WO2006123494A1 - Rotary expansion machine and refrigeration cycle device - Google Patents

Rotary expansion machine and refrigeration cycle device Download PDF

Info

Publication number
WO2006123494A1
WO2006123494A1 PCT/JP2006/308076 JP2006308076W WO2006123494A1 WO 2006123494 A1 WO2006123494 A1 WO 2006123494A1 JP 2006308076 W JP2006308076 W JP 2006308076W WO 2006123494 A1 WO2006123494 A1 WO 2006123494A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
expansion
expansion mechanism
refrigerant
expander
Prior art date
Application number
PCT/JP2006/308076
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Hasegawa
Masaru Matsui
Atsuo Okaichi
Tomoichiro Tamura
Takeshi Ogata
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006123494A1 publication Critical patent/WO2006123494A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/356Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F01C1/3562Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F01C1/3564Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/106Stators; Members defining the outer boundaries of the working chamber with a radial surface, e.g. cam rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators

Definitions

  • the present invention relates to an expander that operates by a high-pressure compressive fluid to generate power, and in particular, an expander that can recover expansion power of a refrigerant by replacing an expansion valve in a refrigeration cycle apparatus. It is about.
  • the present invention also relates to a refrigeration cycle apparatus equipped with the expander.
  • a power recovery type refrigeration cycle apparatus that recovers expansion energy of a refrigerant (working fluid) with an expander and compresses the refrigerant with a compressor is used as part of work.
  • Figure 16 A power recovery type refrigeration cycle apparatus that recovers expansion energy of a refrigerant (working fluid) with an expander and compresses the refrigerant with a compressor is used as part of work.
  • This refrigeration cycle apparatus includes a refrigerant circuit in which a compressor 1, a gas cooler 2, an expander 3, and an evaporator 4 are connected in this order.
  • An electric motor 5 is connected to the compressor 1, and a generator 6 is connected to the expander 3.
  • the refrigerant is compressed to high temperature and high pressure in the compressor 1 and then cooled in the gas cooler 2. Then, after expanding to low temperature and low pressure in the expander 3, it is heated in the evaporator 4.
  • the expander 3 recovers the expansion energy of the refrigerant as mechanical energy, and then converts it into electrical energy by the generator 6.
  • the obtained electric energy is used as a part of electric energy necessary for the electric motor 5 to drive the compressor 1.
  • One type of expander is a one-piston rotary type.
  • some mechanism is necessary for confining the refrigerant in the working chamber for expansion.
  • a rotary expander disclosed in JP-A-8-82296 and JP-A-8-338356 forms a refrigerant passage in the shaft, and intermittently enters the working chamber as the shaft rotates.
  • a mechanism for sucking refrigerant is used.
  • the rotary expander disclosed in Japanese Patent Publication No. 2001-153077 employs a mechanism that controls the intake Z discharge of the refrigerant with a valve mechanism.
  • Japanese Patent Laid-Open No. 2003-172244 discloses a rotary expander that allows a refrigerant to be trapped in a working chamber by forming a refrigerant suction hole in a plate that closes the top or bottom of a cylinder. It is disclosed.
  • This rotary expander is advantageous in terms of structure because it does not require a mechanism for controlling the suction Z discharge of refrigerant. On the other hand, this rotary expander can only achieve an extremely small expansion ratio and is difficult to put into practical use.
  • Another type of expander is a scroll type.
  • the scroll type expander essentially eliminates the need for a mechanism for controlling the suction and discharge of refrigerant, and can achieve a practically sufficient expansion ratio.
  • FIG. 17 shows a Mollier diagram of a refrigeration cycle in which carbon dioxide is used as a refrigerant and power recovery is performed by an expander.
  • Process AB corresponds to the change in compressor 1, Process BC in gas cooler 2, Process CD in expander 3, and Process DA in evaporator 4.
  • compressor 1 and expander 3 an adiabatic change (isentropic change) is assumed.
  • the refrigerant is a supercritical single phase at point C before it is dissipated by the gas cooler 2 and sucked into the expander 3, and at point D before it is expanded by the expander 3 and guided to the evaporator 4.
  • Two phases In other words, in the expander 3, the refrigerant expands as a single phase up to point E on the point C force saturated liquid line, and expands from point E to point D with a phase change to liquid force gas.
  • the graph in FIG. 18 represents the relationship between the pressure of the refrigerant and the specific volume in the expansion process CD.
  • the points C, D, and E in Fig. 18 are the same as the points C, D, and E in Fig. 17.
  • Expansion process The refrigerant in CE is very dense and close to an incompressible fluid. Moreover, the pressure drop (Ps to Pm) in the expansion process CE reaches nearly half of the pressure drop (Ps to Pd) of the total expansion process CD. However, the specific volume of the refrigerant hardly increases because it is close to an incompressible fluid. In contrast, in the expansion process ED, the phase changes from the liquid phase to the gas phase. Due to the expansion, the specific volume of the refrigerant is greatly increased.
  • the change rate of the specific volume of the refrigerant greatly changes with the saturated liquid line as a boundary. Specifically, the rate of change in specific volume is greater after entering the gas-liquid two-phase region.
  • the ratio between the change rate of the specific volume in the expansion process CE and the change rate of the specific volume in the expansion process ED depends on the operating conditions of the refrigeration cycle apparatus, but is a carbon dioxide refrigerant. For example, 1.1: 2.5.
  • the ratio of the change rate of the specific volume in the expansion process CE and the change rate of the specific volume in the expansion process ED is, for example, 1. 1: 2 .5 and big. It is unrealistic in terms of the structure of the scroll expander to produce such a difference in volume change rate between the first half and the second half of the expansion process by adjusting the wall thickness of the wrap.
  • the present invention has been made in view of the points to be worked on, and realizes a volume change rate of the working chamber adapted to the phase change of the expansion process, thereby providing a highly efficient expander. Objective. Also A refrigeration cycle apparatus including the expander is provided.
  • the present invention includes a force cylinder, a shaft that passes through the cylinder, a piston that is attached to the shaft and rotates eccentrically inside the cylinder, and a space between the cylinder and the suction side space and a discharge side.
  • First, second, and third expansion mechanism portions that are arranged in order in the axial direction so as to share a shaft and have a partition member that partitions into a space;
  • a first communication path that connects the discharge-side space of the first expansion mechanism and the suction-side space of the second expansion mechanism to form a first working chamber that expands the working fluid at a first expansion ratio
  • the discharge-side space of the second expansion mechanism and the suction-side space of the third expansion mechanism are connected to form a second working chamber that further expands the working fluid expanded in the first working chamber at the second expansion ratio.
  • a rotary expander that includes a discharge-side spatial force of a third expansion mechanism section and a discharge path that discharges a working fluid, and has a second expansion ratio larger than the first expansion ratio.
  • the rotary expander of the present invention uses a three-stage cylinder and expands the working fluid (specifically, refrigerant) stepwise in the two working chambers of the first working chamber and the second working chamber. This is what I did.
  • the second expansion ratio of the second working chamber is larger than the first expansion ratio of the first working chamber, that is, the volume change rate in the first half of the expansion process is small and the volume change rate in the second half of the expansion process is large. It has become.
  • the number of cylinders is three or more, so that there is a large difference between the volume change rate in the first half of the expansion process and the volume change rate in the second half of the expansion process compared to the scroll type. It is possible to have it. Therefore, according to the present invention, it is possible to provide an expander that is excellent in power recovery efficiency and is adapted to the change in the change rate of the specific volume of the refrigerant in the expansion process.
  • FIG. 1 is a longitudinal sectional view of an expander according to the present invention.
  • FIG. 3A is a plan view and a sectional view of the first intermediate plate shown in FIG.
  • FIG. 3B is a plan view and a sectional view of the second intermediate plate shown in FIG.
  • FIG. 7 Graph of the results of a computer simulation study of the relationship between the expansion ratio in the single-phase expansion process of carbon dioxide refrigerant and the suction temperature of the expander
  • FIG. 8 Graph of the results of a computer simulation study of the relationship between the expansion ratio of the diacid carbon refrigerant during the entire expansion process and the suction temperature of the expander
  • FIG. 9 is a graph showing the relationship between the ratio of the change rate of the specific volume in the entire expansion process to the change rate of the specific volume in the single-phase expansion process and the suction temperature of the expander
  • FIG. 10A Mollier line explaining the effect of completing the single-phase expansion process in the first working chamber.
  • FIG. 12 is a longitudinal sectional view of the expander according to the second embodiment.
  • FIG. 13 is a plan view of the main part of the expander of FIG.
  • FIG. 14 is a plan view of a principal part showing a modification of the expander of FIG.
  • FIG. 15 is a plan view of relevant parts showing another modification of the expander shown in FIG.
  • FIG.16 Block diagram of a conventional power recovery refrigeration system using an expander
  • FIG. 18 is a graph showing the relationship between refrigerant pressure and specific volume during the expansion process.
  • FIG. 19 is a characteristic diagram showing the change in volume with time of a conventional expander
  • FIG. 1 is a longitudinal sectional view of an expander according to the present invention.
  • 2 is a plan view of the first expansion mechanism portion, the second expansion mechanism portion, and the third expansion mechanism portion of the expander of FIG. 1 observed from a direction parallel to the shaft rotation axis (hereinafter referred to as the axial direction). is there.
  • the expander 100 is a rotary expander.
  • the power of the present invention can be explained as an example.
  • the present invention can also be applied to a so-called swing-type rotary expander.
  • the expander 100 includes a sealed container 51, a rotary type expansion mechanism unit 60 accommodated in the sealed container 51, and a generator 52 also accommodated in the sealed container 51.
  • An oil reservoir 54 is formed below the sealed container 51. Oil is also supplied to each sliding portion of the expansion mechanism unit 60 via the oil hole (not shown) in the shaft 61, and the lower end portion of the shaft 61 is lubricated and sealed.
  • the generator 52 includes a rotor 52a and a stator 52b. The rotor 52a is connected to the shaft 61 of the expansion mechanism unit 60, and rotates as the expansion mechanism unit 60 operates.
  • the expansion mechanism unit 60 includes three stages of expansion mechanism portions that share the shaft 61, that is, a first expansion mechanism portion 601, a second expansion mechanism portion 602, and a third expansion mechanism portion 603.
  • a first working chamber (first expansion chamber) for expanding the refrigerant is formed by the discharge side space of the first expansion mechanism section 601 and the suction side space of the second expansion mechanism section 602, and expands in the first working chamber.
  • a second working chamber (second expansion chamber) for further expanding the refrigerant thus formed is formed by the discharge side space of the second expansion mechanism portion 602 and the suction side space of the third expansion mechanism portion 603.
  • Each expansion mechanism section 601, 602, 603 is designed such that the expansion ratio of the downstream second working chamber is larger than the expansion ratio of the upstream first working chamber in the refrigerant flow direction.
  • the expansion mechanism portions 601, 602, and 603 include cylinders 62, 63, and 64, a shaft 61 that passes through the cylinders 62, 63, and 64, and inner shafts of the cylinders 62, 63, and 64 that are attached to the shaft 61.
  • Partition members 70, 71, 72 vanes that divide the space between pistons 67, 68, 69 and cylinders 62, 63, 64 and pistons 67, 68, 69 into suction side and discharge side spaces ).
  • the shaft 61 has eccentric portions 6 la, 61 b, 61 c at three locations along the rotation axis O. Eccentric rods 61a, 61b and 61c are located in cylinders 62, 63 and 64, respectively, and pistons 67, 68 and 69 are engaged with each other!
  • the grooves 62a, 63a, and 64a are formed in the cylinders 62, 63, and 64 so as to extend radially outward.
  • the partition rods 70, 71, 72 ⁇ are arranged in the grooves 62a, 63a, 64a, and can advance and retreat in two directions, a direction approaching the rotation axis O of the shaft 61 and a direction separating them.
  • the tip of the partition member 70, 71, 72 contacts the outer peripheral surface of the piston 67, 68, 69.
  • the space force between the cylinders 62, 63, 64 and the pistons 67, 68, 69 is divided into the suction rod J space 80a, 81a, 82a and the discharge rod J space 80b, 81b, 82b! / RU Further, springs 73, 74, and 75 are self-placed behind the partition rods 70, 71, and 72, and the partition members 70, 71, and 72 are pistoned by the inertia restoring force of the springs 73, 74, and 75. It is pressed toward 67, 68, 69.
  • a suction side space 80a and a discharge side space 80b are formed inside the first cylinder 62.
  • a suction side space 81a and a discharge side space 81b are formed inside the second cylinder 63, and a suction side space 82a and a discharge side space 82b are formed inside the third cylinder 64.
  • the first cylinder 62 is formed with a suction passage 62b for sucking the refrigerant before expansion into the suction side space 80a.
  • a suction pipe 78 is connected to the suction path 62b for allowing the first cylinder 62 to suck the refrigerant to be expanded.
  • the third cylinder 64 is formed with a discharge path 64b for discharging the expanded refrigerant from the discharge side space 82b.
  • a discharge pipe 79 for sending the expanded refrigerant to the outside of the sealed container 51 is connected to the discharge path 64b.
  • a first intermediate plate that closes the lower end of the first cylinder 62 and the upper end of the second cylinder 63 is interposed between the first expansion mechanism portion 601 and the second expansion mechanism portion 602. 65 (first intermediate member) is arranged.
  • a second intermediate plate 66 (second intermediate member) that closes the lower end of the second cylinder 63 and the upper end of the third cylinder 64 is disposed between the second expansion mechanism 602 and the third expansion mechanism 603. It is.
  • the upper bearing member 76 that also serves as the upper end plate of the first cylinder 62 and the lower bearing member 77 that also serves as the lower end plate of the third cylinder 64 sandwich the expansion mechanism unit 60 from above and below in the axial direction. It is arranged as follows.
  • FIG. 3A shows a plan view and a sectional view of the first intermediate plate
  • FIG. 3B shows a plan view and a sectional view of the second intermediate plate.
  • the first intermediate plate 65 connects the discharge side space 8 Ob of the first expansion mechanism portion 601 and the suction side space 81a of the second expansion mechanism portion 602 to expand the first working chamber.
  • a first communication hole 65a is formed as a communication passage forming 83 (see FIG. 2).
  • the second intermediate plate 66 is connected to the discharge side space 81b of the second expansion mechanism section 602 and the suction side space 82a of the third expansion mechanism section 603, and is expanded in the first working chamber 83.
  • a second communication hole 66a is formed as a communication path for forming a second working chamber 84 (see FIG. 2) for further expanding the refrigerant. Yes. If one working chamber is formed by such a communication hole, a special mechanism such as a valve mechanism is unnecessary, vibration and noise can be reduced, and a practically sufficient expansion ratio can be realized. Is possible.
  • the opening shape of the communication holes 65a, 66a is not limited to a circle, and may be an ellipse or a square.
  • the communication holes 65 a and 66 a are oblique holes in which the center line of the force hole penetrating the intermediate plates 65 and 66 in the thickness direction is inclined with respect to the rotation axis O of the shaft 61.
  • the diameter D2 of the second communication hole 66a is larger than the diameter D1 of the first communication hole 65a. If the aperture shape is other than circular, the size may be compared by converting it to the diameter (equivalent diameter) of a circle with the same area. The advantages of this configuration will be described later.
  • FIG. 4 is an enlarged cross-sectional view of the expansion mechanism unit.
  • the height H2 of the second cylinder 63 in the axial direction is larger than the height HI of the first cylinder 62.
  • the height H3 of the third cylinder 64 in the axial direction is larger than the height H2 of the second cylinder 63.
  • the cylinders 62, 63, 64 are concentric and have the same inner diameter. Also, the outer diameters of the pistons 67, 68, 69 rotating eccentrically in the cylinders 62, 63, 64 are equal.
  • the expansion ratio (volume change rate) of the first working chamber 83 and the expansion ratio (volume change rate) of the second working chamber 84 are based on the difference in height between the cylinders 62, 63, 64. No. In the expander 100 of the present embodiment, the heights of the cylinders 62, 63, and 64 are adjusted so that the expansion ratio of the second working chamber 84 is larger than the expansion ratio of the first working chamber 83.
  • the expansion ratio of the first working chamber 83 is formed between the volume of the space formed between the first cylinder 62 and the first piston 67, and between the second cylinder 63 and the second piston 68. It corresponds to the ratio with the volume of the space.
  • the expansion ratio of the second working chamber 84 depends on the volume of the space formed between the second cylinder 63 and the second piston 68 and the space formed between the third cylinder 64 and the third piston 69. It corresponds to the ratio with the volume.
  • FIG. 5 is an operation principle diagram of the expander shown in FIG. 1, and shows a state where the rotation angle of the shaft 61 is 90 °.
  • Figure 6A is a graph showing the relationship between the rotation angle of the shaft and the volume of the working chamber.
  • FIG. 6B is a graph showing the relationship between the rotation angle of the shaft and the pressure of the refrigerant.
  • the volume of the first working chamber 83 gradually increases from Vsl to Vs2. This is because the height H2 of the second cylinder 63 is adjusted to be larger than the height HI of the first cylinder 62.
  • the refrigerant slightly increases its specific volume.
  • the refrigerant pressure decreases relatively greatly from Ps to Pm.
  • the refrigerant expanded in the first working chamber 83 moves to the second working chamber 84 formed by the discharge side space 81b of the second cylinder 63 and the suction side space 82a of the third cylinder 64.
  • the volume of the second working chamber 84 gradually increases from Vs2 to Vs3. This is because the height H3 of the third cylinder 64 is adjusted to be larger than the height H2 of the second cylinder 63.
  • the refrigerant greatly increases its specific volume.
  • the pressure of the refrigerant also changes (decreases) in Pm force to Pd. This pressure change (Pm ⁇ Pd) in the second working chamber 84 is not much different from the pressure change (Ps ⁇ Pm) in the first working chamber.
  • the refrigerant expands in the first working chamber 83, it further expands in the second working chamber 84, and rotates the shaft 61 to become a low pressure.
  • the low-pressure refrigerant is discharged from the discharge pipe 79 from the discharge side space 82b of the third cylinder 64 through the discharge path 64b.
  • the rate of change in the specific volume of the gas-liquid two-phase flow refrigerant such as carbon dioxide carbon dioxide or alternative chlorofluorocarbon is the single-phase expansion process (corresponding to the expansion process CE shown in FIG. 17).
  • Gas-liquid two-phase expansion process (It corresponds to the expansion process ED shown in Fig. 17).
  • the expansion ratio of the first working chamber 83 and the expansion ratio of the second working chamber 84 are adjusted, that is, the heights HI, H2, and H3 of the cylinders 6, 2, 63, and 64 are adjusted.
  • the rotary expander 100 adapted to the change in the change rate of the specific volume of the refrigerant is realized.
  • the heights HI, H2, H3 of the cylinders 62, 63, 64 can be determined based on the facts described below.
  • Fig. 7 is a computer simulation showing the relationship between the expansion ratio in the single-phase expansion process (corresponding to the expansion process CE in Fig. 17) and the intake temperature of the expander according to the suction pressure. This is a graph of the results of investigation.
  • the expansion ratio was calculated from the ratio of the specific volume of refrigerant at point C and point E (see Fig. 17) of the refrigeration cycle, assuming adiabatic change (isentropic change).
  • the expansion ratio in the single-phase expansion process depends greatly on the intake temperature, and increases as the intake temperature increases. It also depends on the suction pressure. When the suction temperature is 35 ° C or lower, the pressure increases as the pressure increases.
  • Applications of the power recovery refrigeration cycle apparatus using carbon dioxide and carbon dioxide as a refrigerant include, for example, an air conditioner and a water heater.
  • the expander intake temperature is approximately 15 ° C to 40 ° C. C or less
  • suction pressure is generally 9MPa or more and 12MPa or less.
  • FIG. 7 it can be seen from FIG. 7 that the expansion ratio in the single-phase expansion process is 1.1 or less, except when the suction pressure is 9 MPa and the suction temperature is 40 ° C. Even if the suction pressure is 9 MPa, the expansion ratio is below 1.1 at a suction temperature of about 38 ° C.
  • the expansion ratio in the single-phase expansion process is 1.07 or less at any suction pressure.
  • FIG. 8 shows, for each suction pressure, the expansion ratio in the entire expansion process of the carbon dioxide refrigerant (corresponding to the expansion process CD in FIG. 17) and the suction temperature of the expander. It is the graph of the result of having investigated the relationship in the computer simulation.
  • the discharge pressure was set at 4. OMPa, and the expansion ratio for the entire expansion process was determined by the specific force of the specific volume of refrigerant at points C and D (see Fig. 17) of the refrigeration cycle. It can be seen that the expansion ratio throughout the expansion process is distributed around 2.0, although it varies depending on the conditions.
  • Equation 9 shows a ratio X (vertical axis) of the specific volume change rate in the entire expansion process to the specific volume change rate in the single-phase expansion process based on the simulation results of FIGS. 7 and 8. And a graph showing the relationship between the suction temperature (horizontal axis) of the expander and the suction pressure.
  • the ratio X was calculated using the following formula 1.
  • R1 is the expansion ratio in the single phase
  • R is the expansion ratio in the entire expansion process.
  • the change rate of the specific volume in the entire expansion process of the refrigerant is 22 times as much as the 5 times the change rate of the specific volume in the single phase expansion process. is there.
  • the expansion ratio in the single phase expansion process is very small compared to the rate of change in specific volume throughout the expansion process!
  • the expansion ratio of the first working chamber 83 can be set to about 1.1, and the expansion ratio of the second working chamber 84 can be set to about 1.8.
  • the expansion ratio of the first working chamber 83 matches the ratio of the height HI of the first cylinder 62 and the height H2 of the second cylinder 63
  • the expansion ratio of the second working chamber 84 matches the height H2 of the second cylinder 63. It corresponds to the ratio of 3 cylinder 64 height H 3.
  • Point Q and point Q representing the boundary between tension and expansion in the second working chamber 84 1S Lower pressure than saturated liquid line
  • the side or the high pressure side is an example in which the single-phase expansion process CE is completed in the first working chamber 83 as shown in FIG. 10A.
  • the single-phase expansion process CE is changed to the second working chamber 84 having a large expansion ratio. Will be dragged. Then, the expansion process QE, which is part of the single-phase expansion process CE, expands
  • the single-phase expansion process CE is completed in the first working chamber 83.
  • the refrigerant expands from a single phase to a gas-liquid two phase, there is no problem of a rapid pressure drop. Therefore, the pressure drop in the single phase can be alleviated while maintaining the expansion ratio necessary for the entire expansion process, and the expansion energy of the refrigerant can be recovered efficiently.
  • the volume of the first communication hole 65a is died in the specific volume force, in the single phase expansion process. This prevents the refrigerant from re-expanding and lowering the efficiency of the expander, and the specific volume is large.In the gas-liquid two-phase expansion process, the pressure loss when the refrigerant passes through the second communication hole 66a is reduced. It can be stopped to a minimum. Therefore, the power recovery efficiency of the expander 100 can be improved.
  • the vertical upward force is also applied to the first cylinder 62, the second cylinder 63, and the third cylinder 64 along the axial direction so that the refrigerant flows with a vertical upward force directed downward.
  • the liquid refrigerant having a high density drops in the first communication hole 65a formed in the first intermediate plate 65 and the second communication hole 66a formed in the second intermediate plate 66 by gravity. If high-density liquid refrigerant stays in each of the communication holes 65a and 66a, which become a dead space in the expander, the expansion efficiency of the expander is reduced. According to this embodiment, such a phenomenon can be prevented and an expander with high expansion efficiency can be realized.
  • the expansion ratio of the first working chamber and the expansion ratio of the second working chamber can be set to the desired values by combining parameters such as the inner diameter and height of the cylinder or the diameter of the piston in various patterns. Is possible.
  • the rotary expander 20 of the present embodiment shown in FIG. 0 creates a suitable expansion ratio of the first working chamber and that of the second working chamber by adjusting the inner diameters of the cylinders 21, 22, 23 and the diameters of the pistons 41, 42, 43, etc. . Since the other basic configuration is the same as that of the expander of the first embodiment, the description thereof is omitted.
  • the inner diameter D1 of the first cylinder 21 is equal to the inner diameter D2 of the second cylinder 22 as shown in the plan view of the main part of FIG. D3 is larger than the inner diameter D2 of the second cylinder 22.
  • the eccentric amount E3 of the third eccentric portion 31c where the eccentric amount E1 of the first eccentric portion 31a is equal to the eccentric amount E2 of the second eccentric portion 3 lb is greater than the eccentric amount E2 of the second eccentric portion 3 lb. It ’s big.
  • the outer diameter Dp2 of the second piston 42 is smaller than the outer diameter Dpi of the first piston 41, and the outer diameter Dp3 of the third piston 43 is larger than the outer diameter Dp2 of the second piston 42.
  • the dimensions of each part may be adjusted as shown in the plan view of the main part in FIG. it can.
  • the outer diameters of the first piston 41, the second piston 42, and the third piston 43 are equal to each other.
  • the expansion ratio of the first working chamber and the expansion ratio of the second working chamber can be adjusted by making the inner diameters of the cylinders 21, 22, and 23 different. That is, the inner diameter of each cylinder 21, 22, 23 is set as D1 ⁇ D2 ⁇ D3!
  • the shaft 31 force is also used for each piston 41, 42, 43, and the outer diameter force S of each piston 41, 42, 43 is equal, and the inner diameter of each cylinder 21, 22, 23 is different.
  • the eccentricity of 31b and 31c is E1 ⁇ E2 ⁇ E3.
  • the amount of eccentricity of the eccentric portion corresponds to the distance between the rotation axis O of the shaft 31 and the centers of the pistons 41, 42, and 43.
  • each part may be adjusted as shown in the plan view of the main part in FIG. it can.
  • the inner diameters of the first cylinder 21, the second cylinder 22, and the third cylinder 23 are equal.
  • the expansion ratio of the first working chamber and the expansion ratio of the second working chamber can be adjusted by making the outer diameters of the pistons 41, 42, 43 different. That is, the outer diameter of each piston 41, 42, 43 is set to 0 1> 0 2> 0 3.
  • the eccentricity El, E2, E3 of each eccentric part 31a, 31b, 31c provides the optimum clearance between piston 41, 42, 43 and cylinder 21, 22, 23. Adjust to ensure.
  • each cylinder or each piston can also produce a material (steel plate) force having the same thickness, an improvement in productivity and a reduction in cost can be expected. Also, a small and compact expander can be realized by sufficiently reducing the axial height.
  • the number of cylinders is not limited to three. That is, the number of cylinders can be increased so that three or more working chambers having different expansion ratios are formed. If the number of working chambers is increased in this way, an optimal expansion process can be realized depending on the refrigerant state when the refrigerant expands, the expansion process from the supercritical state to the saturated liquid line, or near the saturated liquid line. It is possible to control the expansion process more precisely.
  • the refrigerant is described as carbon dioxide, but the present invention is applied to the case where the refrigerant is flon or the like and is expanded from a liquid single phase to a gas-liquid two phase through a saturated liquid. However, the same effect can be obtained.
  • the rotary expander of the present invention is useful as power recovery means by recovering the expansion energy of the working fluid in the refrigeration cycle.
  • the compressor that compresses the refrigerant as the working fluid, the radiator that cools the refrigerant compressed by the compressor, and the refrigerant that is cooled by the radiator are expanded.
  • the rotary expander 100 of the present invention can be suitably used for a refrigeration cycle apparatus that includes an expander and an evaporator that evaporates the refrigerant expanded in the expander.
  • the present invention is particularly useful when using carbon dioxide as a refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A rotary expansion machine (100) has three-staged expansion mechanism sections (601, 602, 603) sequentially axially arranged in a manner to share a shaft (61). The expansion mechanism sections (601, 602, 603) have cylinders (62, 63, 64), pistons (67, 68, 69) installed on the shaft (61) and eccentrically rotated inside the cylinders (62, 63, 64), and partition members (70, 71, 72) each partitioning a space between a cylinder (62, 63, 64) and a piston (67, 68, 69) into a suction side space and a discharge side space. A first operation chamber for expanding refrigerant at a first expansion ratio is formed by the discharge side space of the first expansion mechanism section (601) and the suction side space of the second expansion mechanism section (602). A second operation chamber for expanding the refrigerant at a second expansion ratio greater than the first expansion ratio is formed by the discharge side space of the second expansion mechanism section (602) and the suction side space of the third expansion mechanism section (603).

Description

ロータリ式膨張機および冷凍サイクル装置  Rotary expander and refrigeration cycle apparatus
技術分野  Technical field
[0001] 本発明は、高圧の圧縮性流体により作動して動力を発生させる膨張機に関し、特 に、冷凍サイクル装置における膨張弁と置き換えることにより、冷媒の膨張動力を回 収可能にする膨張機に関するものである。また、その膨張機を備えた冷凍サイクル装 置に関する。  TECHNICAL FIELD [0001] The present invention relates to an expander that operates by a high-pressure compressive fluid to generate power, and in particular, an expander that can recover expansion power of a refrigerant by replacing an expansion valve in a refrigeration cycle apparatus. It is about. The present invention also relates to a refrigeration cycle apparatus equipped with the expander.
背景技術  Background art
[0002] 冷媒 (作動流体)の膨張エネルギーを膨張機で回収し、圧縮機で冷媒を圧縮する 仕事の一部として利用する動力回収式の冷凍サイクル装置が知られている。図 16に A power recovery type refrigeration cycle apparatus that recovers expansion energy of a refrigerant (working fluid) with an expander and compresses the refrigerant with a compressor is used as part of work. Figure 16
、膨張機を用いた従来の冷凍サイクル装置を示す。本冷凍サイクル装置は、圧縮機 1、ガスクーラ 2、膨張機 3および蒸発器 4がこの順に接続された冷媒回路を備えてい る。圧縮機 1には電動機 5が接続され、膨張機 3には発電機 6が接続されている。冷 媒は、圧縮機 1において高温高圧へと圧縮された後、ガスクーラ 2において冷却され る。そして、膨張機 3において低温低圧へと膨張した後、蒸発器 4で加熱される。膨張 機 3は、冷媒の膨張エネルギーを機械エネルギーとして回収した後、発電機 6で電気 エネルギーに変換する。得られた電気エネルギーは、電動機 5が圧縮機 1を駆動す るために必要な電気エネルギーの一部として利用される。 1 shows a conventional refrigeration cycle apparatus using an expander. This refrigeration cycle apparatus includes a refrigerant circuit in which a compressor 1, a gas cooler 2, an expander 3, and an evaporator 4 are connected in this order. An electric motor 5 is connected to the compressor 1, and a generator 6 is connected to the expander 3. The refrigerant is compressed to high temperature and high pressure in the compressor 1 and then cooled in the gas cooler 2. Then, after expanding to low temperature and low pressure in the expander 3, it is heated in the evaporator 4. The expander 3 recovers the expansion energy of the refrigerant as mechanical energy, and then converts it into electrical energy by the generator 6. The obtained electric energy is used as a part of electric energy necessary for the electric motor 5 to drive the compressor 1.
[0003] 膨張機の 1つの型式として、 1ピストンロータリ式がある。ただし、 1ピストンロータリ式 膨張機は、その構造上、作動室内に冷媒を閉じこめて膨張させるための何らかのェ 夫が不可欠である。例えば、特開平 8— 82296号公報ゃ特開平 8— 338356号公報 に開示されているロータリ式膨張機は、シャフト内に冷媒通路を形成し、シャフトの回 転に伴って作動室に間欠的に冷媒を吸入させる仕組みが採用されている。また、特 開 2001— 153077号公報に開示されているロータリ式膨張機は、冷媒の吸入 Z吐 出を弁機構で制御する仕組みが採用されている。しかし、これらの型式の膨張機で は冷媒の吸入が間欠的に行なわれるため、振動や騒音が比較的大きくなる傾向があ る。 [0004] また、シリンダの上または下を閉塞するプレートに冷媒の吸入孔を形成することによ り、冷媒を作動室に閉じこめ可能としたロータリ式膨張機が、特開 2003— 172244 号公報に開示されている。このロータリ式膨張機によれば、冷媒の吸入 Z吐出を制 御する機構が不要となるので、構造上は有利である。その反面、このロータリ式膨張 機は、極めて小さい膨張比しか達成できず、実用に供することが難しい。 [0003] One type of expander is a one-piston rotary type. However, because of the structure of a one-piston rotary expander, some mechanism is necessary for confining the refrigerant in the working chamber for expansion. For example, a rotary expander disclosed in JP-A-8-82296 and JP-A-8-338356 forms a refrigerant passage in the shaft, and intermittently enters the working chamber as the shaft rotates. A mechanism for sucking refrigerant is used. Further, the rotary expander disclosed in Japanese Patent Publication No. 2001-153077 employs a mechanism that controls the intake Z discharge of the refrigerant with a valve mechanism. However, in these types of expanders, the refrigerant is sucked intermittently, so vibration and noise tend to be relatively large. [0004] Further, Japanese Patent Laid-Open No. 2003-172244 discloses a rotary expander that allows a refrigerant to be trapped in a working chamber by forming a refrigerant suction hole in a plate that closes the top or bottom of a cylinder. It is disclosed. This rotary expander is advantageous in terms of structure because it does not require a mechanism for controlling the suction Z discharge of refrigerant. On the other hand, this rotary expander can only achieve an extremely small expansion ratio and is difficult to put into practical use.
[0005] こうした問題を改善するべぐ近年、上下 2段のシリンダで 1つの作動室を形成する ようにしたロータリ式膨張機が開発され、 WO2005Z026499パンフレットで開示さ れている。このロータリ式膨張機によれば、冷媒の連続吸入を実現できるため振動や 騒音を低減できるとともに、実用上十分な膨張比を達成できる。  [0005] In recent years, in order to improve these problems, a rotary expander in which one working chamber is formed by two upper and lower cylinders has been developed and disclosed in a pamphlet of WO2005Z026499. According to this rotary expander, continuous suction of refrigerant can be realized, so that vibration and noise can be reduced, and a practically sufficient expansion ratio can be achieved.
[0006] 一方、例えば、特開 2002— 364562号公報に開示されているように、膨張機の他 の 1つの型式として、スクロール式がある。スクロール式膨張機は、冷媒の吸入 Z吐 出を制御する機構が本質的に不要であるとともに、実用上十分な膨張比も達成でき る。  On the other hand, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-364562, another type of expander is a scroll type. The scroll type expander essentially eliminates the need for a mechanism for controlling the suction and discharge of refrigerant, and can achieve a practically sufficient expansion ratio.
発明の開示  Disclosure of the invention
[0007] 次に、図 17に、冷媒として二酸化炭素を用い、膨張機で動力回収を行う場合の冷 凍サイクルのモリエル線図を示す。過程 ABは圧縮機 1、過程 BCはガスクーラ 2、過 程 CDは膨張機 3、過程 DAは蒸発器 4での変化に相当する。ただし、圧縮機 1およ び膨張機 3においては、断熱変化 (等エントロピー変化)を仮定している。冷媒は、ガ スクーラ 2で放熱して膨張機 3に吸入される前の点 Cでは超臨界単相であり、膨張機 3で膨張して蒸発器 4に案内される前の点 Dでは気液二相である。つまり、膨張機 3 において、冷媒は、点 C力 飽和液線上の点 Eまでは単相のまま膨張し、点 Eから点 Dまでは液体力 気体への相変化を伴いながら膨張する。  Next, FIG. 17 shows a Mollier diagram of a refrigeration cycle in which carbon dioxide is used as a refrigerant and power recovery is performed by an expander. Process AB corresponds to the change in compressor 1, Process BC in gas cooler 2, Process CD in expander 3, and Process DA in evaporator 4. However, in compressor 1 and expander 3, an adiabatic change (isentropic change) is assumed. The refrigerant is a supercritical single phase at point C before it is dissipated by the gas cooler 2 and sucked into the expander 3, and at point D before it is expanded by the expander 3 and guided to the evaporator 4. Two phases. In other words, in the expander 3, the refrigerant expands as a single phase up to point E on the point C force saturated liquid line, and expands from point E to point D with a phase change to liquid force gas.
[0008] 図 18のグラフは、膨張過程 CDにおける冷媒の圧力と比容積の関係を表している。  [0008] The graph in FIG. 18 represents the relationship between the pressure of the refrigerant and the specific volume in the expansion process CD.
図 18中の点 C、点 D、点 Eの各点は、図 17の点 C、点 D、点 Eの各点と同じ状態を示 す。膨張過程 CEにおける冷媒は、非常に高密度であり、非圧縮性流体に近い。また 、膨張過程 CEにおける圧力降下 (Psから Pm)は、全膨張過程 CDの圧力降下 (Psか ら Pd)の半分近くに達する。ただし、非圧縮性流体に近いがゆえ、冷媒の比容積は ほとんど増加しない。これに対し、膨張過程 EDでは液相から気相に相変化しながら 膨張するため、冷媒の比容積は大幅に増加する。このように、動力回収式の冷凍サ イタル装置の膨張機において、冷媒の比容積の変化率は、飽和液線を境界に大きく 変化する。具体的にいうと、気液二相域に入ってからの方が比容積の変化率は大き い。 The points C, D, and E in Fig. 18 are the same as the points C, D, and E in Fig. 17. Expansion process The refrigerant in CE is very dense and close to an incompressible fluid. Moreover, the pressure drop (Ps to Pm) in the expansion process CE reaches nearly half of the pressure drop (Ps to Pd) of the total expansion process CD. However, the specific volume of the refrigerant hardly increases because it is close to an incompressible fluid. In contrast, in the expansion process ED, the phase changes from the liquid phase to the gas phase. Due to the expansion, the specific volume of the refrigerant is greatly increased. As described above, in the expander of the power recovery type refrigeration site apparatus, the change rate of the specific volume of the refrigerant greatly changes with the saturated liquid line as a boundary. Specifically, the rate of change in specific volume is greater after entering the gas-liquid two-phase region.
[0009] 一方、 WO2005Z026499パンフレットに開示されたロータリ式膨張機によれば、 図 19に示すごとぐ上下 2段のシリンダによって形成される 1つの作動室の容積 (縦 軸 V)は、時間(横軸 T)、言い換えれば、シャフトの回転角度に対して正弦波状に増 大する。ここで、図 19の特性図と、図 17, 18で説明した冷媒の膨張過程との対応関 係を検証する。本発明者らの知見によれば、膨張過程 CEにおける比容積の変化率 と、膨張過程 EDにおける比容積の変化率との比は、冷凍サイクル装置の運転状況 にもよるが、二酸化炭素冷媒で例えば 1. 1 : 2. 5にも達する。この知見にしたがい、 飽和液線上の点 E (図 17, 18参照)における冷媒の比容積を図 19に書き加え、冷媒 の比容積とシャフトの回転角度との対応関係を見出す。すると、膨張開始時 (T=0) 力も僅かな時間が経過しただけで、膨張過程 CEが終了することが分かる。先に説明 したように、膨張過程 CEでは、比容積こそあまり増カロしないものの、圧力降下は全膨 張過程 CDの約半分に達する。つまり、冷媒の圧力は、膨張開始時力 シャフトが僅 力に回転しただけで、急激に降下する。急激な圧力降下は、効率の良い動力回収の 妨げになると考えられる。  On the other hand, according to the rotary expander disclosed in the pamphlet of WO2005Z026499, the volume (vertical axis V) of one working chamber formed by two upper and lower cylinders as shown in FIG. Axis T), in other words, increases sinusoidally with respect to the rotation angle of the shaft. Here, the correspondence between the characteristic diagram of FIG. 19 and the expansion process of the refrigerant described in FIGS. 17 and 18 is verified. According to the knowledge of the present inventors, the ratio between the change rate of the specific volume in the expansion process CE and the change rate of the specific volume in the expansion process ED depends on the operating conditions of the refrigeration cycle apparatus, but is a carbon dioxide refrigerant. For example, 1.1: 2.5. Based on this knowledge, the specific volume of refrigerant at point E on the saturated liquid line (see Figs. 17 and 18) is added to Fig. 19, and the correspondence between the specific volume of refrigerant and the rotation angle of the shaft is found. Then, it can be seen that the expansion process CE is completed after only a short time has passed for the expansion start (T = 0) force. As explained above, in the expansion process CE, although the specific volume does not increase much, the pressure drop reaches about half of the total expansion process CD. In other words, the refrigerant pressure drops abruptly when the force shaft at the start of expansion rotates slightly. A sudden pressure drop is thought to hinder efficient power recovery.
[0010] このような相変化に伴う比容積の変化率の変化に対応する方法として、先の特開 2 002— 364562号公報には、スクロール式膨張機のラップの厚みを調整し、作動室 の容積変化率を、膨張過程の前半で小さくし、膨張過程の後半で大きくする方法が 開示されている。  [0010] As a method for coping with the change in the change rate of the specific volume accompanying such a phase change, the above Japanese Unexamined Patent Publication No. 2000-364562 adjusts the thickness of the wrap of the scroll expander, and A method is disclosed in which the volumetric change rate is reduced in the first half of the expansion process and increased in the second half of the expansion process.
[0011] し力しながら、図 18で説明したとおり、膨張過程 CEにおける比容積の変化率と膨 張過程 EDにおける比容積の変化率との比は、二酸化炭素冷媒で例えば 1. 1 : 2. 5 と大きい。ラップの肉厚調整により、膨張過程の前半と後半とでこれほどの容積変化 率の相違を生み出すことは、スクロール式膨張機の構造上、非現実的である。  [0011] However, as explained in FIG. 18, the ratio of the change rate of the specific volume in the expansion process CE and the change rate of the specific volume in the expansion process ED is, for example, 1. 1: 2 .5 and big. It is unrealistic in terms of the structure of the scroll expander to produce such a difference in volume change rate between the first half and the second half of the expansion process by adjusting the wall thickness of the wrap.
[0012] 本発明は、力かる点に鑑みてなされたものであり、膨張過程の相変化に適合した作 動室の容積変化率を実現し、以て高効率な膨張機を提供することを目的とする。また 、その膨張機を備えた冷凍サイクル装置を提供する。 [0012] The present invention has been made in view of the points to be worked on, and realizes a volume change rate of the working chamber adapted to the phase change of the expansion process, thereby providing a highly efficient expander. Objective. Also A refrigeration cycle apparatus including the expander is provided.
[0013] すなわち、本発明は、各々力 シリンダと、シリンダを貫くシャフトと、シャフトに取り 付けられてシリンダの内側で偏心回転するピストンと、シリンダとピストンの間の空間を 吸入側空間と吐出側空間に仕切る仕切り部材とを有し、かつシャフトを共有する形で 軸方向に順番に並んで配置された、第 1、第 2および第 3膨張機構部と、  That is, the present invention includes a force cylinder, a shaft that passes through the cylinder, a piston that is attached to the shaft and rotates eccentrically inside the cylinder, and a space between the cylinder and the suction side space and a discharge side. First, second, and third expansion mechanism portions that are arranged in order in the axial direction so as to share a shaft and have a partition member that partitions into a space;
第 1膨張機構部の吸入側空間へ作動流体を吸入させる吸入路と、  A suction path for sucking the working fluid into the suction side space of the first expansion mechanism,
第 1膨張機構部の吐出側空間と第 2膨張機構部の吸入側空間を結び、作動流体を 第 1の膨張比にて膨張させる第 1作動室を形成する第 1連通路と、  A first communication path that connects the discharge-side space of the first expansion mechanism and the suction-side space of the second expansion mechanism to form a first working chamber that expands the working fluid at a first expansion ratio;
第 2膨張機構部の吐出側空間と第 3膨張機構部の吸入側空間を結び、第 1作動室 にて膨張した作動流体を第 2の膨張比にてさらに膨張させる第 2作動室を形成する 第 2連通路と、  The discharge-side space of the second expansion mechanism and the suction-side space of the third expansion mechanism are connected to form a second working chamber that further expands the working fluid expanded in the first working chamber at the second expansion ratio. The second communication passage,
第 3膨張機構部の吐出側空間力 作動流体を吐出させる吐出路とを備え、 第 1の膨張比よりも第 2の膨張比が大である、ロータリ式膨張機を提供する。  Disclosed is a rotary expander that includes a discharge-side spatial force of a third expansion mechanism section and a discharge path that discharges a working fluid, and has a second expansion ratio larger than the first expansion ratio.
[0014] 上記本発明のロータリ式膨張機は、 3段のシリンダを用い、第 1作動室と第 2作動室 の 2つの作動室で段階的に作動流体 (具体的には冷媒)を膨張させるようにしたもの である。第 1作動室が有する第 1の膨張比よりも第 2作動室が有する第 2の膨張比が 大、すなわち、膨張過程の前半の容積変化率が小、膨張過程の後半の容積変化率 が大となっている。特に、ロータリ式膨張機によれば、シリンダを 3段以上とすることに より、スクロール式に比べて、膨張過程の前半の容積変化率と、膨張過程の後半の 容積変化率とに大きな差を持たせることが可能である。したがって、本発明によれば 、膨張過程における冷媒の比容積の変化率の変化に適合した、動力回収効率に優 れる膨張機を提供することが可能である。 [0014] The rotary expander of the present invention uses a three-stage cylinder and expands the working fluid (specifically, refrigerant) stepwise in the two working chambers of the first working chamber and the second working chamber. This is what I did. The second expansion ratio of the second working chamber is larger than the first expansion ratio of the first working chamber, that is, the volume change rate in the first half of the expansion process is small and the volume change rate in the second half of the expansion process is large. It has become. In particular, with a rotary expander, the number of cylinders is three or more, so that there is a large difference between the volume change rate in the first half of the expansion process and the volume change rate in the second half of the expansion process compared to the scroll type. It is possible to have it. Therefore, according to the present invention, it is possible to provide an expander that is excellent in power recovery efficiency and is adapted to the change in the change rate of the specific volume of the refrigerant in the expansion process.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明にかかる膨張機の縦断面図 [0015] FIG. 1 is a longitudinal sectional view of an expander according to the present invention.
[図 2]膨張機構部の平面図  [Figure 2] Plan view of the expansion mechanism
[図 3A]図 1に示す第 1中板の平面図および断面図  FIG. 3A is a plan view and a sectional view of the first intermediate plate shown in FIG.
[図 3B]図 1に示す第 2中板の平面図および断面図  FIG. 3B is a plan view and a sectional view of the second intermediate plate shown in FIG.
圆 4]膨張機構ユニットの拡大断面図 [図 5]図 1の膨張機の動作原理図 圆 4] Enlarged sectional view of expansion mechanism unit [Fig.5] Principle of operation of the expander in Fig.1
[図 6A]シャフトの回転角度と作動室の容積との関係を示すグラフ  [Fig. 6A] Graph showing the relationship between shaft rotation angle and working chamber volume
[図 6B]シャフトの回転角度と冷媒の圧力との関係を示すグラフ  [Fig. 6B] Graph showing the relationship between shaft rotation angle and refrigerant pressure
[図 7]二酸ィヒ炭素冷媒の単相膨張過程での膨張比と、膨張機の吸入温度との関係を 計算機シミュレーションにて調べた結果のグラフ  [Fig. 7] Graph of the results of a computer simulation study of the relationship between the expansion ratio in the single-phase expansion process of carbon dioxide refrigerant and the suction temperature of the expander
[図 8]二酸ィヒ炭素冷媒の膨張過程全体での膨張比と、膨張機の吸入温度との関係を 計算機シミュレーションにて調べた結果のグラフ  [Fig. 8] Graph of the results of a computer simulation study of the relationship between the expansion ratio of the diacid carbon refrigerant during the entire expansion process and the suction temperature of the expander
[図 9]単相膨張過程での比容積の変化率に対する膨張過程全体での比容積の変化 率の比率と、膨張機の吸入温度との関係を示すグラフ  FIG. 9 is a graph showing the relationship between the ratio of the change rate of the specific volume in the entire expansion process to the change rate of the specific volume in the single-phase expansion process and the suction temperature of the expander
[図 10A]単相膨張過程を第 1作動室で完結させる場合の効果を説明するモリエル線 図  [Fig. 10A] Mollier line explaining the effect of completing the single-phase expansion process in the first working chamber.
[図 10B]単相膨張過程を第 2作動室に引きずる場合の問題点を説明するモリエル線 図  [Fig. 10B] Mollier line explaining the problem of dragging the single-phase expansion process to the second working chamber
[図 11]急激な圧力降下がもたらす現象の説明図  [Fig.11] Explanatory diagram of phenomenon caused by sudden pressure drop
[図 12]第 2実施形態にかかる膨張機の縦断面図  FIG. 12 is a longitudinal sectional view of the expander according to the second embodiment.
[図 13]図 12の膨張機の要部平面図  FIG. 13 is a plan view of the main part of the expander of FIG.
[図 14]図 12の膨張機の変形例を示す要部平面図  FIG. 14 is a plan view of a principal part showing a modification of the expander of FIG.
[図 15]図 12の膨張機の他の変形例を示す要部平面図  FIG. 15 is a plan view of relevant parts showing another modification of the expander shown in FIG.
[図 16]膨張機を用いた従来の動力回収型の冷凍装置のブロック図  [Fig.16] Block diagram of a conventional power recovery refrigeration system using an expander
[図 17]二酸ィ匕炭素冷媒の冷凍サイクルのモリエル線図  [Fig.17] Mollier diagram of refrigeration cycle of diacid-carbon refrigeration
[図 18]膨張過程における冷媒の圧力と比容積の関係を示すグラフ  FIG. 18 is a graph showing the relationship between refrigerant pressure and specific volume during the expansion process.
[図 19]従来の膨張機の時間に対する容積の変化を示す特性図  FIG. 19 is a characteristic diagram showing the change in volume with time of a conventional expander
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、添付の図面を参照しつつ本発明の実施形態について説明する。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
図 1は、本発明にかかる膨張機の縦断面図である。図 2は、図 1の膨張機の第 1膨 張機構部、第 2膨張機構部および第 3膨張機構部をシャフトの回転軸に平行な方向 (以下、軸方向という)から観察した平面図である。図 1に示すように、膨張機 100は、 ロータリ式膨張機である。本明細書では、ロータリ式膨張機の中でも、ローリングピスト ン方式のものを例に説明する力 いわゆるスイング方式のロータリ式膨張機にも本発 明は適用可能である。 FIG. 1 is a longitudinal sectional view of an expander according to the present invention. 2 is a plan view of the first expansion mechanism portion, the second expansion mechanism portion, and the third expansion mechanism portion of the expander of FIG. 1 observed from a direction parallel to the shaft rotation axis (hereinafter referred to as the axial direction). is there. As shown in FIG. 1, the expander 100 is a rotary expander. In this specification, among the rotary expanders, the rolling The power of the present invention can be explained as an example. The present invention can also be applied to a so-called swing-type rotary expander.
[0017] 図 1に示すように、膨張機 100は、密閉容器 51と、密閉容器 51に収容されたロータ リ式の膨張機構ユニット 60と、同じく密閉容器 51に収容された発電機 52とを備えて いる。密閉容器 51の下方にはオイル溜り 54が形成されている。オイルは、シャフト 61 の下端部力もシャフト 61の内部のオイル孔(図示せず)を経由して膨張機構ユニット 6 0の各摺動部分に供給され、隙間の潤滑およびシールを行う。発電機 52は、回転子 52aと、固定子 52bから構成されている。回転子 52aは、膨張機構ユニット 60のシャ フト 61に連結されており、膨張機構ユニット 60の作動に伴って回転する。膨張機構 ユニット 60は、シャフト 61を共有する 3段の膨張機構部、すなわち、第 1膨張機構部 6 01、第 2膨張機構部 602および第 3膨張機構部 603から構成されている。冷媒を膨 張させるための第 1作動室 (第 1膨張室)が第 1膨張機構部 601の吐出側空間と第 2 膨張機構部 602の吸入側空間とによって形成され、第 1作動室で膨張した冷媒をさ らに膨張させるための第 2作動室 (第 2膨張室)が第 2膨張機構部 602の吐出側空間 と第 3膨張機構部 603の吸入側空間とによって形成される。各膨張機構部 601, 602 , 603は、冷媒の流れ方向における上流側の第 1作動室の膨張比よりも下流側の第 2作動室の膨張比が大きくなるように設計されて!、る。  As shown in FIG. 1, the expander 100 includes a sealed container 51, a rotary type expansion mechanism unit 60 accommodated in the sealed container 51, and a generator 52 also accommodated in the sealed container 51. I have. An oil reservoir 54 is formed below the sealed container 51. Oil is also supplied to each sliding portion of the expansion mechanism unit 60 via the oil hole (not shown) in the shaft 61, and the lower end portion of the shaft 61 is lubricated and sealed. The generator 52 includes a rotor 52a and a stator 52b. The rotor 52a is connected to the shaft 61 of the expansion mechanism unit 60, and rotates as the expansion mechanism unit 60 operates. The expansion mechanism unit 60 includes three stages of expansion mechanism portions that share the shaft 61, that is, a first expansion mechanism portion 601, a second expansion mechanism portion 602, and a third expansion mechanism portion 603. A first working chamber (first expansion chamber) for expanding the refrigerant is formed by the discharge side space of the first expansion mechanism section 601 and the suction side space of the second expansion mechanism section 602, and expands in the first working chamber. A second working chamber (second expansion chamber) for further expanding the refrigerant thus formed is formed by the discharge side space of the second expansion mechanism portion 602 and the suction side space of the third expansion mechanism portion 603. Each expansion mechanism section 601, 602, 603 is designed such that the expansion ratio of the downstream second working chamber is larger than the expansion ratio of the upstream first working chamber in the refrigerant flow direction.
[0018] 膨張機構部 601, 602, 603は、それぞれ、シリンダ 62, 63, 64と、シリンダ 62, 63 , 64を貫くシャフト 61と、シャフト 61に取り付けられてシリンダ 62, 63, 64の内佃 Jで偏 、回転するピストン 67, 68, 69と、シリンダ 62, 63, 64とピストン 67, 68, 69の間の 空間を吸入側空間と吐出側空間に仕切る仕切り部材 70, 71, 72 (ベーン)とを有す る。シャフト 61は、回転軸 Oに沿った 3箇所に偏心部 6 la, 61b, 61cを有する。偏心 咅 61a, 61b, 61cは、それぞれ、シリンダ 62, 63, 64内に位置するととちに、ピストン 67, 68, 69力嵌め合わされて!/、る。  [0018] The expansion mechanism portions 601, 602, and 603 include cylinders 62, 63, and 64, a shaft 61 that passes through the cylinders 62, 63, and 64, and inner shafts of the cylinders 62, 63, and 64 that are attached to the shaft 61. Partition members 70, 71, 72 (vanes) that divide the space between pistons 67, 68, 69 and cylinders 62, 63, 64 and pistons 67, 68, 69 into suction side and discharge side spaces ). The shaft 61 has eccentric portions 6 la, 61 b, 61 c at three locations along the rotation axis O. Eccentric rods 61a, 61b and 61c are located in cylinders 62, 63 and 64, respectively, and pistons 67, 68 and 69 are engaged with each other!
[0019] 図 2に示すように、各シリンダ 62, 63, 64には、半径方向外向きに延びる溝 62a, 6 3a, 64a力形成されて!ヽる。仕切り咅材 70, 71, 72ίま、その溝 62a, 63a, 64a内に 配置され、シャフト 61の回転軸 Oに接近する方向と、離間する方向との 2方向に進退 可能である。仕切り部材 70, 71, 72の先端がピストン 67, 68, 69の外周面に接触す ることにより、シリンダ 62, 63, 64とピストン 67, 68, 69の間の空間力 ^吸人佃 J空間 80 a, 81a, 82aと吐出佃 J空間 80b, 81b, 82bに仕切られて!/、る。また、仕切り咅材 70, 71 , 72の後方には、ばね 73, 74, 75力 己置されており、そのばね 73, 74, 75の弹 性復帰力により仕切り部材 70, 71, 72がピストン 67, 68, 69に向けて押し付けられ ている。 [0019] As shown in FIG. 2, the grooves 62a, 63a, and 64a are formed in the cylinders 62, 63, and 64 so as to extend radially outward. The partition rods 70, 71, 72ί are arranged in the grooves 62a, 63a, 64a, and can advance and retreat in two directions, a direction approaching the rotation axis O of the shaft 61 and a direction separating them. The tip of the partition member 70, 71, 72 contacts the outer peripheral surface of the piston 67, 68, 69. The space force between the cylinders 62, 63, 64 and the pistons 67, 68, 69 is divided into the suction rod J space 80a, 81a, 82a and the discharge rod J space 80b, 81b, 82b! / RU Further, springs 73, 74, and 75 are self-placed behind the partition rods 70, 71, and 72, and the partition members 70, 71, and 72 are pistoned by the inertia restoring force of the springs 73, 74, and 75. It is pressed toward 67, 68, 69.
[0020] 第 1シリンダ 62の内部には、吸入側空間 80aと吐出側空間 80bが形成されている。  [0020] A suction side space 80a and a discharge side space 80b are formed inside the first cylinder 62.
同様に、第 2シリンダ 63の内部には、吸入側空間 81aと吐出側空間 81bが形成され、 第 3シリンダ 64の内部には、吸入側空間 82aと吐出側空間 82bが形成されている。 図 2の上段図に示すごとぐ第 1シリンダ 62には、吸入側空間 80aに膨張前の冷媒を 吸入させるための吸入路 62bが形成されている。この吸入路 62bには、膨張させるベ き冷媒を第 1シリンダ 62に吸入させるための吸入管 78が接続されている。一方、図 2 の下段図に示すごとぐ第 3シリンダ 64には、膨張後の冷媒を吐出側空間 82bから吐 出させるための吐出路 64bが形成されている。この吐出路 64bには、膨張した冷媒を 密閉容器 51の外部に送り出すための吐出管 79が接続されている。  Similarly, a suction side space 81a and a discharge side space 81b are formed inside the second cylinder 63, and a suction side space 82a and a discharge side space 82b are formed inside the third cylinder 64. As shown in the upper diagram of FIG. 2, the first cylinder 62 is formed with a suction passage 62b for sucking the refrigerant before expansion into the suction side space 80a. A suction pipe 78 is connected to the suction path 62b for allowing the first cylinder 62 to suck the refrigerant to be expanded. On the other hand, as shown in the lower diagram of FIG. 2, the third cylinder 64 is formed with a discharge path 64b for discharging the expanded refrigerant from the discharge side space 82b. A discharge pipe 79 for sending the expanded refrigerant to the outside of the sealed container 51 is connected to the discharge path 64b.
[0021] また、図 1に示すごとぐ第 1膨張機構部 601と第 2膨張機構部 602との間には、第 1シリンダ 62の下端と第 2シリンダ 63の上端を閉塞する第 1中板 65 (第 1中間部材) が配置されている。第 2膨張機構部 602と第 3膨張機構部 603との間には、第 2シリン ダ 63の下端と第 3シリンダ 64の上端を閉塞する第 2中板 66 (第 2中間部材)が配置さ れている。さらに、第 1シリンダ 62の上側端板を兼ねた上軸受部材 76と、第 3シリンダ 64の下側端板を兼ねた下軸受部材 77とが、膨張機構ユニット 60を軸方向の上下か ら挟むように配置されて 、る。  In addition, as shown in FIG. 1, a first intermediate plate that closes the lower end of the first cylinder 62 and the upper end of the second cylinder 63 is interposed between the first expansion mechanism portion 601 and the second expansion mechanism portion 602. 65 (first intermediate member) is arranged. A second intermediate plate 66 (second intermediate member) that closes the lower end of the second cylinder 63 and the upper end of the third cylinder 64 is disposed between the second expansion mechanism 602 and the third expansion mechanism 603. It is. Further, the upper bearing member 76 that also serves as the upper end plate of the first cylinder 62 and the lower bearing member 77 that also serves as the lower end plate of the third cylinder 64 sandwich the expansion mechanism unit 60 from above and below in the axial direction. It is arranged as follows.
[0022] 図 3Aに第 1中板の平面図および断面図、図 3Bに第 2中板の平面図および断面図 を示す。図 3Aに示すように、第 1中板 65には、第 1膨張機構部 601の吐出側空間 8 Obと第 2膨張機構部 602の吸入側空間 81aを結び、冷媒を膨張させる第 1作動室 83 (図 2参照)を形成する連通路としての第 1連通孔 65aが形成されている。図 3Bに示 すように、第 2中板 66には、第 2膨張機構部 602の吐出側空間 81bと第 3膨張機構 部 603の吸入側空間 82aを結び、第 1作動室 83にて膨張した冷媒をさらに膨張させ る第 2作動室 84 (図 2参照)を形成する連通路としての第 2連通孔 66aが形成されて いる。このような連通孔によって 1つの作動室を形成すれば、弁機構などの特別な機 構が不要であり、振動や騒音を低減させることができるとともに、実用上十分な膨張 比を実現することが可能である。 FIG. 3A shows a plan view and a sectional view of the first intermediate plate, and FIG. 3B shows a plan view and a sectional view of the second intermediate plate. As shown in FIG. 3A, the first intermediate plate 65 connects the discharge side space 8 Ob of the first expansion mechanism portion 601 and the suction side space 81a of the second expansion mechanism portion 602 to expand the first working chamber. A first communication hole 65a is formed as a communication passage forming 83 (see FIG. 2). As shown in FIG. 3B, the second intermediate plate 66 is connected to the discharge side space 81b of the second expansion mechanism section 602 and the suction side space 82a of the third expansion mechanism section 603, and is expanded in the first working chamber 83. A second communication hole 66a is formed as a communication path for forming a second working chamber 84 (see FIG. 2) for further expanding the refrigerant. Yes. If one working chamber is formed by such a communication hole, a special mechanism such as a valve mechanism is unnecessary, vibration and noise can be reduced, and a practically sufficient expansion ratio can be realized. Is possible.
[0023] 連通孔 65a, 66aの開口形状は円形に限らず、楕円形や角形とすることができる。  [0023] The opening shape of the communication holes 65a, 66a is not limited to a circle, and may be an ellipse or a square.
また、連通孔 65a, 66aは、中板 65, 66を厚さ方向に貫いている力 孔の中心線がシ ャフト 61の回転軸 Oに対して傾いた斜め孔である。連通孔 65a, 66aを斜めに形成す ることにより、シャフト 61の回転軸 Oの周りにおける仕切り部材 70, 71, 72の位置を 軸方向で一致させることが可能となる。このような配置は、膨張機構ユニット 60の省ス ペース化に有利である。  Further, the communication holes 65 a and 66 a are oblique holes in which the center line of the force hole penetrating the intermediate plates 65 and 66 in the thickness direction is inclined with respect to the rotation axis O of the shaft 61. By forming the communication holes 65a and 66a obliquely, the positions of the partition members 70, 71 and 72 around the rotation axis O of the shaft 61 can be matched in the axial direction. Such an arrangement is advantageous for space saving of the expansion mechanism unit 60.
[0024] なお、本実施形態において、第 2連通孔 66aの直径 D2は、第 1連通孔 65aの直径 D1よりも大きい。開口形状が円形以外の場合には、面積が等しい円の直径 (等価直 径)に変換して大小比較を行えばよい。この構成の利点については後述する。  [0024] In the present embodiment, the diameter D2 of the second communication hole 66a is larger than the diameter D1 of the first communication hole 65a. If the aperture shape is other than circular, the size may be compared by converting it to the diameter (equivalent diameter) of a circle with the same area. The advantages of this configuration will be described later.
[0025] 次に、図 4に示すのは、膨張機構ユニットの拡大断面図である。図 4に示すように、 軸方向に関する第 2シリンダ 63の高さ H2は、第 1シリンダ 62の高さ HIよりも大きい。 さらに、軸方向に関する第 3シリンダ 64の高さ H3は、第 2シリンダ 63の高さ H2よりも 大きい。各シリンダ 62, 63, 64は、同心状の配置であるとともに、互いに内径が等し い。また、各シリンダ 62, 63, 64内を偏心回転する各ピストン 67, 68, 69の外径も等 しい。したがって、シリンダ 62, 63, 64の高さの相違に基づき、第 1作動室 83の有す る膨張比 (容積変化率)と、第 2作動室 84の有する膨張比 (容積変化率)とが相違す る。本実施形態の膨張機 100では、第 2作動室 84の膨張比が第 1作動室 83の膨張 比よりも大きくなるように、各シリンダ 62, 63, 64の高さ調整を行っている。  Next, FIG. 4 is an enlarged cross-sectional view of the expansion mechanism unit. As shown in FIG. 4, the height H2 of the second cylinder 63 in the axial direction is larger than the height HI of the first cylinder 62. Further, the height H3 of the third cylinder 64 in the axial direction is larger than the height H2 of the second cylinder 63. The cylinders 62, 63, 64 are concentric and have the same inner diameter. Also, the outer diameters of the pistons 67, 68, 69 rotating eccentrically in the cylinders 62, 63, 64 are equal. Therefore, the expansion ratio (volume change rate) of the first working chamber 83 and the expansion ratio (volume change rate) of the second working chamber 84 are based on the difference in height between the cylinders 62, 63, 64. No. In the expander 100 of the present embodiment, the heights of the cylinders 62, 63, and 64 are adjusted so that the expansion ratio of the second working chamber 84 is larger than the expansion ratio of the first working chamber 83.
[0026] なお、第 1作動室 83の膨張比は、第 1シリンダ 62と第 1ピストン 67の間に形成される 空間の容積と、第 2シリンダ 63と第 2ピストン 68の間に形成される空間の容積との比 率に相当する。同様に、第 2作動室 84の膨張比は、第 2シリンダ 63と第 2ピストン 68 の間に形成される空間の容積と、第 3シリンダ 64と第 3ピストン 69の間に形成される 空間の容積との比率に相当する。  Note that the expansion ratio of the first working chamber 83 is formed between the volume of the space formed between the first cylinder 62 and the first piston 67, and between the second cylinder 63 and the second piston 68. It corresponds to the ratio with the volume of the space. Similarly, the expansion ratio of the second working chamber 84 depends on the volume of the space formed between the second cylinder 63 and the second piston 68 and the space formed between the third cylinder 64 and the third piston 69. It corresponds to the ratio with the volume.
[0027] 図 5は、図 1の膨張機の動作原理図であり、シャフト 61の回転角度 90° ごとの状態 を示している。図 6Aは、シャフトの回転角度と作動室の容積との関係を示すグラフで あり、図 6Bは、シャフトの回転角度と冷媒の圧力との関係を示すグラフである。 FIG. 5 is an operation principle diagram of the expander shown in FIG. 1, and shows a state where the rotation angle of the shaft 61 is 90 °. Figure 6A is a graph showing the relationship between the rotation angle of the shaft and the volume of the working chamber. FIG. 6B is a graph showing the relationship between the rotation angle of the shaft and the pressure of the refrigerant.
[0028] 膨張機 100に吸入された冷媒は、第 1シリンダ 62、第 2シリンダ 63、第 3シリンダ 64 の川頁に流通する。ピストン 67, 68, 69力 S上死点、(仕切り咅材 70, 71, 72とピストン 67 , 68, 69の接点が回転軸 O力 最も離れて位置する時点)〖こ位置するときのシャフト 61の回転角度を 0° と考える。図 5に示すごとぐシャフト 61が反時計回りに回転を開 始すると、第 1シリンダ 62の吸入側空間 80aが次第に大きくなり、吸入管 78から吸入 路 62bを経て、高圧の冷媒が第 1シリンダ 62の吸入側空間 80aに吸入される。シャフ ト 61が 360° 回転すると、第 1シリンダ 62の吸入側空間 80aに吸入された冷媒は、第 1シリンダ 62の吐出側空間 80bと第 2シリンダ 63の吸入側空間 81aとによる第 1作動 室 83に移る。 [0028] The refrigerant sucked into the expander 100 flows into the river pages of the first cylinder 62, the second cylinder 63, and the third cylinder 64. Piston 67, 68, 69 force S Top dead center (when the contact between the partition rod 70, 71, 72 and the piston 67, 68, 69 is the farthest away from the rotation axis O force) The rotation angle is assumed to be 0 °. As shown in FIG. 5, when the shaft 61 starts to rotate counterclockwise, the suction side space 80a of the first cylinder 62 gradually increases, and the high pressure refrigerant flows from the suction pipe 78 through the suction path 62b. 62 is sucked into the suction side space 80a. When the shaft 61 rotates 360 °, the refrigerant sucked into the suction side space 80a of the first cylinder 62 becomes the first working chamber by the discharge side space 80b of the first cylinder 62 and the suction side space 81a of the second cylinder 63. Move to 83.
[0029] シャフト 61がさらに回転すると、図 6Aに示すように、第 1作動室 83の容積は Vslか ら Vs2まで徐々に増加する。第 1シリンダ 62の高さ HIよりも第 2シリンダ 63の高さ H2 の方が大きく調整されているからである。 Vslと Vs2との差は小さぐ第 1作動室 83に おいて、冷媒は、僅かにその比容積を増加させる。ただし、図 6Bに示すように、冷媒 の圧力は Psから Pmまで比較的大きく低下する。シャフト 61が 720° まで回転すると 、第 1作動室 83で膨張した冷媒は、第 2シリンダ 63の吐出側空間 81bと第 3シリンダ 6 4の吸入側空間 82aとによる第 2作動室 84に移る。  When the shaft 61 further rotates, as shown in FIG. 6A, the volume of the first working chamber 83 gradually increases from Vsl to Vs2. This is because the height H2 of the second cylinder 63 is adjusted to be larger than the height HI of the first cylinder 62. In the first working chamber 83 where the difference between Vsl and Vs2 is small, the refrigerant slightly increases its specific volume. However, as shown in Fig. 6B, the refrigerant pressure decreases relatively greatly from Ps to Pm. When the shaft 61 rotates to 720 °, the refrigerant expanded in the first working chamber 83 moves to the second working chamber 84 formed by the discharge side space 81b of the second cylinder 63 and the suction side space 82a of the third cylinder 64.
[0030] シャフト 61がさらに回転すると、図 6Aに示すように、第 2作動室 84の容積は Vs2か ら Vs3まで徐々に増加する。第 2シリンダ 63の高さ H2よりも第 3シリンダ 64の高さ H3 の方が大きく調整されているからである。 Vs2と Vs3との差は大きぐ第 2作動室 84に おいて、冷媒は、その比容積を大きく増加させる。このときの冷媒の圧力は、図 6Bに 示すように、 Pm力も Pdまで変化 (低下)する。第 2作動室 84におけるこの圧力変化( Pm-Pd)は、第 1作動室における圧力変化 (Ps— Pm)と大差無い。  When the shaft 61 further rotates, as shown in FIG. 6A, the volume of the second working chamber 84 gradually increases from Vs2 to Vs3. This is because the height H3 of the third cylinder 64 is adjusted to be larger than the height H2 of the second cylinder 63. In the second working chamber 84 where the difference between Vs2 and Vs3 is large, the refrigerant greatly increases its specific volume. At this time, as shown in FIG. 6B, the pressure of the refrigerant also changes (decreases) in Pm force to Pd. This pressure change (Pm−Pd) in the second working chamber 84 is not much different from the pressure change (Ps−Pm) in the first working chamber.
[0031] 上記のように、冷媒は、第 1作動室 83にて膨張した後、さらに第 2作動室 84にて膨 張し、シャフト 61を回転させて低圧になる。低圧になった冷媒は、第 3のシリンダ 64の 吐出側空間 82bから吐出路 64bを経て吐出管 79から吐出される。  [0031] As described above, after the refrigerant expands in the first working chamber 83, it further expands in the second working chamber 84, and rotates the shaft 61 to become a low pressure. The low-pressure refrigerant is discharged from the discharge pipe 79 from the discharge side space 82b of the third cylinder 64 through the discharge path 64b.
[0032] 先に説明したように、二酸ィヒ炭素や代替フロンなどの気液二相流冷媒の比容積の 変化率は、単相膨張過程 (図 17に示す膨張過程 CEに相当)と、気液二相膨張過程 (図 17に示す膨張過程 EDに相当)とで大きく異なる。本実施形態においては、第 1 作動室 83の膨張比と第 2作動室 84の膨張比を調整すること、すなわち、各シリンダ 6 2, 63, 64の高さ HI, H2, H3を調整することにより、冷媒の比容積の変化率の変化 に適合したロータリ式膨張機 100を実現している。 [0032] As described above, the rate of change in the specific volume of the gas-liquid two-phase flow refrigerant such as carbon dioxide carbon dioxide or alternative chlorofluorocarbon is the single-phase expansion process (corresponding to the expansion process CE shown in FIG. 17). Gas-liquid two-phase expansion process (It corresponds to the expansion process ED shown in Fig. 17). In the present embodiment, the expansion ratio of the first working chamber 83 and the expansion ratio of the second working chamber 84 are adjusted, that is, the heights HI, H2, and H3 of the cylinders 6, 2, 63, and 64 are adjusted. As a result, the rotary expander 100 adapted to the change in the change rate of the specific volume of the refrigerant is realized.
[0033] 各シリンダ 62, 63, 64の高さ HI, H2, H3は、以下に説明する事実に基づいて定 めることができる。 [0033] The heights HI, H2, H3 of the cylinders 62, 63, 64 can be determined based on the facts described below.
[0034] 図 7は、吸入圧力別に、二酸ィ匕炭素冷媒の単相膨張過程(図 17の膨張過程 CEに 相当)での膨張比と、膨張機の吸入温度との関係を計算機シミュレーションにて調べ た結果のグラフである。なお、膨張比は、断熱変化 (等エントロピー変化)を仮定し、 冷凍サイクルの点 Cと点 E (図 17参照)の冷媒の比容積の比から求めた。単相膨張過 程での膨張比は、吸入温度に大きく依存しており、吸入温度が高くなるほど大きくな る。また、吸入圧力にも依存しており、吸入温度が 35°C以下では、圧力が高くなるほ ど大きくなる。  [0034] Fig. 7 is a computer simulation showing the relationship between the expansion ratio in the single-phase expansion process (corresponding to the expansion process CE in Fig. 17) and the intake temperature of the expander according to the suction pressure. This is a graph of the results of investigation. The expansion ratio was calculated from the ratio of the specific volume of refrigerant at point C and point E (see Fig. 17) of the refrigeration cycle, assuming adiabatic change (isentropic change). The expansion ratio in the single-phase expansion process depends greatly on the intake temperature, and increases as the intake temperature increases. It also depends on the suction pressure. When the suction temperature is 35 ° C or lower, the pressure increases as the pressure increases.
[0035] 二酸ィ匕炭素を冷媒とした動力回収式の冷凍サイクル装置の用途としては、例えば、 エアコンや給湯機が挙げられる。エアコンの冷房定格条件または暖房定格条件、あ るいは給湯機の夏期定格条件、冬期定格条件または中間期定格条件など、標準的 な使用条件において、膨張機の吸入温度は概ね 15°C以上 40°C以下、吸入圧力は 概ね 9MPa以上 12MPa以下である。このような条件においては、吸入圧力が 9MPa 、吸入温度が 40°Cである場合を除き、単相膨張過程での膨張比は 1. 1以下であるこ とが図 7より読み取ることができる。また、吸入圧力が 9MPaであっても、吸入温度が 約 38°Cで膨張比は 1. 1を下回る。また、吸入温度が 35°Cの条件では、いずれの吸 入圧力であっても単相膨張過程での膨張比は 1. 07以下となる。  [0035] Applications of the power recovery refrigeration cycle apparatus using carbon dioxide and carbon dioxide as a refrigerant include, for example, an air conditioner and a water heater. Under standard operating conditions such as air conditioning cooling or heating rating conditions, or hot water supply summer rating conditions, winter rating conditions, or mid-term rating conditions, the expander intake temperature is approximately 15 ° C to 40 ° C. C or less, suction pressure is generally 9MPa or more and 12MPa or less. Under these conditions, it can be seen from FIG. 7 that the expansion ratio in the single-phase expansion process is 1.1 or less, except when the suction pressure is 9 MPa and the suction temperature is 40 ° C. Even if the suction pressure is 9 MPa, the expansion ratio is below 1.1 at a suction temperature of about 38 ° C. In addition, under the condition where the suction temperature is 35 ° C, the expansion ratio in the single-phase expansion process is 1.07 or less at any suction pressure.
[0036] 次に、図 8に示すのは、吸入圧力別に、二酸ィ匕炭素冷媒の膨張過程全体(図 17の 膨張過程 CDに相当)での膨張比と、膨張機の吸入温度との関係を計算機シミュレ一 シヨンにて調べた結果のグラフである。なお、吐出圧力は 4. OMPaと設定しており、 膨張過程全体での膨張比は、冷凍サイクルの点 Cと点 D (図 17参照)の冷媒の比容 積の比力 求めた。膨張過程全体での膨張比は、条件によって異なるものの、概ね 2 . 0を中心に分布していることが分かる。 [0037] 図 9に示すのは、図 7および図 8のシミュレーション結果に基づき、単相膨張過程で の比容積の変化率に対する膨張過程全体での比容積の変化率の比率 X(縦軸)と、 膨張機の吸入温度 (横軸)との関係を、吸入圧力別に示すグラフである。なお、上記 比率 Xは下式 1で算出した。下式 1において、 R1は単相での膨張比、 Rは膨張過程 全体での膨張比を示す。 [0036] Next, FIG. 8 shows, for each suction pressure, the expansion ratio in the entire expansion process of the carbon dioxide refrigerant (corresponding to the expansion process CD in FIG. 17) and the suction temperature of the expander. It is the graph of the result of having investigated the relationship in the computer simulation. The discharge pressure was set at 4. OMPa, and the expansion ratio for the entire expansion process was determined by the specific force of the specific volume of refrigerant at points C and D (see Fig. 17) of the refrigeration cycle. It can be seen that the expansion ratio throughout the expansion process is distributed around 2.0, although it varies depending on the conditions. [0037] FIG. 9 shows a ratio X (vertical axis) of the specific volume change rate in the entire expansion process to the specific volume change rate in the single-phase expansion process based on the simulation results of FIGS. 7 and 8. And a graph showing the relationship between the suction temperature (horizontal axis) of the expander and the suction pressure. The ratio X was calculated using the following formula 1. In Equation 1, R1 is the expansion ratio in the single phase, and R is the expansion ratio in the entire expansion process.
[0038] (式 1)
Figure imgf000013_0001
[0038] (Formula 1)
Figure imgf000013_0001
[0039] 図 9より分力るように、いずれの条件においても、冷媒の膨張過程全体での比容積 の変化率は、単相膨張過程での比容積の変化率の 5倍力も 22倍である。膨張過程 全体での比容積の変化率と比較すると、単相膨張過程での膨張比は非常に小さ!、。  [0039] As shown in FIG. 9, under any condition, the change rate of the specific volume in the entire expansion process of the refrigerant is 22 times as much as the 5 times the change rate of the specific volume in the single phase expansion process. is there. The expansion ratio in the single phase expansion process is very small compared to the rate of change in specific volume throughout the expansion process!
[0040] 以上の知見によれば、例えば、第 1作動室 83の膨張比を約 1. 1、第 2作動室 84の 膨張比を約 1. 8に設定することができる。  [0040] According to the above knowledge, for example, the expansion ratio of the first working chamber 83 can be set to about 1.1, and the expansion ratio of the second working chamber 84 can be set to about 1.8.
[0041] 第 1シリンダ 62、第 2シリンダ 63および第 3シリンダ 64の内径が等しぐかつ第 1ビス トン 67、第 2ピストン 68および第 3ピストン 69の直径が等しいという条件の下では、第 1作動室 83の膨張比が第 1シリンダ 62の高さ HIと第 2シリンダ 63の高さ H2の比に 一致し、第 2作動室 84の膨張比が第 2シリンダ 63の高さ H2と第 3シリンダ 64の高さ H 3の比に一致する。  [0041] Under the condition that the inner diameters of the first cylinder 62, the second cylinder 63 and the third cylinder 64 are equal and the diameters of the first piston 67, the second piston 68 and the third piston 69 are equal, The expansion ratio of the first working chamber 83 matches the ratio of the height HI of the first cylinder 62 and the height H2 of the second cylinder 63, and the expansion ratio of the second working chamber 84 matches the height H2 of the second cylinder 63. It corresponds to the ratio of 3 cylinder 64 height H 3.
[0042] 第 1作動室 83の膨張比と第 2作動室 84の膨張比とを上記のように設定する上での 一つの重要な問題は、単相膨張過程を第 1作動室 83で完結させるのか、単相膨張 過程を第 2作動室 84にも弓 Iき継ぐのかと ヽぅ問題である。前者をモリエル線図に付記 すると、図 10Aのように表すことができる。すなわち、第 1作動室 83での膨張過程は CQ、第 2作動室 84での膨張過程は Q Dとなる。他方、後者をモリエル線図に付記 [0042] One important problem in setting the expansion ratio of the first working chamber 83 and the second working chamber 84 as described above is that the single-phase expansion process is completed in the first working chamber 83. The question is whether the single-phase expansion process should be continued in the second working chamber 84. If the former is added to the Mollier diagram, it can be represented as shown in Fig. 10A. That is, the expansion process in the first working chamber 83 is CQ, and the expansion process in the second working chamber 84 is QD. On the other hand, the latter is added to the Mollier diagram
1 1 1 1
すると、図 10Bのように表すことができる。すなわち、第 1作動室 83での膨張過程は C Q、第 2作動室 84での膨張過程は Q Dとなる。両者の違いは、第 1作動室 83での膨 Then, it can be expressed as shown in Fig. 10B. That is, the expansion process in the first working chamber 83 is C Q, and the expansion process in the second working chamber 84 is Q D. The difference between the two is the expansion in the first working chamber 83.
2 2 twenty two
張と第 2作動室 84での膨張との境界を表す点 Qおよび点 Q 1S 飽和液線よりも低圧  Point Q and point Q representing the boundary between tension and expansion in the second working chamber 84 1S Lower pressure than saturated liquid line
1 2  1 2
側か高圧側かという点にある。このうち、より好ましいのは、図 10Aのように、単相膨張 過程 CEを第 1作動室 83で完結させる例である。  The side or the high pressure side. Among these, more preferable is an example in which the single-phase expansion process CE is completed in the first working chamber 83 as shown in FIG. 10A.
[0043] まず、図 10Bの例によれば、単相膨張過程 CEを膨張比の大きい第 2作動室 84に 引きずることになる。すると、単相膨張過程 CEの一部である膨張過程 Q Eが、膨張 [0043] First, according to the example of FIG. 10B, the single-phase expansion process CE is changed to the second working chamber 84 having a large expansion ratio. Will be dragged. Then, the expansion process QE, which is part of the single-phase expansion process CE, expands
2  2
比の大きい第 2作動室 84で行われ、一瞬ではあるものの、冷媒の急激な圧力降下が 起こる。必ずしも明らかではないが、急激な圧力降下は、図 11に示すような相変化遅 れを伴い、膨張エネルギーの回収ロスを招来する可能性がある。したがって、急激な 圧力降下を伴うような膨張のさせ方は、効率的な動力回収を行うという観点力もなる ベく避けるべきである。  This is performed in the second working chamber 84 having a large ratio, and a sudden pressure drop of the refrigerant occurs although it is instantaneous. Although it is not always clear, a sudden pressure drop is accompanied by a phase change delay as shown in Fig. 11, and may cause a recovery loss of expansion energy. Therefore, the method of expansion that involves a sudden pressure drop should also be avoided as it has the power of efficient power recovery.
[0044] これに対し、図 10Aの例によれば、単相膨張過程 CEが第 1作動室 83で完結する。  On the other hand, according to the example of FIG. 10A, the single-phase expansion process CE is completed in the first working chamber 83.
すなわち、第 1作動室 83において、冷媒が単相から気液二相に膨張するので、急激 な圧力降下の問題は生じない。したがって、膨張過程全体で必要な膨張比を保った まま単相での圧力降下を緩和することができ、ひいては冷媒の膨張エネルギーを効 率良く回収することが可能になる。  That is, in the first working chamber 83, since the refrigerant expands from a single phase to a gas-liquid two phase, there is no problem of a rapid pressure drop. Therefore, the pressure drop in the single phase can be alleviated while maintaining the expansion ratio necessary for the entire expansion process, and the expansion energy of the refrigerant can be recovered efficiently.
[0045] また、第 1連通孔 65aの直径 D1を第 2連通孔 66aの直径 D2よりも小さくすることに より、比容積力 、さい単相膨張過程では、第 1連通孔 65aの容積が死容積となって 冷媒が再膨張して膨張機の効率が低下することを防止し、比容積が大き 、気液二相 膨張過程では、冷媒が第 2連通孔 66aを通過する際の圧力損失を最小限に食い止 めることができる。したがって、膨張機 100の動力回収効率を向上させることができる  [0045] Further, by making the diameter D1 of the first communication hole 65a smaller than the diameter D2 of the second communication hole 66a, the volume of the first communication hole 65a is died in the specific volume force, in the single phase expansion process. This prevents the refrigerant from re-expanding and lowering the efficiency of the expander, and the specific volume is large.In the gas-liquid two-phase expansion process, the pressure loss when the refrigerant passes through the second communication hole 66a is reduced. It can be stopped to a minimum. Therefore, the power recovery efficiency of the expander 100 can be improved.
[0046] なお、本実施形態では、冷媒が鉛直上方力 鉛直下方に向力つて流れるように、第 1シリンダ 62、第 2シリンダ 63および第 3シリンダ 64を軸方向に沿って鉛直上方力もこ の順で配置している。このような構成によれば、密度の大きな液冷媒が第 1中板 65に 形成された第 1連通孔 65aや第 2中板 66に形成された第 2連通孔 66a内を重力落下 する。密度の大きな液冷媒が膨張機内のデッドスペースとなる各連通孔 65a, 66aに 滞留すると、膨張機の膨張効率を小さくする。本実施形態によればそのような現象を 防止し、膨張効率の高い膨張機を実現することができる。 In the present embodiment, the vertical upward force is also applied to the first cylinder 62, the second cylinder 63, and the third cylinder 64 along the axial direction so that the refrigerant flows with a vertical upward force directed downward. Arranged in order. According to such a configuration, the liquid refrigerant having a high density drops in the first communication hole 65a formed in the first intermediate plate 65 and the second communication hole 66a formed in the second intermediate plate 66 by gravity. If high-density liquid refrigerant stays in each of the communication holes 65a and 66a, which become a dead space in the expander, the expansion efficiency of the expander is reduced. According to this embodiment, such a phenomenon can be prevented and an expander with high expansion efficiency can be realized.
[0047] (第 2実施形態)  [0047] (Second embodiment)
第 1作動室の膨張比および第 2作動室の膨張比は、シリンダの内径や高さ、あるい はピストンの直径といったパラメータを様々なパターンで組み合わせることにより、所 望の値に設定することが可能である。図 12に示す本実施形態のロータリ式膨張機 20 0は、シリンダ 21, 22, 23の内径およびピストン 41, 42, 43の直径などを調整するこ とにより、好適な第 1作動室の膨張比と第 2作動室の膨張比とを作り出している。他の 基本的な構成については第 1実施形態の膨張機と共通であるから説明を省略する。 The expansion ratio of the first working chamber and the expansion ratio of the second working chamber can be set to the desired values by combining parameters such as the inner diameter and height of the cylinder or the diameter of the piston in various patterns. Is possible. The rotary expander 20 of the present embodiment shown in FIG. 0 creates a suitable expansion ratio of the first working chamber and that of the second working chamber by adjusting the inner diameters of the cylinders 21, 22, 23 and the diameters of the pistons 41, 42, 43, etc. . Since the other basic configuration is the same as that of the expander of the first embodiment, the description thereof is omitted.
[0048] 本実施形態のロータリ式膨張機 200は、図 13の要部平面図に示すごとぐ第 1シリ ンダ 21の内径 D1と第 2シリンダ 22の内径 D2が等しく、第 3シリンダ 23の内径 D3が 第 2シリンダ 22の内径 D2よりも大である。また、第 1偏心部 31aの偏心量 E1と第 2偏 心部 3 lbの偏心量 E2が等しぐ第 3偏心部 31cの偏心量 E3が第 2偏心部 3 lbの偏 心量 E2よりも大である。さらに、第 2ピストン 42の外径 Dp2が第 1ピストン 41の外径 D piよりも小さく、第 3ピストン 43の外径 Dp3が第 2ピストン 42の外径 Dp2よりも大であ る。そして、これらの寸法は、第 1作動室の膨張比および第 2作動室の膨張比が、そ れぞれ、第 1実施形態で説明した範囲内に収まるように調整される。  In the rotary expander 200 of the present embodiment, the inner diameter D1 of the first cylinder 21 is equal to the inner diameter D2 of the second cylinder 22 as shown in the plan view of the main part of FIG. D3 is larger than the inner diameter D2 of the second cylinder 22. Also, the eccentric amount E3 of the third eccentric portion 31c where the eccentric amount E1 of the first eccentric portion 31a is equal to the eccentric amount E2 of the second eccentric portion 3 lb is greater than the eccentric amount E2 of the second eccentric portion 3 lb. It ’s big. Further, the outer diameter Dp2 of the second piston 42 is smaller than the outer diameter Dpi of the first piston 41, and the outer diameter Dp3 of the third piston 43 is larger than the outer diameter Dp2 of the second piston 42. These dimensions are adjusted so that the expansion ratio of the first working chamber and the expansion ratio of the second working chamber are within the ranges described in the first embodiment.
[0049] また、第 1シリンダ 21、第 2シリンダ 22および第 3シリンダ 23の高さが等しいという条 件の下、各部品の寸法を図 14の要部平面図に示すように調整することもできる。図 1 4の例では、第 1ピストン 41、第 2ピストン 42および第 3ピストン 43の外径が互いに等 しい。この場合、各シリンダ 21, 22, 23の内径を異ならせることによって、第 1作動室 の膨張比と第 2作動室の膨張比とを調整することができる。すなわち、各シリンダ 21, 22, 23の内径を D1 < D2< D3として! /、る。また、シャフト 31力各ピストン 41, 42, 43 に兼用であり、各ピストン 41, 42, 43の外径力 S等しく、各シリンダ 21, 22, 23の内径 が相違するため、各偏心部 31a, 31b, 31cの偏心量は E1 <E2<E3となっている。 なお、偏心部の偏心量は、シャフト 31の回転軸 Oとピストン 41, 42, 43の中心との距 離に相当する。  [0049] Under the condition that the heights of the first cylinder 21, the second cylinder 22 and the third cylinder 23 are equal, the dimensions of each part may be adjusted as shown in the plan view of the main part in FIG. it can. In the example of FIG. 14, the outer diameters of the first piston 41, the second piston 42, and the third piston 43 are equal to each other. In this case, the expansion ratio of the first working chamber and the expansion ratio of the second working chamber can be adjusted by making the inner diameters of the cylinders 21, 22, and 23 different. That is, the inner diameter of each cylinder 21, 22, 23 is set as D1 <D2 <D3! The shaft 31 force is also used for each piston 41, 42, 43, and the outer diameter force S of each piston 41, 42, 43 is equal, and the inner diameter of each cylinder 21, 22, 23 is different. The eccentricity of 31b and 31c is E1 <E2 <E3. The amount of eccentricity of the eccentric portion corresponds to the distance between the rotation axis O of the shaft 31 and the centers of the pistons 41, 42, and 43.
[0050] また、第 1シリンダ 21、第 2シリンダ 22および第 3シリンダ 23の高さが等しいという条 件の下、各部品の寸法を図 15の要部平面図に示すように調整することもできる。図 1 5の例では、第 1シリンダ 21、第 2シリンダ 22および第 3シリンダ 23の内径が等しい。 この場合、各ピストン 41, 42, 43の外径を異ならせることによって、第 1作動室の膨 張比と第 2作動室の膨張比とを調整することができる。すなわち、各ピストン 41, 42, 43の外径を0 1 >0 2>0 3としてぃる。また、各偏心部 31a, 31b, 31cの偏心量 El, E2, E3は、ピストン 41, 42, 43とシリンダ 21, 22, 23との最適なクリアランスを 確保するように調整して 、る。 [0050] Under the condition that the heights of the first cylinder 21, the second cylinder 22 and the third cylinder 23 are equal, the dimensions of each part may be adjusted as shown in the plan view of the main part in FIG. it can. In the example of FIG. 15, the inner diameters of the first cylinder 21, the second cylinder 22, and the third cylinder 23 are equal. In this case, the expansion ratio of the first working chamber and the expansion ratio of the second working chamber can be adjusted by making the outer diameters of the pistons 41, 42, 43 different. That is, the outer diameter of each piston 41, 42, 43 is set to 0 1> 0 2> 0 3. Also, the eccentricity El, E2, E3 of each eccentric part 31a, 31b, 31c provides the optimum clearance between piston 41, 42, 43 and cylinder 21, 22, 23. Adjust to ensure.
[0051] これらの実施形態によれば、各シリンダあるいは各ピストンを同一の厚さの素材 (鋼 板)力も作製することができるため、生産性の向上およびコストの低減を期待できる。 また、軸方向の高さを十分に小さくして小型コンパクトな膨張機を実現することができ る。  [0051] According to these embodiments, since each cylinder or each piston can also produce a material (steel plate) force having the same thickness, an improvement in productivity and a reduction in cost can be expected. Also, a small and compact expander can be realized by sufficiently reducing the axial height.
[0052] 以上、第 1実施形態および第 2実施形態では、シリンダが 3個の場合について説明 したが、シリンダの数は 3個に限定されない。すなわち、互いに膨張比が異なる 3以上 の作動室が形成されるようにシリンダの数を増設することができる。このようにして作 動室の数を増やせば、冷媒が膨張する際の冷媒状態により最適な膨張過程を実現 することや、超臨界状態から飽和液線までの膨張過程、あるいは飽和液線近傍の膨 張過程をさらに細かに制御することが可能である。  As described above, in the first embodiment and the second embodiment, the case where there are three cylinders has been described, but the number of cylinders is not limited to three. That is, the number of cylinders can be increased so that three or more working chambers having different expansion ratios are formed. If the number of working chambers is increased in this way, an optimal expansion process can be realized depending on the refrigerant state when the refrigerant expands, the expansion process from the supercritical state to the saturated liquid line, or near the saturated liquid line. It is possible to control the expansion process more precisely.
[0053] また、第 1実施形態および第 2実施形態では、冷媒を二酸化炭素として説明したが 、冷媒をフロンなどとし、液単相から飽和液を経て気液二相へ膨張させる場合に適用 しても同様の効果が得られる。  In the first embodiment and the second embodiment, the refrigerant is described as carbon dioxide, but the present invention is applied to the case where the refrigerant is flon or the like and is expanded from a liquid single phase to a gas-liquid two phase through a saturated liquid. However, the same effect can be obtained.
[0054] 以上、本発明のロータリ式膨張機は、冷凍サイクルにおける作動流体の膨張エネ ルギーを回収して動力回収手段として有用である。具体的には、図 16で説明したよう に、作動流体としての冷媒を圧縮する圧縮機と、圧縮機で圧縮された冷媒を冷却す る放熱器と、放熱器で冷却された冷媒を膨張させる膨張機と、膨張機で膨張した冷 媒を蒸発させる蒸発器とを備えた冷凍サイクル装置に、本発明のロータリ式膨張機 1 00を好適に用いることができる。冷媒として二酸ィ匕炭素を使用する場合には、本発 明が特に有用である。  As described above, the rotary expander of the present invention is useful as power recovery means by recovering the expansion energy of the working fluid in the refrigeration cycle. Specifically, as described in FIG. 16, the compressor that compresses the refrigerant as the working fluid, the radiator that cools the refrigerant compressed by the compressor, and the refrigerant that is cooled by the radiator are expanded. The rotary expander 100 of the present invention can be suitably used for a refrigeration cycle apparatus that includes an expander and an evaporator that evaporates the refrigerant expanded in the expander. The present invention is particularly useful when using carbon dioxide as a refrigerant.

Claims

請求の範囲 The scope of the claims
[1] 各々が、シリンダと、前記シリンダを貫くシャフトと、前記シャフトに取り付けられて前 記シリンダの内側で偏心回転するピストンと、前記シリンダと前記ピストンの間の空間 を吸入側空間と吐出側空間に仕切る仕切り部材とを有し、かつ前記シャフトを共有す る形で軸方向に順番に並んで配置された、第 1、第 2および第 3膨張機構部と、 前記第 1膨張機構部の前記吸入側空間へ作動流体を吸入させる吸入路と、 前記第 1膨張機構部の前記吐出側空間と前記第 2膨張機構部の前記吸入側空間 を結び、前記作動流体を第 1の膨張比にて膨張させる第 1作動室を形成する第 1連 通路と、  [1] Each includes a cylinder, a shaft that passes through the cylinder, a piston that is attached to the shaft and rotates eccentrically inside the cylinder, and a space between the cylinder and the piston through a suction side space and a discharge side. A first partition member, a first partition member, a first partition member, a second partition member, and a third expansion mechanism unit arranged in order in the axial direction so as to share the shaft. The suction path for sucking the working fluid into the suction side space, the discharge side space of the first expansion mechanism portion, and the suction side space of the second expansion mechanism portion are connected, and the working fluid is set to a first expansion ratio. A first communication passage forming a first working chamber to be expanded
前記第 2膨張機構部の前記吐出側空間と前記第 3膨張機構部の前記吸入側空間 を結び、前記第 1作動室にて膨張した前記作動流体を第 2の膨張比にてさらに膨張 させる第 2作動室を形成する第 2連通路と、  The discharge side space of the second expansion mechanism portion is connected to the suction side space of the third expansion mechanism portion, and the working fluid expanded in the first working chamber is further expanded at a second expansion ratio. 2 a second communication path forming a working chamber;
前記第 3膨張機構部の前記吐出側空間から前記作動流体を吐出させる吐出路とを 備え、  A discharge path for discharging the working fluid from the discharge side space of the third expansion mechanism section,
前記第 1の膨張比よりも前記第 2の膨張比が大である、ロータリ式膨張機。  A rotary expander in which the second expansion ratio is larger than the first expansion ratio.
[2] 前記第 1膨張機構部と前記第 2膨張機構部との間に配置された第 1中板と、 [2] a first intermediate plate disposed between the first expansion mechanism portion and the second expansion mechanism portion;
前記第 2膨張機構部と前記第 3膨張機構部との間に配置された第 2中板とをさらに 備え、  A second intermediate plate disposed between the second expansion mechanism and the third expansion mechanism;
前記第 1連通路が、前記第 1中板に形成された第 1連通孔であり、  The first communication path is a first communication hole formed in the first intermediate plate;
前記第 2連通路が、前記第 2中板に形成された第 2連通孔である、請求項 1に記載 のロータリ式膨張機。  The rotary expander according to claim 1, wherein the second communication passage is a second communication hole formed in the second intermediate plate.
[3] 前記第 1膨張機構部が有する前記シリンダである第 1シリンダの内径と、前記第 2膨 張機構部が有する前記シリンダである第 2シリンダの内径と、前記第 3膨張機構部が 有する前記シリンダである第 3シリンダの内径とが等しぐ  [3] The inner diameter of the first cylinder, which is the cylinder of the first expansion mechanism, the inner diameter of the second cylinder, which is the cylinder of the second expansion mechanism, and the third expansion mechanism. The inner diameter of the third cylinder, which is the cylinder, is equal
前記第 1膨張機構部が有する前記ピストンである第 1ピストンの外径と、前記第 2膨 張機構部が有する前記ピストンである第 2ピストンの外径と、前記第 3膨張機構部が 有する前記ピストンである第 3ピストンの外径とが等しぐ  The outer diameter of the first piston, which is the piston of the first expansion mechanism, the outer diameter of the second piston, which is the piston of the second expansion mechanism, and the third expansion mechanism The outer diameter of the third piston, the piston, is equal
前記軸方向における、前記第 1シリンダの高さを Hl、前記第 2シリンダの高さを H2 、前記第 3シリンダの高さを H3としたとき、 H1 <H2く H3を満足する、請求項 1に記 載のロータリ式膨張機。 In the axial direction, the height of the first cylinder is Hl, and the height of the second cylinder is H2. The rotary expander according to claim 1, wherein when the height of the third cylinder is H3, H1 <H2 and H3 is satisfied.
[4] 前記第 1作動室において、前記作動流体が単相から気液二相に膨張するように構 成された、請求項 3に記載のロータリ式膨張機。  4. The rotary expander according to claim 3, wherein the working fluid is configured to expand from a single phase to a gas-liquid two phase in the first working chamber.
[5] 前記第 2連通孔の等価直径が、前記第 1連通孔の等価直径よりも大きい、請求項 2 に記載のロータリ式膨張機。 5. The rotary expander according to claim 2, wherein an equivalent diameter of the second communication hole is larger than an equivalent diameter of the first communication hole.
[6] 作動流体としての冷媒を圧縮する圧縮機と、 [6] a compressor that compresses a refrigerant as a working fluid;
前記圧縮機で圧縮された前記冷媒を冷却する放熱器と、  A radiator for cooling the refrigerant compressed by the compressor;
前記放熱器で冷却された前記冷媒を膨張させる膨張機と、  An expander for expanding the refrigerant cooled by the radiator;
前記膨張機で膨張した前記冷媒を蒸発させる蒸発器とを備え、  An evaporator for evaporating the refrigerant expanded by the expander,
前記膨張機が請求項 1に記載のロータリ式膨張機である、冷凍サイクル装置。  A refrigeration cycle apparatus, wherein the expander is the rotary expander according to claim 1.
PCT/JP2006/308076 2005-05-16 2006-04-17 Rotary expansion machine and refrigeration cycle device WO2006123494A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-142636 2005-05-16
JP2005142636A JP2008190723A (en) 2005-05-16 2005-05-16 Expansion machine

Publications (1)

Publication Number Publication Date
WO2006123494A1 true WO2006123494A1 (en) 2006-11-23

Family

ID=37431074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308076 WO2006123494A1 (en) 2005-05-16 2006-04-17 Rotary expansion machine and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2008190723A (en)
WO (1) WO2006123494A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103696965A (en) * 2013-12-25 2014-04-02 珠海凌达压缩机有限公司 Rolling rotor type compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104564678B (en) 2013-10-28 2017-06-30 珠海格力节能环保制冷技术研究中心有限公司 Expansion compressor device and the air-conditioner with it

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267440A (en) * 1975-12-02 1977-06-03 Starbard Raymond Edward Duplex compressed air motor driving apparatus
JPS52104644A (en) * 1976-02-27 1977-09-02 Hitachi Metals Ltd Vane type gas prime mover
JPH06505330A (en) * 1991-03-01 1994-06-16 シンフェント・アー/エス Thermodynamic system with geared devices for compression or expansion of gases and vapors
JP2002364562A (en) * 2001-06-08 2002-12-18 Daikin Ind Ltd Scroll type fluid machine and refrigerating device
WO2005026499A1 (en) * 2003-09-08 2005-03-24 Daikin Industries, Ltd. Rotary expansion machine and fluid machinery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267440A (en) * 1975-12-02 1977-06-03 Starbard Raymond Edward Duplex compressed air motor driving apparatus
JPS52104644A (en) * 1976-02-27 1977-09-02 Hitachi Metals Ltd Vane type gas prime mover
JPH06505330A (en) * 1991-03-01 1994-06-16 シンフェント・アー/エス Thermodynamic system with geared devices for compression or expansion of gases and vapors
JP2002364562A (en) * 2001-06-08 2002-12-18 Daikin Ind Ltd Scroll type fluid machine and refrigerating device
WO2005026499A1 (en) * 2003-09-08 2005-03-24 Daikin Industries, Ltd. Rotary expansion machine and fluid machinery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103696965A (en) * 2013-12-25 2014-04-02 珠海凌达压缩机有限公司 Rolling rotor type compressor

Also Published As

Publication number Publication date
JP2008190723A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP5178560B2 (en) Refrigeration cycle equipment
JP4065315B2 (en) Expander and heat pump using the same
KR100861646B1 (en) Displacement type expander
US7784303B2 (en) Expander
WO2005026499A1 (en) Rotary expansion machine and fluid machinery
JP2008133820A (en) Rotary compressor, control method thereof, and air conditioner using the same
JP2004044569A (en) Rotary expander and fluid machine
WO2006123494A1 (en) Rotary expansion machine and refrigeration cycle device
JP4735159B2 (en) Expander
US8056361B2 (en) Multi-stage rotary-type fluid machine and refrigeration cycle apparatus
JP2012093017A (en) Refrigerating cycle device
Kakuda et al. Development of a scroll expander for the CO2 refrigeration cycle
JP2005240561A (en) Expander
JP4462023B2 (en) Rotary expander
JP2008208758A (en) Displacement type expander, expander-integrated compressor, and refrigerating cycle device
JP2006266171A (en) Positive displacement fluid machine
JP4775206B2 (en) Refrigerant circuit with expander
JP2007127052A (en) Expansion machine and refrigeration cycle device using same
JP2007182822A (en) Expansion compressor
JP5095320B2 (en) Rotary fluid machine and refrigeration cycle apparatus
WO2011161953A1 (en) Refrigeration cycle apparatus
JP2003206876A (en) Closed rotary compressor and refrigerating and air conditioning equipment
JP5233690B2 (en) Expansion machine
JP5109985B2 (en) Expansion machine
JP2004190578A (en) Rotary expander

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP