WO2006121137A1 - Display apparatus and display panel driving method - Google Patents

Display apparatus and display panel driving method Download PDF

Info

Publication number
WO2006121137A1
WO2006121137A1 PCT/JP2006/309522 JP2006309522W WO2006121137A1 WO 2006121137 A1 WO2006121137 A1 WO 2006121137A1 JP 2006309522 W JP2006309522 W JP 2006309522W WO 2006121137 A1 WO2006121137 A1 WO 2006121137A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
display
display device
display panel
subframe
Prior art date
Application number
PCT/JP2006/309522
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Ishizuka
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2006121137A1 publication Critical patent/WO2006121137A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames

Definitions

  • the present invention relates to a display device using a display panel made of a capacitive light emitting element such as an organic electroluminescence element, and a method for driving the display panel.
  • Thin display panels are required for image display devices used in mobile terminals such as mobile phones.
  • a liquid crystal display panel is usually used for a conventional thin display panel, but a display panel formed by arranging a plurality of organic EL luminescence elements (organic EL elements) in a matrix is only thin.
  • organic EL elements organic EL luminescence elements
  • the organic EL element emits light with a luminance corresponding to the supplied current level.
  • the current level supplied to the organic EL element is generally controlled to a constant current
  • the voltage applied to the organic EL element is generally controlled to a constant voltage. ing.
  • the EL element has a problem that its characteristics change with temperature and time.
  • the characteristics of the drive current flowing through the EL element and the forward voltage of the EL element change with changes in temperature. From the characteristics in Fig. 1, it can be seen that for the same drive current, the forward voltage decreases at high temperatures and increases at low temperatures. In addition, as shown in Fig. 2, it is found that the forward voltage increases over time. I'm crazy. Thus, when the forward voltage of the EL element changes with temperature and time, there is a disadvantage that the brightness of the EL element is lowered.
  • Japanese Patent Application Laid-Open No. 2004-271 755 measures the actual drive current flowing in the display panel and compares it with the panel drive current estimated from the display data.
  • An organic EL display device that adjusts the black level voltage according to the above is shown.
  • Japanese Patent Laid-Open No. 2004-252216 discloses that a peak current value is measured when a display unit having an active matrix structure is driven by a pulse width modulation (PWM) method, and a peak current amount is measured according to the measured value.
  • PWM pulse width modulation
  • a display device is shown in which the average luminance of a display image is determined from the ratio of the average current amount to, and the luminance is adjusted by controlling the voltage applied to the self-luminous element based on this information.
  • a driving current is applied to the measuring EL element to detect the forward voltage of the measuring EL element, and the driving voltage is applied to the display EL element based on the forward voltage.
  • An active drive type light-emitting display device for supplying a light source is shown.
  • the problems to be solved by the present invention include the above-mentioned drawbacks as an example, and the forward voltage of a capacitive light emitting element such as an organic electroluminescence element of a display panel is W
  • the display device provides a display panel composed of a plurality of capacitive light emitting elements arranged in a matrix, and a plurality of gradation display subframe periods within a period of each frame of input video data.
  • a display device that performs gradation display by setting each of the plurality of capacitive light emitting elements to emit light or not emit light for each subframe corresponding to a luminance gradation indicated by input video data,
  • the display panel emits light for each subframe and power supply means for supplying a driving current to the set capacitive light emitting element, and the display panel within a predetermined subframe period of the continuous subframes.
  • a light emitting pixel number counting unit that counts the number of light emitting pixels set and the number of set capacitive light emitting elements as the number of light emitting pixels, and a driving power that flows to the display panel within a period of the predetermined subframe.
  • the display panel drive method of the second invention of the present application is for a display panel composed of a plurality of capacitive light emitting elements arranged in a matrix shape, for a plurality of gradation displays within the period of each frame of input video data.
  • a display panel that provides a sub-frame period and performs gradation display by setting each of the plurality of capacitive light-emitting elements to emit light or not emit light for each sub-frame corresponding to the luminance gradation indicated by the input video data
  • a driving current is supplied from the power supply means to the capacitive light emitting element set to emit light of the display panel for each subframe, and a period of a predetermined subframe among the continuous subframes
  • the number of capacitive light-emitting elements set in the display panel is set to emit light Counting as the number of pixels, measuring the drive current value flowing through the display panel within the period of the predetermined sub-frame, and measuring drive current value within the allowable range of the reference current value for the number of light-emit
  • the display device of the third invention of the present application provides a display panel composed of a plurality of capacitive light emitting elements arranged in a matrix, with a plurality of gradation display subframes within a period of each frame of input video data.
  • a display that performs gradation display by setting a period and setting each of the plurality of capacitive light emitting elements to light emission or non-light emission for each gradation display subframe according to the luminance gradation indicated by the input video data.
  • An apparatus for providing a current measurement subframe that is different from a period of the plurality of gradation display subframes within a specific frame period of the input video data Display pattern setting means for setting each of the plurality of capacitive light emitting elements to emit light or not according to a predetermined display pattern within a period, and the capacitive light emitting element set to emit light of the display panel
  • Power supply means for supplying a drive current to the power supply, a measurement means for measuring a drive current value flowing through the display panel within a period of the current measurement subframe, and a drive current value measured by the measurement means
  • control means for adjusting the output voltage of the power supply means so as to be within an allowable range of the reference current value.
  • the display panel drive method is for a display panel composed of a plurality of capacitive light emitting elements arranged in a matrix, for displaying a plurality of gradations within each frame of input video data.
  • a sub-frame period is provided, and gradation display is performed by setting each of the plurality of capacitive light-emitting elements to emit light or not to emit light for each gradation display sub-frame corresponding to the luminance gradation indicated by the input video data.
  • a driving method for performing the input projection A current measurement subframe period different from a period of the plurality of gradation display subframes within a specific frame period of image data is provided, and the plurality of capacitive light emission within the current measurement subframe period Each element is set to light emission or non-light emission according to a predetermined display pattern, a drive current is supplied from the power supply means to the capacitive light emitting element set to light emission of the display panel, and the period of the current measurement subframe The drive current value flowing in the display panel is measured in the inside, and the output voltage of the power supply means is adjusted so that the measured drive current value is within the allowable range of the reference current value. Yes.
  • FIG. 1 is a diagram showing a forward voltage-one drive current characteristic.
  • FIG. 2 is a graph showing the time-forward voltage characteristics.
  • FIG. 3 is a flock diagram showing a configuration of a display device to which the first and second inventions of the present application are applied.
  • FIG. 4 is a circuit diagram showing a configuration of a light emitting circuit for each pixel of the display panel in the apparatus of FIG.
  • FIG. 5 shows a frame modulation method
  • Fig. 6 is a flowchart showing the panel applied voltage adjustment operation executed by the controller.
  • FIG. 7 is a diagram showing a gray scale display subframe for performing the panel applied voltage adjustment operation.
  • FIG. 8 is a hook diagram showing another configuration of the display device to which the first and second inventions of the present application are applied.
  • FIG. 9 is a flowchart showing the panel applied voltage adjustment operation executed by the controller in the apparatus of FIG.
  • FIG. 10 is a block diagram further illustrating another configuration of the display device to which the first and second inventions of the present application are applied.
  • -Fig. 11 is a flowchart showing the panel applied voltage adjustment operation executed by the controller in the apparatus of Fig. 10.
  • FIG. 12 is a block diagram showing the configuration of a display device to which the third and fourth inventions of the present application are applied.
  • FIG. 13 is a flowchart showing the panel applied voltage adjustment operation executed by the controller in the apparatus of FIG. ⁇ Fig. 14 is a diagram showing a sub-frame for gradation display within a specific frame and a sub-frame for current measurement.
  • FIG. 15 is a hook diagram showing another configuration of the display device to which the third and fourth inventions of the present application are applied.
  • FIG. 16 is a flowchart showing the panel applied voltage adjustment operation executed by the controller in the apparatus of FIG.
  • FIG. 17 is a hook diagram showing another configuration of the display device to which the third and fourth inventions of the present application are applied.
  • FIG. 18 is a flowchart showing the panel applied voltage adjustment operation executed by the controller in the apparatus of FIG.
  • FIG. 19 is a diagram showing an example in which a drive current measurement period is provided within each EL element of the display panel (a subframe in which this reverse bias voltage is applied).
  • FIG. 3 shows a configuration of a display device to which the first and second inventions of the present application are applied.
  • This display device includes a display panel 1 1, a scanning line driving circuit 1 2, a data line driving circuit 1 3, a current detection circuit 14, a variable power supply 1 5, and a controller 17.
  • the display panel 11 is an active matrix type composed of m ⁇ n pixels, and has an electroluminescence (EL) light emitting circuit 11 i to ll m , n for each pixel.
  • EL light-emitting circuits 1 1 i to ll m and n all have the same configuration, are connected to the scanning line driving circuit 12 via scanning lines Al to An, and are connected to data lines via data lines B 1 to Bm. Connected to drive circuit 1 3.
  • the light-emitting circuit 1 1 i has two FETs 21 and 22 and a capacitor 23 for driving the organic EL element 24 as shown in FIG.
  • the gate G of FET 21 is connected to a scanning line A 1 to which a scanning signal is supplied, and the source S of FET 21 is connected to a data line B 1 to which a data signal is supplied.
  • the drain D of FET 21 is connected to the gate G of FET 22 and is connected to one terminal of the capacitor 24.
  • the source S of the FET 22 is connected to the common power line 25 together with the other terminal of the capacitor 23.
  • the drain D of the FET 22 is connected to the anode of the EL element 24, and the cathode of the EL element 24 is connected to the ground.
  • Light emitting circuit 11 1 to ll m , n The light emission luminance of each EL element 24 is controlled in order to obtain a display gradation in accordance with the image data.
  • a frame modulation method that controls the drive period within one frame is adopted.
  • one frame is divided into multiple (N) subframes SF1, SF2, SF3, ... SFN FET 2 only during the subframe period selected according to the video data.
  • N subframes SF1, SF2, SF3, ... SFN FET 2 only during the subframe period selected according to the video data.
  • the light emission or non-light emission state is performed in subframe units.
  • Each subframe SF1, SF2, SF3, ... SFN period is divided into writing period and display period.
  • the writing period is a period for determining whether FET 22 is set to the on state or the off state in the scanning line order in each subframe.
  • the display period is set when the writing period is set to the on state. This is the period during which the EL element 24 emits light.
  • the controller 17 generates a scanning control signal and a data control signal in the writing period according to the input image data.
  • the scanning control signal indicates the selected scanning line and is supplied to the scanning line driving circuit 12, and the data control signal indicates the data line corresponding to the EL element to emit light and is supplied to the data line driving circuit 13.
  • each of the scanning line driving circuit 12 and the data line driving circuit 13 includes a power source and a switch circuit.
  • the scanning line driving circuit 12 sequentially selects the scanning lines A 1 to An for each subframe in accordance with the scanning control signal in the writing period, and supplies the scanning signal to the selected scanning line.
  • the data line driving circuit 13 selects the data lines B1 to Bm according to the data control signal, and supplies a data signal to the selected data line.
  • Emitting circuit 1 1 E ⁇ 1 l m the output voltage of the variable power source 1 5 is supplied via the current detection circuit 1 4 as a power supply voltage to the common power supply line 2 5 which is a power supply unit with respect to n.
  • the FET 2 1 When a scanning signal is supplied to the gate G of the FET 2 1 via the scanning line A'l during the period, the FET 2 1 is turned on by the supply of the scanning signal, and to the source S via the data line B 1 A current corresponding to the voltage of the supplied data signal is supplied from the source S to the drain D. Capacitor 23 is charged and the voltage is supplied to the gate G of FET 22 and FET 22 is turned on. The FET 22 supplies a drive current corresponding to the data signal supplied to the gate G to the EL element 24 and causes the EL element 24 to emit light. The light emission continues until at least the end of the display period of the subframe.
  • Current detecting circuit 1 4 detects the values of the drive current from the variable power supply 1 5-emitting circuit 1 1 to 1 l m, Ru is supplied to the n.
  • a controller 17 is connected to the detection output terminal of the current detection circuit 14.
  • the controller 17 performs the panel applied voltage adjustment operation so that the EL elements of all the pixels of the display panel 11 are set to emit light in one subframe.
  • the number of pixels that emit light that is, the number of light-emitting pixels, and the current detection circuit 14 calculate the unit drive current value by dividing the detected drive current value by the number of light-emitting pixels.
  • a division function, a function for comparing the unit drive current value and the reference current value, and a voltage adjustment function for controlling the output voltage of the variable power source 15 according to the comparison result are provided. Note that each of these functions operates in the panel applied voltage adjustment operation described below by the controller 17 executing, for example, a program. However, the light emitting pixel number counting circuit, the divider, the comparison circuit, and the voltage adjustment are performed.
  • a hardware circuit may be provided.
  • the controller 17 determines whether or not the period of the gradation display subframe for performing the panel applied voltage adjustment operation has come (step S 1).
  • the gray scale display subframe that performs the panel applied voltage adjustment operation is a subframe for gray scale display SF1, SF2, SF3, ... within one specific frame.
  • the specific frame may be every frame, a predetermined number of frame intervals, or the specific frame interval may be shortened over time. Also, it may be a frame when the power is turned on. ⁇
  • a sub-frame whose display period is longer than the writing period is used.
  • the display period is shorter than the writing period, light may not be emitted simultaneously for all the scanning lines during the display period.
  • the writing period does not end in the scanning line An. Therefore, a sub-frame having a display period in which a period in which the drive current value flowing through all the EL elements set to emit light in one sub-frame can be measured accurately is obtained.
  • step S2 When the controller 17 determines that the period of the gradation display subframe for performing the panel applied voltage adjustment operation is reached, the display pattern assigned to the subframe according to the image data is displayed on the display panel 11. Execute the operation to be displayed (step S2).
  • the controller 17 first generates a scan control signal and a data control signal in the writing period of the gradation display subframe that performs the panel applied voltage adjustment operation.
  • the scanning control signal indicates the selected scanning line and is supplied to the scanning line driving circuit 12, and the data control signal corresponds to the EL element for each scanning line to be emitted in the display pattern. Indicates a data line and is supplied to the data line driving circuit 13.
  • the scanning line drive circuit 12 sequentially selects the scanning lines A 1 to An in accordance with the running control signal during the writing period, and supplies the scanning signal to the selected scanning line.
  • the data line driving circuit 13 selects the data lines B1 to Bm according to the data control signal, and supplies the data signal to the selected data line. Therefore, the light emitting circuit 1 1 l m , i 1 1 2 to 1 l m , 2 ,..., 1 1 n to ll m , n are charged in the light emitting circuit capacitor 2 3 at the light emitting position of the display pattern in this order.
  • the EL elements 24 since the EL elements 24 are turned on, the drive current is supplied to the EL elements 24.
  • the display panel 11 displays the above assigned display pattern.
  • the controller 17 counts the number of pixels set for light emission among all the pixels of the display panel 11 in the gradation display subframe that performs the panel applied voltage adjustment operation (step S 3).
  • the above-mentioned data control signal indicates light emission / non-light emission of all pixels, that is, light emitting circuits 1 1 n to: I l m , n by logical values, and therefore emits the number of logic 1 indicating light emission. Count as the number of pixels.
  • the controller 17 reads the drive current value detected by the current detection circuit 14 during the measurement period of the display period (Step S4), and divides the read drive current value by the number of light emitting pixels.
  • the unit drive current value is calculated (step S5).
  • the unit drive current value is compared with the reference current value (step S6), and the comparison result is determined (step S7).
  • the reference current value is a preset drive current value that flows through one light emitting circuit during light emission.
  • the controller 17 increases the output voltage of the variable power source 15 by a certain voltage (step S8), and the drive current value is equal to the reference current value. If it is higher than the allowable range, the output voltage of the variable power source 15 is reduced by a constant voltage (step S 9). By repeating steps S4 to S9, the drive current value is made substantially equal to the reference current value.
  • the unit drive current value is compared with the reference current value, but the drive current is measured several times, and the average drive current value is calculated and averaged. Even if the unit current value of the drive current value is compared with the reference current value, it is good.
  • the unit drive current value is calculated by dividing the measured drive current value by the number of light emitting pixels and divided by the reference current value. However, the number of light emitting pixels is added to the reference current value. Multiplication may be performed to compare the reference current value X the number of light emitting pixels and the measured drive current value.
  • the current detection circuit 14 is inserted between the variable power supply 15 and the display panel 11 1 only during the drive current measurement period, and the variable power supply 15 and the display panel 11 are directly connected during other periods. You may do it.
  • each of the light emitting circuits 11 to 1 l m and n is shown in FIG. 4, but the configuration of the light emitting circuit is not limited to this, and the present invention is a display provided with a light emitting circuit of another configuration for each pixel. It can also be applied to the panel.
  • FIG. 8 shows another configuration of the display device to which the first and second inventions of the present application are applied.
  • the This display device includes a display panel 1 1, a scanning line drive circuit 1 2, a data line drive circuit 1 3, a current detection circuit 14, a controller 1 7, a power supply 3 1, and an on-voltage variable circuit 3 2.
  • the display panel 11, the scanning line driving circuit 12, the data line driving circuit 13, the current detection circuit 14 and the controller 17 are the same as those in the display device shown in FIG.
  • the power supply 31 outputs a fixed voltage.
  • the output voltage of the power supply 31 is supplied to the common power supply line 25 via the current detection circuit 14 for the light emitting circuits 11 i to ll m , n .
  • On voltage variable circuit 32 changes the ON voltage supplied as a data signal emitting circuit 1 of the display from the data line driving circuit 1 3 panel 1 1 1 to 1 l m, the n.
  • the on-voltage is a gate voltage applied to the FET 22 via the FET 21 when the FET 21 is turned on in order to cause the EL element 24 of the light emitting circuit to emit light.
  • the on-voltage is changed in response to a command from controller 17.
  • the data line drive circuit 13 is specifically shown only with a configuration including a switch 13 that supplies a data signal to the data line B 1, but the same applies to each of the data lines B 2 to Bm. is there.
  • the switch 13 selects either the ON voltage supplied from the ON voltage variable circuit 32 or the OFF voltage equal to the ground potential, for example, according to the data control signal supplied from the controller 17. And supplied to the data line B 1 as a data signal.
  • the off voltage is a gate voltage applied to the FET 22 via the FET 21 when the FET 21 is turned on so that the EL element 24 of the light emitting circuit does not emit light.
  • the panel applied voltage adjustment operation executed by the controller 17 in the display device of FIG. 8 is shown in the flowchart of FIG.
  • Steps S 1 to S 7 of the panel applied voltage adjustment operation in FIG. 9 are the same as steps S 1 to S 7 of the panel applied voltage adjustment operation shown in FIG.
  • the controller 17 increases the output voltage (on voltage) to the on-voltage variable circuit 3 2 by a constant voltage (step S). 10), if the drive current value is higher than the allowable range of the reference current value, the ON voltage variable circuit 32 reduces the output voltage by a constant voltage (step S 1 1).
  • steps S 4 to S 7, S 10 or S I 1 the drive current value is made approximately equal to the reference current value.
  • the constant voltage in steps S 10 and S 11 may be different from the constant voltage in steps S 8 and S 9 described above.
  • FIG. 10 further shows another configuration of the display device to which the first and second inventions of the present application are applied.
  • the display device in FIG. 10 includes a display panel 1 1, a scanning line drive circuit 1 2, a data line drive circuit 1 3, a current detection circuit 1 4, a variable power supply 1 5, a controller 1 7, and an on-voltage variable circuit 3 2.
  • Display panel 1 1, Scan line drive circuit 1 2, Data line drive circuit 1 3, Current detection circuit 1 4, Variable power supply 1 5 and controller 17 are the same as those in the display device shown in Fig. 3.
  • the on-voltage variable circuit 32 is the same as that in the display device shown in FIG.
  • the panel applied voltage adjustment operation executed by the controller 17 in the display device of FIG. 10 is shown in the flowchart of FIG.
  • the panel application voltage adjustment operation in Fig. 11 is a combination of the panel application voltage adjustment operation in Fig. 6 and the panel application voltage adjustment operation in Fig. 9.
  • Step S 2! ⁇ S 2 3 Equivalent to S 1 to S 3 described above.
  • Steps S 2 4 to S 29 are operations for adjusting the output voltage (ON voltage) of ON voltage variable circuit 3 2
  • steps S 3 0 to S 3 5 are the output voltage (power supply voltage) of variable power supply 15 ) Is an operation to adjust.
  • the drive current value is substantially equal to the reference current value.
  • the panel applied voltage adjustment operation may be performed for each R GB.
  • the controller 17 is detected by the current detection circuit 14 and the current detection circuit 14 which counts the number of pixels in which the EL elements of all the pixels of the display panel 11 are set to emit light, that is, the number of light emitting pixels.
  • the division function that calculates the unit drive current value by dividing the drive current value by the number of light emitting pixels, the function that compares the unit drive current value and the reference current value, and the variable power supply 1 5 ( A voltage adjustment function for controlling the output voltage of the on-voltage variable circuit 3 2) is provided for each RGB.
  • the driving current is supplied from the power supply means to the capacitive light emitting element set to emit light of the display panel for each gradation display subframe, and the continuous sub
  • the number of capacitive light elements set as the light emission of the display panel and the number of light emitting pixels within the predetermined subframe period of the frame is counted as the number of light emitting pixels, and the drive current value that flows through the display panel within the predetermined subframe period Is measured, and the output voltage of the power supply means is adjusted so that the measured drive current value is within the allowable range of the reference current value for the number of light emitting pixels.
  • FIG. 12 shows the configuration of a display device to which the third and fourth inventions of the present application are applied.
  • the display device includes a display panel 11, a scanning line driving circuit 12, a data line driving circuit 13, a current detection circuit 14, a variable power source 15, a comparison circuit 16 and a controller 17.
  • the display panel 11, the scanning line driving circuit 12, the data line driving circuit 13, the current detection circuit 14 and the variable power source 15 are the same as those of the display device shown in FIG.
  • the comparison circuit 16 is connected to the detection output terminal of the current detection circuit 14.
  • the comparison circuit 16 compares the drive current value detected by the current detection circuit 14 with the reference current value.
  • a voltage value corresponding to the reference current value is supplied to the comparison circuit 16.
  • the reference current value is a preset current value in a predetermined measurement display pattern.
  • the comparison result of the comparison circuit 16 is supplied to the controller 17.
  • the controller 17 controls the output voltage of the variable power source 15 so that the drive current value becomes equal to the reference current value according to the comparison result of the comparison circuit 16.
  • the controller 17 determines whether or not the current measurement subframe period has come (step S 51). As shown in Fig. 14, the current measurement subframes are arranged separately from the subframes for gradation display SF1, SF2, SF3, ... SFN in a specific frame. In Fig. 14, the current measurement subframe is arranged between the grayscale display subframes. The specific frame may be every frame or a predetermined number of frame intervals. Also, it may be a frame when the power is turned on. If the controller 17 determines that the current measurement subframe period has come, it performs an operation to display the measurement display pattern on the display panel 11 (step S 5 2). As shown in Fig. ⁇ 4, the current measurement subframe consists of a writing period and a display period.
  • the measurement period for measuring the drive current is located in the display period.
  • Scan control signals and data control signals are generated during the writing period of the current measurement subframe.
  • the scanning control signal indicates the selected scanning line and is supplied to the scanning line driving circuit 12, and the data control signal indicates the data line corresponding to the EL element that should emit light in the measurement display pattern, and the data line driving circuit 1 3 To be supplied.
  • the scanning line driving circuit 12 sequentially selects the scanning lines A :! to An in accordance with the scanning control signal in the writing period, and supplies the scanning signals to the selected scanning lines.
  • the data line driving circuit 13 selects the data lines B 1 to B m according to the data control signal and supplies the data signal to the selected data line.
  • the capacitor 23 of the light emitting circuit at the light emitting position of the display pattern for measurement in the light emitting circuits 1 1 i to ll m , n is charged and the EL element 24 is turned on. 24 4 is supplied with drive current.
  • the EL element to which the drive current is supplied during the display period emits light, and the display panel 11 displays the measurement display pattern.
  • the controller 17 causes the comparison circuit 16 to read the drive current value detected by the current detection circuit 14 during the above measurement period (step S 53).
  • the comparison circuit 16 compares the read drive current value with the reference current value, and the comparison result is read by the controller 17 (step S54).
  • the controller 17 increases the output voltage to the variable power source 15 by a certain voltage (step S 5 5), and the drive current value becomes the reference current value.
  • Value tolerance ffl If it is higher, the output voltage of the variable power source 15 is reduced by a constant voltage (step S 5 6). By repeating steps S 53 to S 56, the drive current value is almost equal to the reference current value.
  • the subframe for current measurement is provided separately from the subframes SF1, SF2, SF3, ... SFN for gradation display, but the subframes SF1, SF2, SF for full tone display are provided. SF3, ... Any one subframe of SFN may be used as a current measurement subframe.
  • Gradation display subframes SF1, SF2, SF3, ... When SFN is weighted and the duration of each subframe is different, the shortest subfield is set as the current measurement subframe. The influence on the displayed contents can be minimized.
  • the display pattern for measurement in the above-described embodiment covers one line in the vertical direction of the display panel 11 or light emission of one EL element in several lines, or one line or several lines in the horizontal direction. It is a pattern that emits light from an EL element.
  • the degree to which the display of the display pattern for measurement influences the display corresponding to the input image data can be kept low.
  • the drive current is measured with only a part of the pixels on the display panel, it is possible that the total current value is not reflected. Therefore, each time the current measurement subframe is installed, the measurement display pattern on the display panel It is also possible to reflect the entire current value by moving the light emitting part by, measuring each movement, and averaging them. .
  • the display pattern for measurement may be a display pattern that lights up all over. In this way, the entire current value can be reflected.
  • FIG. 15 shows another configuration of the display device to which the third and fourth inventions of the present application are applied.
  • This display device includes a display panel 11, a scanning line drive circuit 2, a data line drive circuit 13, a current detection circuit 14, a comparison circuit 16, a controller 17, a power supply 31, and an on-voltage variable circuit 32.
  • the display panel 11, the scanning line driving circuit 12, the data line driving circuit 13, the current detection circuit 14, the comparison circuit 16 and the controller 17 are the same as those in the display device shown in FIG.
  • the power supply 31 outputs a fixed voltage.
  • the output voltage of the power supply 31 is supplied to the common power supply line 25 via the current detection circuit 14 for the light emitting circuits 11 i to ll m , n .
  • On voltage variable circuit 32 changes the ON voltage supplied from the data line driving circuit 13 emitting circuit 1 1 to 1 l m of the display panel 1 1, the n as data signals.
  • the on-voltage is a gate voltage applied to the FET 22 via the FET 21 when the FET 21 is turned on in order to cause the EL element 24 of the light emitting circuit to emit light.
  • the on-voltage is changed in response to a command from controller 17. Further, when the on-voltage is changed by the on-voltage variable circuit 32, the gate voltage applied to the FET 22 changes.
  • the FET 22 operates in the active region and the EL element 24 is operated via the FET 22.
  • the drive current value supplied to the voltage changes.
  • FIG. 15 only the configuration of the data line driving circuit 13 including the switch 13 for supplying the data signal to the data line B 1 is specifically shown, but the same applies to each of the data lines B 2 to Bm. .
  • the off-voltage is a gate voltage that is applied to FET 2 2 via FET 21 when FET 21 is turned on so that EL element 24 of the light emitting circuit does not emit light.
  • the panel applied voltage adjustment operation executed by the controller 17 in the display device of FIG. 15 is shown in the flowchart of FIG.
  • Steps S 5 1 to S 5 4 of the panel applied voltage adjusting operation in FIG. 16 are the same as steps S 5 l ⁇ S 5 4 of the panel applied voltage adjusting operation shown in FIG.
  • the controller 17 determines that the drive current value is lower than the allowable range of the reference current value in step S54, the controller 17 increases the output voltage (on voltage) by a constant voltage to the on-voltage variable circuit 3 2 (step S5).
  • the ON voltage variable circuit 32 reduces the output voltage by a constant voltage (step S 58).
  • steps S 5 3, S 5 4, S 5 7 or S 5 8 the drive current value is made substantially equal to the reference current value.
  • the constant voltage in steps S 5 7 and S 5 8 may be different from the constant voltage in steps S 5 5 and S 5 6.
  • FIG. 17 further shows another configuration of the display device to which the third and fourth inventions of the present application are applied.
  • the display device shown in Fig. 7 has a display panel 1 1, a scanning line drive circuit 1 2, a data line drive circuit 1 3, a current detection circuit 1 4, a variable power supply 1 5, a comparison circuit 1 6, a controller 1 7, and a variable ON voltage. Circuit 3 2 is provided.
  • Display panel 1 1, Scan line drive circuit 1 2, Data line drive circuit 1 3, Current detection circuit 1 4, Variable power supply 1 5, Comparison circuit 1 6 and controller 1 7 are in the display device shown in Figure 12
  • the on-voltage variable circuit 32 is the same as that in the display device shown in FIG.
  • Fig. 17 Panel application zero executed by controller 17 in display device of 7 • The pressure adjustment operation is shown in the flowchart in Fig. 18.
  • the panel applied voltage adjustment operation in Fig. 18 is a combination of the panel applied voltage adjustment operation in Fig. 13 and the panel applied voltage adjustment operation in Fig. 16.
  • Steps S 6 1 and S 6 2 are equal to S 5 1 and S 5 2 described above.
  • Steps S 6 3 to S 6 6 are operations for adjusting the output voltage (ON voltage) of the ON voltage variable circuit 3 2.
  • Steps S 6 7 to S 70 are output voltages of the variable power source 15 (power supply voltage) This is an operation for adjusting.
  • the drive current value is made substantially equal to the reference current value. '
  • FIG. 19 shows an example in which a drive current measurement period is provided within a subframe period in which a reverse bias voltage is applied to each EL element of the display panel.
  • the EL element has a refreshing effect that the function of the EL element is restored when a reverse voltage, that is, a reverse bias voltage is sometimes applied to the EL element whose function is deteriorated due to repeated light emission. Yes. Therefore, by providing the drive current measurement period within the subframe period during which the reverse bias voltage is applied, the pixel selection time can be shared, and one frame compared to the case where the current measurement subframe is provided independently. It is possible to shorten the period other than the period of the sub-frame for gradation display.
  • a voltage-driven display device is shown, but the present invention can also be applied to a current-driven display device.
  • a current-driven display device Although an example using an active matrix type display panel has been shown, the present invention can also be applied to a display device that drives a passive matrix type display panel.
  • the measurement display pattern may be displayed for each RGB, and the power supply voltage applied to the display panel for each RGB may be controlled.
  • power can be measured with a single drive current measurement.
  • the voltage (or on-voltage) may be controlled, or the power supply voltage (or on-voltage) may be controlled by taking the average of the measurement results of several drive current values.
  • the current measurement subframe period different from the periods of the plurality of gradation display subframes within the specific frame period of the input video data is set.
  • a plurality of capacitive light emitting elements are set to emit or not emit light during the period of the current measurement subframe, and a driving current is supplied from the power supply means to the capacitive light emitting elements set to emit light of the display panel.
  • the drive current value flowing through the display panel is measured within the current measurement subframe period, and the output voltage of the power supply means is adjusted so that the measured drive current value falls within the allowable range of the reference current value. It is broken. Therefore, even if the forward voltage of each capacitive light emitting element of the display panel changes, it is possible to prevent the display brightness of the display panel from being lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A display apparatus and a display panel driving method comprising the steps of supplying a drive current from a power supply means to capacitive light emitting elements of the display panel each set to emit a light in each of subframes used for gray-scale display; counting, as a number of light emitting pixels, the number of the capacitive light emitting elements of the display panel each set to emit a light during a predetermined one of the successive subframes; determining the value of the drive current flowing in the display panel during the predetermined subframe; and adjusting the output voltage of the power supply means such that the measured drive current value is within acceptable limits of the reference current value established for the light emitting pixels.

Description

明細書 表示装置及び表示パネルの駆動方法  DISPLAY DEVICE AND DISPLAY PANEL DRIVING METHOD
技術分野 Technical field
本発明は、 有機エレクトロルミネッセンス素子等の容量性発光素子からなる表 示パネルを用いた表示装置及びその表示パネルの駆動方法に関する。  The present invention relates to a display device using a display panel made of a capacitive light emitting element such as an organic electroluminescence element, and a method for driving the display panel.
背景技術 Background art
携帯電話機等の携帯端末に用いられる画像表示装置としては、 薄型の表示パネ ルが要求されている。 従来の薄型の表示パネルには液晶表示パネルが通常使用さ れているが、 複数の有機エレク ト口ルミネッセンス素子 (有機 E L素子) をマト リックス状に配列して構成される表示パネルは、薄いだけでなく軽量となるので、 携帯端末用の画像表示装置として有望とされている。  Thin display panels are required for image display devices used in mobile terminals such as mobile phones. A liquid crystal display panel is usually used for a conventional thin display panel, but a display panel formed by arranging a plurality of organic EL luminescence elements (organic EL elements) in a matrix is only thin. In addition, since it is lightweight, it is considered promising as an image display device for portable terminals.
有機 E L素子の駆動としては電流駆動方式と電圧駆動方式とがある。 有機 E L 素子は供給される電流レベルに応じた輝度で発光する。 電流駆動方式の表示装置 では有機 E L素子に供給する電流レベルを一定電流に制御し、 電圧駆動方式の表 示装置では有機 E L素子に印加する電圧を一定電圧に制御することが一般的に行 われている。  There are two methods for driving organic EL elements: current drive and voltage drive. The organic EL element emits light with a luminance corresponding to the supplied current level. In a current-driven display device, the current level supplied to the organic EL element is generally controlled to a constant current, and in a voltage-driven display device, the voltage applied to the organic EL element is generally controlled to a constant voltage. ing.
ところで、 E L素子には温度や経時によって特性が変化するという問題がある。 図 1に示すように、 E L素子を流れる駆動電流と E L素子の順方向電圧との特性 は温度変化に応じて変化する。 この図 1の特性からは、 同一の駆動電流において は高温時には順方向電圧が低下し、 低温時には順方向電圧が上昇することが分か る。 また、 図 2に示すように、 順方向電圧は経時経過に従って上昇することが分 かっている。 このように EL素子の順方向電圧が温度や経時によつて変化した場 合には E L素子の輝度の低下を招いてしまうという欠点があった。 By the way, the EL element has a problem that its characteristics change with temperature and time. As shown in Fig. 1, the characteristics of the drive current flowing through the EL element and the forward voltage of the EL element change with changes in temperature. From the characteristics in Fig. 1, it can be seen that for the same drive current, the forward voltage decreases at high temperatures and increases at low temperatures. In addition, as shown in Fig. 2, it is found that the forward voltage increases over time. I'm crazy. Thus, when the forward voltage of the EL element changes with temperature and time, there is a disadvantage that the brightness of the EL element is lowered.
これに対処するための従来技術として、 特開 2004— 271 755号公報に は、 表示パネルに流れる実際の駆動電流を測定し、 表示データから推測されるパ ネル駆動電流と比較し、 その比較結果に応じて黒レベルの電圧を調整する有機 E L表示装 «が示されている。  As a conventional technique for dealing with this, Japanese Patent Application Laid-Open No. 2004-271 755 measures the actual drive current flowing in the display panel and compares it with the panel drive current estimated from the display data. An organic EL display device that adjusts the black level voltage according to the above is shown.
また、 特開 2004— 25221 6号公報には、 アクティブマトリクス構成の 表示部をパルス幅変調( P WM)方式で駆動するときのピーク電流値を測定し、 そ の測定値に応じてピーク電流量に対する平均電流量の比から表示画像の平均輝度 を判別し、 これらの情報に基づいて自発光素子への印加電圧を制御して輝度を調 整する表示装置が示されている。  Japanese Patent Laid-Open No. 2004-252216 discloses that a peak current value is measured when a display unit having an active matrix structure is driven by a pulse width modulation (PWM) method, and a peak current amount is measured according to the measured value. A display device is shown in which the average luminance of a display image is determined from the ratio of the average current amount to, and the luminance is adjusted by controlling the voltage applied to the self-luminous element based on this information.
また、 特開 2004— 252036号公報には、 測定用 E L素子に駆動電流を 与えてその測定用 EL素子の順方向電圧を検出し、 その順方向電圧に基づいて表 示用 E L素子に駆動電圧を供給するァクティブ駆動型発光表示装置が示されてい る。  In Japanese Patent Laid-Open No. 2004-252036, a driving current is applied to the measuring EL element to detect the forward voltage of the measuring EL element, and the driving voltage is applied to the display EL element based on the forward voltage. An active drive type light-emitting display device for supplying a light source is shown.
しかしながら、 いずれの従来装置においても有機エレクトロルミネッセンス素 子等の容量性発光素子の順方向電圧が変化しても発光輝度が初期の輝度になるよ うに制御するものではなく表示パネル全体の表示輝度が低下してしまうという欠 点を解消するものではなかった。  However, in any conventional apparatus, even if the forward voltage of a capacitive light emitting element such as an organic electroluminescence element changes, the light emission luminance is not controlled to be the initial luminance, and the display luminance of the entire display panel is not controlled. It did not eliminate the shortcoming of the decline.
発明の開示 Disclosure of the invention
本発明が解決しょうとする課題には、 上記の欠点が一例として挙げられ、 表示 パネルの有機エレクトロルミネッセンス素子等の容量性発光素子の順方向電圧が W The problems to be solved by the present invention include the above-mentioned drawbacks as an example, and the forward voltage of a capacitive light emitting element such as an organic electroluminescence element of a display panel is W
3 変化しても表示輝度の低下を防止することができる表示装置及び表示パネルの駆 動方法を提供することが本発明の目的である。  3 It is an object of the present invention to provide a display device and a display panel driving method capable of preventing a decrease in display luminance even when the display changes.
本願第 1の発明の表示装置は、 マトリックス状に配置された複数の容量性発光 素子からなる表示パネルに対し、 入力映像データの各フレームの期間内に、 複数 の階調表示用サプフレームの期間を設け、 入力映像データが示す輝度階調に対応 して前記複数の容量性発光素子の各々を前記サブフレーム毎に発光又は非発光に 設定して階調表示を行う表示装置であって、 前記サブフ 'レーム毎に前記表示パネ ルの発光と設定された容量性発光素子に駆動電流を供給する電源手段と、 連続す る前記サブフレームのうちの所定のサブフレームの期間内において前記表示パネ ルの発光と設定された容量性発光素子の数を発光画素数として計数する発光画素 数計数手段と、 前記所定のサブフレームの期間内において前記表示パネルに流れ る駆動電流値を測定する測定手段と、 前記測定手段によつて測定される駆動電流 値が前記発光画素数分の基準電流値の許容範囲内になるように前記電源手段の出 力電圧を調整する制御手段と、 を備えたことを特徴としている。  The display device according to the first aspect of the present invention provides a display panel composed of a plurality of capacitive light emitting elements arranged in a matrix, and a plurality of gradation display subframe periods within a period of each frame of input video data. A display device that performs gradation display by setting each of the plurality of capacitive light emitting elements to emit light or not emit light for each subframe corresponding to a luminance gradation indicated by input video data, The display panel emits light for each subframe and power supply means for supplying a driving current to the set capacitive light emitting element, and the display panel within a predetermined subframe period of the continuous subframes. A light emitting pixel number counting unit that counts the number of light emitting pixels set and the number of set capacitive light emitting elements as the number of light emitting pixels, and a driving power that flows to the display panel within a period of the predetermined subframe. Measuring means for measuring the value, and control means for adjusting the output voltage of the power supply means so that the drive current value measured by the measuring means is within the allowable range of the reference current value for the number of light emitting pixels. It is characterized by having
本願第 2の発明の表示パネルの駆動方法は、 マトリツタス状に配置された複数 の容量性発光素子からなる表示パネルに対し、 入力映像データの各フレームの期 間内に、 複数の階調表示用サブフレームの期間を設け、 入力映像データが示す輝 度階調に対応して前記複数の容量性発光素子の各々を前記サブフレーム毎に発光 又は非発光に設定して階調表示を行う表示パネルの駆動方法であって、 前記サブ フレーム毎に前記表示パネルの発光と設定された容量性発光素子に前記電源手段 から駆動電流を供給し、 連続する前記サブフレームのうちの所定のサブフレーム の期間内において前記表示パネルの発光と設定された容量性発光素子の数を発光 画素数として計数し、 前記所定のサブフレームの期間内において前記表示パネル に流れる駆動電流値を測定し、 その測定駆動電流値が前記発光画素数分の基準電 流値の許容範囲内になるように前記電源手段の出力電圧を調整することを特徴と している。 The display panel drive method of the second invention of the present application is for a display panel composed of a plurality of capacitive light emitting elements arranged in a matrix shape, for a plurality of gradation displays within the period of each frame of input video data. A display panel that provides a sub-frame period and performs gradation display by setting each of the plurality of capacitive light-emitting elements to emit light or not emit light for each sub-frame corresponding to the luminance gradation indicated by the input video data A driving current is supplied from the power supply means to the capacitive light emitting element set to emit light of the display panel for each subframe, and a period of a predetermined subframe among the continuous subframes The number of capacitive light-emitting elements set in the display panel is set to emit light Counting as the number of pixels, measuring the drive current value flowing through the display panel within the period of the predetermined sub-frame, and measuring drive current value within the allowable range of the reference current value for the number of light-emitting pixels And adjusting the output voltage of the power supply means.
本願第' 3の発明の表示装置は、 マトリックス状に配置された複数の容量性発光 素子からなる表示パネルに対し、 入力映像データの各フレームの期間内に、 複数 の階調表示用サブフレームの期間を設け、 入力映像データが示す輝度階調に対応 して前記複数の容量性発光素子の各々を前記階調表示用サブフレーム毎に発光又 は非発光に設定して階調表示を行う表示装置であって、 前記入力映像データの特 定のフレームの期間内の前記複数の階調表示用サブフレームの期間とは異なる電 流測定用サブフレームの期間を設け、 その電流測定用サプフレームの期間内にお いて前記複数の容量性発光素子各々を所定の表示パターンに従った発光又は非発 光に設定する表示パタ一ン設定手段と、 前記表示パネルの発光と設定された容量 性発光素子に駆動電流を供給する電源手段と、 前記電流測定用サブフレームの期 間内において前記表示パネルに流れる駆動電流値を測定する測定手段と、 前記測 定手段によつて測定される駆動電流値が基準電流値の許容範囲内になるように前' 記電源手段の出力電圧を調整する制御手段と、 を備えたことを特徴としている。 本願第 4の発明の表示パネルの駆動方法は、 マトリックス状に配置された複数 の容量性発光素子からなる表示パネルに対し、 入力映像データの各フレームの期 間内に、 複数の階調表示用サブフレームの期間を設け、 入力映像データが示す輝 度階調に対応して前記複数の容量性発光素子の各々を前記階調表示用サブフレー ム毎に発光又は非発光に設定 て階調表示を行う駆動方法であって、 前記入力映 像データの特定のフレームの期間内の前記複数の階調表示用サブフレームの期間 とは異なる電流測定用サブフレームの期間を設け、 その電流測定用サブフレーム の期間内において前記複数の容量性発光素子各々を所定の表示パターンに従った 発光又は非発光に設定し、 前記表示パネルの発光と設定された容量性発光素子に 前記電源手段から駆動電流を供給し、 前記電流測定用サブフレームの期間内にお いて前記 ¾示パネルに流れる駆動電流値を測定し、 その測定駆動電流値が基準電 流値の許容範囲内になるように前記電源手段の出力電圧を調整することを特徴と している。 The display device of the third invention of the present application provides a display panel composed of a plurality of capacitive light emitting elements arranged in a matrix, with a plurality of gradation display subframes within a period of each frame of input video data. A display that performs gradation display by setting a period and setting each of the plurality of capacitive light emitting elements to light emission or non-light emission for each gradation display subframe according to the luminance gradation indicated by the input video data. An apparatus for providing a current measurement subframe that is different from a period of the plurality of gradation display subframes within a specific frame period of the input video data; Display pattern setting means for setting each of the plurality of capacitive light emitting elements to emit light or not according to a predetermined display pattern within a period, and the capacitive light emitting element set to emit light of the display panel Power supply means for supplying a drive current to the power supply, a measurement means for measuring a drive current value flowing through the display panel within a period of the current measurement subframe, and a drive current value measured by the measurement means And control means for adjusting the output voltage of the power supply means so as to be within an allowable range of the reference current value. The display panel drive method according to the fourth invention of the present application is for a display panel composed of a plurality of capacitive light emitting elements arranged in a matrix, for displaying a plurality of gradations within each frame of input video data. A sub-frame period is provided, and gradation display is performed by setting each of the plurality of capacitive light-emitting elements to emit light or not to emit light for each gradation display sub-frame corresponding to the luminance gradation indicated by the input video data. A driving method for performing the input projection A current measurement subframe period different from a period of the plurality of gradation display subframes within a specific frame period of image data is provided, and the plurality of capacitive light emission within the current measurement subframe period Each element is set to light emission or non-light emission according to a predetermined display pattern, a drive current is supplied from the power supply means to the capacitive light emitting element set to light emission of the display panel, and the period of the current measurement subframe The drive current value flowing in the display panel is measured in the inside, and the output voltage of the power supply means is adjusted so that the measured drive current value is within the allowable range of the reference current value. Yes.
図面の簡単な説明 Brief Description of Drawings
図 1は順方向電圧一駆動電流特性を示す図である。  FIG. 1 is a diagram showing a forward voltage-one drive current characteristic.
図 2は時間一順方向電圧特性を示す図である。  FIG. 2 is a graph showing the time-forward voltage characteristics.
図 3は本願第 1及び第 2の発明が適用された表示装置の構成を示すフロック図 である。  FIG. 3 is a flock diagram showing a configuration of a display device to which the first and second inventions of the present application are applied.
図 4は図 3の装置中の表示パネルの画素毎の発光回路の構成を示す回路図であ る。  FIG. 4 is a circuit diagram showing a configuration of a light emitting circuit for each pixel of the display panel in the apparatus of FIG.
図 5はフレーム変調方式を示す図である。  FIG. 5 shows a frame modulation method.
図 6はコントローラによつて実行されるパネル印加電圧調整動作を示すフ口一 チヤ一トである。  Fig. 6 is a flowchart showing the panel applied voltage adjustment operation executed by the controller.
図 7はパネル印加電圧調整動作を行う階調表示用のサブフレームを示す図であ る。  FIG. 7 is a diagram showing a gray scale display subframe for performing the panel applied voltage adjustment operation.
図 8は本願第 1及び第 2の発明が適用された表示装置の他の構成を示すフ口ッ ク図である。 . 図 9は図 8の装置においてコントローラによって実行されるパネル印加電圧調 整動作を示すフローチャートである。 FIG. 8 is a hook diagram showing another configuration of the display device to which the first and second inventions of the present application are applied. . FIG. 9 is a flowchart showing the panel applied voltage adjustment operation executed by the controller in the apparatus of FIG.
図 1 0は本願第 1及び第 2の発明が適用された表示装置の他の構成を更に示す フロック図である。 - 図 1 1は図 1 0の装置においてコントローラによって実行されるパネル印加電 圧調整動作を示すフローチヤ一トである。  FIG. 10 is a block diagram further illustrating another configuration of the display device to which the first and second inventions of the present application are applied. -Fig. 11 is a flowchart showing the panel applied voltage adjustment operation executed by the controller in the apparatus of Fig. 10.
図 1 2は本願第 3及び第 4の発明が適用された表示装置の構成を示すフロック 図である。  FIG. 12 is a block diagram showing the configuration of a display device to which the third and fourth inventions of the present application are applied.
図 1 3は図 1 2の装置中のコントローラによって実行されるパネル印加電圧調 整動作を示すフローチャートである。 ― 図 1 4は特定のフレーム内の階調表示用のサプフレーム及ぴ電流測定用サブフ レーム示す図である。  FIG. 13 is a flowchart showing the panel applied voltage adjustment operation executed by the controller in the apparatus of FIG. ― Fig. 14 is a diagram showing a sub-frame for gradation display within a specific frame and a sub-frame for current measurement.
図 1 5は本願第 3及び第 4の発明が適用された表示装置の他の構成を示すフ口 ック図である。  FIG. 15 is a hook diagram showing another configuration of the display device to which the third and fourth inventions of the present application are applied.
図 1 6は図 1 5の装置においてコントローラによって実行されるパネル印加電 圧調整動作を示すフローチャートである。  FIG. 16 is a flowchart showing the panel applied voltage adjustment operation executed by the controller in the apparatus of FIG.
図 1 7は本願第 3及ぴ第 4の発明が適用された表示装置の他の構成を示すフ口 ック図である。  FIG. 17 is a hook diagram showing another configuration of the display device to which the third and fourth inventions of the present application are applied.
図 1 8は図 1 7の装置においてコントローヲによって実行されるパネル印加電 圧調整動作を示すフローチャートである。  FIG. 18 is a flowchart showing the panel applied voltage adjustment operation executed by the controller in the apparatus of FIG.
図 1 9は表示パネルの各 E L素子 (こ逆バイアス電圧を印加するサブフレームの 期間内に駆動電流の測定期間を設けた例を示す図である。 発明を実施するための形態 - 以下、 本発明の実施例を図面を参照しつつ詳細に説明する。 FIG. 19 is a diagram showing an example in which a drive current measurement period is provided within each EL element of the display panel (a subframe in which this reverse bias voltage is applied). BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図 3は本願第 1及び第 2の発明が適用された表示装置の構成を示している。 こ の表示装置は、 表示パネル 1 1、 走査線駆動回路 1 2、 データ線駆動回路 1 3、 電流検出回路 14、 可変電源 1 5、 及ぴコントローラ 1 7を備えている。  FIG. 3 shows a configuration of a display device to which the first and second inventions of the present application are applied. This display device includes a display panel 1 1, a scanning line driving circuit 1 2, a data line driving circuit 1 3, a current detection circuit 14, a variable power supply 1 5, and a controller 17.
表示パネル 1 1は、 mX n個の画素からなるアクティブマトリックス型のもの であり、 画素毎にエレクトロルミネッセンス (EL) 発光回路 1 1 i〜l lm, nを有している。 EL発光回路 1 1 i〜l lmnは、 全て同一の構成を有し、 走 査線 Al〜Anを介して走査線駆動回路 12に接続され、 データ線 B l〜Bmを 介してデータ線駆動回路 1 3に接続されている。 The display panel 11 is an active matrix type composed of m × n pixels, and has an electroluminescence (EL) light emitting circuit 11 i to ll m , n for each pixel. EL light-emitting circuits 1 1 i to ll m and n all have the same configuration, are connected to the scanning line driving circuit 12 via scanning lines Al to An, and are connected to data lines via data lines B 1 to Bm. Connected to drive circuit 1 3.
発光回路 1 1 ^ i〜l lm, nは上記したように全て同一構成であるので、 発光 回路 1 1 の構成について説明する。 Since the light emitting circuits 1 1 ^ i to ll m , n all have the same configuration as described above, the configuration of the light emitting circuit 11 1 will be described.
発光回路 1 1 iは、 図 4に示すように有機 EL素子 24を駆動するために、 2つの FET2 1, 22及びコンデンサ 23を有している。 F ET 21のゲート Gは、 走查信号が供給される走査線 A 1に接続され、 F ET 21のソース Sはデ ータ信号が供給されるデータ線 B 1に接続されている。 FET21のドレイン D は FET 22のゲート Gに接続され、 コンデンサ 24の一方の端子に接続されて いる。 FET 22のソース Sはコンデンサ 23の他方の端子と共に共通の電源線 25に接続されている。 FET 22のドレイン Dは E L素子 24の陽極に接続さ れ、 EL素子 24の陰極はアースに接続されている。  The light-emitting circuit 1 1 i has two FETs 21 and 22 and a capacitor 23 for driving the organic EL element 24 as shown in FIG. The gate G of FET 21 is connected to a scanning line A 1 to which a scanning signal is supplied, and the source S of FET 21 is connected to a data line B 1 to which a data signal is supplied. The drain D of FET 21 is connected to the gate G of FET 22 and is connected to one terminal of the capacitor 24. The source S of the FET 22 is connected to the common power line 25 together with the other terminal of the capacitor 23. The drain D of the FET 22 is connected to the anode of the EL element 24, and the cathode of the EL element 24 is connected to the ground.
発光回路 1 1 i〜l lm, n各々の EL素子 24の発光輝度は画像データに応 じた表示階調を得るために制御されるが、 その輝度制御には、 駆動電流を一定レ ベルとして 1フレーム内の駆動期間を制御するフレーム変調方式が採用されてい る。 フレーム変調方式では、 図 5に示すように、 1フレームを複数 (N個) のサ ブフレーム SF1, SF2, SF3, …… SFNに分けて映像データに応じて選択されるサブ フレーム期間だけ F E T 2 2を飽和状態 (オン状態) で使用して一定レベルの駆 動電流を供給することによってサブフレーム単位で発光又は非発光状態にさせる ことが行われる。 各サブフレーム SF1, SF2, SF3, …… SFNの期間は書込期間と表 示期間とに分けられる。 書込期間は各サブフレームにおいて走査線順に F E T 2 2をオン状態及ぴオフ状態のいずれに設定するかを決定する期間であり、 表示期 間は書込期間でオン状態に設定された場合に E L素子 2 4が発光する期間であ る。 Light emitting circuit 11 1 to ll m , n The light emission luminance of each EL element 24 is controlled in order to obtain a display gradation in accordance with the image data. As a bell, a frame modulation method that controls the drive period within one frame is adopted. In the frame modulation method, as shown in Fig. 5, one frame is divided into multiple (N) subframes SF1, SF2, SF3, ... SFN FET 2 only during the subframe period selected according to the video data. By using 2 in a saturated state (on state) and supplying a certain level of drive current, the light emission or non-light emission state is performed in subframe units. Each subframe SF1, SF2, SF3, ... SFN period is divided into writing period and display period. The writing period is a period for determining whether FET 22 is set to the on state or the off state in the scanning line order in each subframe. The display period is set when the writing period is set to the on state. This is the period during which the EL element 24 emits light.
コントローラ 1 7は入力される画像データに応じて書込期間において走査制御 信号及ぴデータ制御信号を生成する。 走査制御信号は選択走査線を示し、 走査線 駆動回路 1 2に供給され、 データ制御信号は発光させるべき E L素子に対応した データ線を示し、 データ線駆動回路 1 3に供給される。  The controller 17 generates a scanning control signal and a data control signal in the writing period according to the input image data. The scanning control signal indicates the selected scanning line and is supplied to the scanning line driving circuit 12, and the data control signal indicates the data line corresponding to the EL element to emit light and is supplied to the data line driving circuit 13.
走査線駆動回路 1 2及びデータ線駆動回路 1 3各々は具体的に示されていない が、 電源とスィッチ回路とからなる。 走査線駆動回路 1 2は書込期間において走 査制御信号に応じて 1サブフレーム毎に走査線 A 1〜A nを順次選択し、 選択し た走査線に走査信号を供給する。 データ線駆動回路 1 3はデータ制御信号に応じ てデータ線 B l〜B mを選択し、 選択したデータ線にデータ信号を供給する。 発光回路 1 1 ェ〜 1 l m, nに対して共通の電源線 2 5には電源手段である可 変電源 1 5の出力電圧が電源電圧として電流検出回路 1 4を介して供給される。 例えば、 発光回路 1 1 iの E L素子 2 4が発光するサブフレームでは、 書込 期間において F E T 2 1のゲート Gに走査線 A'lを介して走查信号が供給される と、 走査信号の供給によって F E T 2 1はオンとなり、 データ線 B 1を介してソ ース Sに供給されるデータ信号の電圧に対応した電流をソース Sからドレイン D へ流す。 コンデンサ 2 3は充電され、 その電圧が F E T 2 2のゲート Gに供給さ れて、 F E T 2 2はオン状態となる。 F E T 2 2はゲート Gに供給されているデ ータ信号に応じた駆動電流を E L素子 2 4に供給し、 E L素子 2 4を発光させる。 その発光ばそのサブフレームの少なくとも表示期間の終了まで継続される。 Although each of the scanning line driving circuit 12 and the data line driving circuit 13 is not specifically shown, it includes a power source and a switch circuit. The scanning line driving circuit 12 sequentially selects the scanning lines A 1 to An for each subframe in accordance with the scanning control signal in the writing period, and supplies the scanning signal to the selected scanning line. The data line driving circuit 13 selects the data lines B1 to Bm according to the data control signal, and supplies a data signal to the selected data line. Emitting circuit 1 1 E ~ 1 l m, the output voltage of the variable power source 1 5 is supplied via the current detection circuit 1 4 as a power supply voltage to the common power supply line 2 5 which is a power supply unit with respect to n. For example, in the subframe where the EL element 2 4 of the light emitting circuit 1 1 i emits light, When a scanning signal is supplied to the gate G of the FET 2 1 via the scanning line A'l during the period, the FET 2 1 is turned on by the supply of the scanning signal, and to the source S via the data line B 1 A current corresponding to the voltage of the supplied data signal is supplied from the source S to the drain D. Capacitor 23 is charged and the voltage is supplied to the gate G of FET 22 and FET 22 is turned on. The FET 22 supplies a drive current corresponding to the data signal supplied to the gate G to the EL element 24 and causes the EL element 24 to emit light. The light emission continues until at least the end of the display period of the subframe.
電流検出回路 1 4は可変電源 1 5から発光回路 1 1 〜1 l m, nに供給され る駆動電流の値を検出する。 電流検出回路 1 4の検出出力端子にはコントローラ 1 7が接続されている。 Current detecting circuit 1 4 detects the values of the drive current from the variable power supply 1 5-emitting circuit 1 1 to 1 l m, Ru is supplied to the n. A controller 17 is connected to the detection output terminal of the current detection circuit 14.
コントローラ 1 7は、 上記の走査制御信号及ぴデータ制御信号を生成する他、 パネル印加電圧調整動作を行うために、 1サブフレームにおいて表示パネル 1 1 の全画素うちの E L素子が発光に設定される画素の数、 すなわち発光画素数を計 数する発光画素数計数機能と、 電流検出回路 1 4によつて.検出された駆動電流値 を発光画素数で割り算して単位駆動電流値を算出する割算機能と、 単位駆動電流 値と基準電流値とを比較する機能と、 比較結果に応じて可変電源 1 5の出力電圧 を制御する電圧調整機能とを備える。 なお、 これらの機能各々は、 コントローラ 1 7が例えば、 プログラムを実行することによって以下に示すパネル印加電圧調 整動作において作用するが、 発光画素数計数回路、 割算器、 比較回路及び電圧調 整回路としてハード的に備えても良い。  In addition to generating the above scanning control signal and data control signal, the controller 17 performs the panel applied voltage adjustment operation so that the EL elements of all the pixels of the display panel 11 are set to emit light in one subframe. The number of pixels that emit light, that is, the number of light-emitting pixels, and the current detection circuit 14 calculate the unit drive current value by dividing the detected drive current value by the number of light-emitting pixels. A division function, a function for comparing the unit drive current value and the reference current value, and a voltage adjustment function for controlling the output voltage of the variable power source 15 according to the comparison result are provided. Note that each of these functions operates in the panel applied voltage adjustment operation described below by the controller 17 executing, for example, a program. However, the light emitting pixel number counting circuit, the divider, the comparison circuit, and the voltage adjustment are performed. A hardware circuit may be provided.
次に、 コントローラ 1 7によって実行されるパネル印加電圧調整動作について 図 6のフローチヤ一トを用いて説明する。 コントローラ 1 7はパネル印加電圧調整動作を行う階調表示用サブフレームの 期間となったか否かを判別する (ステップ S 1 ) 。 パネル印加電圧調整動作を行 う階調表示用サブフレームは図 7に示すように、 特定のフレーム内において階調 表示用サブフレーム SF1, SF2, SF3, …… SFNのうちの 1サブフレーム (所定のサ ブフレーム) に配置されている。 特定のフレームは毎フレームでも良いし、 所定 数のフレーム間隔でも良く、 時間経過と共に特定のフレームの間隔を短くしても 良い。 また、 電源投入時のフレームでも良い。 ■ Next, the panel applied voltage adjustment operation executed by the controller 17 will be described using the flowchart of FIG. The controller 17 determines whether or not the period of the gradation display subframe for performing the panel applied voltage adjustment operation has come (step S 1). As shown in Fig. 7, the gray scale display subframe that performs the panel applied voltage adjustment operation is a subframe for gray scale display SF1, SF2, SF3, ... within one specific frame. In the subframe). The specific frame may be every frame, a predetermined number of frame intervals, or the specific frame interval may be shortened over time. Also, it may be a frame when the power is turned on. ■
パネル印加電圧調整動作を行う階調表示用サブフレー Λとしては、 表示期間が 書込期間より長いサブフレームが用いられる。 表示期間が書込期間より短いサブ フレームでは表示期間中に全ての走査線について発光が同時に行われなレ、状態が 生じてしまうことが起きる。 すなわち、 同一のサブフレームにおいて走査線 A 1. の表示期間が終了してしまっても走査線 A nでは書込期間が終了してないという ことが起きる。 よって、 1つのサブフレームにおいて発光に設定された E L素子 全てに流れる駆動電流値を正確に測定することができる期間が得られる表示期間 を備えたサブフヒームが用いられる。  As the gradation display sub-frame Λ for performing the panel applied voltage adjustment operation, a sub-frame whose display period is longer than the writing period is used. In a subframe in which the display period is shorter than the writing period, light may not be emitted simultaneously for all the scanning lines during the display period. In other words, even if the display period of the scanning line A 1 ends in the same subframe, the writing period does not end in the scanning line An. Therefore, a sub-frame having a display period in which a period in which the drive current value flowing through all the EL elements set to emit light in one sub-frame can be measured accurately is obtained.
コントローラ 1 7はパネル印加電圧調整動作を行う階調表示用サブフレームの 期間になったと判別した場合には、 表示パネル 1 1にそのサブフレームに画像デ ータに応じて割り当てられた表示パターンを表示させる動作を実行する (ステツ プ S 2 ) 。 コントローラ 1 7は、 そのパネル印加電圧調整動作を行う階調表示用 サブフレームの書込期間において、 先ず、 走査制御信号及びデータ制御信号を生 成する。 走査制御信号は選択走査線を示し、 走査線駆動回路 1 2に供給され、 デ ータ制御信号は表示パターンにて発光させるべき走査線毎の E L素子に対応した データ線を示し、 データ線駆動回路 1 3に供給される。 走査線駆動回路 1 2は書 込期間において走查制御信号に応じて走査線 A 1〜 A nを順次選択し、 選択した . 走査線に走査信号を供給する。 データ線駆動回路 1 3はデータ制御信号に応じて データ線 B 1〜: Bmを選択し、 選択したデータ線にデータ信号を供給する。 よつ て、 発光回路 1 1 l m, い 1 1 2〜1 l m, 2, ……, 1 1 n〜l l m, nの順に表示パターンの発光位置にある発光回路のコンデンサ 2 3が充電ざれ、 E L素子 24がオンとなるので、 それらの E L素子 24には駆動電流が供給され る。 発光回路 1 1 n〜l l m, nについての書込期間が終了し、 全ての発光回路 1 1 :, ェ〜1 l m, nが表示期間に移行すると、 駆動電流が供給される E L素子は 発光し、 表示パネル 1 1は上記の割り当てられた表示パターンを表示することに なる。 When the controller 17 determines that the period of the gradation display subframe for performing the panel applied voltage adjustment operation is reached, the display pattern assigned to the subframe according to the image data is displayed on the display panel 11. Execute the operation to be displayed (step S2). The controller 17 first generates a scan control signal and a data control signal in the writing period of the gradation display subframe that performs the panel applied voltage adjustment operation. The scanning control signal indicates the selected scanning line and is supplied to the scanning line driving circuit 12, and the data control signal corresponds to the EL element for each scanning line to be emitted in the display pattern. Indicates a data line and is supplied to the data line driving circuit 13. The scanning line drive circuit 12 sequentially selects the scanning lines A 1 to An in accordance with the running control signal during the writing period, and supplies the scanning signal to the selected scanning line. The data line driving circuit 13 selects the data lines B1 to Bm according to the data control signal, and supplies the data signal to the selected data line. Therefore, the light emitting circuit 1 1 l m , i 1 1 2 to 1 l m , 2 ,..., 1 1 n to ll m , n are charged in the light emitting circuit capacitor 2 3 at the light emitting position of the display pattern in this order. On the other hand, since the EL elements 24 are turned on, the drive current is supplied to the EL elements 24. Emitting circuit 1 1 n ~Ll m, writing period ends for n, all the light-emitting circuit 1 1:, E to 1 l m, when n is shifted to the display period, EL device driving current is supplied The display panel 11 displays the above assigned display pattern.
コントローラ 1 7は、 このパネル印加電圧調整動作を行う階調表示用サブフレ ームにおける表示パネル 1 1の全画素のうちの発光に設定された画素数を計数す る (ステップ S 3) 。 例えば、 上記のデータ制御信号は全ての画素、 すなわち発 光回路 1 1 n〜: I l m, n各々の発光/非発光を論理値によって示しているので、 発光を示す論理 1の数を発光画素数として計数する。 The controller 17 counts the number of pixels set for light emission among all the pixels of the display panel 11 in the gradation display subframe that performs the panel applied voltage adjustment operation (step S 3). For example, the above-mentioned data control signal indicates light emission / non-light emission of all pixels, that is, light emitting circuits 1 1 n to: I l m , n by logical values, and therefore emits the number of logic 1 indicating light emission. Count as the number of pixels.
コントローラ 1 7は、 表示期間中の測定期間において電流検出回路 1 4によつ て検出された駆動電流値を読み取り、 (ステップ S 4) 、 読み取った駆動電流値 を発光画素数で割り算することによって単位駆動電流値を算出する (ステップ S 5) 。 そして、 単位駆動電流値と基準電流値とを比較し (ステップ S 6) 、 その 比較結果を判別する (ステップ S 7) 。 基準電流値は発光時に 1つの発光回路に 流れる予め設定された駆動電流値である。 コントローラ 1 7は、 駆動電流値が基準電流値の許容範囲より低い場合には、 可変電源 1 5にその出力電圧を一定電圧だけ増加させ (ステップ S 8 ) 、 駆動電 流値が基準電流値の許容範囲より高い場合には、 可変電源 1 5にその出力電圧を —定電圧だけ減少させる (ステップ S 9 ) 。 ステップ S 4〜 S 9が繰り返される ことにより、 駆動電流値は基準電流値にほぼ等しくされる。 The controller 17 reads the drive current value detected by the current detection circuit 14 during the measurement period of the display period (Step S4), and divides the read drive current value by the number of light emitting pixels. The unit drive current value is calculated (step S5). Then, the unit drive current value is compared with the reference current value (step S6), and the comparison result is determined (step S7). The reference current value is a preset drive current value that flows through one light emitting circuit during light emission. When the drive current value is lower than the allowable range of the reference current value, the controller 17 increases the output voltage of the variable power source 15 by a certain voltage (step S8), and the drive current value is equal to the reference current value. If it is higher than the allowable range, the output voltage of the variable power source 15 is reduced by a constant voltage (step S 9). By repeating steps S4 to S9, the drive current value is made substantially equal to the reference current value.
よって、 表示パネル 1 1の E L素子の順方向電圧が変化してもそれによる駆動 電流の変化を防止することができるので、 表示パネル 1 1の表示輝度の低下を防 止することができる。  Therefore, even if the forward voltage of the EL element of the display panel 11 changes, it is possible to prevent a change in the drive current caused by the change, and thus it is possible to prevent the display brightness of the display panel 11 from being lowered.
上言己した実施例においては、 駆動電流を測定する毎に単位駆動電流値は基準電 流値を比較しているが、 駆動電流を複数回測定し、 その平均駆動電流値を算出し て平均駆動電流値の単位電流値と基準電流値とを比較しても良レ、。  In the embodiment described above, every time the drive current is measured, the unit drive current value is compared with the reference current value, but the drive current is measured several times, and the average drive current value is calculated and averaged. Even if the unit current value of the drive current value is compared with the reference current value, it is good.
また、 上記した実施例においては、 測定した駆動電流値を発光画素数で割り算 して単位駆動電流値を算出し、 それを基準電流値で割り算しているが、 基準電流 値に発光画素数を乗算し、 基準電流値 X発光画素数と測定した駆動電流値とを比 較しても良い。  In the above-described embodiment, the unit drive current value is calculated by dividing the measured drive current value by the number of light emitting pixels and divided by the reference current value. However, the number of light emitting pixels is added to the reference current value. Multiplication may be performed to compare the reference current value X the number of light emitting pixels and the measured drive current value.
更に、 電流検出回路 1 4は駆動電流の測定期間だけ可変電源 1 5と表示パネル 1 1との間に挿入され、 その他の期間には可変電源 1 5と表示パネル 1 1とが直 結されるようにしても良い。  Furthermore, the current detection circuit 14 is inserted between the variable power supply 15 and the display panel 11 1 only during the drive current measurement period, and the variable power supply 15 and the display panel 11 are directly connected during other periods. You may do it.
また、 発光回路 1 1 〜 1 l m, n各々の構成を図 4に示したが、 発光回路の 構成はこれに限定されず、 本発明は他の構成の発光回路を画素毎に備えた表示パ ネルにも適用することができる。 In addition, the configuration of each of the light emitting circuits 11 to 1 l m and n is shown in FIG. 4, but the configuration of the light emitting circuit is not limited to this, and the present invention is a display provided with a light emitting circuit of another configuration for each pixel. It can also be applied to the panel.
図 8は本願第 1及び第 2の発明が適用された表示装置の他の構成を示してい る。 この表示装置は、 表示パネル 1 1、 走査線駆動回路 1 2、 データ線駆動回路 1 3、 電流検出回路 14、 コントローラ 1 7、 電源 3 1及ぴオン電圧可変回路 3 2を備えている。表示パネル 1 1、走査線駆動回路 1 2、データ線駆動回路 1 3、 電流検出回路 14及ぴコントローラ 1 7は図 3に示した表示装置内のものと同一 である。 FIG. 8 shows another configuration of the display device to which the first and second inventions of the present application are applied. The This display device includes a display panel 1 1, a scanning line drive circuit 1 2, a data line drive circuit 1 3, a current detection circuit 14, a controller 1 7, a power supply 3 1, and an on-voltage variable circuit 3 2. The display panel 11, the scanning line driving circuit 12, the data line driving circuit 13, the current detection circuit 14 and the controller 17 are the same as those in the display device shown in FIG.
電源 3 1は固定した電圧を出力する。 その電源 31の出力電圧は発光回路 1 1 i〜l l m, nに対して共通の電源線 25に電流検出回路 14を介して供給され る。 オン電圧可変回路 32はデータ信号としてデータ線駆動回路 1 3から表示パ ネル 1 1の発光回路 1 1 〜1 l m, nに供給されるオン電圧を変化させる。 ォ ン電圧は発光回路の EL素子 24を発光させるために FET 21のオン時に FE T 21を介して FET 22に与えられるゲート電圧である。 オン電圧の変化はコ ントローラ 1 7からの指令に応じて行われる。 また、 オン電圧可変回路 32によ つてそのオン電圧が変化されることにより、 FET 22に与えられるゲート電圧 が変化し、 その結果、 FET 22は能動領域で動作して FET 22を介して EL 素子 24に供給される駆動電流値が変化する。 図 8においては、 データ線駆動回 路 1 3はデータ線 B 1にデータ信号を供給するスィツチ 1 3 からなる構成のみ を具体的に示しているが、 データ線 B 2〜Bm各々についても同様である。 スィ ツチ 1 3 はオン電圧可変回路 32から供給されるオン電圧と、 例えば、 グラン ド電位に等しいオフ電圧とのいずれか一方をコントローラ 1 7から供給されるデ ータ制御信号に応じて選択してデータ信号としてデータ線 B 1に供給する。 オフ 電圧は発光回路の EL素子 24を非発光させるために FET 21のオン時に FE T 21を介して FET 22に与えられるゲート電圧である。 図 8の表示装置においてコントローラ 1 7によって実行されるパネル印加電圧 調整動作は図 9にフローチャートによって示されている。 The power supply 31 outputs a fixed voltage. The output voltage of the power supply 31 is supplied to the common power supply line 25 via the current detection circuit 14 for the light emitting circuits 11 i to ll m , n . On voltage variable circuit 32 changes the ON voltage supplied as a data signal emitting circuit 1 of the display from the data line driving circuit 1 3 panel 1 1 1 to 1 l m, the n. The on-voltage is a gate voltage applied to the FET 22 via the FET 21 when the FET 21 is turned on in order to cause the EL element 24 of the light emitting circuit to emit light. The on-voltage is changed in response to a command from controller 17. In addition, when the on-voltage is changed by the on-voltage variable circuit 32, the gate voltage applied to the FET 22 changes, and as a result, the FET 22 operates in the active region and the EL element is connected via the FET 22. The drive current value supplied to 24 changes. In FIG. 8, the data line drive circuit 13 is specifically shown only with a configuration including a switch 13 that supplies a data signal to the data line B 1, but the same applies to each of the data lines B 2 to Bm. is there. The switch 13 selects either the ON voltage supplied from the ON voltage variable circuit 32 or the OFF voltage equal to the ground potential, for example, according to the data control signal supplied from the controller 17. And supplied to the data line B 1 as a data signal. The off voltage is a gate voltage applied to the FET 22 via the FET 21 when the FET 21 is turned on so that the EL element 24 of the light emitting circuit does not emit light. The panel applied voltage adjustment operation executed by the controller 17 in the display device of FIG. 8 is shown in the flowchart of FIG.
図 9のパネル印加電圧調整動作のステップ S 1〜 S 7は図 6に示したパネル印 加電圧調整動作のステップ S 1〜S 7と同一である。 コントローラ 1 7は、 ステ ップ S 7で駆動電流値が基準電流値の許容範囲より低い場合には、 オン電圧可変 回路 3 2にその出力電圧(オン電圧)を一定電圧だけ増加させ(ステップ S 1 0 )、 駆動電流値が基準電流値の許容範囲より高い場合には、 オン電圧可変回路 3 2に その出力電圧を一定電圧だけ減少させる (ステップ S 1 1 ) 。 ステップ S 4〜S 7 , S 1 0又は S I 1が繰り返されることにより、 駆動電流値は基準電流値にほ ぼ等しくされる。 なお、 ステップ S 1 0及び S 1 1の一定電圧は上記のステップ S 8及ぴ S 9の一定電圧とは異なっても良い。  Steps S 1 to S 7 of the panel applied voltage adjustment operation in FIG. 9 are the same as steps S 1 to S 7 of the panel applied voltage adjustment operation shown in FIG. When the drive current value is lower than the allowable range of the reference current value in step S7, the controller 17 increases the output voltage (on voltage) to the on-voltage variable circuit 3 2 by a constant voltage (step S). 10), if the drive current value is higher than the allowable range of the reference current value, the ON voltage variable circuit 32 reduces the output voltage by a constant voltage (step S 1 1). By repeating steps S 4 to S 7, S 10 or S I 1, the drive current value is made approximately equal to the reference current value. Note that the constant voltage in steps S 10 and S 11 may be different from the constant voltage in steps S 8 and S 9 described above.
図 1 0は本願第 1及ぴ第 2の発明が適用された表示装置の他の構成を更に示し ている。 図 1 0の表示装置は、 表示パネル 1 1、 走査線駆動回路 1 2、 データ線 駆動回路 1 3、 電流検出回路 1 4、 可変電源 1 5、 コントローラ 1 7及びオン電 圧可変回路 3 2を備えている。 表示パネル 1 1、 走査線駆動回路 1 2、 データ線 駆動回路 1 3、 電流検出回路 1 4、 可変電源 1 5及ぴコントローラ 1 7は図 3に' 示した表示装置内のものと同一であり、 オン電圧可変回路 3 2は図 8に示した表 示装置内のものと同一である。  FIG. 10 further shows another configuration of the display device to which the first and second inventions of the present application are applied. The display device in FIG. 10 includes a display panel 1 1, a scanning line drive circuit 1 2, a data line drive circuit 1 3, a current detection circuit 1 4, a variable power supply 1 5, a controller 1 7, and an on-voltage variable circuit 3 2. I have. Display panel 1 1, Scan line drive circuit 1 2, Data line drive circuit 1 3, Current detection circuit 1 4, Variable power supply 1 5 and controller 17 are the same as those in the display device shown in Fig. 3. The on-voltage variable circuit 32 is the same as that in the display device shown in FIG.
図 1 0の表示装置においてコントローラ 1 7によって実行されるパネル印加電 圧調整動作は図 1 1にフローチャートによって示されている。  The panel applied voltage adjustment operation executed by the controller 17 in the display device of FIG. 10 is shown in the flowchart of FIG.
図 1 1のパネル印加電圧調整動作は図 6のパネル印加電圧調整動作と図 9のパ ネル印加電圧調整動作とを組み合わせた動作である。 ステップ S 2 !!〜 S 2 3は 上記した S 1〜S 3に等しい。 ステップ S 2 4〜S 2 9はオン電圧可変回路 3 2 の出力電圧 (オン電圧) を調整するための動作であり、 ステップ S 3 0〜S 3 5 は可変電源 1 5の出力電圧 (電源電圧) を調整するための動作である。 ステップ S 2 4〜S 3 5が繰り返されることにより、 駆動電流値は基準電流値にほぼ等し くされる。 The panel application voltage adjustment operation in Fig. 11 is a combination of the panel application voltage adjustment operation in Fig. 6 and the panel application voltage adjustment operation in Fig. 9. Step S 2! ~ S 2 3 Equivalent to S 1 to S 3 described above. Steps S 2 4 to S 29 are operations for adjusting the output voltage (ON voltage) of ON voltage variable circuit 3 2, and steps S 3 0 to S 3 5 are the output voltage (power supply voltage) of variable power supply 15 ) Is an operation to adjust. By repeating steps S 2 4 to S 3 5, the drive current value is substantially equal to the reference current value.
上記した各実施例において、 パネル印加電圧調整動作は R G B毎に行っても良 い。 すなわち、 コントローラ 1 7は、 表示パネル 1 1の全画素うちの E L素子が 発光に設定される画素の数、 すなわち発光画素数を計数する発光画素数計数機能 と、 電流検出回路 1 4によって検出された駆動電流値を発光画素数で割り算して 単位駆動電流値を算出する割算機能と、 単位駆動電流値と基準電流値とを比較す る機能と、 比較結果に応じて可変電源 1 5 (オン電圧可変回路 3 2 ) の出力電圧 を制御する電圧調整機能とを R G B毎に備えるのである。  In each of the above embodiments, the panel applied voltage adjustment operation may be performed for each R GB. In other words, the controller 17 is detected by the current detection circuit 14 and the current detection circuit 14 which counts the number of pixels in which the EL elements of all the pixels of the display panel 11 are set to emit light, that is, the number of light emitting pixels. The division function that calculates the unit drive current value by dividing the drive current value by the number of light emitting pixels, the function that compares the unit drive current value and the reference current value, and the variable power supply 1 5 ( A voltage adjustment function for controlling the output voltage of the on-voltage variable circuit 3 2) is provided for each RGB.
以上の如く、 本願第 1及ぴ第 2の発明によれば、 階調表示用サブフレーム毎に 表示パネルの発光と設定された容量性発光素子に電源手段から駆動電流を供給 し、 連続するサブフレームのうちの所定のサブフレームの期間内において表示パ ネルの発光と設定された容量性 光素子の数を発光画素数として計数し、 所定の サブフレームの期間内において表示パネルに流れる駆動電流値を測定し、 その測 定駆動電流値が発光画素数分の基準電流値の許容範囲内になるように電源手段の 出力電圧を調整することが行われる。 よって、 表示パネルの個々の容量性発光素 子の順方向電圧が変化しても表示パネルの表示輝度の低下を防止することができ る。 また、 輝度調整のために階調表示用サブフレーム以外の特別なサブフレーム を設けないで済むという利点もある。 図 1 2は本願第 3及び第 4の発明が適用された表示装置の構成を示している。 この表示装置は、表示パネル 1 1、走査線駆動回路 1 2、データ線駆動回路 1 3、 電流検出回路 1 4、 可変電源 1 5、 比較回路 1 6及びコントローラ 1 7を備えて いる。 As described above, according to the first and second inventions of the present application, the driving current is supplied from the power supply means to the capacitive light emitting element set to emit light of the display panel for each gradation display subframe, and the continuous sub The number of capacitive light elements set as the light emission of the display panel and the number of light emitting pixels within the predetermined subframe period of the frame is counted as the number of light emitting pixels, and the drive current value that flows through the display panel within the predetermined subframe period Is measured, and the output voltage of the power supply means is adjusted so that the measured drive current value is within the allowable range of the reference current value for the number of light emitting pixels. Therefore, it is possible to prevent the display brightness of the display panel from being lowered even if the forward voltage of the individual capacitive light emitting elements of the display panel changes. Also, there is an advantage that no special subframe other than the gradation display subframe is required for brightness adjustment. FIG. 12 shows the configuration of a display device to which the third and fourth inventions of the present application are applied. The display device includes a display panel 11, a scanning line driving circuit 12, a data line driving circuit 13, a current detection circuit 14, a variable power source 15, a comparison circuit 16 and a controller 17.
表示パネル 1 1、 走査線駆動回路 1 2、 データ線駆動回路 1 3、 電流検出回路 1 4及び可変電源 1 5は図 3に示した表示装置のものと同一である。  The display panel 11, the scanning line driving circuit 12, the data line driving circuit 13, the current detection circuit 14 and the variable power source 15 are the same as those of the display device shown in FIG.
比較回路 1 6は電流検出回路 1 4の検出出力端子に接続されている。 比較回路 1 6は電流検出回路 1 4によって検出された駆動電流値と基準電流値とを比較す る。 電流検出回路 1 4が駆動電流値を電圧レベルとして検出する場合には基準電 流値に対応した電圧値が比較回路 1 6には供給される。 基準電流値は所定の測定 用表示パターンにおける予め設定された電流値である。 比較回路 1 6の比較結果 はコントローラ 1 7に供給される。  The comparison circuit 16 is connected to the detection output terminal of the current detection circuit 14. The comparison circuit 16 compares the drive current value detected by the current detection circuit 14 with the reference current value. When the current detection circuit 14 detects the drive current value as a voltage level, a voltage value corresponding to the reference current value is supplied to the comparison circuit 16. The reference current value is a preset current value in a predetermined measurement display pattern. The comparison result of the comparison circuit 16 is supplied to the controller 17.
コントローラ 1 7は、 比較回路 1 6の比較結果に応じて駆動電流値が基準電流 値に等しくなるように可変電源 1 5の出力電圧を制御する。  The controller 17 controls the output voltage of the variable power source 15 so that the drive current value becomes equal to the reference current value according to the comparison result of the comparison circuit 16.
次に、 コントローラ 1 7によって実行されるパネル印加電圧調整動作について 図 1 3のフローチャートを用いて説明する。  Next, the panel applied voltage adjustment operation executed by the controller 17 will be described with reference to the flowchart of FIG.
コントローラ 1 7は電流測定用サブフレームの期間となったか否かを判別する (ステップ S 5 1 ) 。 .電流測定用サブフレ ムは図 1 4に示すように、 特定のフ レーム内において階調表示用サプフレーム SF1, SF2, SF3, …… SFNとは別に配置 されている。 図 1 4においては、 階調表示用サブフレーム間に電流測定用サブフ レームは配置されている。 特定のフレームは毎フレームでも良いし、 所定数のフ レーム間隔でも良い。 また、 電源投入時のフレームでも良い。 コントローラ 1 7は電流測定用サブフレームの期間になったと判別した場合に は、 表示パネル 1 1に測定用表示パターンを表示させる動作を実行する (ステツ プ S 5 2 ) 。 電流測定用サブフレームは図 Γ4に示すように、 書込期間と表示期 間とからなり、 表示期間中に駆動電流を測定する測定期間が位置している。 電流 測定用サブフレームの書込期間において走査制御信号及ぴデータ制御信号を生成 する。 走査制御信号は選択走査線を示し、 走査線駆動回路 1 2に供給され、 デー タ制御信号は測定用表示パターンにて発光させるべき E L素子に対応したデータ 線を示し、 データ線駆動回路 1 3に供給される。 走査線駆動回路 1 2は書込期間 において走査制御信号に応じて走査線 A:! 〜 A nを順次選択し、 選択した走査線 に走査信号を供給する。 データ線駆動回路 1 3はデータ制御信号に応じてデータ 線 B l 〜B mを選択し、 選択したデータ線にデータ信号を供給する。 よって、 発 光回路 1 1 i〜 l l m, nのうちの測定用表示パターンの発光位置にある発光回 路のコンデンサ 2 3が充電され、 E L素子 2 4がオンとなるので、 それらの E L 素子 2 4には駆動電流が供給される。 この結果、 表示期間において駆動電流が供 給される E .L素子は発光し、 測定用表示パターンを表示パネル 1 1は表示するこ とになる。 The controller 17 determines whether or not the current measurement subframe period has come (step S 51). As shown in Fig. 14, the current measurement subframes are arranged separately from the subframes for gradation display SF1, SF2, SF3, ... SFN in a specific frame. In Fig. 14, the current measurement subframe is arranged between the grayscale display subframes. The specific frame may be every frame or a predetermined number of frame intervals. Also, it may be a frame when the power is turned on. If the controller 17 determines that the current measurement subframe period has come, it performs an operation to display the measurement display pattern on the display panel 11 (step S 5 2). As shown in Fig. Γ4, the current measurement subframe consists of a writing period and a display period. The measurement period for measuring the drive current is located in the display period. Scan control signals and data control signals are generated during the writing period of the current measurement subframe. The scanning control signal indicates the selected scanning line and is supplied to the scanning line driving circuit 12, and the data control signal indicates the data line corresponding to the EL element that should emit light in the measurement display pattern, and the data line driving circuit 1 3 To be supplied. The scanning line driving circuit 12 sequentially selects the scanning lines A :! to An in accordance with the scanning control signal in the writing period, and supplies the scanning signals to the selected scanning lines. The data line driving circuit 13 selects the data lines B 1 to B m according to the data control signal and supplies the data signal to the selected data line. Therefore, the capacitor 23 of the light emitting circuit at the light emitting position of the display pattern for measurement in the light emitting circuits 1 1 i to ll m , n is charged and the EL element 24 is turned on. 24 4 is supplied with drive current. As a result, the EL element to which the drive current is supplied during the display period emits light, and the display panel 11 displays the measurement display pattern.
コントローラ 1 7は、 上記の測定期間において電流検出回路 1 4によって検出 された駆動電流値を比較回路 1 6に読み取らせる (ステップ S 5 3 ) 。 比較回路 1 6は読み取った駆動電流値と基準電流値とを比較し、 その比較結果はコント口 ーラ 1 7によって読み取られる (ステップ S 5 4 ) 。 コントローラ 1 7は駆動電 流値が基準電流値の許容範囲より低い場合には、 可変電源 1 5にその出力電圧を 一定電圧だけ増加させ (ステ^プ S 5 5 ) 、 駆動電流値が基準電流値の許容範 ffl より高い場合には、 可変電源 1 5にその出力電圧を一定電圧だけ減少させる (ス テツプ S 5 6 ) 。 ステップ S 5 3〜S 5 6が搡り返されることにより、 駆動電流 値は基準電流値にほぼ等しくされる。 The controller 17 causes the comparison circuit 16 to read the drive current value detected by the current detection circuit 14 during the above measurement period (step S 53). The comparison circuit 16 compares the read drive current value with the reference current value, and the comparison result is read by the controller 17 (step S54). When the drive current value is lower than the allowable range of the reference current value, the controller 17 increases the output voltage to the variable power source 15 by a certain voltage (step S 5 5), and the drive current value becomes the reference current value. Value tolerance ffl If it is higher, the output voltage of the variable power source 15 is reduced by a constant voltage (step S 5 6). By repeating steps S 53 to S 56, the drive current value is almost equal to the reference current value.
よって、 表示パネル 1 1の E L素子の順方向電圧が変化してもそれによる駆動 電流の変化を防止することができるので、 表示パネル I 1の表示輝度の低下を防 止することができる。  Therefore, even if the forward voltage of the EL element of the display panel 11 changes, it is possible to prevent a change in the drive current caused by the change, and thus it is possible to prevent the display brightness of the display panel I 1 from being lowered.
上記した実施例においては、 電流測定用サブフレームを、 階調表示用のサブフ レーム SF1, SF2, SF3, …… SFN とは別に設けたが、 P皆調表示用のサブフレ一ム SF1, SF2, SF3, …… SFNのいずれか 1サブレームを電流測定用サブフレームとし ても良い。 階調表示用のサブフレーム SF1, SF2, SF3, …… SFNに重み付けがされ て各サブフレームの期間の長さが異なる場合には、 最も短いサブフィールドを電 流測定用サブフレームとすることにより、 表示内容への影響を最小限にすること ができる。  In the above embodiment, the subframe for current measurement is provided separately from the subframes SF1, SF2, SF3, ... SFN for gradation display, but the subframes SF1, SF2, SF for full tone display are provided. SF3, ... Any one subframe of SFN may be used as a current measurement subframe. Gradation display subframes SF1, SF2, SF3, ... When SFN is weighted and the duration of each subframe is different, the shortest subfield is set as the current measurement subframe. The influence on the displayed contents can be minimized.
また、 上記した実施例における測定用表示パターンは、 表示パネル 1 1の縦方 向の 1ライン或いは数ラインに 1るの E L素子の発光、 又は横方向の 1ライン或 いは数ラインに亘るの E L素子の発光となるパターンである。 このような測定用 表示パターンを用いることにより、 測定用表示パターンの表示が入力画像データ に応じた表示に影響する度合いを低く抑えることができる。 ただし、 表示パネル の一部分の画素だけで駆動電流を測定した場合に全体の電流値を反映していない ことも考えられるので、 電流測定用サプフレームを設ける毎に表示パネル上の測 定用表示パターンによる発光部分を移動させ、 移動毎に測定してそれらを平均化 することにより全体の電流値を反映させても良い。 . 測定用表示パターンは、 全面点灯の表示パターンでも良い。 こうすることによ り、 全体の電流値を反映させることができる。 Further, the display pattern for measurement in the above-described embodiment covers one line in the vertical direction of the display panel 11 or light emission of one EL element in several lines, or one line or several lines in the horizontal direction. It is a pattern that emits light from an EL element. By using such a display pattern for measurement, the degree to which the display of the display pattern for measurement influences the display corresponding to the input image data can be kept low. However, if the drive current is measured with only a part of the pixels on the display panel, it is possible that the total current value is not reflected. Therefore, each time the current measurement subframe is installed, the measurement display pattern on the display panel It is also possible to reflect the entire current value by moving the light emitting part by, measuring each movement, and averaging them. . The display pattern for measurement may be a display pattern that lights up all over. In this way, the entire current value can be reflected.
図 1 5は本願第 3及び第 4の発明が適用された表示装置の他の構成を示してい る。 この表示装置は、 表示パネル 1 1、 走査線駆動回路 2、 データ線駆動回路 13、 電流検出回路 14、 比較回路 16、 コントローラ 17、 電源 31及びオン 電圧可変回路 32を備えている。 表示パネル 1 1、 走査線駆動回路 12、 データ 線駆動回路 13、 電流検出回路 14、 比較回路 16及びコントローラ 17は図 1 2に示した表示装置内のものと同一である。  FIG. 15 shows another configuration of the display device to which the third and fourth inventions of the present application are applied. This display device includes a display panel 11, a scanning line drive circuit 2, a data line drive circuit 13, a current detection circuit 14, a comparison circuit 16, a controller 17, a power supply 31, and an on-voltage variable circuit 32. The display panel 11, the scanning line driving circuit 12, the data line driving circuit 13, the current detection circuit 14, the comparison circuit 16 and the controller 17 are the same as those in the display device shown in FIG.
電源 31は固定した電圧を出力する。 その電源 31の出力電圧は発光回路 11 i〜l lm, nに対して共通の電源線 25に電流検出回路 14を介して供給され る。 オン電圧可変回路 32はデータ信号としてデータ線駆動回路 13から表示パ ネル 1 1の発光回路 1 1 〜1 lm, nに供給されるオン電圧を変化させる。 ォ ン電圧は発光回路の EL素子 24を発光させるために FET 21のオン時に FE T 21を介して FET22に与えられるゲート電圧である。 オン電圧の変化はコ ントローラ 17からの指令に応じて行われる。 また、 オン電圧可変回路 32によ つてそのオン電圧が変化されることにより、 FET22に与えられるゲート電圧 が変化し、 その結果、 FET 22は能動領域で動作して FET 22を介して EL 素子 24に供給される駆動電流値が変化する。 図 15においては、 データ線駆動 回路 1 3はデータ線 B 1にデータ信号を供給するスィッチ 13 からなる構成の みを具体的に示しているが、 データ線 B 2〜Bm各々についても同様である。 ス イッチ 13 まオン電圧可変回路 32から供給されるオン電圧と、 例えば、 電圧 VAに等しいオフ電圧とのいず.れか一方をコントローラ 17から供給されるデー タ制御信号に応じて選択してデータ信号としてデータ線 B 1に供給する。 オフ電 圧は発光回路の E L素子 2 4を非発光させるために F E T 2 1のオン時に F E T 2 1を介して F E T 2 2に与えられるゲート電圧である。 The power supply 31 outputs a fixed voltage. The output voltage of the power supply 31 is supplied to the common power supply line 25 via the current detection circuit 14 for the light emitting circuits 11 i to ll m , n . On voltage variable circuit 32 changes the ON voltage supplied from the data line driving circuit 13 emitting circuit 1 1 to 1 l m of the display panel 1 1, the n as data signals. The on-voltage is a gate voltage applied to the FET 22 via the FET 21 when the FET 21 is turned on in order to cause the EL element 24 of the light emitting circuit to emit light. The on-voltage is changed in response to a command from controller 17. Further, when the on-voltage is changed by the on-voltage variable circuit 32, the gate voltage applied to the FET 22 changes. As a result, the FET 22 operates in the active region and the EL element 24 is operated via the FET 22. The drive current value supplied to the voltage changes. In FIG. 15, only the configuration of the data line driving circuit 13 including the switch 13 for supplying the data signal to the data line B 1 is specifically shown, but the same applies to each of the data lines B 2 to Bm. . Either the ON voltage supplied from the ON voltage variable circuit 32 or the OFF voltage equal to the voltage V A , for example, is selected. Selected according to the data control signal and supplied to the data line B1 as a data signal. The off-voltage is a gate voltage that is applied to FET 2 2 via FET 21 when FET 21 is turned on so that EL element 24 of the light emitting circuit does not emit light.
図 1 5の表示装置においてコントローラ 1 7によって実行されるパネル印加電 圧調整動作は図 1 6にフローチャートによって示されている。  The panel applied voltage adjustment operation executed by the controller 17 in the display device of FIG. 15 is shown in the flowchart of FIG.
図 1 6のパネル印加電圧調整動作のステツプ S 5 1〜 S 5 4は図 1 3に示した パネル印加電圧調整動作のステップ S 5 l ^ S 5 4と同一である。 コントローラ 1 7はステップ S 5 4で駆動電流値が基準電流値の許容範囲より低いことを判別 すると、 オン電圧可変回路 3 2にその出力電圧 (オン電圧) を一定電圧だけ増加 させ (ステップ S 5 7 ) 、駆動電流値が基準電流値の許容範囲より高い場合には、 オン電圧可変回路 3 2にその出力電圧を一定電圧だけ減少させる (ステップ S 5 8 ) 。 ステップ S 5 3, S 5 4, S 5 7又は S 5 8が繰り返されることにより、 駆動電流値は基準電流値にほぼ等しくされる。 なお、 ステップ S 5 7及ぴ S 5 8 の一定電圧はステップ S 5 5及び S 5 6の一定電圧とは異なっても良い。  Steps S 5 1 to S 5 4 of the panel applied voltage adjusting operation in FIG. 16 are the same as steps S 5 l ^ S 5 4 of the panel applied voltage adjusting operation shown in FIG. When the controller 17 determines that the drive current value is lower than the allowable range of the reference current value in step S54, the controller 17 increases the output voltage (on voltage) by a constant voltage to the on-voltage variable circuit 3 2 (step S5). 7) If the drive current value is higher than the allowable range of the reference current value, the ON voltage variable circuit 32 reduces the output voltage by a constant voltage (step S 58). By repeating steps S 5 3, S 5 4, S 5 7 or S 5 8, the drive current value is made substantially equal to the reference current value. The constant voltage in steps S 5 7 and S 5 8 may be different from the constant voltage in steps S 5 5 and S 5 6.
図 1 7は本願第 3及び第 4の発明が適用された表示装置の他の構成を更に示し ている。 図 1 7の表示装置は、 表示パネル 1 1、 走査線駆動回路 1 2、 データ線 駆動回路 1 3、 電流検出回路 1 4、 可変電源 1 5、 比較回路 1 6、 コントローラ 1 7及びオン電圧可変回路 3 2を備えている。 表示パネル 1 1、 走査線駆動回路 1 2、 データ線駆動回路 1 3、 電流検出回路 1 4、 可変電源 1 5、 比較回路 1 6 及ぴコントローラ 1 7は図 1 2に示した表示装置内のものと同一であり、 オン電 圧可変回路 3 2は図 1 5に示した表示装置内のものと同一である。  FIG. 17 further shows another configuration of the display device to which the third and fourth inventions of the present application are applied. The display device shown in Fig. 7 has a display panel 1 1, a scanning line drive circuit 1 2, a data line drive circuit 1 3, a current detection circuit 1 4, a variable power supply 1 5, a comparison circuit 1 6, a controller 1 7, and a variable ON voltage. Circuit 3 2 is provided. Display panel 1 1, Scan line drive circuit 1 2, Data line drive circuit 1 3, Current detection circuit 1 4, Variable power supply 1 5, Comparison circuit 1 6 and controller 1 7 are in the display device shown in Figure 12 The on-voltage variable circuit 32 is the same as that in the display device shown in FIG.
図 1 7の表示装置において ントローラ 1 7によって実行されるパネル印加零 • 圧調整動作は図 1 8にフローチャートによって示されている。 Fig. 17 Panel application zero executed by controller 17 in display device of 7 • The pressure adjustment operation is shown in the flowchart in Fig. 18.
図 1 8のパネル印加電圧調整動作は図 1 3のパネル印加電圧調整動作と図 1 6 のパネル印加電圧調整動作とを組み合わせた動作である。 ステップ S 6 1及び S 6 2は上記した S 5 1及ぴ S 5 2に等しい。 ステップ S 6 3〜S 6 6はオン電圧 可変回路 3 2の出力電圧 (オン電圧) を調整するための動作であり、 ステップ S 6 7〜S 7 0は可変電源 1 5の出力電圧 (電源電圧) を調整するための動作であ る。 ステップ S 6 3〜S 7 0が繰り返されることにより、 駆動電流値は基準電流 値にほぼ等しくされる。 '  The panel applied voltage adjustment operation in Fig. 18 is a combination of the panel applied voltage adjustment operation in Fig. 13 and the panel applied voltage adjustment operation in Fig. 16. Steps S 6 1 and S 6 2 are equal to S 5 1 and S 5 2 described above. Steps S 6 3 to S 6 6 are operations for adjusting the output voltage (ON voltage) of the ON voltage variable circuit 3 2. Steps S 6 7 to S 70 are output voltages of the variable power source 15 (power supply voltage) This is an operation for adjusting. By repeating steps S 63 to S 70, the drive current value is made substantially equal to the reference current value. '
図 1 9は、 表示パネルの各 E L素子に逆バイアス電圧を印加するサブフレーム の期間内に、駆動電流の測定期間を設けた例を示している。 E L素子においては、 発光を重ねて機能低下した E L素子に順方向とは逆の電圧、 すなわち逆バイアス 電圧を時々印加すると、 E L素子の機能が回復するというリフレッシュ作用があ ることが知られている。 よって、 逆バイアス電圧を印加するサブフレームの期間 内に駆動電流の測定期間を設けることにより、 画素の選択時間が共通化でき、 電 流測定用サブフレームを独立して設ける場合に比べて 1フレーム内の階調表示用 のサブフレームの期間以外の期間の短縮を図ることができる。  FIG. 19 shows an example in which a drive current measurement period is provided within a subframe period in which a reverse bias voltage is applied to each EL element of the display panel. It is known that the EL element has a refreshing effect that the function of the EL element is restored when a reverse voltage, that is, a reverse bias voltage is sometimes applied to the EL element whose function is deteriorated due to repeated light emission. Yes. Therefore, by providing the drive current measurement period within the subframe period during which the reverse bias voltage is applied, the pixel selection time can be shared, and one frame compared to the case where the current measurement subframe is provided independently. It is possible to shorten the period other than the period of the sub-frame for gradation display.
更に、 上記した各実施例においては、 電圧駆動方式の表示装置を示したが、 電 流駆動方式の表示装置にも本発明を適用することができる。 また、 アクティブマ トリックス型の表示パネルを用いた例を示したが、 パッシブマトリックス型の表 '示パネルを駆動する表示装置にも本発明を適用することができる。  Further, in each of the above-described embodiments, a voltage-driven display device is shown, but the present invention can also be applied to a current-driven display device. Although an example using an active matrix type display panel has been shown, the present invention can also be applied to a display device that drives a passive matrix type display panel.
また、 R G B毎に測定用表示パターンを表示して R G B毎に表示パネルへ印加 する電源電圧を制御しても良い。 いずれの場合も 1回の駆動電流値の測定で電源 電圧 (又はオン電圧) を制御しても良いし、 数回の駆動電流値の測定結果の平均 をとつて電源電圧 (又はオン電圧) を制御しても良い。 Alternatively, the measurement display pattern may be displayed for each RGB, and the power supply voltage applied to the display panel for each RGB may be controlled. In either case, power can be measured with a single drive current measurement. The voltage (or on-voltage) may be controlled, or the power supply voltage (or on-voltage) may be controlled by taking the average of the measurement results of several drive current values.
以上の如く、 本願第 3及び第 4の発明によれば、 入力映像データの特定のフレ ームの期間内の複数の階調表示用サブフレームの期間とは異なる電流測定用サブ フレームの期間を設け、 その電流測定用サブフレームの期間內において複数の容 量性発光素子各々を発光又は非発光に設定し、 表示パネルの発光と設定された容 量性発光素子に電源手段から駆動電流を供給し、 電流測定用サブフレームの期間 内において表示パネルに流れる駆動電流値を測定し、 その測定駆動電流値が基準 電流値の許容範囲内になるように電源手段の出力電圧を調整することが行われ る。 よって、 表示パネルの個々の容量性発光素子の順方向電圧が変化しても表示 パネルの表示輝度の低下を防止することができる。  As described above, according to the third and fourth aspects of the present application, the current measurement subframe period different from the periods of the plurality of gradation display subframes within the specific frame period of the input video data is set. And a plurality of capacitive light emitting elements are set to emit or not emit light during the period of the current measurement subframe, and a driving current is supplied from the power supply means to the capacitive light emitting elements set to emit light of the display panel. The drive current value flowing through the display panel is measured within the current measurement subframe period, and the output voltage of the power supply means is adjusted so that the measured drive current value falls within the allowable range of the reference current value. It is broken. Therefore, even if the forward voltage of each capacitive light emitting element of the display panel changes, it is possible to prevent the display brightness of the display panel from being lowered.

Claims

請求の範囲 · The scope of the claims ·
1 . マトリックス状に配置された複数の容量性発光素子からなる表示パネルに 対し、 入力映像データの各フレームの期間内に、 複数の階調表示用サブフレーム の期間を設け、 入力映像データが示す輝度階調に対応して前記複数の容量性発光 素子の各々を前記サブフレーム毎に発光又は非発光に設定して階調表示を行う表 示装置であって、  1. For a display panel composed of a plurality of capacitive light emitting elements arranged in a matrix, a plurality of gradation display subframe periods are provided within each frame period of the input video data, and the input video data indicates A display device that performs gradation display by setting each of the plurality of capacitive light emitting elements to emit light or not emit light for each subframe corresponding to a luminance gradation,
前記サブフレーム毎に前記表示パネルの発光と設定された容量性発光素子に駆 動電流を供給する電源手段と、  Power supply means for supplying a drive current to the capacitive light emitting element set to emit light of the display panel for each subframe;
連続する前記サブフレームのうちの所定のサブフレームの期間内において前記 表示パネルの発光と設定された容量性発光素子の数を発光画素数として計数する 発光画素数計数手段と、  A number-of-light-emitting pixel counting means for counting the number of capacitive light-emitting elements set to emit light of the display panel as the number of light-emitting pixels within a period of a predetermined sub-frame among the consecutive sub-frames;
前記所定のサブフレームの期間内において前記表示パネルに流れる駆動電流値 を測定する測定手段と、  Measuring means for measuring a drive current value flowing in the display panel within a period of the predetermined subframe;
前記測定手段によつて測定される駆動電流値が前記発光画素数分の基準電流値 の許容範囲内になるように前記電源手段の出力電圧を調整する制御手段と、 を備 えたことを特徴とする表示装置。  Control means for adjusting the output voltage of the power supply means so that the drive current value measured by the measurement means falls within the allowable range of the reference current value for the number of light-emitting pixels. Display device.
2 . 前記制御手段は、 前記測定手段によつて測定された駆動電流値を前記発光 画素数分で割り算して単位駆動電流値を算出する'割り算手段と、 前記単位駆動電 流値と単一の容量性発光素子分の基準電流値とを比較する比較手段と、 前記比較 手段の比較結果に応じて前記電源手段の出力電圧を調整する電圧調整手段と、 を 備えたことを特徴とする請求項 1記載の表示装置。  2. The control means divides the drive current value measured by the measurement means by the number of light emitting pixels to calculate a unit drive current value, and a division means; and the unit drive current value and a single unit Comparing means for comparing a reference current value for the capacitive light emitting element, and voltage adjusting means for adjusting an output voltage of the power supply means in accordance with a comparison result of the comparing means. Item 1. A display device according to item 1.
3 . 前記所定のサプフレームを含むフレームは前記表示装置の電源投入直後の フレームであることを特徴とする請求項 1記載の表示装置。 3. The frame including the predetermined subframe is immediately after the display device is turned on. The display device according to claim 1, wherein the display device is a frame.
4 . 前記所定のサブフレームを含むフレームは前記入力映像データの毎フレー ムであることを特徴とする請求項 1記載の表示装置。  4. The display device according to claim 1, wherein the frame including the predetermined subframe is a frame of the input video data.
5 . 前記所定のサブフレームを含むフレームは前記入力映像データの所定数の フレ一ム毎であることを特徴とする請求項 1記載の表示装置。  5. The display device according to claim 1, wherein the frame including the predetermined sub-frame is every predetermined number of frames of the input video data.
6 . 前記所定のサブフレームは、 前記複数の容量性発光素子の各々を前記階調 表示用サブフレーム毎に発光又は非発光に設定する書込期間が、 その発光と設定 された容量性発光素子に駆動電流が供給される表示期間より短いサブフレームで あることを特徴とする請求項 1記載の表示装置。  6. In the predetermined subframe, the capacitive light emitting element in which a writing period in which each of the plurality of capacitive light emitting elements is set to emit light or not emit light for each gradation display subframe is set to emit light. 2. The display device according to claim 1, wherein the display device has a subframe shorter than a display period in which a drive current is supplied to the display frame.
7 . 前記電源手段、 前記発光画素数計数手段、 前記測定手段及び前記制御手段 の各々は、 前記容量性発光素子の発光色の R G B毎に設けられていることを特徴 とする請求項 1記載の表示装置。 '  7. The power source unit, the light emitting pixel number counting unit, the measuring unit, and the control unit are provided for each of RGB colors of light emitted from the capacitive light emitting element. Display device. '
8 . 前記制御手段によって調整された前記電源手段の出力電圧は、 前記表示パ ネルの発光と設定された容量性発光素子各々の駆動トランジスタのソース電圧を 変化せしめ、 それによつて前記発光と設定された容量発光素子の駆動電流値が変 化することを特徴とする請求項 1記載の表示装置。 ― '  8. The output voltage of the power supply means adjusted by the control means changes the source voltage of the driving transistor of each of the capacitive light emitting elements set as the light emission of the display panel, thereby setting the light emission. 2. The display device according to claim 1, wherein a driving current value of the capacitive light emitting element changes. ― '
9 . 前記制御手段によって調整された前記電源手段の出力電圧は、 前記表示パ ネルの発光と設定された容量性発光素子各々の駆動トランジスタのゲート電圧を 変化せしめ、 それによつて前記発光と設定された容量発光素子の駆動電流値が変 化することを特徴とする請求項 1記載の表示装置。  9. The output voltage of the power supply means adjusted by the control means changes the gate voltage of the driving transistor of each of the capacitive light emitting elements set as the light emission of the display panel, thereby setting the light emission. 2. The display device according to claim 1, wherein a driving current value of the capacitive light emitting element changes.
1 0 . 前記制御手段によって調整された前記電源手段の出力電圧は、 前記表示 パネルの発光と設定された容量性発光素子各々の駆動トランジスタのソース電圧 及びゲート電圧を各々変化せしめ、 それによつて前記発光と設定された容量発光 素子の駆動電流値が変化することを特徴とする請求項 1記載の表示装置。 1 0. The output voltage of the power supply means adjusted by the control means is the source voltage of the driving transistor of each of the capacitive light emitting elements set to emit light of the display panel. 2. The display device according to claim 1, wherein the drive voltage value of the capacitive light emitting element set as the light emission is changed by changing the gate voltage and the gate voltage.
1 1 . マトリックス状に配置された複数の容量性発光素子からなる表示パネル に対し、 入力映像データの各フレームの期間内に、 複数の階調表示用サブフレー ムの期間を設け、 入力映像データが示す輝度階調に対応して前記複数の容量性発 光素子の各々を前記サブフレーム毎に発光又は非発光に設定して階調表示を行う 表示パネルの駆動方法であって、  1 1. For a display panel composed of a plurality of capacitive light emitting elements arranged in a matrix, a plurality of gradation display subframe periods are provided within each frame period of the input video data. A display panel driving method for performing gradation display by setting each of the plurality of capacitive light emitting elements to emit light or not emit light for each of the sub-frames corresponding to the luminance gradation shown in FIG.
前記サブフレーム毎に前記表示パネルの発光と設定された容量性発光素子に前 記電源手段から駆動電流を供給し、  A driving current is supplied from the power supply means to the capacitive light emitting element set to emit light of the display panel for each subframe,
連続する前記サブフレームのうちの所定のサブフレームの期間内において前記 表示パネルの発光と設定された容量性発光素子の数を発光画素数として計数し、 前記所定のサブフレームの期間内において前記表示パネルに流れる駆動電流値 を測定し、  The number of capacitive light emitting elements set to emit light of the display panel within a predetermined subframe period of the consecutive subframes is counted as the number of light emitting pixels, and the display is performed within the predetermined subframe period. Measure the drive current flowing through the panel,
その測定駆動電流値が前記発光画素数分の基準電流値の許容範囲内になるよう に前記電源手段の出力電圧を調整することを特徴とする駆動方法。  A drive method characterized by adjusting the output voltage of the power supply means so that the measured drive current value falls within an allowable range of reference current values for the number of light emitting pixels.
1 2 . マトリ-ックス状に配置された複数の容量性発光素子からなる表示パネル に対し、 入力映像データの各フレームの期間内に、 複数の階調表示用サブフレー ムの期間を設け、 入力映像データが示す輝度階調に対応して前記複数の容量性発 光素子の各々を前記階調表示用サプフレーム毎に発光又は非発光に設定して階調 表示を行う表示装置であって、  1 2. For a display panel consisting of a plurality of capacitive light emitting elements arranged in a matrix, a plurality of gradation display subframe periods are provided within the period of each frame of the input video data. A display device that performs gradation display by setting each of the plurality of capacitive light emitting elements to emit light or not emit light for each gradation display subframe corresponding to a luminance gradation indicated by data,
前記入力映像データの特定のフレームの期間内の前記複数の階調表示用サブフ レームの期間とは異なる電流測定用サブフレームの期間を設け、 その電流測定用 サブフレームの期間内において前記複数の容量性発光素子各々を所定の表示パタ ーンに従った発光又は非発光に設定する表示パターン設定手段と、 A current measurement subframe period different from a period of the plurality of gradation display subframes within a specific frame period of the input video data is provided, and the current measurement subframe is provided. Display pattern setting means for setting each of the plurality of capacitive light emitting elements to emit or not emit light according to a predetermined display pattern within a subframe period;
前記表示パネルの発光と設定された容量性発光素子に駆動電流を供給する電源 手段と、  Power supply means for supplying a driving current to the capacitive light emitting element set to emit light of the display panel;
前記電流測定用サブフレームの期間内において前記表示パネルに流れる駆動電 流値を測定する測定手段と、  Measuring means for measuring a drive current value flowing through the display panel within a period of the current measurement subframe;
前記測定手段によつて測定される駆動電流値が基準電流値の許容範囲内になる ように前記電源手段の出力電圧を調整する制御手段と、 を備えたことを特徴とす る表示装置。  And a control means for adjusting an output voltage of the power supply means so that a drive current value measured by the measurement means falls within an allowable range of a reference current value.
1 3 . 前記特定のフレームは前記表示装置の電源投入直後のフレームであるこ とを特徴とする請求項 1 2記載の表示装置。  13. The display device according to claim 12, wherein the specific frame is a frame immediately after the display device is turned on.
1 4 . 前記特定のフレームは前記入力映像データの毎フレームであることを特 徴とする請求項 1 2記載の表示装置。  14. The display device according to claim 12, wherein the specific frame is a frame of the input video data.
1 5 . 前記特定のフレームは前記入力映像データの所定数のフレーム毎である ことを特徴とする請求項 1 2記載の表示装置。  15. The display device according to claim 12, wherein the specific frame is every predetermined number of frames of the input video data.
1 6 . 前記電流測定用サブフレームは前記複数の容量性発光素子に逆パイァス 電圧を印加する逆バイアス印加サブフレームと共通に設けられたこ.とを特徴とす る請求項 1 2記載の表示装置。 .  16. The display device according to claim 12, wherein the current measurement subframe is provided in common with a reverse bias application subframe that applies a reverse bias voltage to the plurality of capacitive light emitting elements. . .
1 7 . 前記所定の表示パターンは、 前記表示パネルの縦方向又は横方向の少な くとも 1ラインを点灯させるパターンであることを特 ί敷とする請求項 1 2記載の 表示装置。  17. The display device according to claim 12, wherein the predetermined display pattern is a pattern for lighting at least one line in a vertical direction or a horizontal direction of the display panel.
1 8 . 前記所定の表示パタ ンは、 前記表示パネルの全画面を点灯させるバタ ーンであることを特徴とする請求項 1 2記載の表示装置。 1 8. The predetermined display pattern is a pattern for lighting the entire screen of the display panel. The display device according to claim 12, wherein the display device is a screen.
1 9 . 前記制御手段は、 前記表示パネルに印加される前記電源手段の出力電圧 を前記容量性発光素子の発光色の R G B毎に調整することを特徴とする請求項 1 2記載の表示装置。  19. The display device according to claim 12, wherein the control unit adjusts an output voltage of the power source unit applied to the display panel for each R GB of the emission color of the capacitive light emitting element.
2 0 . 前記電流測定用サブフレームは前記階調表示用サブフレームの 1つであ ることを特徴とする請求項 1 2記載の表示装置。  21. The display device according to claim 12, wherein the current measurement subframe is one of the gradation display subframes.
2 1 . 前記制御手段によって調整された前記電源手段の出力電圧は、 前記表示 パネルの発光と設定された容量性発光素子各々の駆動トランジスタのソース電圧 を変化せしめ、 それによつて前記発光と設定された容量発光素子の駆動電流値が 変化することを特徴とする請求項 1 2記載の表示装置。  2 1. The output voltage of the power supply means adjusted by the control means changes the source voltage of the driving transistor of each of the capacitive light emitting elements set as the light emission of the display panel, thereby setting the light emission. The display device according to claim 12, wherein a driving current value of the capacitive light emitting element changes.
2 2 . 前記制御手段によって調整された前記電源手段の出力電圧は、 前記表示 パネルの癸光と設定された容量性発光素子各々の駆動トランジスタのゲート電圧 を変化せしめ、 それによつて前記発光と設定された容量発光素子の駆動電流値が 変化することを特徴とする請求項 1 2記載の表示装置。  2 2. The output voltage of the power supply means adjusted by the control means changes the gate voltage of the driving transistor of each of the set capacitive light emitting elements with the fluorescence of the display panel, and thereby the light emission and setting 13. The display device according to claim 12, wherein a drive current value of the capacitive light emitting element is changed.
2 3 . 前記制御手段によって調整された前記電源手段の出力電圧は、 前記表示 パネルの発光と設定された容量性発光素子各々の駆動トランジスタのソース電圧 と、 そのゲート電圧とを個別に変化せしめ、 それによつて前記発光と設定された 容量発光素子の駆動電流値が変化することを特徴とする請求項 1 2記載の表示装 置。  2 3. The output voltage of the power supply means adjusted by the control means changes the source voltage of the driving transistor of each of the set capacitive light emitting elements and the gate voltage of the display panel, and the gate voltage. 13. The display device according to claim 12, wherein a drive current value of the capacitive light emitting element set as the light emission changes accordingly.
2 4 . マトリックス状に配置された複数の容量性発光素子からなる表示パネル に対し、 入力映像データの各フレームの期間内に、 複数の階調表示用サブフレー ムの期間を設け、 入力映像デ^ ·タが示す輝度階調に対応して前記複数の容量性発 光素子の各々を前記階調表示用サブフレーム毎に発光又は非発光に設定して階調 表示を行う前記表示パネルの駆動方法であって、 2 4. For a display panel consisting of a plurality of capacitive light emitting elements arranged in a matrix, a plurality of gradation display subframe periods are provided within each frame of the input video data, and the input video data is displayed. The plurality of capacitive occurrences corresponding to the luminance gradation indicated by The display panel driving method for performing gradation display by setting each of the optical elements to emit light or not to emit light for each gradation display subframe,
前記入力映像データの特定のフレームの期間内の前記複数の階調表示用サブフ レームの期間とは異なる電流測定用サブフレームの期間を設け、 その電流測定用 サブフレームの期間内において前記複数の容量性発光素子各々を所定の表示パタ ーンに従った発光又は非発光に設定し、  A period of a current measurement subframe that is different from a period of the plurality of gradation display subframes within a period of a specific frame of the input video data is provided, and the plurality of capacitors are included in the period of the current measurement subframe. Each light emitting element is set to light emission or non-light emission according to a predetermined display pattern,
前記表示パネルの発光と設定された容量性発光素子に前記電源手段から駆動電 流を供給し、  A driving current is supplied from the power supply means to the capacitive light emitting element set to emit light of the display panel;
前記電流測定用サブフレームの期間内において前記表示パネルに流れる駆 ¾電 流値を測定し、  A drive current value flowing in the display panel within a period of the current measurement subframe is measured;
その測定駆動電流値が基準電流値の許容範囲内になるように前記電源手段の出 力電圧を調整するこ'とを特徴とする駆動方法。  A drive method characterized in that the output voltage of the power supply means is adjusted so that the measured drive current value falls within an allowable range of the reference current value.
PCT/JP2006/309522 2005-05-10 2006-05-02 Display apparatus and display panel driving method WO2006121137A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-137060 2005-05-10
JP2005137060 2005-05-10
JP2005-153933 2005-05-26
JP2005153933 2005-05-26

Publications (1)

Publication Number Publication Date
WO2006121137A1 true WO2006121137A1 (en) 2006-11-16

Family

ID=37396646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309522 WO2006121137A1 (en) 2005-05-10 2006-05-02 Display apparatus and display panel driving method

Country Status (1)

Country Link
WO (1) WO2006121137A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114407A1 (en) * 2007-03-20 2008-09-25 Pioneer Corporation Display device, and its drive method
WO2016117176A1 (en) * 2015-01-19 2016-07-28 シャープ株式会社 Display device and method for driving same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040871A1 (en) * 1997-03-12 1998-09-17 Seiko Epson Corporation Pixel circuit, display device and electronic equipment having current-driven light-emitting device
JP2002311898A (en) * 2001-02-08 2002-10-25 Semiconductor Energy Lab Co Ltd Light emitting device and electronic equipment using the same
JP2003202832A (en) * 2001-09-17 2003-07-18 Semiconductor Energy Lab Co Ltd Method for driving light emitting device
JP2004145257A (en) * 2002-04-23 2004-05-20 Semiconductor Energy Lab Co Ltd Light emitting device device and production system of the same
JP2004287345A (en) * 2003-03-25 2004-10-14 Casio Comput Co Ltd Display driving device and display device, and driving control method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040871A1 (en) * 1997-03-12 1998-09-17 Seiko Epson Corporation Pixel circuit, display device and electronic equipment having current-driven light-emitting device
JP2002311898A (en) * 2001-02-08 2002-10-25 Semiconductor Energy Lab Co Ltd Light emitting device and electronic equipment using the same
JP2003202832A (en) * 2001-09-17 2003-07-18 Semiconductor Energy Lab Co Ltd Method for driving light emitting device
JP2004145257A (en) * 2002-04-23 2004-05-20 Semiconductor Energy Lab Co Ltd Light emitting device device and production system of the same
JP2004287345A (en) * 2003-03-25 2004-10-14 Casio Comput Co Ltd Display driving device and display device, and driving control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114407A1 (en) * 2007-03-20 2008-09-25 Pioneer Corporation Display device, and its drive method
WO2016117176A1 (en) * 2015-01-19 2016-07-28 シャープ株式会社 Display device and method for driving same

Similar Documents

Publication Publication Date Title
JP4302945B2 (en) Display panel driving apparatus and driving method
KR101697890B1 (en) Video image signal processing circuit, method for processing video image signal, and display device
EP1459285B1 (en) Panel display driving device and driving method
KR101142281B1 (en) Organic electro luminescent display and driving method of the same
US7999768B2 (en) Organic light emitting diode display and driving method thereof
JP5449641B2 (en) Display device
CN110473493B (en) Display panel driving method and display device
KR20170049735A (en) Display device
JP3922090B2 (en) Display device and display control method
KR20140077789A (en) Organic Light Emitting Display Device and Method for Operating The Same
JP5779656B2 (en) Image display device
US10978014B2 (en) Gamma voltage divider circuit, voltage adjusting method, and liquid crystal display device
JP2003202837A (en) Device and method for driving display panel
KR20110045643A (en) Organic Electroluminescent Display Device And Method Of Driving The Same
JP3712104B2 (en) Matrix type display device and driving method thereof
KR20150035073A (en) Organic light emitting diode display and method of driving the same
JP4852772B2 (en) Display device, electric device, method for driving display device, and computer program
KR20150072593A (en) Organic light emitting display device
US20070262927A1 (en) Electron emission display device and driving method thereof
WO2006121137A1 (en) Display apparatus and display panel driving method
JP4075423B2 (en) Driving method and driving device for matrix type organic EL display device
KR20110035442A (en) Organic electroluminescent display device and method of driving the same
JP2002297098A (en) Drive device for light-emitting panel
US20230282149A1 (en) Method and Apparatus for Displaying Image on Image Display Device
JP2002341828A (en) Display pixel circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP