WO2006128385A1 - Procede d'estimation de canal a jeux de codes multiples dans un systeme cdma a decoupage de temps - Google Patents

Procede d'estimation de canal a jeux de codes multiples dans un systeme cdma a decoupage de temps Download PDF

Info

Publication number
WO2006128385A1
WO2006128385A1 PCT/CN2006/001190 CN2006001190W WO2006128385A1 WO 2006128385 A1 WO2006128385 A1 WO 2006128385A1 CN 2006001190 W CN2006001190 W CN 2006001190W WO 2006128385 A1 WO2006128385 A1 WO 2006128385A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel estimation
code
code set
signal
interference
Prior art date
Application number
PCT/CN2006/001190
Other languages
English (en)
French (fr)
Inventor
Feng Li
Yingmin Wang
Nan Zhong
Guiliang Yang
Original Assignee
Shanghai Ultimate Power Communications Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Ultimate Power Communications Technology Co., Ltd. filed Critical Shanghai Ultimate Power Communications Technology Co., Ltd.
Priority to KR1020077030618A priority Critical patent/KR100909519B1/ko
Priority to EP06742077.8A priority patent/EP1892869B1/en
Priority to JP2008513904A priority patent/JP4724225B2/ja
Priority to US11/916,186 priority patent/US7697569B2/en
Publication of WO2006128385A1 publication Critical patent/WO2006128385A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation

Definitions

  • the present invention relates to the field of mobile communications technologies, and in particular, to a multi-code channel estimation method for a slot code division multiple access system.
  • the most striking feature of wireless mobile communications is the complexity and time-varying of their channels.
  • the channel needs to be estimated and measured at the receiving end, and then the signal is coherently detected using the obtained channel response.
  • channel estimation plays an important fundamental role in related subsystems such as physical layer measurement, smart antenna, fast control, handover, and radio resource management.
  • a channel estimation code and a transmitted data portion are transmitted by time division multiplexing, and time slots are also synchronized between different cells.
  • TD-SCDMA Time Division Synchronous CDMA, Time Division Multiplexing-Synchronous Code Division Multiple Access System, ie, 3GPP 1.28 Mcps TDD
  • the burst signal structure of a service slot is as shown in Figure 1:
  • the midamble (middle code, also referred to as channel estimation code) in the middle of the burst signal is used for channel estimation, and the data blocks on both sides are used to transmit service data.
  • the method of channel estimation for slotted CDMA is called Steiner estimator. For details, see the literature B. Steiner, and PW Baier, "Low Cost Channel Estimation in the Uplink Receiver of CDMA Mobile Radio Systems," FRE QUENZE, 47 (1993) 11-12, the specific estimation process is as follows: Set for each use:
  • the time width of the channel response is represented by the window length W, and the channel response vector is represented by the values on the W taps separated by chips.
  • the length of the midamble response signal should be Lm+W-1.
  • the response signal of the intermediate code received by the receiving end can be expressed as:
  • nid Gh + n ( 3 ) where n is noise and interference, and h is the total channel response vector:
  • the matrix G is a circular matrix
  • the task of channel estimation is to obtain the estimated value by solving the equation (3) with the channel response h as the unknown. From the maximum likelihood criterion and some simplification can be obtained:
  • the DFT(g) in the formula can be calculated offline in advance.
  • This channel estimation algorithm obtains channel estimation results of multiple users belonging to one code set with a small computational cost, and suppresses interference between multiple user intermediate codes belonging to the same basic code.
  • This channel estimation method is directed to a multi-user intermediate code belonging to a code set of the same basic code for channel estimation, that is, a single code set channel estimation method.
  • the single code set channel estimation method treats signals other than the signal set signal superimposed at the same time as white Gaussian noise, the performance cannot be satisfied when the signal to interference noise is low.
  • the communication signal of the neighboring cell user at the boundary with the local cell has strong interference to the local cell, and the signal of the same-frequency neighboring cell and the signal of the local cell are time-synchronized. That is, the interference of the intra-frequency neighboring cells received by the channel estimation code of the local cell is mainly from the response of the channel estimation code signal of other code sets synchronized with the own cell.
  • the performance of the single-code set channel estimation method is degraded, which not only limits the improvement of the reception performance of the multi-antenna system, but also enables the shaping transmission, physical layer measurement, synchronization, power control, etc. of the multi-antenna system. Deterioration of performance of related subsystems. In this case, the single code set channel estimation method is difficult to meet the system's requirements for channel estimation performance.
  • Chinese Patent Application 03100670.1 proposes a multi-code set channel estimation method for a slot code division multiple access system, which implements multi-code set joint channel estimation based on finite time position decision.
  • a multi-code set channel estimation method for a slot code division multiple access system comprising the following steps:
  • a multi-code set channel estimation method for a slot code division multiple access system comprising the following steps:
  • C recovering an interference component caused by the maximum interference tap response to each code set signal
  • D′ canceling, by the original channel estimation result and the copy channel estimation result, respectively, the maximum interference tap response to each code set signal
  • the interference component caused, the channel estimation result of the net signal of each code set is obtained, and the maximum dry 4 especially tap is set to 0;
  • step E' determining whether the predetermined number of iterations is reached, if yes, outputting a channel estimation result of the net signal of each code set, otherwise, using the channel estimation result of the net signal of each code set as a channel estimation result of the code set of the next processing , return to step B'.
  • the step C and the step ⁇ respectively include:
  • the mutual interference vector may be generated by a field calculation or obtained by looking up a table
  • the channel estimation result of the net signal of each code set is obtained by using a complete cancellation mode or a partial cancellation manner for the received signal, and a channel estimation result of the net signal of each code set is obtained by using a partial cancellation manner on the received signal,
  • the offset ratio can be gradually increased with the number of iterations.
  • the channel estimation result of each code set after a predetermined number of iterations may be directly used as a channel estimation result of the net signal of each code set; or the maximum retained by each iteration.
  • the interference taps form a channel estimation result of the net signals of each code set.
  • the calculating process of the mutual interference vector is specifically:
  • CR 3 ⁇ 4 ⁇ m ⁇ ml
  • g m is the base code of the mth code set
  • P is a column vector of length P, whose i-th element is 1 and the remaining elements are 0
  • between the DFTs on the numerator Point multiplication; the denominator and the numerator are points division.
  • the present invention is directed to the case where there is a multi-code set channel estimation code response signal, which fully utilizes the information provided by the multi-code set signal, and cancels the main interference between the multi-code set signals. Improved channel estimation performance.
  • the present invention directly performs the iterative operation of interference recovery and interference cancellation in the result of single code set channel estimation, which greatly reduces the computational complexity and realizes high performance multi-code set channel estimation at a small cost.
  • the invention can be used not only to improve the performance of channel estimation of a single code set, but also to obtain channel estimation results of multiple code sets at the same time, thereby ensuring the normal operation of the same-frequency adjacent cells in the time slot CDMA system.
  • Various techniques related to smart antenna applications, radio resource management, physical layer measurements, and slot CDMA system extensions provide the basis for channel and interference measurements.
  • FIG. 1 is a schematic diagram of a burst structure of a TD-SCDMA service slot
  • Figure 3 is a flow chart showing another implementation of the method of the present invention.
  • 4 is a schematic diagram of a signal processing procedure of multi-code set channel estimation according to an embodiment of the present invention.
  • the core of the present invention is to extract a maximum interference tap from a single code set channel estimation result, thereby directly recovering other code set interference signals, and canceling the interference signal to obtain a net signal of each code set, and then each code The net signal of the set repeats the above processing until the predetermined number of iterations is reached, and the channel estimation result is output.
  • the response Due to the interference of the intra-frequency neighboring cells received by the intermediate code of the cell, the response mainly comes from the intermediate code signal of other code sets synchronized with the cell.
  • the received signal of the intermediate code is referred to as a multi-code set channel estimation code response signal.
  • the cartridge is hereinafter referred to as a multi-code set signal.
  • the presence of a multi-code set signal not only provides the possibility of obtaining multiple code set channel estimates at the same time, but also provides the possibility of improving the performance of the single code set channel estimation.
  • the invention optimizes multi-code set channel estimation in the prior art, extracts the maximum interference tap from the single code set channel estimation result, directly performs the iterative operation of interference recovery and interference cancellation, and realizes high performance at a small cost. Code set channel estimation.
  • the implementation process of the method of the present invention is as shown in FIG. 2, and includes the following steps:
  • Step 201 Initialize:
  • the input of each single code set channel estimator is set equal to the total multi code set reception signal before channel estimation.
  • Step 202 Single code set channel estimation:
  • channel estimation of a single code set is performed separately for different code sets, and original channel estimation results of each code set are obtained.
  • Step 203 Extract the maximum tap processing: First, the tap having the largest peak power among the channel estimation results of each code set is obtained, and then the code set "1 of the maximum peak power tap, the corresponding tap position! 1, and the maximum power tap block 204: the interference is restored:
  • CRi ' is the mutual interference vector of the channel estimate for the mth code set generated by the unit response of the ilth tap of the mlth code set. Its calculation formula is as follows:
  • g m is the basic code of the mth code set; is a length of
  • CR!r' 0 can be used on-site calculation or in advance to calculate the stored look-up table.
  • Step 205 Interference cancellation:
  • the interference component caused by the recovered other code set signal response is subtracted from the total received signal, and a relatively clean signal is obtained for each code set, that is, the interference obtained above is offset from the channel estimation result:
  • Step 206 Determine whether the predetermined number of iterations is reached.
  • step 207 Output the result: The result may be 3 ⁇ 4 after a plurality of iterations, m is the number of cells; it may also be the maximum power tap '," selected in each iteration in step 203, which constitutes the required channel estimation result for each cell.
  • step 203 If the number of iterations is not reached, then returning to step 203, the interference cancellation result obtained in step 205, i.e., the signal obtained after the last iteration, which is relatively clean for each code set, continues to be iteratively processed.
  • the following two schemes can be used for processing the multi-code set signal:
  • One solution is to still treat signals of different code sets as completely strictly synchronized signals, using channel-like data at the same sample point for channel estimation, interference recovery, and interference cancellation. Only when the final result of the channel estimation is applied, the shift of the correspondence between the channel estimation and the code channel caused by the time deviation is considered.
  • Another solution is to perform signal processing according to the respective synchronization times of different code sets, and use different time offsets for different code sets for channel estimation, interference recovery and interference cancellation.
  • the interference cancellation is only the non-this code set interference component in which different code sets overlap in time.
  • the channel estimation result at this time can be directly applied.
  • the original channel estimation result may also be saved in two parts: one of which participates in the maximum interference tap selection, the interference recovery, and the interference tap cancellation processing, and sets the maximum interference tap to 0 after the cancellation, but the channel estimation result
  • the output does not take the number of iterations; the other does not participate in the maximum interference tap selection, interference recovery processing, only participates in the interference cancellation processing, and can be used as the output after reaching the number of iterations.
  • Step 301 Initialization:
  • the input of each single code set channel estimator is set equal to the total multi code set reception signal before channel estimation.
  • Step 302 Single code set channel estimation:
  • Step 303 Select a maximum interference tap from the original channel estimation result:
  • the tap with the largest peak power in the original channel estimation result is obtained, and then the code set '"1 of the maximum peak power tap, the corresponding tap position l, and the maximum power tap ⁇ mU l are recorded.
  • Step 304 Restore interference:
  • the maximum power taps in the code set channel estimation results obtained above are used to recover the interference components caused by the signal responses of the respective code sets, that is, the channel estimation results for the other code sets are calculated by using the maximum power taps i, 'i obtained above. Interference: ; m ⁇ m ⁇ .
  • Step 305 Offset the interference component caused by the maximum interference tap response to each code set signal from the original channel estimation result and the replica channel estimation result respectively, obtain channel estimation results of the net signals of each code set, and set the maximum interference tap to zero.
  • full interference cancellation may be employed, or partial interference cancellation may be employed.
  • Step 306 Determine whether the predetermined number of iterations is reached.
  • step 307 Output the result:
  • m is the number of cells; it may also be the maximum power tap selected in each iteration in step 303, which constitutes the required channel estimation result for each cell.
  • step 303 If the number of iterations is not reached, then returning to step 303, the interference cancellation result obtained in step 305, that is, the signal obtained after the last iteration, which is relatively clean for each code set, continues to be iteratively processed.
  • the channel estimation method will be described below by taking the received signals of three different code sets as an example.
  • the intermediate code signals belonging to the three code sets of the three cells have the strongest response, and the cyclic matrices corresponding to the three code sets are respectively Gl, G2, and G3, channel response vectors are hl, h2, and h3, respectively.
  • the received signal can be expressed as:
  • n 0 in the above formula is different from n in the formula (3), and n 0 represents all noise except the three multi-code set signals. Taking into account the cost of the algorithm, as well as the results of the simulation and actual experiments to determine the number of iterations and the number of code sets. In this embodiment, the number of iterations is set to 6.
  • Step 1 Before starting channel estimation, set the input of each single code set channel estimator to be equal to the total multicode set received signal:
  • Step 2 Single code set channel estimation: Using the single code set channel estimation method, channel estimation of a single code set is performed separately for different code sets, and the original channel estimation results of each code set are obtained according to formula (6):
  • the taps having the maximum peak power among the original channel estimation results of the above three code sets are obtained by the sorting method, and the code set having the largest peak power tap is recorded as "71, the corresponding tap position il, and the maximum power tap h '";
  • CR " 2 be the mutual interference vector of the channel estimate of the mth code set generated by the unit response of the mth code set of the i-th chip.
  • C ml ' m2) can be calculated on site or calculated in advance. use.
  • the channel estimation result of each cell is also possible to construct the channel estimation result of each cell to be output by ⁇ , ' ⁇ ' selected in each iteration.
  • Step 1 Initialization: Before starting channel estimation, set the input of each single code set channel estimator to be equal to the total multi-code set received signal:
  • Step 2' single code set channel estimation:
  • Step 3' find the maximum peak:
  • Step 5' interference cancellation:
  • the channel estimation results of the three code sets are selected twice in the iterative process, that is, the first and second taps of the first code set h , the second The first and second taps of the code set, h , the first and second taps of the third code set,
  • the total received signals e '" « are input to the respective single code set estimators respectively, and the original channel estimation results of the respective code sets are obtained, and the results are sequentially selected by the maximum tap, the maximum tap interference recovery, and the interference.
  • the net signal h of each code set is obtained; ".
  • each code The net signal is used as the channel estimation result of each code set, and the above-mentioned maximum tap selection, maximum tap interference recovery, and interference cancellation processing are repeated until the predetermined number of iterations is reached.
  • the result after multiple iterations is used as the channel estimation result of each code set, or the maximum power tap selected in each iteration constitutes the channel estimation result of each cell.
  • the multi-code set channel estimation of the present invention directly performs an iterative process of interference recovery and interference cancellation in the channel estimation result, which greatly reduces the complexity of the iterative process implementation, and realizes a high-performance multi-code set channel with a small cost. estimate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

时隙码分多址系统多码集信道估计方法 技术领域 本发明涉及移动通信技术领域, 具体涉及一种时隙码分多址系统多 码集信道估计方法。
背景技术
无线移动通信中最显著的特点就是其信道的复杂性和时变性。 在相 干接收方案中, 需要在接收端对信道进行估计和测量, 然后利用得到的 信道响应对信号进行相干检测。 除了在信号检测中的应用之外, 信道估 计还在物理层测量、 智能天线、 快速控制、 切换及无线资源管理等相关 子系统中起到重要的基础性的作用。
在时隙 CDMA ( Code Division Multiple Access, 码分多址)蜂窝移 动通信系统中, 信道估计码和传送的数据部分釆用时分复用传送, 而且 不同小区之间也是时隙同步的。
例如, 在 TD-SCDMA ( Time Division Synchronous CDMA, 时分复 用 -同步码分多址系统, 即 3GPP 1.28Mcps TDD ) 系统中, 业务时隙的 突发信号结构如图 1所示:
其中, 突发信号中部的 midamble (中间码, 也可称为信道估计码) 是用来进行信道估计的, 两边的数据块用来传送业务数据。
上述信道估计码 midamble是按以下方式生成的:
对于同一个小区的同一个时隙, 给定一个基本的中间码作为基本码, 不同的用户采用这个相同基本码的不同的循环移位版本作为其信道估计 码。 由同一个单独的基本码 导出的 K个特定的中间码1 k=l,...,K构 成中间码码集, 简称为码集。
在 TD-SCDMA系统中, 基本码的周期 P=128, 导出的中间码的码长 为 Lm=128+16。 时隙 CDMA进行信道估计的方法称为 Steiner估计器, 详细内容参见文献 B. Steiner, and P. W. Baier, "Low Cost Channel Esti mation in the Uplink Receiver of CDMA Mobile Radio Systems," FRE QUENZE, 47(1993)11-12, 具体估计过程如下: 设各用 :
Figure imgf000005_0001
其中, 信道响应的时间宽度用窗长 W来表示, 信道响应矢量就是用 以码片为间隔的 W个抽头上的值来表示的。 在这种情况下, 中间码响应 信号的长度应为 Lm+W-1。 考虑到中间码与传送数据部分是连续发送的, 中间码响应信号的前 W-1个值受到前面数据块的影响, 后 W-1个值和后 面数据块重叠。
取中间的 P个码片作为观测值, 记这个矢量为:
e,,,W
Figure imgf000005_0002
··, ) ( 2 ) 根据一个码集内多用户中间码生成的特性, 接收端接收的中间码的 响应信号可以表示为:
e,nid = Gh + n ( 3 ) 其中, n为噪声和干扰, h为总的信道响应矢量:
Figure imgf000005_0003
矩阵 G是一个循环矩阵:
Figure imgf000005_0004
其中 8 = (&,&,···, )是矩阵 G的第一列 , 由生成这个码集的基本码确 定。
信道估计的任务就是以信道响应 h为未知数通过求解(3 ) 式来得到 其估计值。 由最大似然准则并进行一定的简化可以得到:
— ( 6 ) 由于 G矩阵是一个循环矩阵, 实际运算可以用二维离散傅立叶变换 ( DFT, 2Demension Discrete Fourier Transform ) 以及二维离散傅立叶逆 变换 ( IDFT, Inverse 2Demension Discrete Fourier Transfomi )来实现。
Figure imgf000005_0005
式中的 DFT(g)可以预先离线计算得到 这种信道估计的算法以较小的计算代价得到了属于一个码集内的多 用户的信道估计结果, 而且抑制了属于同一个基本码的多个用户中间码 之间的干扰。 这种信道估计方法针对的是属于同一个基本码的一个码集 内的多用户中间码作信道估计, 即单码集信道估计方法。
由于单码集信道估计方法将同一时间叠加的除本码集信号响应以外 的其他信号都当成白高斯噪声来处理, 因此在信干噪比较低时, 其性能 不能满足要求。 并且, 对于小区间同步工作的时隙 CDMA系统来说, 处 于与本小区交界处的邻小区用户的通信信号对本小区干扰较强, 并且同 频邻小区信号与本小区的信号是时隙同步的, 也就是说, 本小区信道估 计码受到的同频相邻小区的干扰, 主要来自与本小区同步的其它码集的 信道估计码信号的响应。 另外, 在其他的一些应用中, 也有可能会出现 功率相近的多个码集的信道估计码响应信号叠加的情况。 例如, 当采用 多天线接收时, 单码集信道估计方法的性能恶化, 不仅限制了多天线系 统接收性能的改善, 而且带来多天线系统的赋形发送、 物理层测量、 同 步和功率控制等相关子系统性能的恶化。 在这种情况下, 单码集信道估 计方法难以满足系统对信道估计性能的要求。
为此, 中国专利申请 03100670.1提出了一种时隙码分多址系统多码 集信道估计方法, 该方法基于有限时间位置判决, 实现多码集联合信道 估计。
在实际的多码集信道估计中, 一方面, 由于各个码集的信道估计码 之间非理想的互相关特性的影响, 使得多码集信道估计较难达到接近理 想信道估计的性能; 另一方面, 较好的信道估计性能计算复杂, 实现成 本较高。
发明内容 本发明的目的是提供一种时隙码分多址系统多码集信道估计方法, 以针对存在多码集信道估计码响应信号的情况, 以较小的代价实现高性 能的多码集联合信道估计。
为此, 本发明提供如下的技术方案: 一种时隙码分多址系统多码集信道估计方法 , 所述方法包括以下步 骤:
A、对各个码集信号分别进行单码集信道估计, 获得各码集的信道估 计结果;
B、 从所述信道估计结果中提取最大干扰抽头;
C、 恢复所述最大干扰抽头对各个码集信号响应引起的干扰分量;
D、抵消所述最大干扰抽头对各个码集信号响应引起的干扰分量, 获 得各码集净信号的信道估计结果;
E、 判断是否达到预定的迭代次数, 如果是则输出各码集净信号的信 道估计结果, 否则, 将所述各码集净信号的信道估计结果作为下一步处 理的码集的信道估计结果, 返回步驟
一种时隙码分多址系统多码集信道估计方法, 所述方法包括以下步 骤:
Α' 、对各个码集信号分别进行单码集信道估计,获得各码集的信道 估计结果, 并复制所述各码集的信道估计结果, 生成原始信道估计结果 和复制信道估计结果;
B' 、 从所述原始信道估计结果中提取最大干扰抽头;
C 、 恢复所述最大干扰抽头对各个码集信号响应引起的干扰分量; D' 、分别从所述原始信道估计结果和所述复制信道估计结果中抵消 所述最大干扰抽头对各个码集信号响应引起的干扰分量, 获得各码集净 信号的信道估计结果, 并将所述的最大干 4尤抽头置 0;
E' 、 判断是否达到预定的迭代次数, 如果是则输出各码集净信号的 信道估计结果, 否则, 将所述各码集净信号的信道估计结果作为下一步 处理的码集的信道估计结果, 返回步骤 B' 。
所述步骤 C和所述步骤 σ 均分别包括:
Cl、 获取信道估计码的互干扰向量, 所述互干扰向量可由现场计算 产生或者通过查表获取;
C2、 根据信道估计码的互干扰向量计算所述最大干扰抽头对各个码 集信号响应引起的干扰分量。
可选地, 对所述接收信号采用完全抵消方式或者部分抵消方式获得 各码集净信号的信道估计结果, 并且对接收信号采用部分抵消方式获得 各码集净信号的信道估计结果的过程中, 抵消比例可以随迭代次数逐步 增力口。
可选地, 在步骤 E中达到预定的迭代次数后, 可以直接将经过预定 迭代次数后的各码集信道估计结果作为各码集净信号的信道估计结果; 或者由各次迭代中保留的最大干扰抽头组成各码集净信号的信道估计结 果。
可选地, 所述互干扰向量的计算过程具体为:
CR = ¾ ^ m≠ml 其中, gm 是第 m个码集的基本码; 是一个长度 为 P的列矢量, 其第 i个元素为 1 , 其余元素为 0; 分子上的 DFT之间是 点乘; 分母和分子之间是点除。
由以上本发明提供的技术方案可以看出, 本发明针对存在多码集信 道估计码响应信号的情况, 充分利用了多码集信号所提供的信息, 抵消 了多码集信号之间的主要干扰, 改善了信道估计的性能。 本发明在单码 集信道估计的结果中直接进行干扰恢复和干扰抵消的迭代运算, 大大降 低了计算的复杂度, 以较小的代价实现了高性能的多码集信道估计。
本发明不仅可以用于改善单个码集信道估计的性能, 也可以用于同 时得到多个码集的信道估计结果, 保障了时隙 CDMA系统同频相邻小区 的正常工作。 为智能天线应用、 无线资源管理、 物理层测量以及时隙 CDMA系统扩展相关的各种技术提供了信道和干扰测量的基础。
附图说明 图 1是 TD-SCDMA业务时隙突发结构示意图;
图 2是本发明方法的一种实现流程图;
图 3是本发明方法的另一种实现流程图; 图 4是本发明实施例多码集信道估计的信号处理过程示意图。
具体实施方式 本发明的核心在于从单码集信道估计结果中提取最大干扰抽头, 由 此直接恢复出其他码集干扰信号, 并抵消该干扰信号, 得到各个码集的 净信号, 再对各个码集的净信号重复上述处理直到达到预定的迭代次数 后, 输出信道估计结果。
由于本小区中间码所受到的同频相邻小区的干扰, 主要来自与本小 区同步的其他码集的中间码信号的响应。 另外, 在其他的一些应用中, 也有可能会出现功率相近的多个码集的中间码响应信号叠加的情况。 在 这种情况下, 中间码的接收信号称之为多码集信道估计码响应信号。 为 了叙述方便, 下文中筒称之为多码集信号。 由于多码集信号的存在, 不 仅提供了同时得到多个码集信道估计的可能性, 也提供了改善单码集信 道估计性能的可能性。
本发明对现有技术中多码集信道估计进行了优化, 从单码集信道估 计结果中提取最大干扰抽头, 直接进行干扰恢复和干扰抵消的迭代运算, 以较小的代价实现高性能的多码集信道估计。
为了使本技术领域的人员更好地理解本发明方案, 下面结合附图和 实施方式对本发明作进一步的详细说明。
本发明方法的实现流程如图 2所示, 包括以下步驟:
步驟 201 : 初始化:
在开始进行信道估计前, 由于无法分离单码集接收信号和多码集接 收信号, 因此信道估计前设定各个单码集信道估计器的输入都等于总的 多码集接收信号。
步驟 202: 单码集信道估计:
利用单码集估计器, 针对不同的码集分别进行单个码集的信道估计, 得到各码集的原始信道估计结果。
步驟 203: 提取最大抽头处理: 首先, 获取各码集信道估计结果中具有最大峰值功率的抽头, 然后, 记录最大峰值功率抽头的码集"1,对应的抽头位置! 1, 以及最大功率抽头 步棟 204: 恢复干扰:
利用上述获得的各码集信道估计结果中的最大功率抽头, .恢复各个 码集信号响应引起的干扰分量, 即利用上述得到的最大功率抽头; ,n, 计 算其对其他各码集信道估计结果的干扰:
ϊ„,
Figure imgf000010_0001
; n≠ ml (8) 其中, CRi ' 为第 ml个码集在第 il个抽头的单位响应所产生的对第 m个码集的信道估计的互干扰向量。 其计算公式如下:
CR '"i)
Figure imgf000010_0002
其中, gm 是第 m个码集的基本码; 是一个长度为
P (P=128) 的列矢量, 其第 i个元素为 1, 其余元素为 0; 分子上的 DFT之 间是点乘; 分母和分子之间是点除。
CR!r'0 可以现场计算或事先计算存储查表使用。
步骤 205: 干扰抵消:
从总的接收信号中减去恢复的其他码集信号响应引起的干扰分量, 得到对于各个码集来说比较干净的信号, 即从信道估计结果中抵消上述 得到的干扰:
K,=K,-l mml ( 9-1 ) , = ,; m = ml (9-2) 在上述干 W氏消处理中, 可以釆用完全干 4尤^^消, 也可以采用部分 干扰抵消。 采用部分干扰抵消时, 将干扰分量乘以一系数, 该系数可以 为固定值, 也可以随迭代次数逐步增加。
步驟 206: 判断是否达到预定的迭代次数。
如果已达到, 则进到步骤 207: 输出结果: 结果可以是经过多次迭代抵消后的 ¾ , m为小区的数目; 也可以是步 驟 203中每次迭代中选出的最大功率抽头 ',", 由其构成所需要的各小区 信道估计结果。
如果未达到迭代次数, 则返回到步骤 203 , 对步驟 205中得到的干扰 抵消结果, 即上次迭代后得到的对于各个码集来说比较干净的信号, 继 续进行迭代处理。
在本发明方法中, 对于总的多码集信号, 在多个码集的信号之间存 在偏差的情况下, 对多码集信号的处理可以采用下述两种方案:
一种方案是仍然将不同码集的信号当成完全严格同步的信号来处 理, 用相同采样点上的釆样数据进行信道估计、 干扰恢复和干扰抵消。 只是在应用信道估计的最终结果时, 再考虑时间偏差造成的信道估计与 码道之间对应关系的移位。
另一种方案是按照不同码集各自的同步时间进行信号处理, 针对不 同码集采用不同的时间偏差来进行信道估计、 干扰恢复和干扰抵消。 这 时, 干扰抵消的只是不同码集在时间上重叠的非本码集干扰分量。 这时 的信道估计结果可以直接应用。 '
本发明方法实现时, 还可以将原始信道估计结果保存两份: 其中一 份参与最大干扰抽头选取、 干扰恢复及干扰抽头抵消处理, 并在抵消后 将最大干扰抽头置 0, 但该信道估计结果不作为达到迭代次数后的输出; 另一份不参与最大干扰抽头选取、 干扰恢复处理, 只参与干扰抵消处理, 并可作为达到迭代次数后的输出。
参照图 3所示流程, 本发明方法的另一种实现包括以下步骤: 步骤 301 : 初始化:
在开始进行信道估计前, 由于无法分离单码集接收信号和多码集接 收信号, 因此信道估计前设定各个单码集信道估计器的输入都等于总的 多码集接收信号。
步骤 302: 单码集信道估计:
对各个码集信号分别进行单码集信道估计, 获得各码集的信道估计 结果, 并复制各码集的信道估计结果, 生成原始信道估计结果和复制信 道估计结果。
步骤 303: 从原始信道估计结果中选取最大干扰抽头:
首先, 获取原始信道估计结果中具有最大峰值功率的抽头, 然后, 记录最大峰值功率抽头的码集 '"1 ,对应的抽头位置 l , 以及最大功率抽头 ^mU l。
步骤 304: 恢复干扰:
利用上述获得的各码集信道估计结果中的最大功率抽头, 恢复各个 码集信号响应引起的干扰分量, 即利用上述得到的最大功率抽头 i,'i , 计 算其对其他各码集信道估计结果的干扰: ; m≠m\ 。
步驟 305:分别从原始信道估计结果和复制信道估计结果中抵消最大 干扰抽头对各个码集信号响应引起的干扰分量, 获得各码集净信号的信 道估计结果, 并将最大干扰抽头置 0。 即:
= K, - 1„,; m≠m\ ; hm' = hm'; m = ml; hm" = h"n― Im; m≠ ml;
; m = ml , 但其中第 个抽头置 0, 即 h:,1 = 0。
同样, 在上述干扰抵消处理中, 可以采用完全干扰抵消, 也可以采 用部分干扰抵消。
步骤 306: 判断是否达到预定的迭代次数。
如果已达到, 则进到步骤 307: 输出结果:
结果可以是经过多次迭代抵消后的 , m为小区的数目; 也可以是步 骤 303中每次迭代中选出的最大功率抽头 , 由其构成所需要的各小区 信道估计结果。
如果未达到迭代次数, 则返回到步骤 303, 对步骤 305中得到的干扰 抵消结果, 即上次迭代后得到的对于各个码集来说比较干净的信号, 继 续进行迭代处理。
下面具体以三个不同码集的接收信号为例来说明其信道估计方法。 设在三个小区交界处的某一个接收机收到的多码集信号中, 属于三 个小区的三个码集的中间码信号的响应最强, 这三个码集对应的循环矩 阵分别为 Gl、 G2和 G3, 信道响应矢量分別 hl、 h2和 h3。 这时接收信号可 以表示为:
∑G,A, +n ( 10) 上式中的 n0与式(3)中的 n不同, n0表示除去 3个多码集信号以外 的其他所有噪声。 考虑到算法的开销, 以及仿真和实际试验的结果来确定迭代次数以 及码集个数的取值。 在该实施例中, 设定迭代次数为 6。
具体实现步骤如下:
步骤 1. 初始化: 在开始进行信道估计前, 设定各个单码集信道估计 器的输入都等于总的多码集接收信号:
emid,m =emid, m= 1,2,3 ( 11)
步骤 2. 单码集信道估计: 利用单码集信道估计方法, 针对不同的码 集分别进行单个码集的信道估计, 按公式(6)得到各码集的原始信道估 计结果 :
K =G mid ( 12)
根据公式(7) 用 FFT表示上式得到:
= = 1,2,3 ( 13)
Figure imgf000013_0001
其中, = 是第 m (m=l,2,3)个码集的基本码, 令 ,«,'" = 123 ( 14)
步骤 3. 求出最大峰值:
用排序的方法求出上述 3个码集的原始信道估计结果中具有最大峰 值功率的抽头, 并记录具有最大峰值功率抽头的码集为《71, 对应的抽头 位置 il, 以及最大功率抽头 h '";
步骤 4. 恢复干扰:
对于第 1个码集 ml, 将式(10)代入式(12)可得: h^G^^G-'CG.h.+GA +G3I13 + 0) = ^ +G~lG2 2 +G 1G3h315 ) 用二维傅立叶变换(DFT) 以及二维傅立叶逆变换(IDFT)来实现
Figure imgf000014_0001
(16) 其中, ,'是第 2个码集总的信道响应的第 i个抽头; 是第 3个码集总 的信道响应的第 i个抽头;
ΙΛ'是一个长度为 p (p=128) 的列矢量, 其第 i个元素为 1, 其余元素 为 0; 分子上的 DFT之间是点乘。
设 CR "2为第 m2个码集在第 i个抽头的单位响应所产生的对第 ml个 码集的信道估计的互千扰向量。 C ml'm2)可以现场计算或事先计算存储查 表使用。
C ("'1,'"2) = IDFT\ DFT(gm2)O¥T(IPJ)
DFT(g , 则式(15) 变成:
Figure imgf000014_0002
( 17-1 ) 同样, 可以得到:
h.
Figure imgf000014_0003
利用上面得到的最大功率抽头 /7»^ ,计算其对其他各码集信道估计结 果的干扰:
m≠ ml (18) 步骤 5. 干扰抵消: 从信道估计结果中抵消上述干扰:
= - „,; ≠ ml
K =¾; m = ml
干扰抵消后, 迭代次数减 1, 然后判断迭代次数是否达到 6;
如果已达到, 则停止迭代, 输出信道估计结果。
如果未达到, 则返回步骤 3。
信道估计结果可以是经过多次迭代抵消后的 , m = λ'2'3
也可以由每次迭代选出的 ι,'·'来构成要输出的各小区信道估计结果, 为了清楚表示输出格式, 假设 3个码集的信道估计结果在迭代过程中各有 2次被选出最大功率抽头, 即第 1个码集的第 1、 2个抽头 ¾, h , 第 2个 码集的的第 1、 2个抽头 第 3个码集的的第 1、 2个抽头 ^, ι , h;=( , ¾2,0.,·.,0), 其中有 Ρ-2个 0;
Figure imgf000015_0001
,2,0....,0), 其中有 ρ_20; h3=(¾i' ,2,0..."0), 其中有 p_2个 0;
其中, P为基本码的周期, P=128。
上述过程是步骤 2单码集信道估计中只保存一份 , m = ^2'3参与后续 步骤处理的过程。
在实际应用中, 也可以保存两份 , m = 1'2'3, 一份参与步骤 3的最大 干扰抽头选取和步骤 5的干扰抽头抵消, 并在抵消后将最大抽头置零, 但 不可作为达到迭代次数后的输出; 另一份不参与步骤 3的最大干扰抽头选 取, 只参与步骤 5的干扰抵消, 并可作为达到迭代次数后的输出。
具体流程如下:
步骤 1' , 初始化: 在开始进行信道估计前, 设定各个单码集信道估 计器的输入都等于总的多码集接收信号:
emid,m=emid, m= 1,2,3
步骤 2' , 单码集信道估计:
同前面步骤 2, 得到 =^ = 123=ii'",w = 123, 其中, ¾只参 与干扰抵消过程, 而 参与最大抽头提取及干扰恢复过程。
步骤 3' , 求出最大峰值: 通过排序求出 /7 z = 123中具有最大峰值功率的抽头, 并记录具有最 大峰值功率抽头的码集为 ^ ,对应的抽头位置 a,以及最大功率抽头 1,"。
步骤 4' , 恢复干扰: 同上, 得到 „, = /CRS"'"'1); m≠ ml。 步骤 5' , 干扰抵消:
Figure imgf000016_0001
hm' = hm'; rn = ml
hm" = h"t一 I,„; m≠ ml h;'" = h' w = 但其中第 il个抽头置 0, 即 "1 = 0; 干扰抵消后, 迭代次数减 1, 然后判断是否达到了预定的迭代次数, 如果已达到, 则停止迭代, 输出信道估计结果。 如果未达到, 则返回步 骤 3' 。
结果可以是经过多次迭代抵消后的 h"'', m = 1A3
也可以保存每次迭代中选出的 h; ,由其构成要输出的各小区信道估 计结果。
为了清楚地表示输出格式, 假设 3个码集的信道估计结果在迭代过程 中各有 2次被选出最大功率抽头, 即第 1个码集的第 1、 2个抽头 h, , 第 2个码集的的第 1、 2个抽头 , h ,第 3个码集的第 1、 2个抽头 , 则
h;=(¾, ¾'0····,0) , 其中有 Ρ-2个 0;
',2,0..·.,0) , 其中有 Ρ_2个 ο;
Figure imgf000016_0002
2,0····,0) , 其中有 ρ_2个 0;
其中, Ρ为基本码的周期, Ρ=128。
上述实施例中信号处理的过程如图 4所示:
图中, 在初始化时, 总的接收信号 e'"«分别输入到各单码集估计器, 获得各码集的原始信道估计结果 ^, 该结果依次经最大抽头选取、 最大 抽头干扰恢复、 干扰抵消处理后, 得到各码集净信号 h;"。 然后, 将各码 集净信号作为各码集的信道估计结果, 重复上述最大抽头选取、 最大抽 头干扰恢复、 干扰抵消处理过程, 直至达到预定的迭代次数。 根据实际 需要, 将经过多次迭代抵消后的结果作为各码集的信道估计结果, 或者 将每次迭代过程中选出的最大功率抽头构成各小区信道估计结果。
可见, 本发明多码集信道估计, 在信道估计结果中直接进行干扰恢 复和干扰抵消的迭代过程, 大大降低了迭代过程实现的复杂度, 以较小 的代价实现了高性能的多码集信道估计。
虽然通过实施例描绘了本发明, 本领域普通技术人员知道, 本发明 有许多变形和变化而不脱离本发明的精神, 希望所附的权利要求包括这 些变形和变化而不脱离本发明的精神。

Claims

权 利 要 求
1、一种时隙码分多址系统多码集信道估计方法, 其特征在于, 包括:
A、对各个码集信号分别进行单码集信道估计, 获得各码集的信道估 计结果;
B、 从所述信道估计结果中提取最大干扰抽头;
C、 恢复所述最大干扰抽头对各个码集信号响应引起的干扰分量;
D、抵消所述最大干扰抽头对各个码集信号响应引起的干扰分量, 获 得各码集净信号的信道估计结果;
E、 判断是否达到预定的迭代次数, 如果是则输出各码集净信号的信 道估计结果; 否则, 将所述各码集净信号的信道估计结果作为下一步处 理的码集的信道估计结果, 返回步骤^
2、 根据权利要求 1所述的方法, 其特征在于, 所述步骤 C包括:
Cl、 获取各码集之间的信道估计码的互干扰向量;
C2、 才艮据信道估计码的互干扰向量计算所述最大干扰抽头对各个码 集信号响应引起的干扰分量。
3、 根据权利要求 2所述的方法, 其特征在于, 所述步骤 C1具体为: 由现场计算产生所述信道估计码的互干扰向量; 或者通过查表获取所述 信道估计码的互干扰向量。
4、 根据权利要求 2所述的方法, 其特征在于, 所述互干扰向量的计 算过程具体为:
Figure imgf000018_0001
其中, gm = ( , g2,...,gp), 是第 m个码集的基本码; 是一个长度为 P的列矢量, 其第 i个元素为 1, 其余元素为 0; 分子上的 DFT之间是点乘; 分母和分子之间是点除。
5、根据权利要求 1所述的方法, 其特征在于, 所述步驟 D具体为: 对所述接收信号采用完全抵消方式获得各码集净信号的信道估计结 果。
6、根据权利要求 1所述的方法, 其特征在于, 所述步骤 D具体为: 对所述接收信号采用部分抵消方式获得各码集净信号的信道估计结 果。 .
7、 根据权利要求 6所述的方法, 其特征在于, 所述对接收信号采 用部分抵消方式获得各码集净信号的信道估计结果的过程中, 抵消比例 是固定值或者随迭代次数逐步增加。
8、 根据权利要求 1所述的方法, 其特征在于, 所述步骤 E中达到预 定的迭代次数后, 直接将经过预定迭代次数后的各码集信道估计结果作 为各码集净信号的信道估计结果。
9、 根据权利要 1所述的方法, 其特征在于, 所述步骤 E中达到预定 的迭代次数后, 由各次迭代中保留的最大干扰抽头组成各码集净信号的 信道估计结果。
10、 根据权利要 1所述的方法, 其特征在于, 对于总的多码集信号, 在多个码集的信号之间存在偏差的情况下, 对多码集信号的处理包括: 将不同码集的信号当成完全严格同步的信号来处理, 用相同采样点 上的采样数据进行信道估计、 干扰恢复和干扰抵消; 在应用信道估计的 最终结果时, 考虑时间偏差造成的信道估计与码道之间对应关系的移位; 或者
按照不同码集各自的同步时间进行信号处理, 针对不同码集采用不 同的时间偏差来进行信道估计、 干扰恢复和干扰抵消。
11、 一种时隙码分多址系统多码集信道估计方法, 其特征在于, 包 括:
Α' 、对各个码集信号分别进行单码集信道估计,获得各码集的信道 估计结果, 并复制所述各码集的信道估计结果, 生成原始信道估计结果 和复制信道估计结果;
B' 、 从所述原始信道估计结果中提取最大干扰抽头;
C 、 恢复所述最大干扰抽头对各个码集信号响应引起的干扰分量; D' 、分别从所述原始信道估计结果和所述复制信道估计结果中抵消 所述最大干扰抽头对各个码集信号响应引起的干扰分量, 获得各码集净 信号的信道估计结果, 并将所述原始信道估计结果的最大干扰抽头置 0;
Έ' 、 判断是否达到预定的迭代次数, 如果是则输出各码集净信号的 信道估计结果; 否则, 将所述各码集净信号的信道估计结果作为下一步 处理的码集的信道估计结果, 返回步驟 B' 。
12、根据权利要求 11所述的方法, 其特征在于, 所述步骤 σ 包括: σ ι、 获取各码集之间的信道估计码的互干扰向量;
C' 2、 根据信道估计码的互干扰向量计算所述最大干扰抽头对各个 码集信号响应引起的干扰分量。
13、 根据权利要求 12所述的方法, 其特征在于, 所述步骤 σ 1具 体为: 由现场计算产生或者通过查表获取所述信道估计码的互干扰向量。
14、 根据权利要求 13所述的方法, 其特征在于, 步骤 D' 具体为: 对所述接收信号采用完全抵消方式或者部分抵消方式获得各码集净 信号的信道估计结果。
15、 根据权利要求 14所述的方法, 其特征在于, 所述对接收信号 采用部分抵消方式获得各码集净信号的信道估计结果的过程中, 抵消比 例随迭代次数逐步增加。
PCT/CN2006/001190 2005-06-03 2006-06-02 Procede d'estimation de canal a jeux de codes multiples dans un systeme cdma a decoupage de temps WO2006128385A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020077030618A KR100909519B1 (ko) 2005-06-03 2006-06-02 타임-슬롯 cdma 시스템에서의 다중-코드-셋 채널 추정 방법
EP06742077.8A EP1892869B1 (en) 2005-06-03 2006-06-02 A multiple code-set channel estimation method in time-slot cdma system
JP2008513904A JP4724225B2 (ja) 2005-06-03 2006-06-02 タイムスロットcdmaシステムにおける多コード集合通信路推定方法
US11/916,186 US7697569B2 (en) 2005-06-03 2006-06-02 Multi-code-set channel estimation method in a time-slot CDMA system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2005100752057A CN100499607C (zh) 2005-06-03 2005-06-03 时隙码分多址系统多码集信号估计方法
CN200510075205.7 2005-06-03

Publications (1)

Publication Number Publication Date
WO2006128385A1 true WO2006128385A1 (fr) 2006-12-07

Family

ID=37481240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/001190 WO2006128385A1 (fr) 2005-06-03 2006-06-02 Procede d'estimation de canal a jeux de codes multiples dans un systeme cdma a decoupage de temps

Country Status (6)

Country Link
US (1) US7697569B2 (zh)
EP (1) EP1892869B1 (zh)
JP (1) JP4724225B2 (zh)
KR (1) KR100909519B1 (zh)
CN (1) CN100499607C (zh)
WO (1) WO2006128385A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106231624A (zh) * 2016-08-31 2016-12-14 重庆大学 用于通信系统的信号检测方法和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100499607C (zh) * 2005-06-03 2009-06-10 上海原动力通信科技有限公司 时隙码分多址系统多码集信号估计方法
CN101335544B (zh) * 2007-06-26 2012-12-05 中兴通讯股份有限公司 一种基于训练序列的信道估计方法和系统
CN101541012A (zh) * 2008-03-21 2009-09-23 夏普株式会社 干扰过载指示生成方法、干扰过载指示触发方法、干扰过载指示方法和基站
CN102271103B (zh) * 2011-02-18 2014-06-11 北京大学 一种td-scdma系统中的多小区信道估计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0952711A2 (en) * 1998-04-23 1999-10-27 Lucent Technologies Inc. Joint maximum likelihood sequence estimator with dynamic channel description
JP2002330113A (ja) * 2001-02-28 2002-11-15 Mitsubishi Electric Research Laboratories Inc Ofdmシステムのための反復最大尤度チャンネル推定及び信号検出システム及び方法
CN1520077A (zh) * 2003-01-21 2004-08-11 大唐移动通信设备有限公司 时隙码分多址系统多码集信道估计方法
CN1588931A (zh) * 2004-09-02 2005-03-02 上海交通大学 基于迭代干扰消减的信道估计方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2739721B2 (ja) * 1993-03-11 1998-04-15 国際電信電話株式会社 セルラー式移動通信システム
JP4378036B2 (ja) 2000-07-17 2009-12-02 オーデリック株式会社 照明装置
CN100409588C (zh) * 2005-06-03 2008-08-06 上海原动力通信科技有限公司 时隙码分多址系统多小区联合检测方法
CN100499607C (zh) * 2005-06-03 2009-06-10 上海原动力通信科技有限公司 时隙码分多址系统多码集信号估计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0952711A2 (en) * 1998-04-23 1999-10-27 Lucent Technologies Inc. Joint maximum likelihood sequence estimator with dynamic channel description
JP2002330113A (ja) * 2001-02-28 2002-11-15 Mitsubishi Electric Research Laboratories Inc Ofdmシステムのための反復最大尤度チャンネル推定及び信号検出システム及び方法
CN1520077A (zh) * 2003-01-21 2004-08-11 大唐移动通信设备有限公司 时隙码分多址系统多码集信道估计方法
CN1588931A (zh) * 2004-09-02 2005-03-02 上海交通大学 基于迭代干扰消减的信道估计方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106231624A (zh) * 2016-08-31 2016-12-14 重庆大学 用于通信系统的信号检测方法和装置
CN106231624B (zh) * 2016-08-31 2019-08-09 重庆大学 用于通信系统的信号检测方法和装置

Also Published As

Publication number Publication date
JP4724225B2 (ja) 2011-07-13
EP1892869A4 (en) 2013-08-14
US7697569B2 (en) 2010-04-13
JP2008546291A (ja) 2008-12-18
EP1892869A1 (en) 2008-02-27
CN1874329A (zh) 2006-12-06
KR100909519B1 (ko) 2009-07-27
CN100499607C (zh) 2009-06-10
KR20080016690A (ko) 2008-02-21
EP1892869B1 (en) 2020-01-15
US20080310455A1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP4359388B2 (ja) ダイレクトシーケンススペクトル拡散通信システムにおけるデータのジョイント検出のための方法および装置
JP4866357B2 (ja) タイムスロットcdmaシステムのマルチセル結合検出方法
EP2165422B1 (en) Method and apparatus for interference suppression in a wireless communication receiver
de Almeida et al. Overview of tensor decompositions with applications to communications
RU2285335C2 (ru) Способ обработки сигнала cdma-системы мобильной передачи данных
EP3369187B1 (en) Lattice reduction-aided symbol detection
TWI558118B (zh) 使用子空間干擾消除之通信系統及方法
WO2006128385A1 (fr) Procede d'estimation de canal a jeux de codes multiples dans un systeme cdma a decoupage de temps
JP4128199B2 (ja) タイムスロット付きcdmaシステムにおけるマルチコードセットチャネル推定方法
WO2007016811A1 (fr) Procédé de limitation des interférences de signal des utilisateurs des cellules voisines
US9036681B2 (en) Method, apparatus and computer program for controlling a receiver
CN100527656C (zh) 多用户检测方法和多用户接收机
TW200404416A (en) Extended algorithm data estimator
EP2250776B1 (en) Whitening channel estimate by Cholesky factorization
JP4448847B2 (ja) 複雑さを低減させたスライディングウィンドウ方式による等化器
JP2007525081A (ja) 複雑度を低減したスライディングウィンドウベースの等化器
US8493953B1 (en) Method and device for mitigation of multi-user interference in code division multiple access
JP2005504463A (ja) 干渉信号符号電力およびノイズ分散を推定する方法および装置
JP3913455B2 (ja) 無線受信システム
Jiang et al. Blind identification of out-of-cell users in DS-CDMA
WO2012036603A1 (en) Method and system for improved interference cancellation by path selection
US20090041059A1 (en) Transmission and reception system and method based on code division
Xue et al. Low Complexity Algorithms for Multi-Cell Joint Channel Estimation in TDD-CDMA Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008513904

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2006742077

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077030618

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006742077

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11916186

Country of ref document: US