WO2006123415A1 - Semiconductor integrated circuit apparatus and id tag - Google Patents

Semiconductor integrated circuit apparatus and id tag Download PDF

Info

Publication number
WO2006123415A1
WO2006123415A1 PCT/JP2005/009187 JP2005009187W WO2006123415A1 WO 2006123415 A1 WO2006123415 A1 WO 2006123415A1 JP 2005009187 W JP2005009187 W JP 2005009187W WO 2006123415 A1 WO2006123415 A1 WO 2006123415A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
supply voltage
semiconductor memory
unit
Prior art date
Application number
PCT/JP2005/009187
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Shinohara
Kousuke Tsuji
Original Assignee
Hitachi Ulsi Systems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ulsi Systems Co., Ltd. filed Critical Hitachi Ulsi Systems Co., Ltd.
Priority to PCT/JP2005/009187 priority Critical patent/WO2006123415A1/en
Publication of WO2006123415A1 publication Critical patent/WO2006123415A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits

Definitions

  • the present invention relates to a communication technology of a semiconductor integrated circuit device, and more particularly to a technology effective for power saving of a semiconductor integrated circuit device used for RFID (Radio Frequency IDentification).
  • RFID is spreading as an automatic recognition technology capable of data communication by wireless communication.
  • This RFID is composed of an ID tag that can store information and a reader Z writer that reads and writes information in the ID tag.
  • the ID tag is a power source for semiconductor integrated circuit devices such as non-contact IC chips.
  • Such a semiconductor integrated circuit device is also configured with power such as a regulator unit, a power supply monitoring unit, a memory, and a logic circuit.
  • the regulator unit receives an electric wave from the reader Z writer and generates an operating power supply voltage for the semiconductor integrated circuit device.
  • the power supply monitoring unit outputs a reset signal to the EEPROM and the logic circuit when the operating power supply voltage generated by the regulator unit becomes lower than an arbitrary voltage level.
  • the memory consists of non-volatile semiconductor memory such as EEPROM (Electricaly Erasable and Programmable Read Only Memory).
  • the logic circuit controls communication control and memory operation control.
  • the present inventor has found that the semiconductor integrated circuit device used for the ID tag as described above has the following problems.
  • a nonvolatile semiconductor memory such as an EEPROM requires more power when writing data than when reading data, and therefore requires a higher voltage level and power supply voltage than when reading data. Become.
  • the regulator unit generates a single power source, and thus reads data. Even in the case of output z write or misalignment, an operation power supply voltage at a high voltage level suitable for data write is supplied, and there is a problem that power consumption during data read increases.
  • the threshold voltage of the reset signal output from the power supply monitoring unit is also set higher in accordance with a high voltage level suitable for data writing. Therefore, even when the voltage level of the operating power supply voltage is such that data can be read out, a reset signal is output, and as a result, there is a problem that the communication distance at the time of data reading is shortened. .
  • An object of the present invention is to provide a technique capable of extending a communication distance while reducing power consumption during an information reading operation in a semiconductor integrated circuit device used for an ID tag or the like.
  • a semiconductor integrated circuit device includes a nonvolatile semiconductor memory having a plurality of nonvolatile memory cells, a logic unit that controls communication control and operation control of the nonvolatile semiconductor memory, a nonvolatile semiconductor memory, and a logic unit
  • a voltage generator that supplies a first or second power supply voltage to be supplied to the power generator, and the voltage generator rectifies power generated by the received radio wave or electromagnetic induction to generate a primary voltage.
  • the first power supply voltage and the second power supply voltage at a voltage level lower than the first power supply voltage are respectively generated from the rectifying unit to be generated and the primary voltage generated by the rectifying unit.
  • a regulator unit that outputs a difference between the first power supply voltage and the second power supply voltage based on the signal, and the regulator unit is configured to output the first power supply voltage when information is written to the nonvolatile semiconductor memory.
  • 1 power supply Outputs of the pressure, when the information is read from the non-volatile semiconductor memories and outputs a second power supply voltage.
  • the semiconductor integrated circuit device of the present invention includes a first and a second generated by the regulator unit. And a voltage monitoring unit that monitors the second power supply voltage, and the voltage monitoring unit is non-volatile when the first power supply voltage falls below the first set voltage value during the write operation of the nonvolatile semiconductor memory.
  • a reset signal is output to each of the semiconductor memory and the logic unit, and the second power supply voltage becomes lower than the second set voltage value lower than the first set voltage value during the read operation, the nonvolatile semiconductor memory And a reset signal to the logic part.
  • the regulator unit is based on a regulator that generates a first power supply voltage and a second power supply voltage from a primary voltage, respectively, and a control signal output from the logic unit.
  • the voltage switching unit switches the connection destination, selects either the first power supply voltage or the second power supply voltage, and supplies the selected voltage to the nonvolatile semiconductor memory and the logic unit.
  • the regulator unit includes a trimming circuit that trims a voltage based on a trimming signal, and the trimming circuit corrects a voltage variation of the regulator due to a device manufacturing variation or the like. It is.
  • the nonvolatile semiconductor memory has a trimming signal storage unit that stores a trimming signal used in the trimming circuit.
  • the present invention provides a nonvolatile semiconductor memory having a plurality of nonvolatile memory cells, a logic unit that controls communication control and operation control of the nonvolatile semiconductor memory, a nonvolatile semiconductor memory, and a logic unit that supplies the logic unit
  • An ID tag having a voltage generator for supplying a first power supply voltage or a second power supply voltage, the voltage generator having a rectifier that rectifies received radio waves or electromagnetic induction power to generate a primary voltage; The first power supply voltage and the second power supply voltage at a voltage level lower than the first power supply voltage are respectively generated from the primary voltage generated by the rectifying unit, and the logic unit outputs a control signal based on the output control signal.
  • a regulator unit that outputs either the first power supply voltage or the second power supply voltage, and the regulator unit outputs the first power supply voltage when information is written to the nonvolatile semiconductor memory. , No When the information is read from the source semi-conductor memory is designed to output a second power supply voltage.
  • FIG. 1 is a block diagram of a semiconductor integrated circuit device according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing an internal configuration of a regulator circuit provided in the semiconductor integrated circuit device of FIG. 1 and a connection configuration of its periphery.
  • FIG. 3 is an explanatory diagram showing an internal configuration of a regulator circuit provided in a semiconductor integrated circuit device according to a second embodiment of the present invention and a connection configuration of its peripheral portion.
  • FIG. 1 is a block diagram of a semiconductor integrated circuit device according to Embodiment 1 of the present invention.
  • FIG. 2 shows an internal configuration of a regulator circuit provided in the semiconductor integrated circuit device of FIG. It is explanatory drawing.
  • the semiconductor integrated circuit device 1 is used, for example, as an RFID ID tag that is one of automatic recognition technologies.
  • the semiconductor integrated circuit device 1 includes a rectifier circuit (rectifier unit) 2, a regulator circuit (regulator unit, regulator) 3, a secondary voltage monitoring circuit (voltage monitoring unit) 4, and a voltage switching unit (regulator unit). ) 5, logic circuit (logic part) 6, memory (nonvolatile semiconductor memory) 7, and reference voltage circuit 8 are also configured.
  • the rectifier circuit 2 is connected to an antenna ANT! The rectifier circuit 2 rectifies the electric power generated by electromagnetic induction of the radio wave output from the reader Z writer that reads and writes information in the ID tag via the antenna ANT and outputs it as the primary voltage VCC.
  • the rectifier circuit 2 demodulates the analog signal received by the antenna ANT into a digital signal and outputs it to the logic circuit 6, and modulates the digital signal output from the logic circuit 6 into an analog signal. Send to reader Z writer via antenna ANT.
  • the regulator circuit 3 stabilizes the primary voltage VCC output from the rectifier circuit 2, and generates a first power supply voltage VDD1 and a second power supply voltage VDD2 as secondary voltages.
  • the first power supply voltage (for example, about 1.7 V) VDD1 is used when information is written to the memory 7 as a write voltage.
  • the second power supply voltage (for example, about 1.3 V) VDD2 is at a voltage level lower than that of the first power supply voltage VDD1, and is used when reading information from the memory 7 as a read voltage.
  • the secondary voltage monitoring circuit 4 monitors the voltage levels of the first power supply voltage VDD1 and the second power supply voltage VDD2 generated by the regulator circuit 3, respectively, and these first and second power supply voltages. When VDDl and VDD2 are below the set voltage level, a reset signal is output to logic circuit 6 and memory 7, respectively.
  • the voltage switching unit 5 two input units are connected to the regulator circuit 3, and an output unit is connected to the logic circuit 6 and the memory 7, respectively. Based on the control signal output from the logic circuit 6, the voltage switching unit 5 uses either the first power supply voltage VDD1 or the second power supply voltage VDD2 generated by the regulator circuit 3 as the logic circuit 6 and the memory 7 And supply to each.
  • the logic circuit 6 controls the operation of the memory 7 in reading and writing information.
  • the memory 7 is composed of, for example, a nonvolatile semiconductor memory such as an EEPROM, and reads and writes information based on the control of the logic circuit 6.
  • the reference voltage circuit 8 also generates the reference voltage VREF for the primary voltage VCC output from the rectifier circuit 2 and supplies the reference voltage VREF to the regulator circuit 3 and the secondary voltage monitoring circuit 4, respectively.
  • FIG. 2 is an explanatory diagram showing the internal configuration of the regulator circuit 3 and the connection configuration of the periphery thereof.
  • the regulator circuit 3 includes an operational amplifier 3a, a transistor 3b, and a plurality of resistors 3c.
  • Transistor 3b is a P-channel MOS (Metal Oxide
  • the negative (one) side input terminal of the operational amplifier 3a is connected so that the reference voltage VREF generated by the reference voltage circuit 8 is input, and the output of the operational amplifier 3a is connected to the transistor 3b. The gate is connected!
  • the reference voltage V generated by the reference voltage circuit 8 is connected to one connection portion of the transistor 3b.
  • a plurality of resistors 3c are connected in series between the other connection portion of the transistor 3b and the reference potential VSS.
  • One connection of the transistor 3b is connected to one input of the voltage switching unit 5, and the voltage output from the one connection of the transistor 3b is the first power supply voltage VDD1.
  • the other connection part of the voltage switching part 5 is connected so that a power supply voltage of an arbitrary voltage level divided by the plurality of resistors 3c is output.
  • the divided voltage supplied to the other connection portion of the voltage switching portion 5 becomes the second power supply voltage VDD2.
  • the secondary voltage monitoring circuit 4 includes a reference voltage VREF output from the reference voltage circuit 8, a first monitoring voltage VW1 having an arbitrary voltage level divided by the plurality of resistors 3c, and the first voltage The second monitoring voltage VW2, which is lower than the monitoring voltage, and the mode signal output from the logic circuit 6 are connected to each other.
  • the mode signal is a signal indicating whether the memory 7 performs a write operation or a read operation, and the secondary voltage monitoring circuit 4 determines whether the read operation or the write operation is performed based on the mode signal. .
  • the first monitoring voltage VW1 is a voltage for monitoring the voltage level of the first power supply voltage VDD1 used during the write operation
  • the second monitoring voltage VW2 is the second power supply voltage used during the read operation. This voltage monitors the voltage level of VDD2.
  • the rectifier circuit 2 receives the signal via the antenna ANT.
  • the primary voltage vcc is output by rectifying the received radio wave or electromagnetic induction power.
  • the regulator circuit 3 generates and outputs the first and second power supply voltages VDD1 and VDD2 from the primary voltage VCC output from the rectifier circuit 2, respectively.
  • the voltage switching unit 5 is normally set to output the first power supply voltage VDD1 generated by the regulator circuit 3.
  • the voltage switching unit 5 is connected to the logic circuit 6 and the memory 7 via the voltage switching unit 5.
  • the first power supply voltage VDD 1 is supplied to each.
  • the logic circuit 6 If the logic circuit 6 is a command for writing information to the digital signal memory 7 demodulated in the rectifier circuit 2, the logic circuit 6 performs control so that the voltage switching unit 5 is not switched. As a result, the logic circuit 6 and the memory 7 have the first power supply voltage VD that is the write voltage.
  • the first power supply voltage VDD1 at a voltage level higher than the second power supply voltage VDD2 is supplied to the logic circuit 6 and the memory 7, respectively. 7 can write stable information.
  • the logic circuit 6 performs control so that the voltage switching unit 5 is switched, and the regulator
  • the second power supply voltage VDD2 which is the read voltage generated by the circuit 3, is supplied to the logic circuit 6 and the memory 7.
  • a voltage level lower than the first power supply voltage VDD1, which is a write voltage, can be supplied for reading information, so that the power consumption of the semiconductor integrated circuit device 1 is reduced. be able to.
  • the secondary voltage monitoring circuit 5 outputs a reset signal to the logic circuit 6 and the memory 7 when the regulator circuit 3 becomes lower than an arbitrary voltage level, and malfunctions of the semiconductor integrated circuit device 1. Prevent such as.
  • the secondary voltage monitoring circuit 5 determines whether to monitor the first power supply voltage VDD 1 or the second power supply voltage VDD 2 based on the mode signal output from the logic circuit 6.
  • the secondary voltage monitoring circuit 5 Monitor the power supply voltage VDD1.
  • the first monitor voltage VW1 generated by the voltage division of multiple resistors 3c is compared with the reference voltage VREF. Output to logic circuit 6 and memory 7, respectively.
  • the secondary voltage monitoring circuit 5 monitors the second power supply voltage VW2.
  • the secondary voltage monitoring circuit 5 compares the second monitoring voltage VW2 having a voltage level lower than the first monitoring voltage VW1 with the reference voltage VREF, and the second monitoring voltage VW2 is lower than the reference voltage VREF. When it becomes low, a reset signal is output to the logic circuit 6 and the memory 7, respectively.
  • the reset signal is output based on the second monitor voltage VW2 having a voltage level lower than the first monitor voltage VW1, thereby lowering the operating voltage lower limit in the read operation. It becomes possible to do.
  • FIG. 3 is an explanatory diagram showing the internal configuration of the regulator circuit provided in the semiconductor integrated circuit device according to the second embodiment of the present invention and the connection configuration of the peripheral portion thereof.
  • the semiconductor integrated circuit device 1 includes a rectifier circuit 2, a regulator circuit 3, a secondary voltage monitoring circuit 4, a voltage switching unit 5, a logic circuit having the same configuration as in the first embodiment. 6.
  • a trimming circuit 9 is newly provided in the memory 7, the reference voltage circuit 8, and the like.
  • the reference voltage VREF output from the reference voltage circuit 8 is connected so as to be supplied to the trimming circuit 9.
  • the trimming voltage output from the trimming circuit 9 is connected to the negative side input terminal of the operational amplifier 3a of the regulator circuit 3 and the secondary voltage monitoring circuit 5 as the reference voltage VREF1.
  • the trimming circuit 9 performs arbitrary processing based on a trimming bit signal preset in the memory 7. Generates the voltage level reference voltage VREF1. Since other connection configurations are the same as those in FIGS. 1 and 2 of the first embodiment, description thereof will be omitted.
  • the trimming circuit 9 trims the reference voltage VREF output from the reference voltage circuit 8 to obtain a reference voltage VREF1 with a more accurate voltage level in consideration of process variations during manufacturing in the semiconductor integrated circuit device 1. Adjust as follows. Then, the reference voltage VREF1 adjusted by the trimming circuit 9 is supplied to the regulator circuit 3 and the secondary voltage monitoring circuit 5.
  • the trimming bit signal is obtained by measuring the reference voltage VREF output from the reference voltage circuit 8 when the semiconductor integrated circuit device 1 is probed, for example, and obtaining the desired reference voltage VREF1 from the measured value. Determine the trimming voltage to be generated and set it in memory 7. Alternatively, the trimming signal may be set Z, etc., by communication with the reader Z writer.
  • a more accurate reference voltage VREF1 can be generated, so that variations in the communication distance between the reader Z writer and the semiconductor integrated circuit device 1 can be suppressed. , Information can be written more stably.
  • the voltage level of the reference voltage VREF1 may be arbitrarily adjusted by changing the trimming bit signal.
  • the power described in the ID tag for generating power supply voltage by rectifying power by electromagnetic induction of radio waves output from the reader Z writer is described.
  • the present invention is suitable for a technique for reducing power consumption and improving reliability of a semiconductor integrated circuit device used for an RFID ID tag.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

In a semiconductor integrated circuit apparatus (1) used for an ID tag of RFID or the like, a regulator circuit (3) generates, from a primary voltage (VCC) generated by a rectifying circuit (2), and outputs first and second power supply voltages (VDD1,VDD2). A voltage switching part (5) is normally adapted to output the first power supply voltage (VDD1) generated by the regulator circuit (3), so that the first power supply voltage (VDD1) is supplied to a logic circuit (6) and a memory (7). In a case where information is written into the memory (7), the logic circuit (6) performs no switching of the voltage switching part (5), so that the first power supply voltage (VDD1), which is a voltage for writing, is supplied to the logic circuit (6) and the memory (7). In a case where information is read from the memory (7), the logic circuit (6) performs a switching of the voltage switching part (5), so that the second power supply voltage (VDD2), which is a voltage for reading and lower than first power supply voltage (VDD1), is supplied to the logic circuit (6) and the memory (7).

Description

明 細 書  Specification
半導体集積回路装置および IDタグ  Semiconductor integrated circuit device and ID tag
技術分野  Technical field
[0001] 本発明は、半導体集積回路装置の通信技術に関し、特に、 RFID (Radio Frequ ency IDentif ication:電波方式認識)に用いられる半導体集積回路装置の省電 力化に有効な技術に関する。  TECHNICAL FIELD [0001] The present invention relates to a communication technology of a semiconductor integrated circuit device, and more particularly to a technology effective for power saving of a semiconductor integrated circuit device used for RFID (Radio Frequency IDentification).
背景技術  Background art
[0002] 無線通信によりデータ交信することができる自動認識技術として、 RFIDが広まりつ つある。この RFIDは、情報を記憶可能な IDタグと、該 IDタグにおける情報の読み出 しゃ書き込みを行うリーダ Zライタとによって構成されている。 IDタグは、たとえば、非 接触 ICチップなどの半導体集積回路装置力 なる。  [0002] RFID is spreading as an automatic recognition technology capable of data communication by wireless communication. This RFID is composed of an ID tag that can store information and a reader Z writer that reads and writes information in the ID tag. The ID tag is a power source for semiconductor integrated circuit devices such as non-contact IC chips.
[0003] このような半導体集積回路装置は、たとえば、レギユレータ部、電源監視部、メモリ、 および論理回路など力も構成されている。レギユレータ部は、リーダ Zライタからの電 波を受けて半導体集積回路装置の動作電源電圧を生成する。  Such a semiconductor integrated circuit device is also configured with power such as a regulator unit, a power supply monitoring unit, a memory, and a logic circuit. The regulator unit receives an electric wave from the reader Z writer and generates an operating power supply voltage for the semiconductor integrated circuit device.
[0004] 電源監視部は、レギユレータ部が生成する動作電源電圧が任意の電圧レベルより も低くなると EEPROM、ならびに論理回路にリセット信号を出力する。メモリは、 EEP ROM (Electricaly Erasable and Programmable Read Only Memory)な どの不揮発性半導体メモリからなる。論理回路は、通信制御およびメモリの動作制御 を司る。  The power supply monitoring unit outputs a reset signal to the EEPROM and the logic circuit when the operating power supply voltage generated by the regulator unit becomes lower than an arbitrary voltage level. The memory consists of non-volatile semiconductor memory such as EEPROM (Electricaly Erasable and Programmable Read Only Memory). The logic circuit controls communication control and memory operation control.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ところが、上記のような IDタグに用いられる半導体集積回路装置では、次のような問 題点があることが本発明者により見い出された。 However, the present inventor has found that the semiconductor integrated circuit device used for the ID tag as described above has the following problems.
[0006] すなわち、 EEPROMなどの不揮発性半導体メモリは、データの読み出し時に比べ てデータ書き込み時により多くの電力が必要となるために、データ読み出し時よりも 電圧レベルの高!、電源電圧が必要となって 、る。 [0006] That is, a nonvolatile semiconductor memory such as an EEPROM requires more power when writing data than when reading data, and therefore requires a higher voltage level and power supply voltage than when reading data. Become.
[0007] しかしながら、レギユレータ部は、単一の電源を生成して 、るために、データの読み 出し z書き込み 、ずれの場合であっても、データ書き込みに適した高 ヽ電圧レベル の動作電源電圧を供給することになり、データ読み出し時における消費電力が大きく なってしまうという問題がある。 [0007] However, the regulator unit generates a single power source, and thus reads data. Even in the case of output z write or misalignment, an operation power supply voltage at a high voltage level suitable for data write is supplied, and there is a problem that power consumption during data read increases.
[0008] また、電源監視部から出力されるリセット信号のしきい値電圧も、データ書き込みに 適した高い電圧レベルに合わせて高めに設定されている。そのため、データの読み 出し動作が可能な動作電源電圧の電圧レベルであっても、リセット信号が出力されて しまい、その結果として、該データ読み出し時における通信距離が短くなつてしまうと いう問題がある。  [0008] In addition, the threshold voltage of the reset signal output from the power supply monitoring unit is also set higher in accordance with a high voltage level suitable for data writing. Therefore, even when the voltage level of the operating power supply voltage is such that data can be read out, a reset signal is output, and as a result, there is a problem that the communication distance at the time of data reading is shortened. .
[0009] 本発明の目的は、 IDタグなどに用いられる半導体集積回路装置において、情報の 読み出し動作時の消費電力を低減させながら、通信距離を伸ばすことのできる技術 を提供することにある。  An object of the present invention is to provide a technique capable of extending a communication distance while reducing power consumption during an information reading operation in a semiconductor integrated circuit device used for an ID tag or the like.
[0010] 本発明の前記ならびにそのほかの目的と新規な特徴については、本明細書の記述 および添付図面から明らかになるであろう。  [0010] The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.
課題を解決するための手段  Means for solving the problem
[0011] 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、 次のとおりである。  [0011] Among the inventions disclosed in the present application, the outline of typical ones will be briefly described as follows.
[0012] 本発明の半導体集積回路装置は、複数の不揮発性メモリセルを有する不揮発性 半導体メモリと、通信制御および不揮発性半導体メモリの動作制御を司る論理部と、 不揮発性半導体メモリ、および論理部に供給する第 1、または第 2の電源電圧を供給 する電圧生成部とを有し、該電圧生成部は、受信した電波あるいは電磁誘導によつ て発生する電力を整流して一次電圧を生成する整流部と、整流部が生成した一次電 圧から、第 1の電源電圧、および第 1の電源電圧よりも低い電圧レベルの第 2の電源 電圧をそれぞれ生成し、論理部力 出力される制御信号に基づいて、第 1の電源電 圧または第 2の電源電圧の 、ずれかを出力するレギユレータ部とを備え、該レギユレ ータ部は、不揮発性半導体メモリに情報が書き込まれる際には第 1の電源電圧を出 力し、不揮発性半導体メモリから情報が読み出される際には第 2の電源電圧を出力 するものである。  [0012] A semiconductor integrated circuit device according to the present invention includes a nonvolatile semiconductor memory having a plurality of nonvolatile memory cells, a logic unit that controls communication control and operation control of the nonvolatile semiconductor memory, a nonvolatile semiconductor memory, and a logic unit A voltage generator that supplies a first or second power supply voltage to be supplied to the power generator, and the voltage generator rectifies power generated by the received radio wave or electromagnetic induction to generate a primary voltage. The first power supply voltage and the second power supply voltage at a voltage level lower than the first power supply voltage are respectively generated from the rectifying unit to be generated and the primary voltage generated by the rectifying unit. And a regulator unit that outputs a difference between the first power supply voltage and the second power supply voltage based on the signal, and the regulator unit is configured to output the first power supply voltage when information is written to the nonvolatile semiconductor memory. 1 power supply Outputs of the pressure, when the information is read from the non-volatile semiconductor memories and outputs a second power supply voltage.
[0013] また、本発明の半導体集積回路装置は、前記レギユレータ部が生成した第 1、およ び第 2の電源電圧を監視する電圧監視部を備え、該電圧監視部は、不揮発性半導 体メモリが書き込み動作時に第 1の電源電圧が第 1の設定電圧値以下になると不揮 発性半導体メモリ、および論理部にそれぞれリセット信号を出力し、不揮発性半導体 メモリが読み出し動作時に第 2の電源電圧が第 1の設定電圧値よりも低い第 2の設定 電圧値以下になると不揮発性半導体メモリ、および論理部にリセット信号を出力する ものである。 [0013] Further, the semiconductor integrated circuit device of the present invention includes a first and a second generated by the regulator unit. And a voltage monitoring unit that monitors the second power supply voltage, and the voltage monitoring unit is non-volatile when the first power supply voltage falls below the first set voltage value during the write operation of the nonvolatile semiconductor memory. When a reset signal is output to each of the semiconductor memory and the logic unit, and the second power supply voltage becomes lower than the second set voltage value lower than the first set voltage value during the read operation, the nonvolatile semiconductor memory And a reset signal to the logic part.
[0014] さらに、本発明の半導体集積回路装置は、前記レギユレータ部が、一次電圧から第 1、および第 2の電源電圧をそれぞれ生成するレギユレータと、論理部から出力される 制御信号に基づいて、接続先の切り替えを行い、第 1の電源電圧、または第 2の電源 電圧のいずれかを選択し、不揮発性半導体メモリと論理部とに選択した電圧を供給 する電圧切り替え部よりなるものである。  Furthermore, in the semiconductor integrated circuit device of the present invention, the regulator unit is based on a regulator that generates a first power supply voltage and a second power supply voltage from a primary voltage, respectively, and a control signal output from the logic unit. The voltage switching unit switches the connection destination, selects either the first power supply voltage or the second power supply voltage, and supplies the selected voltage to the nonvolatile semiconductor memory and the logic unit.
[0015] さらに、本発明の半導体集積回路装置は、前記レギユレータ部が、トリミング信号に 基づいて電圧をトリミングするトリミング回路を備え、該トリミング回路によってデバイス 製造ばらつきなどによるレギユレータの電圧ばらつきを補正するものである。  Furthermore, in the semiconductor integrated circuit device of the present invention, the regulator unit includes a trimming circuit that trims a voltage based on a trimming signal, and the trimming circuit corrects a voltage variation of the regulator due to a device manufacturing variation or the like. It is.
[0016] また、本発明の半導体集積回路装置は、前記不揮発性半導体メモリが、トリミング 回路に用いられるトリミング信号を格納するトリミング信号格納部を有したものである。  In the semiconductor integrated circuit device of the present invention, the nonvolatile semiconductor memory has a trimming signal storage unit that stores a trimming signal used in the trimming circuit.
[0017] また、本願のその他の発明の概要を簡単に示す。  [0017] The outline of other inventions of the present application will be briefly described.
[0018] 本発明は、複数の不揮発性メモリセルを有する不揮発性半導体メモリと、通信制御 および不揮発性半導体メモリの動作制御を司る論理部と、不揮発性半導体メモリ、お よび論理部に供給する第 1、または第 2の電源電圧を供給する電圧生成部とを有し た IDタグであって、電圧生成部は、受信した電波あるいは電磁誘導による電力を整 流して一次電圧を生成する整流部と、整流部が生成した一次電圧から、第 1の電源 電圧、および第 1の電源電圧よりも低い電圧レベルの第 2の電源電圧をそれぞれ生 成し、論理部力 出力される制御信号に基づいて、第 1の電源電圧または第 2の電 源電圧のいずれかを出力するレギユレータ部とを備え、該レギユレータ部は、不揮発 性半導体メモリに情報が書き込まれる際には第 1の電源電圧を出力し、不揮発性半 導体メモリから情報が読み出される際には第 2の電源電圧を出力するものである。 発明の効果 [0019] 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に 説明すれば以下のとおりである。 [0018] The present invention provides a nonvolatile semiconductor memory having a plurality of nonvolatile memory cells, a logic unit that controls communication control and operation control of the nonvolatile semiconductor memory, a nonvolatile semiconductor memory, and a logic unit that supplies the logic unit An ID tag having a voltage generator for supplying a first power supply voltage or a second power supply voltage, the voltage generator having a rectifier that rectifies received radio waves or electromagnetic induction power to generate a primary voltage; The first power supply voltage and the second power supply voltage at a voltage level lower than the first power supply voltage are respectively generated from the primary voltage generated by the rectifying unit, and the logic unit outputs a control signal based on the output control signal. And a regulator unit that outputs either the first power supply voltage or the second power supply voltage, and the regulator unit outputs the first power supply voltage when information is written to the nonvolatile semiconductor memory. , No When the information is read from the source semi-conductor memory is designed to output a second power supply voltage. The invention's effect [0019] The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.
[0020] (1)半導体集積回路装置の消費電力を低減しながら、読み出し動作時における通 信距離を長くすることができるとともに、情報書き込みの信頼性を向上させることがで きる。 (1) While reducing the power consumption of the semiconductor integrated circuit device, it is possible to increase the communication distance during the read operation and improve the reliability of information writing.
[0021] (2)上記(1)により、半導体集積回路装置を用いて IDタグを構成することによって 該 IDタグの高性能化を実現することができるとともに、 IDタグの信頼性を向上させる ことができる。  (2) According to the above (1), by configuring an ID tag using a semiconductor integrated circuit device, it is possible to realize high performance of the ID tag and improve the reliability of the ID tag. Can do.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]本発明の実施の形態 1による半導体集積回路装置のブロック図である。 FIG. 1 is a block diagram of a semiconductor integrated circuit device according to a first embodiment of the present invention.
[図 2]図 1の半導体集積回路装置に設けられたレギユレータ回路の内部構成、および その周辺部の接続構成を示す説明図である。  2 is an explanatory diagram showing an internal configuration of a regulator circuit provided in the semiconductor integrated circuit device of FIG. 1 and a connection configuration of its periphery.
[図 3]本発明の実施の形態 2による半導体集積回路装置に設けられたレギユレータ回 路の内部構成、およびその周辺部の接続構成を示す説明図である。  FIG. 3 is an explanatory diagram showing an internal configuration of a regulator circuit provided in a semiconductor integrated circuit device according to a second embodiment of the present invention and a connection configuration of its peripheral portion.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態 を説明するための全図において、同一の部材には原則として同一の符号を付し、そ の繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
[0024] (実施の形態 1) [Embodiment 1]
図 1は、本発明の実施の形態 1による半導体集積回路装置のブロック図、図 2は、 図 1の半導体集積回路装置に設けられたレギユレータ回路の内部構成、およびその 周辺部の接続構成を示す説明図である。  FIG. 1 is a block diagram of a semiconductor integrated circuit device according to Embodiment 1 of the present invention. FIG. 2 shows an internal configuration of a regulator circuit provided in the semiconductor integrated circuit device of FIG. It is explanatory drawing.
[0025] 本実施の形態 1において、半導体集積回路装置 1は、たとえば、自動認識技術の 1 つである RFIDの IDタグに用いられる。半導体集積回路装置 1は、図 1に示すように、 整流回路 (整流部) 2、レギユレータ回路(レギユレータ部、レギユレータ) 3、二次電圧 監視回路 (電圧監視部) 4、電圧切り替え部 (レギユレータ部) 5、論理回路 (論理部) 6 、メモリ(不揮発性半導体メモリ) 7、およびリファレンス電圧回路 8など力も構成されて いる。 [0026] 整流回路 2には、アンテナ ANTが接続されて!、る。整流回路 2は、アンテナ ANTを 介して IDタグにおける情報の読み出しや書き込みを行うリーダ Zライタから出力され た電波の電磁誘導による電力を整流して一次電圧 VCCとして出力する。 In the first embodiment, the semiconductor integrated circuit device 1 is used, for example, as an RFID ID tag that is one of automatic recognition technologies. As shown in FIG. 1, the semiconductor integrated circuit device 1 includes a rectifier circuit (rectifier unit) 2, a regulator circuit (regulator unit, regulator) 3, a secondary voltage monitoring circuit (voltage monitoring unit) 4, and a voltage switching unit (regulator unit). ) 5, logic circuit (logic part) 6, memory (nonvolatile semiconductor memory) 7, and reference voltage circuit 8 are also configured. [0026] The rectifier circuit 2 is connected to an antenna ANT! The rectifier circuit 2 rectifies the electric power generated by electromagnetic induction of the radio wave output from the reader Z writer that reads and writes information in the ID tag via the antenna ANT and outputs it as the primary voltage VCC.
[0027] また、この整流回路 2は、アンテナ ANTが受信したアナログ信号をデジタル信号に 復調して論理回路 6に出力するとともに、該論理回路 6から出力されたデジタル信号 をアナログ信号に変調してアンテナ ANTを介してリーダ Zライタに送信する。  [0027] Further, the rectifier circuit 2 demodulates the analog signal received by the antenna ANT into a digital signal and outputs it to the logic circuit 6, and modulates the digital signal output from the logic circuit 6 into an analog signal. Send to reader Z writer via antenna ANT.
[0028] レギユレータ回路 3は、整流回路 2から出力された一次電圧 VCCを安定ィ匕し、二次 電圧として第 1の電源電圧 VDD1、および第 2の電源電圧 VDD2をそれぞれ生成す る。  The regulator circuit 3 stabilizes the primary voltage VCC output from the rectifier circuit 2, and generates a first power supply voltage VDD1 and a second power supply voltage VDD2 as secondary voltages.
[0029] 第 1の電源電圧 (たとえば、約 1. 7V)VDD1は、書き込み用電圧としてメモリ 7に情 報を書き込む際に用いられる。第 2の電源電圧 (たとえば、約 1. 3V)VDD2は、第 1 の電源電圧 VDD1よりも低い電圧レベルであり、読み出し用電圧としてメモリ 7から情 報を読み出す際に用いられる。  [0029] The first power supply voltage (for example, about 1.7 V) VDD1 is used when information is written to the memory 7 as a write voltage. The second power supply voltage (for example, about 1.3 V) VDD2 is at a voltage level lower than that of the first power supply voltage VDD1, and is used when reading information from the memory 7 as a read voltage.
[0030] 二次電圧監視回路 4は、レギユレータ回路 3が生成した第 1の電源電圧 VDD1、お よび第 2の電源電圧 VDD2の電圧レベルをそれぞれ監視し、これら第 1、および第 2 の電源電圧 VDDl, VDD2がそれぞれ設定された任意の電圧レベル以下になるとリ セット信号を論理回路 6、ならびにメモリ 7にそれぞれ出力する。  [0030] The secondary voltage monitoring circuit 4 monitors the voltage levels of the first power supply voltage VDD1 and the second power supply voltage VDD2 generated by the regulator circuit 3, respectively, and these first and second power supply voltages. When VDDl and VDD2 are below the set voltage level, a reset signal is output to logic circuit 6 and memory 7, respectively.
[0031] 電圧切り替え部 5は、 2つの入力部がレギユレータ回路 3にそれぞれ接続されており 、出力部が論理回路 6、ならびにメモリ 7にそれぞれ接続されている。電圧切り替え部 5は、論理回路 6から出力される制御信号に基づいて、レギユレータ回路 3が生成し た第 1電源電圧 VDD1、または第 2の電源電圧 VDD2のいずれかを論理回路 6とメ モリ 7とにそれぞれ供給する。  In the voltage switching unit 5, two input units are connected to the regulator circuit 3, and an output unit is connected to the logic circuit 6 and the memory 7, respectively. Based on the control signal output from the logic circuit 6, the voltage switching unit 5 uses either the first power supply voltage VDD1 or the second power supply voltage VDD2 generated by the regulator circuit 3 as the logic circuit 6 and the memory 7 And supply to each.
[0032] 論理回路 6は、情報の読み出し Z書き込みにおけるメモリ 7の動作制御を司る。メモ リ 7は、たとえば、 EEPROMなどの不揮発性半導体メモリからなり、論理回路 6の制 御に基づいて情報の読み出し Z書き込みを行う。  [0032] The logic circuit 6 controls the operation of the memory 7 in reading and writing information. The memory 7 is composed of, for example, a nonvolatile semiconductor memory such as an EEPROM, and reads and writes information based on the control of the logic circuit 6.
[0033] リファレンス電圧回路 8は、整流回路 2から出力された一次電圧 VCC力も基準電圧 VREFを生成し、レギユレータ回路 3と二次電圧監視回路 4にそれぞれ供給する。  The reference voltage circuit 8 also generates the reference voltage VREF for the primary voltage VCC output from the rectifier circuit 2 and supplies the reference voltage VREF to the regulator circuit 3 and the secondary voltage monitoring circuit 4, respectively.
[0034] 図 2は、レギユレータ回路 3の内部構成、およびその周辺部の接続構成を示す説明 図である。 FIG. 2 is an explanatory diagram showing the internal configuration of the regulator circuit 3 and the connection configuration of the periphery thereof. FIG.
[0035] レギユレータ回路 3は、図示するように、オペアンプ 3a、トランジスタ 3b、および複数 の抵抗 3cから構成されている。トランジスタ 3bは、 Pチャネル MOS (Metal Oxide As shown in the figure, the regulator circuit 3 includes an operational amplifier 3a, a transistor 3b, and a plurality of resistors 3c. Transistor 3b is a P-channel MOS (Metal Oxide
¾emiconauctor りなる。 ¾emiconauctor
[0036] オペアンプ 3aの負(一)側入力端子にはリファレンス電圧回路 8が生成した基準電 圧 VREFが入力されるように接続されており、該オペアンプ 3aの出力部には、トラン ジスタ 3bのゲートが接続されて!、る。 [0036] The negative (one) side input terminal of the operational amplifier 3a is connected so that the reference voltage VREF generated by the reference voltage circuit 8 is input, and the output of the operational amplifier 3a is connected to the transistor 3b. The gate is connected!
[0037] トランジスタ 3bの一方の接続部には、リファレンス電圧回路 8が生成した基準電圧 V[0037] The reference voltage V generated by the reference voltage circuit 8 is connected to one connection portion of the transistor 3b.
REFが入力されるように接続されて!ヽる。このトランジスタ 3bの他方の接続部と基準 電位 VSSとの間には、複数の抵抗 3cが直列接続されている。 Connected to receive REF! A plurality of resistors 3c are connected in series between the other connection portion of the transistor 3b and the reference potential VSS.
[0038] トランジスタ 3bの一方の接続には、電圧切り替え部 5の一方の入力部が接続されて おり、該トランジスタ 3bの一方の接続から出力される電圧が第 1の電源電圧 VDD1と なる。 [0038] One connection of the transistor 3b is connected to one input of the voltage switching unit 5, and the voltage output from the one connection of the transistor 3b is the first power supply voltage VDD1.
[0039] 電圧切り替え部 5の他方の接続部には、複数の抵抗 3cによって分圧された任意の 電圧レベルの電源電圧が出力されるように接続されている。この電圧切り替え部 5の 他方の接続部に供給される分圧電圧が第 2の電源電圧 VDD2となる。  [0039] The other connection part of the voltage switching part 5 is connected so that a power supply voltage of an arbitrary voltage level divided by the plurality of resistors 3c is output. The divided voltage supplied to the other connection portion of the voltage switching portion 5 becomes the second power supply voltage VDD2.
[0040] 二次電圧監視回路 4には、リファレンス電圧回路 8から出力される基準電圧 VREF 、複数の抵抗 3cによって分圧された任意の電圧レベルの第 1の監視電圧 VW1、お よび該第 1の監視電圧よりも低い第 2の監視電圧 VW2、および論理回路 6から出力さ れるモード信号がそれぞれ入力されるように接続されている。  [0040] The secondary voltage monitoring circuit 4 includes a reference voltage VREF output from the reference voltage circuit 8, a first monitoring voltage VW1 having an arbitrary voltage level divided by the plurality of resistors 3c, and the first voltage The second monitoring voltage VW2, which is lower than the monitoring voltage, and the mode signal output from the logic circuit 6 are connected to each other.
[0041] モード信号は、メモリ 7が書き込み動作を行うか読み出し動作を行うかを示す信号で あり、二次電圧監視回路 4は、該モード信号に基づいて読み出し動作か書き込み動 作かを判断する。  [0041] The mode signal is a signal indicating whether the memory 7 performs a write operation or a read operation, and the secondary voltage monitoring circuit 4 determines whether the read operation or the write operation is performed based on the mode signal. .
[0042] 第 1の監視電圧 VW1は、書き込み動作時に用いられる第 1の電源電圧 VDD1の 電圧レベルを監視する電圧であり、第 2の監視電圧 VW2は、読み出し動作時に用い られる第 2の電源電圧 VDD2の電圧レベルを監視する電圧である。  [0042] The first monitoring voltage VW1 is a voltage for monitoring the voltage level of the first power supply voltage VDD1 used during the write operation, and the second monitoring voltage VW2 is the second power supply voltage used during the read operation. This voltage monitors the voltage level of VDD2.
[0043] 次に、本実施の形態における半導体集積回路装置 1の作用について説明する。 Next, the operation of the semiconductor integrated circuit device 1 in the present embodiment will be described.
[0044] まず、メモリ 7に情報が書き込まれる場合、整流回路 2は、アンテナ ANTを介して受 信した電波あるいは電磁誘導による電力を整流した一次電圧 vccを出力する。そし て、レギユレータ回路 3は、整流回路 2から出力された一次電圧 VCCから、第 1、およ び第 2の電源電圧 VDD1, VDD2をそれぞれ生成して出力する。 [0044] First, when information is written to the memory 7, the rectifier circuit 2 receives the signal via the antenna ANT. The primary voltage vcc is output by rectifying the received radio wave or electromagnetic induction power. The regulator circuit 3 generates and outputs the first and second power supply voltages VDD1 and VDD2 from the primary voltage VCC output from the rectifier circuit 2, respectively.
[0045] 電圧切り替え部 5は、通常、レギユレータ回路 3が生成した第 1の電源電圧 VDD1を 出力するように設定されており、該電圧切り替え部 5を介して論理回路 6、およびメモ リ 7にそれぞれ第 1の電源電圧 VDD 1が供給される。 [0045] The voltage switching unit 5 is normally set to output the first power supply voltage VDD1 generated by the regulator circuit 3. The voltage switching unit 5 is connected to the logic circuit 6 and the memory 7 via the voltage switching unit 5. The first power supply voltage VDD 1 is supplied to each.
[0046] 論理回路 6は、整流回路 2において復調したデジタル信号カ モリ 7に情報を書き 込むコマンドであると、電圧切り替え部 5の切り替えを行わないように制御を行う。これ により、論理回路 6、ならびにメモリ 7には、書き込み用電圧である第 1の電源電圧 VDIf the logic circuit 6 is a command for writing information to the digital signal memory 7 demodulated in the rectifier circuit 2, the logic circuit 6 performs control so that the voltage switching unit 5 is not switched. As a result, the logic circuit 6 and the memory 7 have the first power supply voltage VD that is the write voltage.
D 1がそれぞれ供給されることになる。 D 1 will be supplied.
[0047] このように、情報の書き込み時には、第 2の電源電圧 VDD2よりも高!、電圧レベル の第 1の電源電圧 VDD1を論理回路 6、ならびにメモリ 7にそれぞれ供給することによ つて、メモリ 7に安定した情報の書き込みを行うことができる。 [0047] In this manner, when writing information, the first power supply voltage VDD1 at a voltage level higher than the second power supply voltage VDD2 is supplied to the logic circuit 6 and the memory 7, respectively. 7 can write stable information.
[0048] また、整流回路 2にお 、て復調したデジタル信号が、メモリ 7から情報を読み出すコ マンドであると、論理回路 6は、電圧切り替え部 5の切り替えを行うように制御を行い、 レギユレータ回路 3が生成した読み出し用電圧である第 2の電源電圧 VDD2が論理 回路 6、ならびにメモリ 7に供給されるようにする。 [0048] If the digital signal demodulated in the rectifier circuit 2 is a command for reading information from the memory 7, the logic circuit 6 performs control so that the voltage switching unit 5 is switched, and the regulator The second power supply voltage VDD2, which is the read voltage generated by the circuit 3, is supplied to the logic circuit 6 and the memory 7.
[0049] これによつて、情報の読み出しには、書き込み用電圧である第 1の電源電圧 VDD1 よりも低い電圧レベルを供給することができるので、半導体集積回路装置 1の消費電 力を低減させることができる。 Accordingly, a voltage level lower than the first power supply voltage VDD1, which is a write voltage, can be supplied for reading information, so that the power consumption of the semiconductor integrated circuit device 1 is reduced. be able to.
[0050] 次に、二次電圧監視回路 5の動作について説明する。 [0050] Next, the operation of the secondary voltage monitoring circuit 5 will be described.
[0051] 二次電圧監視回路 5は、レギユレータ回路 3が任意の電圧レベルよりも低くなつた場 合にリセット信号を論理回路 6、およびメモリ 7にそれぞれ出力し、半導体集積回路装 置 1の誤動作などを防止する。  [0051] The secondary voltage monitoring circuit 5 outputs a reset signal to the logic circuit 6 and the memory 7 when the regulator circuit 3 becomes lower than an arbitrary voltage level, and malfunctions of the semiconductor integrated circuit device 1. Prevent such as.
[0052] 二次電圧監視回路 5は、論理回路 6から出力されるモード信号に基づいて、第 1電 源電圧 VDD1、または第 2の電源電圧 VDD2のいずれの電圧を監視するかを決定 する。 The secondary voltage monitoring circuit 5 determines whether to monitor the first power supply voltage VDD 1 or the second power supply voltage VDD 2 based on the mode signal output from the logic circuit 6.
[0053] たとえば、モード信号が書き込み動作を示す場合、二次電圧監視回路 5は、第 1の 電源電圧 VDD1の監視を行う。この場合、複数の抵抗 3cの分圧によって生成された 第 1の監視電圧 VW1と基準電圧 VREFとを比較し、第 1の監視電圧 VW1が基準電 圧 VREFよりも低くなつた場合にリセット信号を論理回路 6、およびメモリ 7にそれぞれ 出力する。 [0053] For example, when the mode signal indicates a write operation, the secondary voltage monitoring circuit 5 Monitor the power supply voltage VDD1. In this case, the first monitor voltage VW1 generated by the voltage division of multiple resistors 3c is compared with the reference voltage VREF. Output to logic circuit 6 and memory 7, respectively.
[0054] また、モード信号が読み出し動作を示す場合、二次電圧監視回路 5は、第 2の電源 電圧 VW2の監視を行う。二次電圧監視回路 5は、第 1の監視電圧 VW1よりも低い電 圧レベルの第 2の監視電圧 VW2と基準電圧 VREFとを比較し、該第 2の監視電圧 V W2が基準電圧 VREFよりも低くなつた場合にリセット信号を論理回路 6、およびメモリ 7にそれぞれ出力する。  [0054] When the mode signal indicates a read operation, the secondary voltage monitoring circuit 5 monitors the second power supply voltage VW2. The secondary voltage monitoring circuit 5 compares the second monitoring voltage VW2 having a voltage level lower than the first monitoring voltage VW1 with the reference voltage VREF, and the second monitoring voltage VW2 is lower than the reference voltage VREF. When it becomes low, a reset signal is output to the logic circuit 6 and the memory 7, respectively.
[0055] このように、読み出し動作時に、第 1の監視電圧 VW1よりも低い電圧レベルの第 2 の監視電圧 VW2に基づいてリセット信号を出力することにより、読み出し動作時にお ける動作電圧下限を低くすることが可能となる。  [0055] As described above, during the read operation, the reset signal is output based on the second monitor voltage VW2 having a voltage level lower than the first monitor voltage VW1, thereby lowering the operating voltage lower limit in the read operation. It becomes possible to do.
[0056] それにより、本実施の形態によれば、半導体集積回路装置 1の消費電力を低減し ながら安定した情報の書き込みが可能となる。  Accordingly, according to the present embodiment, it is possible to stably write information while reducing the power consumption of the semiconductor integrated circuit device 1.
[0057] また、情報の読み出し動作時と書き込み動作時とにおいて、リセット制御を個別に 行うことにより、読み出し動作時における通信距離を伸ばすことが可能となる。  [0057] Further, it is possible to extend the communication distance during the read operation by individually performing the reset control during the information read operation and the write operation.
[0058] (実施の形態 2)  [0058] (Embodiment 2)
図 3は、本発明の実施の形態 2による半導体集積回路装置に設けられたレギユレ一 タ回路の内部構成、およびその周辺部の接続構成を示す説明図である。  FIG. 3 is an explanatory diagram showing the internal configuration of the regulator circuit provided in the semiconductor integrated circuit device according to the second embodiment of the present invention and the connection configuration of the peripheral portion thereof.
[0059] 本実施の形態 2において、半導体集積回路装置 1は、前記実施の形態 1と同様の 構成である整流回路 2、レギユレータ回路 3、二次電圧監視回路 4、電圧切り替え部 5 、論理回路 6、メモリ 7、およびリファレンス電圧回路 8に、新たにトリミング回路 9が設 けられている。  In the second embodiment, the semiconductor integrated circuit device 1 includes a rectifier circuit 2, a regulator circuit 3, a secondary voltage monitoring circuit 4, a voltage switching unit 5, a logic circuit having the same configuration as in the first embodiment. 6. A trimming circuit 9 is newly provided in the memory 7, the reference voltage circuit 8, and the like.
[0060] また、リファレンス電圧回路 8から出力される基準電圧 VREFは、トリミング回路 9に 供給されるように接続されている。トリミング回路 9から出力されるトリミング電圧は、基 準電圧 VREF1としてレギユレータ回路 3のオペアンプ 3aの負側入力端子、および二 次電圧監視回路 5にそれぞれ入力されるように接続されている。  The reference voltage VREF output from the reference voltage circuit 8 is connected so as to be supplied to the trimming circuit 9. The trimming voltage output from the trimming circuit 9 is connected to the negative side input terminal of the operational amplifier 3a of the regulator circuit 3 and the secondary voltage monitoring circuit 5 as the reference voltage VREF1.
[0061] トリミング回路 9は、メモリ 7に予め設定されたトリミングビット信号に基づいて任意の 電圧レベルの基準電圧 VREF1を生成する。その他の接続構成については、前記実 施の形態 1の図 1、図 2と同様であるので、説明は省略する。 [0061] The trimming circuit 9 performs arbitrary processing based on a trimming bit signal preset in the memory 7. Generates the voltage level reference voltage VREF1. Since other connection configurations are the same as those in FIGS. 1 and 2 of the first embodiment, description thereof will be omitted.
[0062] トリミング回路 9は、半導体集積回路装置 1における製造時のプロセスばらつきなど を考慮し、リファレンス電圧回路 8から出力される基準電圧 VREFをトリミングしてより 正確な電圧レベルの基準電圧 VREF1となるように調整する。そして、トリミング回路 9 によって調整された基準電圧 VREF1は、レギユレータ回路 3、および二次電圧監視 回路 5に供給される。 [0062] The trimming circuit 9 trims the reference voltage VREF output from the reference voltage circuit 8 to obtain a reference voltage VREF1 with a more accurate voltage level in consideration of process variations during manufacturing in the semiconductor integrated circuit device 1. Adjust as follows. Then, the reference voltage VREF1 adjusted by the trimming circuit 9 is supplied to the regulator circuit 3 and the secondary voltage monitoring circuit 5.
[0063] また、トリミングビット信号は、たとえば、半導体集積回路装置 1のプローブ検査時な どにリファレンス電圧回路 8から出力される基準電圧 VREFを測定し、その測定値か ら所望する基準電圧 VREF1が生成されるようにトリミングする電圧を決定してメモリ 7 に設定する。あるいは、リーダ Zライタとの通信によってトリミング信号を設定 Z変更 などを行うようにしてもよい。  [0063] The trimming bit signal is obtained by measuring the reference voltage VREF output from the reference voltage circuit 8 when the semiconductor integrated circuit device 1 is probed, for example, and obtaining the desired reference voltage VREF1 from the measured value. Determine the trimming voltage to be generated and set it in memory 7. Alternatively, the trimming signal may be set Z, etc., by communication with the reader Z writer.
[0064] それにより、本実施の形態 2では、より正確な基準電圧 VREF1を生成することがで きるので、リーダ Zライタと半導体集積回路装置 1との通信距離のばらつきを抑えるこ とができるとともに、情報をより安定して書き込むことができる。 [0064] Thereby, in the second embodiment, a more accurate reference voltage VREF1 can be generated, so that variations in the communication distance between the reader Z writer and the semiconductor integrated circuit device 1 can be suppressed. , Information can be written more stably.
[0065] また、本実施の形態 2においては、トリミング回路 9によってリーダ Zライタと半導体 集積回路装置 1との通信距離のばらつきを抑える技術について記載したが、たとえばIn the second embodiment, the technique for suppressing the variation in the communication distance between the reader Z writer and the semiconductor integrated circuit device 1 by the trimming circuit 9 has been described.
、さらに、トリミングビット信号を変更することによって基準電圧 VREF1の電圧レベル を任意に調整するようにしてもよい。 Furthermore, the voltage level of the reference voltage VREF1 may be arbitrarily adjusted by changing the trimming bit signal.
[0066] それにより、二次電圧監視回路 5から出力されるリセット信号を出力する際の監視電 圧を任意に調整することが可能となり、リーダ Zライタと半導体集積回路装置 1との通 信距離を容易に変更することができる。 [0066] This makes it possible to arbitrarily adjust the monitoring voltage when outputting the reset signal output from the secondary voltage monitoring circuit 5, and the communication distance between the reader Z writer and the semiconductor integrated circuit device 1 Can be easily changed.
[0067] 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが[0067] As described above, the invention made by the present inventor has been specifically described based on the embodiment.
、本発明は前記実施の形態に限定されるものではなぐその要旨を逸脱しない範囲 で種々変更可能であることは 、うまでもな!/、。 Needless to say, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
[0068] たとえば、前記実施の形態 1, 2では、リーダ Zライタから出力された電波の電磁誘 導による電力を整流して電源電圧を生成する IDタグについて記載した力 本発明は[0068] For example, in the first and second embodiments, the power described in the ID tag for generating power supply voltage by rectifying power by electromagnetic induction of radio waves output from the reader Z writer is described.
、電池を内蔵した IDタグに適用することも可能である。 [0069] それにより、情報の読み出し時における低消費電力化が可能となるので、電池の寿 命を長くすることができる。 It can also be applied to ID tags with built-in batteries. [0069] Thereby, it is possible to reduce the power consumption when reading information, so that the life of the battery can be extended.
産業上の利用可能性  Industrial applicability
[0070] 本発明は、 RFIDの IDタグに用いられる半導体集積回路装置の低消費電力化、お よび信頼性の向上化技術に適している。 The present invention is suitable for a technique for reducing power consumption and improving reliability of a semiconductor integrated circuit device used for an RFID ID tag.

Claims

請求の範囲 The scope of the claims
[1] 複数の不揮発性メモリセルを有する不揮発性半導体メモリと、  [1] a nonvolatile semiconductor memory having a plurality of nonvolatile memory cells;
通信制御および前記不揮発性半導体メモリの動作制御を司る論理部と、 前記不揮発性半導体メモリ、および前記論理部に供給する第 1の電源電圧、また は前記第 1の電源電圧よりも低い電圧レベルの第 2の電源電圧を供給する電圧生成 部とを有し、  A logic unit that controls communication control and operation control of the nonvolatile semiconductor memory; a first power supply voltage supplied to the nonvolatile semiconductor memory and the logic unit; or a voltage level lower than the first power supply voltage. A voltage generator for supplying a second power supply voltage,
前記電圧生成部は、  The voltage generator is
受信した電波あるいは電磁誘導による電力を整流して一次電圧を生成する整流部 と、  A rectification unit that rectifies the electric power received by radio waves or electromagnetic induction to generate a primary voltage;
前記整流部が生成した一次電圧から、前記第 1の電源電圧、および前記第 2の電 源電圧をそれぞれ生成し、前記論理部力 出力される制御信号に基づいて、前記第 1の電源電圧または前記第 2の電源電圧のいずれかを出力するレギユレータ部とを 備え、  The first power supply voltage and the second power supply voltage are respectively generated from the primary voltage generated by the rectifier, and the first power supply voltage or the second power supply voltage is generated based on the control signal output from the logic unit. A regulator unit for outputting any one of the second power supply voltages,
前記レギユレータ部は、  The regulator part is:
前記不揮発性半導体メモリに情報が書き込まれる際には前記第 1の電源電圧を出 力し、前記不揮発性半導体メモリから情報が読み出される際には前記第 2の電源電 圧を出力することを特徴とする半導体集積回路装置。  The first power supply voltage is output when information is written to the nonvolatile semiconductor memory, and the second power supply voltage is output when information is read from the nonvolatile semiconductor memory. A semiconductor integrated circuit device.
[2] 請求項 1記載の半導体集積回路装置において、 [2] In the semiconductor integrated circuit device according to claim 1,
前記レギユレータ部が生成した第 1、および第 2の電源電圧を監視する電圧監視部 を備え、  A voltage monitoring unit for monitoring the first and second power supply voltages generated by the regulator unit;
前記電圧監視部は、  The voltage monitoring unit
前記不揮発性半導体メモリが書き込み動作時に前記第 1の電源電圧が第 1の設定 電圧値以下になると前記不揮発性半導体メモリ、および論理部にそれぞれリセット信 号を出力し、前記不揮発性半導体メモリが読み出し動作時に前記第 2の電源電圧が 前記第 1の設定電圧値よりも低い第 2の設定電圧値以下になると前記不揮発性半導 体メモリ、および論理部にリセット信号を出力することを特徴とする半導体集積回路装 置。  When the first power supply voltage becomes equal to or lower than a first set voltage value during the write operation of the nonvolatile semiconductor memory, a reset signal is output to the nonvolatile semiconductor memory and the logic unit, respectively, and the nonvolatile semiconductor memory reads A reset signal is output to the non-volatile semiconductor memory and the logic unit when the second power supply voltage becomes equal to or lower than a second set voltage value lower than the first set voltage value during operation. Semiconductor integrated circuit device.
[3] 請求項 1記載の半導体集積回路装置において、 前記レギユレータ部は、 [3] The semiconductor integrated circuit device according to claim 1, The regulator part is:
一次電圧力 第 1、および第 2の電源電圧をそれぞれ生成するレギユレータと、 前記論理部から出力される制御信号に基づいて、接続先の切り替えを行い、前記 第 1の電源電圧、または第 2の電源電圧のいずれかを選択し、前記不揮発性半導体 メモリと前記論理部とに選択した電圧を供給する電圧切り替え部とよりなることを特徴 とする半導体集積回路装置。  Primary voltage force Regulators that generate the first and second power supply voltages, respectively, and switching the connection destination based on the control signal output from the logic unit, the first power supply voltage or the second power supply voltage A semiconductor integrated circuit device comprising: a voltage switching unit that selects one of power supply voltages and supplies the selected voltage to the nonvolatile semiconductor memory and the logic unit.
[4] 請求項 1記載の半導体集積回路装置において、  [4] The semiconductor integrated circuit device according to claim 1,
前記レギユレータ部は、  The regulator part is:
トリミング信号に基づいて電圧をトリミングするトリミング回路を備え、  A trimming circuit that trims a voltage based on a trimming signal is provided.
前記トリミング回路によってデバイス製造ばらつきなどによる前記レギユレ一タの電 圧ばらつきを補正することを特徴とする半導体集積回路装置。  A semiconductor integrated circuit device, wherein the trimming circuit corrects voltage variations of the regulator due to device manufacturing variations or the like.
[5] 請求項 4記載の半導体集積回路装置において、 [5] The semiconductor integrated circuit device according to claim 4,
前記不揮発性半導体メモリは、  The nonvolatile semiconductor memory is
前記トリミング回路に用いられるトリミング信号を格納するトリミング信号格納部を有 したことを特徴とする半導体集積回路装置。  A semiconductor integrated circuit device comprising a trimming signal storage unit for storing a trimming signal used in the trimming circuit.
[6] 複数の不揮発性メモリセルを有する不揮発性半導体メモリと、 [6] a nonvolatile semiconductor memory having a plurality of nonvolatile memory cells;
通信制御および前記不揮発性半導体メモリの動作制御を司る論理部と、 前記不揮発性半導体メモリ、および前記論理部に供給する第 1、または第 2の電源 電圧を供給する電圧生成部とを有した IDタグであって、  An ID having a logic unit that controls communication control and operation control of the nonvolatile semiconductor memory, and a voltage generation unit that supplies the first or second power supply voltage supplied to the nonvolatile semiconductor memory and the logic unit A tag,
前記電圧生成部は、  The voltage generator is
受信した電波の電磁誘導による電力を整流して一次電圧を生成する整流部と、 前記整流部が生成した一次電圧から、第 1の電源電圧、および前記第 1の電源電 圧よりも低い電圧レベルの第 2の電源電圧をそれぞれ生成し、前記論理部から出力 される制御信号に基づいて、前記第 1の電源電圧または前記第 2の電源電圧のいず れかを出力するレギユレータ部とを備え、  A rectifying unit that rectifies power generated by electromagnetic induction of received radio waves to generate a primary voltage, and a first power supply voltage and a voltage level lower than the first power supply voltage from the primary voltage generated by the rectifying unit. Each of the first power supply voltage and a regulator unit that outputs either the first power supply voltage or the second power supply voltage based on a control signal output from the logic unit. ,
前記レギユレータ部は、  The regulator part is:
前記不揮発性半導体メモリに情報が書き込まれる際には第 1の電源電圧を出力し 、前記不揮発性半導体メモリから情報が読み出される際には第 2の電源電圧を出力 することを特徴とする IDタグ。 When information is written to the nonvolatile semiconductor memory, a first power supply voltage is output. When information is read from the nonvolatile semiconductor memory, a second power supply voltage is output. An ID tag characterized by
[7] 請求項 6記載の IDタグにおいて、 [7] In the ID tag according to claim 6,
前記レギユレータ部が生成した第 1、および第 2の電源電圧を監視する電圧監視部 を備え、  A voltage monitoring unit for monitoring the first and second power supply voltages generated by the regulator unit;
前記電圧監視部は、  The voltage monitoring unit
前記不揮発性半導体メモリが書き込み動作時に前記第 1の電源電圧が第 1の設定 電圧値以下になると前記不揮発性半導体メモリ、および論理部にそれぞれリセット信 号を出力し、前記不揮発性半導体メモリが読み出し動作時に前記第 1の設定電圧値 よりも低い第 2の設定電圧値以下になると前記不揮発性半導体メモリ、および論理部 にリセット信号を出力することを特徴とする IDタグ。  When the first power supply voltage becomes equal to or lower than a first set voltage value during the write operation, the nonvolatile semiconductor memory outputs a reset signal to the nonvolatile semiconductor memory and the logic unit, respectively, and the nonvolatile semiconductor memory reads An ID tag, wherein a reset signal is output to the nonvolatile semiconductor memory and the logic unit when the voltage becomes equal to or lower than a second set voltage value lower than the first set voltage value during operation.
[8] 請求項 6記載の IDタグにおいて、 [8] In the ID tag according to claim 6,
前記レギユレータ部は、  The regulator part is:
一次電圧力 第 1、および第 2の電源電圧をそれぞれ生成するレギユレータと、 前記論理部から出力される制御信号に基づいて、接続先の切り替えを行い、前記 第 1の電源電圧、または第 2の電源電圧のいずれかを選択し、前記不揮発性半導体 メモリと前記論理部とに選択した電圧を供給する電圧切り替え部とよりなることを特徴 とする IDタグ。  Primary voltage force Regulators that generate the first and second power supply voltages, respectively, and switching the connection destination based on the control signal output from the logic unit, the first power supply voltage or the second power supply voltage An ID tag comprising: a voltage switching unit that selects one of power supply voltages and supplies the selected voltage to the nonvolatile semiconductor memory and the logic unit.
[9] 請求項 6記載の IDタグにおいて、 [9] In the ID tag according to claim 6,
前記レギユレータ部は、  The regulator part is:
トリミング信号に基づいて電圧をトリミングするトリミング回路を備え、  A trimming circuit that trims a voltage based on a trimming signal is provided.
前記トリミング回路によってデバイス製造ばらつきなどによる前記レギユレ一タの電 圧ばらつきを補正することを特徴とする IDタグ。  An ID tag characterized in that the trimming circuit corrects voltage variations of the regulator due to device manufacturing variations and the like.
[10] 請求項 9記載の IDタグにおいて、 [10] In the ID tag according to claim 9,
前記不揮発性半導体メモリは、  The nonvolatile semiconductor memory is
前記トリミング回路に用いられるトリミング信号を格納するトリミング信号格納部を有 したことを特徴とする IDタグ。  An ID tag comprising a trimming signal storage unit for storing a trimming signal used in the trimming circuit.
PCT/JP2005/009187 2005-05-19 2005-05-19 Semiconductor integrated circuit apparatus and id tag WO2006123415A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/009187 WO2006123415A1 (en) 2005-05-19 2005-05-19 Semiconductor integrated circuit apparatus and id tag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/009187 WO2006123415A1 (en) 2005-05-19 2005-05-19 Semiconductor integrated circuit apparatus and id tag

Publications (1)

Publication Number Publication Date
WO2006123415A1 true WO2006123415A1 (en) 2006-11-23

Family

ID=37430999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009187 WO2006123415A1 (en) 2005-05-19 2005-05-19 Semiconductor integrated circuit apparatus and id tag

Country Status (1)

Country Link
WO (1) WO2006123415A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035694A (en) * 2006-06-30 2008-02-14 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2009181433A (en) * 2008-01-31 2009-08-13 Sharp Corp Noncontact ic card

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511872A (en) * 1991-07-05 1993-01-22 Nec Ic Microcomput Syst Ltd Semiconductor device
WO1993011509A1 (en) * 1991-12-04 1993-06-10 Citizen Watch Co., Ltd. Data carrier
JPH064857U (en) * 1992-06-19 1994-01-21 シチズン時計株式会社 Data carrier
JPH0785227A (en) * 1993-06-24 1995-03-31 Citizen Watch Co Ltd Data carrier communication control system
JP2001005542A (en) * 1999-06-23 2001-01-12 Denso Corp Power source control circuit and dc power source circuit
JP2002269519A (en) * 2001-03-09 2002-09-20 Sharp Corp Semiconductor device and ic card using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511872A (en) * 1991-07-05 1993-01-22 Nec Ic Microcomput Syst Ltd Semiconductor device
WO1993011509A1 (en) * 1991-12-04 1993-06-10 Citizen Watch Co., Ltd. Data carrier
JPH064857U (en) * 1992-06-19 1994-01-21 シチズン時計株式会社 Data carrier
JPH0785227A (en) * 1993-06-24 1995-03-31 Citizen Watch Co Ltd Data carrier communication control system
JP2001005542A (en) * 1999-06-23 2001-01-12 Denso Corp Power source control circuit and dc power source circuit
JP2002269519A (en) * 2001-03-09 2002-09-20 Sharp Corp Semiconductor device and ic card using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035694A (en) * 2006-06-30 2008-02-14 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2009181433A (en) * 2008-01-31 2009-08-13 Sharp Corp Noncontact ic card

Similar Documents

Publication Publication Date Title
EP1852804B1 (en) Rectifier circuit radio communication device
JP5155642B2 (en) ID tag
US8138893B2 (en) Semiconductor integrated circuit device
US6737884B2 (en) Power-on reset circuit and IC card
US8301915B2 (en) Semiconductor integrated circuit device and IC card using the same
EP1914670B1 (en) Semiconductor device
US6848620B2 (en) Semiconductor integrated circuit
US20060175420A1 (en) Passive type RFID semiconductor device, IC tag, and control method
EP1280099A4 (en) Chip for noncontact reader/writer having function for managing power supply
KR101083641B1 (en) Rfid tag
KR20010029777A (en) A semiconductor integrated circuit, a contactless information medium having the semiconductor integrated circuit, and a method of driving the semiconductor integrated circuit
KR20080009544A (en) A tag chip and method for driving the same
WO2006123415A1 (en) Semiconductor integrated circuit apparatus and id tag
JP2016042649A (en) Wireless tag, wireless communication circuit, and deterioration detection method
US8939377B2 (en) RFID device
WO2001001339A1 (en) Composite ic card
US20110121944A1 (en) Radio frequency identification device
JP2008123074A (en) Semiconductor integrated circuit
US20210131879A1 (en) Semiconductor device and capacitance sensor device
JP3904860B2 (en) Power supply device, semiconductor circuit device, and IC card
KR100555509B1 (en) Internal voltage converter for low power consumption by selective voltage references and method thereof
US20080100424A1 (en) Semiconductor Apparatus and Method of Testing Semiconductor Apparatus
US20100277281A1 (en) Rfid tag and method for driving the same
JP5096947B2 (en) Non-contact IC card
US20040135624A1 (en) Semiconductor device and IC card including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05741602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP