JP2008190723A - Expansion machine - Google Patents

Expansion machine Download PDF

Info

Publication number
JP2008190723A
JP2008190723A JP2005142636A JP2005142636A JP2008190723A JP 2008190723 A JP2008190723 A JP 2008190723A JP 2005142636 A JP2005142636 A JP 2005142636A JP 2005142636 A JP2005142636 A JP 2005142636A JP 2008190723 A JP2008190723 A JP 2008190723A
Authority
JP
Japan
Prior art keywords
cylinder
refrigerant
expansion
expander
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005142636A
Other languages
Japanese (ja)
Inventor
Hiroshi Hasegawa
寛 長谷川
Masaru Matsui
大 松井
Atsuo Okaichi
敦雄 岡市
Tomoichiro Tamura
朋一郎 田村
Yuji Ogata
雄司 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005142636A priority Critical patent/JP2008190723A/en
Priority to PCT/JP2006/308076 priority patent/WO2006123494A1/en
Publication of JP2008190723A publication Critical patent/JP2008190723A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/356Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F01C1/3562Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F01C1/3564Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/106Stators; Members defining the outer boundaries of the working chamber with a radial surface, e.g. cam rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an expansion machine, having high power recovery efficiency by achieving increase in expansion volume conformable to the expansion characteristic of a refrigerant. <P>SOLUTION: This expansion machine includes: a shaft 31 having three or more eccentric parts 31a, 31b, 31c; three or more pistons 41, 42, 43 fitted to the eccentric parts 31a, 31b, 31c, respectively and rotated eccentrically; three or more cylinders 21, 22, 23, the inner surfaces of which are cylindrical, which are disposed so that the inner surfaces are partially in contact with the pistons 41, 42, 43; and three or more partition members for partitioning the space formed by the respective pistons 41, 42, 43 and the respective cylinders 21, 22, 23 into a suction part for sucking a refrigerant and a discharge part for discharging the refrigerant, wherein the cylinders 21, 22, 23 are connected to each oter in the longitudinal direction of the shaft 31, and as the refrigerant goes from the upstream side of a refrigerant passage to the upstream side thereof, the space formed by the respective pistons 41, 42, 43 and the respective cylinders 21, 22, 23 is increased in size. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高圧の圧縮性流体により作動して動力を発生させる膨張機に関し、特に冷凍サイクルにおける絞り機構部に置き換えて冷媒の膨張動力を回収する膨張機に関するものである。   The present invention relates to an expander that operates by a high-pressure compressive fluid to generate power, and particularly relates to an expander that replaces a throttle mechanism in a refrigeration cycle and collects expansion power of a refrigerant.

従来から冷凍サイクルに用いられる膨張機として、ロータリ型の膨張機が開示されている(例えば、特許文献1、特許文献2、特許文献3参照)。   Conventionally, rotary expanders have been disclosed as expanders used in refrigeration cycles (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).

従来のこのような膨張機の一例を図12〜図14に示す。図13は、図12のZ−Z線断面図であり、図14は膨張機の動作を説明するための説明図である。   An example of such a conventional expander is shown in FIGS. 13 is a cross-sectional view taken along the line ZZ in FIG. 12, and FIG. 14 is an explanatory diagram for explaining the operation of the expander.

図12、図13に示すように、膨張機は、密閉容器701と、シリンダ702と、偏心部703aを有するシャフト703と、シリンダ702の内側で偏心回転運動をするピストン704と、シリンダ702に設けられたベーン溝702aと、このベーン溝702aの内部を往復運動するベーン705と、ベーンばね706と、シャフト703を支える上軸受部材707および下軸受部材708と、冷媒を吸入する吸入管709と、冷媒を吐出する吐出管710などから構成されている。そして、シリンダ702、ピストン704、上軸受部材707および下軸受部材708で囲まれた空間にベーン705で仕切られた膨張室712が形成されている。上軸受部材707には、吸入空間707aと、吸入経路707bと、吸入経路707bの膨張室712側の開口部となる吸入孔707cとを備えている。シャフト703には、軸方向経路703bと径方向経路703cとが備えられている。さらに、シリンダ702には膨張室712から吐出空間720へ冷媒を吐出させる吐出孔702bがベーン705を挟んで吸入孔707cとは反対側に設けられている。   As shown in FIGS. 12 and 13, the expander is provided in a sealed container 701, a cylinder 702, a shaft 703 having an eccentric portion 703 a, a piston 704 that performs eccentric rotational motion inside the cylinder 702, and a cylinder 702. A vane groove 702a, a vane 705 that reciprocates inside the vane groove 702a, a vane spring 706, an upper bearing member 707 and a lower bearing member 708 that support the shaft 703, a suction pipe 709 that sucks refrigerant, It is comprised from the discharge pipe 710 etc. which discharge a refrigerant | coolant. An expansion chamber 712 partitioned by a vane 705 is formed in a space surrounded by the cylinder 702, the piston 704, the upper bearing member 707, and the lower bearing member 708. The upper bearing member 707 includes a suction space 707a, a suction path 707b, and a suction hole 707c serving as an opening on the expansion chamber 712 side of the suction path 707b. The shaft 703 is provided with an axial path 703b and a radial path 703c. Further, the cylinder 702 is provided with a discharge hole 702 b for discharging the refrigerant from the expansion chamber 712 to the discharge space 720 on the side opposite to the suction hole 707 c with the vane 705 interposed therebetween.

このような従来の膨張機の動作について説明する。図12に示すように、高圧の冷媒は吸入管709より吸入空間707a、シャフト703の軸方向経路703bを経てシャフト703の径方向経路703cに流入する。図13に示すように、シャフト703の径方向経路703cはシャフト703の外周面のある範囲のみに開口しており、シャフト703の回転に伴って上軸受部材707の吸入経路707bとの間で連通、非連通を繰り返す。径方向経路703cと吸入経路707bが連通したときに、冷媒は径方向経路703cから吸入経路707b、吸入孔707cを経て膨張室712に吸入される。   The operation of such a conventional expander will be described. As shown in FIG. 12, the high-pressure refrigerant flows from the suction pipe 709 through the suction space 707a and the axial path 703b of the shaft 703 into the radial path 703c of the shaft 703. As shown in FIG. 13, the radial path 703 c of the shaft 703 opens only in a certain range of the outer peripheral surface of the shaft 703, and communicates with the suction path 707 b of the upper bearing member 707 as the shaft 703 rotates. Repeatedly discontinue communication. When the radial path 703c and the suction path 707b communicate with each other, the refrigerant is sucked into the expansion chamber 712 from the radial path 703c through the suction path 707b and the suction hole 707c.

以下、膨張機の動作を図14(a)〜(d)を用い、膨張室712に着目して説明する。図14(a)は、吸入行程の開始直前の状態を示している。この状態からシャフト703が反時計周りに回転すると、シャフト703の径方向経路703cと上軸受部材707の吸入経路707bとが連通し、膨張室712に高圧の冷媒を流入させる吸入行程が開始される。さらに、シャフト703が反時計方向に回転した後の図14(b)の状態では、シャフト703の径方向経路703cと上軸受部材707の吸入経路707bの連通が断たれて吸入行程が終了する。このときの膨張室712の容積が膨張機の吸入容積Vsとなる。その後、膨張室712に吸入された高圧の冷媒は、膨張室712の容積が増す方向にシャフト703を回転させながら膨張減圧する膨張行程に入り、図14(c)の状態を経て図14(d)の状態となる。この状態は、膨張室712が吐出孔702bと連通する直前の状態であり、このときの膨張室712の容積が膨張機の吐出容積Vdとなる。この後、シャフト703がわずかに回転すると膨張室712は吐出孔702bと連通して吐出行程が開始される。膨張室712の容積が減少するのに伴い、冷媒は吐出孔702bから吐出空間720に吐出される。吐出空間720に蓄えられた低圧の冷媒は吐出管710から膨張機の外部に吐出される。   Hereinafter, the operation of the expander will be described using FIGS. 14A to 14D and focusing on the expansion chamber 712. FIG. FIG. 14A shows a state immediately before the start of the suction stroke. When the shaft 703 rotates counterclockwise from this state, the radial path 703c of the shaft 703 and the suction path 707b of the upper bearing member 707 communicate with each other, and a suction stroke for allowing high-pressure refrigerant to flow into the expansion chamber 712 is started. . Further, in the state of FIG. 14B after the shaft 703 rotates counterclockwise, the communication between the radial path 703c of the shaft 703 and the suction path 707b of the upper bearing member 707 is cut off, and the suction stroke is completed. The volume of the expansion chamber 712 at this time becomes the suction volume Vs of the expander. Thereafter, the high-pressure refrigerant sucked into the expansion chamber 712 enters an expansion stroke in which the shaft 703 is rotated in the direction in which the volume of the expansion chamber 712 increases, and the expansion stroke is reduced, and the state shown in FIG. ) State. This state is a state immediately before the expansion chamber 712 communicates with the discharge hole 702b, and the volume of the expansion chamber 712 at this time becomes the discharge volume Vd of the expander. Thereafter, when the shaft 703 rotates slightly, the expansion chamber 712 communicates with the discharge hole 702b and a discharge stroke is started. As the volume of the expansion chamber 712 decreases, the refrigerant is discharged from the discharge hole 702b to the discharge space 720. The low-pressure refrigerant stored in the discharge space 720 is discharged from the discharge pipe 710 to the outside of the expander.

すなわち、上記膨張機では、吸入行程から膨張行程への移行はシャフト703に設けた径方向経路703cと膨張室712との連通による流入タイミング制御手段の開閉に依存している。   That is, in the above expander, the transition from the suction stroke to the expansion stroke depends on the opening and closing of the inflow timing control means by the communication between the radial path 703 c provided in the shaft 703 and the expansion chamber 712.

このような膨張機を冷凍サイクルに用いた例が開示され、特にフロン系冷媒よりも温暖化防止に効果的な二酸化炭素を冷媒として使用した例が開示されている(例えば、特許文献4参照)。   An example in which such an expander is used in a refrigeration cycle is disclosed, and an example in which carbon dioxide that is more effective in preventing global warming than a chlorofluorocarbon refrigerant is used as a refrigerant is disclosed (for example, see Patent Document 4). .

図15は二酸化炭素を冷媒とする冷凍サイクルの概念図であり、図15(a)は通常の冷凍サイクル、図15(b)は膨張機を利用した冷凍サイクル、図15(c)はこれらの冷凍サイクルの圧力とエンタルピーとの関係を示すモリエル線図である。   FIG. 15 is a conceptual diagram of a refrigeration cycle using carbon dioxide as a refrigerant. FIG. 15 (a) is a normal refrigeration cycle, FIG. 15 (b) is a refrigeration cycle using an expander, and FIG. It is a Mollier diagram which shows the relationship between the pressure of a refrigerating cycle, and enthalpy.

図15(a)に示す通常の冷凍サイクルは、圧縮機801、ガスクーラ802、膨張弁803、蒸発器804から構成され、圧縮機801はモータなどの駆動要素805によって駆動される。この場合のモリエル線図は、図15(c)のA−B−C−Dに相当する。   15A includes a compressor 801, a gas cooler 802, an expansion valve 803, and an evaporator 804, and the compressor 801 is driven by a driving element 805 such as a motor. The Mollier diagram in this case corresponds to A-B-C-D in FIG.

一方、図15(b)に示す膨張機を利用した冷凍サイクルでは、図15(a)の膨張弁803の代わりに膨張機806を用い、駆動要素805を介して膨張機806のシャフトを圧縮機801のシャフトと直結している。この場合のモリエル線図は、膨張機806における冷媒の膨張行程が近似的に断熱膨張であることを考慮すると、図15(c)のA−B−C−D´となる。このような冷凍サイクルの構成とすることにより、膨張機806の冷媒の膨張行程において回収した回転動力を用いて、圧縮機801の駆動を補助することにより、駆動要素805の負荷を軽減することができる。   On the other hand, in the refrigeration cycle using the expander shown in FIG. 15B, the expander 806 is used instead of the expansion valve 803 in FIG. 15A, and the shaft of the expander 806 is connected to the compressor via the drive element 805. It is directly connected to the shaft 801. The Mollier diagram in this case is A-B-C-D 'in FIG. 15C, considering that the expansion stroke of the refrigerant in the expander 806 is approximately adiabatic expansion. By adopting such a refrigeration cycle configuration, it is possible to reduce the load on the driving element 805 by assisting the driving of the compressor 801 using the rotational power recovered in the expansion stroke of the refrigerant of the expander 806. it can.

さらに、蒸発器804へ流入する冷媒のエンタルピー差がモリエル線図上のD−D´に相当する部分で増加し、冷凍能力を向上させることができる。図15(c)において、点Rは冷媒である二酸化炭素の臨界点であり、それより圧力の高い超臨界状態で放熱器であるガスクーラ802が作動する。ガスクーラ802の出口が点Cの状態で膨張機806に冷媒が流入し、C−Q´−D´のように状態変化して冷媒のエンタルピー差D−D´分を膨張機806で動力回収している。
特開平8−82296号公報 特開平8−338356号公報 特開2003−172244号公報 特開2001−153077号公報
Furthermore, the enthalpy difference of the refrigerant flowing into the evaporator 804 increases at a portion corresponding to DD ′ on the Mollier diagram, and the refrigeration capacity can be improved. In FIG. 15C, a point R is a critical point of carbon dioxide as a refrigerant, and the gas cooler 802 as a radiator operates in a supercritical state where the pressure is higher than that. The refrigerant flows into the expander 806 with the outlet of the gas cooler 802 at point C, and the state changes like CQ'-D ', and the enthalpy difference DD' of the refrigerant is recovered by the expander 806. ing.
JP-A-8-82296 JP-A-8-338356 JP 2003-172244 A JP 2001-153077 A

このような従来の膨張機においては、冷媒の吸入完了時、すなわち膨張開始時の吸入容積をVs、吐出開始時、すなわち膨張終了時の吐出容積をVdとすると、VsとVdはそれぞれ流入タイミング制御手段と吐出孔により決定されて固有の膨張比Vd/Vsとなる。図16に図15(c)の膨張行程C−D´における時間に対する圧力および容積の関係を示す。ここでは、冷媒の膨張行程開始時の膨張室の圧力をPs、膨張行程終了時の膨張室の圧力をPdとしている。   In such a conventional expander, when the suction of refrigerant is completed, that is, the suction volume at the start of expansion is Vs, and when the discharge is started, that is, the discharge volume at the end of expansion is Vd, Vs and Vd are respectively controlled in inflow timing. The specific expansion ratio Vd / Vs is determined by the means and the discharge hole. FIG. 16 shows the relationship between pressure and volume with respect to time in the expansion stroke CD ′ of FIG. Here, the pressure in the expansion chamber at the start of the expansion stroke of the refrigerant is Ps, and the pressure in the expansion chamber at the end of the expansion stroke is Pd.

図16(a)に示すように、従来の膨張機は膨張比(Vd/Vs)が一定で、かつその容積増加割合は正弦波状である。冷媒が超臨界状態から膨張する場合の膨張圧力変化は、理想的には図16(b)の実線に示すように、超臨界状態から飽和液付近までの単相の状態変化をし、その後、気液二相状態へと膨張する。しかしながら、実際には変曲点圧力Pm付近で破線部に示すような相変化遅れによる圧力低下が発生する。   As shown in FIG. 16A, the conventional expander has a constant expansion ratio (Vd / Vs), and the volume increase rate is sinusoidal. The change in expansion pressure when the refrigerant expands from the supercritical state ideally changes in a single-phase state from the supercritical state to the vicinity of the saturated liquid, as shown by the solid line in FIG. It expands into a gas-liquid two-phase state. However, in reality, a pressure drop due to a phase change delay as shown by the broken line portion occurs in the vicinity of the inflection point pressure Pm.

すなわち、図15(c)に示すように、超臨界状態の点Cから飽和液点Q´までの膨張は単相膨張であるため、その膨張率は10%以下である。一方、飽和液点Q´から気液二相状態の点D´までの膨張は、液体から気体と液体を含む気液二相状態へ膨張する複相膨張であるため、膨張率は200%程度にもなる。したがって、従来のように膨張行程の全領域にわたって同一の膨張率で膨張させようとすると、図16(b)に示すように、点Cから飽和液点Q´までの圧力降下は、点Q´から点D´までの圧力降下に要する時間の1/20程度の非常に短い時間で起こる。このため、点Q´から始まる液から気体への相変化において、相変化速度が圧力降下の速度に追い付かず、いわゆる相変化遅れを生じ、図16(b)の破線に示すような圧力低下をきたす。膨張機の回収動力は、膨張行程での冷媒の圧力と容積の関係を示す線図(PV線)の面積によって決定されるため、このような相変化遅れが発生する場合には、その圧力低下分だけ回収できる動力が減少するという課題を有していた。   That is, as shown in FIG. 15C, since the expansion from the point C in the supercritical state to the saturated liquid point Q ′ is a single-phase expansion, the expansion rate is 10% or less. On the other hand, since the expansion from the saturated liquid point Q ′ to the point D ′ in the gas-liquid two-phase state is a multiphase expansion that expands from a liquid to a gas-liquid two-phase state containing gas and liquid, the expansion rate is about 200%. It also becomes. Therefore, if an attempt is made to expand at the same expansion rate over the entire region of the expansion stroke as in the prior art, as shown in FIG. 16 (b), the pressure drop from the point C to the saturated liquid point Q ' Occurs in a very short time of about 1/20 of the time required for the pressure drop from to D ′. For this reason, in the phase change from liquid to gas starting from the point Q ′, the phase change speed does not catch up with the pressure drop speed, causing a so-called phase change delay, and the pressure drop as shown by the broken line in FIG. Come on. Since the recovery power of the expander is determined by the area of the diagram (PV line) showing the relationship between the pressure and volume of the refrigerant in the expansion stroke, when such a phase change delay occurs, the pressure drop The problem was that the power that could be recovered by the amount decreased.

そこで本発明は、上記従来の課題を解決するとともに、簡単な構成で膨張行程における相変化遅れの発生を抑制し、動力回収効率に優れた膨張機を実現することを目的としている。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-described conventional problems, and to suppress the occurrence of a phase change delay in the expansion stroke with a simple configuration, and to realize an expander excellent in power recovery efficiency.

上述した課題を解決するため、本発明の膨張機は、3個以上の偏心部を有するシャフトと、偏心部それぞれに嵌合して偏心回転する3個以上のピストンと、内面が円筒形状であるとともに内面の一部がピストンと接するように配設された3個以上のシリンダと、ピストンとシリンダとにより形成される各空間を冷媒を吸入する吸入部と冷媒を吐出する吐出部とに仕切る3個以上の仕切部材とを備え、シャフトの長手方向にシリンダを連接し、冷媒経路の上流側の空間よりも冷媒経路の下流側の空間の方が大きくなるよう形成している。   In order to solve the above-described problems, the expander of the present invention has a shaft having three or more eccentric portions, three or more pistons that are fitted to the eccentric portions and rotated eccentrically, and an inner surface is cylindrical. And three or more cylinders arranged so that a part of the inner surface is in contact with the piston, and each space formed by the piston and the cylinder is divided into a suction portion for sucking refrigerant and a discharge portion for discharging refrigerant. And a plurality of partition members, and cylinders are connected in the longitudinal direction of the shaft so that the space on the downstream side of the refrigerant path is larger than the space on the upstream side of the refrigerant path.

このような構成によれば、冷媒の膨張特性に合致した膨張室の容積増加となり、動力回収効率の高い膨張機を実現できる。   According to such a configuration, the expansion chamber volume increases in accordance with the expansion characteristics of the refrigerant, and an expander with high power recovery efficiency can be realized.

さらに、シリンダは同一内径を有するとともにピストンは同一外径を有し、冷媒経路の上流側から下流側に行くにしたがって、シリンダの円筒高さを大きくしてもよく、簡単な構成で膨張機の膨張室容積を可変とすることができる。   Further, the cylinder has the same inner diameter and the piston has the same outer diameter, and the cylinder height of the cylinder may be increased from the upstream side to the downstream side of the refrigerant path. The expansion chamber volume can be made variable.

さらに、シリンダは同一の円筒高さを有するとともにピストンは同一外径を有し、冷媒経路の上流側から下流側に行くにしたがって、シリンダの内径を大きくしてもよく、小型の膨張機を実現して容易に膨張機の膨張室容積を可変とすることができる。   Furthermore, the cylinder has the same cylindrical height and the piston has the same outer diameter, and the cylinder inner diameter may be increased from the upstream side to the downstream side of the refrigerant path, thereby realizing a small expander. Thus, the expansion chamber volume of the expander can be easily made variable.

さらに、シリンダは同一内径と同一円筒高さを有し、冷媒経路の上流側から下流側に行くにしたがってピストンの外径を小さくしてもよく、容易に膨張機の膨張室容積を可変とすることができる。   Further, the cylinder has the same inner diameter and the same cylinder height, and the outer diameter of the piston may be reduced from the upstream side to the downstream side of the refrigerant path, and the expansion chamber volume of the expander can be easily made variable. be able to.

さらに、冷媒経路の最上流側の第1シリンダの吐出部と前記第1シリンダに連接した第2シリンダの吸入部とで形成される膨張室において、冷媒を超臨界状態または液状態から飽和液線近傍の気液二相域まで膨張させても良い。   Further, in the expansion chamber formed by the discharge portion of the first cylinder on the most upstream side of the refrigerant path and the suction portion of the second cylinder connected to the first cylinder, the refrigerant is changed from the supercritical state or the liquid state to the saturated liquid line. You may make it expand | swell to the gas-liquid two-phase area | region of the vicinity.

このような構成によれば、冷凍サイクルの冷房運転や暖房運転の切り替えなどにも対応して、単相域での膨張と気体への相変化を伴う膨張とを分離して、相変化遅れによる圧力低下が発生しない膨張機を実現することができる。   According to such a configuration, in response to switching between cooling operation and heating operation of the refrigeration cycle, the expansion in the single phase region and the expansion accompanied by the phase change to the gas are separated, and due to the phase change delay An expander that does not cause a pressure drop can be realized.

本発明の膨張機によれば、冷媒の膨張特性に合致した膨張室の容積増加を実現し、動力回収効率の高い膨張機を実現することができる。   According to the expander of the present invention, an increase in the volume of the expansion chamber that matches the expansion characteristics of the refrigerant can be realized, and an expander with high power recovery efficiency can be realized.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における膨張機の縦断面図である。図2は、図1の横断面図であり、図2(a)は図1のA−A線断面図、図2(b)は図1のB−B線断面図、図2(c)は図1のC−C線断面図を示す。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of an expander according to Embodiment 1 of the present invention. 2 is a cross-sectional view of FIG. 1, FIG. 2 (a) is a cross-sectional view taken along line AA of FIG. 1, FIG. 2 (b) is a cross-sectional view taken along line BB of FIG. Shows a cross-sectional view taken along the line CC of FIG.

本発明の実施の形態1の膨張機は、密閉容器1内に、膨張機構部500と動力回収機構部600とが配置されており、膨張機構部500と動力回収機構部600とはシャフト31で連結されている。シャフト31は、密閉容器1に固定されている下軸受82と上軸受81とに軸支されており、密閉容器1の下部に貯留する潤滑油104をシャフト31の回転により吸い上げて、上軸受81や下軸受82、さらには膨張機構部500などの摺動部へ給油して潤滑させるように構成している。密閉容器1には、膨張させる冷媒を吸入する吸入管9と、膨張した冷媒を吐出する吐出管10が設けられている。吸入管9から膨張機構部500に吸入された冷媒は、膨張機構部500で膨張した後、吐出管10から密閉容器1外に吐出され、冷凍サイクルの蒸発器に供給される。また、冷媒としては二酸化炭素を用いている。   In the expander according to Embodiment 1 of the present invention, an expansion mechanism unit 500 and a power recovery mechanism unit 600 are disposed in the sealed container 1, and the expansion mechanism unit 500 and the power recovery mechanism unit 600 are connected by a shaft 31. It is connected. The shaft 31 is pivotally supported by a lower bearing 82 and an upper bearing 81 fixed to the hermetic container 1, and sucks up the lubricating oil 104 stored in the lower part of the hermetic container 1 by the rotation of the shaft 31, so that the upper bearing 81 The lower bearing 82 and the sliding portion such as the expansion mechanism 500 are lubricated by lubrication. The sealed container 1 is provided with a suction pipe 9 for sucking in the refrigerant to be expanded and a discharge pipe 10 for discharging the expanded refrigerant. The refrigerant sucked into the expansion mechanism unit 500 from the suction pipe 9 is expanded by the expansion mechanism unit 500, then discharged from the discharge pipe 10 to the outside of the sealed container 1, and supplied to the evaporator of the refrigeration cycle. Carbon dioxide is used as the refrigerant.

膨張機構部500において冷媒が膨張する際、シャフト31に回転力を発生させる。シャフト31に連結された動力回収機構部600は、ロータ100とステータ101からなる発電モータ102を構成してシャフト31の回転力を電力として回収し、密閉容器1に設けた密閉端子103を介して外部へ電力として供給する。   When the refrigerant expands in the expansion mechanism unit 500, a rotational force is generated in the shaft 31. The power recovery mechanism unit 600 connected to the shaft 31 constitutes a power generation motor 102 composed of the rotor 100 and the stator 101 to recover the rotational force of the shaft 31 as electric power, and through the sealed terminal 103 provided in the sealed container 1. Supply power to the outside.

膨張機構部500は、複数段のシリンダとシリンダ内部で偏心回転する複数のピストンにより構成されている。以下、本実施の形態における膨張機構部500の構成の詳細をシリンダが3段の場合を例に図1〜図3を用いて説明する。   The expansion mechanism 500 includes a plurality of cylinders and a plurality of pistons that rotate eccentrically inside the cylinder. Hereinafter, the details of the configuration of the expansion mechanism unit 500 in the present embodiment will be described with reference to FIGS.

膨張機構部500は、下軸受82の上に第3シリンダ23、第2中間部材72、第2シリンダ22、第1中間部材71、第1シリンダ21、上軸受81が順に積層されて締結されている。また、シャフト31には、第1シリンダ21の位置に対応する第1偏心部31a、第2シリンダ22の位置に対応する第2偏心部31b、第3シリンダ23の位置に対応する第3偏心部31cが設けられている。第1偏心部31aには第1ピストン41、第2偏心部31bには第2ピストン42、また第3偏心部31cには第3ピストン43が嵌合されている。第1偏心部31a、第2偏心部31b、第3偏心部31cはシャフト31の円周方向の同じ位置で、かつシャフト31の軸心から同一量だけ偏心して設けられている。   In the expansion mechanism 500, the third cylinder 23, the second intermediate member 72, the second cylinder 22, the first intermediate member 71, the first cylinder 21, and the upper bearing 81 are sequentially stacked on the lower bearing 82 and fastened. Yes. Further, the shaft 31 includes a first eccentric portion 31 a corresponding to the position of the first cylinder 21, a second eccentric portion 31 b corresponding to the position of the second cylinder 22, and a third eccentric portion corresponding to the position of the third cylinder 23. 31c is provided. A first piston 41 is fitted to the first eccentric portion 31a, a second piston 42 is fitted to the second eccentric portion 31b, and a third piston 43 is fitted to the third eccentric portion 31c. The first eccentric portion 31 a, the second eccentric portion 31 b, and the third eccentric portion 31 c are provided at the same position in the circumferential direction of the shaft 31 and are eccentric from the axis of the shaft 31 by the same amount.

本実施の形態では、第1シリンダ21、第2シリンダ22、第3シリンダ23の円筒の内径は同一で、その円筒高さをそれぞれ異ならせることによって、それぞれのシリンダ容積を異ならせている。さらに、それぞれの偏心部に嵌合されたピストンの外径は第1ピストン41、第2ピストン42、第3ピストン43とも同一としている。そのため、各シリンダ容積とピストンとによって形成される空間容積が、各シリンダの円筒高さによって異なるようにしている。したがって、吸入管9から膨張機に吸入された高圧の冷媒は、膨張機構部500の第1シリンダ21に吸入されて、その後、第2シリンダ22、第3シリンダ23を経由して低圧の冷媒に膨張し、吐出管10から吐出される。   In the present embodiment, the inner diameters of the cylinders of the first cylinder 21, the second cylinder 22, and the third cylinder 23 are the same, and the cylinder volumes are made different by making the cylinder heights different. Further, the outer diameters of the pistons fitted to the eccentric portions are the same for the first piston 41, the second piston 42, and the third piston 43. Therefore, the space volume formed by each cylinder volume and the piston is made different depending on the cylinder height of each cylinder. Therefore, the high-pressure refrigerant sucked into the expander from the suction pipe 9 is sucked into the first cylinder 21 of the expansion mechanism unit 500, and then converted into the low-pressure refrigerant via the second cylinder 22 and the third cylinder 23. It expands and is discharged from the discharge pipe 10.

次に、各シリンダ内の構成についてその詳細を説明する。第1シリンダ21上部に位置する上軸受81には、吸入管9と連通する第1吸入孔21aが設けられ、図2(a)に示すように第1シリンダ21の円筒内に開口している。また、図1および図3に示すように、第1シリンダ21の下部に位置する第1中間部材71には、第1シリンダ21の円筒内に開口する第1吐出孔21bが設けられている。したがって、第1シリンダ21は上下両端を上軸受81と第1中間部材71とによって挟まれて構成されている。   Next, details of the configuration in each cylinder will be described. The upper bearing 81 located at the upper part of the first cylinder 21 is provided with a first suction hole 21a communicating with the suction pipe 9 and opens into the cylinder of the first cylinder 21 as shown in FIG. . As shown in FIGS. 1 and 3, the first intermediate member 71 located in the lower part of the first cylinder 21 is provided with a first discharge hole 21 b that opens into the cylinder of the first cylinder 21. Therefore, the first cylinder 21 is configured such that the upper and lower ends are sandwiched between the upper bearing 81 and the first intermediate member 71.

図2(a)に示すように、第1シリンダ21の円筒内面に、シャフト31の第1偏心部31aに嵌合された第1ピストン41の外周面の一部が接触するように配置され、シャフト31の回転によって第1ピストン41が円筒内面と接触しながら偏心回転するようにしている。さらに、第1吸入孔21aと第1吐出孔21bとの間には、第1シリンダ21の円筒と第1ピストン41とによって形成される空間を、第1吸入部121aと第1吐出部121bとに仕切る第1ベーン51が仕切部材として配置されている。第1ベーン51は、その先端部が偏心回転する第1ピストン41の外周面に接しながら、第1ピストン41の偏心回転に応じて往復動するように、第1シリンダ21に設けられたベーン溝21dに挿入されてベーンばね61によって押圧されている。   As shown in FIG. 2 (a), the cylindrical inner surface of the first cylinder 21 is arranged so that a part of the outer peripheral surface of the first piston 41 fitted to the first eccentric portion 31a of the shaft 31 is in contact with it. The first piston 41 rotates eccentrically while contacting the inner surface of the cylinder by the rotation of the shaft 31. Further, a space formed by the cylinder of the first cylinder 21 and the first piston 41 is formed between the first suction hole 21a and the first discharge hole 21b, and the first suction part 121a and the first discharge part 121b. The 1st vane 51 partitioned off into is arrange | positioned as a partition member. The vane groove provided in the first cylinder 21 is configured such that the first vane 51 reciprocates according to the eccentric rotation of the first piston 41 while the tip end portion is in contact with the outer peripheral surface of the first piston 41 that rotates eccentrically. It is inserted into 21 d and pressed by the vane spring 61.

第2シリンダ22、第3シリンダ23の構成も第1シリンダ21と同様である。図1に示すように、第2シリンダ22は、その上部に位置する第1中間部材71と下部に位置する第2中間部材72とに挟まれて構成されている。図2(b)に示すように、第1中間部材71に第2吸入孔22aが第2シリンダ22の円筒内に開口して設けられ、第2中間部材72に第2吐出孔22bが第2シリンダ22の円筒内に開口して設けられている。したがって、第2吸入孔22aは第1シリンダ21の円筒内に開口する第1吐出孔21bと連通するように、第1中間部材71に通路が形成されている。第2シリンダ22の円筒内面には、シャフト31の第2偏心部31bに嵌合された第2ピストン42の外周面の一部が接触して設けられ、シャフト31の回転によって第2ピストン42が円筒内面と接触しながら偏心回転するようにしている。さらに、第2吸入孔22aと第2吐出孔22bとの間には、第2シリンダ22の円筒と第2ピストン42とによって形成される空間を、第2吸入部122aと第2吐出部122bとに仕切る第2ベーン52が仕切部材として配置されている。第2ベーン52は、その先端部が偏心回転する第2ピストン42の外周面に接しながら、第2ピストン42の偏心回転に応じて往復動するように、第2シリンダ22に設けられたベーン溝22dに挿入されてベーンばね62によって押圧されている。   The configurations of the second cylinder 22 and the third cylinder 23 are the same as those of the first cylinder 21. As shown in FIG. 1, the second cylinder 22 is configured to be sandwiched between a first intermediate member 71 located at the upper part and a second intermediate member 72 located at the lower part. As shown in FIG. 2B, the first intermediate member 71 is provided with a second suction hole 22a that opens into the cylinder of the second cylinder 22, and the second intermediate member 72 is provided with a second discharge hole 22b. An opening is provided in the cylinder of the cylinder 22. Therefore, a passage is formed in the first intermediate member 71 so that the second suction hole 22 a communicates with the first discharge hole 21 b that opens in the cylinder of the first cylinder 21. A part of the outer peripheral surface of the second piston 42 fitted to the second eccentric portion 31 b of the shaft 31 is in contact with the cylindrical inner surface of the second cylinder 22, and the second piston 42 is rotated by the rotation of the shaft 31. It is designed to rotate eccentrically while contacting the inner surface of the cylinder. Further, a space formed by the cylinder of the second cylinder 22 and the second piston 42 is formed between the second suction hole 22a and the second discharge hole 22b, and the second suction part 122a and the second discharge part 122b. A second vane 52 that divides into two is arranged as a partition member. The second vane 52 has a vane groove provided in the second cylinder 22 so as to reciprocate according to the eccentric rotation of the second piston 42 while the tip end portion is in contact with the outer peripheral surface of the second piston 42 that rotates eccentrically. It is inserted into 22 d and pressed by the vane spring 62.

次に、第3シリンダ23の構成について説明する。図1に示すように、第3シリンダ23は、その上部に位置する第2中間部材72と下部に位置する下軸受82とに挟まれている。第2中間部材72に第3吸入孔23aが第3シリンダ23の円筒内に開口して設けられ、下軸受82に第3吐出孔23bが第3シリンダ23の円筒内に開口して設けられている。したがって、第3吸入孔23aは第2シリンダ22の円筒内に開口する第2吐出孔22bと連通するように、第2中間部材72に通路が形成されている。さらに、第3吐出孔23bは密閉容器1内の空間に連通し、吐出管10から外部に吐出される。   Next, the configuration of the third cylinder 23 will be described. As shown in FIG. 1, the third cylinder 23 is sandwiched between a second intermediate member 72 located at the upper part and a lower bearing 82 located at the lower part. A third suction hole 23 a is provided in the second intermediate member 72 so as to open in the cylinder of the third cylinder 23, and a third discharge hole 23 b is provided in the lower bearing 82 so as to open in the cylinder of the third cylinder 23. Yes. Therefore, a passage is formed in the second intermediate member 72 so that the third suction hole 23 a communicates with the second discharge hole 22 b opened in the cylinder of the second cylinder 22. Further, the third discharge hole 23 b communicates with the space in the sealed container 1 and is discharged from the discharge pipe 10 to the outside.

図2(c)に示すように、第3シリンダ23の円筒内面には、シャフト31の第3偏心部31cに嵌合された第3ピストン43の外周面の一部が接触して設けられ、シャフト31の回転によって第3ピストン43が円筒内面と接触しながら偏心回転するようにしている。さらに、第3吸入孔23aと第3吐出孔23bとの間には、第3シリンダ23の円筒と第3ピストン43とによって形成される空間を、第3吸入部123aと第3吐出部123bとに仕切る第3ベーン53が仕切部材として配置されている。第3ベーン53は、その先端部が偏心回転する第3ピストン43の外周面に接しながら、第3ピストン43の偏心回転に応じて往復動するように、第3シリンダ23に設けられたベーン溝23dに挿入されてベーンばね63によって押圧されている。   As shown in FIG. 2 (c), the cylindrical inner surface of the third cylinder 23 is provided with a part of the outer peripheral surface of the third piston 43 fitted to the third eccentric portion 31c of the shaft 31, The rotation of the shaft 31 causes the third piston 43 to rotate eccentrically while contacting the cylindrical inner surface. Further, a space formed by the cylinder of the third cylinder 23 and the third piston 43 is formed between the third suction hole 23a and the third discharge hole 23b, and the third suction part 123a and the third discharge part 123b. A third vane 53 is divided as a partition member. The third vane 53 has a vane groove provided in the third cylinder 23 so as to reciprocate according to the eccentric rotation of the third piston 43 while the tip end portion is in contact with the outer peripheral surface of the third piston 43 rotating eccentrically. 23d and pressed by the vane spring 63.

図3は第1中間部材71の構成を示す図であり、図3(a)は平面図、図3(b)は図3(a)のD−D線断面図である。また、図4は第2中間部材72の構成を示す図であり、図4(a)は平面図、図4(b)は図4(a)のE−E線断面図である。   3A and 3B are diagrams showing the configuration of the first intermediate member 71, in which FIG. 3A is a plan view, and FIG. 3B is a cross-sectional view taken along the line D-D in FIG. FIG. 4 is a view showing the configuration of the second intermediate member 72, FIG. 4 (a) is a plan view, and FIG. 4 (b) is a cross-sectional view taken along the line EE of FIG. 4 (a).

図3に示すように、第1中間部材71に設けられた第1シリンダ21側の第1吐出孔21bと第2シリンダ22側の第2吸入孔22aとを接続する第1連通路90が、第1中間部材71に斜め方向に形成されている。また、図4に示すように、第2中間部材72に設けられた第2シリンダ22側の第2吐出孔22bと第3シリンダ23側の第3吸入孔23aとを接続する第2連通路91が、第2中間部材72に斜め方向に形成されている。   As shown in FIG. 3, the first communication passage 90 that connects the first discharge hole 21 b on the first cylinder 21 side and the second suction hole 22 a on the second cylinder 22 side provided in the first intermediate member 71 includes: The first intermediate member 71 is formed in an oblique direction. As shown in FIG. 4, the second communication passage 91 connecting the second discharge hole 22 b on the second cylinder 22 side and the third suction hole 23 a on the third cylinder 23 provided in the second intermediate member 72. Is formed in the second intermediate member 72 in an oblique direction.

以上のように構成した本実施の形態の膨張機の動作を図5、図6を用いて説明する。図5にはシャフト31の回転角度に対する第1シリンダ21と第2シリンダ22における動作状況を示し、図6には同様に第3シリンダ23における動作状況を示している。また、図7には本発明の実施の形態1の膨張機における膨張特性を示す。図7(a)にシャフト31の回転角度と膨張容積との関係を示し、図7(b)にシャフト31の回転角度と膨張圧力との関係を示している。   The operation of the expander of the present embodiment configured as described above will be described with reference to FIGS. FIG. 5 shows an operation state in the first cylinder 21 and the second cylinder 22 with respect to the rotation angle of the shaft 31, and FIG. 6 shows an operation state in the third cylinder 23 in the same manner. FIG. 7 shows the expansion characteristics of the expander according to Embodiment 1 of the present invention. FIG. 7A shows the relationship between the rotation angle of the shaft 31 and the expansion volume, and FIG. 7B shows the relationship between the rotation angle of the shaft 31 and the expansion pressure.

膨張機に吸入された冷媒は、第1シリンダ21、第2シリンダ22、第3シリンダ23の順に冷媒経路を通過する。本実施の形態では、図3に示す第1中間部材71の第1連通路90で接続される第1シリンダ21の第1吐出部121bと第2シリンダ22の第2吸入部122aとにより第1膨張室を形成し、さらに、図4に示す第2中間部材72の第2連通路91で接続される第2シリンダ22の第2吐出部122bと第3シリンダ23の第3吸入部123aとにより第2膨張室を形成している。   The refrigerant sucked into the expander passes through the refrigerant path in the order of the first cylinder 21, the second cylinder 22, and the third cylinder 23. In the present embodiment, the first discharge portion 121b of the first cylinder 21 and the second suction portion 122a of the second cylinder 22 connected by the first communication passage 90 of the first intermediate member 71 shown in FIG. An expansion chamber is formed, and the second discharge part 122b of the second cylinder 22 and the third suction part 123a of the third cylinder 23 connected by the second communication passage 91 of the second intermediate member 72 shown in FIG. A second expansion chamber is formed.

密閉容器1に取付けられた吸入管9から流入してきた二酸化炭素の超臨界状態の高圧冷媒は、上軸受81に設けられた流入通路(図示せず)を通じて第1吸入孔21aより第1シリンダ21に流入する。シャフト31が図5(a)に示す回転角度0°の位置から反時計周りに回転するとともに第1吸入部121aへの吸入行程が開始され、図5(d)に示す回転角度270°の状態を経て1回転し、吸入行程が終了する。このとき、図7に示すように、超臨界状態の冷媒で満たされた第1吐出部121bは容積Vs1、吸入圧力Psである。   The supercritical high-pressure refrigerant of carbon dioxide flowing in from the suction pipe 9 attached to the sealed container 1 passes through the inflow passage (not shown) provided in the upper bearing 81 through the first suction hole 21a to the first cylinder 21. Flow into. The shaft 31 rotates counterclockwise from the position of the rotation angle 0 ° shown in FIG. 5A and the suction stroke to the first suction portion 121a is started, and the rotation angle 270 ° shown in FIG. After one revolution, the inhalation stroke is completed. At this time, as shown in FIG. 7, the first discharge part 121b filled with the supercritical refrigerant has the volume Vs1 and the suction pressure Ps.

その後、第1吐出部121bの冷媒は、シャフト31が回転角度360°を過ぎると第1吐出孔21bに連通し、第1中間部材71に設けられた第1連通路90から第2シリンダ22側の第2吸入孔22aを経て第2吸入部122aへと連通する。第2吸入部122aに吸入された冷媒は、シャフト31がさらに360°回転した後に、第2吐出孔22bに連通し、第2中間部材72に設けられた第2連通路91から第3シリンダ23側の第3吸入孔23aを経て第3吸入部123aへと連通する。そして、シャフト31がさらに360°回転することによって、第3吐出部123bから第3吐出孔23bを経由して吐出される。   Thereafter, the refrigerant in the first discharge part 121b communicates with the first discharge hole 21b when the shaft 31 passes a rotation angle of 360 °, and from the first communication passage 90 provided in the first intermediate member 71 to the second cylinder 22 side. The second suction hole 22a communicates with the second suction part 122a. The refrigerant sucked into the second suction part 122a is communicated with the second discharge hole 22b after the shaft 31 is further rotated by 360 °, and from the second communication passage 91 provided in the second intermediate member 72 to the third cylinder 23. It communicates with the third suction part 123a through the third suction hole 23a on the side. Then, when the shaft 31 further rotates 360 °, the shaft 31 is discharged from the third discharge portion 123b via the third discharge hole 23b.

なお、本発明の実施の形態1では、第1シリンダ21の高さを8mm、第2シリンダ22の高さを8.8mm、第3シリンダ23の高さを20mmとしている。第1シリンダ21において吸入が完了した時点での容積をVs1、第2シリンダ22において吸入が完了した時点での容積をVs2、第3シリンダ23において吸入が完了した時点での容積をVs3とすると、Vs1:Vs2:Vs3=1:1.1:2.5となる。したがって、第1膨張室の容積は前述のように第1吐出部121bと第2吸入部122aの合計であることから、Vs1からVs2まで膨張する第1膨張室の膨張比(Vs2/Vs1)は1.1となる。一方、第2膨張室の容積は第2吐出部122bと第3吸入部123aの合計であることから、Vs2からVs3まで膨張する第2膨張室の膨張比(Vs3/Vs2)は約2.3となる。通常、二酸化炭素を冷媒とする冷凍サイクルにおいて膨張機を用いる場合、超臨界状態から飽和液を経て気液二相域へと膨張するが、超臨界状態から飽和液までの膨張比は、給湯機やエアコンなど冷凍サイクルの用途や、それらにおける様々な温度条件などを考慮しても、1.1未満である。したがって、このようなシリンダ高さにすることによって、第1膨張室において超臨界流体から飽和液をわずかに超えた気液二相域まで膨張させることができる。   In the first embodiment of the present invention, the height of the first cylinder 21 is 8 mm, the height of the second cylinder 22 is 8.8 mm, and the height of the third cylinder 23 is 20 mm. Assuming that the volume at the time when suction is completed in the first cylinder 21 is Vs1, the volume at the time when suction is completed in the second cylinder 22 is Vs2, and the volume at the time when suction is completed in the third cylinder 23 is Vs3, Vs1: Vs2: Vs3 = 1: 1.1: 2.5. Therefore, since the volume of the first expansion chamber is the sum of the first discharge portion 121b and the second suction portion 122a as described above, the expansion ratio (Vs2 / Vs1) of the first expansion chamber that expands from Vs1 to Vs2 is 1.1. On the other hand, since the volume of the second expansion chamber is the sum of the second discharge portion 122b and the third suction portion 123a, the expansion ratio (Vs3 / Vs2) of the second expansion chamber expanding from Vs2 to Vs3 is about 2.3. It becomes. Normally, when an expander is used in a refrigeration cycle using carbon dioxide as a refrigerant, it expands from a supercritical state to a gas-liquid two-phase region through a saturated liquid, but the expansion ratio from the supercritical state to the saturated liquid is Even if the use of the refrigeration cycle such as air conditioner and various temperature conditions in them are taken into consideration, it is less than 1.1. Therefore, by making such a cylinder height, it is possible to expand from the supercritical fluid to the gas-liquid two-phase region slightly exceeding the saturated liquid in the first expansion chamber.

図7(a)に示すように、第1吐出部121bと第2吸入部122aとにより形成される第1膨張室は、容積を増しながらシャフト31を回転させて膨張減圧する膨張行程に入る。そして、シャフト31の回転角度720°の状態で第1吐出部121bの容積はゼロになり、第2吐出部122bの容積Vs2まで膨張する。このとき、第1膨張室(第2吸入部122a)の圧力はPmとなる。この過程で第1段階の膨張行程が行われる。すなわち、第1膨張室では膨張比がわずか1.1程度の緩やかな膨張を実現することができる。   As shown in FIG. 7A, the first expansion chamber formed by the first discharge part 121b and the second suction part 122a enters an expansion stroke in which the shaft 31 is rotated and expanded and depressurized while increasing the volume. And the volume of the 1st discharge part 121b becomes zero in the state where the rotation angle of the shaft 31 is 720 degrees, and it expand | swells to the volume Vs2 of the 2nd discharge part 122b. At this time, the pressure in the first expansion chamber (second suction part 122a) is Pm. In this process, the first stage expansion step is performed. That is, in the first expansion chamber, a gentle expansion with an expansion ratio of only 1.1 can be realized.

したがって、二酸化炭素を冷媒として使用した場合に、高圧の超臨界状態から飽和液、あるいは飽和液線を超えた気液二相域まで膨張比の小さい膨張を実現することができる。したがって、気液二相域での相変化速度が圧力降下速度に追い付かないことにより発生する圧力降下を抑制することができる。   Therefore, when carbon dioxide is used as a refrigerant, expansion with a small expansion ratio can be realized from a high-pressure supercritical state to a saturated liquid or a gas-liquid two-phase region exceeding the saturated liquid line. Therefore, it is possible to suppress the pressure drop that occurs when the phase change speed in the gas-liquid two-phase region does not catch up with the pressure drop speed.

第2吐出部122bの冷媒は、シャフト31の回転角度が720°を過ぎると第2吐出孔22bに連通し、第2中間部材72に設けられた第2連通路91を介して第3シリンダ23の第3吸入孔23aから第3シリンダ23の第3吸入部123aに連通する。そして、第2吐出部122bと第3吸入部123aとより形成される第2膨張室が図7(a)に示すように、容積を増しながらシャフト31を回転させて膨張減圧する膨張行程に入る。さらに、シャフト31が1回転した1080°の状態では、第2吐出部122bの容積はゼロになり、第3吐出部123bの容積Vs3まで膨張する。このとき、第2膨張室となる第3吸入部123aの圧力はPdまで減圧する。この過程で第2段階の膨張行程が行われ、飽和液近傍から気液二相状態への膨張比が約2.3程度の大きな容積膨張が行われて冷媒特性に合った効率の良い膨張が行われる。   The refrigerant of the second discharge part 122b communicates with the second discharge hole 22b when the rotation angle of the shaft 31 exceeds 720 °, and the third cylinder 23 via the second communication path 91 provided in the second intermediate member 72. The third suction hole 23 a communicates with the third suction portion 123 a of the third cylinder 23. Then, as shown in FIG. 7A, the second expansion chamber formed by the second discharge part 122b and the third suction part 123a enters an expansion stroke in which the shaft 31 is rotated and expanded and depressurized while increasing the volume. . Furthermore, in the state of 1080 ° in which the shaft 31 rotates once, the volume of the second discharge part 122b becomes zero and expands to the volume Vs3 of the third discharge part 123b. At this time, the pressure of the third suction portion 123a serving as the second expansion chamber is reduced to Pd. In this process, a second stage expansion process is performed, and a large volume expansion with an expansion ratio of about 2.3 from the vicinity of the saturated liquid to the gas-liquid two-phase state is performed, so that efficient expansion suitable for the refrigerant characteristics is achieved. Done.

その後、冷媒は第3吐出孔23bに通じ、下軸受82に設けられた排出路(図示せず)を経て密閉容器1内へ吐出され、さらに吐出管10より外へ吐出される。すなわち、本発明の実施の形態1のように、第1シリンダ21、第2シリンダ22、第3シリンダ23の3段構成の膨張機によれば、膨張機に吸入された冷媒はシャフト31の1回転目で第1シリンダ21に吸入され、2回転目で第1膨張室において膨張する。3回転目で第2膨張室において膨張することになり、シャフト31が3回転することによって膨張機へ吸入された冷媒の膨張行程と吐出行程とが完了することになる。   Thereafter, the refrigerant passes through the third discharge hole 23 b, is discharged into the sealed container 1 through a discharge path (not shown) provided in the lower bearing 82, and is further discharged out of the discharge pipe 10. That is, according to the expander having the three-stage configuration of the first cylinder 21, the second cylinder 22, and the third cylinder 23 as in the first embodiment of the present invention, the refrigerant sucked into the expander is 1 of the shaft 31. It is sucked into the first cylinder 21 at the rotation and expanded in the first expansion chamber at the second rotation. The third expansion chamber expands in the second expansion chamber, and the expansion stroke and the discharge stroke of the refrigerant sucked into the expander are completed by rotating the shaft 31 three times.

以上の動作によって明らかなように、本発明は膨張室への吸入タイミング機構などを必要とせず、連続的に膨張機への冷媒の吸入と膨張機からの冷媒の吐出を実現することができ、連続的に安定した膨張動作の可能な膨張機を実現できる。特に、膨張行程を多段階とすることによって、膨張する過程で発生する冷媒の相変化に最適な膨張容積にすることができる。そのため、膨張過程での冷媒の急激な相変化を抑制して、膨張エネルギーを効率的に回収し、動力回収効率の高い膨張機を実現することができる。   As is apparent from the above operation, the present invention does not require a suction timing mechanism or the like to the expansion chamber, and can continuously suck the refrigerant into the expander and discharge the refrigerant from the expander. An expander capable of a continuously stable expansion operation can be realized. In particular, by making the expansion stroke multistage, it is possible to obtain an expansion volume that is optimal for the phase change of the refrigerant that occurs during the expansion process. Therefore, the rapid phase change of the refrigerant in the expansion process can be suppressed, the expansion energy can be efficiently recovered, and an expander with high power recovery efficiency can be realized.

さらに、第1膨張室での膨張率を小さくし、高圧の超臨界状態から飽和液、あるいは飽和液線をわずかに超えた気液二相域までの膨張としている。そのため、少なくとも、図15(c)の点Cから点Q´までの膨張率に対する圧力降下が非常に大きい領域を含む領域において圧力降下の速度を抑えることができる。したがって、相変化速度が圧力降下の速度に十分に追い付くことができて相変化遅れによる圧力低下に起因する回収動力の減少を確実に防ぎ、高効率な膨張機を実現することができる。   Furthermore, the expansion rate in the first expansion chamber is reduced, and the expansion is from a high-pressure supercritical state to a saturated liquid or a gas-liquid two-phase region slightly exceeding the saturated liquid line. Therefore, at least in a region including a region where the pressure drop with respect to the expansion rate from point C to point Q ′ in FIG. Therefore, the phase change speed can sufficiently catch up with the pressure drop speed, and the reduction of the recovered power due to the pressure drop due to the phase change delay can be surely prevented, thereby realizing a highly efficient expander.

なお、図1に示すように、本発明の実施の形態1では、冷媒経路が膨張機の上方から下方に向かうように、第1シリンダ21、第2シリンダ22、第3シリンダ23を上方から順に配置している。このような構成によれば、密度の大きな液冷媒が第1中間部材71に設けた第1連通路90や第2中間部材72に設けた第2連通路91内を重力落下する。密度の大きな液冷媒が膨張機内のデッドスペースとなる各連通路に滞留すると、膨張機の膨張効率を小さくするが、本発明の実施の形態1によればそのような現象を防止し、膨張効率の高い膨張機をより確実に実現することができる。   As shown in FIG. 1, in Embodiment 1 of the present invention, the first cylinder 21, the second cylinder 22, and the third cylinder 23 are sequentially arranged from the top so that the refrigerant path goes from the top to the bottom of the expander. It is arranged. According to such a configuration, the liquid refrigerant having a high density drops in the first communication passage 90 provided in the first intermediate member 71 and the second communication passage 91 provided in the second intermediate member 72 by gravity. When the liquid refrigerant having a high density stays in each communication path serving as a dead space in the expander, the expansion efficiency of the expander is reduced. However, according to the first embodiment of the present invention, such a phenomenon is prevented and the expansion efficiency is reduced. A high expander can be realized more reliably.

(実施の形態2)
図8は、本発明の実施の形態2における膨張機の縦断面図である。図9は、図8の断面図であり、図9(a)は図8のA−A線断面図、図9(b)は図8のB−B線断面図、図9(c)は図8のC−C線断面図を示す。
(Embodiment 2)
FIG. 8 is a longitudinal sectional view of the expander according to Embodiment 2 of the present invention. 9 is a cross-sectional view of FIG. 8, FIG. 9 (a) is a cross-sectional view taken along the line AA of FIG. 8, FIG. 9 (b) is a cross-sectional view taken along the line BB of FIG. The CC sectional view taken on the line of FIG.

本発明の実施の形態2における膨張機は、実施の形態1に記載の膨張機と基本構成は同じであり、同一構成要素には同一の符号を付与している。本実施の形態は実施の形態1と以下の点で異なる。   The expander according to the second embodiment of the present invention has the same basic configuration as the expander described in the first embodiment, and the same reference numerals are given to the same components. This embodiment is different from the first embodiment in the following points.

実施の形態1では、各シリンダに形成される容積を、各シリンダの高さを変えることで異ならせていたが、本実施の形態では以下のように各シリンダに形成される容積を異ならせている。   In the first embodiment, the volume formed in each cylinder is varied by changing the height of each cylinder. However, in the present embodiment, the volume formed in each cylinder is varied as follows. Yes.

図8、図9に示すように、本実施の形態における膨張機は、第1シリンダ21、第2シリンダ22、第3シリンダ23にそれぞれ設けられた第1ベーン51、第2ベーン52、第3ベーン53の位置、あるいはシャフト31に設けられた第1偏心部31a、第2偏心部31b、第3偏心部31cのシャフト31の円周方向の位置を、実施の形態1と同じにしている。さらに、第1シリンダ21、第2シリンダ22、第3シリンダ23の高さをそれぞれ同じにしている。しかしながら、第1シリンダ21、第2シリンダ22、第3シリンダ23の内径、および第1偏心部31a、第2偏心部31b、第3偏心部31cのシャフト31の軸心に対する偏心量、さらには第1ピストン41、第2ピストン42、第3ピストン43の外径寸法などを異ならせ、各シリンダと各ピストンによって形成される容積を異ならせている。   As shown in FIGS. 8 and 9, the expander in the present embodiment includes a first vane 51, a second vane 52, and a third vane provided in the first cylinder 21, the second cylinder 22, and the third cylinder 23, respectively. The position of the vane 53 or the position of the first eccentric portion 31a, the second eccentric portion 31b, and the third eccentric portion 31c provided in the shaft 31 in the circumferential direction of the shaft 31 is the same as that in the first embodiment. Furthermore, the heights of the first cylinder 21, the second cylinder 22, and the third cylinder 23 are the same. However, the inner diameters of the first cylinder 21, the second cylinder 22, and the third cylinder 23, the amount of eccentricity of the first eccentric portion 31a, the second eccentric portion 31b, and the third eccentric portion 31c with respect to the axis of the shaft 31, and the first The outer diameters of the first piston 41, the second piston 42, and the third piston 43 are made different, and the volumes formed by the cylinders and the pistons are made different.

すなわち、実施の形態1と同じように、第1シリンダ21において吸入が完了した時点での容積をVs1、第2シリンダ22において吸入が完了した時点での容積をVs2、第3シリンダ23において吸入が完了した時点での容積をVs3として、Vs1:Vs2:Vs3=1:1.1:2.5となるように上記の寸法を決定している。   That is, as in the first embodiment, the volume at the time when suction is completed in the first cylinder 21 is Vs1, the volume at the time when suction is completed in the second cylinder 22 is Vs2, and the volume is sucked in the third cylinder 23. The above dimensions are determined so that the volume at the time of completion is Vs3, and Vs1: Vs2: Vs3 = 1: 1.1: 2.5.

具体的には、本実施の形態では、第1シリンダ21、第2シリンダ22、第3シリンダ23の高さを一定として、第1シリンダ21の内径D1と第2シリンダ22の内径D2、および第1偏心部31aの偏心量E1と第2偏心部31bの偏心量E2をそれぞれ同じにし、第2ピストン42の外径Dp2を第1ピストン41の外径Dp1よりも小さくしている。一方、第3シリンダ23では、その内径D3と第3偏心部31cの偏心量E3、さらには第3ピストン43の外径Dp3を、第2シリンダ22の各構成要素の寸法よりもさらに大きくしている。これらの寸法は、Vs1:Vs2:Vs3=1:1.1:2.5の比となるように決定している。   Specifically, in the present embodiment, the heights of the first cylinder 21, the second cylinder 22, and the third cylinder 23 are constant, and the inner diameter D1 of the first cylinder 21, the inner diameter D2 of the second cylinder 22, and the first The eccentric amount E1 of the first eccentric portion 31a and the eccentric amount E2 of the second eccentric portion 31b are made the same, and the outer diameter Dp2 of the second piston 42 is made smaller than the outer diameter Dp1 of the first piston 41. On the other hand, in the third cylinder 23, the inner diameter D3, the eccentric amount E3 of the third eccentric portion 31c, and the outer diameter Dp3 of the third piston 43 are made larger than the dimensions of the respective components of the second cylinder 22. Yes. These dimensions are determined so as to have a ratio of Vs1: Vs2: Vs3 = 1: 1.1: 2.5.

また、図10は本発明の実施の形態2の他の実施例における膨張機の各シリンダの横断面図であり、実施の形態2のより具体的な実施例である。本実施例では、第1シリンダ21、第2シリンダ22、第3シリンダ23の高さを同じにするとともに、第1ピストン41、第2ピストン42、第3ピストン43の外径寸法を同じにし、各シリンダの内径を変えることによって上述の容積がVs1:Vs2:Vs3=1:1.1:2.5の比となるようにしている。具体的には各構成要素は図8、図9と同様であり、各シリンダ高さを同一として、各ピストンの外径をDp1=Dp2=Dp3とし、各シリンダの内径をD1<D2<D3としている。また、図10に示すように、同一シャフト31を用い各ピストンの外径を同じとし各シリンダの内径を変えているため、各偏心部の偏心量をE1<E2<E3としている。   FIG. 10 is a cross-sectional view of each cylinder of the expander in another example of the second embodiment of the present invention, which is a more specific example of the second embodiment. In the present embodiment, the heights of the first cylinder 21, the second cylinder 22, and the third cylinder 23 are made the same, and the outer diameters of the first piston 41, the second piston 42, and the third piston 43 are made the same, By changing the inner diameter of each cylinder, the aforementioned volume is set to a ratio of Vs1: Vs2: Vs3 = 1: 1.1: 2.5. Specifically, each component is the same as in FIG. 8 and FIG. 9, the cylinder height is the same, the outer diameter of each piston is Dp1 = Dp2 = Dp3, and the inner diameter of each cylinder is D1 <D2 <D3. Yes. Further, as shown in FIG. 10, since the same shaft 31 is used and the outer diameter of each piston is the same and the inner diameter of each cylinder is changed, the eccentric amount of each eccentric portion is E1 <E2 <E3.

また、図11は本発明の実施の形態2の他の実施例における膨張機の各シリンダの横断面図である。本実施例では、第1シリンダ21、第2シリンダ22、第3シリンダ23の高さを同じにするとともにそれぞれの内径を同一とし、第1ピストン41、第2ピストン42、第3ピストン43の外径寸法を変えることによって上述の容積がVs1:Vs2:Vs3=1:1.1:2.5の比となるようにしている。具体的には各構成要素は図8、図9と同様であり、各シリンダ高さを同一とし、各シリンダの内径をD1=D2=D3とし、各ピストンの外径をDp1>Dp2>Dp3としている。また、各偏心部の偏心量E1、E2、E3は適宜調整しているピストンとシリンダとの最適なクリアランスを確保するように調整している。   FIG. 11 is a cross-sectional view of each cylinder of the expander in another example of Embodiment 2 of the present invention. In the present embodiment, the first cylinder 21, the second cylinder 22, and the third cylinder 23 have the same height and the same inner diameter, and the first piston 41, the second piston 42, and the third piston 43 are outside the same. By changing the diameter, the above-described volume is set to a ratio of Vs1: Vs2: Vs3 = 1: 1.1: 2.5. Specifically, each component is the same as in FIGS. 8 and 9, the cylinder height is the same, the inner diameter of each cylinder is D1 = D2 = D3, and the outer diameter of each piston is Dp1> Dp2> Dp3. Yes. Further, the eccentric amounts E1, E2, and E3 of the respective eccentric portions are adjusted so as to ensure an optimum clearance between the piston and the cylinder that are appropriately adjusted.

このように構成した本実施の形態における膨張機の動作は、実施の形態1と同様であるため、説明は省略する。また、本実施の形態における膨張機の膨張過程における作用は、実施の形態1と同じであるため、同様の効果を発現することは当然であるが、さらに本実施の形態によれば、各シリンダあるいは各ピストンなどを同一の厚み素材から加工することができるため、加工生産性が向上し、さらには、膨張機の全体高さを小さくして小型コンパクトな膨張機を実現することができる。   Since the operation of the expander in the present embodiment configured as described above is the same as that of the first embodiment, description thereof is omitted. In addition, since the operation in the expansion process of the expander in the present embodiment is the same as that in the first embodiment, it is natural that the same effect is exhibited. However, according to the present embodiment, each cylinder Or since each piston etc. can be processed from the raw material of the same thickness, processing productivity improves, Furthermore, the whole height of an expander can be made small and a compact compact expander can be implement | achieved.

また、上記の実施の形態1および実施の形態2では、シリンダが3個の場合について説明したが、シリンダが3個に限らないことは当然である。すなわち、シリンダをさらに増加させ、例えば図7に示す第2膨張室をさらに多段階にすることによって、冷媒が膨張する際の冷媒状態により最適な膨張過程を実現することや、超臨界状態から飽和液線までの膨張過程、あるいは飽和液線近傍の膨張過程をさらに細かに制御することも可能である。   In the first embodiment and the second embodiment described above, the case where there are three cylinders has been described. However, the number of cylinders is not limited to three. That is, by further increasing the number of cylinders and, for example, further increasing the number of stages of the second expansion chamber shown in FIG. 7, it is possible to achieve an optimal expansion process depending on the refrigerant state when the refrigerant expands, It is also possible to finely control the expansion process up to the liquid line or the expansion process near the saturated liquid line.

また、上記の実施の形態1および実施の形態2では、冷媒を二酸化炭素として説明したが、冷媒をフロンなどとし、液単相から飽和液を経て気液二相へ膨張させる場合に適用しても同様の効果が得られることはいうまでもない。   In the first embodiment and the second embodiment described above, the refrigerant is described as carbon dioxide. However, the present invention is applied to the case where the refrigerant is flon or the like and is expanded from a liquid single phase to a gas-liquid two phase through a saturated liquid. Needless to say, the same effect can be obtained.

本発明の膨張機は、冷凍サイクルにおける冷媒の膨張エネルギーを回収することで動力回収手段として有用であるとともに、冷凍サイクル以外の圧縮性流体からの動力を回収する手段として有用である。   The expander of the present invention is useful as a power recovery means by recovering the expansion energy of the refrigerant in the refrigeration cycle, and is also useful as a means for recovering power from a compressible fluid other than the refrigeration cycle.

本発明の実施の形態1における膨張機の縦断面図The longitudinal cross-sectional view of the expander in Embodiment 1 of this invention 本発明の実施の形態1における膨張機の各シリンダの横断面図Cross-sectional view of each cylinder of the expander according to Embodiment 1 of the present invention 本発明の実施の形態1における膨張機の第1中間部材を示す図The figure which shows the 1st intermediate member of the expander in Embodiment 1 of this invention 本発明の実施の形態1における膨張機の第2中間部材を示す図The figure which shows the 2nd intermediate member of the expander in Embodiment 1 of this invention 本発明の実施の形態1における膨張機の動作を示す第1シリンダと第2シリンダの断面図Sectional drawing of the 1st cylinder and the 2nd cylinder which show operation | movement of the expander in Embodiment 1 of this invention 本発明の実施の形態1における膨張機の動作を示す第3シリンダの断面図Sectional drawing of the 3rd cylinder which shows operation | movement of the expander in Embodiment 1 of this invention. (a)本発明の実施の形態1におけるシャフトの回転角度と膨張容積との関係を示す図(b)本発明の実施の形態1におけるシャフトの回転角度と膨張圧力との関係を示す図(A) The figure which shows the relationship between the rotation angle of the shaft in Embodiment 1 of this invention, and an expansion volume (b) The figure which shows the relationship between the rotation angle of the shaft in Embodiment 1 of this invention, and expansion pressure 本発明の実施の形態2における膨張機の縦断面図The longitudinal cross-sectional view of the expander in Embodiment 2 of this invention 本発明の実施の形態2における膨張機の各シリンダの横断面図Cross-sectional view of each cylinder of the expander in Embodiment 2 of the present invention 本発明の実施の形態2の他の実施例における膨張機の各シリンダの横断面図Cross-sectional view of each cylinder of the expander in another example of Embodiment 2 of the present invention 本発明の実施の形態2の他の実施例における膨張機の各シリンダの横断面図Cross-sectional view of each cylinder of the expander in another example of Embodiment 2 of the present invention 従来の膨張機の縦断面図Vertical section of a conventional expander 図12のZ―Z線断面図ZZ line sectional view of FIG. 従来の膨張機の動作を示すシリンダの断面図Sectional view of a cylinder showing the operation of a conventional expander (a)従来の冷凍サイクルの概念図(b)従来の膨張機を利用した冷凍サイクルの概念図(c)圧力とエンタルピーとの関係を示すモリエル線図(A) Conceptual diagram of a conventional refrigeration cycle (b) Conceptual diagram of a refrigeration cycle using a conventional expander (c) Mollier diagram showing the relationship between pressure and enthalpy 従来の膨張機の時間に対する容積と圧力変化を示す特性図Characteristic diagram showing volume and pressure change with time of conventional expander

符号の説明Explanation of symbols

1 密閉容器
9 吸入管
10 吐出管
21 第1シリンダ
21a 第1吸入孔
21b 第1吐出孔
21d,22d,23d ベーン溝
22 第2シリンダ
22a 第2吸入孔
22b 第2吐出孔
23 第3シリンダ
23a 第3吸入孔
23b 第3吐出孔
31 シャフト
31a 第1偏心部
31b 第2偏心部
31c 第3偏心部
41 第1ピストン
42 第2ピストン
43 第3ピストン
51 第1ベーン
52 第2ベーン
53 第3ベーン
61,62,63 ベーンばね
71 第1中間部材
72 第2中間部材
81 上軸受
82 下軸受
90 第1連通路
91 第2連通路
100 ロータ
101 ステータ
102 発電モータ
103 密閉端子
104 潤滑油
121a 第1吸入部
121b 第1吐出部
122a 第2吸入部
122b 第2吐出部
123a 第3吸入部
123b 第3吐出部
500 膨張機構部
600 動力回収機構部
DESCRIPTION OF SYMBOLS 1 Airtight container 9 Suction pipe 10 Discharge pipe 21 1st cylinder 21a 1st suction hole 21b 1st discharge hole 21d, 22d, 23d Vane groove 22 2nd cylinder 22a 2nd suction hole 22b 2nd discharge hole 23 3rd cylinder 23a 1st 3 suction hole 23b 3rd discharge hole 31 shaft 31a 1st eccentric part 31b 2nd eccentric part 31c 3rd eccentric part 41 1st piston 42 2nd piston 43 3rd piston 51 1st vane 52 2nd vane 53 3rd vane 61 , 62, 63 Vane spring 71 First intermediate member 72 Second intermediate member 81 Upper bearing 82 Lower bearing 90 First communication path 91 Second communication path 100 Rotor 101 Stator 102 Generator motor 103 Sealed terminal 104 Lubricating oil 121a First suction portion 121b 1st discharge part 122a 2nd suction part 122b 2nd discharge part 123a 3rd suction | inhalation Part 123b third discharge part 500 expansion mechanism part 600 power recovery mechanism part

Claims (5)

3個以上の偏心部を有するシャフトと、
前記偏心部それぞれに嵌合して偏心回転する3個以上のピストンと、
内面が円筒形状であるとともに前記内面の一部が前記ピストンと接するように配設された3個以上のシリンダと、
前記ピストンと前記シリンダとにより形成される各空間を冷媒を吸入する吸入部と前記冷媒を吐出する吐出部とに仕切る3個以上の仕切部材とを備え、
前記シャフトの長手方向に前記シリンダを連接し、
冷媒経路の上流側の前記空間よりも冷媒経路の下流側の前記空間の方が大きくなるよう形成したことを特徴とする膨張機。
A shaft having three or more eccentric parts;
Three or more pistons that rotate eccentrically with each of the eccentric parts;
Three or more cylinders, the inner surface of which is cylindrical and disposed so that a part of the inner surface is in contact with the piston;
Comprising three or more partition members that partition each space formed by the piston and the cylinder into a suction portion that sucks refrigerant and a discharge portion that discharges the refrigerant;
Connecting the cylinder in the longitudinal direction of the shaft;
An expander characterized in that the space on the downstream side of the refrigerant path is larger than the space on the upstream side of the refrigerant path.
前記シリンダは同一内径を有するとともに前記ピストンは同一外径を有し、冷媒経路の上流側から下流側に行くにしたがって、前記シリンダの円筒高さを大きくすることを特徴とする、
請求項1に記載の膨張機。
The cylinder has the same inner diameter and the piston has the same outer diameter, and the cylinder height of the cylinder increases as it goes from the upstream side to the downstream side of the refrigerant path.
The expander according to claim 1.
前記シリンダは同一の円筒高さを有するとともに前記ピストンは同一外径を有し、冷媒経路の上流側から下流側に行くにしたがって、前記シリンダの内径を大きくすることを特徴とする、
請求項1に記載の膨張機。
The cylinders have the same cylindrical height and the pistons have the same outer diameter, and the inner diameter of the cylinder is increased from the upstream side to the downstream side of the refrigerant path.
The expander according to claim 1.
前記シリンダは同一内径と同一円筒高さを有し、冷媒経路の上流側から下流側に行くにしたがって前記ピストンの外径を小さくしたことを特徴とする、
請求項1に記載の膨張機。
The cylinder has the same inner diameter and the same cylinder height, and the outer diameter of the piston is reduced from the upstream side to the downstream side of the refrigerant path,
The expander according to claim 1.
冷媒経路の最上流側の第1シリンダの吐出部と前記第1シリンダに連接した第2シリンダの吸入部とで形成される膨張室において、前記冷媒を超臨界状態または液状態から飽和液線近傍の気液二相域まで膨張させることを特徴とする、
請求項1から請求項4のいずれかに記載の膨張機。
In the expansion chamber formed by the discharge part of the first cylinder on the most upstream side of the refrigerant path and the suction part of the second cylinder connected to the first cylinder, the refrigerant is changed from the supercritical state or liquid state to the vicinity of the saturated liquid line. It is characterized by expanding to the gas-liquid two-phase region,
The expander according to any one of claims 1 to 4.
JP2005142636A 2005-05-16 2005-05-16 Expansion machine Pending JP2008190723A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005142636A JP2008190723A (en) 2005-05-16 2005-05-16 Expansion machine
PCT/JP2006/308076 WO2006123494A1 (en) 2005-05-16 2006-04-17 Rotary expansion machine and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005142636A JP2008190723A (en) 2005-05-16 2005-05-16 Expansion machine

Publications (1)

Publication Number Publication Date
JP2008190723A true JP2008190723A (en) 2008-08-21

Family

ID=37431074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142636A Pending JP2008190723A (en) 2005-05-16 2005-05-16 Expansion machine

Country Status (2)

Country Link
JP (1) JP2008190723A (en)
WO (1) WO2006123494A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101858883B1 (en) 2013-10-28 2018-05-16 그리 그린 리프리저레이션 테크놀로지 센터 컴퍼니 리미티드 오브 주하이 Expansion compressor apparatus and air conditioner having same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103696965A (en) * 2013-12-25 2014-04-02 珠海凌达压缩机有限公司 Rolling rotor compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025224A (en) * 1975-12-02 1977-05-24 Starbard Raymond Edward Multiple air motor drive unit
JPS52104644A (en) * 1976-02-27 1977-09-02 Hitachi Metals Ltd Vane type gas prime mover
NO910827D0 (en) * 1991-03-01 1991-03-01 Sinvent As Sintef Gruppen MULTI-STEP GEAR MACHINE FOR COMPRESSION OR EXPANSION OF GAS.
JP4599764B2 (en) * 2001-06-08 2010-12-15 ダイキン工業株式会社 Scroll type fluid machine and refrigeration system
JP3674625B2 (en) * 2003-09-08 2005-07-20 ダイキン工業株式会社 Rotary expander and fluid machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101858883B1 (en) 2013-10-28 2018-05-16 그리 그린 리프리저레이션 테크놀로지 센터 컴퍼니 리미티드 오브 주하이 Expansion compressor apparatus and air conditioner having same

Also Published As

Publication number Publication date
WO2006123494A1 (en) 2006-11-23

Similar Documents

Publication Publication Date Title
AU2005240929B2 (en) Rotary compressor
JP4065315B2 (en) Expander and heat pump using the same
JP4261620B2 (en) Refrigeration cycle equipment
KR100840048B1 (en) Displacement fluid machine
JP4837094B2 (en) Refrigeration cycle apparatus and fluid machine used therefor
KR100861646B1 (en) Displacement type expander
JP2004278439A (en) Fluid machine
JP4055902B2 (en) Refrigeration equipment with an expander
JP4696530B2 (en) Fluid machinery
JP2001107881A (en) Fluid machinery
JP2008190723A (en) Expansion machine
JP2006266171A (en) Positive displacement fluid machine
JP6635095B2 (en) Rotary compressor
JP4744331B2 (en) Heat pump equipment
JP7337283B2 (en) Scroll compressor and refrigeration cycle device
JP4706622B2 (en) Expander
JP4775206B2 (en) Refrigerant circuit with expander
JP3114667B2 (en) Rotary compressor
JP5119786B2 (en) Fluid machinery and refrigeration cycle equipment
WO2019043905A1 (en) Scroll compressor and refrigeration cycle device
JP5181463B2 (en) Fluid machinery
WO2011161953A1 (en) Refrigeration cycle apparatus
JP2003206876A (en) Closed rotary compressor and refrigerating and air conditioning equipment
JP5095320B2 (en) Rotary fluid machine and refrigeration cycle apparatus
JP2008002284A (en) Compressor