WO2006131377A1 - Verfahren zur trennung von unterschiedlich additivierten polymerbestandteilen sowie dessen verwendung - Google Patents

Verfahren zur trennung von unterschiedlich additivierten polymerbestandteilen sowie dessen verwendung Download PDF

Info

Publication number
WO2006131377A1
WO2006131377A1 PCT/EP2006/005504 EP2006005504W WO2006131377A1 WO 2006131377 A1 WO2006131377 A1 WO 2006131377A1 EP 2006005504 W EP2006005504 W EP 2006005504W WO 2006131377 A1 WO2006131377 A1 WO 2006131377A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation
density
polymers
separated
fraction
Prior art date
Application number
PCT/EP2006/005504
Other languages
English (en)
French (fr)
Inventor
Martin Schlummer
Andreas MÄURER
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to ES06743132T priority Critical patent/ES2392653T3/es
Priority to CA002609207A priority patent/CA2609207A1/en
Priority to SI200631450T priority patent/SI1899129T1/sl
Priority to US11/916,479 priority patent/US8225937B2/en
Priority to DK06743132.0T priority patent/DK1899129T3/da
Priority to PL06743132T priority patent/PL1899129T3/pl
Priority to EP06743132A priority patent/EP1899129B1/de
Publication of WO2006131377A1 publication Critical patent/WO2006131377A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/28Washing granular, powdered or lumpy materials; Wet separating by sink-float separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/28Washing granular, powdered or lumpy materials; Wet separating by sink-float separation
    • B03B5/30Washing granular, powdered or lumpy materials; Wet separating by sink-float separation using heavy liquids or suspensions
    • B03B5/44Application of particular media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0203Separating plastics from plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0217Mechanical separating techniques; devices therefor
    • B29B2017/0237Mechanical separating techniques; devices therefor using density difference
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0217Mechanical separating techniques; devices therefor
    • B29B2017/0237Mechanical separating techniques; devices therefor using density difference
    • B29B2017/0241Mechanical separating techniques; devices therefor using density difference in gas, e.g. air flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0217Mechanical separating techniques; devices therefor
    • B29B2017/0237Mechanical separating techniques; devices therefor using density difference
    • B29B2017/0244Mechanical separating techniques; devices therefor using density difference in liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0279Optical identification, e.g. cameras or spectroscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2009/00Use of rubber derived from conjugated dienes, as moulding material
    • B29K2009/06SB polymers, i.e. butadiene-styrene polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • B29K2025/04Polymers of styrene
    • B29K2025/06PS, i.e. polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/18Polymers of nitriles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2055/00Use of specific polymers obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of main groups B29K2023/00 - B29K2049/00, e.g. having a vinyl group, as moulding material
    • B29K2055/02ABS polymers, i.e. acrylonitrile-butadiene-styrene polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0026Flame proofing or flame retarding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3475Displays, monitors, TV-sets, computer screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/44Furniture or parts thereof
    • B29L2031/445Cabinets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the invention relates to a process for the separation of differently addit Being capable of separation of differently addit Being capable of separation of differently addit Being composed of differently addit Being composed of differently addit being composed of differently addit being composed of differently addit being composed of differently addit being composed of differently addit being composed of differently addit being composed of differently addit being composed of differently addit being composed of differently addit being composed of differently addit being composed of differently addit being composed of differently addit being composed of polystyrene, its copolymers and / or misery. This process is used in particular in the recycling of flame-retardant plastics, in particular from WEEE.
  • a material recycling of plastics from electronic scrap initially requires material sorting, since at least 15 different and generally incompatible types of plastic are to be expected in electronic scrap.
  • the sorting of materials can be carried out by spectroscopic methods on large plastic parts (housings of VDUs) or for the sorting of art-containing shredder fractions by means of a density separation.
  • the latter allows the separation of acrylonitrile-butadiene-styrene (ABS) and polystyrene (PS) from a light polyethylene / polypropylene fraction and from a heavy PVC-rich fraction in a two-stage process.
  • ABS acrylonitrile-butadiene-styrene
  • PS polystyrene
  • the company Hamos offers the sliding spark spectrometer
  • the above-mentioned Gleitfunkspektrometer is applicable only for large plastic parts and not for the automated sorting of shredder plastics, i. not suitable for large-scale application.
  • the application in specialized dismantling companies is possible, but only with a high specific time expenditure.
  • a disadvantage of the mentioned thermal and raw material processes is that at best new petrochemical raw materials are produced or only the Calorific value of the plastics are used.
  • Object of the present invention was therefore to eliminate the disadvantages of the prior art described and provide an easy-to-use and therefore cost-effective method that allows the separation of flame retardant technical art - substances.
  • Claim 20 describes the use of the method according to the invention.
  • the other dependent claims show advantageous developments.
  • a process is provided for the separation of differently additized polymers based on polystyrene, its copolymers and / or blends.
  • the inventive method is based on a density separation with at least one liquid or gaseous separation medium.
  • static density separations in question which can be supported by appropriate influences on the flow of media.
  • the density separation can be carried out in stirred tanks or cyclones.
  • separations based solely on flow influences are possible as a further variant. For example, the wind direction or a fluidized bed should be mentioned here.
  • the density separation according to the invention permits, for example, the separation of non-flame-retardant and flameproof, hazardous-free engineering plastics, in particular ABS and High Impact PS (HIPS) from plastic mixtures of electronic scrap. It goes beyond the described two-stage density separation for the extraction of the fractions PE / PP, ABS / PS and PVC and allows the material recycling of the economically interesting middle fraction in accordance with the European standards mentioned above, 2002/95 / EC RoHS Directive and Penta Directive 2003 / ll / EC.
  • HIPS High Impact PS
  • Brombased flame retardancy as an important additive is achieved by the addition of about 10 to 20% brominated flame retardant (JH Song, J. Vinyl Addit., Technol. 1 (1995) 46).
  • These flame retardants have a comparatively high density of more than 2 g / cm 3 (eg decabromodiphenyl ether 3.3 g / cm 3 and tetrabromobisphenol A 2.2 g / cm 3 ), so that an ABS or HIPS compound equipped in this way has a density which is higher by about 0.1 to 0.2 g / cm 3 than the base plastic. Therefore, with the aid of a separation medium in the appropriate density range, a density separation of differently additized plastics or composites can take place.
  • the process can be operated by small and medium-sized enterprises of electronic waste recycling and allows them a significant cost savings.
  • the flame retardant-free ABS / PS fractions obtained by means of modified density separation can be recycled as recyclables and must not be disposed of at a charge.
  • a separation medium which has a specific gravity in the range of from 1.06 to 1.14 g / L, more preferably from 1.08 to 1.12 g / L, whereby some of the polymers, i. the polymers additized with heavier compounds in the sink fraction and the differently added polymers, i.
  • the separation medium there are basically no restrictions, provided that the described separation takes place in the sinking and floating fraction.
  • a saline solution e.g. with halides of alkali or alkaline earth metals used.
  • the polymers of the floating fraction are preferably separated mechanically, in particular draining screens being used.
  • mixtures of water and glycerol has the particular advantage that such mixtures are non-corrosive and allow simultaneous effective washing of the plastic waste. Furthermore, such mixtures are very easy to regenerate. Loss of water or glycerin can be easy be replenished to compensate for deviations from the target density.
  • the sinking fraction is sedimented and subsequently separated mechanically, in particular by screening.
  • a higher centrifugal field e.g. a centrifuge, preferably because an accelerated separation can be achieved by the centrifugal field.
  • liquid separation media In addition to the liquid separation media, it is also possible to realize a density separation by air classification, wherein a portion of the polymers are entrained by the air flow, while the differently additivated polymers fall due to their density and are separated. In the same way, a fluidized bed for separating the polymers can be used.
  • plastics includes both plastics, their mixtures or, more generally, composites with other materials.
  • the method is particularly suitable for copolymers and blends of polystyrene.
  • polystyrene are preferably selected from the group consisting of styrene butadiene (SB), styrene acrylonitrile (SAN), acrylonitrile-butadiene-styrene (ABS), acrylic ester-styrene-acrylonitrile (ASA) and their blends, e.g. with polycarbonate (PC) or polyphenylene oxide (PPO).
  • SB styrene butadiene
  • SAN styrene acrylonitrile
  • ABS acrylonitrile-butadiene-styrene
  • ASA acrylic ester-styrene-acrylonitrile
  • PC polycarbonate
  • PPO polyphenylene oxide
  • the plastic contains other polymeric components.
  • these include, for example, other polymers selected from the group consisting of polyolefins, polyamides, polyvinyl chlorides, polyurethanes, polycarbonates, polyacrylates, polymethacrylates, polyester resins, epoxy resins, polyoxyalkylenes, polyalkylene terephthalates and polyvinyl butyral, and also copolymers and blends thereof. Flame retardants are particularly preferred as additives, among these in particular those based on bromine compounds.
  • polybrominated diphenyl ethers include, in particular, polybrominated diphenyl ethers, polybrominated biphenyls, bis [dibromopropoxy-dibromophenyl] propane, hexabromodecane and bis (tribromophenoxy) ethane.
  • the abovementioned further polymeric constituents may preferably be separated off in an upstream step by at least one further density separation.
  • Low density plastic fractions may be further densified with a release agent having a specific gravity in the range of 0.95 to 1.05 g / L.
  • higher density polymeric components can be made by further density separation with a release agent having a specific gravity in the range of 1.15 to 1.25 g / L.
  • the inventive method is applicable to
  • FIG. 1 shows the mass balance (a) and bromine balance (b) of a density fractionation according to the method according to the invention of WEEE according to Example 1.
  • FIG. 2 shows the mass balance (a) and bromine balance (b) of a density fractionation according to the invention of a plastic shredder waste according to Example 2.
  • ABS, HIPS and further styrene copolymers are enriched by a two-stage density separation with separation layers 1.0 g / cm 3 (water) and 1.2 g / cm 3 (mixture of water / glycerine) from a waste plastic mixture from the old equipment dismantling.
  • the density separation is carried out in 5-liter stirred reactors at an S / L ratio of 1: 5.
  • the target fraction 1.0 to 1.2 g / cm 3 comprises 65% by weight.
  • this target fraction is fractionated in a mixture of glycerine / water with the density of 1.1 g / cm 3 .
  • the floating fraction (density 1.0 to 1.1) is sieved off and the sinking fraction is also recovered by sieving.
  • the target fraction of the process (density 1.0 to 1.1) comprises 26% of the input material, but only 0.9% of the bromine load ( Figures Ia) and b)).
  • the separation of the brominated flame retardants is thus highly effective.
  • the specific flame retardant analysis on octabromodiphenyl ether using HPLC-UV / MS 10 showed that the target fraction certainly falls below the limit of 1000 ppm, while it is clearly exceeded in the two heavy fractions.
  • a plastic waste from the shredder light fraction of electronic scrap recovery is in density separation media of the densities 1.0, 1.10, 1.15 and 1.20 (water or water-defined Mucasol ® - sodium chloride mixtures) fractionated in stirred reactors.
  • the mass balance is shown in Fig. 2a).
  • the fractions 1.0 to 1.1, 1.10 to 1.15 and 1.15 to 1.20 were then analyzed for bromine by means of X-ray fluorescence measurement (ED-RFA apparatus from Spectro) (see Bromine contents in Fig. 2b)).
  • the target fraction of the invention described 1.0 to 1.1 g / cm 3 corresponds to 30 wt .-% of the input material and contains less than 0.04% bromine. Even in the unlikely event that only octabromodiphenyl ether (Br content 79%) is responsible for the Br content is, the limit of 1000 ppm is maintained (calculated maximum concentration of octaBDE: 500 ppm).

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Trennung von unterschiedlich additivierten Polymeren auf der Basis von Polystyrol, dessen Copolymeren und/oder Blends. Verwendung findet dieses Verfahren insbesondere beim Recycling von flammgeschützten Kunststoffen, insbesondere aus Elektroaltgeräten. Das erfindungsgemäße Verfahren ist gekennzeichnet durch eine Dichtetrennung mit mindestens einem flüssigen oder gasförmigen Trennmedium.

Description

FRAUNHOFER-GESELLSCHAFT...e.V. 069PCT 0460
Verfahren zur Trennung von unterschiedlich additi- vierten Polymerbestandteilen sowie dessen Verwendung
Die Erfindung betrifft ein Verfahren zur Trennung von unterschiedlich additivierten Polymeren auf der Basis von Polystyrol, dessen Copolymeren und/oder Elends. Verwendung findet dieses Verfahren insbesondere beim Recycling von flammgeschützten Kunststoffen, insbesondere aus Elektroaltgeräten.
Jährlich fallen in Europa etwa 6 Mio. t Elektroaltge- räte an. Etwa ein Fünftel dieser Abfälle sind Kunststoffe. Die EU-Richtlinie 2002/96/EC (WEEE-Directive) fordert hohe Verwertungsquoten, die nur mit einem werkstofflichen Recyclingverfahren für die Kunststoff-Fraktionen erreicht werden können.
Allerdings ist ein werkstoffliches Recycling für Kunststoffe aus Elektroaltgeräten aufgrund ihrer WerkstoffVielfalt und wegen ihres hohen Schadstoffge- haltes nicht Stand der Technik. Als Schadstoffe sind die veralteten bromierten Flammschutzadditive mit hohem Dioxinbildungspotential zu nennen. Neue Arbeiten belegen auch toxische Wirkungen der bromierten Flamm- hemmer selbst, insbesondere der PBDE und PBB.
So sind diese früher vielfach eingesetzte Additive, die mit den heutigen Elektroaltgeräten entsorgt werden, mittlerweile mit Verboten und strengen Grenzwer- ten belegt: 2002/95/EC RoHS-Richtlinie und Penta- Richtlinie 2003/11/EC.
Ein werkstoffliches Recycling von Kunststoffen aus Elektronikschrott bedarf zunächst einer Materialsor- tierung, da im Elektronikschrott mindestens 15 verschiedene und in der Regel inkompatible Kunststoffarten zu erwarten sind. Die Materialsortierung kann über spektroskopische Methoden an großen Kunststoffteilen (Gehäuse von Bildschirmgeräten) erfolgen oder zur Materialsortierung von kunstStoffhaltigen Shred- derfraktionen über eine Dichtetrennung. Letztere erlaubt in einem zweistufigen Prozess die Abtrennung von Acrylnitril-Butadien-Styrol (ABS) und Polystyrol (PS) von einer leichten Polyethylen/Polypropylen- Fraktion sowie von einer schweren PVC-reichen Fraktion. Eine Trennung von auf Brombasis flammgeschützten und nicht-flammgeschützten Materialien der Mittelfraktion (ABS und PS) erfolgt nicht.
Die Firma Hamos bietet das Gleitfunkenspektrometer
Slide-Spec-S2 an, mit dem eine gleichzeitige Erkennung des Kμnststofftyps sowie die Identifizierung von bromhaltigen Flammschutzmitteln erfolgen kann (http: //hamos . com/en/products/plastic-identifica- tion.htm) . Zur Entsorgung der zum Teil mit bromierten Flamm- schutzadditiven ausgerüsteten Kunststoffabfalle aus der Kunststoffshreddertrennung wurden daher thermische und rohstoffliehe Verfahren entwickelt, z.B. Py- rolyse wie Haloclean u.a. oder Schwarze Pumpe (Uddin, M.A. ; Bhaskar, T.; Kaneko J.; Muto, A.; Sakata, Y. ; Matsui, T. (2002) "Dehydrohalogenatiopn during pyro- lysis of brominate flame retardant containing high impact polystyrene (HIPS. Br) mixed with polyvinyl- Chloride (PVC) . Fuel 81, pp 1819-1825) .
Für ein hochwertiges werkstoffliches Recycling der enthaltenen Kunststoffe wurden verschiedene chemische und physikalische Verfahren zur Abtrennung der bro- mierten Flammschutzadditive im Labor- und kleintechnischen Maßstab entwickelt . Hierzu zählen die reduk- tive Halogenierung, wie in Maurer, A. , Schlummer, M. (2004) "Good as new. Recycling plastics from WEEE and packaging waste." Waste Management World, May-June 2004, pp 33-43 beschrieben, oder auch die selektive
Extraktion (Von Quast, O. (1996) : Universelle Methode zur Dehalogenierung von Thermoplasten. Dissertation an der TU Berlin, Schriftenreihe Kunststoff-Forschung 36, Hrsg. Prof. Käufer, und EP 0 949 293) .
Das oben genannte Gleitfunkspektrometer ist nur für große Kunststoffteile anwendbar und nicht zur automatisierten Sortierung von Shredderkunststoffen, d.h. nicht für eine großtechnische Anwendung geeignet. Die Anwendung in spezialisierten Demontagebetrieben ist möglich, allerdings nur mit hohem spezifischem Zeitaufwand .
Nachteilig bei den genannten thermischen und roh- stofflichen Verfahren ist, dass bestenfalls neue pet- rochemische Rohstoffe produziert oder lediglich der Heizwert der Kunststoffe genutzt werden.
Chemische Verfahren (reduktive Dehalogenierung) bedürfen des Einsatzes teurer Reduktionsmittel (z.B. reines Natrium) , die zudem ein wasserfreies Arbeiten, d.h. eine sehr gründliche, energieintensive Trocknung der Abfälle erfordern.
Dagegen zeigen die oben genannten physikalischen Ver- fahren, die auf dem Prinzip unterschiedlichen Löseverhaltens von Polymer und Flammschutzadditiv arbeiten, Schwächen bei der Abtrennung von schwerlöslichen Additiven, insbesondere Decabromdiphenylether, (DBDE) und 1,2-Bis-Tribromphenoxyethan (TBPE). Zudem werden größere Lösungsmittelmengen benötigt, die in der Regel destillativ zurückgewonnen werden müssen.
Weiterhin spricht gegen die genannten thermischen, rohstoffliehen, chemischen und physikalischen Verfah- ren, dass die Umsetzung mit hohen Investitionskosten verbunden ist und erst bei hohen Durchsatzmengen (> 1000 Jahrestonnen) rentabel betrieben werden können.
Aufgabe der vorliegenden Erfindung war es daher, die beschriebenen Nachteile des Standes der Technik zu beseitigen und ein einfach zu handhabendes und damit kostengünstiges Verfahren bereitzustellen, das die Abtrennung von flammschutzfreien technischen Kunst - Stoffen erlaubt.
Diese Aufgabe wird durch das Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Anspruch 20 beschreibt die erfindungsgemäße Verwendung des Verfahrens. Die weiteren abhängigen Ansprüche zeigen vorteilhafte Weiterbildungen auf. Erfindungsgemäß wird ein Verfahren zur Trennung von unterschiedlich additivierten Polymeren, auf der Basis von Polystyrol, dessen Copolymeren und/oder Blends bereitgestellt. Das erfindungsgemäße Verfahren beruht dabei auf einer Dichtetrennung mit mindestens einem flüssigen oder gasförmigen Trennmedium. Hierbei kommen als eine erfindungsgemäße Variante statische Dichtetrennungen in Frage, die durch entsprechende Beeinflussungen der Strömung der Medien unterstützt werden können. Die Dichtetrennung kann in Rührkesseln oder Zyklonen durchgeführt werden. Ebenso sind als weitere Variante alleinig auf Strömungseinflüssen basierende Trennungen möglich. Hier sind z.B. die Wind- sichtung oder ein Wirbelbett zu nennen.
Die erfindungsgemäße Dichtetrennung erlaubt die beispielsweise die Abtrennung von nicht flammgeschützten und flammschutzfreien, gefahrstofffreien technischen Kunststoffen, insbesondere ABS und High Impact PS (HIPS) aus KunstStoffmischungen des Elektronikschrotts. Sie geht dabei über die beschriebene zweistufige Dichtetrennung zur Gewinnung der Fraktionen PE/PP, ABS/PS und PVC hinaus und ermöglicht das werk- stoffliche Recycling der wirtschaftlich interessanten Mittelfraktion im Einklang mit den oben genannten europäischen Normen, 2002/95/EC RoHS -Richtlinie und Penta-Richtlinie 2003/ll/EC.
Eine brombasierte Flammschutzausrüstung als eine wichtige Additivierung wird durch den Zusatz von ca. 10 bis 20 % bromierter Flammschutzmittel erreicht (J. H. Song, J. Vinyl Addit . Technol . 1 (1995) 46). Diese Flammschutzmittel weisen eine vergleichsweise hohe Dichte von über 2 g/cm3 (z.B. Decabromdiphenylether 3,3 g/cm3 und Tetrabrombisphenol A 2,2 g/cm3) auf, sodass ein so ausgerüsteter ABS- oder HIPS Compound eine um ca. 0,1 bis 0,2 g/cm3 höhere Dichte aufweist als der Basiskunststoff. Deshalb kann mit Hilfe eines Trennmediums im geeigneten Dichtebereich eine Dichte- trennung unterschiedlich additivierter Kunststoffe oder Verbundstoffe erfolgen.
Hieran war besonders überraschend, dass trotz Anwesenheit von weiteren Füllstoffen, durch die die Dich- te des Systems ebenfalls beeinflusst wird, die erfindungsgemäße Abtrennung erzielt werden kann.
Im Gegensatz zu den im Stand der Technik aufgeführten rohstoffliehen, thermischen, chemischen und physika- lischen Verfahren ist das beschriebene Verfahren großtechnisch mit am Markt verfügbaren Aggregaten umsetzbar und bedarf nur sehr geringer Investitionskosten. Es ist mit geringem personellem Aufwand und Platzbedarf zu betreiben und ist bereits für geringe Durchsatzmengen wirtschaftlich darzustellen.
Damit kann das Verfahren von klein- und mittelständigen Unternehmen der Elektronikschrottverwertung betrieben werden und ermöglicht diesen eine deutliche Kostenersparnis. Die mittels modifizierter Dichtetrennung gewonnen flammschutzmittelfreien ABS/PS- Fraktionen können als Wertstoffe erlöst und müssen nicht kostenpflichtig entsorgt werden.
Der Einsatz von teueren Reduktionsmitteln oder Lösungsmitteln, die destillativ regeneriert werden müssen, wird vermieden. Aufgrund mechanisch recyclebarer Trennmedien lassen sich zudem die Betriebskosten niedrig halten.
Es findet keine thermische-mechanische Belastung des Polymers statt und damit auch keine Materialschädigung und kein Molekulargewichtsabbau. Die originären Polyτnereigenschaften und die Polymerqualität bleiben erhalten.
Vorzugsweise wird ein Trennmedium verwendet, das eine spezifische Dichte im Bereich von 1,06 bis 1,14 g/L, besonders bevorzugt von 1,08 bis 1,12 g/L aufweist, wodurch sich ein Teil der Polymere, d.h. die Polyme- re, die mit schwereren Verbindungen additiviert sind, in der Sinkfraktion und die unterschiedlich additi- vierten Polymere, d.h. die Polymere, die mit leichteren Verbindungen additivert sind, in der Schwimmfraktion sammeln und dadurch einfach voneinander getrennt werden.
Hinsichtlich des Trennmediums gibt es grundsätzlich keinerlei Einschränkungen, sofern die beschriebene Auftrennung in die Sink- und Schwimmfraktion erfolgt. Bevorzugt wird als Trennmedium eine Mischung aus Wasser und einem mit Wasser mischbaren Lösungsmittel mit einer Dichte > 1 g/L, z.B. Glycerin, oder auch eine Salzlösung, z.B. mit Halogeniden der Alkali- oder Erdalkalimetalle, eingesetzt. Diese Systeme bringen den Vorteil mit sich, dass eine sehr genaue Einstellung der Dichte erfolgen kann. Die Polymere der Schwimmfraktion werden vorzugsweise mechanisch abgetrennt, wobei insbesondere Abtropfsiebe eingesetzt werden.
Die Verwendung von Mischungen aus Wasser und Glycerin hat den besonderen Vorteil, dass derartige Mischungen nicht korrosiv sind und eine simultane effektive Wäsche der Kunststoffabfalle ermöglichen. Weiterhin sind derartige Mischungen sehr einfach zu regenerieren. Verluste an Wasser oder Glycerin können einfach nachdosiert werden, um Abweichungen von der Solldichte auszugleichen.
In einer einfachen Variante ist es auch möglich, dass die Sinkfraktion sedimentiert wird und im Anschluss mechanisch, insbesondere durch Siebung, abgetrennt wird. Weiterhin ist der Einsatz eines höheren Zentrifugalfeldes, z.B. einer Zentrifuge, bevorzugt, da durch das Zentrifugalfeld eine beschleunigte Abtren- nung erreicht werden kann.
Neben den flüssigen Trennmedien besteht auch die Möglichkeit, eine Dichtetrennung durch Windsichtung zu realisieren, wobei ein Teil der Polymere durch die Luftströmung mitgerissen werden, während die unterschiedlich additivierten Polymere aufgrund ihrer Dichte absinken und so abgetrennt werden. In gleicher Weise kann auch ein Wirbelbett zur Trennung der Polymere eingesetzt werden.
Der in der vorliegenden Anmeldung benutzte Begriff der Kunststoffe umfasst sowohl Kunststoffe, deren Gemische oder auch ganz allgemein Verbundstoffe mit andern Materialien.
Das Verfahren eignet sich insbesondere für Copolymere und Blends von Polystyrol. Diese sind bevorzugt ausgewählt aus der Gruppe bestehend aus Styrol -Butadien (SB) , Styrolacrylnitril (SAN) , Acrylnitril-Butadien- Styrol (ABS) , Acrylester-Styrol -Acrylnitril (ASA) und deren Blends, z.B. mit Polycarbonat (PC) oder Po- lyphenylenoxid (PPO) .
Es ist ebenso möglich, dass der Kunststoff weitere polymere Bestandteile enthält. Hierzu zählen beispielsweise andere Polymere ausgewählt aus der Gruppe bestehend aus Polyolefinen, Polyamiden, Polyvinylchloriden, Polyurethanen, Polycarbonaten, Polyacryla- ten, Polymethacrylaten, Polyesterharzen, Epoxidharzen, Polyoxyalkylenen, Polyalkylenterephthalaten und Polyvinylbutyral sowie deren Copolymeren und Blends . Als Additive sind besonders bevorzugt Flammschutzmittel enthalten, unter diesen insbesondere solche, die auf Bromverbindungen basieren. Hierzu zählen insbesondere polybromierte Diphenylether, polybromierte Biphenyle, bis- [Dibromopropoxy-dibromphenyl] propan, Hexabromdecan und bis- (Tribromphenoxy) ethan.
Die zuvor genannten weiteren polymeren Bestandteile können vorzugsweise in einem vorgelagerten Schritt durch mindestens eine weitere Dichtetrennung abgetrennt werden. So können z.B. Kunststofffraktionen mit geringer Dichte durch eine weitere Dichtetrennung mit einem Trennmittel mit einer spezifischen Dichte im Bereich von 0,95 bis 1,05 g/L durchgeführt werden. Polymere Bestandteile mit einer höheren Dichte können beispielsweise durch eine weitere Dichtetrennung mit einem Trennmittel mit einer spezifischen Dichte im Bereich von 1,15 bis 1,25 g/L durchgeführt werden.
Grundsätzlich ist es natürlich auch möglich, dass in den durchgeführten Dichtetrennungen weitere nicht- polymere Bestandteile des Grundstoffs entfernt werden, z.B. können Schmutzpartikel durch Filtration entfernt werden.
Das erfindungsgemäße Verfahren ist anwendbar auf
• Gehäusefraktionen aus der Demontage von Bildschirmgeräten, die eine geringe Materialvielfalt aufweisen,
• nach dem Stand der Technik über Dichtefraktio- nierung angereicherte ABS- und PS-haltige Kunststoffshredder aus der Elektronikschrottaufbereitung.
Anhand der nachfolgenden Figuren und Beispiele soll der erfindungsgemäße Gegenstand näher erläutert werden, ohne diesen auf die hier gezeigten speziellen Ausführungsformen einschränken zu wollen.
Fig. 1 zeigt die Massenbilanz (a) und Brombilanz (b) einer Dichtefraktionierung nach dem erfindungsgemäßen Verfahren von Elektroaltgeräten gemäß Beispiel 1.
Fig. 2 zeigt die Massenbilanz (a) und Brombilanz (b) einer erfindungsgemäßen Dichtefraktionierung eines Kunststoffshredderabfalls gemäß Beispiel 2.
Beispiel 1
Gehäusekunststoffabfalle aus Elektroaltgeräte- Demontage
ABS, HIPS sowie weiter Styrolcopolymere werden durch eine zweistufige Dichtetrennung mit Trennschichten 1,0 g/cm3 (Wasser) und 1,2 g/cm3 (Mischung Was- ser/Glycerin) aus einer Kunststoffabfallmischung aus der Altgerätedemontage angereichert. Die Dichtetrennung erfolgt dabei in 5 -Liter Rührreaktoren bei einem S/L-Verhältnis von 1:5. Die Zielfraktion 1,0 bis 1,2 g/cm3 umfasst 65 Gew.-%. In einem weiteren Schritt wird diese Zielfraktion in einer Mischung aus Glyce- rin/Wasser mit der Dichte von 1,1 g/cm3 fraktioniert. Die Schwimmfraktion (Dichte 1,0 bis 1,1) wird abge- siebt, die Sinkfraktion ebenfalls durch Siebung gewonnen. Alle vier Fraktionen (Dichte < 1, 1,0 bis 1,1, 1,1 bis 1,2 und > 1,2) werden getrocknet, gewogen und mittels Röntgenfluoreszenzmessung (ED-RFA- Gerät der Fa. Spectro) auf Brom analysiert. Diese Werte erlauben eine Massen- sowie eine Brombilanz.
Die Zielfraktion des Verfahrens (Dichte 1,0 bis 1,1) umfasst 26 % des Inputmaterials, aber nur 0,9 % der Bromfracht (Fign. Ia) und b) ) . Die Abtrennung der bromierten Flammschutzmittel ist somit hocheffektiv. Die spezifische Flammschutzmittelanalytik auf Oc- tabromdiphenylether mittels HPLC-UV/MS10 ergab, dass die Zielfraktion den Grenzwert von 1000 ppm sicher unterschreitet, während er in den beiden Schwerfraktionen deutlich überschritten wird.
Tabelle 1
Figure imgf000013_0001
Beispiel 2
Kunststoffreiche Shredderleichfraktion aus ElektronikschrottVerwertung
Ein Kunststoffabfall aus der Shredderleichtfraktion einer Elektronikschrottverwertung wird in Dichtetrennmedien der Dichten 1,0, 1,10, 1,15 und 1,20 (Wasser bzw. definierte Wasser-Mucasol®- Kochsalzmischungen) in Rührreaktoren fraktioniert. Die Massenbilanz ist in Fig. 2a) dargestellt. Anschließend wurden die Fraktionen 1,0 bis 1,1, 1,10 bis 1,15 und 1,15 bis 1,20 mittels Röntgenfluores- zenzmessung (ED-RFA-Gerät der Fa. Spectro) auf Brom analysiert (s. Bromgehalte in Fig. 2b)) .
Die Zielfraktion der beschriebenen Erfindung 1,0 bis 1,1 g/cm3 entspricht 30 Gew.-% des Inputmaterials und enthält unter 0,04 % Brom. Selbst für den unwahrscheinlichen Fall, dass nur Octabromdiphenylether (Br-Gehalt 79 %) für den Br-Gehalt verantwortlich ist, wird der Grenzwert von 1000 ppm eingehalten (rechnerische maximale Konzentration von OctaBDE: 500 ppm) .

Claims

FRAUNHOFER-GESELLSCHAFT...e.V. 059P 0744Patentansprüche
1. Verfahren zur Trennung von unterschiedlich addi- tivierten Polymeren auf der Basis von Polystyrol, dessen Copolymeren und/oder Blends mittels einer Dichtetrennung mit mindestens einem flüs- sigen oder gasförmigen Trennmedium.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass das Trennmedium ei- ne spezifische Dichte im Bereich von 1,06 bis
1,14 g/L aufweist, so dass die Polymere in der Sinkfraktion von den in der Schwimmfraktion abgetrennt werden.
3. Verfahren nach Anspruch 2,
dadurch gekennzeichnet, dass das Trennmedium eine Mischung aus Wasser und mit Wasser mischbaren Lösungsmitteln mit einer Dichte > 1 g/l oder ei- ne Salzlösung ist.
4. Verfahren nach Anspruch 3 ,
dadurch gekennzeichnet, dass das Trennmedium eine Mischung aus Wasser und Glycerin ist.
5. Verfahren nach einem der Ansprüche 2 bis 4,
dadurch gekennzeichnet, dass die Polymere der Schwimmfraktion mechanisch, insbesondere mittels Siebung, abgetrennt werden.
6. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Sinkfraktion sedimentiert wird.
7. Verfahren nach dem vorhergehenden Anspruch,
dadurch gekennzeichnet, dass die sedimentierte
Sinkfraktion im Anschluss mechanisch, insbesondere durch Siebung, abgetrennt wird.
8. Verfahren nach einem der vorhergehenden Ansprü- che,
dadurch gekennzeichnet, dass die Trennung der unterschiedlich additivierten Polymere durch ein höheres Zentrifugalfeld beschleunigt wird.
9. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass die Dichetrennung mittels Windsichten erfolgt, wobei ein Teil der Polymere durch die Luftströmung stärker mitgerissen werden, während die additivierten unterschiedlich additivierten Polymere aufgrund ihrer Dichte weniger abgelenkt und so abgetrennt wer- den,
10. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass die Dichtetrennung mit einem Wirbelbett erfolgt, wobei ein Teil der Polymere durch die Luftströmung stärker mitgerissen werden, während die unterschidlich addi- tivierten Polymere weniger abgelenkt und so ab- getrennt werden.
11. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Copolymere und
Blends von Polystyrol ausgewählt sind aus der Gruppe bestehend aus Styrol-Butadien (SB) , Sty- rol-Acrylnitril (SAN) , Acrylnitril-Butadien- Styrol (ABS), Acrylester-Styrol-Acrylnitril (ASA) und deren Blends, z.B. mit Polycarbonat
(PC) oder Polyphenylenoxid (PPO) .
12. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Kunststoff weitere polymere Bestandteile enthält.
13. Verfahren nach dem vorhergehenden Anspruch,
dadurch gekennzeichnet, dass die weiteren poly- meren Bestandteile ausgewählt sind aus der Gruppe bestehend aus Polyolefinen, Polyamiden, PoIy- vinylchloriden, Polyurethanen, Polycarbonaten, Polyacrylaten, Polymethacrylaten, Polyesterharzen, Epoxydharzen, Polyoxyalkylenen, Polyalky- lenterephthalaten und Polyvinylburyral sowie deren Copolymeren und Blends.
14. Verfahren nach einem der beiden vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die weiteren poly- meren Bestandteile in einem vorgelagerten Schritt durch mindestens eine weitere Dichtetrennung abgetrennt werden.
15. Verfahren nach dem vorhergehenden Anspruch,
dadurch gekennzeichnet, dass eine weitere Dichtetrennung mit einem Trennmittel mit einer spezifischen Dichte im Bereich von 0,95 bis 1,05 g/L durchgeführt wird.
16. verfahren nach einem der beiden vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass eine weitere Dichtetrennung mit einem Trennmittel mit einer spezifischen Dichte im Bereich von 1,15 bis 1,25 g/L durchgeführt wird.
17. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass in den Dichtetrennungen weitere nicht-polymere Bestandteile des Kunststoffs abgetrennt werden.
18. Verfahren nach mindestens einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Kunststoff als Additive auf Bromverbindungen basierende Flamm- schutzmittel enthält.
19. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Kunststoff niedermolekulare Additive, z.B. Weichmacher, ent- hält.
20. Verwendung des Verfahrens nach einem der vorhergehenden Ansprüche zum Recycling von Kunststoffen aus Elektroaltgeräten.
PCT/EP2006/005504 2005-06-08 2006-06-08 Verfahren zur trennung von unterschiedlich additivierten polymerbestandteilen sowie dessen verwendung WO2006131377A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES06743132T ES2392653T3 (es) 2005-06-08 2006-06-08 Procedimiento para la separación de componentes poliméricos con distintos aditivos así como su uso
CA002609207A CA2609207A1 (en) 2005-06-08 2006-06-08 Method for separating polymer components comprising different additives and use of said method
SI200631450T SI1899129T1 (sl) 2005-06-08 2006-06-08 Postopek za ločevanje polimernih komponent ki vsebujejo različne dodatke in uporaba omenjenega postopka
US11/916,479 US8225937B2 (en) 2005-06-08 2006-06-08 Method for separating differently additivated polymer components and use thereof
DK06743132.0T DK1899129T3 (da) 2005-06-08 2006-06-08 Fremgangsmåde til udskillelse af forskellige tilsatte polymerbestanddele samt dens anvendelse
PL06743132T PL1899129T3 (pl) 2005-06-08 2006-06-08 Sposób rozdzielania różnych dodatkowych składników polimerów oraz jego zastosowanie
EP06743132A EP1899129B1 (de) 2005-06-08 2006-06-08 Verfahren zur Trennung von unterschiedlich additivierten Polymerbestandteilen sowie dessen Verwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005026450.6 2005-06-08
DE102005026450.6A DE102005026450B4 (de) 2005-06-08 2005-06-08 Verwendung einer Dichtetrennung zur Trennung von flammgeschützten von flammschutzfreien Polymeren aus Kunststoffen aus Elektroaltgeräten

Publications (1)

Publication Number Publication Date
WO2006131377A1 true WO2006131377A1 (de) 2006-12-14

Family

ID=36954089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/005504 WO2006131377A1 (de) 2005-06-08 2006-06-08 Verfahren zur trennung von unterschiedlich additivierten polymerbestandteilen sowie dessen verwendung

Country Status (9)

Country Link
US (1) US8225937B2 (de)
EP (1) EP1899129B1 (de)
CA (1) CA2609207A1 (de)
DE (1) DE102005026450B4 (de)
DK (1) DK1899129T3 (de)
ES (1) ES2392653T3 (de)
PL (1) PL1899129T3 (de)
SI (1) SI1899129T1 (de)
WO (1) WO2006131377A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8360242B2 (en) 2004-10-21 2013-01-29 Thomas A. Valerio Wire recovery system
US9764361B2 (en) 2009-07-31 2017-09-19 Tav Holdings, Inc. Processing a waste stream by separating and recovering wire and other metal from processed recycled materials
EP4296028A1 (de) 2022-06-24 2023-12-27 Bage Plastics GmbH Verfahren zur rückgewinnung von kunststoffen

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2936432B1 (fr) * 2008-09-30 2011-09-16 Gallo Plastics Procede de separation selective de materiaux organiques usages,fragmentes au moyen d'un milieu aqueux de densite choisie
EP2399719A1 (de) 2010-06-23 2011-12-28 Total Petrochemicals Research Feluy Verfahren zur Wiedergewinnung von Polystyrol aus wiederverwerteten Kühlschränken
US8899422B2 (en) * 2011-07-05 2014-12-02 Mba Polymers, Inc. Methods, systems, and devices for enrichment of plastic materials derived from electronics shredder residue
DE102013009138A1 (de) 2013-05-31 2014-12-04 Rainer Pommersheim Verfahren und technischer Prozess zur Rückgewinnung von Rohstoffen aus papierhaltigen Abfällen mittels lonischer Flüssigkeiten
CN103980647B (zh) * 2014-04-25 2016-07-06 中北大学 Hips/abs共混改性复合材料及其制备方法
EP3305839A1 (de) 2016-10-10 2018-04-11 Fraunhofer Gesellschaft zur Förderung der Angewand Verfahren zur wiederverwertung von polyolefinhaltigem abfallmaterial
CN108247897B (zh) * 2017-12-05 2019-10-25 郑州大学 一种混合塑料的分离方法
EP3870640B1 (de) * 2018-10-26 2024-09-11 Polystyvert Inc. Verfahren zur wiederverwertung von polystyrolabfall und/oder polystyrolcopolymerabfall
JP7535588B2 (ja) * 2020-02-10 2024-08-16 イーストマン ケミカル カンパニー 廃プラスチック密度分離

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0422460A2 (de) * 1989-10-13 1991-04-17 Davidson Textron Inc. Verfahren zum Trennen und Wiedergewinnen von mehrschichtigen Kunststoffen, die an einer Fläche verbunden sind
DE4315480A1 (de) * 1993-05-10 1994-11-17 Refakt Anlagenbau Gmbh Vorrichtung zum Trennen von Kunststoff-Abfällen
DE4405903A1 (de) * 1994-02-24 1995-09-07 Kunststoff Und Umwelttechnik G Verfahren und Vorrichtung zur Trennung von Mischgütern mit Kunststoffbestandteilchen
DE19949656A1 (de) * 1999-10-14 2001-04-19 Daimler Chrysler Ag Verfahren und Vorrichtung zur automatischen Fraktionierung von Kunststoffen, Metallen oder Gläsern
DE10344861A1 (de) * 2003-09-26 2005-04-21 Helmut Nickel Verfahren zur Gewinnung von Wertstoffen und Separation schadstoffbelasteter Produkte aus verbundstoffhaltigen Altmaterialien

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3608717A (en) * 1969-07-01 1971-09-28 Brown & Williamson Tobacco Method and apparatus for the liquid separation of a mixture of materials
US3739910A (en) * 1971-03-04 1973-06-19 Massachusetts Inst Technology Vortex classifier
US4111798A (en) * 1976-11-30 1978-09-05 Battelle Development Corporation Separation of solids by varying the bulk density of a fluid separating medium
US4746422A (en) * 1985-07-26 1988-05-24 Rutgers University Method for the separation of a mixture of plastic and contaminant
US5988395A (en) * 1995-04-24 1999-11-23 Calo; Joseph M. Liquid-fluidized bed classifier (LFBC) for sorting waste plastics and other solid waste materials for recycling
US5653867A (en) * 1996-03-19 1997-08-05 The University Of Chicago Method for the separation of high impact polystyrene (HIPS) and acrylonitrile butadiene styrene (ABS) plastics
FR2751262B1 (fr) * 1996-07-22 1998-09-11 Gp Sarl Procede et installation pour separer des materiaux polymeres, polystyrene et abs obtenus
EP0949293A3 (de) 1998-04-09 2000-11-29 Matsushita Electric Industrial Co., Ltd. Eine Methode zur Verarbeitung thermoplastischer Kunstharze,welche Flammhemmer enthalten
US6727303B2 (en) * 2001-08-30 2004-04-27 Teijin Chemicals, Ltd. Flame retardant aromatic polycarbonate resin composition and molded articles thereof
EP1405706A1 (de) 2002-10-02 2004-04-07 Nippon Steel Chemical Co., Ltd. Verfahren zur Wiederverwendung von Abfallkunststoffen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0422460A2 (de) * 1989-10-13 1991-04-17 Davidson Textron Inc. Verfahren zum Trennen und Wiedergewinnen von mehrschichtigen Kunststoffen, die an einer Fläche verbunden sind
DE4315480A1 (de) * 1993-05-10 1994-11-17 Refakt Anlagenbau Gmbh Vorrichtung zum Trennen von Kunststoff-Abfällen
DE4405903A1 (de) * 1994-02-24 1995-09-07 Kunststoff Und Umwelttechnik G Verfahren und Vorrichtung zur Trennung von Mischgütern mit Kunststoffbestandteilchen
DE19949656A1 (de) * 1999-10-14 2001-04-19 Daimler Chrysler Ag Verfahren und Vorrichtung zur automatischen Fraktionierung von Kunststoffen, Metallen oder Gläsern
DE10344861A1 (de) * 2003-09-26 2005-04-21 Helmut Nickel Verfahren zur Gewinnung von Wertstoffen und Separation schadstoffbelasteter Produkte aus verbundstoffhaltigen Altmaterialien

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8360242B2 (en) 2004-10-21 2013-01-29 Thomas A. Valerio Wire recovery system
US9764361B2 (en) 2009-07-31 2017-09-19 Tav Holdings, Inc. Processing a waste stream by separating and recovering wire and other metal from processed recycled materials
EP4296028A1 (de) 2022-06-24 2023-12-27 Bage Plastics GmbH Verfahren zur rückgewinnung von kunststoffen

Also Published As

Publication number Publication date
PL1899129T3 (pl) 2013-02-28
EP1899129B1 (de) 2012-10-03
DE102005026450B4 (de) 2019-04-11
ES2392653T3 (es) 2012-12-12
US8225937B2 (en) 2012-07-24
US20080190819A1 (en) 2008-08-14
SI1899129T1 (sl) 2012-11-30
CA2609207A1 (en) 2006-12-14
EP1899129A1 (de) 2008-03-19
DE102005026450A1 (de) 2006-12-21
DK1899129T3 (da) 2013-01-14

Similar Documents

Publication Publication Date Title
EP1899129B1 (de) Verfahren zur Trennung von unterschiedlich additivierten Polymerbestandteilen sowie dessen Verwendung
Schlummer et al. Report: Recycling of flame-retarded plastics from waste electric and electronic equipment (WEEE)
EP1888677A1 (de) Verfahren zum recycling von kunststoffen und dessen verwendung
Sadat-Shojai et al. Recycling of PVC wastes
EP1311599B1 (de) Verfahren zur trennung und rückgewinnung von zielpolymeren und deren additiven aus einem polymerhaltigen material sowie dessen verwendung
Suresh et al. A review on computer waste with its special insight to toxic elements, segregation and recycling techniques
EP2513212B1 (de) Verfahren zum behandeln von kunststoffhaltigen abfällen
EP1737904A1 (de) Verfahren zum recycling von polyestern oder polyestergemischen aus polyesterhaltigen abfällen
BRPI0803390A2 (pt) composição de fibra sintética com filamentos de tapete recuperado pós-consumidor e respectivos processos de produção
Hennebert Concentrations of brominated flame retardants in plastics of electrical and electronic equipment, vehicles, construction, textiles and non-food packaging: a review of occurrence and management
EP0553315B1 (de) Verfahren zur trennung von polyethylenterephthalat (pet) und polyvinylchlorid (pvc)
EP0894818A1 (de) Verfahren zur Wiedergewinnung von löslichen Polymeren oder Polymerengemischen aus kunststoffhaltigen Materialien
Santos et al. Recycling construction, renovation, and demolition plastic waste: review of the status quo, challenges and opportunities
JP5207391B2 (ja) プラスチック部材の製造方法
EP2958683A1 (de) Verfahren und voraussetzungen für die rückgewinnung von kunststoffen aus dauerhaften gütern (asr, esr, wsr)
EP3016998A1 (de) Verfahren zur anreicherung von mindestens einem polymer aus einem polymer-haltigen abfall und polymer-recyclat
Schlummer Recycling of postindustrial and postconsumer plastics containing flame retardants
DE69514291T2 (de) Thermoplastische Harzzusammensetzungen mit verbesserter Leistung
DE4244449A1 (de) Verfahren und Vorrichtung zur mechanischen Separation metallhaltiger Kunststoffgemische und -verbunde
Hennebert Hazardous properties of mineral and organo-mineral plastic additives and management of hazardous plastics
Riise Recovering plastics from electronics waste
EP4296028A1 (de) Verfahren zur rückgewinnung von kunststoffen
AT502172A4 (de) Anlage zur selektiven behandlung von unsortierten oder vorsortierten abfallstoffen
EP0581094B1 (de) Die Verwendung von Polyisobutylen für die Entsorgung schadstoffhaltiger Feststoffe und Stäube
Schwesig et al. PC/ABS recovered from shredded waste electrical and electronics equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006743132

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2609207

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11916479

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2006743132

Country of ref document: EP