WO2006129797A1 - Rear projection type display device - Google Patents

Rear projection type display device Download PDF

Info

Publication number
WO2006129797A1
WO2006129797A1 PCT/JP2006/311101 JP2006311101W WO2006129797A1 WO 2006129797 A1 WO2006129797 A1 WO 2006129797A1 JP 2006311101 W JP2006311101 W JP 2006311101W WO 2006129797 A1 WO2006129797 A1 WO 2006129797A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display device
pixel
rear projection
screen
Prior art date
Application number
PCT/JP2006/311101
Other languages
French (fr)
Japanese (ja)
Inventor
Ichiro Matsuzaki
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to JP2007519088A priority Critical patent/JPWO2006129797A1/en
Publication of WO2006129797A1 publication Critical patent/WO2006129797A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
    • H04N5/7458Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal the modulator being an array of deformable mirrors, e.g. digital micromirror device [DMD]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens

Definitions

  • the present invention relates to a rear projection display device that projects and displays an image from behind a screen.
  • Patent Document 1 discloses the preferred U and combination of the pitch ratio between the pixel pitch and the wrench pitch (pixel pitch Z lens pitch; this is abbreviated as GpZLp).
  • a rear projection display device using a digital micromirror device (hereinafter sometimes referred to as DMD) has been proposed.
  • DMD digital micromirror device
  • light is applied to the light source power DMD, and the reflected light reflected by the mirror surface of the DMD is projected onto the rear projection screen through the lens.
  • An example of a projection apparatus using a DMD that projects light onto the rear projection screen is disclosed in Patent Document 2.
  • the minute DMD is arranged in the same manner as the arrangement of pixels for one screen (frame) of the image data.
  • each DMD tilts in a predetermined direction and is turned on / off accordingly.
  • Reflected light reflected by the reflecting surface of the DMD that is turned on is emitted to the outside of the projector device via various lenses. Thereafter, an image is formed on an image display surface of an image display object (not shown) such as a screen, and thereby an image is projected on the image display surface.
  • a mirror that reflects light is supported by a support portion.
  • the drive device changes the inclination of the reflecting surface by controlling the mirror supported by the support portion.
  • the support portion is a force supported on the back surface of the reflection surface of the mirror.
  • the reflection diffusion characteristics, particularly the reflection angle, of the reflection surface on the back side of the support portion, that is, the support portion changes.
  • a pixel where a bright spot is generated interferes with a lenticular lens, and a moire failure may occur. Furthermore, since the bright spot of the pixel is very small, it tends to interfere with a lenticular lens with a high degree of modulation. In particular, when a black screen is displayed, this bright spot is noticeable visually, and therefore a moire disorder in the black screen display is easily visible.
  • moire on the black screen is referred to as dark moire.
  • moire on a white screen (hereinafter sometimes referred to as a bright screen) is referred to as a bright moire.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-032424
  • Patent Document 2 JP-A-7-020586
  • the present invention has been made in view of the above problems, and an object thereof is to provide a back projection display device capable of suppressing moire.
  • a rear projection display device includes a light source, a digital micromirror device that modulates light emitted from the light source by a minute mirror for each pixel according to an image signal, and the digital micromirror device.
  • a black image signal is input to the digital micromirror device.
  • the projection optical system is provided with a stop for limiting the exit pupil.
  • the stop restricts the exit pupil only in the direction of driving the mirror of the digital micromirror device. This makes it possible to suppress moire without restricting the projection light more than necessary.
  • FIG. 1 is a schematic diagram showing a configuration example of a rear projection type apparatus according to the present invention.
  • FIG. 2 is a schematic diagram showing a configuration example of a pixel of a rear projection screen according to the present invention.
  • FIG. 3 is a schematic diagram showing a configuration example of a pixel of a rear projection screen according to the present invention.
  • FIG. 4 is a schematic diagram showing an example of the overall configuration of a projector according to the present invention.
  • FIG. 5 is a block diagram showing an example of an internal configuration of a projector according to the present invention.
  • FIG. 6 is a diagram for explaining a bright spot generation mechanism in a display device using DMD.
  • FIG. 7 is a diagram showing a luminance pattern in the embodiment.
  • FIG. 8 is a diagram showing the result of Fourier transform on the luminance pattern in the example. Explanation of symbols
  • FIG. 1 is a schematic plan view showing an example of the configuration of a rear projection display device according to the present invention.
  • the rear projection display device 1 includes a rear projection screen 11 and a projector 12.
  • rear projection screen 11 may be abbreviated as screen 11.
  • the rear projection screen 11 includes a lenticular lens sheet 111 and a Fresnel lens sheet 112.
  • the lenticular lens sheet 111 has a lenticular lens 211 and a light shielding pattern 212.
  • the lenticular lens 211 is provided on the light incident surface side of the lenticular lens sheet 111.
  • the lenticular lens 211 is composed of a plurality of vertically long cylindrical lenses having a force-marrow shape, and they are arranged at equal intervals.
  • the light shielding pattern 212 is a light absorption layer made of black ink or the like, and is provided in a part other than the light condensing part by the lenticular lens 211.
  • the Fresnel lens sheet 112 is close to the lenticular lens sheet 111.
  • the Fresnel lens sheet 112 includes a Fresnel lens 221 and the Fresnel lens 212 is provided on the light emission surface.
  • the Fresnel lenses 212 are lenses arranged concentrically at a fine pitch at equal intervals.
  • the direction perpendicular to the paper surface is the extending direction of the lenticular lens 211
  • the direction parallel to the paper surface is the arrangement direction of the lenticular lens 211.
  • the extending direction and the arranging direction of the lenticular lenses 211 correspond to the vertical direction and the horizontal direction of the screen 11.
  • the extending direction and the arranging direction are a vertical direction and a horizontal direction in a state where the screen 11 is installed.
  • the extending direction and the arranging direction are the vertical direction and the horizontal direction in such an installation state.
  • the light from the projector 12 is also projected on the rear surface of the screen 11.
  • the opposite side force of the Fresnel lens 221 is also incident, and the incident light passes through the Fresnel lens sheet 112 and is emitted to the Fresnel lens 221 side.
  • the emitted parallel light or convergent light is greatly diffused in the horizontal direction by the lenticular lens sheet 111. As a result, it is possible to observe an image in a wide visual field range in the horizontal direction.
  • FIG. 2 shows an example of a pixel arrangement in the rear projection screen 11 according to the present invention.
  • the pixels 23 of the screen 11 according to the present invention are arranged in a diamond shape.
  • the pixel 23 has a shape in which a rectangular pixel is inclined when observed from the viewing side.
  • the plurality of pixels 23 are arranged in such an inclined state, and are arranged in a state in which the sides are arranged substantially parallel to each other. Therefore, the pixels 23 are arranged in the inclined direction in an inclined state.
  • the pixel 23 is a tilted pixel arrayed in the horizontal and vertical directions as in the conventional pixel.
  • FIG. 3 shows the pixel width and pixel arrangement period of the screen 11 according to the present invention.
  • FIG. 3 (a) is a schematic plan view illustrating a rhombus pixel according to the present invention
  • FIG. 3 (b) is a schematic plan view illustrating a conventional square pixel.
  • the pixels 23 arranged in an inclined state are obtained by rotating the square pixels 24 by 45 °. Therefore, the pixel width of the pixels 23 arranged in an inclined state is about (2) dT ⁇ l.4dT when the pixel width dT of the square pixel 24 is set.
  • the pixel arrangement period ⁇ of the pixels 23 arranged in an inclined state is half the width in the horizontal direction, while the pixel arrangement period T of the square pixels 24 is the length of one side of the square. For this reason, the pixel arrangement period ⁇ of the pixels 23 arranged in the inclined state is equal to the square pixel 24.
  • (2) ⁇ 2 ⁇ 0.7.
  • the pixel effective portions 230 and 240 shown in FIG. 3 are the opening portions of the pixels 23 and 24, respectively.
  • X and y are the horizontal and vertical position coordinates, and the origin is the pixel center.
  • FIG. 4 shows an example of the overall configuration of the projector 12 according to the present invention.
  • 4A is a schematic perspective view
  • FIG. 4B is a schematic plan view showing the optical arrangement.
  • the light source 31 when the driving device 30 of the projector 12 drives the light source 31, the light source 31 emits white light as projection light. This white light is incident on the color wheel 34 through the condenser lens 32 and the reflection mirror 33 after unnecessary ultraviolet rays are removed by a UV filter (not shown). When the incident white light passes through the color wheel 34, one of red light, green light, and blue light is separated as will be described later. The separated light is incident on the shaping lens 351 and is bent by the reflection mirror 361 through the shaping lens 351. Any of the bent red light, green light, and blue light is irradiated to the DMD 371 via the total reflection prism 364.
  • the minute movable mirror 561 of the DMD 371 is turned on by the video data, so that any one of the irradiated red light, green light, and blue light is reflected as effective reflected light.
  • the reflected image light is guided to the superimposing unit 391 through the relay lens 381. Thereafter, the image light is combined and projected as color image light on the screen 11 through the projection lens 40 and the aperture 41 while being waved up and down by the wobbling unit 391.
  • FIG. 5 is a block diagram showing an example of the internal configuration of the drive device 30. As shown in FIG.
  • the drive device 30 includes a power supply unit 51, a light source drive unit 52, a signal processing unit 53, and a control unit 54.
  • the power supply unit 51 includes a power supply circuit, a DC power supply, and the like, and supplies power to various functional units to start the operation of the projector 12.
  • the light source driving unit 52 drives the light source 31 to turn on and emits image light from the light source 31.
  • the signal processing unit 53 includes, for example, an AD conversion circuit, a gamma correction circuit, an interface circuit, and the like.
  • Various display signals displayed by the projector 12 are input to the signal processing unit 53 from an external device (not shown) such as a video device or a personal computer.
  • the signal processing unit 53 performs signal processing such as AZD conversion on the input display signal, and converts it into a digital display signal that can be processed inside the driving device 30. This digital display signal is input from the signal processing unit 53 to the control unit 54.
  • the control unit 54 includes various control circuits, an MPU, a CPU, and the like, generates a wheel control signal (color control signal), and controls the operation of the color wheel 34 based on the wheel control signal.
  • the color wheel 34 includes a color filter 341 and a rotation control device 342.
  • the color filter 341 is also configured with three color filter forces of red, green, and blue.
  • the rotation control device 342 fixes the color filter 341 so as to be rotatable, and controls rotation at a predetermined rotation angle ′. Specifically, a color wheel control signal is generated using the system clock and input to the rotation control device 342.
  • the rotation control device 342 rotates the color filter 341 at a predetermined rotation speed 'rotation angle based on the input rotation control signal.
  • the rotation control device 342 arranges a part of the red, green, or blue filter on the optical path by changing the rotation speed. Thereby, the color filter 341 also separates the white light from the light source 31 from red light, green light, and blue light.
  • the control unit 54 controls the operation of the DMD 371 based on the light valve control signal, turns on the micro movable mirror 561, and generates effective reflected light.
  • the minute movable mirrors 561 are arranged corresponding to the frame 'memory 551.
  • the frame 'memory 551 writes the video data to the minute movable mirror 561 sequentially for each frame according to the valve control signal.
  • the minute movable mirror 561 in which the video data is written is turned on. Specifically, each micro movable mirror 561 is tilted by a predetermined angle, for example, + 12 ° with respect to the reference state when the frame memory 551 is turned on.
  • a predetermined angle for example, + 12 ° with respect to the reference state when the frame memory 551 is turned on.
  • each of the micro movable mirrors 561 is the opposite of the frame 'memory 551 when it is turned off. Tilt in the direction by a certain angle, eg –12 °. As a result, the reflected light reflected by the mirror surface of the minute movable mirror 561 is switched so that the effective reflected light necessary for forming the image and the invalid reactive reflected light have an optical path difference of 24 °. As described above, the on-off state of the micro movable mirror is controlled based on the light control signal from the control unit 54 via the frame 'memory 551', and the effective reflected light Z is invalid reflected in response to the on-Z state. Produce light.
  • the control unit 54 synchronizes the operation of the DMD 371 with the operation of the color wheel 34. Specifically, the control unit 54 inputs a light valve control signal synchronized with the wheel control signal to the DMD 371. As an example, the controller 54 synchronizes the DMD 371 with the operation of the color wheel 341 by generating this light valve control signal from the wheel control signal.
  • the control unit 54 transmits the white light to a part of the red filter of the color filter 341. In synchronization with this, the control unit 54 reflects the effective reflected light as red light on the small movable mirror 561 of the DMD 371.
  • the color wheel 34 divides red, green, and blue color video light in a time-division manner and displays a color image on the screen 11.
  • red, green, and blue power image lights are projected alternately on the screen 11 in a time-sharing manner. Because there is a limit to recognizing red, green, and blue images that the human eye switches at high speed, each projected image light is superimposed on the afterimages of red, green, and blue as color images. Visible.
  • the directional characteristics in the horizontal direction are widened and enlarged compared to the directional characteristics in the vertical direction. Therefore, as shown in FIG. 1, a lenticular lens 211 in which lenticular lenses 211 are periodically arranged in a vertical stripe shape is often used! In this case, the vertical stripe moire is generated by the interference between the vertical stripe structure of the lenticular lens 211 and the arrangement structure of the DMD 371.
  • the pixel boundary is narrow, so the pixel modulation is low and moire is not noticeable in a bright image.
  • the support part of the micromirror Due to the reflection of the As a result, a bright spot is generated at the center of the pixel corresponding to the support portion of the mirror, and moire may occur.
  • Such moire has a ratio between the pixel arrangement pitch Gp and the lenticular lens pitch Lp.
  • Gp / Lp is 2.5! / ⁇ ⁇ or 2. 8 ⁇ Gp / Lp ⁇ 3.5! / ⁇ ⁇ 3. It stands out in the range of 8 ⁇ Gp / Lp ⁇ 4.2.
  • GpZLp ⁇ 1.3 or 1.7 ⁇ Gp / Lp ⁇ 2.3.
  • the modulation degree of the pixel array is lowered, and the harmonics included in the spatial frequency component of the pixel array have a frequency around the frequency of the vertical stripe structure of the lenticular lens 211. Since the intensity can be attenuated, the vertical stripe moire can be reduced. In conventional display devices, moire is particularly noticeable in the range of the pixel pitch and wrench pitch, but in the display device of the present invention, vertical stripe moire can be reduced even in these ranges.
  • Fig. 6 shows an outline of the direction in which the light incident on the DMD panel is emitted.
  • the light incident on the DMD enters the output optical system as effective reflected light by regular reflection in the on state, but is not incident on the output optical system in the off state and is absorbed by the trap as ineffective reflected light.
  • a part of the light enters the output optical system regardless of the DMD being off. Therefore, when a black image signal is input to the DMD, the pixel center area corresponding to the mirror support portion becomes bright and bright on the screen.
  • the upper limit of the drive angle is regulated by force such as manufacturing conditions and response speed, but in the above example, it is ⁇ 12 °, and it is preferably ⁇ 15 or more from the viewpoint of preventing moire.
  • a translucent resin with a gain of 7.5 is provided on the screen surface of a rear transmissive display device having a DMD.
  • a translucent diffuser plate having a light diffusing fine particle force was attached.
  • the horizontal period Gp of the DMD pixels projected on the diffusion plate was 0.5 mm.
  • First shooting camera "FVAS_5MIC” was placed in front of the display device to display a black screen, and the brightness was measured in a dark room. In addition, the aperture 41 was not installed. There were about 10 DMD pixels in the horizontal direction and about 8 DMD pixels in the vertical direction. At this time, the resolution of the camera, that is, the number of CCD elements, was about 100 per 0.5 mm, which is the horizontal direction of DMD.
  • the luminance of the black screen display was measured under the above conditions, the luminance of two DMD pixels was integrated in the vertical direction, and the horizontal luminance pattern in the black screen was measured. As a result, a concavo-convex pattern with luminance for one cycle of the DMD pixel was measured. In Example 1, the ratio of the maximum value to the minimum value of the periodic luminance was 1.15. (See Figure 7)
  • a lenticular lens sheet was attached to the display device, and a black screen display was observed.
  • the luminance pattern is Fourier-transformed, and the period of time coincides with one period of the DMD pixel.
  • the amplitude intensity value is A
  • the luminance average value in the imaging area range is B
  • the value of AZB in Example 1 was 0.020 (see FIG. 8).
  • the means capable of reducing the modulation degree of the bright spot is not limited to the above-described means.
  • AZB is 0.045, the object of the present invention is achieved, but AZB is preferably 0.04 or less, more preferably 0.02 or less.
  • the brightness of the bright spot is reduced by reducing the amount of diffusely reflected light itself.
  • the degree of modulation is lowered.
  • the third means increases the brightness when the entire unit pixel is off and decreases the modulation degree of the bright spot.
  • the means 4 and 5 described above are for reducing the amount of diffusely reflected light passing through the outgoing optical system.
  • the diaphragm 41 is not limited to the position of the force provided on the projection side of the projection lens 40.
  • the diaphragm width is preferably 4 mm to 8 mm, more preferably 5 mm to 6 mm, from the viewpoint of the balance between brightness and moire prevention.
  • Table 1 shows the relationship between the AZB and the moire state when the exit pupil is limited by the stop.
  • Limiting the direction of driving the mirror when the exit pupil changes the on-Z off state in the DMD with a diaphragm or the like is effective in terms of both preventing dark moire and maintaining image luminance. This is because the aperture of light can be reduced while lowering the degree of horizontal modulation that causes moiré.
  • the present invention can also be applied to the force and other configurations shown in the example using one DMD panel.
  • a configuration may be adopted in which three DMDs are used and white light is separated, and then three primary colors of video light are incident and then combined to generate a color image.
  • the present invention is applied to a diamond-shaped pixel.
  • the present invention is not limited to this, and can be applied to a rectangular pixel, particularly a square pixel.
  • the present invention suppresses moire caused by the pixel arrangement structure and the lens arrangement structure, images of various shapes arranged periodically like a rhombus pixel. It can also be applied to the element.

Abstract

It is possible to provide a rear projection type display device capable of suppressing moire. A rear projection type display device projects/displays a video light generated by a DMD to a lenticular lens sheet (111) formed by a plurality of lenticular lenses (211). The display device Fourier-transforms the luminance pattern in the pixels during a black image display and satisfies the relationship A/B < 0.045 wherein A is the amplitude intensity value at the cycle matched with the one cycle of the DMD pixel and B is the average luminance value in the imaging area range.

Description

明 細 書  Specification
背面投写型表示装置  Rear projection display
技術分野  Technical field
[0001] 本発明は、映像をスクリーンの背後から投写して表示する背面投写型表示装置に 関する。  [0001] The present invention relates to a rear projection display device that projects and displays an image from behind a screen.
背景技術  Background art
[0002] 従来、一般に背面投写型テレビジョンに用いられているスクリーンでは、同心円状 のフレネルレンズ及び縦ストライプ状のレンチキュラーレンズとが使用されて 、る。こ のような背面投写型スクリーンにおいては、そのスクリーン面に投写された画素とスク リーンの周期的構造に起因してモアレ障害が発生する。そのため、画素ピッチ Gpとレ ンチキユラ一レンズのレンズピッチ(以下、これをレンチピッチ Lpと略す)とのピッチ比 が適正化されて用いられる。例えば、特許文献 1に、この画素ピッチとレンチピッチの ピッチ比(画素ピッチ Zレンズピッチ;これを GpZLpと略す)の好ま U、組合せが開 示されている。  Conventional screens generally used in rear projection televisions have used concentric Fresnel lenses and vertical stripe lenticular lenses. In such a rear projection screen, moiré failure occurs due to the periodic structure of the pixels and the screen projected on the screen. Therefore, the pitch ratio between the pixel pitch Gp and the lens pitch of the lenticular lens (hereinafter abbreviated as the wrench pitch Lp) is optimized and used. For example, Patent Document 1 discloses the preferred U and combination of the pitch ratio between the pixel pitch and the wrench pitch (pixel pitch Z lens pitch; this is abbreviated as GpZLp).
[0003] 近年、デジタルマイクロミラーデバイス(Digital Micromirror Device) (以下、 DMDと 称する場合がある)を用いた背面投写型表示装置が提案されている。このような背面 投写型表示装置では、光源力 DMDに光が照射され、 DMDの鏡面で反射した反 射光がレンズを通して背面投写型スクリーンに投射されて ヽる。この背面投写型スク リーンに光を投射する DMDを用いたプロジェクシヨン装置の一例力 特許文献 2に 開示されている。  In recent years, a rear projection display device using a digital micromirror device (hereinafter sometimes referred to as DMD) has been proposed. In such a rear projection display device, light is applied to the light source power DMD, and the reflected light reflected by the mirror surface of the DMD is projected onto the rear projection screen through the lens. An example of a projection apparatus using a DMD that projects light onto the rear projection screen is disclosed in Patent Document 2.
[0004] 特許文献 2に開示された DMDを用いたプロジェクタ装置では、微少な DMDは、映 像データの 1画面(フレーム)分の画素の配列と同様に配列されている。各 DMDは、 映像データに基づいて画素として有効'無効となった場合には、それぞれ所定の方 向に傾き、これによつてオン'オフされる。  [0004] In the projector apparatus using the DMD disclosed in Patent Document 2, the minute DMD is arranged in the same manner as the arrangement of pixels for one screen (frame) of the image data. When each DMD becomes valid / invalid as a pixel based on the video data, each DMD tilts in a predetermined direction and is turned on / off accordingly.
オン状態となった DMDが反射面で反射した反射光は、各種レンズを介してプロジ ェクタ装置の外部に出射される。その後、スクリーン等の映像表示対象物(図示せず) の映像表示面において結像し、これによつて、映像表示面上に映像が映写される。 [0005] このような DMDでは、光を反射させるミラーは、支持部に支持されている。駆動装 置は、支持部に支持されたミラーを制御することによって、その反射面の傾きを変え る。支持部は、ミラーの反射面の裏面において支持されている力 この支持部分の裏 側、つまり支持部分における反射面の反射拡散特性、特に反射角度が変化する。 Reflected light reflected by the reflecting surface of the DMD that is turned on is emitted to the outside of the projector device via various lenses. Thereafter, an image is formed on an image display surface of an image display object (not shown) such as a screen, and thereby an image is projected on the image display surface. In such a DMD, a mirror that reflects light is supported by a support portion. The drive device changes the inclination of the reflecting surface by controlling the mirror supported by the support portion. The support portion is a force supported on the back surface of the reflection surface of the mirror. The reflection diffusion characteristics, particularly the reflection angle, of the reflection surface on the back side of the support portion, that is, the support portion changes.
[0006] 本来、黒画面(以下、暗画面と呼ぶこともある)を表示するとき、光源からの光は、ミ ラー面では映像観視方向には反射されない。し力しながら、 DMDのミラーは、支持 部分における反射面の反射特性が変化しているので、本来意図しない方向へ一部 の光を反射させる。この本来意図しない反射光の一部力 映像観視方向に出射する ため、スクリーン面上の画素中で輝点として認識される。  [0006] Originally, when displaying a black screen (hereinafter sometimes referred to as a dark screen), light from the light source is not reflected in the video viewing direction on the mirror surface. However, the DMD mirror reflects part of the light in a direction that is not originally intended because the reflection characteristics of the reflecting surface at the support part have changed. This partially unintended reflected light is emitted in the video viewing direction, so it is recognized as a bright spot in the pixels on the screen surface.
[0007] DMDを用いた背面投写型表示装置にぉ 、ては、黒画面表示のとき、輝点が生じ る画素とレンチキュラーレンズとが干渉し、モアレ障害が発生することがある。さらに、 画素の輝点が非常に小さいため変調度が高ぐレンチキュラーレンズと干渉しやすい 。特に、黒画面が表示されている場合には、この輝点が顕著に視認されるため、黒画 面表示におけるモアレ障害は、視認されやすい。  [0007] In a rear projection display device using DMD, when a black screen is displayed, a pixel where a bright spot is generated interferes with a lenticular lens, and a moire failure may occur. Furthermore, since the bright spot of the pixel is very small, it tends to interfere with a lenticular lens with a high degree of modulation. In particular, when a black screen is displayed, this bright spot is noticeable visually, and therefore a moire disorder in the black screen display is easily visible.
以下、この黒画面におけるモアレを暗モアレと呼ぶ。これに対して、白画面(以下、 明画面と呼ぶことがある)におけるモアレを明モアレと呼ぶ。  Hereinafter, the moire on the black screen is referred to as dark moire. On the other hand, moire on a white screen (hereinafter sometimes referred to as a bright screen) is referred to as a bright moire.
[0008] 特許文献 1 :特開平 8— 036224号公報  [0008] Patent Document 1: Japanese Patent Laid-Open No. 8-032424
特許文献 2 :特開平 7— 020586号公報  Patent Document 2: JP-A-7-020586
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、上記課題を鑑みてなされたものであり、モアレを抑制することができる背 面投写型表示装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a back projection display device capable of suppressing moire.
課題を解決するための手段  Means for solving the problem
[0010] 本発明に係る背面投写型表示装置は、光源と、該光源から出射された光を画像信 号に従って画素ごとに微小なミラーによって変調するデジタルマイクロミラーデバイス と、該デジタルマイクロミラーデバイスで変調された画像光を投写する投射光学系と、 投射された画像が結像する周期構造を有するスクリーンとを有する背面投射型表示 装置にお ヽて、前記デジタルマイクロミラーデバイスに黒画像信号を入力したときに、 スクリーン取り付け位置に、スクリーンに換えて設けられたゲイン 7. 5の拡散板に投影 された画像中央における水平方向に配列された画素 4個以上および垂直方向に配 列された画素 1個以上を含む領域の輝度を、 1画素あたり 25以上の分解能で反投射 側正面から測定し、その輝度をスクリーンの周期構造に垂直な方向に積分した場合 に、前記輝度パターンをフーリエ変換し、 DMD画素一周期分に一致する周期での 振幅強度値を Aとし、前記撮影面積範囲での輝度平均値を Bとしたとき、 A/B< 0. 045であることを特徴とするものである。このような構成において、黒画面表示時に画 素中の輝点の変調度を低下させることができるので、暗モアレを抑制することができ る。 [0010] A rear projection display device according to the present invention includes a light source, a digital micromirror device that modulates light emitted from the light source by a minute mirror for each pixel according to an image signal, and the digital micromirror device. In a rear projection type display device having a projection optical system that projects modulated image light and a screen having a periodic structure on which the projected image is formed, a black image signal is input to the digital micromirror device. When Includes 4 or more pixels arranged in the horizontal direction and 1 or more pixels arranged in the vertical direction at the center of the image projected on the diffusion plate with a gain of 7.5 installed in place of the screen at the screen mounting position When the luminance of the area is measured from the front side of the anti-projection side with a resolution of 25 or more per pixel, and the luminance is integrated in the direction perpendicular to the periodic structure of the screen, the luminance pattern is Fourier transformed, and one cycle of the DMD pixel A / B <0.045, where A is the amplitude intensity value in the period that coincides with the minute, and B is the average luminance value in the imaging area range. In such a configuration, it is possible to reduce the degree of modulation of the bright spot in the pixel when displaying a black screen, so that dark moire can be suppressed.
[0011] さらに、前記投射光学系は、出射瞳を制限する絞りが設けられている。好ましくは、 前記絞りは、前記デジタルマイクロミラーデバイスのミラーを駆動する方向にのみ出 射瞳を制限する。これにより、必要以上に投射光を制限することなくモアレを抑制す ることがでさる。  Furthermore, the projection optical system is provided with a stop for limiting the exit pupil. Preferably, the stop restricts the exit pupil only in the direction of driving the mirror of the digital micromirror device. This makes it possible to suppress moire without restricting the projection light more than necessary.
発明の効果  The invention's effect
[0012] 本発明によれば、暗モアレを抑制することができる背面投写型表示装置を提供する ことができる。  [0012] According to the present invention, it is possible to provide a rear projection display device capable of suppressing dark moire.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]本発明に係る背面投写型装置の一構成例を示す模式図である。 FIG. 1 is a schematic diagram showing a configuration example of a rear projection type apparatus according to the present invention.
[図 2]本発明に係る背面投写型スクリーンの画素の一構成例を示す模式図である。  FIG. 2 is a schematic diagram showing a configuration example of a pixel of a rear projection screen according to the present invention.
[図 3]本発明に係る背面投写型スクリーンの画素の一構成例を示す模式図である。  FIG. 3 is a schematic diagram showing a configuration example of a pixel of a rear projection screen according to the present invention.
[図 4]本発明に係るプロジェクタの全体構成の一例を示す模式図である。  FIG. 4 is a schematic diagram showing an example of the overall configuration of a projector according to the present invention.
[図 5]本発明に係るプロジェクタの内部構成の一例を示すブロック図である。  FIG. 5 is a block diagram showing an example of an internal configuration of a projector according to the present invention.
[図 6]DMDを用いた表示装置における輝点の発生機構を説明する図である。  FIG. 6 is a diagram for explaining a bright spot generation mechanism in a display device using DMD.
[図 7]—実施の形態における輝度パターンを示す図である。  FIG. 7 is a diagram showing a luminance pattern in the embodiment.
[図 8]—実施例における輝度パターンに対するフーリエ変換の結果を示す図である。 符号の説明  FIG. 8 is a diagram showing the result of Fourier transform on the luminance pattern in the example. Explanation of symbols
[0014] 1…背面投写型表示装置、 11· ··背面投写型スクリーン、 12· ··プロジェクタ、 111— レンチキュラーレンズシート、 211· ··レンチキュラーレンズ、 212· ··遮光ノ ターン、 11 2…フレネルレンズシート、 221· ··フレネルレンズ [0014] 1 ... rear projection display device, 11 ... rear projection screen, 12 ... projector, 111— lenticular lens sheet, 211 ... lenticular lens, 212 ... shading pattern, 11 2 ... Fresnel lens sheet, 221 ... Fresnel lens
30…駆動装置、 31· ··光源、 32· ··コンデンサレンズ、 33· ··反射ミラー、 34· ··カラー ホイール、 341· ··カラーフィルター、 342· ··回転制御装置 35· ··整形用レンズ、 361 …反射ミラー、 371- --DMD, 381· ··リレ一'レンズ、 391· ··ゥォブリング部、 40· ··投写 レンズ、 41…絞り  30 ... Drive device 31 ... Light source 32 ... Condenser lens 33 ... Reflection mirror 34 ... Color wheel 341 ... Color filter 342 ... Rotation control device 35 ... Shaping lens, 361 ... Reflection mirror, 371--DMD, 381 ··· Relay 'lens, 391 ··· Wobbling part, 40 ··· Projection lens, 41 ··· Iris
51…電源部、 52· ··光源駆動部、 53· ··信号処理部、 54…制御部、 551…フレーム 'メモリ、 561…微小可動ミラー、 571…ダイクロイツク 'ミラー、 581· ··ミラー振動装置 発明を実施するための最良の形態  51 ... Power supply unit, 52 ... Light source drive unit, 53 ... Signal processing unit, 54 ... Control unit, 551 ... Frame 'memory, 561 ... Small movable mirror, 571 ... Dichroic mirror', 581 ... Mirror Best Mode for Carrying Out the Invention
[0015] 以下、本発明を実施するための最良の形態について図を参照して説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
まず、図 1を用いて、本発明に係る背面投写型表示装置の構成について説明する 。図 1は、本発明に係る背面投写型表示装置の一構成例を示す平面模式図である。 図 1に示すように、背面投写型表示装置 1は、背面投写型スクリーン 11、プロジェクタ 12とを有する。また、以下においては、背面投写型スクリーン 11をスクリーン 11と略 すことがある。  First, the configuration of a rear projection display device according to the present invention will be described with reference to FIG. FIG. 1 is a schematic plan view showing an example of the configuration of a rear projection display device according to the present invention. As shown in FIG. 1, the rear projection display device 1 includes a rear projection screen 11 and a projector 12. In the following, rear projection screen 11 may be abbreviated as screen 11.
[0016] 背面投写型スクリーン 11は、レンチキュラーレンズシート 111、フレネルレンズシート 112を有する。  The rear projection screen 11 includes a lenticular lens sheet 111 and a Fresnel lens sheet 112.
レンチキュラーレンズシート 111は、レンチキュラーレンズ 211、遮光パターン 212を 有する。レンチキュラーレンズ 211は、レンチキュラーレンズシート 111の光入射面側 に設けられている。このレンチキュラーレンズ 211は、力まぼこ型の複数の縦長シリン ドリカルレンズから構成され、それぞれが等間隔になるように配列されている。遮光パ ターン 212は、黒インク等からなる光吸収層であり、レンチキュラーレンズ 211による 集光部以外の部位に設けられて 、る。  The lenticular lens sheet 111 has a lenticular lens 211 and a light shielding pattern 212. The lenticular lens 211 is provided on the light incident surface side of the lenticular lens sheet 111. The lenticular lens 211 is composed of a plurality of vertically long cylindrical lenses having a force-marrow shape, and they are arranged at equal intervals. The light shielding pattern 212 is a light absorption layer made of black ink or the like, and is provided in a part other than the light condensing part by the lenticular lens 211.
フレネルレンズシート 112は、レンチキュラーレンズシート 111に近接している。フレ ネルレンズシート 112は、フレネルレンズ 221を有し、このフレネルレンズ 212が光出 射面に設けられている。フレネルレンズ 212は、等間隔の微細ピッチで同心円状に 配列されたレンズである。  The Fresnel lens sheet 112 is close to the lenticular lens sheet 111. The Fresnel lens sheet 112 includes a Fresnel lens 221 and the Fresnel lens 212 is provided on the light emission surface. The Fresnel lenses 212 are lenses arranged concentrically at a fine pitch at equal intervals.
[0017] なお、図 1においては、紙面に垂直な方向がレンチキュラーレンズ 211の延在方向 であり、紙面に平行な方向がレンチキュラーレンズ 211の配列方向である。また、後 述するように、これらレンチキュラーレンズ 211の延在方向、配列方向は、スクリーン 1 1の上下方向、左右方向に対応している。換言すれば、これら延在方向、配列方向 は、スクリーン 11が設置された状態で、垂直方向、水平方向となる。また、観察者が スクリーン 11を視認した場合には、延在方向、配列方向は、このような設置状態で縦 方向、横方向である。 In FIG. 1, the direction perpendicular to the paper surface is the extending direction of the lenticular lens 211, and the direction parallel to the paper surface is the arrangement direction of the lenticular lens 211. Also later As described above, the extending direction and the arranging direction of the lenticular lenses 211 correspond to the vertical direction and the horizontal direction of the screen 11. In other words, the extending direction and the arranging direction are a vertical direction and a horizontal direction in a state where the screen 11 is installed. When the viewer visually recognizes the screen 11, the extending direction and the arranging direction are the vertical direction and the horizontal direction in such an installation state.
[0018] 図 1に示すように、背面投写型表示装置 1において、プロジェクタ 12からの光は、ス クリーン 11の背面カも投写される。具体的には、フレネルレンズ 221の反対側力も入 射され、この入射された光は、フレネルレンズシート 112内を通過してフレネルレンズ 221側へと出射される。この出射された平行光または収束光は、レンチキュラーレン ズシート 111により水平方向に大きく拡散される。これによつて、水平方向の広い視 野範囲で映像を観察することが可能となる。  As shown in FIG. 1, in the rear projection display device 1, the light from the projector 12 is also projected on the rear surface of the screen 11. Specifically, the opposite side force of the Fresnel lens 221 is also incident, and the incident light passes through the Fresnel lens sheet 112 and is emitted to the Fresnel lens 221 side. The emitted parallel light or convergent light is greatly diffused in the horizontal direction by the lenticular lens sheet 111. As a result, it is possible to observe an image in a wide visual field range in the horizontal direction.
[0019] 図 2に、本発明に係る背面投写型スクリーン 11における画素配列の一例が示され ている。  FIG. 2 shows an example of a pixel arrangement in the rear projection screen 11 according to the present invention.
図 2に示すように、本発明に係るスクリーン 11の画素 23は、菱形状に配列されたも のである。詳細には、画素 23は、視認側から観察したときに、矩形状の画素を傾斜さ せた形状を有する。複数の画素 23は、このように傾斜した状態で配列され、互いの 辺同士が略平行となるように並んだ状態で配列されている。従って、この画素 23は、 傾斜した状態で、この傾斜方向に配列されている。換言すれば、画素 23は、従来の 画素のように水平方向、垂直方向に配列させたものを傾斜させたものである。  As shown in FIG. 2, the pixels 23 of the screen 11 according to the present invention are arranged in a diamond shape. Specifically, the pixel 23 has a shape in which a rectangular pixel is inclined when observed from the viewing side. The plurality of pixels 23 are arranged in such an inclined state, and are arranged in a state in which the sides are arranged substantially parallel to each other. Therefore, the pixels 23 are arranged in the inclined direction in an inclined state. In other words, the pixel 23 is a tilted pixel arrayed in the horizontal and vertical directions as in the conventional pixel.
[0020] 図 3に、本発明に係るスクリーン 11の画素幅及び画素配列周期が示されている。図 3 (a)は本発明における菱形状の画素、図 3 (b)は従来における正方形状の画素を 説明する平面模式図である。 FIG. 3 shows the pixel width and pixel arrangement period of the screen 11 according to the present invention. FIG. 3 (a) is a schematic plan view illustrating a rhombus pixel according to the present invention, and FIG. 3 (b) is a schematic plan view illustrating a conventional square pixel.
図 3 (a)に示すように、傾斜状態で配列された画素 23は、正方形状の画素 24を 45 ° 回転させたものとなる。そのため、傾斜状態で配列された画素 23の画素幅は、正 方形状の画素 24の画素幅 dTとした場合には、( 2) dT^ l. 4dT程度となる。 傾斜状態で配列された画素 23の画素配列周期 Δは、正方形状の画素 24の画素 配列周期 Tが正方形の一辺の長さであるのに対し、水平方向の幅の半分となる。そ のため、傾斜状態で配列された画素 23の画素配列周期 Δは、正方形状の画素 24 の画素配列周期 Tに対して、 Δ = ( 2)ΤΖ2^0. 7Τ程度となる。また、図 3に示さ れた画素有効部 230, 240は、各画素 23, 24の開口部分である。なお、図 3に示す ように、 X, yを水平位置座標、垂直位置座標とし、原点を画素中央とする。 As shown in FIG. 3 (a), the pixels 23 arranged in an inclined state are obtained by rotating the square pixels 24 by 45 °. Therefore, the pixel width of the pixels 23 arranged in an inclined state is about (2) dT ^ l.4dT when the pixel width dT of the square pixel 24 is set. The pixel arrangement period Δ of the pixels 23 arranged in an inclined state is half the width in the horizontal direction, while the pixel arrangement period T of the square pixels 24 is the length of one side of the square. For this reason, the pixel arrangement period Δ of the pixels 23 arranged in the inclined state is equal to the square pixel 24. For the pixel array period T, Δ = (2) ΤΖ2 ^ 0.7. Also, the pixel effective portions 230 and 240 shown in FIG. 3 are the opening portions of the pixels 23 and 24, respectively. As shown in Fig. 3, X and y are the horizontal and vertical position coordinates, and the origin is the pixel center.
[0021] 続いて、図 4を用いて、本発明に係る背面投写型表示装置 1のプロジェクタ 12の構 成について説明する。  [0021] Next, the configuration of the projector 12 of the rear projection display device 1 according to the present invention will be described with reference to FIG.
図 4に、本発明に係るプロジェクタ 12の全体構成の一例が示されている。図 4 (a)は その斜視模式図、図 4 (b)はその光学配置を示す平面模式図である。  FIG. 4 shows an example of the overall configuration of the projector 12 according to the present invention. 4A is a schematic perspective view, and FIG. 4B is a schematic plan view showing the optical arrangement.
[0022] 図 4に示すように、プロジェクタ 12の駆動装置 30が光源 31を駆動させると、光源 31 が投射光となる白色光を照射する。この白色光は、図示しない UVフィルタで不要な 紫外線が除去された後、コンデンサレンズ 32、反射ミラー 33を通じて、カラーホイ一 ル 34に入射される。入射された白色光がカラーホイール 34を透過すると、後述する ように、赤色光、緑色光、青色光のいずれかが分離される。この分離された光は、整 形用レンズ 351に入射され、この整形用レンズ 351を通じて、反射ミラー 361によって 折り曲げられる。これら折り曲げられた赤色光、緑色光、青色光のいずれかは、全反 射プリズム 364を介して、 DMD371に照射される。  As shown in FIG. 4, when the driving device 30 of the projector 12 drives the light source 31, the light source 31 emits white light as projection light. This white light is incident on the color wheel 34 through the condenser lens 32 and the reflection mirror 33 after unnecessary ultraviolet rays are removed by a UV filter (not shown). When the incident white light passes through the color wheel 34, one of red light, green light, and blue light is separated as will be described later. The separated light is incident on the shaping lens 351 and is bent by the reflection mirror 361 through the shaping lens 351. Any of the bent red light, green light, and blue light is irradiated to the DMD 371 via the total reflection prism 364.
[0023] DMD371の微小可動ミラー 561は、前述したように、映像データによってオン状態 となり、これによつて、照射された赤色光、緑色光、青色光のいずれかが、有効反射 光として反射される。この反射された映像光は、リレー'レンズ 381を通じて、ゥォプリ ング部 391に導かれる。その後、この映像光は、ゥォブリング部 391によって上下にゥ ォブリングされながら、投射レンズ 40、絞り 41を通じて、スクリーン 11上で、カラー映 像光として合成されて投影される。  [0023] As described above, the minute movable mirror 561 of the DMD 371 is turned on by the video data, so that any one of the irradiated red light, green light, and blue light is reflected as effective reflected light. The The reflected image light is guided to the superimposing unit 391 through the relay lens 381. Thereafter, the image light is combined and projected as color image light on the screen 11 through the projection lens 40 and the aperture 41 while being waved up and down by the wobbling unit 391.
[0024] さらに続いて、図 5を用いて、本発明に係るプロジェクタ 12の駆動装置 30について 詳細に説明する。  [0024] Next, the drive device 30 for the projector 12 according to the present invention will be described in detail with reference to FIG.
図 5は、この駆動装置 30の内部構成の一例が示すブロック図である。  FIG. 5 is a block diagram showing an example of the internal configuration of the drive device 30. As shown in FIG.
駆動装置 30は、電源部 51、光源駆動部 52、信号処理部 53、制御部 54を有する。 電源部 51は、電源供給回路、 DC電源等から構成され、各種機能部に対して電源 を供給し、プロジェクタ 12の動作を開始させる。光源駆動部 52は、光源 31を点灯駆 動させ、光源 31から映像光を照射させる。 [0025] 信号処理部 53は、例えば、 AD変換回路、ガンマ補正回路、インタフェース回路等 力 構成されている。この信号処理部 53には、ビデオ機器やパーソナル'コンビユー タ等の外部機器(図示せず)から、プロジェクタ 12によって表示される各種の表示信 号が入力される。信号処理部 53は、入力された表示信号を AZD変換等の信号処 理を行い、駆動装置 30の内部で処理可能なデジタル表示信号に変換する。このデ ジタル表示信号は、信号処理部 53から制御部 54に入力される。 The drive device 30 includes a power supply unit 51, a light source drive unit 52, a signal processing unit 53, and a control unit 54. The power supply unit 51 includes a power supply circuit, a DC power supply, and the like, and supplies power to various functional units to start the operation of the projector 12. The light source driving unit 52 drives the light source 31 to turn on and emits image light from the light source 31. The signal processing unit 53 includes, for example, an AD conversion circuit, a gamma correction circuit, an interface circuit, and the like. Various display signals displayed by the projector 12 are input to the signal processing unit 53 from an external device (not shown) such as a video device or a personal computer. The signal processing unit 53 performs signal processing such as AZD conversion on the input display signal, and converts it into a digital display signal that can be processed inside the driving device 30. This digital display signal is input from the signal processing unit 53 to the control unit 54.
[0026] 制御部 54は、各種制御回路や MPU、 CPU等によって構成され、ホイール制御信 号 (カラー制御信号)を生成し、ホイール制御信号に基づ 、てカラーホイール 34の動 作制御を行う。図 5に示すように、カラーホイール 34は、カラーフィルター 341、回転 制御装置 342を有する。カラーフィルター 341は、赤色、緑色、青色の 3色のカラーフ ィルター力も構成されている。回転制御装置 342は、カラーフィルター 341を回動可 能に固定し、所定の回転角度'回転速度で回転制御する。具体的には、システムクロ ックを用いてカラーホイール制御信号を生成し、回転制御装置 342に入力する。回 転制御装置 342は、入力された回転制御信号に基づいた所定の回転速度'回転角 度でカラーフィルター 341を回転させる。回転制御装置 342は、この回転速度'回転 角度を変えることによって、光路上に赤色、緑色、青色のいずれかのフィルタ一部分 を配置させる。これによつて、カラーフィルター 341は、光源 31からの白色光力も赤 色光、緑色光、青色光のいずれかを分離する。  [0026] The control unit 54 includes various control circuits, an MPU, a CPU, and the like, generates a wheel control signal (color control signal), and controls the operation of the color wheel 34 based on the wheel control signal. . As shown in FIG. 5, the color wheel 34 includes a color filter 341 and a rotation control device 342. The color filter 341 is also configured with three color filter forces of red, green, and blue. The rotation control device 342 fixes the color filter 341 so as to be rotatable, and controls rotation at a predetermined rotation angle ′. Specifically, a color wheel control signal is generated using the system clock and input to the rotation control device 342. The rotation control device 342 rotates the color filter 341 at a predetermined rotation speed 'rotation angle based on the input rotation control signal. The rotation control device 342 arranges a part of the red, green, or blue filter on the optical path by changing the rotation speed. Thereby, the color filter 341 also separates the white light from the light source 31 from red light, green light, and blue light.
[0027] 制御部 54は、ライト'バルブ制御信号に基づいて DMD371の動作制御を行い、微 小可動ミラー 561をオン状態にして有効反射光を生成させる。微小可動ミラー 561は 、フレーム 'メモリ 551に対応して配列されている。フレーム 'メモリ 551は、制御部 54 力ものライト'バルブ制御信号に応じて、微小可動ミラー 561に映像データを順次 1フ レームごとに書き込む。これら映像データが書き込まれた微小可動ミラー 561はオン 状態となる。具体的には、各微小可動ミラー 561は、フレーム 'メモリ 551がオン状態 になると、基準状態に対して所定の角度、例えば + 12° だけ傾く。微小可動ミラー 5 61に映像データが書き込まれると、これら映像データから、映像光が有効反射光とし て生成される。  The control unit 54 controls the operation of the DMD 371 based on the light valve control signal, turns on the micro movable mirror 561, and generates effective reflected light. The minute movable mirrors 561 are arranged corresponding to the frame 'memory 551. The frame 'memory 551 writes the video data to the minute movable mirror 561 sequentially for each frame according to the valve control signal. The minute movable mirror 561 in which the video data is written is turned on. Specifically, each micro movable mirror 561 is tilted by a predetermined angle, for example, + 12 ° with respect to the reference state when the frame memory 551 is turned on. When video data is written to the minute movable mirror 5 61, video light is generated as effective reflected light from the video data.
[0028] 逆に、各微小可動ミラー 561は、フレーム 'メモリ 551がオフ状態になると、その逆方 向に所定の角度だけ、例えば— 12° 傾く。これによつて、微小可動ミラー 561の鏡面 で反射された反射光は、画像を形成するために必要な有効反射光と無効な無効反 射光とが 24° の光路差を有するように切換えられる。このように、微小可動ミラーのォ ン Zオフは、フレーム 'メモリ 551を介して、制御部 54からのライト'バルブ制御信号 に基づいて制御され、オン Zオフに応じて有効反射光 Z無効反射光を生成する。 [0028] Conversely, each of the micro movable mirrors 561 is the opposite of the frame 'memory 551 when it is turned off. Tilt in the direction by a certain angle, eg –12 °. As a result, the reflected light reflected by the mirror surface of the minute movable mirror 561 is switched so that the effective reflected light necessary for forming the image and the invalid reactive reflected light have an optical path difference of 24 °. As described above, the on-off state of the micro movable mirror is controlled based on the light control signal from the control unit 54 via the frame 'memory 551', and the effective reflected light Z is invalid reflected in response to the on-Z state. Produce light.
[0029] このとき、制御部 54は、 DMD371の動作をカラーホイール 34の動作に同期させる 。具体的には、制御部 54は、ホイール制御信号に同期したライト'バルブ制御信号を DMD371に入力する。一例として、制御部 54は、このライト'バルブ制御信号をホイ ール制御信号から生成することによって、 DMD371をカラーホイール 341の動作に 同期させる。 At this time, the control unit 54 synchronizes the operation of the DMD 371 with the operation of the color wheel 34. Specifically, the control unit 54 inputs a light valve control signal synchronized with the wheel control signal to the DMD 371. As an example, the controller 54 synchronizes the DMD 371 with the operation of the color wheel 341 by generating this light valve control signal from the wheel control signal.
例えば、光源 31からの白色がカラーフィルター 341によって赤色光となる場合には 、制御部 54は、カラーフィルター 341の赤色フィルタ一部分に白色光を透過させる。 それに同期して、制御部 54は、 DMD371の微小可動ミラー 561に有効反射光を赤 色光として反射させる。  For example, when white color from the light source 31 becomes red light by the color filter 341, the control unit 54 transmits the white light to a part of the red filter of the color filter 341. In synchronization with this, the control unit 54 reflects the effective reflected light as red light on the small movable mirror 561 of the DMD 371.
[0030] このような DMD371が 1つであるプロジェクタ 125では、カラーホイール 34によって 、赤色、緑色、青色のカラー映像光が時分割に分けられてスクリーン 11上にカラー映 像が表示される。この 1チップ方式では、スクリーン 11上に、赤色、緑色、青色の各力 ラー映像光が時分割で交互に投射される。人間の目が高速で切替わる赤色、緑色、 青色の映像を分けて認識するのに限界があるために、この投射された各映像光は、 赤色、緑色、青色の残像が重なってカラー映像として視認される。  In such a projector 125 with one DMD 371, the color wheel 34 divides red, green, and blue color video light in a time-division manner and displays a color image on the screen 11. In this one-chip system, red, green, and blue power image lights are projected alternately on the screen 11 in a time-sharing manner. Because there is a limit to recognizing red, green, and blue images that the human eye switches at high speed, each projected image light is superimposed on the afterimages of red, green, and blue as color images. Visible.
[0031] 一般に、スクリーン 11では、水平方向に指向特性が垂直方向の指向特性に比べて 広角化拡大される。そのため、図 1に示したように、縦ストライプ状にレンチキュラーレ ンズ 211が周期的に配設されたレンチキュラーレンズ 211が使用されることが多!、。 この場合には、レンチキュラーレンズ 211の縦ストライプ構造と DMD371の配置構造 との間の干渉によって縦縞モアレが発生する。  [0031] Generally, in the screen 11, the directional characteristics in the horizontal direction are widened and enlarged compared to the directional characteristics in the vertical direction. Therefore, as shown in FIG. 1, a lenticular lens 211 in which lenticular lenses 211 are periodically arranged in a vertical stripe shape is often used! In this case, the vertical stripe moire is generated by the interference between the vertical stripe structure of the lenticular lens 211 and the arrangement structure of the DMD 371.
ライト'バルブとして DMDを用いる場合は、画素境界が細いために、明るい画像で は画素の変調度が低くモアレは目立たないが、前述したように、暗い画像を表示した ときには、マイクロミラーの支持部の反射が変化しているために、スクリーン上におい て、ミラーの支持部に対応した画素の中央に輝点が生じ、モアレが発生する場合が ある。 When a DMD is used as a light bulb, the pixel boundary is narrow, so the pixel modulation is low and moire is not noticeable in a bright image. However, as described above, when displaying a dark image, the support part of the micromirror Due to the reflection of the As a result, a bright spot is generated at the center of the pixel corresponding to the support portion of the mirror, and moire may occur.
[0032] このようなモアレは、画素の配列ピッチ Gpとレンチキュラーレンズのピッチ Lpとの比 力 Gp/Lpく 2. 5ある!/ヽ ίま 2. 8< Gp/Lp< 3. 5ある!/ヽ ίま 3. 8< Gp/Lp<4. 2 の範囲で目立ちやす ヽ。特【こ Gp/Lp< l. 4ある!/ヽ ίま 1. 6< Gp/Lp< 2. 5ある!/ヽ ίま 2. 85< Gp/Lp< 3. 15ある!/、 ίま 3. 88< Gp/Lp<4. 15の範囲で目立ちやす い。さらに GpZLpく 1. 3あるいは 1. 7< Gp/Lp< 2. 3の範囲では最も目立ちや すい。  [0032] Such moire has a ratio between the pixel arrangement pitch Gp and the lenticular lens pitch Lp. Gp / Lp is 2.5! / ヽ ί or 2. 8 <Gp / Lp <3.5! / ヽ ί 3. It stands out in the range of 8 <Gp / Lp <4.2. Special [Gp / Lp <l. 4 Yes! / ヽ ί or 1. 6 <Gp / Lp <2. 5 Yes! / ヽ ί 2. 85 <Gp / Lp <3. 15 Yes! /, Ί 3. Easily noticeable in the range of 88 <Gp / Lp <4.15. Furthermore, it is most noticeable in the range of GpZLp <1.3 or 1.7 <Gp / Lp <2.3.
[0033] 本発明にお 、ては、画素配列の変調度を低下させ、画素配列の空間周波数成分 に含まれた高調波列の内、レンチキュラーレンズ 211の縦ストライプ構造の周波数付 近における周波数の強度を減衰させることができるので、縦縞モアレを低減すること ができる。従来の表示装置では特に上記画素ピッチとレンチピッチの範囲ではモアレ が目立ちやすいが、本発明の表示装置ではこれらの範囲であっても縦縞モアレを低 減することができる。  [0033] In the present invention, the modulation degree of the pixel array is lowered, and the harmonics included in the spatial frequency component of the pixel array have a frequency around the frequency of the vertical stripe structure of the lenticular lens 211. Since the intensity can be attenuated, the vertical stripe moire can be reduced. In conventional display devices, moire is particularly noticeable in the range of the pixel pitch and wrench pitch, but in the display device of the present invention, vertical stripe moire can be reduced even in these ranges.
[0034] これについて、図 6を用いてより具体的に説明する。  [0034] This will be described more specifically with reference to FIG.
図 6に、 DMDパネルに入射した光が出射する方向の概略を示す。 DMDに入射す る光はオン状態では正反射によって有効反射光として出射光学系へと入射するが、 オフ状態では出射光学系へは入射せず無効反射光としてトラップで吸収される。しか し、 DMDのマイクロミラー支持部においては拡散反射光が存在するため、 DMDが オフ状態にもかかわらず、一部の光が出射光学系へ入光する。そのため、 DMDに 黒画像信号を入力したときに、スクリーン上にぉ 、てミラー支持部に相当する画素中 心領域が明るく輝点となる。  Fig. 6 shows an outline of the direction in which the light incident on the DMD panel is emitted. The light incident on the DMD enters the output optical system as effective reflected light by regular reflection in the on state, but is not incident on the output optical system in the off state and is absorbed by the trap as ineffective reflected light. However, since there is diffuse reflection light at the DMD micromirror support, a part of the light enters the output optical system regardless of the DMD being off. Therefore, when a black image signal is input to the DMD, the pixel center area corresponding to the mirror support portion becomes bright and bright on the screen.
[0035] したがって、 DMDのミラーを駆動する角度は大きいほうが、画素中の輝点の輝度を 低下させることとなる。駆動角度の上限は製造条件や応答速度など力 規定されるが 、上記の例では ± 12° としており、 ± 15以上であるのが、モアレ防止の点からは好 ましい。  Therefore, the larger the angle at which the DMD mirror is driven, the lower the luminance of the bright spot in the pixel. The upper limit of the drive angle is regulated by force such as manufacturing conditions and response speed, but in the above example, it is ± 12 °, and it is preferably ± 15 or more from the viewpoint of preventing moire.
実施例  Example
[0036] DMDを備えた背面透過型表示装置のスクリーン面に、ゲイン 7. 5の透光性榭脂 および光拡散微粒子力 なる透光性拡散板を取り付けた。このとき、拡散板上に投 影された DMD画素の水平方向の周期 Gpは 0. 5mmであった。 [0036] A translucent resin with a gain of 7.5 is provided on the screen surface of a rear transmissive display device having a DMD. A translucent diffuser plate having a light diffusing fine particle force was attached. At this time, the horizontal period Gp of the DMD pixels projected on the diffusion plate was 0.5 mm.
[0037] 株式会社ファースト製撮影カメラ「FVAS_5MIC」を表示装置の正面に配置して黒画 面を表示し、その輝度を暗室にて測定した。なお、絞り 41は設置しな力つた。撮影範 囲内には水平方向に約 10個、垂直方向には約 8個の DMD画素があった。このとき 撮影カメラの分解能、すなわち CCD素子の数は、 DMDがその水平方向の周期であ る 0. 5mmあたり約 100個であった。  [0037] First shooting camera "FVAS_5MIC" was placed in front of the display device to display a black screen, and the brightness was measured in a dark room. In addition, the aperture 41 was not installed. There were about 10 DMD pixels in the horizontal direction and about 8 DMD pixels in the vertical direction. At this time, the resolution of the camera, that is, the number of CCD elements, was about 100 per 0.5 mm, which is the horizontal direction of DMD.
[0038] 上記条件にて黒画面表示の輝度を測定し、垂直方向に DMD画素 2個分の輝度を 積分し、黒画面内の水平方向の輝度パターンを測定した。その結果、 DMD画素一 周期分の輝度の凹凸パターンが計測された。本実施例 1では前記周期的な輝度の 最小値に対する最大値の比が 1. 15であった。(図 7参照)  [0038] The luminance of the black screen display was measured under the above conditions, the luminance of two DMD pixels was integrated in the vertical direction, and the horizontal luminance pattern in the black screen was measured. As a result, a concavo-convex pattern with luminance for one cycle of the DMD pixel was measured. In Example 1, the ratio of the maximum value to the minimum value of the periodic luminance was 1.15. (See Figure 7)
[0039] 次いでレンチキュラーレンズシートを前記表示装置に取り付け、黒画面表示でのモ ァレを観察した。レンチキュラーレンズのピッチ Lpを 0. 518, 0. 311、 0. 295, 0. 2 65mm (した力つて、 Gp/Lp = l. 04、 1. 61、 1. 69、 1. 89となる)とした力 ヽず れの場合もモアレは目立たなかった。  [0039] Next, a lenticular lens sheet was attached to the display device, and a black screen display was observed. The pitch Lp of the lenticular lens is 0.518, 0. 311, 0. 295, 0. 2 65mm (with Gp / Lp = l. 04, 1.61, 1.69, 1.89) Moire was inconspicuous even in the case of the applied power.
[0040] 輝点の変調度を低下させる方法としては、下記の方法が考えられ、それらを組み合 わせることにより、前記輝度パターンをフーリエ変換し、 DMD画素一周期分に一致 する周期での振幅強度値を Aとし、前記撮影面積範囲での輝度平均値を Bとしたとき 、本実施例 1においては、 AZBの値は 0. 020であった(図 8参照)。  [0040] As a method of reducing the modulation degree of the bright spot, the following methods are conceivable, and by combining them, the luminance pattern is Fourier-transformed, and the period of time coincides with one period of the DMD pixel. Assuming that the amplitude intensity value is A and the luminance average value in the imaging area range is B, the value of AZB in Example 1 was 0.020 (see FIG. 8).
1.支持部におけるミラーの平面性を向上し、拡散反射を低下させる。  1. Improve the flatness of the mirror at the support and reduce diffuse reflection.
2.支持部の面積を少なくする。  2. Reduce the support area.
3.支持部をミラーのほぼ全域に広げる。  3. Spread the support to almost the entire area of the mirror.
4.出射光学系の出射瞳を制限する。  4. Limit the exit pupil of the exit optical system.
5.ミラーのオン Zオフ間の角度を大きくする。  5. Increase the angle between mirror ON and Z OFF.
なお、この輝点の変調度を低下させることが可能な手段は、上記の手段に限定され ないことは当然である。また、 AZBく 0. 045となれば本発明の目的が達成されるが 、 AZBは好ましくは 0. 04以下であり、より好ましくは 0. 02以下である。  Of course, the means capable of reducing the modulation degree of the bright spot is not limited to the above-described means. Further, if AZB is 0.045, the object of the present invention is achieved, but AZB is preferably 0.04 or less, more preferably 0.02 or less.
[0041] 上記 1および 2の手段では拡散反射光量そのものを低下させることによって輝点の 変調度を下げるものである。上記 3の手段は、単位画素全体でオフ時の輝度を上げ 輝点の変調度を下げるものである。上記 4および 5の手段は、拡散反射光が出射光 学系を通過する光量を低下させるものである。 [0041] With the means 1 and 2 described above, the brightness of the bright spot is reduced by reducing the amount of diffusely reflected light itself. The degree of modulation is lowered. The third means increases the brightness when the entire unit pixel is off and decreases the modulation degree of the bright spot. The means 4 and 5 described above are for reducing the amount of diffusely reflected light passing through the outgoing optical system.
[0042] 上記 4の手段において、出射瞳を制限する方法としては、光学系に絞りを挿入する ことが有効である。図 4に示す実施の形態においては、絞り 41は投射レンズ 40の出 射側に設けられている力 その位置に限定されるものではない。絞りの幅としては、 4 mm〜8mmとするのが、明るさとモアレ防止のバランスの点で好ましぐ 5mm〜6m mであるのがより好ましい。  [0042] In the above means 4, as a method of limiting the exit pupil, it is effective to insert a stop in the optical system. In the embodiment shown in FIG. 4, the diaphragm 41 is not limited to the position of the force provided on the projection side of the projection lens 40. The diaphragm width is preferably 4 mm to 8 mm, more preferably 5 mm to 6 mm, from the viewpoint of the balance between brightness and moire prevention.
[0043] 絞りによって出射瞳を制限した場合の AZBとモアレの状態との関係を表 1に示す。  [0043] Table 1 shows the relationship between the AZB and the moire state when the exit pupil is limited by the stop.
AZBの測定は、上記実施例と同様にして行った。モアレの観察は、画素ピッチ Gpを 0. 766mm,レンチキュラーレンズのレンズピッチ Lpを 0. 265mm (したがって、 Gp /Lp = 2. 89)として行った。  The measurement of AZB was performed in the same manner as in the above example. Moire was observed with a pixel pitch Gp of 0.764 mm and a lens pitch Lp of the lenticular lens of 0.265 mm (hence Gp / Lp = 2.89).
[0044] [表 1]  [0044] [Table 1]
Figure imgf000013_0001
Figure imgf000013_0001
[0045] 絞り等によって出射瞳を DMDにおいてオン Zオフ状態を変える際のミラーを駆動 する方向について制限することは、暗モアレの防止と画像輝度の維持の両立の点で 有効である。これは、モアレ発生の原因となる水平方向の変調度を下げつつ光の口 スを少なくできるためである。 [0045] Limiting the direction of driving the mirror when the exit pupil changes the on-Z off state in the DMD with a diaphragm or the like is effective in terms of both preventing dark moire and maintaining image luminance. This is because the aperture of light can be reduced while lowering the degree of horizontal modulation that causes moiré.
[0046] 上記の実施の形態では 1枚の DMDパネルを用いた例を示した力 その他の構成 をとつても本発明は適用可能である。例えば、 3枚の DMDを用い、白色光を分離し たこれに 3原色の映像光を入射した後に合成することでカラー画像を生成する構成 をとつてもよい。  [0046] In the above embodiment, the present invention can also be applied to the force and other configurations shown in the example using one DMD panel. For example, a configuration may be adopted in which three DMDs are used and white light is separated, and then three primary colors of video light are incident and then combined to generate a color image.
[0047] なお、本発明を実施するための最良の形態においては、菱形状の画素に本発明を 適用したが、これに限らず、矩形状、特に正方形状の画素に適用することができる。 詳細には、本発明は、画素の配列構造とレンズの配列構造とに起因したモアレを抑 制するものであるから、菱形状の画素と同様に周期的に配列された種々の形状の画 素にも適用することが可能である。 [0047] In the best mode for carrying out the present invention, the present invention is applied to a diamond-shaped pixel. However, the present invention is not limited to this, and can be applied to a rectangular pixel, particularly a square pixel. Specifically, since the present invention suppresses moire caused by the pixel arrangement structure and the lens arrangement structure, images of various shapes arranged periodically like a rhombus pixel. It can also be applied to the element.

Claims

請求の範囲 The scope of the claims
[1] 光源と、該光源力 出射された光を画像信号に従って画素ごとに微小なミラーによ つて変調するデジタルマイクロミラーデバイスと、該デジタルマイクロミラーデバイスで 変調された画像光を投写する投射光学系と、投射された画像が結像する周期構造を 有するスクリーンとを有する背面投射型表示装置にぉ 、て、前記デジタルマイクロミラ 一デバイスに黒画像信号を入力したときに、スクリーン取り付け位置に、スクリーンに 換えて設けられたゲイン 7. 5の拡散板に投影された画像中央における水平方向に 配列された画素 4個以上および垂直方向に配列された画素 1個以上を含む領域の 輝度を、 1画素あたり 25以上の分解能で反投射側正面カゝら測定し、その輝度をスクリ ーンの周期構造に垂直な方向に積分した場合に、前記輝度パターンをフーリエ変換 し、 DMD画素一周期分に一致する周期での振幅強度値を Aとし、前記撮影面積範 囲での輝度平均値を Bとしたとき、 A/B O. 045であることを特徴とする背面投写 型表示装置。  [1] A light source, a light source power, a digital micromirror device that modulates emitted light by a minute mirror for each pixel in accordance with an image signal, and projection optics that projects image light modulated by the digital micromirror device When a black image signal is input to the digital micromirror device, a rear projection display device having a system and a screen having a periodic structure on which a projected image is imaged, The brightness of an area including four or more pixels arranged in the horizontal direction and one or more pixels arranged in the vertical direction at the center of the image projected on the diffusion plate with a gain of 7.5 provided in place of the screen is 1 When the front surface of the projection side is measured with a resolution of 25 or more per pixel, and the luminance is integrated in a direction perpendicular to the periodic structure of the screen, the luminance pattern is A / B O. 045, where A is the amplitude intensity value in a period that coincides with one period of the DMD pixel, and B is the average luminance value in the imaging area range. A rear projection display device characterized by
[2] 前記投射光学系は、出射瞳を制限する絞りが設けられている請求項 1記載の背面 投写型表示装置。  2. The rear projection display device according to claim 1, wherein the projection optical system is provided with a diaphragm for limiting an exit pupil.
[3] 前記絞りは、前記デジタルマイクロミラーデバイスのミラーを駆動する方向にのみ出 射瞳を制限する請求項 2記載の背面投写型表示装置。  3. The rear projection display device according to claim 2, wherein the diaphragm restricts the projection pupil only in a driving direction of the mirror of the digital micromirror device.
PCT/JP2006/311101 2005-06-03 2006-06-02 Rear projection type display device WO2006129797A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007519088A JPWO2006129797A1 (en) 2005-06-03 2006-06-02 Rear projection display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-164437 2005-06-03
JP2005164437 2005-06-03

Publications (1)

Publication Number Publication Date
WO2006129797A1 true WO2006129797A1 (en) 2006-12-07

Family

ID=37481724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311101 WO2006129797A1 (en) 2005-06-03 2006-06-02 Rear projection type display device

Country Status (3)

Country Link
JP (1) JPWO2006129797A1 (en)
TW (1) TW200705088A (en)
WO (1) WO2006129797A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080748A (en) * 2014-10-10 2016-05-16 株式会社リコー Image display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201604591A (en) * 2014-07-18 2016-02-01 sheng-long Cai Light uniform diffusion structure and light emitting device thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273516A (en) * 1991-12-03 1993-10-22 Philips Gloeilampenfab:Nv Image projection system
JPH08313865A (en) * 1995-03-16 1996-11-29 Kuraray Co Ltd Back projection type video display device
JPH1062699A (en) * 1996-06-10 1998-03-06 Samsung Electron Co Ltd Movable mirror device and its manufacture
JPH11183810A (en) * 1997-12-15 1999-07-09 Daewoo Electron Co Ltd Thin film type optical path adjusting device and its manufacture
JP2000112035A (en) * 1998-10-05 2000-04-21 Hitachi Ltd Projection type picture display device and screen used therefor
JP2000330041A (en) * 1999-05-20 2000-11-30 Seiko Epson Corp Electrostatic actuator, optical switching element, image display device, and their control methods
JP2002214697A (en) * 2001-01-12 2002-07-31 Canon Inc Projection type display
JP2003121783A (en) * 2001-10-11 2003-04-23 Nec Viewtechnology Ltd Image forming apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273516A (en) * 1991-12-03 1993-10-22 Philips Gloeilampenfab:Nv Image projection system
JPH08313865A (en) * 1995-03-16 1996-11-29 Kuraray Co Ltd Back projection type video display device
JPH1062699A (en) * 1996-06-10 1998-03-06 Samsung Electron Co Ltd Movable mirror device and its manufacture
JPH11183810A (en) * 1997-12-15 1999-07-09 Daewoo Electron Co Ltd Thin film type optical path adjusting device and its manufacture
JP2000112035A (en) * 1998-10-05 2000-04-21 Hitachi Ltd Projection type picture display device and screen used therefor
JP2000330041A (en) * 1999-05-20 2000-11-30 Seiko Epson Corp Electrostatic actuator, optical switching element, image display device, and their control methods
JP2002214697A (en) * 2001-01-12 2002-07-31 Canon Inc Projection type display
JP2003121783A (en) * 2001-10-11 2003-04-23 Nec Viewtechnology Ltd Image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080748A (en) * 2014-10-10 2016-05-16 株式会社リコー Image display device

Also Published As

Publication number Publication date
JPWO2006129797A1 (en) 2009-01-08
TW200705088A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
TWI238920B (en) Lighting, and projection type display and driving method of the display
EP1432245B1 (en) Adaptive Illumination Modulator
JPWO2014171134A1 (en) Projection display device
JP4089572B2 (en) Lighting device, image display device, and projector
JPH09512111A (en) Rear projection module
JP4650256B2 (en) Information presentation system
US20070242351A1 (en) Screen, rear projector, and image display apparatus
JP2006003409A (en) Image projection system
JPH0519346A (en) Projection type image display device
JP2009042373A (en) Projector
JP5334494B2 (en) Projection display
KR100617587B1 (en) Tilting device
TWI274514B (en) Contrast adjustable projector apparatus
WO2006129797A1 (en) Rear projection type display device
JP2002196302A (en) Projection type display device and multi screen display device
JP2003167214A (en) Projector
JP2013064876A (en) Image display device
JP2973594B2 (en) Projection image display
JP5515907B2 (en) Image display device
JP2008311898A (en) Multi-projection system
US7862180B2 (en) Optical system for image projection and image projection apparatus
JP2007286391A (en) Illuminating device, illuminating method and projection type display apparatus using illuminating device
JP2000352763A (en) Light shielding plate of projection type video device
JP2013061375A (en) Image display device
JP2009020413A (en) Illuminating optical system and projection display apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007519088

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06756922

Country of ref document: EP

Kind code of ref document: A1