (11) MX粒子、 A1X粒子、 RX粒子の平均粒径が SiX粒子の平均粒径より小さぐ M[0022] (11) The average particle size of MX particles, A1X particles, and RX particles is smaller than the average particle size of SiX particles M
X粒子、 A1X粒子、 RX粒子が SiX粒子の表面に付着してなる、上記(8)から(10)の いずれか 1項に記載の無機結晶の製造方法。 The method for producing an inorganic crystal according to any one of (8) to (10) above, wherein X particles, A1X particles, and RX particles adhere to the surface of SiX particles.
[0023] (12)前駆体化合物が、 MXと、 A1Xと、必要に応じて RXとを溶剤に溶解させた溶液 中に SiX粒子を分散させた後に、乾燥、脱溶剤して得られる、 SiX粒子表面に Mと、[0023] (12) The precursor compound is obtained by dispersing SiX particles in a solution in which MX, A1X, and RX as required are dissolved in a solvent, and then drying and removing the solvent. M on the particle surface,
A1と、必要に応じて Rの化合物が付着した形態の混合物である、上記(8)から(11) のいずれか 1項に記載の無機結晶の製造方法。 The method for producing an inorganic crystal according to any one of (8) to (11) above, which is a mixture in a form in which A1 and, if necessary, a compound of R are attached.
[0024] (13)前駆体化合物が、 MXと、 A1Xと、必要に応じて RXとを溶解させた水溶液に Si(13) The precursor compound is dissolved in an aqueous solution in which MX, A1X, and RX as necessary are dissolved.
Xを分散させた後にクェン酸をカ卩え、乾燥、脱水して得られる、複合クェン酸塩であるIt is a complex succinate that is obtained by dispersing citrate after dispersing X, drying and dehydrating.
、上記(8)から(12)のレ、ずれか 1項に記載の無機結晶の製造方法。 2. The method for producing an inorganic crystal as described in 1 above, wherein (8) to (12) above.
[0025] (14)前駆体化合物が、 MXと、 A1Xと、必要に応じて RXとを溶解させた水溶液に Si[0025] (14) The precursor compound is dissolved in an aqueous solution in which MX, A1X, and RX as necessary are dissolved.
Xを分散させた後にクェン酸をカ卩え、乾燥、脱水して得られる、複合クェン酸塩にカロ 熱処理を施してクェン酸を分解除去した化合物である、上記(8)から(13)のレ、ずれ 力 4項に記載の無機結晶の製造方法。 The compound of (8) to (13) above, which is a compound obtained by carrying out a caloric heat treatment on a complex citrate by decomposing and removing the citrate by adding citrate after dispersing X, drying and dehydrating. The method for producing inorganic crystals as described in item 4 above.
[0026] (15)還元窒化雰囲気に少なくともアンモニアガス、または水素と窒素の混合ガスを 含む、上記(1)から(14)のいずれか 1項に記載の無機結晶の製造方法。 [0026] (15) The method for producing an inorganic crystal according to any one of (1) to (14) above, wherein the reducing nitriding atmosphere contains at least ammonia gas or a mixed gas of hydrogen and nitrogen.
[0027] (16)還元窒化雰囲気に少なくとも炭化水素ガスを含む、上記(1)から(15)のいずれ 力 4項に記載の無機結晶の製造方法。 [0027] (16) The method for producing an inorganic crystal as described in any one of (1) to (15) above, wherein the reducing nitriding atmosphere contains at least a hydrocarbon gas.
[0028] (17)還元窒化雰囲気がアンモニアガスと、メタンまたはプロパンガスの混合ガスであ る、上記(15)または(16)に記載の無機結晶の製造方法。 [0028] (17) The method for producing an inorganic crystal as described in (15) or (16) above, wherein the reducing nitriding atmosphere is a mixed gas of ammonia gas and methane or propane gas.
[0029] (18)加熱処理温度が、 1000°C以上 1800°C以下である上記(1)から(17)のいずれ 力 4項に記載の無機結晶の製造方法。 [0029] (18) The method for producing an inorganic crystal as described in any one of (1) to (17) above, wherein the heat treatment temperature is 1000 ° C. or higher and 1800 ° C. or lower.
[0030] (19)合成物である窒化物または酸窒化物を主成分とする無機結晶が、 Ca Sr SiAlSiN : Euで表され、パラメータ x、 y、 zが、 (19) An inorganic crystal composed mainly of a nitride or oxynitride that is a composite, Ca Sr SiAlSiN: expressed in Eu, parameters x, y, z
x y 3 z  x y 3 z
x+y+z= 1  x + y + z = 1
0 ≤ x ≤ 1 -z  0 ≤ x ≤ 1 -z
0 ≤ y ≤ 1 -z  0 ≤ y ≤ 1 -z
0. 0001 ≤ z ≤ 0. 1  0. 0001 ≤ z ≤ 0. 1
の関係を満たす蛍光体である、上記(1)から(18)のいずれ力 1項に記載の無機結晶 の製造方法。  The method for producing an inorganic crystal according to any one of the above (1) to (18), which is a phosphor satisfying the above relationship.
[0031] (20)前記(1)から(19)のいずれかに記載した方法で製造した、 MSiAIN結晶(た  [0031] (20) An MSiAIN crystal produced by the method described in any one of (1) to (19)
3 だし、 Mは、 Mg、 Ca、 Sr、 Baから選ばれる 1種または 2種以上の元素)を含む無機化 合物に対して、 Rの元素(ただし、 Rは、 Mn、 Ce、 Pr、 Nd、 Eu、 Tb、 Dy、 Er、 Tm、 Ybから選ばれる 1種または 2種以上の元素)を含む化合物を添加した後に窒素含有 雰囲気中で 1200°C以上 2000°C以下の温度で焼成することにより、 MSiAIN結晶  3 However, M is an element of R relative to an inorganic compound containing one or more elements selected from Mg, Ca, Sr, and Ba (where R is Mn, Ce, Pr, After adding a compound containing one or more elements selected from Nd, Eu, Tb, Dy, Er, Tm, and Yb, firing is performed at a temperature of 1200 ° C to 2000 ° C in a nitrogen-containing atmosphere. By MSiAIN crystal
3 に Rが付活された蛍光体を得ることを特徴とする、無機結晶の製造方法。  3. A method for producing an inorganic crystal, characterized in that a phosphor having R activated in 3 is obtained.
[0032] 本発明の製造方法により得られる無機結晶蛍光体は、従来の無機結晶粉末より微 細で高純度であり、蛍光体として適している。このような微細な蛍光体粉末は、 VFD 、 FED, PDP、 CRT,白色 LEDなどにおいて好適であり、この種分野における材料 設計において、新規性のある有用な材料を提供した意義は大きいし、産業の発展に 大いに寄与することが期待される。 [0032] The inorganic crystalline phosphor obtained by the production method of the present invention is finer and higher in purity than the conventional inorganic crystalline powder, and is suitable as a phosphor. Such fine phosphor powder is suitable for VFD, FED, PDP, CRT, white LED, etc., and it is highly significant to provide novel and useful materials in material design in this kind of field. It is expected to greatly contribute to the development of
図面の簡単な説明  Brief Description of Drawings
[0033] [図 1]実施例 1の前駆体の SEM写真である。  FIG. 1 is an SEM photograph of the precursor of Example 1.
[図 2]実施例 1の合成物の X線回折パターンである。  FIG. 2 is an X-ray diffraction pattern of the composite of Example 1.
[図 3]実施例 2の合成物の X線回折パターンである。  FIG. 3 is an X-ray diffraction pattern of the composite of Example 2.
[図 4]実施例 1の手順を示すフローチャートである。  FIG. 4 is a flowchart showing the procedure of Example 1.
[図 5]実施例 7の合成物の励起発光スペクトルである。  FIG. 5 is an excitation emission spectrum of the synthesized product of Example 7.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0034] 以下に本発明を実施例に基づいて詳しく説明する。 Hereinafter, the present invention will be described in detail based on examples.
[0035] 本発明では、前駆体化合物として、 M、 Si、 Al、 Oの元素(ただし、 Mは、 Mg、 Ca、 Sr、 Baから選ばれる 1種または 2種以上の元素)を少なくとも含み、必要に応じて の 元素(ただし、 Rは、 Mn、 Ce、 Pr、 Nd、 Eu、 Tb、 Dy、 Er、 Tm、 Yb力も選ばれる 1種 または 2種以上の元素)を含み、必要に応じて Nの元素を含むものを使用する。酸化 物または水酸化物、あるいはその混合物は高純度の原料が得られるため、これらを 前駆体として用いると、光学用途に適した高純度の無機結晶を得ることができる。 [0035] In the present invention, the precursor compound contains at least an element of M, Si, Al, O (wherein M is one or more elements selected from Mg, Ca, Sr, Ba), As needed Element (where R is Mn, Ce, Pr, Nd, Eu, Tb, Dy, Er, Tm, Yb, or one element selected from two or more elements), and optionally N element Use things. Since oxides, hydroxides, or a mixture thereof can provide high-purity raw materials, when these are used as precursors, high-purity inorganic crystals suitable for optical applications can be obtained.
[0036] M、 Si、 Alの元素は、光学用途の無機結晶を構成する金属元素である。無機結晶 として、 CaAlSiNあるいは SrAlSiNと同一の結晶構造を有する無機結晶を合成す [0036] The elements M, Si, and Al are metal elements that constitute an inorganic crystal for optical use. As an inorganic crystal, an inorganic crystal having the same crystal structure as CaAlSiN or SrAlSiN is synthesized.
3 3  3 3
る場合は、 Mとして Ca、 Sr、あるいはその混合組成を用いて、 目的組成となるように M、 Si、 Alの含有量を選定するとよい。前駆体を構成する元素のうち、 M、 R、 Si、 Al の多くは焼成中に揮散することなく反応物中に残留する。一方、 Oの一部は焼成中 に雰囲気ガスと反応して反応物の外に取り除かれ、替わりに反応ガスから Nが反応 物中に導入される。このようにして、前駆体化合物から M— R— Si— Al— O— Nから なる無機結晶が合成される。  In this case, it is recommended to use Ca, Sr, or a mixed composition of M as M, and select the contents of M, Si, and Al so as to achieve the target composition. Of the elements that make up the precursor, most of M, R, Si, and Al remain in the reaction without being volatilized during firing. On the other hand, a part of O reacts with the atmospheric gas during the calcination and is removed from the reactant, and N is introduced from the reactant gas into the reactant instead. In this manner, an inorganic crystal composed of M—R—Si—Al—O—N is synthesized from the precursor compound.
[0037] 酸素の除去と窒素の導入は、処理温度、処理ガスの組成と流量、反応時間により 制御し、合成物である窒化物または酸窒化物を主成分とする無機結晶中に含まれる 酸素と窒素の量が、 [0037] The removal of oxygen and the introduction of nitrogen are controlled by the treatment temperature, the composition and flow rate of the treatment gas, and the reaction time. And the amount of nitrogen
0 ≤ O / (〇 + N) ≤ 0. 20  0 ≤ O / (〇 + N) ≤ 0. 20
の関係を満たすまで処理を行うのがよレ、。この範囲内で蛍光体または蛍光体用のホ スト結晶に適した窒化物あるいは酸窒化物が得られる。  It's best to process until the relationship is satisfied. Within this range, a nitride or oxynitride suitable for the phosphor or the host crystal for the phosphor can be obtained.
[0038] 合成物である窒化物または酸窒化物を主成分とする無機結晶の形態は問わない 力 高輝度の蛍光体とする場合は粉末形態が望ましい。その粒度は、用途により異 なる力 ナノ蛍光体とする場合は、出発原料として 50nm〜500nm程度のナノ粉末 を用いるのがよレ、。通常の蛍光体でぁる1〃111〜10〃111の粒径を得るには、 50nm 〜5 μ mの粒径の原料粉末を用いて、熱処理中に 1 μ m〜10 z mの粒径まで粒成 長させることができる。また、熱処理後にさらに高温で熱処理を行うことにより粒成長 処理を行ってもよい。 [0038] The form of an inorganic crystal mainly composed of a nitride or oxynitride as a main component is not limited. When a high-luminance phosphor is used, a powder form is desirable. The particle size varies depending on the application. When using nanophosphors, it is recommended to use nanopowders of about 50 nm to 500 nm as starting materials. In order to obtain a particle size of 1 ~ 111 ~ 10 ~ 111, which is a normal phosphor, a raw material powder with a particle size of 50nm to 5μm is used, and a particle size of 1μm to 10zm during the heat treatment. It can be made to grow. Further, the grain growth treatment may be performed by performing a heat treatment at a higher temperature after the heat treatment.
[0039] 該前駆体化合物の中で、 目的とする無機結晶が特に高収率で得られる組成は、中 に含まれる M、 R、 Si、 Al、〇、 Nの原子数の比、 a、 b、 c、 d、 e、 f (ただし、 a + b + c + d + e + f = l )が、 0. 1 < a ≤ 0. 3 [0039] Among the precursor compounds, the composition in which the target inorganic crystal is obtained in a particularly high yield is the ratio of the number of atoms of M, R, Si, Al, O, N contained therein, a, b, c, d, e, f (where a + b + c + d + e + f = l) 0. 1 <a ≤ 0. 3
0 < b < 0. 1  0 <b <0. 1
0. 1 < c ≤ 0. 3  0. 1 <c ≤ 0. 3
0. 1 < d ≤ 0. 3  0. 1 <d ≤ 0. 3
0. 01 < e ≤ 0.  0. 01 <e ≤ 0.
0 < f < 0. 6  0 <f <0. 6
の関係を満たす組成物である。  It is a composition satisfying the relationship.
[0040] これらの関係を満たす組成物としては、例えば、  [0040] As a composition satisfying these relationships, for example,
2CaCO -A1〇 一 2Si〇、  2CaCO -A1〇 1 2Si〇,
3 2 3 2  3 2 3 2
1. 992CaO-0. 008EuO— Al〇一 2SiO、または  1. 992CaO-0. 008EuO—AlO1 2SiO, or
2 3 2  2 3 2
3Sr〇一 3A1N— Si N  3Sr〇 一 3A1N— Si N
3 4  3 4
の組成の混合物を挙げることができる。  And a mixture of the following compositions.
[0041] 前駆体化合物としては、 M、 R、 Si、 Alそれぞれの元素の化合物の混合体を用いる ことができる他に、 M— A1—〇や Si— A1—〇— Nなどの複数の元素の無機化合物や その混合物を用いることができる。  [0041] As the precursor compound, a mixture of compounds of respective elements of M, R, Si, and Al can be used, and a plurality of elements such as M—A1—〇 and Si—A1—〇—N can be used. Inorganic compounds and mixtures thereof can be used.
[0042] 前駆体化合物としては、 M、 R、 Si、 Alそれぞれの元素の化合物の混合体を用いる 場合は、以下の方法により前駆体化合物を準備することができる。  [0042] As the precursor compound, when a mixture of compounds of respective elements of M, R, Si, and Al is used, the precursor compound can be prepared by the following method.
[0043] すなわち、前駆体化合物として、加熱により二酸化ケイ素、酸窒化ケィ素あるいは 窒化ケィ素となる化合物(ィヒ合物 SiX)と、加熱により Mの酸化物、酸窒化物あるいは 窒化物となる化合物(化合物 MX)と、加熱により酸化アルミニウム、酸窒化アルミニゥ ムあるいは窒化アルミニウムとなる化合物 (ィ匕合物 A1X)と、必要に応じて、加熱により Rの酸化物、酸窒化物あるいは窒化物となる化合物(ィ匕合物 RX)とを少なくとも含む 混合物を用いることができる。  [0043] That is, as a precursor compound, a compound that becomes silicon dioxide, silicon oxynitride, or silicon nitride by heating (SiH compound SiX), and an oxide, oxynitride, or nitride of M by heating. A compound (compound MX), a compound (compound A1X) that becomes aluminum oxide, aluminum oxynitride or aluminum nitride by heating, and an R oxide, oxynitride or nitride by heating if necessary. And a mixture containing at least the compound (I compound RX).
[0044] 加熱により二酸化ケイ素になる化合物とは、空気中や酸素を含む雰囲気中または 不活性雰囲気中で加熱したときに二酸化ケイ素になる化合物であり、加熱により酸窒 化ケィ素あるいは窒化ケィ素になる化合物とは、窒素やアンモニアなどのガスを構成 する分子中に窒素元素を含むガスの雰囲気中または不活性雰囲気中で加熱したと きに酸窒化ケィ素あるいは窒化ケィ素になる化合物である。 SiXとしては、二酸化ケィ 素(Si〇 :シリカガラス、シリカゾル、シリカゲル、結晶質シリカ等)、酸窒化ケィ素(Si[0044] The compound that becomes silicon dioxide by heating is a compound that becomes silicon dioxide when heated in air, an atmosphere containing oxygen, or in an inert atmosphere, and is heated to oxynitride or nitride. Is a compound that becomes silicon oxynitride or silicon nitride when heated in an atmosphere containing a nitrogen element in a molecule constituting a gas such as nitrogen or ammonia or in an inert atmosphere. . As SiX, Element (SiO: silica glass, silica sol, silica gel, crystalline silica, etc.), silicon oxynitride (Si
2 2twenty two
N O等)、窒化ケィ素(Si N :ひ型結晶、 /3型結晶、アモルファス等)などを挙げるこN O, etc.), silicon nitride (Si N: diamond crystal, / 3 crystal, amorphous, etc.)
2 3 4 2 3 4
とがでさる。  Togashi.
[0045] 加熱により Mの酸化物となる化合物とは、空気中や酸素を含む雰囲気中または不 活性雰囲気中で加熱したときに Mの酸化物になる化合物であり、加熱により Mの酸 窒化物あるいは窒化物になる化合物とは、窒素やアンモニアなどのガスを構成する 分子中に窒素元素を含むガスの雰囲気中または不活性雰囲気中で加熱したときに Mの酸窒化物あるいは窒化物になる化合物である。 MXとしては、 Mの酸化物、水酸 化物、ァノレコキシド、炭酸塩、硝酸塩、塩化物、フッ化物、有機酸塩、クェン酸塩など を挙げることができる。  [0045] The compound that becomes an oxide of M by heating is a compound that becomes an oxide of M when heated in air, an atmosphere containing oxygen, or an inert atmosphere. Alternatively, a compound that becomes a nitride is a compound that becomes an oxynitride or nitride of M when heated in an atmosphere containing a nitrogen element in a gas or an inert atmosphere that constitutes a gas such as nitrogen or ammonia. It is. Examples of MX include M oxide, hydroxide, anoloxide, carbonate, nitrate, chloride, fluoride, organic acid salt, and citrate salt.
[0046] 加熱により酸化アルミニウムになる化合物とは、空気中や酸素を含む雰囲気中また は不活性雰囲気中で加熱したときに酸化アルミニウムになる化合物であり、加熱によ り酸窒化アルミニウムあるいは窒化アルミニウムとなる化合物とは、窒素やアンモニア などのガスを構成する分子中に窒素元素を含むガスの雰囲気中または不活性雰囲 気中で加熱したときに酸窒化アルミニウムあるいは窒化アルミニウムになる化合物で ある。 A1Xとしては、 A1の酸化物、水酸化物、アルコキシド、炭酸塩、硝酸塩、塩ィ匕物 、フッ化物、有機酸塩、クェン酸塩などを挙げることができる。  [0046] The compound that becomes aluminum oxide by heating is a compound that becomes aluminum oxide when heated in air, in an atmosphere containing oxygen, or in an inert atmosphere, and is heated to aluminum oxynitride or aluminum nitride. The compound which becomes aluminum oxynitride or aluminum nitride when heated in an atmosphere containing a nitrogen element in a molecule constituting a gas such as nitrogen or ammonia or in an inert atmosphere. Examples of A1X include A1 oxides, hydroxides, alkoxides, carbonates, nitrates, chlorides, fluorides, organic acid salts, citrates, and the like.
[0047] 加熱により Rの酸化物となる化合物とは、空気中や酸素を含む雰囲気中または不 活性雰囲気中で加熱したときに Rの酸化物になる化合物であり、加熱により Mの酸窒 化物あるいは窒化物になる化合物とは、窒素やアンモニアなどのガスを構成する分 子中に窒素元素を含むガスの雰囲気中または不活性雰囲気中で加熱したときに の 酸窒化物あるいは窒化物になる化合物である。 RXとしては、 Rの酸化物、水酸化物 、アルコキシド、炭酸塩、硝酸塩、塩化物、フッ化物、有機酸塩、クェン酸塩などを挙 げること力 Sできる。  [0047] The compound that becomes an oxide of R when heated is a compound that becomes an oxide of R when heated in air, an atmosphere containing oxygen, or in an inert atmosphere. Alternatively, a compound that becomes a nitride is a compound that becomes an oxynitride or nitride when heated in an atmosphere containing a nitrogen element in a molecule constituting a gas such as nitrogen or ammonia or in an inert atmosphere. It is. As RX, it is possible to list R oxides, hydroxides, alkoxides, carbonates, nitrates, chlorides, fluorides, organic acid salts, citrates, and the like.
[0048] 次に、前駆体化合物として、 M— Al_〇や Si— A1_〇_Nなどの複数の元素の無 機化合物やその混合物を用いる場合としては、例えば、 Ca Al〇 、 CaSiO 、 Al Ca  [0048] Next, in the case of using an inorganic compound of a plurality of elements such as M-Al_O and Si-A1_O_N or a mixture thereof as the precursor compound, for example, CaAlO, CaSiO, Al Ca
2 2 5 3 2 2 2 5 3 2
Si〇 、 Al Ca Si O 、 A CaSi〇などを利用して、必要に応じて、 Ca〇、 Si〇 、 ASi〇, Al Ca Si O, A CaSi〇 etc., if necessary, Ca〇, Si〇, A
2 7 2 3 3 12 12 2 8 22 7 2 3 3 12 12 2 8 2
1 Oなどを混合して組成を調整すると良い。 [0049] 前記の中でも、前駆体化合物が、 M R Si Al O N (ただし、 a + b + c + d + e + f = a b c d e f The composition should be adjusted by mixing 1 O or the like. [0049] Among the above, the precursor compound is MR Si Al ON (where a + b + c + d + e + f = abcdef
1 )で表される結晶質または非晶質あるいはその混合物は目的組成に近い組成を選 定でき、 目的物が高収率で得られるので好ましい。  The crystalline or amorphous material represented by 1) or a mixture thereof is preferable because the composition close to the target composition can be selected and the target product can be obtained in high yield.
[0050] 特に、パラメータ a、 b、 c、 d、 e、 fが、  [0050] In particular, the parameters a, b, c, d, e, f are
0. 1 ≤ a ≤ 0. 3  0. 1 ≤ a ≤ 0. 3
0 ≤ b ≤ 0. 1  0 ≤ b ≤ 0. 1
0. 1 ≤ c ≤ 0. 3  0. 1 ≤ c ≤ 0. 3
0. 1 ≤ d ≤ 0. 3  0. 1 ≤ d ≤ 0. 3
0. 01 ≤ e ≤ 0. 6  0. 01 ≤ e ≤ 0.6
0 ≤ f ≤ 0. 6  0 ≤ f ≤ 0. 6
の関係を満たす組成では、 目的物が高収率で得られる。  With the composition satisfying this relationship, the target product can be obtained in high yield.
[0051] 前駆体中の Oと Nの比は最終製品の割合よりも Oが多い組成とするのがよい。この ようにして決められた組成の前駆体を焼成するにあたり、焼成反応の時間により制御 して〇/N比が所定の値となったところで反応を終了させることにより、所定の組成を 得ること力 Sできる。 [0051] The ratio of O to N in the precursor is preferably a composition in which O is larger than the proportion of the final product. In firing the precursor of the composition determined in this way, the ability to obtain a predetermined composition by terminating the reaction when the ○ / N ratio reaches a predetermined value controlled by the time of the firing reaction. S can.
[0052] 反応を終了させる〇/N比としては、合成物である窒化物または酸窒化物を主成分 とする無機結晶中に含まれる酸素と窒素の量が、  [0052] As the O / N ratio for terminating the reaction, the amount of oxygen and nitrogen contained in the inorganic crystal containing nitride or oxynitride as a main component as a main component is
0 ≤ O / (〇 + N) ≤ 0. 20  0 ≤ O / (〇 + N) ≤ 0. 20
の関係を満たす組成が、蛍光体のホストとした場合の輝度が高くなるため光学用途と して好ましい。  A composition satisfying this relationship is preferable for optical applications because the luminance when the phosphor host is used is increased.
[0053] 特に微細な粉末を得たい場合は、つぎの方法によるのがよレ、。 SiXの平均粒径が 2  [0053] If you want to obtain a particularly fine powder, use the following method. The average particle size of SiX is 2
μ m以下のものを用いて、 MX粒子および A1X粒子の平均粒径を SiX粒子の平均粒 径より小さくし、さらに好ましくは、 MXおよび A1Xが SiXの表面に付着してなる形態を 持つ前駆体を用いるのがよい。このような形態の前駆体を出発とすると、加熱中に Si X表面で MXと A1Xが反応して、比較的低温で効率よく目的とする無機結晶が形成さ れることにより、 SiXの大きさに近い微細な無機結晶を合成することができる。この手 法では、 SiXとしては、反応性と微細な粉末が得られることから、特に、二酸化ケイ素 と窒化ケィ素が出発原料として優れている。 [0054] なお、本明細書において、平均粒径とは、以下のように定義される。粒子径は、沈 降法による測定においては沈降速度が等価な球の直径として、レーザ散乱法におい ては散乱特性が等価な球の直径として定義される。また、粒子径の分布を粒度 (粒径 )分布という。粒径分布において、ある粒子径より大きい質量の総和が、全粉体のそ れの 50%を占める場合の粒子径が、平均粒径 D50として定義される。この定義およ び用語は、いずれも当業者において周知であり、例えば、 JISZ8901「試験用粉体及 び試験用粒子」、または、粉体工学会編「粉体の基礎物性」 (ISBN4- 526 -0554 4 1)の第 1章等諸文献に記載されている。本発明においては、分散剤としてへキ サメタクリン酸ナトリウムを添加した水に試料を分散させ、レーザ散乱式の測定装置を 使用して、粒子径に対する体積換算の積算頻度分布を測定した。なお、体積換算と 重量換算の分布は等しい。この積算(累積)頻度分布における 50%に相当する粒子 径を求めて、平均粒径 D50とした。以下、本明細書において、平均粒径は、上述の レーザ散乱法による粒度分布測定手段によって測定した粒度分布の中央価 (D50) に基づくことに留意されたい。平均粒径を求める手段については、上述以外にも多 様な手段が開発され、現在も続いている現状にあり、測定値に若干の違いが生じるこ ともあり得るが、平均粒径それ自体の意味、意義は明確であり、必ずしも上記手段に 限定されなレ、ことを理解されたレ、。 A precursor having a form in which the average particle size of MX particles and A1X particles is smaller than the average particle size of SiX particles, and more preferably MX and A1X adhere to the surface of SiX. Should be used. Starting from this type of precursor, MX and A1X react on the Si X surface during heating, and the target inorganic crystals are efficiently formed at a relatively low temperature. Nearly fine inorganic crystals can be synthesized. In this method, silicon dioxide and silicon nitride are particularly excellent starting materials because SiX provides reactivity and fine powder. [0054] In the present specification, the average particle diameter is defined as follows. The particle diameter is defined as the diameter of a sphere with an equivalent settling velocity in the measurement by the settling method, and as the diameter of a sphere with an equivalent scattering characteristic in the laser scattering method. The particle size distribution is referred to as particle size distribution. In the particle size distribution, the average particle size D50 is defined as the particle size when the sum of masses larger than a certain particle size occupies 50% of the total powder. These definitions and terms are well known to those skilled in the art. For example, JISZ8901 “Test powder and test particles” or “Basic Properties of Powder” (ISBN4-526) -0554 4 1) It is described in the literature such as Chapter 1. In the present invention, the sample was dispersed in water to which sodium hexamethacrylate was added as a dispersant, and the volume-based integrated frequency distribution with respect to the particle diameter was measured using a laser scattering type measuring device. The volume and weight distributions are the same. The particle diameter corresponding to 50% in this cumulative (cumulative) frequency distribution was determined and used as the average particle diameter D50. Hereinafter, in the present specification, it should be noted that the average particle diameter is based on the median value (D50) of the particle size distribution measured by the particle size distribution measuring means by the laser scattering method described above. Various means other than those described above have been developed to determine the average particle diameter, and there are still some differences in the measured values. The meaning and significance are clear and are not necessarily limited to the above means.
[0055] このような形態の前駆体を得る方法は特に規定しなレ、が、次の方法によれば効率よ く付着形態を制御した前駆体が得られる。 M、 Rを含む化合物とアルミニウムを含む 化合物とを溶剤に溶解させた溶液中に SiX粒子(好ましくは二酸化ケイ素または窒化 ケィ素粒子)を分散させた後に、乾燥、脱溶剤することにより、 SiX粒子表面に M、 R と A1の塩が付着した形態の前駆体化合物が得られる。  [0055] The method for obtaining the precursor in such a form is not particularly defined. However, according to the following method, a precursor in which the adhesion form is efficiently controlled can be obtained. SiX particles (preferably silicon dioxide or silicon nitride particles) are dispersed in a solution in which a compound containing M and R and a compound containing aluminum are dissolved in a solvent. A precursor compound in the form of M, R and A1 salts attached to the surface is obtained.
[0056] この工程の一手法として、 MX、 RXと A1Xを水溶液としたものに SiXを均一に分散さ せ攪拌しながらクェン酸を添加して SiX粒子の表面に MX、 RXと A1Xのクェン酸塩を 付着させた後に乾燥、脱水して得た複合クェン酸塩の前駆体化合物を焼成して合成 する手法を挙げること力 Sできる。ここで用いる MXとしては、 Mの硝酸塩や塩化物を、 RXとしては、 Rの硝酸塩や塩化物を、 A1Xとしては、アルミニウムの硝酸塩や塩化物 を挙げることができる。 [0057] 別の手法として、 MX、 RXと A1Xを水または溶剤に溶解させ,これに SiXを均一に 分散させた後に、噴霧乾燥して得た SiX粒子表面に MX、 RXと A1Xが付着した前駆 体化合物を焼成する手法を挙げることができる。 [0056] As one method of this process, MX, RX, and A1X in an aqueous solution, SiX is uniformly dispersed, and citrate is added while stirring to add MX, RX, and A1X citrate to the surface of the SiX particles. It is possible to cite a method of baking and synthesizing a compound compound precursor compound obtained by drying and dehydrating after depositing the salt. MX used here may be M nitrate or chloride, RX may be R nitrate or chloride, and A1X may be aluminum nitrate or chloride. [0057] As another method, MX, RX, and A1X were dissolved in water or solvent, and SiX was uniformly dispersed in this, and then MX, RX, and A1X adhered to the surface of the SiX particles obtained by spray drying. A method of firing the precursor compound can be mentioned.
[0058] 本発明では、前駆体化合物に対して還元窒化雰囲気中で加熱処理を施し、前駆 体中の酸素含有量を減少させるとともに窒素含有量を増加させることにより、酸窒化 物あるいは窒化物の無機結晶を生成させる還元窒化処理が行われる。  [0058] In the present invention, the precursor compound is subjected to a heat treatment in a reducing nitridation atmosphere to reduce the oxygen content in the precursor and increase the nitrogen content, so that the oxynitride or nitride is reduced. Reduction nitriding treatment for generating inorganic crystals is performed.
[0059] 還元窒化処理に用いられる雰囲気ガスは、窒素元素を含むガス及び水素や炭化 水素などの還元性ガスの混合ガスとすることができる。アンモニアガスまたはアンモニ ァガスと炭化水素ガスの混合ガスが好ましい。また必要に応じて、窒素ガスや希ガス( 例えば、アルゴンガス)など比較的不活性なガスとの混合ガスとすることができる。ァ ンモユアガスを用いた場合は、アンモニア中の水素が前駆体中の酸素を除去し、ァ ンモユア中の窒素が替わりに前駆体に取り込まれると考えられる。アンモニアガスと 炭化水素ガスの混合ガスを用いた場合は、炭化水素ガスと前駆体中の酸素が反応し て H〇や COとして取り除かれ、アンモニア中の窒素が替わりに前駆体に取り込まれ [0059] The atmospheric gas used for the reductive nitriding treatment may be a mixed gas of a gas containing nitrogen element and a reducing gas such as hydrogen or hydrocarbon. Ammonia gas or a mixed gas of ammonia gas and hydrocarbon gas is preferred. Moreover, it can be set as mixed gas with comparatively inert gas, such as nitrogen gas and a noble gas (for example, argon gas) as needed. When ammonia gas is used, it is considered that hydrogen in ammonia removes oxygen in the precursor, and nitrogen in ammonia is taken into the precursor instead. When a mixed gas of ammonia gas and hydrocarbon gas is used, the hydrocarbon gas and oxygen in the precursor react to be removed as H0 and CO, and nitrogen in ammonia is taken into the precursor instead.
2 2
ると考えられる。  It is thought.
[0060] 炭化水素ガスとしては、反応条件で気体であることが必要であり、メタン、プロパン や LNGなどの短鎖の炭化水素ガスが用いられる。混合ガス中のアンモニアに対する 炭化水素の割合は、 3容積%以下が望ましい。 3容積%を超えると焼成中に炭素が 析出して粉体中に残留するおそれがある。最適なガスの流速は反応容器によって異 なる力 0. 01〜0. lm/秒が一般には好ましい値と考えられる。反応温度は、 1200 °C〜1800°C、望ましくは 1300°C〜1600°Cである。この温度範囲内で、低温で焼成 すると微細な粉末が得られ、高温で焼成するとやや粒径が大きい結晶性が良い粉末 が得られ易レ、。反応時間は原料粉末の組成や種類によって異なるが、ガス還元窒化 による酸素量減少と窒素量増加が目的とする無機結晶の理論値となったところで終 了するのがよレ、。典型的な反応時間は 0. 5〜5時間とするのが好ましい。  [0060] The hydrocarbon gas needs to be a gas under the reaction conditions, and a short-chain hydrocarbon gas such as methane, propane or LNG is used. The ratio of hydrocarbon to ammonia in the mixed gas is preferably 3% by volume or less. If it exceeds 3% by volume, carbon may precipitate during firing and remain in the powder. The optimum gas flow rate, which varies depending on the reaction vessel, is generally considered to be a value of 0.01 to 0.1 lm / sec. The reaction temperature is 1200 ° C to 1800 ° C, preferably 1300 ° C to 1600 ° C. Within this temperature range, fine powders can be obtained when fired at low temperatures, and powders with a slightly larger particle size and good crystallinity can be obtained when fired at high temperatures. Although the reaction time varies depending on the composition and type of the raw material powder, it should end when the oxygen content reduction and nitrogen content increase due to gas reduction nitriding reach the theoretical value of the target inorganic crystals. The typical reaction time is preferably 0.5 to 5 hours.
[0061] 本発明では必要に応じて、ガス還元窒化反応を促進するために、前駆体化合物に 、カルシウム、カリウム、アルミニウムから選ばれる元素のフッ化物、塩化物、硫酸塩、 リン酸塩、ホウ酸塩の 1種または 2種以上の反応促進剤を添加した後に還元窒化雰 囲気中で加熱処理を施すことができる。これらの反応促進剤は高温で液相を生成し て拡散が活発になるため反応が効率よく進む。また、粒成長も促進されるため、特に 大きな粒径の粉末を製造する場合はこれらの反応促進剤を添加すると良レ、。上記の 反応促進剤のなかでも、フッ化カルシウム(CaF )、塩化カルシウム(CaCl )、フツイ匕 [0061] In the present invention, if necessary, a fluoride, chloride, sulfate, phosphate, boron of an element selected from calcium, potassium, and aluminum is used as a precursor compound in order to promote a gas reduction nitridation reaction. Reduced nitriding atmosphere after adding one or more reaction accelerators Heat treatment can be performed in an atmosphere. Since these reaction accelerators generate a liquid phase at high temperatures and diffusion becomes active, the reaction proceeds efficiently. In addition, since grain growth is also promoted, it is better to add these reaction accelerators, especially when producing powders with large particle sizes. Among the reaction accelerators mentioned above, calcium fluoride (CaF), calcium chloride (CaCl),
2 2 アルミニウム (A1F )、塩ィ匕アルミニウム (A1C1 )が効果が大きい。反応促進剤の添加  2 2 Aluminum (A1F) and salted aluminum (A1C1) are more effective. Addition of reaction accelerator
3 3  3 3
割合は、前駆体化合物 100gに対して 0. 5gから 20gの範囲がよレ、。 0. 5gより少ない と反応促進効果が少なぐ 20gより多いと他の組成物ができ易くなるため好ましくない 。また、必要に応じて反応後に、反応促進剤を溶解する溶剤 (水、有機溶剤、酸)で 処理することができる。なかでもフッ化水素酸、硫酸、塩酸、硝酸の 1種または 2種以 上の混合物の水溶液は反応促進剤の除去効果が高い。  The ratio should be in the range of 0.5g to 20g per 100g of precursor compound. When the amount is less than 5 g, the reaction promoting effect is small. When the amount is more than 20 g, another composition is easily formed, which is not preferable. Further, if necessary, after the reaction, it can be treated with a solvent (water, organic solvent, acid) that dissolves the reaction accelerator. In particular, an aqueous solution of one or more of hydrofluoric acid, sulfuric acid, hydrochloric acid, and nitric acid has a high effect of removing the reaction accelerator.
[0062] 本発明の製造方法では合成する無機結晶の種類および組成を特に限定するもの ではない。 CaAlSiNあるいは SrAlSiNと同一の結晶構造を有する無機結晶であり [0062] In the production method of the present invention, the kind and composition of the inorganic crystals to be synthesized are not particularly limited. An inorganic crystal with the same crystal structure as CaAlSiN or SrAlSiN
3 3  3 3
光学活性な元素(Mn、 Ce、 Pr、 Nd、 Eu、 Tb、 Dy、 Er、 Tm、 Ybなど)を付活した蛍 光体を合成する場合は、 Mに少なくとも Caあるいは Srを含む組成とすることができる 。特に、 Rに Euを含むようにすれば、高い輝度の蛍光体が得られ易い。  When synthesizing phosphors activated with optically active elements (Mn, Ce, Pr, Nd, Eu, Tb, Dy, Er, Tm, Yb, etc.), the composition should contain at least Ca or Sr. be able to . In particular, if Eu is contained in R, a phosphor with high luminance can be easily obtained.
[0063] 上記に記載された方法により製造された CaAlSiNあるいは SrAlSiNと同一の結 [0063] The same results as CaAlSiN or SrAlSiN produced by the method described above.
3 3 晶構造を有する無機結晶のなかでも、  Among inorganic crystals with 3 3 crystal structure,
Ca Sr SiAlSiN : Eu  Ca Sr SiAlSiN: Eu
x y 3 z  x y 3 z
の組成で示され、パラメータ x、 y、 zが、  And the parameters x, y, z are
x+y+z= 1  x + y + z = 1
0 ≤ x ≤ 1 -z  0 ≤ x ≤ 1 -z
0 ≤ y ≤ 1 -z  0 ≤ y ≤ 1 -z
0. 0001 ≤ z ≤ 0. 1  0. 0001 ≤ z ≤ 0. 1
の関係を満たす組成の粉末は赤色を発光する蛍光体となる。この組成の CaAlSiN  A powder having a composition satisfying the above relationship becomes a phosphor emitting red light. CaAlSiN of this composition
3 あるいは SrAlSiN粉末では、 2価の Euイオンが発光中心となって紫外線あるいは青  3 or SrAlSiN powder, the divalent Eu ion is the emission center
3  Three
色の可視光を吸収して赤色の発光を示す。これは、青色 LEDと組み合わせた白色 L ED照明器具に適した蛍光体である。  It absorbs visible light of color and emits red light. This is a phosphor suitable for white LED lighting fixtures combined with blue LEDs.
[0064] 本発明の製造方法として、ガス還元窒化法で、あら力じめ MSiAIN結晶(ただし、 Mは、 Mg、 Ca、 Sr、 Baから選ばれる 1種または 2種以上の元素)を合成した後に、 R の元素(ただし、 Rは、 Mn、 Ce、 Pr、 Nd、 Eu、 Tb、 Dy、 Er、 Tm、 Ybから選ばれる 1 種または 2種以上の元素)を含む化合物を添加し、その後に窒素含有雰囲気中で 12 00°C以上 2000°C以下の温度で焼成する方法がある。この方法によれば、炭素含有 量が少ない MSiAIN結晶の合成と、 Rを付活した蛍光体の合成を分けて行うことが [0064] As a production method of the present invention, a gas reduction nitridation method is used. M is an element of R after synthesizing one or more elements selected from Mg, Ca, Sr, and Ba (where R is Mn, Ce, Pr, Nd, Eu, Tb, Dy, There is a method in which a compound containing one or more elements selected from Er, Tm, and Yb) is added, followed by firing at a temperature of 1200 ° C to 2000 ° C in a nitrogen-containing atmosphere. According to this method, synthesis of an MSiAIN crystal with a low carbon content and synthesis of a phosphor activated with R can be performed separately.
3  Three
できるため、それぞれに適した合成炉ゃ合成条件を適用できる利点がある。 Rを付活 した蛍光体の合成は、窒素含有雰囲気中で、 1200°C以上 2000°C以下の温度で行 われる。 1200°Cより低温では反応が十分に進まないため、 R元素が MSiAIN結晶  Therefore, there is an advantage that synthesis conditions suitable for each can be applied. The phosphor activated with R is synthesized at a temperature of 1200 ° C or higher and 2000 ° C or lower in a nitrogen-containing atmosphere. Since the reaction does not proceed sufficiently at temperatures lower than 1200 ° C, the R element is an MSiAIN crystal.
3 に取り込まれない。 2000°Cより高いと著しい粒成長が起こるため、光学特性が低下 する。窒素含有雰囲気としては、窒素ガス、アンモニアガス、窒素と水素の混合ガス を挙げることができる。第二弾の焼成で酸素含有量を低下させる場合は、メタンガス などの炭化水素ガスをさらに混合することができる。焼成温度が高い場合は、 2から 1 00気圧程度の高圧の窒素ガス中で焼成することができる。  3 is not included. If the temperature is higher than 2000 ° C, remarkable grain growth occurs, and the optical properties deteriorate. Examples of the nitrogen-containing atmosphere include nitrogen gas, ammonia gas, and a mixed gas of nitrogen and hydrogen. When the oxygen content is reduced by firing the second bullet, a hydrocarbon gas such as methane gas can be further mixed. When the firing temperature is high, firing can be performed in nitrogen gas at a high pressure of about 2 to 100 atm.
実施例  Example
[0065] 次に本発明を以下に示す実施例によってさらに詳しく説明するが、これはあくまでも 本発明を容易に理解するための一助として開示したものである。従って、本発明が、 これらの実施例に限定されるものではないことはいうまでもない。  [0065] Next, the present invention will be described in more detail with reference to the following examples, which are disclosed as an aid for easily understanding the present invention. Therefore, it goes without saying that the present invention is not limited to these examples.
[0066] (実施例 1)  [0066] (Example 1)
図 4に実施例 1の合成のフローをまとめる。高純度アルコキシシランからゾルゲル法 で合成して得た平均粒径 0. 3 z mの球状の非晶質二酸化ケイ素粉末を、 Caと A1を 含む水溶液中に添加して、攪拌混合しながらクェン酸を添加した。この操作により、 二酸化ケイ素表面に Caと A1のクェン酸塩を吸着させた後に、攪拌しながら加熱して 水分を除去して乾燥させた (水分の乾燥'除去)。その後、空気中で 700°Cに加熱し てクェン酸塩を酸化物に変換した。得られた仮焼物をメノウ乳鉢でほぐして粉末状の 前駆体化合物を得た。前駆体の組成(単位モル%)は、  Figure 4 summarizes the synthesis flow of Example 1. Spherical amorphous silicon dioxide powder with an average particle size of 0.3 zm, obtained by sol-gel synthesis from high-purity alkoxysilane, is added to an aqueous solution containing Ca and A1, and citrate is added while stirring and mixing. Added. By this operation, Ca and A1 citrates were adsorbed on the silicon dioxide surface, and then heated with stirring to remove moisture and dry (drying of water). Then, the citrate was converted to oxide by heating to 700 ° C in air. The obtained calcined product was loosened with an agate mortar to obtain a powdery precursor compound. The composition of the precursor (unit mol%) is
40. 0%CaO- 20. 0%A1 O—40. 0%SiO  40. 0% CaO-20. 0% A1 O—40.0% SiO
2 3 2  2 3 2
である。前駆体を走査型電子顕微鏡 (SEM)で観察したところ、図 1に示すように球 状の二酸化ケイ素だけが観察され、 CaOと A1〇は凝集することなく二酸化ケイ素の 表面に層状の微細な粉末として吸着していることが確認された。 It is. When the precursor was observed with a scanning electron microscope (SEM), only spherical silicon dioxide was observed, as shown in Fig. 1, and CaO and A10 were not aggregated. It was confirmed that it was adsorbed on the surface as a layered fine powder.
[0067] 次に、この前駆体化合物約 0. 5gをァノレミナボートに入れて、内径 24mmのアルミ ナ炉心管中に置いて、炉心管の外部に発熱体を有する管状炉にセットした。炉心管 の一端よりアンモニアガスを流量 325mlZ分で導入し、 500°CZ時の速度で 700。C まで昇温した。この温度よりアンモニアガス流量を 1300ml/分に設定すると同時に メタンガスを流量 19. 5ml/分で炉内に導入し、弓 Iき続き 1300°Cまで 200°CZ時の 速度で昇温した。当温度で 2時間保持したのち、メタンガスの供給を停止し、アンモ ユア気流中で室温まで冷却した。 [0067] Next, about 0.5 g of this precursor compound was placed in an anorenomina boat, placed in an alumina core tube having an inner diameter of 24 mm, and set in a tubular furnace having a heating element outside the core tube. Ammonia gas was introduced from one end of the core tube at a flow rate of 325 mlZ, and 700 at a rate of 500 ° CZ. The temperature was raised to C. From this temperature, the ammonia gas flow rate was set to 1300 ml / min. At the same time, methane gas was introduced into the furnace at a flow rate of 19.5 ml / min, and bow I was continuously raised to 1300 ° C at a rate of 200 ° CZ. After holding at this temperature for 2 hours, the supply of methane gas was stopped, and it was cooled to room temperature in an ammonia stream.
[0068] 得られた合成物は前駆体の形態を保っており、メノウ乳鉢で簡単にほぐすことがで きた。得られた粉末の X線回折パターン(図 2)を調べた結果、 Ca AlSi O N、 A1N [0068] The obtained composite retained the form of the precursor and could be easily loosened with an agate mortar. As a result of examining the X-ray diffraction pattern (Fig. 2) of the obtained powder, Ca AlSi ON, A1N
2 3 2 5 の混合物であった。この粉末の窒素含有量および酸素含有量は各々 15. 6%、 16. 9%であった。  It was a mixture of 2 3 2 5. The nitrogen content and oxygen content of this powder were 15.6% and 16.9%, respectively.
[0069] (実施例 2) [0069] (Example 2)
高純度アルコキシシランからゾルゲル法で合成して得た平均粒径 0. 3 μ mの球状 の非晶質二酸化ケイ素粉末を、 Caと A1を含む水溶液中に添加して、攪拌混合しな 力 クェン酸を添カ卩した。この操作により、二酸化ケイ素表面に Caと A1のクェン酸塩 を吸着させた後に、攪拌しながら加熱して水分を除去して乾燥させた。その後、空気 中で 700°Cに加熱してクェン酸塩を酸化物に変換した。得られた仮焼物をメノウ乳鉢 でほぐして粉末状の前駆体化合物を得た。前駆体の組成(単位モル%)は、  A spherical amorphous silicon dioxide powder with an average particle size of 0.3 μm obtained by sol-gel synthesis from high-purity alkoxysilane was added to an aqueous solution containing Ca and A1, and stirred and mixed. The acid was added. By this operation, Ca and A1 citrates were adsorbed on the silicon dioxide surface, and then heated with stirring to remove moisture and dried. Then, the citrate was converted to oxide by heating to 700 ° C in air. The obtained calcined product was loosened with an agate mortar to obtain a powdery precursor compound. The composition of the precursor (unit mol%) is
40. 0%CaO- 20. 0%A1 O—40. 0%SiO  40. 0% CaO-20. 0% A1 O—40.0% SiO
2 3 2  2 3 2
である。前駆体を走查型電子顕微鏡(SEM)で観察したところ、図 1に示すように球 状の二酸化ケイ素だけが観察され、 CaOと A1〇は凝集することなく二酸化ケイ素の  It is. When the precursor was observed with a scanning electron microscope (SEM), only spherical silicon dioxide was observed, as shown in Fig. 1. CaO and A10 were not aggregated, and CaO and A10 were not aggregated.
2 3  twenty three
表面に層状の微細な粉末として吸着していることが確認された。  It was confirmed that it was adsorbed on the surface as a layered fine powder.
[0070] 次に、この前駆体化合物約 0. 5gをァノレミナボートに入れて、内径 24mmのアルミ ナ炉心管中に置いて、炉心管の外部に発熱体を有する管状炉にセットした。炉心管 の一端よりアンモニアガスを流量 325mlZ分で導入し、 500°CZ時の速度で 700。C まで昇温した。この温度よりアンモニアガス流量を 1300ml/分に設定すると同時に メタンガスを流量 19. 5ml/分で炉内に導入し、引き続き 1375°Cまで 200°C/時の 速度で昇温した。当温度で 4時間保持したのち、メタンガスの供給を停止し、アンモ ユア気流中で室温まで冷却した。 [0070] Next, about 0.5 g of this precursor compound was placed in an anorenomina boat, placed in an alumina core tube having an inner diameter of 24 mm, and set in a tubular furnace having a heating element outside the core tube. Ammonia gas was introduced from one end of the core tube at a flow rate of 325 mlZ, and 700 at a rate of 500 ° CZ. The temperature was raised to C. At this temperature, the ammonia gas flow rate was set to 1300 ml / min and methane gas was introduced into the furnace at a flow rate of 19.5 ml / min. The temperature was increased at a rate. After holding at this temperature for 4 hours, the supply of methane gas was stopped, and it was cooled to room temperature in an ammonia stream.
[0071] 得られた合成物は前駆体の形態を保っており、メノウ乳鉢で簡単にほぐすことがで きた。得られた粉末の X線回折パターン(図 3)を調べた結果、 CaAlSiN、 A1Nの混 [0071] The obtained composite retained the form of the precursor and could be easily loosened with an agate mortar. As a result of examining the X-ray diffraction pattern (Fig. 3) of the obtained powder, the mixture of CaAlSiN and A1N
3 合物であった。この粉末の窒素含有量および酸素含有量は各々 30. 2%、 1. 82% であった。  It was 3 compounds. The nitrogen content and oxygen content of this powder were 30.2% and 1.82%, respectively.
[0072] (実施例 3〜6) [Examples 3 to 6]
実施例 1と同じ前駆体化合物を用いて各条件で還元窒化反応処理を行ったところ When the same precursor compound as in Example 1 was used for reducing nitriding reaction treatment under each condition
、表 1に示す粉末が得られた。また、表 2に窒素含有量および酸素含有量合計に対 する酸素含有量の重量比をまとめる。 The powder shown in Table 1 was obtained. Table 2 summarizes the weight ratio of oxygen content to the total nitrogen content and oxygen content.
[0073] (実施例 7) [0073] (Example 7)
Euを添加した組成式 Eu CaSiAINを得るべく以下の合成を行った。  The following synthesis was performed in order to obtain a composition formula Eu CaSiAIN to which Eu was added.
0. 01 3  0. 01 3
[0074] 実施例 1と同じ前駆体化合物約 0. 5gをァノレミナボートに入れて、内径 24mmのアル ミナ炉心管中に置いて、炉心管の外部に発熱体を有する管状炉にセットした。炉心 管の一端よりアンモニアガスを流量 325ml/分で導入し、 500°C/時の速度で 700 °Cまで昇温した。この温度よりアンモニアガス流量を 1300ml/分に設定すると同時 にメタンガスを流量 19. 5ml/分で炉内に導入し、引き続き 1375°Cまで 200°C/時 の速度で昇温した。当温度で 4時間保持したのち、メタンガスの供給を停止し、アン モニァ気流中で室温まで冷却した。得られた合成物は前駆体の形態を保っており、メ ノウ乳鉢で簡単にほぐすことができた。得られた粉末の X線回折パターンを調べた結 果、 CaAlSiN、 A1Nの混合物であり、 SiO、 Al O、 Ca〇などは検出されなかった。  [0074] About 0.5 g of the same precursor compound as in Example 1 was placed in an ananoremina boat, placed in an alumina core tube having an inner diameter of 24 mm, and set in a tubular furnace having a heating element outside the core tube. Ammonia gas was introduced from one end of the reactor core tube at a flow rate of 325 ml / min, and the temperature was raised to 700 ° C at a rate of 500 ° C / hour. From this temperature, the ammonia gas flow rate was set to 1300 ml / min. At the same time, methane gas was introduced into the furnace at a flow rate of 19.5 ml / min, and then the temperature was increased to 1375 ° C at a rate of 200 ° C / hr. After holding at this temperature for 4 hours, the supply of methane gas was stopped, and it was cooled to room temperature in an ammonia stream. The resulting composite retained the precursor form and could be easily loosened in an agate mortar. As a result of examining the X-ray diffraction pattern of the obtained powder, it was a mixture of CaAlSiN and A1N, and SiO, Al 2 O, Ca 0 and the like were not detected.
3 2 2 3  3 2 2 3
[0075] 次いでこの粉末 0. 15gを用レ、、これを超音波照射によりエチルアルコール中に均 一分散させたコロイド溶液を得た。これに濃度 lmgEu/mlの硝酸ユーロピウム水溶 液 1. 66mlを加えたのち加熱乾燥を行い均一な粉体を得た。この粉体全量をアルミ ナボートに入れて、内径 24mmのアルミナ炉心管中に置いて、炉心管の外部に発熱 体を有する管状炉にセットした。炉心管の一端よりアンモニアガスを流量 325ml/分 で導入し、 500°CZ時の速度で 700°Cまで昇温した。この温度よりアンモニアガス流 量を 1300ml/分に設定すると同時にメタンガスを流量 19. 5ml/分で炉内に導入 し、引き続き 1500°Cまで 200°C/時の速度で昇温した。当温度で 15分間保持した のち、メタンガスの供給を停止し、アンモニア気流中で室温まで冷却した。 Next, 0.15 g of this powder was used, and a colloidal solution in which this powder was uniformly dispersed in ethyl alcohol by ultrasonic irradiation was obtained. To this was added 1.66 ml of an aqueous europium nitrate solution having a concentration of lmgEu / ml, followed by drying by heating to obtain a uniform powder. The entire amount of the powder was put in an aluminum nabot and placed in an alumina core tube having an inner diameter of 24 mm and set in a tubular furnace having a heating element outside the core tube. Ammonia gas was introduced from one end of the reactor core tube at a flow rate of 325 ml / min, and the temperature was raised to 700 ° C at a rate of 500 ° CZ. At this temperature, the ammonia gas flow rate is set to 1300 ml / min and methane gas is introduced into the furnace at a flow rate of 19.5 ml / min. Subsequently, the temperature was increased to 1500 ° C at a rate of 200 ° C / hour. After holding at this temperature for 15 minutes, the supply of methane gas was stopped, and it was cooled to room temperature in an ammonia stream.
[0076] 得られた合成物は前駆体の形態を保っており、メノウ乳鉢で簡単にほぐすことがで 岡 [0076] The obtained composite maintains the precursor form, and can be easily loosened with an agate mortar.
\ l  \ l
きた。得られた粉 ?末の X線回折パターンを調べた結果、 CaAlSiN、 A1Nの混合物で  Came. Obtained powder? As a result of examining the X-ray diffraction pattern of the powder, the mixture of CaAlSiN and A1N
3  Three
あった。 日立ハイテクノロジーズ製の蛍光分光光度計 F4500型を用いて、得られた 合成物の励起スペクトルと蛍光スペクトルの測定を行ったところ、図 5に示すように、 3 OOnmから 450nmの紫外線から青色光で励起され、 620nmに発光ピーク波長を持 つ赤色の蛍光体であることが確認された。従って、これは青色 LEDと組合わせて、白 色 LED照明器具に適用可能であることがわかる。  there were. The excitation spectrum and fluorescence spectrum of the resulting compound were measured using a fluorescence spectrophotometer F4500 manufactured by Hitachi High-Technologies, and as shown in Fig. 5, from 3 OOnm to 450nm ultraviolet to blue light. When excited, it was confirmed to be a red phosphor having an emission peak wavelength at 620 nm. Therefore, it can be seen that this can be applied to white LED lighting fixtures in combination with blue LEDs.
[0077] [表 1] 表 1 .実施例 3 ~6 合成温度 保持時間 昇温速度 主構成相 窒素含有量 酸素含有: [0077] [Table 1] Table 1. Examples 3 to 6 Synthesis temperature Holding time Temperature rising rate Main constituent phase Nitrogen content Oxygen content:
(。C) (時間) (°C/時間) (重量%) (重量%) 実施例 3 1 350 2. 0 200 Ca2AISi30 AIN 1 7. 8 1 1 . 80 実施例 4 1 375 2. 0 200 Ca2AISi30 AIN 1 8. 4 1 2. 80 実施例 5 1 365 4. 0 200 CaAISiNa. AIN 30. 0 2. 02 実施例 6 1375 3. 0 200 CaAISiN3l AIN 5. 01 (.C) (hours) (° C / hour) (wt%) (wt%) Example 3 1 350 2. 0 200 Ca 2 AISi30 AIN 1 7. 8 1 1.80 Example 4 1 375 2. 0 200 Ca 2 AISi30 AIN 1 8. 4 1 2. 80 example 5 1 365 4. 0 200 CaAISiNa. AIN 30. 0 2. 02 example 6 1375 3. 0 200 CaAISiN 3l AIN 5. 01
[0078] [表 2] [0078] [Table 2]
実施例 1 0.5200 Example 1 0.5200
実施例 2 0.0568  Example 2 0.0568
実施例 3 0.3986  Example 3 0.3986
実施例 4 0.4103  Example 4 0.4103
実施例 5 0.0631  Example 5 0.0631
実施例 6 0.1527  Example 6 0.1527

Claims

請求の範囲 The scope of the claims
[1] M、 Si、 Al、 Oの元素(ただし、 Mは、 Mg、 Ca、 Sr、 Baから選ばれる 1種または 2種 以上の元素)を少なくとも含み、必要に応じて Rの元素(ただし、 Rは、 Mn、 Ce、 Pr、 Nd、 Eu、 Tb、 Dy、 Er、 Tm、 Ybから選ばれる 1種または 2種以上の元素)を含み、必 要に応じて Nの元素を含む前駆体化合物に対して、還元窒化雰囲気中で加熱処理 を施し、該前駆体化合物中の酸素含有量を減少させるとともに窒素含有量を増加さ せることにより合成する、窒化物または酸窒化物を主成分とする無機結晶の製造方 法。  [1] At least an element of M, Si, Al, O (where M is one or more elements selected from Mg, Ca, Sr, Ba) and, if necessary, an R element (however, , R is a precursor containing one or more elements selected from Mn, Ce, Pr, Nd, Eu, Tb, Dy, Er, Tm, and Yb, and optionally an N element. The compound is heat-treated in a reducing nitridation atmosphere to reduce the oxygen content in the precursor compound and increase the nitrogen content, and the nitride or oxynitride is the main component. To produce inorganic crystals.
[2] 該前駆体化合物中に含まれる M、 R、 Si、 Al、 0、 Nの原子数の比、 a、 b、 c、 d、 e、 f (ただし、 a + b + c + d + e + f = l)が、  [2] The ratio of the number of atoms of M, R, Si, Al, 0, N contained in the precursor compound, a, b, c, d, e, f (where a + b + c + d + e + f = l)
0. 1 ≤ a ≤ 0. 3  0. 1 ≤ a ≤ 0. 3
0 ≤ b ≤ 0. 1  0 ≤ b ≤ 0. 1
0. 1 ≤ c ≤ 0. 3  0. 1 ≤ c ≤ 0. 3
0. 1 ≤ d ≤ 0. 3  0. 1 ≤ d ≤ 0. 3
0. 01 ≤ e ≤ 0. 6  0. 01 ≤ e ≤ 0.6
0 ≤ f ≤ 0. 6  0 ≤ f ≤ 0. 6
の関係を満たす、請求項 1項に記載の製造方法。  The manufacturing method of Claim 1 which satisfy | fills the relationship of these.
[3] 該前駆体化合物が、酸化物または水酸化物の混合物である、請求項 1項または 2 項に記載の製造方法。 [3] The production method according to claim 1 or 2, wherein the precursor compound is an oxide or a mixture of hydroxides.
[4] 合成される前記無機結晶に含まれる酸素と窒素の量が重量比で、 [4] The amount of oxygen and nitrogen contained in the synthesized inorganic crystal is in a weight ratio,
0 ≤ O / (〇 + N) ≤ 0. 20  0 ≤ O / (〇 + N) ≤ 0. 20
の関係を満たす、請求項 1項から 3項のいずれか 1項に記載の製造方法。  The manufacturing method of any one of Claims 1-3 satisfy | filling the relationship of these.
[5] 合成される前記無機結晶が、粉末形態である請求項 4項に記載の製造方法。 5. The production method according to claim 4, wherein the inorganic crystal to be synthesized is in a powder form.
[6] 合成される前記無機結晶が、 CaAlSiNあるいは SrAlSiNと同一の結晶構造を有 [6] The inorganic crystal to be synthesized has the same crystal structure as CaAlSiN or SrAlSiN.
3 3  3 3
する無機結晶である、請求項 4項に記載の製造方法。  5. The production method according to claim 4, which is an inorganic crystal.
[7] 合成される前記無機結晶が、 CaAlSiN、 SrAlSiN、または(Ca、 Sr) AlSiN結 [7] The inorganic crystals to be synthesized are CaAlSiN, SrAlSiN, or (Ca, Sr) AlSiN crystals.
3 3 3 晶、あるいはそれらの固溶体結晶である、請求項 6項に記載の製造方法。  The production method according to claim 6, which is a 3 3 3 crystal or a solid solution crystal thereof.
[8] 前記前駆体化合物が、加熱により二酸化ケイ素、酸窒化ケィ素あるいは窒化ケィ素 となる化合物(化合物 SiX)と、加熱により Mの酸化物、酸窒化物あるいは窒化物とな る化合物(化合物 MX)と、加熱により酸化アルミニウム、酸窒化アルミニウムあるいは 窒化アルミニウムとなる化合物(ィ匕合物 A1X)と、必要に応じて加熱により Rの酸化物 、酸窒化物あるいは窒化物となる化合物(ィヒ合物 RX)とを少なくとも含む混合物であ る、請求項 1項から 7項のいずれか 1項に記載の製造方法。 [8] The precursor compound is heated to produce silicon dioxide, silicon oxynitride or silicon nitride. Compound (compound SiX) that becomes M oxide, oxynitride or nitride by heating (compound MX), and compound that becomes aluminum oxide, aluminum oxynitride or aluminum nitride by heating (compound) 8. A mixture comprising at least a compound A1X) and, if necessary, an R oxide, an oxynitride or a compound that becomes a nitride (rich compound RX) by heating. 2. The manufacturing method according to item 1.
[9] 前記化合物 SiXが二酸化ケイ素(Si〇 )、酸窒化ケィ素(Si N O)、窒化ケィ素(Si [9] Said compound SiX is silicon dioxide (Si 0), silicon oxynitride (Si N 2 O), silicon nitride (Si
2 2 2  2 2 2
N )から選ばれる 1種または 2種以上の混合物であり、前記化合物 MXが、 Mの酸化 N) or a mixture of two or more thereof, and the compound MX is an oxidation of M
3 4 3 4
物、水酸化物、アルコキシド、炭酸塩、硝酸塩、塩化物から選ばれる 1種または 2種以 上の混合物であり、前記化合物 A1Xが、アルミニウムの酸化物、水酸化物、アルコキ シド、炭酸塩、硝酸塩、塩化物から選ばれる 1種または 2種以上の混合物であり、前 記化合物 RXが、 Rの酸化物、水酸化物、アルコキシド、炭酸塩、硝酸塩、塩化物から 選ばれる 1種または 2種以上の混合物である、請求項 8項に記載の製造方法。  Compound, hydroxide, alkoxide, carbonate, nitrate, and chloride, and the compound A1X is an aluminum oxide, hydroxide, alkoxide, carbonate, One or a mixture of two or more selected from nitrates and chlorides, wherein the compound RX is selected from oxides, hydroxides, alkoxides, carbonates, nitrates and chlorides of R The production method according to claim 8, which is a mixture of the above.
[10] 前記化合物 SiXの平均粒径が 500nm以下である、請求項 8項または 9項のいずれ 力 1項に記載の製造方法。  [10] The production method according to any one of claims 8 and 9, wherein the compound SiX has an average particle size of 500 nm or less.
[11] 前記化合物 MXの粒子、前記化合物 A1Xの粒子、前記化合物 RXの粒子の平均粒 径が前記化合物 SiXの粒子の平均粒径より小さぐ前記化合物 MXの粒子、前記化 合物 A1Xの粒子、前記化合物 RXの粒子が前記化合物 SiXの粒子の表面に付着す る、請求項 8項から 10項のいずれ力 1項に記載の製造方法。  [11] The particles of the compound MX, the particles of the compound A1X, the particles of the compound RX, the particles of the compound MX whose particle size is smaller than the average particle size of the particles of the compound SiX, and the particles of the compound A1X The manufacturing method according to any one of claims 8 to 10, wherein the particles of the compound RX adhere to the surface of the particles of the compound SiX.
[12] 前記前駆体化合物が、前記化合物 MXと、前記化合物 A1Xと、必要に応じて前記 化合物 RXとを溶剤に溶解させた溶液中に前記化合物 SiXの粒子を分散させた後に 、乾燥、脱溶剤して得られる、前記化合物 SiXの粒子表面に Mと、 A1と、必要に応じ て Rの化合物が付着した形態の混合物である、請求項 8項から 11項のいずれ力 1項 に記載の製造方法。  [12] After the precursor compound is dispersed in a solution in which the compound MX, the compound A1X, and, if necessary, the compound RX are dissolved in a solvent, the particles of the compound SiX are dispersed, dried, and removed. The force according to any one of claims 8 to 11, which is a mixture in a form in which M, A1, and, if necessary, an R compound are adhered to the particle surface of the compound SiX obtained by solvent. Production method.
[13] 前記前駆体化合物が、前記化合物 MXと、前記化合物 A1Xと、必要に応じて前記 化合物 RXとを溶解させた水溶液に前記化合物 SiXを分散させた後にクェン酸をカロ え、乾燥、脱水して得られる、複合クェン酸塩である、請求項 8項から 12項のいずれ 力 4項に記載の製造方法。  [13] The precursor compound is prepared by dispersing the compound SiX in an aqueous solution in which the compound MX, the compound A1X, and, if necessary, the compound RX are dissolved. 13. The production method according to any one of claims 8 to 12, which is a complex citrate obtained as described above.
[14] 前記前駆体化合物が、前記化合物 MXと、前記化合物 A1Xと、必要に応じて前記 化合物 RXとを溶解させた水溶液に前記化合物 SiXを分散させた後にクェン酸をカロ え、乾燥、脱水して得られる、複合クェン酸塩に加熱処理を施してクェン酸を分解除 去した化合物である、請求項 8項から 13項のいずれ力 4項に記載の製造方法。 [14] The precursor compound includes the compound MX, the compound A1X, and, if necessary, the A compound obtained by dispersing the compound SiX in an aqueous solution in which the compound RX is dissolved and then calcining the succinic acid, drying and dehydrating, and subjecting the complex succinate to heat treatment to release the succinic acid. 14. The method according to claim 8, wherein the force is any one of claims 8 to 13.
[15] 前記還元窒化雰囲気は、少なくとも、アンモニアガス、または、水素と窒素の混合ガ スを含む、請求項 1項から 14項のいずれ力 4項に記載の製造方法。 15. The production method according to any one of claims 1 to 14, wherein the reducing nitriding atmosphere includes at least ammonia gas or a mixed gas of hydrogen and nitrogen.
[16] 前記還元窒化雰囲気は、少なくとも炭化水素ガスを含む、請求項 1項から 15項の いずれか 1項に記載の製造方法。 [16] The method according to any one of claims 1 to 15, wherein the reducing nitriding atmosphere includes at least a hydrocarbon gas.
[17] 前記還元窒化雰囲気は、アンモニアガスと、メタンまたはプロパンガスの混合ガスで ある、請求項 15または 16項に記載の製造方法。 17. The production method according to claim 15 or 16, wherein the reducing nitriding atmosphere is a mixed gas of ammonia gas and methane or propane gas.
[18] 前記加熱処理を行う温度が、 1000°C以上 1800°C以下である請求項 1から 17項の レ、ずれか 1項に記載の製造方法。 18. The manufacturing method according to claim 1, wherein a temperature at which the heat treatment is performed is 1000 ° C. or higher and 1800 ° C. or lower.
[19] 合成される前記無機結晶が、 [19] The inorganic crystal to be synthesized is
Ca Sr SiAlSiN : Euで表され、パラメータ x、 y、 zが、  Ca Sr SiAlSiN: expressed in Eu, parameters x, y, z
x y 3 z  x y 3 z
x+y+ z= 1  x + y + z = 1
0 ≤ x ≤ 1 z  0 ≤ x ≤ 1 z
0 ≤ y ≤ 1 z  0 ≤ y ≤ 1 z
0. 0001 ≤ z ≤ 0. 1  0. 0001 ≤ z ≤ 0. 1
の関係を満たす蛍光体である、請求項 1項から 18項のいずれ力 1項に記載の製造方 法。  The manufacturing method according to any one of claims 1 to 18, wherein the phosphor is a phosphor satisfying the following relationship.
[20] 請求項 1項から 19項のいずれか 1項に記載された方法で製造される無機結晶が、 MSiAIN結晶(ただし、 Mは、 Mg、 Ca、 Sr、 Baから選ばれる 1種または 2種以上の  [20] The inorganic crystal produced by the method according to any one of claims 1 to 19 is an MSiAIN crystal (where M is one selected from Mg, Ca, Sr, Ba, or 2 More than species
3  Three
元素)を含み、該製造された無機結晶に更に R元素(ただし、 Rは、 Mn、 Ce、 Pr、 Nd 、 Eu、 Tb、 Dy、 Er、 Tm、 Ybから選ばれる 1種または 2種以上の元素)を含む化合物 を混合し、窒素含有雰囲気中で 1200°C以上 2000°C以下の温度で焼成することに より、 MSiAIN結晶に Rが付活された蛍光体を得ることを特徴とする蛍光体の製造  Element), and the manufactured inorganic crystal further contains R element (where R is one or more selected from Mn, Ce, Pr, Nd, Eu, Tb, Dy, Er, Tm, Yb) A phosphor containing MSiAIN crystals activated with R by mixing compounds containing element) and firing in a nitrogen-containing atmosphere at temperatures of 1200 ° C to 2000 ° C. Body manufacture
3  Three
方法。  Method.
PCT/JP2006/311239 2005-06-06 2006-06-05 Method for producing inorganic crystal WO2006132188A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007520093A JP5212691B2 (en) 2005-06-06 2006-06-05 Method for producing inorganic crystals

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-165280 2005-06-06
JP2005165280 2005-06-06
JP2006-056054 2006-03-02
JP2006056054 2006-03-02

Publications (1)

Publication Number Publication Date
WO2006132188A1 true WO2006132188A1 (en) 2006-12-14

Family

ID=37498389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311239 WO2006132188A1 (en) 2005-06-06 2006-06-05 Method for producing inorganic crystal

Country Status (3)

Country Link
JP (1) JP5212691B2 (en)
TW (1) TWI417237B (en)
WO (1) WO2006132188A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186614A (en) * 2006-01-13 2007-07-26 Mitsubishi Chemicals Corp Precursor for synthesizing composite nitride or composite oxynitride ceramics and method for producing composite nitride or composite oxynitride ceramics using the same
JP2008111035A (en) * 2006-10-30 2008-05-15 Sony Corp Phosphor, light source equipment and display device
JP2008189811A (en) * 2007-02-05 2008-08-21 Osaka Univ Fluorescent substance which uses nitride or oxynitride as base, its production method and composition containing fluorescent substance using the same, light emitting device, illuminating device, and image display
WO2008133077A1 (en) * 2007-04-18 2008-11-06 Mitsubishi Chemical Corporation Process for producing inorganic compound, fluorescent material, fluorescent-material-containing composition, luminescent device, illuminator, and image display
KR101324421B1 (en) * 2010-09-09 2013-11-01 가부시끼가이샤 도시바 Red light-emitting fluorescent substance and light-emitting device employing the same
CN105176527A (en) * 2010-10-27 2015-12-23 奇美实业股份有限公司 Fluorophor and light-emitting device
JP2018509480A (en) * 2016-01-29 2018-04-05 江蘇博睿光電有限公司Jiangsu Bree Optronics Co.,Ltd. Nitrogen-containing luminescent particles and preparation method thereof, nitrogen-containing luminescent material, and light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104212449B (en) * 2014-08-29 2016-06-08 浙江大学 A kind of burst of ultraviolel nitrogen oxides red light fluorescent powder and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223009A (en) * 1986-03-20 1987-10-01 Ube Ind Ltd Production of alpha-sialon powder
JP2001026407A (en) * 1999-07-13 2001-01-30 Fine Ceramics Gijutsu Kenkyu Kumiai Alpha sialon particle
JP2002363554A (en) * 2001-06-07 2002-12-18 National Institute For Materials Science Acid nitride phosphor activated with rare earth element
JP2005008794A (en) * 2003-06-20 2005-01-13 National Institute For Materials Science Sialon phosphor and manufacturing method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048105A (en) * 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd Phosphor composition and light emitting equipment using the same
TWI359187B (en) * 2003-11-19 2012-03-01 Panasonic Corp Method for preparing nitridosilicate-based compoun

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223009A (en) * 1986-03-20 1987-10-01 Ube Ind Ltd Production of alpha-sialon powder
JP2001026407A (en) * 1999-07-13 2001-01-30 Fine Ceramics Gijutsu Kenkyu Kumiai Alpha sialon particle
JP2002363554A (en) * 2001-06-07 2002-12-18 National Institute For Materials Science Acid nitride phosphor activated with rare earth element
JP2005008794A (en) * 2003-06-20 2005-01-13 National Institute For Materials Science Sialon phosphor and manufacturing method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186614A (en) * 2006-01-13 2007-07-26 Mitsubishi Chemicals Corp Precursor for synthesizing composite nitride or composite oxynitride ceramics and method for producing composite nitride or composite oxynitride ceramics using the same
JP2008111035A (en) * 2006-10-30 2008-05-15 Sony Corp Phosphor, light source equipment and display device
JP2008189811A (en) * 2007-02-05 2008-08-21 Osaka Univ Fluorescent substance which uses nitride or oxynitride as base, its production method and composition containing fluorescent substance using the same, light emitting device, illuminating device, and image display
WO2008133077A1 (en) * 2007-04-18 2008-11-06 Mitsubishi Chemical Corporation Process for producing inorganic compound, fluorescent material, fluorescent-material-containing composition, luminescent device, illuminator, and image display
KR101324421B1 (en) * 2010-09-09 2013-11-01 가부시끼가이샤 도시바 Red light-emitting fluorescent substance and light-emitting device employing the same
US8858835B2 (en) 2010-09-09 2014-10-14 Kabushiki Kaisha Toshiba Red light-emitting flourescent substance and light-emitting device employing the same
CN105176527A (en) * 2010-10-27 2015-12-23 奇美实业股份有限公司 Fluorophor and light-emitting device
JP2018509480A (en) * 2016-01-29 2018-04-05 江蘇博睿光電有限公司Jiangsu Bree Optronics Co.,Ltd. Nitrogen-containing luminescent particles and preparation method thereof, nitrogen-containing luminescent material, and light-emitting device
JP2020125502A (en) * 2016-01-29 2020-08-20 江蘇博睿光電有限公司Jiangsu Bree Optronics Co.,Ltd. Nitrogen-containing luminescent particle and method for preparing the same, and luminescent device

Also Published As

Publication number Publication date
JP5212691B2 (en) 2013-06-19
JPWO2006132188A1 (en) 2009-01-08
TWI417237B (en) 2013-12-01
TW200702295A (en) 2007-01-16

Similar Documents

Publication Publication Date Title
JP4581120B2 (en) Oxynitride powder and method for producing the same
JP6080597B2 (en) β-sialon phosphor powder and its application
KR101219738B1 (en) Oxynitride phosphor powders, nitride phosphor powders, and preparating method of the same
JP5910498B2 (en) Silicon nitride powder for silicon nitride phosphor, CaAlSiN3 phosphor, Sr2Si5N8 phosphor, (Sr, Ca) AlSiN3 phosphor and La3Si6N11 phosphor using the same, and method for producing the same
JP4277666B2 (en) Method for producing sialon phosphor and sialon phosphor
JP5212691B2 (en) Method for producing inorganic crystals
WO2008004640A1 (en) Sialon-base oxynitride phosphors and process for production thereof
JP5854051B2 (en) Oxynitride phosphor powder and method for producing the same
JP4415547B2 (en) Oxynitride phosphor and method for producing the same
US20120228550A1 (en) Nitride phosphor, reaction mixture and method production and light emitting device comprising such a phosphor
JP6065971B2 (en) Method for producing nitride phosphor, silicon nitride powder for nitride phosphor, and nitride phosphor
JP4466447B2 (en) Oxynitride phosphor
JP2008045080A (en) Method for producing inorganic compound
JP5110499B2 (en) Method for manufacturing phosphor
JP5002819B2 (en) Sialon phosphor and white light emitting diode using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007520093

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06756985

Country of ref document: EP

Kind code of ref document: A1