WO2006121103A1 - Cooler with defroster and refrigerator having cooler with defroster - Google Patents

Cooler with defroster and refrigerator having cooler with defroster Download PDF

Info

Publication number
WO2006121103A1
WO2006121103A1 PCT/JP2006/309458 JP2006309458W WO2006121103A1 WO 2006121103 A1 WO2006121103 A1 WO 2006121103A1 JP 2006309458 W JP2006309458 W JP 2006309458W WO 2006121103 A1 WO2006121103 A1 WO 2006121103A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass tube
cooler
notch
cooling fin
bent portion
Prior art date
Application number
PCT/JP2006/309458
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiko Ito
Toshiki Maeda
Masaki Sunada
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006121103A1 publication Critical patent/WO2006121103A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/02Geometry problems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to a cooler such as a refrigerator having a defrosting device and a refrigerator provided with the cooler.
  • FIG. 10 is a cross-sectional view of an essential part of a conventional refrigerator.
  • the refrigerator has a freezer compartment 1 at the lowermost part, a freezer compartment door 2 at the front of the freezer compartment 1, a refrigerator compartment 3A above the freezer compartment 1, a refrigerator compartment door 4 at the front of the refrigerator compartment 3A, and a refrigerator main body
  • a cooler 5 is provided at the rear of the part, a glass tube heater 6 as a defrosting device disposed in a notch opened downward at the lower part of the cooler 5, and a fan 7 at the upper part of the cooler 5.
  • the operation of the refrigerator configured as described above will be described below.
  • the cooler 5 is cooled by the refrigerant flowing in the cooler 5, and the freezer compartment 1 and the refrigerator compartment 3A are cooled by the operation of the fan 7.
  • the air heat-exchanged by the cooler 5 flows into the high-temperature outside air when the freezer door 2 and the refrigerator door 4 are opened, and evaporation of water contained in stored food in the freezer 1 and the refrigerator 3 Since the air is highly humidified, the moisture in the air forms frost and deposits on the cooler 5 which is low in temperature due to the air.
  • the glass tube heater 6 is energized to radiate and defrost the cooler 5 by radiant heat.
  • FIG. 11 is a perspective view of an essential part of another conventional cooler with a defroster
  • FIG. 12 is a perspective view of the defroster.
  • the cooler 8 A is composed of a plurality of cooling fins 10 and a refrigerant pipe 9 penetrating the cooling fins 10.
  • a glass tube heater 11 as a defrosting device, a glass tube 12 and a plate 13 are provided. Specifically, after attaching the plate 13 having a shape along the outer peripheral upper surface of the glass tube 12 to the glass tube 12, the outer peripheral upper surface of the plate 13 is brought into contact with the lower end portion of the cooling fin 10. Form a cooler.
  • the plate 13 is made of aluminum which is a material having a high thermal conductivity.
  • the above configuration can also be considered as means for suppressing the surface temperature of the glass tube 12 to the ignition temperature or less of the flammable refrigerant.
  • the above configuration can also be considered as means for suppressing the surface temperature of the glass tube 12 to the ignition temperature or less of the flammable refrigerant.
  • a cooler comprising a plurality of cooling fins and a refrigerant pipe penetrating the cooling fins, and a defroster for defrosting the cooler, the defroster comprising a glass tube and a heater installed inside the glass tube
  • a glass tube heater consisting of a wire and a notch whose periphery is formed by a bent portion formed by bending the cooling fin and an open portion formed in a part of the cooling fin, and the glass tube heater is formed in the notch
  • the radiant heat of the glass tube heater effectively supplies heat to the cooler.
  • the heat of the surface of the glass tube given the heater linear force is directly supplied to the bent portion of the cooling fin by thermal conduction. Can effectively supply heat to the cooler.
  • the heat of the surface of the glass tube transfers heat to the cooling fins, which can lower the surface temperature of the glass tube of the glass tube heater.
  • the heat of the surface of the glass tube conducts heat to the cooling fins, so the surface temperature of the glass tube of the glass tube heater can be reduced.
  • the bent portion is provided only at the peripheral edge in the vertical direction of the notch, there are no portions in the direction of the upper surface and the lower surface of the glass tube that impede the effect of the radiant heat.
  • the glass tube can be defrosted utilizing radiant heat to the entire surface of the glass tube in the upper surface direction, and can be effectively defrosted below the cooler in the lower surface direction of the glass tube.
  • the radiant heat of the heater effectively supplies heat to the cooler.
  • the glass tube is in contact with the bent portion provided only at the vertical edge of the notch of the cooling fin, the heat of the surface of the glass tube given from the heater line is directly transmitted by heat conduction. The heat is supplied to the bent portion of the cooling fin to effectively supply the heat to the cooler, and the defrosting efficiency can be improved.
  • the heat of the surface of the glass tube conducts heat to the cooling fins, so the surface temperature of the glass tube of the glass tube heater can be reduced.
  • the bending portion and the glass tube are provided at the horizontal periphery of the notch of the cooling fin by providing the bending portion at the vertical peripheral edge and the horizontal peripheral edge of the notch.
  • the top is in contact with.
  • the heat of the surface of the upper portion of the glass tube is thermally conducted to the cooling fin.
  • Tube heater The surface temperature of the upper part of one glass tube can be further lowered.
  • the heat conduction can be promoted by increasing the contact area between the bent portion and the upper portion of the glass tube by setting the number of horizontal bent portions of the notch to at least two or more. Since the heat can be supplied to the cooler more effectively, the defrosting efficiency can be further improved.
  • the heat of the surface of the upper portion of the glass tube conducts heat to the cooling fins, so that the surface temperature of the upper portion of the glass tube of the glass tube heater can be further lowered.
  • the bending portion in the horizontal direction of the notch has a bending angle of 90 degrees or less, so that when the glass tube heater is inserted into the notch, the glass tube is cut even if bending occurs or the like.
  • a bent portion provided at the horizontal peripheral edge of the notch can maintain contact with the glass tube reliably and uniformly. In this way, the heat can be uniformly conducted to the cooler, and the defrosting efficiency can be improved.
  • productivity can be improved.
  • the bent portion of the cooling fin since the bent portion of the cooling fin is flat, the bent portion of the cooling fin can reliably contact the glass tube, so that the defrosting efficiency can be further improved. it can.
  • the bending portion of the cooling fin is flat, bending force of the cooling fin is easy, and in the assemblability of inserting the glass tube heater into the cooler, the glass tube of the bending portion is installed. Since the surface is flat, the glass tube can be easily inserted, thereby improving productivity.
  • the horizontal opening of the notch is provided approximately at the center in the depth direction of the notch, so that the opening is located on the top surface of the glass tube.
  • the present invention by providing the notch at the lower end portion of the cooling fin, radiant heat from the glass tube heater can be supplied to the entire cooler using natural convection upward, and the lower side of the cooler
  • the distance between the drain pan portion and the glass tube heater is shortened, and the drain pan portion can be defrosted by radiant heat to the lower side of the glass tube heater.
  • another defroster such as a surface heater for defrosting the drain pan portion.
  • the assemblability of installing the glass tube heater in the cooler Since the glass tube heater can be inserted, it is easier than installing the glass tube heater in the center of the cooler.
  • the contact area effective for heat conduction can be increased by providing the bent portion of the cooling fin at two or more places per one cooling fin, so the defrosting efficiency can be further enhanced. It can be improved.
  • the present invention can transfer the heat of the glass tube heater to the entire cooler by efficiently providing the notches in the approximate center of the depth direction of the cooler.
  • heat conduction to the glass tube heater force cooling fin is effectively performed by setting the length of the bent portion of the cooling fin to 5% or more of the length between the adjacent cooling fins. be able to.
  • the glass tube heater fits within the notch because the vertical length of the notch is larger than the outer diameter of the glass tube. In this way, the glass tube heater can be miniaturized as a cooler with a defroster that can not protrude from the cooler.
  • the heat flowing on the surface of the glass tube is conducted to the cooling fins by making the refrigerant flowing in the refrigerant tube a flammable refrigerant, the heat capacity of the glass tube heater is not reduced.
  • the surface temperature of the tube can be kept below the ignition temperature of the flammable refrigerant.
  • FIG. 1 is a perspective view of a cooler with a defroster according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of the undersurface force of the cooler with a defroster shown in FIG.
  • FIG. 3 is a cross-sectional view of the cooler with a defroster shown in FIG. 1, taken along line 3-3.
  • FIG. 4 is a cross-sectional view of an essential part of the defrosting apparatus shown in FIG.
  • FIG. 5 is a detailed view of the main parts of the cooling fins in the cooler with a defroster shown in FIG.
  • FIG. 6 is a perspective view of another cooler with a defroster according to Embodiment 1 of the present invention.
  • FIG. 7 is a perspective view of a cooler with a defroster according to a second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view taken along line 8-8 of the cooler equipped with a defroster shown in FIG.
  • FIG. 9 is a detailed view of the main parts of the cooling fins in the cooler with a defroster shown in FIG.
  • FIG. 10 is a sectional view of an essential part of a conventional refrigerator.
  • FIG. 11 is a perspective view of the main part of another conventional cooler with a defroster.
  • FIG. 12 is a perspective view of the defrosting apparatus shown in FIG.
  • the cooler with a defroster (hereinafter referred to as “cooler”) is in contact with the cooling fins 23 and the cooling fins 23 formed of a plurality of cooling fins 23 and a refrigerant pipe 22 penetrating the cooling fins 23.
  • a glass tube heater 24 is configured as a defrosting device.
  • the refrigerant pipe 22 is filled with isobutane which is a flammable refrigerant.
  • the glass tube heater 24 is connected to a heater wire 26 formed of a metal resistor in a coil shape, a glass tube 27 covering the heater wire 26, a cap 28 covering the opening of the glass tube 27, and the heater wire 26.
  • the lead wire 29 is composed of
  • a notch 25 opened downward is provided.
  • the bent portion 30 is provided only at the vertical peripheral edge of the notch 25. Further, in the peripheral portion of the notch 25, an open portion 31 is present at a portion where the bending portion 30 is not formed.
  • the bent portion 30 is not continuously formed on all the peripheral portions of the notch 25.
  • the open part 31 has a meaning of the extent that the bent part 30 is not formed.
  • the end face of the cooling fin 23 may include a so-called collar or the like, which is often caulked at the site where the refrigerant pipe is inserted.
  • the glass tube heater 24 is inserted into the notch 25 and the bent portion 30 and the glass tube 27 are in contact with each other.
  • the main point is that the bending portion 30 extends in a plane shape along the upper and lower direction of the cooler 21. More specifically, when the cooler 21 is arranged as shown in FIG. 1, the glass tube heater 24 is inserted horizontally into the notch 25 at the bottom of the cooling fin 23, and only the vertical edge of the notch 25 is inserted. The bent portion 30 provided in the and the glass tube 27 of the glass tube heater 24 are brought into contact with each other.
  • Glass tube 27 has a cylindrical shape with an outer diameter of 10.5 mm and an inner diameter of 8.5 mm.
  • the length A of the bent portion 30 of the cooling fin 23 is 4.9 mm
  • the height B of the bent portion 30 is 12 mm
  • the glass tube insertion portion size of the notch 25 is C 10.8 mm
  • the bending angle D of 30 is 85 °.
  • the length of the cooling fin 23 and the adjacent cooling fin 23, that is, the so-called fin pitch is 10 mm.
  • the bending portion 30 is provided with two bending portions for one cooling fin, and the bending portion 30 is provided on both sides of the outer periphery of the glass tube 27 in the installation direction of the glass tube 27. And the cooling fins 23 are in contact.
  • the material of the refrigerant pipe 22 and the cooling fin 23 is aluminum having a high thermal conductivity.
  • Such a cooler is formed, for example, by the following method.
  • a substantially T-shaped cut is provided on the cooling fin 23 by press processing. It is preferable to perform this pressing simultaneously with the processing for forming the outer peripheral shape of the cooling fin and the processing for forming a long hole for inserting the refrigerant pipe, since the number of steps can be reduced.
  • the processing method for providing the substantially T-shaped cut may be a method such as laser processing.
  • the bending portion 30 is formed by press working using a mold for defining the bending position and bending angle of the bending portion 30.
  • this bending method may be a processing method using a bending jig!
  • a cooling pipe 2 is formed by bending one refrigerant pipe, and the cooling pipe 2
  • the glass tube heater 24 is inserted into the notch 25 of the cooling fin 23 and the glass tube 27 and the bent portion 30 are brought into close contact with each other to form a cooler.
  • the process of inserting the glass tube heater 24 into the notch 25 of the cooling fin 23 is a refrigerant tube
  • the refrigerant pipe used is a so-called serpentine-like refrigerant pipe in which one refrigerant pipe is bent, but a so-called hairpin pipe constituted by a straight pipe portion and a bent pipe portion, and a bent pipe
  • the refrigerant pipe may be formed by connecting the component to the return bend by brazing or the like. In that case, after the hairpin tube is inserted into the cooling fin, a return bend is attached to the end of the straight tube portion of the hairpin tube, and a refrigerant tube is formed by brazing or the like.
  • the heater wire 26 When the frosted cooler 21 is defrosted, the heater wire 26 is heated by energization from the lead wire 29 and heat is radiated to the glass tube 27. Heat radiates further from the glass tube 27 and defrosts the cooler 21. Further, the heat of the surface of the glass tube 27 given from the heater wire 26 is supplied to the bent portion 30 by heat conduction since the bent portion 30 of the cooling fin 23 and the glass tube 27 are in contact with each other. , Defrost the cooling fins 23.
  • the glass tube heater 24 is inserted horizontally into the notch 25 in the lower part of the cooling fin 23 and is provided only at the vertical peripheral edge of the notch 25 and the glass tube heater 24
  • the glass tube 27 is in contact, and in the direction of the upper surface and the lower surface of the glass tube 27, there is no part that hinders the effect of radiant heat.
  • the radiation heat can be defrosted to the entire cooler 21, and in the lower surface direction of the glass tube 27, the drain pan below the cooler 21 (see FIG. It is effective for defrosting the part (not shown) and can improve the defrosting efficiency.
  • the glass tube 27 has an outer diameter of 10.5 mm and the notch 25 of the glass tube insertion portion size C is 10.8 mm. Set the dimension C of the glass tube insertion part 25 of the notch 25 wider than the outer diameter of the glass tube 27 The glass tube 27 can be easily inserted into the notch 25.
  • the length A of the bent portion 30 of the cooling fin 23 is 4.9 mm. Since the bent portion 30 is flat, the contact surface of the glass tube 27 is circular. On the other hand, after the glass tube 27 is inserted into the notch 25 by the setting of the glass tube insertion portion size C and the bending angle D, the bent portion 30 and the glass tube 27 can be reliably in contact with each other. Since 30 is flat, processing of the bent portion 30 is easy.
  • the height B of the bent portion 30 is 12 mm, and by setting the outside diameter of the glass tube 27 to be larger than 10.5 mm, the glass tube 27 can be installed without protruding below the cooler 21. The effect of being able to be miniaturized as a cooler with a defroster is obtained.
  • the bending angle D is bent at 85 °. Since the dimension C of the glass tube insertion part is set larger than the outer diameter of the glass tube 27, the glass tube 27 is installed by inclining the bent portion 30 in the installation direction of the glass tube 27. 27 and the bent portion 30 of the cooling fin 23 can be reliably in contact. However, the size C of the glass tube insertion portion may be set smaller than the outer diameter of the glass tube 27, the bending angle D of the bent portion 30 may be 90 °, and the glass tube 27 may be pressed.
  • two bent portions 30 are provided for one cooling fin 23, and both sides of the outer periphery of the glass tube 27 are brought into contact with the cooling fins 23 in the installation direction of the glass tube 27.
  • the contact area effective for heat conduction can be increased, and defrosting can be performed more efficiently.
  • the notch 25 is provided approximately at the center of the depth direction of the cooler 21, and the glass tube heater 24 is inserted in the notch 25, so that the heat of the glass tube heater 24 can be efficiently cooled in the entire cooler 21. Tell. In this manner, the possibility of the occurrence of a portion which is difficult to defrost in a part of the cooler 21 is reduced.
  • the effect of heat conduction from the glass tube 27 to the cooling fins 23 is improved by setting the length of the bent portion 30 of the cooling fins 23 to 5% or more of the length between the adjacent cooling fins 23.
  • the defrosting efficiency of the chiller 2 1 is improved.
  • the defrosting efficiency can be further improved by setting the length of the bent portion 30 of the cooling fin 23 to 20% or more of the length between the adjacent cooling fins 23.
  • the maximum possible ratio of the length A of the bent portion 30 to the length between adjacent cooling fins 23 is (1Z2 of the glass tube insertion portion size C) ((length between adjacent cooling fins 23) ) In the case of the relationship which becomes, it is 100%.
  • (1Z2 of the glass tube insertion portion size C) ⁇ (length between adjacent cooling fins 23)
  • the maximum value is less than 100%.
  • the ignition temperature of isobutane which is a flammable refrigerant, is 494 ° C.
  • the surface temperature of glass tube 27 is set to 394 ° C. or less, which is 100 ° C. lower than the ignition temperature, to ensure safety.
  • the length of the bent portion 30 is 49% of the length between the adjacent cooling fins 23
  • the surface temperature of the glass tube 27 is 330 ° C., and when the flammable refrigerant is used as the refrigerant of the refrigeration cycle, there is a sufficient reduction effect of the surface temperature of the glass tube. Therefore, it is possible to provide a refrigerator that prevents the ignition of the flammable refrigerant even when the flammable refrigerant is defrosted in an environment where the flammable refrigerant leaks to the installation atmosphere of the defrosting means.
  • the defrosting efficiency is improved and the defrosting time can be shortened, so that the power consumption of the refrigerator can be reduced.
  • the bending portion 30 may be provided with the cooling fin 23 not provided with the bending portion 30 according to the force required for all the cooling fins 23.
  • the cooling fins 23 provided with the bent portions 30 and the cooling fins 23 not provided with the bent portions 30 may be alternately arranged, or the cooling fins 23 provided with the bent portions 30 may be alternately provided. It may be arranged.
  • the glass tube heater 24 is inserted in the lower part of the cooler 21.
  • the glass tube heater is further disposed at a position between the coolers in the height direction. 24 can be inserted, and two glass tube heaters can be inserted into one cooler. Furthermore, three or more glass tube heaters may be inserted.
  • the bending portion 30 may be provided at two places with respect to the cooling fin 23, depending on necessity, the bending part 30 may be provided at one place.
  • the refrigerant pipe 22 and the cooling fins 23 may have high thermal conductivity, and the material of the force refrigerant pipe 22 and the cooling fins 23 may be copper.
  • the cooler includes a cooler 21 including a plurality of cooling fins 23 and a refrigerant pipe 22 penetrating the cooling fins 23, and a cooling fin 2. 3 and a glass tube heater 24 as a defrosting device in contact.
  • the refrigerant pipe 22 is filled with isobutane which is a flammable refrigerant.
  • the glass tube heater 24 is connected to a heater wire 26 formed by coiling a metal resistor, a glass tube 27 covering the heater wire 26, a cap 28 covering the opening of the glass tube 27, and the heater wire 26.
  • the lead wire 29 is composed of
  • a notch 25 opening downward is provided, and a bent portion 30 is formed on the vertical edge and the horizontal edge of the notch 25. Is provided.
  • an open portion 31 which is open is present at a portion where the bending portion 30 is not formed.
  • the bending part 30 is not continuously formed in all the peripheral parts of the notch 25.
  • the open part 31 means a part where the bent part 30 is not formed.
  • the end face of the cooling fin 23 is a so-called force which is often caulked at the part where the refrigerant pipe is inserted. It also includes lathe parts.
  • the glass tube heater 24 is inserted into the notch 25 and the bent portion 30 and the glass tube 27 are in contact with each other.
  • the vertical direction means that the bent portion 30 extends in a plane along the vertical direction of the cooler 21.
  • the horizontal direction means that the bent portion 30 is present along the left-right direction of the cooler 21 or in the vicinity of the top of the notch 25 in a substantially U-shaped form.
  • the glass tube heater 24 is horizontally inserted into the notch 25 at the bottom of the cooling fin 23 and provided in the vertical direction of the notch 25.
  • Two bent portions 30 and two bent portions provided in the horizontal direction ie, two bent portions 30 provided in the shape of a letter of “ ⁇ ” from the vicinity of the top of the notch 25) Contact the glass tube 27 of the heater 24.
  • the length A of the bending portion 30 in the vertical direction of the cooling fin 23 and the length F of the bending portion 30 in the horizontal direction are 4.9 mm
  • the height B of the bending portion 30 is 12 mm
  • the notch The 25 glass tube insertion part size C is 10. 8 mm
  • the bending angle D of the bending part 30 is 85 °.
  • the so-called fin pitch between the cooling fins 23 and the adjacent cooling fins 23 is 10 mm.
  • the bending portion 30 is provided with four bending portions for one cooling fin, and in the installation direction of the glass tube 27, the bending portions are provided on both sides and the upper portion of the outer periphery of the glass tube 27. 30 and the cooling fins 23 are in contact with each other.
  • the bending angle E of the horizontal bent portion 30 of the cooling fin 23 is 90 ° or less.
  • the refrigerant pipe 22 and the cooling fins 23 are formed of aluminum, which is a material having a high thermal conductivity.
  • Such a cooler is formed, for example, by the following method.
  • This press caulk is desirable because it can reduce the number of processes if it is performed simultaneously with the process of forming the outer peripheral shape of the cooling fin and the process of forming a long hole for inserting the refrigerant pipe.
  • a method such as laser processing may be used as a processing method for providing the substantially cross-shaped cut.
  • the bending portion 30 is formed by pressing using a bending position of the bending portion 30 and a die for defining a bending angle.
  • this bending method may use a processing method using a bending jig!
  • the refrigerant pipe 22 formed by bending one refrigerant pipe is used as a cooling fin 2
  • the glass tube heater 24 is inserted into the notch 25 of the cooling fin 23 and the glass tube 27 is brought into close contact with the bent portion 30 to form a cooler.
  • the step of inserting the glass tube heater 24 into the notch 25 of the cooling fin 23 may be performed before the step of inserting the cooling medium tube 22 into the long hole for the refrigerant tube insertion of the cooling fin 23. I do not care.
  • the refrigerant pipe used is a so-called serpentine-like refrigerant pipe in which one refrigerant pipe is bent, but a so-called hairpin pipe composed of a straight pipe part and a bent pipe part
  • the refrigerant pipe may be formed by connecting the component to the return bend by brazing or the like. In that case, after the hairpin tube is inserted into the cooling fin, a return bend is attached to the end of the straight tube portion of the hairpin tube, and a refrigerant tube is formed by brazing or the like.
  • the cooler 21 When the frosted cooler 21 is defrosted, the heater wire 26 is heated by energization from the lead wire 29, and heat is radiated to the glass tube 27. Heat radiates further from the glass tube 27 and defrosts the cooler 21. Further, the heat of the surface of the glass tube 27 given from the heater wire 26 is supplied to the bent portion 30 by heat conduction since the bent portion 30 of the cooling fin 23 and the glass tube 27 are in contact with each other. , Defrost the cooling fins 23.
  • the bent portions 30 are provided on the vertical peripheral edge and the horizontal peripheral edge of the notches 25, the bent portions 30 provided on the horizontal edge of the notches 25 of the cooling fin 23 and the like
  • the upper part of the glass tube 27 is in contact.
  • the heat of the surface of the glass tube 27 given from the heater wire 26 can supply more heat to the cooler 21 by heat conduction, and the radiation from the glass tube heater 24 can be cooled from the open part 31. Defrosting efficiency can be improved more effectively because it can be supplied to
  • the bent portion 30 provided on the horizontal periphery of the notch 25 is in contact with the upper portion of the glass tube 27, the heat of the surface of the upper portion of the glass tube 27 is transferred to the cooling fin 23.
  • the surface temperature of the upper portion of the glass tube 27 of the glass tube heater 24 can be further lowered because the heat is conducted.
  • the horizontal opening 31 is provided approximately at the center of the notch in the depth direction, that is, disposed on the uppermost surface of the glass tube 27 to maximize the radiation heat effect. It can be done.
  • the length A of the vertical bending portion 30 of the cooling fin 23 and the length F of the horizontal bending portion 30 are 4.9 mm. Since the bending portion 30 is flat, the contact surface with the glass tube 27 is circular, but the glass tube 27 is inserted into the notch 25 by setting the dimension C of the glass tube and the bending angles D and E. After that, since the bent portion 30 and the glass tube 27 can be reliably brought into contact with each other, and since the bent portion 30 is flat, processing of the bent portion 30 is easy.
  • the height B of the bent portion 30 in the vertical direction is 12 mm, and by setting the outer diameter of the glass tube 27 to be larger than 10.5 mm, the glass tube 27 does not protrude to the lower part of the cooler 21. Can be installed Therefore, the effect of being able to be miniaturized as a cooler with a defrosting device is obtained.
  • the bending angle D of the bending portion 30 in the vertical direction is bent at 85 °. Since the dimension C of the glass tube insertion portion is set larger than the outer diameter of the glass tube 27, the glass tube 27 is installed by inclining the bent portion 30 in the installation direction of the glass tube 27. 27 and the bent portion 30 of the cooling fin 23 can be reliably in contact with each other. However, the dimension C of the glass tube insertion portion may be set smaller than the outer diameter of the glass tube 27, the bending angle D of the bent portion 30 may be 90 °, and the glass tube 27 may be pressed.
  • the bending angle E of the bent portion 30 in the horizontal direction is bent to 90 ° or less.
  • the bending angle E is preferably in the range of 85 ° to 70 ° in consideration of the processability of the cooling fin 23 and the insertability of the glass tube 27.
  • bent portions 30 are provided for one cooling fin 23, and cooling is performed at two places on the outer periphery of the glass tube 27 and at two places on the upper surface in the installation direction of the glass tube 27.
  • the contact with the fins 23 can increase the effective contact area for heat conduction, and defrost more efficiently.
  • the notch 25 is provided approximately at the center of the depth direction of the cooler 21 and the glass tube heater 24 is inserted in the notch 25, so that the heat of the glass tube heater 24 can be efficiently cooled in the entire cooler 21. As it is transmitted, the possibility of occurrence of a location where it is difficult to defrost in part of the cooler 21 is reduced.
  • the effect of heat conduction from the glass tube 27 to the cooling fins 23 is improved by setting the length of the bent portion 30 of the cooling fins 23 to be 5% or more of the length between the adjacent cooling fins 23.
  • the defrosting efficiency of the chiller 2 1 is improved.
  • the defrosting efficiency can be further improved by setting the length of the bent portion 30 of the cooling fin 23 to 20% or more of the length between the adjacent cooling fins 23.
  • the maximum possible ratio of the length A of the vertical bending portion 30 and the length F of the horizontal bending portion 30 to the length between the adjacent cooling fins 23 is (glass tube insertion portion Dimension It is 100% when the relation is such that 1Z2) of method C ⁇ (the length between adjacent cooling fins 23).
  • (1Z2 of the glass tube insertion portion size C) length between adjacent cooling fins 23
  • the ignition temperature of isobutane which is a flammable refrigerant, is 494 ° C
  • the surface temperature of the glass tube 27 is set to 394 ° C or less, which is 100 ° C lower than the ignition temperature, to ensure safety.
  • the length of the bent portion 30 is 49% of the length between the adjacent cooling fins 23.
  • the surface temperature of the glass tube 27 is 330 ° C., and when the flammable refrigerant is used as the refrigerant of the refrigeration cycle, there is a sufficient reduction effect of the surface temperature of the glass tube. Therefore, even when defrosting is performed in an environment where the flammable refrigerant leaks to the installation atmosphere of the defrosting means, it is possible to provide a refrigerator that prevents the ignition of the flammable refrigerant.
  • the power consumption of the refrigerator can be reduced because the defrosting efficiency is improved and the defrosting time can be shortened.
  • the bending portions 30 in the horizontal direction are provided at the cooling fin 23 in two places, but the bending portions 30 in the horizontal direction may be provided in three or more places if necessary.
  • the bending portion 30 may be provided with the cooling fin 23 not provided with the bending portion 30 according to the force required for all the cooling fins 23.
  • the cooling fins 23 provided with the bent portions 30 and the cooling fins 23 not provided with the bent portions 30 may be alternately arranged, or the cooling fins 23 provided with the bent portions 30 may be alternately provided. It may be arranged.
  • the refrigerant pipe 22 and the cooling fins 23 may have high thermal conductivity, and the material of the force refrigerant pipe 22 and the cooling fins 23 may be copper.
  • the bent portion 30 provided on the peripheral edge in the horizontal direction of the notch 25 includes two bent portions 30 in which the force in the vicinity of the top of the notch 25 is also formed substantially in a U shape. Instead of being generally in the form of a straight line, it may be a straight bend along the left-right direction.
  • the cooler of the present invention can improve the defrosting efficiency by the radiant heat from the glass tube heater and the heat conduction to the glass tube heater power cooling fin.
  • the heat of the surface of the glass tube is in contact with the glass tube. Since the heat is conducted to the cooling fins that are touched, the surface temperature of the heat pipe can be suppressed to the ignition temperature or less of the flammable refrigerant without reducing the heat capacity of the heater wire.
  • the defroster-equipped cooler of the present invention can efficiently cool and supply the heat of the glass tube heater, and therefore can be applied to applications such as a refrigerator and a vending machine.

Abstract

A cooler with a defroster having increased defrosting efficiency and a refrigerator having the cooler with the defroster. Cutouts are formed in cooling fins, bent parts are formed only at the vertical peripheral edges of the cutouts, and a glass tube heater is inserted into the cutouts. The bent parts are brought into contact with the glass tube of the glass tube heater to defrost the cooler by radiating the heat of the glass tube heater from the upper surface of the glass tube to the cooling fins and conducting it from the side surfaces of the glass tube to the cooling fins.

Description

明 細 書  Specification
除霜装置付き冷却器と除霜装置付き冷却器を備えた冷蔵庫  Refrigerator with cooler with defroster and cooler with defroster
技術分野  Technical field
[0001] 本発明は、除霜装置を有する冷蔵庫等の冷却器及びこの冷却器を備えた冷蔵庫 に関する。  The present invention relates to a cooler such as a refrigerator having a defrosting device and a refrigerator provided with the cooler.
背景技術  Background art
[0002] 従来の冷蔵庫の冷却器について説明する。図 10は、従来の冷蔵庫の要部断面図 である。図 10において、冷蔵庫は、最下部に冷凍室 1、冷凍室 1の前面に冷凍室扉 2、冷凍室 1の上方に冷蔵室 3A、冷蔵室 3Aの前面に冷蔵室扉 4、冷蔵庫本体の下 部後方に冷却器 5、冷却器 5の下部に下方に開口する切り欠きに配置された除霜装 置としてのガラス管ヒーター 6、冷却器 5の上部にファン 7が設けられている。以上のよ うに構成された冷蔵庫につ!ヽて、以下その動作を説明する。  [0002] A conventional refrigerator cooler will be described. FIG. 10 is a cross-sectional view of an essential part of a conventional refrigerator. In FIG. 10, the refrigerator has a freezer compartment 1 at the lowermost part, a freezer compartment door 2 at the front of the freezer compartment 1, a refrigerator compartment 3A above the freezer compartment 1, a refrigerator compartment door 4 at the front of the refrigerator compartment 3A, and a refrigerator main body A cooler 5 is provided at the rear of the part, a glass tube heater 6 as a defrosting device disposed in a notch opened downward at the lower part of the cooler 5, and a fan 7 at the upper part of the cooler 5. The operation of the refrigerator configured as described above will be described below.
[0003] 冷却器 5内を流通する冷媒により冷却器 5が冷却され、ファン 7の作動により冷凍室 1及び冷蔵室 3Aが冷却される。ここで、冷却器 5で熱交換される空気は、冷凍室扉 2 や冷蔵室扉 4の開閉により高温外気の流入や、冷凍室 1や冷蔵室 3の保存食品に含 まれる水分の蒸発等により高湿化された空気であることから、その空気により低温で ある冷却器 5に空気中の水分が霜となって着霜し堆積する。  The cooler 5 is cooled by the refrigerant flowing in the cooler 5, and the freezer compartment 1 and the refrigerator compartment 3A are cooled by the operation of the fan 7. Here, the air heat-exchanged by the cooler 5 flows into the high-temperature outside air when the freezer door 2 and the refrigerator door 4 are opened, and evaporation of water contained in stored food in the freezer 1 and the refrigerator 3 Since the air is highly humidified, the moisture in the air forms frost and deposits on the cooler 5 which is low in temperature due to the air.
[0004] 霜の堆積量が増加するに従い冷却器 5の表面と熱交換する空気との伝熱が阻害さ れると共に、通風抵抗となって風量が低下するために熱通過率が低下し冷却不足が 発生する。そこで、冷却不足となる前にガラス管ヒーター 6に通電し、放射熱により冷 却器 5を暖め除霜する。ガラス管ヒーター 6を、冷却器 5の下部に下方に開口する切り 欠き部に配置したことにより、ガラス管ヒーター 6と冷却器 5の距離が縮まり、除霜効率 を向上させる。このような構成を有する冷却器が特開 2002— 5553号公報に開示さ れている。  As the accumulation amount of frost increases, the heat transfer between the surface of the cooler 5 and the air that exchanges heat with the surface is impeded, and the air flow is reduced due to the air flow resistance, so the heat passing rate decreases and the cooling is insufficient. Occurs. Therefore, before the cooling becomes insufficient, the glass tube heater 6 is energized to radiate and defrost the cooler 5 by radiant heat. By arranging the glass tube heater 6 in the notch which opens downward to the lower part of the cooler 5, the distance between the glass tube heater 6 and the cooler 5 is reduced, and the defrosting efficiency is improved. A cooler having such a configuration is disclosed in Japanese Patent Application Laid-Open No. 2002-5553.
[0005] し力しながら、上記従来の構成では、ガラス管ヒーター 6と冷却器 5との距離を縮め て、除霜効率を向上させてはいるものの、ガラス管ヒーター 6の放射熱により除霜する ものであること力 、除霜効率を更に向上させるには限界があるという課題を有してい る。 In the conventional configuration described above, the distance between the glass tube heater 6 and the cooler 5 is reduced to improve the defrosting efficiency. However, the radiation heat of the glass tube heater 6 causes the defrosting. The problem is that there is a limit to further improving the defrosting efficiency. Ru.
[0006] 更なる除霜効率を向上させる方法の一つとして、ガラス管ヒーターの熱を効率的に 冷却器に伝える方法につ 1、て述べる。図 11は他の従来の除霜装置付き冷却器の要 部斜視図、図 12はその除霜装置の斜視図である。  [0006] As one of the methods of further improving the defrosting efficiency, a method of efficiently transferring the heat of the glass tube heater to the cooler will be described. FIG. 11 is a perspective view of an essential part of another conventional cooler with a defroster, and FIG. 12 is a perspective view of the defroster.
[0007] 図 11と図 12において、冷却器 8Aは、複数の冷却フィン 10と冷却フィン 10を貫通 する冷媒管 9とからなる。除霜装置としてのガラス管ヒーター 11、ガラス管 12、板 13を 備えている。具体的には、ガラス管 12の外周上面に沿った形状の板 13をガラス管 1 2に装着した後、板 13の外周上面を冷却フィン 10の下端部に接触させることにより、 除霜装置付き冷却器を形成する。なお、板 13は熱伝導率の高い材質であるアルミ二 ゥムである。  In FIG. 11 and FIG. 12, the cooler 8 A is composed of a plurality of cooling fins 10 and a refrigerant pipe 9 penetrating the cooling fins 10. A glass tube heater 11 as a defrosting device, a glass tube 12 and a plate 13 are provided. Specifically, after attaching the plate 13 having a shape along the outer peripheral upper surface of the glass tube 12 to the glass tube 12, the outer peripheral upper surface of the plate 13 is brought into contact with the lower end portion of the cooling fin 10. Form a cooler. The plate 13 is made of aluminum which is a material having a high thermal conductivity.
[0008] この場合、板 13とガラス管 12が接触している箇所は、熱は板 13を通って冷却フィン 10に伝わる。しかし、板 13とガラス管 12とを、ガラス管 12の長手方向に渡り、板 13と ガラス管 12の間に隙間が生じることなく配置させることは困難であり、部分的に板 13 とガラス管 12との間に空気層が生じる。その結果、この空気層に熱がこもるとともに、 板 13からガラス管 12へ熱が反射する現象も生じ、効率的に熱を冷却フィン 10に伝え ることができず、除霜効率を向上させることができない、という課題がある。  In this case, heat is transmitted to the cooling fins 10 through the plate 13 where the plate 13 and the glass tube 12 are in contact with each other. However, it is difficult to arrange the plate 13 and the glass tube 12 in the longitudinal direction of the glass tube 12 without forming a gap between the plate 13 and the glass tube 12, and partially the plate 13 and the glass tube An air layer is formed between them. As a result, heat is accumulated in the air layer, and a phenomenon that heat is reflected from the plate 13 to the glass tube 12 also occurs, so that heat can not be efficiently transmitted to the cooling fins 10, and the defrosting efficiency is improved. There is a problem that you can not
[0009] 更に、冷凍サイクルに可燃性冷媒を使用した場合において、ガラス管 12の表面温 度を可燃性冷媒の発火温度以下に抑える手段としても上記構成が考えられる。しか し、前記したように、板 13とガラス管 12の間に空気層が生じる部分があり、ガラス管 1 2の表面の熱は空気層を通して板 13へ放射した後、ガラス管 12へ反射する。このよう にして、ガラス管 12の表面温度の大幅な低下は困難で、ガラス管 13の表面温度を 可燃性冷媒の発火温度以下に抑えることができな 、、 、う課題も有して 、る。  Furthermore, in the case where a flammable refrigerant is used in the refrigeration cycle, the above configuration can also be considered as means for suppressing the surface temperature of the glass tube 12 to the ignition temperature or less of the flammable refrigerant. However, as described above, there is a portion where an air layer is generated between the plate 13 and the glass tube 12, and the heat of the surface of the glass tube 12 is radiated to the plate 13 through the air layer and then reflected to the glass tube 12 . In this manner, it is difficult to significantly reduce the surface temperature of the glass tube 12, and the surface temperature of the glass tube 13 can not be kept below the ignition temperature of the flammable refrigerant. .
発明の開示  Disclosure of the invention
[0010] 複数の冷却フィンと冷却フィンを貫通する冷媒管とからなる冷却器と、冷却器を除 霜する除霜装置とを備え、除霜装置は、ガラス管とガラス管内部に設置したヒーター 線とからなるガラス管ヒーターとし、冷却フィンの一部に冷却フィンを折り曲げてなる折 曲部と開放された開放部とでその周縁を形成された切り欠きを設け、この切り欠きに ガラス管ヒーターを挿入するとともに、折曲部とガラス管とを接触させた冷却器を提供 する。このようにして、開放部においては、放射熱の効果を妨げる部位はないので、 ガラス管ヒーターの放射熱により冷却器へ熱を効果的に供給する。さらには、冷却フ インに設けた折曲部とガラス管が接触していることから、ヒーター線力 与えられたガ ラス管の表面の熱は、熱伝導により直接冷却フィンの折曲部へ供給され、冷却器へ 熱を効果的に供給することができる。また、ガラス管表面の熱は、冷却フィンへ熱伝 導するため、ガラス管ヒーターのガラス管の表面温度を低下させることができる。 A cooler comprising a plurality of cooling fins and a refrigerant pipe penetrating the cooling fins, and a defroster for defrosting the cooler, the defroster comprising a glass tube and a heater installed inside the glass tube A glass tube heater consisting of a wire and a notch whose periphery is formed by a bent portion formed by bending the cooling fin and an open portion formed in a part of the cooling fin, and the glass tube heater is formed in the notch To provide a cooler with the bend and the glass tube in contact Do. In this way, in the open part, since there is no site that impedes the effect of radiant heat, the radiant heat of the glass tube heater effectively supplies heat to the cooler. Furthermore, since the glass tube is in contact with the bent portion provided in the cooling fin, the heat of the surface of the glass tube given the heater linear force is directly supplied to the bent portion of the cooling fin by thermal conduction. Can effectively supply heat to the cooler. In addition, the heat of the surface of the glass tube transfers heat to the cooling fins, which can lower the surface temperature of the glass tube of the glass tube heater.
[0011] また、ガラス管表面の熱は、冷却フィンへ熱伝導するため、ガラス管ヒーターのガラ ス管の表面温度を低下させることができる。  Further, the heat of the surface of the glass tube conducts heat to the cooling fins, so the surface temperature of the glass tube of the glass tube heater can be reduced.
[0012] また、本発明は、切り欠きの鉛直方向の周縁のみに折曲部を設けたことにより、ガラ ス管の上面、及び下面方向へは、放射熱の効果を妨げる部位は無い為、ガラス管の 上面方向へは冷却器全体へ放射熱を利用し除霜することができ、また、ガラス管の 下面方向へは冷却器の下方に効果的に除霜することができることから、ガラス管ヒー ターの放射熱により冷却器へ熱を効果的に供給する。さらには、冷却フィンの切り欠 きの鉛直方向の周縁のみに設けた折曲部とガラス管が接触していることから、ヒータ 一線から与えられたガラス管の表面の熱は、熱伝導により直接冷却フィンの折曲部 へ供給され、冷却器へ熱を効果的に供給することができ、除霜効率を向上させること ができる。  Further, according to the present invention, since the bent portion is provided only at the peripheral edge in the vertical direction of the notch, there are no portions in the direction of the upper surface and the lower surface of the glass tube that impede the effect of the radiant heat. The glass tube can be defrosted utilizing radiant heat to the entire surface of the glass tube in the upper surface direction, and can be effectively defrosted below the cooler in the lower surface direction of the glass tube. The radiant heat of the heater effectively supplies heat to the cooler. Furthermore, since the glass tube is in contact with the bent portion provided only at the vertical edge of the notch of the cooling fin, the heat of the surface of the glass tube given from the heater line is directly transmitted by heat conduction. The heat is supplied to the bent portion of the cooling fin to effectively supply the heat to the cooler, and the defrosting efficiency can be improved.
[0013] また、ガラス管表面の熱は、冷却フィンへ熱伝導する為、ガラス管ヒーターのガラス 管の表面温度を低下させることができる。  Further, the heat of the surface of the glass tube conducts heat to the cooling fins, so the surface temperature of the glass tube of the glass tube heater can be reduced.
[0014] 本発明は、切り欠きの鉛直方向の周縁と水平方向の周縁とに折曲部を設けたこと により、冷却フィンの切り欠きの水平方向の周縁に設けた折曲部とガラス管の上部と が接触している。このようにして、ヒーター線から与えられたガラス管の表面の熱は、 熱伝導によってより冷却器へ熱を供給できるとともに、開放部からは、ガラス管ヒータ 一の放射熱を冷却器へ供給できることから、より効果的に除霜効率を向上させること ができる。  According to the present invention, the bending portion and the glass tube are provided at the horizontal periphery of the notch of the cooling fin by providing the bending portion at the vertical peripheral edge and the horizontal peripheral edge of the notch. The top is in contact with. Thus, the heat of the surface of the glass tube given from the heater wire can supply the heat to the cooler more by heat conduction, and the open part can supply the radiant heat of the glass tube heater to the cooler. Therefore, the defrosting efficiency can be improved more effectively.
[0015] また、切り欠きの水平方向の周縁に設けた折曲部とガラス管の上部とが接触してい るので、ガラス管の上部の表面の熱は、冷却フィンへ熱伝導する為、ガラス管ヒータ 一のガラス管の上部の表面温度をより低下させることができる。 [0016] 本発明は、切り欠きの水平方向の折曲部は少なくとも 2箇所以上としたことにより、 折曲部とガラス管の上部との接触面積を増やすことにより、熱伝導を促進させること ができ、冷却器へ熱をより効果的に供給できることから、さらに除霜効率を向上させる ことができる。 In addition, since the bent portion provided on the horizontal peripheral edge of the notch is in contact with the upper portion of the glass tube, the heat of the surface of the upper portion of the glass tube is thermally conducted to the cooling fin. Tube heater The surface temperature of the upper part of one glass tube can be further lowered. According to the present invention, the heat conduction can be promoted by increasing the contact area between the bent portion and the upper portion of the glass tube by setting the number of horizontal bent portions of the notch to at least two or more. Since the heat can be supplied to the cooler more effectively, the defrosting efficiency can be further improved.
[0017] また、ガラス管の上部の表面の熱は、冷却フィンへ熱伝導する為、ガラス管ヒーター のガラス管の上部の表面温度をより低下させることができる。  Further, the heat of the surface of the upper portion of the glass tube conducts heat to the cooling fins, so that the surface temperature of the upper portion of the glass tube of the glass tube heater can be further lowered.
[0018] 本発明は、切り欠きの水平方向の折曲部は折曲角度を 90度以下としたことにより、 ガラス管ヒーターを切り欠きに挿入した際、ガラス管のたわみなどが生じても切り欠き の水平方向の周縁に設けた折曲部が確実かつ均一にガラス管と接触を保持すること ができる。このようにして、冷却器へ均一に熱を伝えることができるため除霜効率を向 上させることができる。また、ガラス管を容易に挿入でき冷却フィンと接触させることが できるので、生産性を向上させることができる。  According to the present invention, the bending portion in the horizontal direction of the notch has a bending angle of 90 degrees or less, so that when the glass tube heater is inserted into the notch, the glass tube is cut even if bending occurs or the like. A bent portion provided at the horizontal peripheral edge of the notch can maintain contact with the glass tube reliably and uniformly. In this way, the heat can be uniformly conducted to the cooler, and the defrosting efficiency can be improved. In addition, since the glass tube can be easily inserted and brought into contact with the cooling fins, productivity can be improved.
[0019] 本発明は、冷却フィンの折曲部は、平面状であることにより、冷却フィンの折曲部が 確実にガラス管と接触することができるので、より除霜効率を向上させることができる。 また、冷却フィンの折曲部を平面状としたことから、冷却フィンの曲げ力卩ェは容易であ り、ガラス管ヒーターを冷却器に挿入する組立性においては、折曲部のガラス管設置 面が平面状であるため、ガラス管を容易に挿入することができるので、生産性を向上 させることがでさる。  According to the present invention, since the bent portion of the cooling fin is flat, the bent portion of the cooling fin can reliably contact the glass tube, so that the defrosting efficiency can be further improved. it can. In addition, since the bending portion of the cooling fin is flat, bending force of the cooling fin is easy, and in the assemblability of inserting the glass tube heater into the cooler, the glass tube of the bending portion is installed. Since the surface is flat, the glass tube can be easily inserted, thereby improving productivity.
[0020] 本発明は、切り欠きの水平方向の開放部は、切り欠きの奥行き方向に対して略中 央に設けたことにより、開放部がガラス管の最上面部に位置する。このようにして、ガ ラス管ヒーターの放射熱の効果を妨げることなく冷却器へ熱を伝えることができるとと もに、熱のこもりを防止し自然対流を促進でき、除霜効率を向上させることができる。  In the present invention, the horizontal opening of the notch is provided approximately at the center in the depth direction of the notch, so that the opening is located on the top surface of the glass tube. In this way, heat can be transferred to the cooler without interfering with the radiant heat effect of the glass tube heater, heat stagnation can be prevented, natural convection can be promoted, and defrosting efficiency can be improved. be able to.
[0021] 本発明は、切り欠きを冷却フィンの下端部に設けたことにより、ガラス管ヒーターから の放射熱を上方向への自然対流を利用し冷却器全体へ供給できるとともに、冷却器 の下方に位置するドレンパン部分とガラス管ヒーターの距離が短くなり、ドレンパン部 分に対しては、ガラス管ヒーターの下方への放射熱にて除霜することができる。その 結果、ドレンパン部分の除霜用として、面ヒーター等の他の除霜装置を設置する必要 がない。また、ガラス管ヒーターを冷却器に設置する組立性は、冷却器の下方からガ ラス管ヒーターを挿入することができる為、ガラス管ヒーターを冷却器の中央部へ設 置する場合に比べ容易である。 According to the present invention, by providing the notch at the lower end portion of the cooling fin, radiant heat from the glass tube heater can be supplied to the entire cooler using natural convection upward, and the lower side of the cooler The distance between the drain pan portion and the glass tube heater is shortened, and the drain pan portion can be defrosted by radiant heat to the lower side of the glass tube heater. As a result, it is not necessary to install another defroster such as a surface heater for defrosting the drain pan portion. Also, the assemblability of installing the glass tube heater in the cooler Since the glass tube heater can be inserted, it is easier than installing the glass tube heater in the center of the cooler.
[0022] 本発明は、冷却フィンの折曲部は、冷却フィン 1枚あたりに 2箇所以上所設けたこと により、熱伝導に有効な接触面積を増すことができるので、より一層除霜効率を向上 させることがでさる。  In the present invention, the contact area effective for heat conduction can be increased by providing the bent portion of the cooling fin at two or more places per one cooling fin, so the defrosting efficiency can be further enhanced. It can be improved.
[0023] 本発明は、切り欠きを、冷却器の奥行き方向に対して略中央に設けたことより、ガラ ス管ヒーターの熱を効率よぐ冷却器全体に伝えることができる。  [0023] The present invention can transfer the heat of the glass tube heater to the entire cooler by efficiently providing the notches in the approximate center of the depth direction of the cooler.
[0024] 本発明は、冷却フィンの折曲部の長さは、隣り合う冷却フィン間の長さの 5%以上と したことにより、ガラス管ヒーター力 冷却フィンへの熱伝導を効果的に行うことができ る。  According to the present invention, heat conduction to the glass tube heater force cooling fin is effectively performed by setting the length of the bent portion of the cooling fin to 5% or more of the length between the adjacent cooling fins. be able to.
[0025] また本発明は、切り欠きの鉛直方向の長さは、ガラス管の外径より大きいことより、ガ ラス管ヒーターが切り欠き内に収まる。このようにして、ガラス管ヒーターが冷却器から 突出することがなぐ除霜装置付き冷却器として小型化できる。  Further, according to the present invention, the glass tube heater fits within the notch because the vertical length of the notch is larger than the outer diameter of the glass tube. In this way, the glass tube heater can be miniaturized as a cooler with a defroster that can not protrude from the cooler.
[0026] また本発明は、冷媒管内を流動する冷媒を可燃性冷媒としたことにより、ガラス管表 面の熱が冷却フィンへ熱伝導するので、ガラス管ヒーターの熱容量を低下させること 無ぐガラス管の表面温度を可燃性冷媒の発火温度以下に抑えることができる。 図面の簡単な説明  Further, according to the present invention, since the heat flowing on the surface of the glass tube is conducted to the cooling fins by making the refrigerant flowing in the refrigerant tube a flammable refrigerant, the heat capacity of the glass tube heater is not reduced. The surface temperature of the tube can be kept below the ignition temperature of the flammable refrigerant. Brief description of the drawings
[0027] [図 1]図 1は本発明の実施の形態 1における除霜装置付き冷却器の斜視図である。  FIG. 1 is a perspective view of a cooler with a defroster according to a first embodiment of the present invention.
[図 2]図 2は図 1に示す除霜装置付き冷却器の下面力 見た斜視図である。  [FIG. 2] FIG. 2 is a perspective view of the undersurface force of the cooler with a defroster shown in FIG.
[図 3]図 3は図 1に示す除霜装置付き冷却器の 3— 3線における断面図である。  [FIG. 3] FIG. 3 is a cross-sectional view of the cooler with a defroster shown in FIG. 1, taken along line 3-3.
[図 4]図 4は図 1に示す除霜装置の要部断面図である。  [FIG. 4] FIG. 4 is a cross-sectional view of an essential part of the defrosting apparatus shown in FIG.
[図 5]図 5は図 1に示す除霜装置付き冷却器における冷却フィンの要部詳細図である  [FIG. 5] FIG. 5 is a detailed view of the main parts of the cooling fins in the cooler with a defroster shown in FIG.
[図 6]図 6は本発明の実施の形態 1における他の除霜装置付き冷却器の斜視図であ る。 [FIG. 6] FIG. 6 is a perspective view of another cooler with a defroster according to Embodiment 1 of the present invention.
[図 7]図 7は本発明の実施の形態 2における除霜装置付き冷却器の斜視図である。  [FIG. 7] FIG. 7 is a perspective view of a cooler with a defroster according to a second embodiment of the present invention.
[図 8]図 8は図 7に示す除霜装置付き冷却器の 8— 8線における断面図である。  [FIG. 8] FIG. 8 is a cross-sectional view taken along line 8-8 of the cooler equipped with a defroster shown in FIG.
[図 9]図 9は図 7に示す除霜装置付き冷却器における冷却フィンの要部詳細図である [図 10]図 10は従来の冷蔵庫の要部断面図である。 [FIG. 9] FIG. 9 is a detailed view of the main parts of the cooling fins in the cooler with a defroster shown in FIG. [FIG. 10] FIG. 10 is a sectional view of an essential part of a conventional refrigerator.
[図 11]図 11は他の従来の除霜装置付き冷却器の要部斜視図である。  [FIG. 11] FIG. 11 is a perspective view of the main part of another conventional cooler with a defroster.
[図 12]図 12は図 11に示す除霜装置の斜視図である。  [FIG. 12] FIG. 12 is a perspective view of the defrosting apparatus shown in FIG.
符号の説明  Explanation of sign
21 冷却器  21 cooler
22 冷媒管  22 refrigerant pipe
23 冷却フィン  23 cooling fins
24 ガラス管ヒータ  24 glass tube heater
25 切り欠き  25 notches
26 ヒーター線  26 heater wire
27 ガラス管  27 glass tube
30 折曲部  30 bends
31 開放部  31 Opening
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下図面を用いて、さらに本発明を詳細に説明する。なお、図面は模式図であり、 各位置関係を寸法的に正しく示したものではない。また、本発明はこの実施の形態 に限定されるものではない。  The present invention will be further described in detail below with reference to the drawings. Note that the drawings are schematic diagrams, and the positional relationships are not dimensionally accurate. Further, the present invention is not limited to this embodiment.
[0030] (実施の形態 1) Embodiment 1
図 1〜図 6を用いて実施の形態 1を説明する。  The first embodiment will be described with reference to FIGS. 1 to 6.
[0031] 図 1において、除霜装置付き冷却器 (以下冷却器という)は、複数の冷却フィン 23と 冷却フィン 23を貫通する冷媒管 22とからなる冷却器 21と、冷却フィン 23と接触する 除霜装置としてのガラス管ヒーター 24と、構成されている。 In FIG. 1, the cooler with a defroster (hereinafter referred to as “cooler”) is in contact with the cooling fins 23 and the cooling fins 23 formed of a plurality of cooling fins 23 and a refrigerant pipe 22 penetrating the cooling fins 23. A glass tube heater 24 is configured as a defrosting device.
[0032] 冷媒管 22には可燃性冷媒であるイソブタンが封入されて 、る。 The refrigerant pipe 22 is filled with isobutane which is a flammable refrigerant.
[0033] ガラス管ヒーター 24は、金属抵抗体をコイル状に形成したヒーター線 26と、ヒータ 一線 26を覆うガラス管 27と、ガラス管 27の開口部を覆うキャップ 28と、ヒーター線 26 に接続されたリード線 29とから構成されて 、る。 The glass tube heater 24 is connected to a heater wire 26 formed of a metal resistor in a coil shape, a glass tube 27 covering the heater wire 26, a cap 28 covering the opening of the glass tube 27, and the heater wire 26. The lead wire 29 is composed of
[0034] 冷却器 21の冷却フィン 23の下部の略中央には、下方に開口する切り欠き 25が設 けられ、切り欠き 25の鉛直方向の周縁のみに、折曲部 30が設けられている。また、 切り欠き 25の周縁部のうち、折曲部 30が形成されない箇所には開放された開放部 3 1が存在している。切り欠き 25の周縁部の全てに折曲部 30が連続的に形成されるも のではない。なお、開放部 31は折曲部 30が形成されない部分と言う程度の意味で ある。例えば冷却フィン 23の端面に、冷媒管が挿入される部位にしばしばカ卩ェされる 、いわゆるカラー部なども含むものである。 At the approximate center of the lower part of the cooling fin 23 of the cooler 21, a notch 25 opened downward is provided. The bent portion 30 is provided only at the vertical peripheral edge of the notch 25. Further, in the peripheral portion of the notch 25, an open portion 31 is present at a portion where the bending portion 30 is not formed. The bent portion 30 is not continuously formed on all the peripheral portions of the notch 25. The open part 31 has a meaning of the extent that the bent part 30 is not formed. For example, the end face of the cooling fin 23 may include a so-called collar or the like, which is often caulked at the site where the refrigerant pipe is inserted.
[0035] そして、ガラス管ヒーター 24が切り欠き 25に挿入され、折曲部 30とガラス管 27は接 触している。ここで、鉛直方向という表現を用いたが、その主旨は冷却器 21の上下方 向に沿って折曲部 30が面状に延出しているという意味である。より具体的には、冷却 器 21を図 1の如く配置した場合、冷却フィン 23の下部の切り欠き 25に、ガラス管ヒー ター 24を水平方向に挿入し、切り欠き 25の鉛直方向の周縁のみに設けた折曲部 30 とガラス管ヒーター 24のガラス管 27を接触させる。  Then, the glass tube heater 24 is inserted into the notch 25 and the bent portion 30 and the glass tube 27 are in contact with each other. Here, although the expression of the vertical direction is used, the main point is that the bending portion 30 extends in a plane shape along the upper and lower direction of the cooler 21. More specifically, when the cooler 21 is arranged as shown in FIG. 1, the glass tube heater 24 is inserted horizontally into the notch 25 at the bottom of the cooling fin 23, and only the vertical edge of the notch 25 is inserted. The bent portion 30 provided in the and the glass tube 27 of the glass tube heater 24 are brought into contact with each other.
[0036] なお、ガラス管 27は、外径が 10. 5mm、内径が 8. 5mmの円筒状である。なお、冷 却フィン 23の折曲部 30の長さ Aは 4. 9mm、折曲部 30の高さ Bは 12mm、切り欠き 2 5のガラス管揷入部寸法 Cは 10. 8mm、折曲部 30の曲げ角度 Dは 85° である。な お、冷却フィン 23と隣り合う冷却フィン 23との長さ、いわゆるフィンピッチは、 10mm である。  Glass tube 27 has a cylindrical shape with an outer diameter of 10.5 mm and an inner diameter of 8.5 mm. In addition, the length A of the bent portion 30 of the cooling fin 23 is 4.9 mm, the height B of the bent portion 30 is 12 mm, the glass tube insertion portion size of the notch 25 is C 10.8 mm, the bent portion The bending angle D of 30 is 85 °. The length of the cooling fin 23 and the adjacent cooling fin 23, that is, the so-called fin pitch is 10 mm.
[0037] なお、折曲部 30は、冷却フィン 1枚に対して 2箇所の折曲部を設け、ガラス管 27の 設置方向において、ガラス管 27の外周の両側面にて、折曲部 30と冷却フィン 23とが 接触している。なお、冷媒管 22と冷却フィン 23の材質は、熱伝導率の高いアルミニゥ ムである。  The bending portion 30 is provided with two bending portions for one cooling fin, and the bending portion 30 is provided on both sides of the outer periphery of the glass tube 27 in the installation direction of the glass tube 27. And the cooling fins 23 are in contact. The material of the refrigerant pipe 22 and the cooling fin 23 is aluminum having a high thermal conductivity.
[0038] このような冷却器は、例えば以下のような方法で形成される。  [0038] Such a cooler is formed, for example, by the following method.
[0039] まず、冷却フィン 23に略 T字状の切り込みをプレス加工により設ける。このプレス加 ェは、冷却フィンの外周形状を形成させる加工や冷媒管揷入用の長孔を形成させる 加工と同時に行うと、工数を削減することができるため、望ましい。  First, a substantially T-shaped cut is provided on the cooling fin 23 by press processing. It is preferable to perform this pressing simultaneously with the processing for forming the outer peripheral shape of the cooling fin and the processing for forming a long hole for inserting the refrigerant pipe, since the number of steps can be reduced.
[0040] なお、この略 T字状の切り込みを設ける加工方法は、レーザー加工等の方法をとつ ても構わない。次に、折曲部 30の曲げ位置、及び曲げ角度を規定するための金型を 用いてプレス加工により、折曲部 30を形成させる。 [0041] なお、この曲げ加工方法は、曲げ治具を用いた加工方法をとつても構わな!/、。 The processing method for providing the substantially T-shaped cut may be a method such as laser processing. Next, the bending portion 30 is formed by press working using a mold for defining the bending position and bending angle of the bending portion 30. In addition, this bending method may be a processing method using a bending jig!
[0042] 次に、一本の冷媒管を曲げ加工することにより形成させた冷媒管 22を冷却フィン 2Next, a cooling pipe 2 is formed by bending one refrigerant pipe, and the cooling pipe 2
3の冷媒管揷入用の長孔に挿入し、密着させる。 Insert it into the long hole for refrigerant tube penetration of No. 3 and make it adhere closely.
[0043] 次に、冷却フィン 23の切り欠き 25にガラス管ヒーター 24を挿入し、ガラス管 27と折 曲部 30を密着させることにより、冷却器が形成される。 Next, the glass tube heater 24 is inserted into the notch 25 of the cooling fin 23 and the glass tube 27 and the bent portion 30 are brought into close contact with each other to form a cooler.
[0044] なお、ガラス管ヒーター 24を冷却フィン 23の切り欠き 25に挿入する工程は、冷媒管The process of inserting the glass tube heater 24 into the notch 25 of the cooling fin 23 is a refrigerant tube
22を冷却フィン 23の冷媒管揷入用の長孔に挿入する工程の前に行っても構わない It may be performed before the process of inserting 22 into the long hole for the refrigerant pipe insertion of the cooling fin 23
[0045] また、上記では、冷媒管は一本の冷媒管を曲げ加工する、いわゆるサーペンタイン 状の冷媒管を用いたが、直管部と曲管部で構成されたいわゆるヘアピン管と、曲管 部からなるリターンベンドとをろう付け等でつなぎ合わせることによって、冷媒管を形 成してもよい。その場合、ヘアピン管を冷却フィンに挿入した後、ヘアピン管の直管 部の端部にリターンベンドを装着し、ろう付け等により、冷媒管を形成させる。 In the above, the refrigerant pipe used is a so-called serpentine-like refrigerant pipe in which one refrigerant pipe is bent, but a so-called hairpin pipe constituted by a straight pipe portion and a bent pipe portion, and a bent pipe The refrigerant pipe may be formed by connecting the component to the return bend by brazing or the like. In that case, after the hairpin tube is inserted into the cooling fin, a return bend is attached to the end of the straight tube portion of the hairpin tube, and a refrigerant tube is formed by brazing or the like.
[0046] 以上のように構成された冷却器について、以下に作用を説明する。  The operation of the cooler configured as described above will be described below.
[0047] 着霜した冷却器 21を除霜する際、リード線 29からの通電によりヒーター線 26が発 熱し、ガラス管 27へ熱が放射される。熱は、ガラス管 27からさらに放射し、冷却器 21 を除霜する。また、ヒーター線 26から与えられたガラス管 27の表面の熱は、冷却フィ ン 23の折曲部 30とガラス管 27が接触していることから、熱伝導により折曲部 30へ供 給され、冷却フィン 23を除霜する。  When the frosted cooler 21 is defrosted, the heater wire 26 is heated by energization from the lead wire 29 and heat is radiated to the glass tube 27. Heat radiates further from the glass tube 27 and defrosts the cooler 21. Further, the heat of the surface of the glass tube 27 given from the heater wire 26 is supplied to the bent portion 30 by heat conduction since the bent portion 30 of the cooling fin 23 and the glass tube 27 are in contact with each other. , Defrost the cooling fins 23.
[0048] さらに、ガラス管ヒーター 24は、冷却フィン 23の下部の切り欠き 25に水平方向に揷 入し、切り欠き 25の鉛直方向の周縁のみに設けた折曲部 30とガラス管ヒーター 24の ガラス管 27を接触させており、ガラス管 27の上面、及び下面方向へは、放射熱の効 果を妨げる部位は無い。その結果、ガラス管 27の上面方向へは、冷却器 21全体へ 放射熱を利用し除霜することができ、また、ガラス管 27の下面方向へは、冷却器 21 の下方にあるドレンパン(図示せず)部分の除霜に効果的であり、除霜効率を向上さ せることができる。  Furthermore, the glass tube heater 24 is inserted horizontally into the notch 25 in the lower part of the cooling fin 23 and is provided only at the vertical peripheral edge of the notch 25 and the glass tube heater 24 The glass tube 27 is in contact, and in the direction of the upper surface and the lower surface of the glass tube 27, there is no part that hinders the effect of radiant heat. As a result, in the upper surface direction of the glass tube 27, the radiation heat can be defrosted to the entire cooler 21, and in the lower surface direction of the glass tube 27, the drain pan below the cooler 21 (see FIG. It is effective for defrosting the part (not shown) and can improve the defrosting efficiency.
[0049] ガラス管 27は外径 10. 5mm、切り欠き 25のガラス管揷入部寸法 Cは 10. 8mmで ある。切り欠き 25のガラス管挿入部寸法 Cをガラス管 27の外径より広く設定すること で、ガラス管 27は切り欠き 25に容易に挿入できる。 [0049] The glass tube 27 has an outer diameter of 10.5 mm and the notch 25 of the glass tube insertion portion size C is 10.8 mm. Set the dimension C of the glass tube insertion part 25 of the notch 25 wider than the outer diameter of the glass tube 27 The glass tube 27 can be easily inserted into the notch 25.
[0050] 冷却フィン 23の折曲部 30の長さ Aは 4. 9mmである。折曲部 30が平面状であるた め、ガラス管 27の接触面は円状である。一方、ガラス管挿入部寸法 Cと曲げ角度 Dの 設定により、切り欠き 25にガラス管 27を挿入後は、確実に折曲部 30とガラス管 27は 接触することができ、かつ、折曲部 30は平面状であることから、折曲部 30の加工は 容易である。 The length A of the bent portion 30 of the cooling fin 23 is 4.9 mm. Since the bent portion 30 is flat, the contact surface of the glass tube 27 is circular. On the other hand, after the glass tube 27 is inserted into the notch 25 by the setting of the glass tube insertion portion size C and the bending angle D, the bent portion 30 and the glass tube 27 can be reliably in contact with each other. Since 30 is flat, processing of the bent portion 30 is easy.
[0051] 折曲部 30の高さ Bは 12mmであり、ガラス管 27の外径 10. 5mmより大きく設定す ることにより、ガラス管 27が冷却器 21の下部に突出すること無く設置できるため、除 霜装置付き冷却器として小型化できるという効果が得られる。  The height B of the bent portion 30 is 12 mm, and by setting the outside diameter of the glass tube 27 to be larger than 10.5 mm, the glass tube 27 can be installed without protruding below the cooler 21. The effect of being able to be miniaturized as a cooler with a defroster is obtained.
[0052] また、図 5に示すように、曲げ角度 Dは、 85° に曲げカ卩ェされている。ガラス管挿入 部寸法 Cはガラス管 27の外径より広く設定している為、折曲部 30をガラス管 27の設 置方向へ傾斜させることにより、ガラス管 27が設置された時に、ガラス管 27と冷却フ イン 23の折曲部 30が確実に接触することができる。ただし、ガラス管挿入部寸法 Cを ガラス管 27の外径より小さく設定し、折曲部 30の曲げ角度 Dを 90° にし、ガラス管 2 7を圧入してもよい。  Further, as shown in FIG. 5, the bending angle D is bent at 85 °. Since the dimension C of the glass tube insertion part is set larger than the outer diameter of the glass tube 27, the glass tube 27 is installed by inclining the bent portion 30 in the installation direction of the glass tube 27. 27 and the bent portion 30 of the cooling fin 23 can be reliably in contact. However, the size C of the glass tube insertion portion may be set smaller than the outer diameter of the glass tube 27, the bending angle D of the bent portion 30 may be 90 °, and the glass tube 27 may be pressed.
[0053] また、冷却フィン 23の 1枚に対して 2箇所の折曲部 30を設け、ガラス管 27の設置方 向において、ガラス管 27の外周の両側面にて冷却フィン 23と接触させることにより、 熱伝導に有効な接触面積を増すことができ、より一層効率よく除霜することができる。  Further, two bent portions 30 are provided for one cooling fin 23, and both sides of the outer periphery of the glass tube 27 are brought into contact with the cooling fins 23 in the installation direction of the glass tube 27. As a result, the contact area effective for heat conduction can be increased, and defrosting can be performed more efficiently.
[0054] 切り欠き 25は冷却器 21の奥行き方向に対して略中央に設け、切り欠き 25にガラス 管ヒーター 24を挿入したことにより、ガラス管ヒーター 24の熱を効率よく冷却器 21全 体に伝える。このようにして、冷却器 21の一部に除霜しにくい箇所が発生する可能性 は低くなる。  The notch 25 is provided approximately at the center of the depth direction of the cooler 21, and the glass tube heater 24 is inserted in the notch 25, so that the heat of the glass tube heater 24 can be efficiently cooled in the entire cooler 21. Tell. In this manner, the possibility of the occurrence of a portion which is difficult to defrost in a part of the cooler 21 is reduced.
[0055] 冷却フィン 23の折曲部 30の長さは、隣り合う冷却フィン 23間の長さの 5%以上とす ることにより、ガラス管 27から冷却フィン 23への熱伝導による効果が向上し、冷却器 2 1の除霜効率が向上する。さらに、冷却フィン 23の折曲部 30の長さを、隣り合う冷却 フィン 23間の長さの 20%以上とすることで、より一層、除霜効率を向上させることがで きる。なお、折曲部 30の長さ Aの隣り合う冷却フィン 23間の長さに対する比率の取り 得る最大値は、(ガラス管挿入部寸法 Cの 1Z2)≥ (隣り合う冷却フィン 23間の長さ) となるような関係の場合は 100%である。一方、(ガラス管挿入部寸法 Cの 1Z2) < ( 隣り合う冷却フィン 23間の長さ)となるような場合、最大値は 100%未満となる。 The effect of heat conduction from the glass tube 27 to the cooling fins 23 is improved by setting the length of the bent portion 30 of the cooling fins 23 to 5% or more of the length between the adjacent cooling fins 23. The defrosting efficiency of the chiller 2 1 is improved. Furthermore, the defrosting efficiency can be further improved by setting the length of the bent portion 30 of the cooling fin 23 to 20% or more of the length between the adjacent cooling fins 23. The maximum possible ratio of the length A of the bent portion 30 to the length between adjacent cooling fins 23 is (1Z2 of the glass tube insertion portion size C) ((length between adjacent cooling fins 23) ) In the case of the relationship which becomes, it is 100%. On the other hand, in the case of (1Z2 of the glass tube insertion portion size C) <(length between adjacent cooling fins 23), the maximum value is less than 100%.
[0056] 一方、可燃性冷媒であるイソブタンの発火温度は 494°Cあり、ガラス管 27の表面温 度は、発火温度より 100°C低い 394°C以下に設定し、安全性を確保する必要がある On the other hand, the ignition temperature of isobutane, which is a flammable refrigerant, is 494 ° C. The surface temperature of glass tube 27 is set to 394 ° C. or less, which is 100 ° C. lower than the ignition temperature, to ensure safety. There is
[0057] 冷却フィン 23がフィンピッチ 10mmの間隔で配置されている冷却器 21に対し、本 実施の形態は、折曲部 30の長さは、隣り合う冷却フィン 23間の長さの 49%で、ガラ ス管 27の表面温度は 330°Cとなり、冷凍サイクルの冷媒に可燃性冷媒を用いた場合 において、充分なガラス管表面温度の低減効果がある。したがって、可燃性冷媒が 除霜手段の設置雰囲気に漏洩した環境下で除霜が行われた場合でも、可燃性冷媒 の着火を防止する冷蔵庫を提供することができる。 In contrast to the cooler 21 in which the cooling fins 23 are arranged at an interval of 10 mm in fin pitch, in the present embodiment, the length of the bent portion 30 is 49% of the length between the adjacent cooling fins 23 The surface temperature of the glass tube 27 is 330 ° C., and when the flammable refrigerant is used as the refrigerant of the refrigeration cycle, there is a sufficient reduction effect of the surface temperature of the glass tube. Therefore, it is possible to provide a refrigerator that prevents the ignition of the flammable refrigerant even when the flammable refrigerant is defrosted in an environment where the flammable refrigerant leaks to the installation atmosphere of the defrosting means.
[0058] し力も、除霜効率が向上し、除霜時間を短縮できるので、冷蔵庫の消費電力を低減 できる。  Also, the defrosting efficiency is improved and the defrosting time can be shortened, so that the power consumption of the refrigerator can be reduced.
[0059] なお、本実施の形態では、折曲部 30は全ての冷却フィン 23に設けた力 必要に応 じて、折曲部 30を設けない冷却フィン 23を配置してもよい。例えば、折曲部 30を設 けた冷却フィン 23と、折曲部 30を設けない冷却フィン 23とを交互に配置する、あるい は、折曲部 30を設けた冷却フィン 23を 2枚置きに配置してもよい。  In the present embodiment, the bending portion 30 may be provided with the cooling fin 23 not provided with the bending portion 30 according to the force required for all the cooling fins 23. For example, the cooling fins 23 provided with the bent portions 30 and the cooling fins 23 not provided with the bent portions 30 may be alternately arranged, or the cooling fins 23 provided with the bent portions 30 may be alternately provided. It may be arranged.
[0060] なお、本実施の形態では、冷却器 21の下部にガラス管ヒーター 24を挿入させたが 、図 6に示すように、冷却器の高さ方向の間の位置において、さらにガラス管ヒーター 24を挿入し、一つの冷却器に対して、 2本のガラス管ヒーターを挿入してもよい。さら には、 3本以上のガラス管ヒーターを挿入してもよい。  In the present embodiment, the glass tube heater 24 is inserted in the lower part of the cooler 21. However, as shown in FIG. 6, the glass tube heater is further disposed at a position between the coolers in the height direction. 24 can be inserted, and two glass tube heaters can be inserted into one cooler. Furthermore, three or more glass tube heaters may be inserted.
[0061] なお、本実施の形態では、冷却フィン 23に対して、折曲部 30を 2箇所設けた力 必 要に応じて、折曲部 30は 1箇所でもよい。  In the present embodiment, the bending portion 30 may be provided at two places with respect to the cooling fin 23, depending on necessity, the bending part 30 may be provided at one place.
[0062] なお、本実施の形態では、冷媒管 22、冷却フィン 23は、熱伝導率の高!、材質であ るアルミニウムとした力 冷媒管 22、冷却フィン 23の材質を銅としてもよい。  In the present embodiment, the refrigerant pipe 22 and the cooling fins 23 may have high thermal conductivity, and the material of the force refrigerant pipe 22 and the cooling fins 23 may be copper.
[0063] (実施の形態 2)  Embodiment 2
図 7〜図 9を用いて、実施の形態 2を説明する。図 7において、冷却器は、複数の冷 却フィン 23と冷却フィン 23を貫通する冷媒管 22とからなる冷却器 21と、冷却フィン 2 3と接触する除霜装置としてのガラス管ヒーター 24とから構成されて 、る。冷媒管 22 には可燃性冷媒であるイソブタンが封入されて 、る。 The second embodiment will be described with reference to FIGS. 7 to 9. In FIG. 7, the cooler includes a cooler 21 including a plurality of cooling fins 23 and a refrigerant pipe 22 penetrating the cooling fins 23, and a cooling fin 2. 3 and a glass tube heater 24 as a defrosting device in contact. The refrigerant pipe 22 is filled with isobutane which is a flammable refrigerant.
[0064] ガラス管ヒーター 24は、金属抵抗体をコイル状に形成したヒーター線 26と、ヒータ 一線 26を覆うガラス管 27と、ガラス管 27の開口部を覆うキャップ 28と、ヒーター線 26 に接続されたリード線 29とから構成されて 、る。 The glass tube heater 24 is connected to a heater wire 26 formed by coiling a metal resistor, a glass tube 27 covering the heater wire 26, a cap 28 covering the opening of the glass tube 27, and the heater wire 26. The lead wire 29 is composed of
[0065] 冷却器 21の冷却フィン 23の下部の略中央には、下方に開口する切り欠き 25が設 けられ、切り欠き 25の鉛直方向の周縁と水平方向の周縁とに、折曲部 30が設けられ ている。 At the approximate center of the lower part of the cooling fin 23 of the cooler 21, a notch 25 opening downward is provided, and a bent portion 30 is formed on the vertical edge and the horizontal edge of the notch 25. Is provided.
[0066] また、切り欠き 25の周縁部のうち、折曲部 30が形成されない箇所には開放された 開放部 31が存在している。なお、切り欠き 25の周縁部の全てに折曲部 30が連続的 に形成されるものではな 、。  Further, in the peripheral edge portion of the notch 25, an open portion 31 which is open is present at a portion where the bending portion 30 is not formed. In addition, the bending part 30 is not continuously formed in all the peripheral parts of the notch 25.
[0067] なお、開放部 31は折曲部 30が形成されない部分と言うほどの意味であり、例えば 冷却フィン 23の端面に、冷媒管が挿入される部位にしばしばカ卩ェされる、いわゆる力 ラー部なども含むものである。  The open part 31 means a part where the bent part 30 is not formed. For example, the end face of the cooling fin 23 is a so-called force which is often caulked at the part where the refrigerant pipe is inserted. It also includes lathe parts.
[0068] そして、ガラス管ヒーター 24が切り欠き 25に挿入され、折曲部 30とガラス管 27は接 触している。ここで、鉛直方向、水平方向という表現を用いたが、その主旨は、鉛直 方向とは冷却器 21の上下方向に沿って折曲部 30が面状に延出しているという意味 である。また、水平方向とは冷却器 21の左右方向に沿っている、あるいは、切り欠き 25の頂部近傍から略ノヽの字状に折曲部 30が存在している、という意味である。  Then, the glass tube heater 24 is inserted into the notch 25 and the bent portion 30 and the glass tube 27 are in contact with each other. Here, although the expressions of the vertical direction and the horizontal direction are used, the main point is that the vertical direction means that the bent portion 30 extends in a plane along the vertical direction of the cooler 21. Further, the horizontal direction means that the bent portion 30 is present along the left-right direction of the cooler 21 or in the vicinity of the top of the notch 25 in a substantially U-shaped form.
[0069] より具体的には、冷却器 21を図 7の如く配置した場合、冷却フィン 23の下部の切り 欠き 25に、ガラス管ヒーター 24を水平に挿入し、切り欠き 25の鉛直方向に設けた二 つの折曲部 30と、水平方向に設けた二つの折曲部(すなわち、切り欠き 25の頂部近 傍から略ノヽの字状に設けた二つの折曲部 30)とを、ガラス管ヒーター 24のガラス管 2 7に接触させる。  More specifically, when the cooler 21 is arranged as shown in FIG. 7, the glass tube heater 24 is horizontally inserted into the notch 25 at the bottom of the cooling fin 23 and provided in the vertical direction of the notch 25. Two bent portions 30 and two bent portions provided in the horizontal direction (ie, two bent portions 30 provided in the shape of a letter of “ヽ” from the vicinity of the top of the notch 25) Contact the glass tube 27 of the heater 24.
[0070] なお、冷却フィン 23の鉛直方向の折曲部 30の長さ Aおよび水平方向の折曲部 30 の長さ Fは 4. 9mm、折曲部 30の高さ Bは 12mm、切り欠き 25のガラス管揷入部寸 法 Cは 10. 8mm、折曲部 30の曲げ角度 Dは 85° である。なお、冷却フィン 23と隣り 合う冷却フィン 23との間の長さ、いわゆる、フィンピッチは、 10mmである。 [0071] なお、折曲部 30は、冷却フィン 1枚に対して 4箇所の折曲部を設け、ガラス管 27の 設置方向において、ガラス管 27の外周の両側面および上部において、折曲部 30と 冷却フィン 23とが接触して 、る。 Note that the length A of the bending portion 30 in the vertical direction of the cooling fin 23 and the length F of the bending portion 30 in the horizontal direction are 4.9 mm, the height B of the bending portion 30 is 12 mm, and the notch The 25 glass tube insertion part size C is 10. 8 mm, and the bending angle D of the bending part 30 is 85 °. The so-called fin pitch between the cooling fins 23 and the adjacent cooling fins 23 is 10 mm. In addition, the bending portion 30 is provided with four bending portions for one cooling fin, and in the installation direction of the glass tube 27, the bending portions are provided on both sides and the upper portion of the outer periphery of the glass tube 27. 30 and the cooling fins 23 are in contact with each other.
[0072] なお、冷却フィン 23の水平方向の折曲部 30の曲げ角度 Eは 90° 以下である。な お、冷媒管 22、冷却フィン 23は、熱伝導率の高い材質であるアルミニウムで形成さ れている。 The bending angle E of the horizontal bent portion 30 of the cooling fin 23 is 90 ° or less. The refrigerant pipe 22 and the cooling fins 23 are formed of aluminum, which is a material having a high thermal conductivity.
[0073] このような冷却器は、例えば以下のような方法で形成される。まず、冷却フィン 23に 略十字状の切り込みをプレスカ卩ェにより設ける。このプレスカ卩ェは、冷却フィンの外 周形状を形成させる加工や冷媒管揷入用の長孔を形成させる加工と同時に行うと、 工数を削減することができるので望まし 、。  Such a cooler is formed, for example, by the following method. First, a substantially cross-shaped cut is provided on the cooling fin 23 by a press cover. This press caulk is desirable because it can reduce the number of processes if it is performed simultaneously with the process of forming the outer peripheral shape of the cooling fin and the process of forming a long hole for inserting the refrigerant pipe.
[0074] なお、この略十字状の切り込みを設ける加工方法は、レーザー加工等の方法を用 いても構わない。  As a processing method for providing the substantially cross-shaped cut, a method such as laser processing may be used.
[0075] 次に、折曲部 30の曲げ位置、及び曲げ角度を規定するための金型を用いてプレス 加工により、折曲部 30を形成させる。  Next, the bending portion 30 is formed by pressing using a bending position of the bending portion 30 and a die for defining a bending angle.
[0076] なお、この曲げ加工方法は、曲げ治具を用いた加工方法を用いても構わな!/、。 Note that this bending method may use a processing method using a bending jig!
[0077] 次に、一本の冷媒管を曲げ加工することにより形成させた冷媒管 22を冷却フィン 2Next, the refrigerant pipe 22 formed by bending one refrigerant pipe is used as a cooling fin 2
3の冷媒管揷入用の長孔に挿入し、密着させる。次に、冷却フィン 23の切り欠き 25に ガラス管ヒーター 24を挿入し、ガラス管 27と折曲部 30を密着させることにより、冷却 器が形成される。 Insert it into the long hole for refrigerant tube penetration of No. 3 and make it adhere closely. Next, the glass tube heater 24 is inserted into the notch 25 of the cooling fin 23 and the glass tube 27 is brought into close contact with the bent portion 30 to form a cooler.
[0078] なお、ガラス管ヒーター 24を冷却フィン 23の切り欠き 25に挿入するステップは、冷 媒管 22を冷却フィン 23の冷媒管揷入用の長孔に挿入するステップの前に行っても 構わない。  The step of inserting the glass tube heater 24 into the notch 25 of the cooling fin 23 may be performed before the step of inserting the cooling medium tube 22 into the long hole for the refrigerant tube insertion of the cooling fin 23. I do not care.
[0079] また、上記では、冷媒管は一本の冷媒管を曲げ加工する、いわゆるサーペンタイン 状の冷媒管を用いたが、直管部と曲管部で構成されたいわゆるヘアピン管と、曲管 部からなるリターンベンドとをろう付け等でつなぎ合わせることによって、冷媒管を形 成してもよい。その場合、ヘアピン管を冷却フィンに挿入した後、ヘアピン管の直管 部の端部にリターンベンドを装着し、ろう付け等により、冷媒管を形成させる。  [0079] In the above, the refrigerant pipe used is a so-called serpentine-like refrigerant pipe in which one refrigerant pipe is bent, but a so-called hairpin pipe composed of a straight pipe part and a bent pipe part The refrigerant pipe may be formed by connecting the component to the return bend by brazing or the like. In that case, after the hairpin tube is inserted into the cooling fin, a return bend is attached to the end of the straight tube portion of the hairpin tube, and a refrigerant tube is formed by brazing or the like.
[0080] 以上のように構成された冷却器について、以下に作用を説明する。 [0081] 着霜した冷却器 21を除霜する際、リード線 29からの通電によりヒーター線 26が発 熱し、ガラス管 27へ熱が放射される。熱は、ガラス管 27からさらに放射し、冷却器 21 を除霜する。また、ヒーター線 26から与えられたガラス管 27の表面の熱は、冷却フィ ン 23の折曲部 30とガラス管 27が接触していることから、熱伝導により折曲部 30へ供 給され、冷却フィン 23を除霜する。 The operation of the cooler configured as described above will be described below. When the frosted cooler 21 is defrosted, the heater wire 26 is heated by energization from the lead wire 29, and heat is radiated to the glass tube 27. Heat radiates further from the glass tube 27 and defrosts the cooler 21. Further, the heat of the surface of the glass tube 27 given from the heater wire 26 is supplied to the bent portion 30 by heat conduction since the bent portion 30 of the cooling fin 23 and the glass tube 27 are in contact with each other. , Defrost the cooling fins 23.
[0082] さらに、開放部 31により、ガラス管 27の上面方向では、放射熱を利用し、冷却器 21 全体を除霜することができ、また、ガラス管 27の下面方向では、冷却器 21の下方に あるドレンパン(図示せず)部分の除霜に効果的である。このようにして、除霜効率を 向上させることができる。  Furthermore, due to the open part 31, radiation heat can be utilized in the upper surface direction of the glass tube 27 to defrost the entire cooler 21, and in the lower surface direction of the glass tube 27, the cooler 21 is It is effective for defrosting the drain pan (not shown) part below. Thus, the defrosting efficiency can be improved.
[0083] また、切り欠き 25の鉛直方向の周縁と水平方向の周縁とに折曲部 30を設けたこと により、冷却フィン 23の切り欠き 25の水平方向の周縁に設けた折曲部 30とガラス管 27の上部とが接触している。その結果、ヒーター線 26から与えられたガラス管 27の 表面の熱は、熱伝導によってより冷却器 21へ熱を供給できるとともに、開放部 31から は、ガラス管ヒーター 24の放射熱を冷却器 21へ供給できることから、より効果的に除 霜効率を向上させることができる。  Further, by providing the bent portions 30 on the vertical peripheral edge and the horizontal peripheral edge of the notches 25, the bent portions 30 provided on the horizontal edge of the notches 25 of the cooling fin 23 and the like The upper part of the glass tube 27 is in contact. As a result, the heat of the surface of the glass tube 27 given from the heater wire 26 can supply more heat to the cooler 21 by heat conduction, and the radiation from the glass tube heater 24 can be cooled from the open part 31. Defrosting efficiency can be improved more effectively because it can be supplied to
[0084] また、切り欠き 25の水平方向の周縁に設けた折曲部 30とガラス管 27の上部とが接 触しているので、ガラス管 27の上部の表面の熱は、冷却フィン 23へ熱伝導する為、 ガラス管ヒーター 24のガラス管 27の上部の表面温度をより低下させることができる。  Further, since the bent portion 30 provided on the horizontal periphery of the notch 25 is in contact with the upper portion of the glass tube 27, the heat of the surface of the upper portion of the glass tube 27 is transferred to the cooling fin 23. The surface temperature of the upper portion of the glass tube 27 of the glass tube heater 24 can be further lowered because the heat is conducted.
[0085] なお、水平方向の開放部 31は切り欠きの奥行き方向に対して略中央に設ける、す なわちガラス管 27の最上面に配置することにより、放射熱効果を最大限に向上させ ることがでさる。  The horizontal opening 31 is provided approximately at the center of the notch in the depth direction, that is, disposed on the uppermost surface of the glass tube 27 to maximize the radiation heat effect. It can be done.
[0086] 冷却フィン 23の鉛直方向の折曲部 30の長さ Aおよび水平方向の折曲部 30の長さ Fは 4. 9mmである。折曲部 30は平面状であるため、ガラス管 27との接触面は円状 であるが、ガラス管挿入部寸法 Cと曲げ角度 D、 Eの設定により、切り欠き 25にガラス 管 27を挿入後は、確実に鉛直方向の折曲部 30とガラス管 27は接触することができ、 かつ、折曲部 30は平面状であることから、折曲部 30の加工は容易である。  The length A of the vertical bending portion 30 of the cooling fin 23 and the length F of the horizontal bending portion 30 are 4.9 mm. Since the bending portion 30 is flat, the contact surface with the glass tube 27 is circular, but the glass tube 27 is inserted into the notch 25 by setting the dimension C of the glass tube and the bending angles D and E. After that, since the bent portion 30 and the glass tube 27 can be reliably brought into contact with each other, and since the bent portion 30 is flat, processing of the bent portion 30 is easy.
[0087] 鉛直方向の折曲部 30の高さ Bは 12mmであり、ガラス管 27の外径 10. 5mmより大 きく設定することにより、ガラス管 27が冷却器 21の下部に突出すること無く設置でき るため、除霜装置付き冷却器として小型化できるという効果が得られる。 The height B of the bent portion 30 in the vertical direction is 12 mm, and by setting the outer diameter of the glass tube 27 to be larger than 10.5 mm, the glass tube 27 does not protrude to the lower part of the cooler 21. Can be installed Therefore, the effect of being able to be miniaturized as a cooler with a defrosting device is obtained.
[0088] また、図 5に示すように、鉛直方向の折曲部 30の曲げ角度 Dは、 85° に曲げ加工 されている。ガラス管挿入部寸法 Cは、ガラス管 27の外径より広く設定している為、折 曲部 30をガラス管 27の設置方向へ傾斜させることにより、ガラス管 27が設置された 時に、ガラス管 27と冷却フィン 23の折曲部 30が確実に接触することができる。ただし 、ガラス管挿入部寸法 Cをガラス管 27の外径より小さく設定し、折曲部 30の曲げ角度 Dを 90° にし、ガラス管 27を圧入してもよい。  Further, as shown in FIG. 5, the bending angle D of the bending portion 30 in the vertical direction is bent at 85 °. Since the dimension C of the glass tube insertion portion is set larger than the outer diameter of the glass tube 27, the glass tube 27 is installed by inclining the bent portion 30 in the installation direction of the glass tube 27. 27 and the bent portion 30 of the cooling fin 23 can be reliably in contact with each other. However, the dimension C of the glass tube insertion portion may be set smaller than the outer diameter of the glass tube 27, the bending angle D of the bent portion 30 may be 90 °, and the glass tube 27 may be pressed.
[0089] また、図 9に示すように、水平方向の折曲部 30の曲げ角度 Eは、 90° 以下に曲げ 加工されている。このように折曲部 30をガラス管 27の設置方向へ傾斜させることによ り、ガラス管 27の挿入時にガラス管 27のたわみや挿入角度バラツキ、あるいは冷却 フィン 23の成形バラツキが生じた場合でも、ガラス管 27と冷却フィン 23の折曲部 30 が確実に接触することができる。  Further, as shown in FIG. 9, the bending angle E of the bent portion 30 in the horizontal direction is bent to 90 ° or less. By thus inclining the bending portion 30 in the installation direction of the glass tube 27, even when the glass tube 27 bends, the insertion angle varies, or the forming variation of the cooling fins 23 occurs when the glass tube 27 is inserted. The bent portions 30 of the glass tube 27 and the cooling fins 23 can be reliably in contact with each other.
[0090] なお、曲げ角度 Eは冷却フィン 23の加工性、ガラス管 27の挿入性とを考慮して、 8 5° 〜70° の範囲が望ましい。  The bending angle E is preferably in the range of 85 ° to 70 ° in consideration of the processability of the cooling fin 23 and the insertability of the glass tube 27.
[0091] また、冷却フィン 23の 1枚に対して 4箇所の折曲部 30を設け、ガラス管 27の設置方 向において、ガラス管 27の外周の両側面 2箇所および上面 2箇所にて冷却フィン 23 と接触させることにより、熱伝導に有効な接触面積を増すことができ、より一層効率よ く除霜することができる。  In addition, four bent portions 30 are provided for one cooling fin 23, and cooling is performed at two places on the outer periphery of the glass tube 27 and at two places on the upper surface in the installation direction of the glass tube 27. The contact with the fins 23 can increase the effective contact area for heat conduction, and defrost more efficiently.
[0092] 切り欠き 25は冷却器 21の奥行き方向に対して略中央に設け、切り欠き 25にガラス 管ヒーター 24を挿入したことにより、ガラス管ヒーター 24の熱を効率よく冷却器 21全 体に伝えるので、冷却器 21の一部に除霜しにくい箇所が発生する可能性は低くなる  The notch 25 is provided approximately at the center of the depth direction of the cooler 21 and the glass tube heater 24 is inserted in the notch 25, so that the heat of the glass tube heater 24 can be efficiently cooled in the entire cooler 21. As it is transmitted, the possibility of occurrence of a location where it is difficult to defrost in part of the cooler 21 is reduced.
[0093] 冷却フィン 23の折曲部 30の長さは、隣り合う冷却フィン 23間の長さの 5%以上とす ることにより、ガラス管 27から冷却フィン 23への熱伝導による効果が向上し、冷却器 2 1の除霜効率が向上する。さらに、冷却フィン 23の折曲部 30の長さを、隣り合う冷却 フィン 23間の長さの 20%以上とすることで、より一層、除霜効率を向上させることがで きる。なお、鉛直方向の折曲部 30の長さ Aおよび水平方向の折曲部 30の長さ Fの隣 り合う冷却フィン 23間の長さに対する比率の取り得る最大値は、(ガラス管挿入部寸 法 Cの 1Z2)≥ (隣り合う冷却フィン 23間の長さ)となるような関係の場合は 100%で ある。一方、(ガラス管挿入部寸法 Cの 1Z2)く(隣り合う冷却フィン 23間の長さ)とな るような場合は 100%未満となる。 The effect of heat conduction from the glass tube 27 to the cooling fins 23 is improved by setting the length of the bent portion 30 of the cooling fins 23 to be 5% or more of the length between the adjacent cooling fins 23. The defrosting efficiency of the chiller 2 1 is improved. Furthermore, the defrosting efficiency can be further improved by setting the length of the bent portion 30 of the cooling fin 23 to 20% or more of the length between the adjacent cooling fins 23. Note that the maximum possible ratio of the length A of the vertical bending portion 30 and the length F of the horizontal bending portion 30 to the length between the adjacent cooling fins 23 is (glass tube insertion portion Dimension It is 100% when the relation is such that 1Z2) of method C ≥ (the length between adjacent cooling fins 23). On the other hand, in the case of (1Z2 of the glass tube insertion portion size C) (length between adjacent cooling fins 23), it is less than 100%.
[0094] 一方、可燃性冷媒であるイソブタンの発火温度は 494°Cであり、ガラス管 27の表面 温度は、発火温度より 100°C低い 394°C以下に設定し、安全性を確保する必要があ る。 On the other hand, the ignition temperature of isobutane, which is a flammable refrigerant, is 494 ° C, and the surface temperature of the glass tube 27 is set to 394 ° C or less, which is 100 ° C lower than the ignition temperature, to ensure safety. There is
[0095] 冷却フィン 23がフィンピッチ 10mmの間隔で配置されている冷却器 21に対し、本 実施の形態は、折曲部 30の長さは、隣り合う冷却フィン 23間の長さの 49%で、ガラ ス管 27の表面温度は 330°Cとなり、冷凍サイクルの冷媒に可燃性冷媒を用いた場合 において、充分なガラス管表面温度の低減効果がある。したがって、可燃性冷媒が 除霜手段の設置雰囲気に漏洩した環境下で除霜が行われた場合でも、可燃性冷媒 の着火を防止する冷蔵庫とすることができる。  In contrast to the cooler 21 in which the cooling fins 23 are arranged at an interval of 10 mm in fin pitch, in the present embodiment, the length of the bent portion 30 is 49% of the length between the adjacent cooling fins 23. The surface temperature of the glass tube 27 is 330 ° C., and when the flammable refrigerant is used as the refrigerant of the refrigeration cycle, there is a sufficient reduction effect of the surface temperature of the glass tube. Therefore, even when defrosting is performed in an environment where the flammable refrigerant leaks to the installation atmosphere of the defrosting means, it is possible to provide a refrigerator that prevents the ignition of the flammable refrigerant.
[0096] し力も、除霜効率が向上し、除霜時間を短縮できるので、冷蔵庫の消費電力を低減 できる。  The power consumption of the refrigerator can be reduced because the defrosting efficiency is improved and the defrosting time can be shortened.
[0097] なお、本実施の形態では、水平方向の折曲部 30を冷却フィン 23に 2箇所設けたが 、必要に応じて、水平方向の折曲部 30を 3箇所以上設けてもよい。  In the present embodiment, the bending portions 30 in the horizontal direction are provided at the cooling fin 23 in two places, but the bending portions 30 in the horizontal direction may be provided in three or more places if necessary.
[0098] なお、本実施の形態では、折曲部 30は全ての冷却フィン 23に設けた力 必要に応 じて、折曲部 30を設けない冷却フィン 23を配置してもよい。例えば、折曲部 30を設 けた冷却フィン 23と、折曲部 30を設けない冷却フィン 23とを交互に配置する、あるい は、折曲部 30を設けた冷却フィン 23を 2枚置きに配置してもよい。  In the present embodiment, the bending portion 30 may be provided with the cooling fin 23 not provided with the bending portion 30 according to the force required for all the cooling fins 23. For example, the cooling fins 23 provided with the bent portions 30 and the cooling fins 23 not provided with the bent portions 30 may be alternately arranged, or the cooling fins 23 provided with the bent portions 30 may be alternately provided. It may be arranged.
[0099] なお、本実施の形態では、冷媒管 22、冷却フィン 23は、熱伝導率の高!、材質であ るアルミニウムとした力 冷媒管 22、冷却フィン 23の材質を銅としてもよい。  In the present embodiment, the refrigerant pipe 22 and the cooling fins 23 may have high thermal conductivity, and the material of the force refrigerant pipe 22 and the cooling fins 23 may be copper.
[0100] なお、本実施の形態では、切り欠き 25の水平方向の周縁に設けた折曲部 30は、 切り欠き 25の頂部近傍力も略ノヽの字状に設けた二つの折曲部 30とした力 略ノヽの 字状とせずに、左右方向に沿って直線状の折曲部としてもよい。  In the present embodiment, the bent portion 30 provided on the peripheral edge in the horizontal direction of the notch 25 includes two bent portions 30 in which the force in the vicinity of the top of the notch 25 is also formed substantially in a U shape. Instead of being generally in the form of a straight line, it may be a straight bend along the left-right direction.
[0101] 以上説明したように、本発明の冷却器は、ガラス管ヒーターからの放射熱と、ガラス 管ヒーター力 冷却フィンへの熱伝導により、除霜効率を向上させることができる。  As described above, the cooler of the present invention can improve the defrosting efficiency by the radiant heat from the glass tube heater and the heat conduction to the glass tube heater power cooling fin.
[0102] また、可燃性冷媒を使用した場合においては、ガラス管表面の熱は、ガラス管と接 触させた冷却フィンへ熱伝導する為、ヒーター線の熱容量を低下させることなぐ ス管の表面温度を可燃性冷媒の発火温度以下に抑えることができる。 In the case where a flammable refrigerant is used, the heat of the surface of the glass tube is in contact with the glass tube. Since the heat is conducted to the cooling fins that are touched, the surface temperature of the heat pipe can be suppressed to the ignition temperature or less of the flammable refrigerant without reducing the heat capacity of the heater wire.
産業上の利用可能性 Industrial applicability
本発明に力かる除霜装置付き冷却器は、ガラス管ヒーターの熱を効率よく冷去 供給することができるので、冷蔵庫、自販機等の用途にも適用できる。  The defroster-equipped cooler of the present invention can efficiently cool and supply the heat of the glass tube heater, and therefore can be applied to applications such as a refrigerator and a vending machine.

Claims

請求の範囲 The scope of the claims
[I] 複数の冷却フィンと前記冷却フィンを貫通する冷媒管とからなる冷却器と、 前記冷却器を除霜する除霜装置とを有し、  [I] A cooler comprising a plurality of cooling fins and a refrigerant pipe passing through the cooling fins, and a defroster for defrosting the cooler,
前記除霜装置は、ガラス管と前記ガラス管内部に設置したヒーター線とからなるガラ ス管ヒーターであり、前記冷却フィンの一部に前記冷却フィンを折り曲げてなる折曲 部と切り欠きを設け、前記切り欠きに前記ガラス管ヒーターを挿入するとともに、前記 折曲部と前記ガラス管とを接触させた除霜装置付き冷却器。  The defrosting apparatus is a glass tube heater consisting of a glass tube and a heater wire installed inside the glass tube, and a part of the cooling fin is provided with a bent portion formed by bending the cooling fin and a notch. A cooler with a defroster, wherein the glass tube heater is inserted into the notch, and the bent portion and the glass tube are brought into contact with each other.
[2] 前記切り欠きの鉛直方向の周縁のみに折曲部を設けた請求項 1に記載の除霜装 置付き冷却器。  [2] The cooler with a defrosting device according to claim 1, wherein a bent portion is provided only at the peripheral edge in the vertical direction of the notch.
[3] 前記切り欠きの鉛直方向の周縁と水平方向の周縁とに折曲部を設けた請求項 1に 記載の除霜装置付き冷却器。  [3] The cooler with a defrosting device according to claim 1, wherein a bent portion is provided at a vertical peripheral edge and a horizontal peripheral edge of the notch.
[4] 前記切り欠きの水平方向の開放部は、前記切り欠きの奥行き方向に対して中央に 設けたことを特徴とする請求項 3に記載の除霜装置付き冷却器。 [4] The cooler with a defroster according to claim 3, wherein the horizontal opening of the notch is provided at the center with respect to the depth direction of the notch.
[5] 前記切り欠きの水平方向の折曲部は 2箇所以上としたことを特徴とする請求項 3に 記載の除霜装置付き冷却器。 [5] The cooler with a defrosting device according to claim 3, wherein the bent portions in the horizontal direction of the notch are formed at two or more places.
[6] 前記切り欠きの水平方向の折曲部は折曲角度を 90度以下としたことを特徴とする 請求項 5に記載の除霜装置付き冷却器。 [6] The cooler with a defroster according to claim 5, wherein the bending portion in the horizontal direction of the notch has a bending angle of 90 degrees or less.
[7] 前記冷却フィンの折曲部は、平面状であることを特徴とする請求項 1に記載の除霜 装置付き冷却器。 [7] The cooler with a defroster according to claim 1, wherein the bent portion of the cooling fin is flat.
[8] 前記切り欠きを前記冷却フィンの下端部に設けたことを特徴とする請求項 1から 3の [8] The present invention is characterized in that the notch is provided at the lower end portion of the cooling fin.
V、ずれか一項に記載の除霜装置付き冷却器。 V, cooler with defroster according to any one of the preceding claims.
[9] 前記切り欠きの鉛直方向の長さは、前記ガラス管の外径より大きいことを特徴とする 請求項 8に記載の除霜装置付き冷却器。 [9] The cooler with a defroster according to claim 8, wherein a length in a vertical direction of the notch is larger than an outer diameter of the glass tube.
[10] 前記冷却フィンの折曲部は、前記冷却フィン 1枚あたりに 2箇所以上設けたことを特 徴とする請求項 1から 3のいずれか一項に記載の除霜装置付き冷却器。 [10] The cooler with a defrosting device according to any one of claims 1 to 3, characterized in that the bent portion of the cooling fin is provided at two or more places per one cooling fin.
[II] 前記冷却フィンの折曲部の長さは、隣り合う前記冷却フィン間の長さの 5%以上とし たことを特徴とする請求項 10に記載の除霜装置付き冷却器。  [II] The cooler with a defroster according to claim 10, wherein a length of a bent portion of the cooling fin is 5% or more of a length between adjacent cooling fins.
[12] 前記切り欠きは、前記冷却器の奥行き方向に対して中央に設けたことを特徴とする 請求項 1から 3のいずれか一項に記載の除霜装置付き冷却器。 [12] The notch is provided at the center with respect to the depth direction of the cooler. A cooler with a defrosting device according to any one of claims 1 to 3.
前記冷媒管内を流動する冷媒を可燃性冷媒としたことを特徴とする請求項 1に記載 の除霜装置付き冷却器を備えた冷蔵庫。  The refrigerant | coolant which flowed in the said refrigerant | coolant pipe | tube was made into the flammable refrigerant | coolant, The refrigerator provided with the cooler with a defrost apparatus of Claim 1 characterized by the above-mentioned.
PCT/JP2006/309458 2005-05-12 2006-05-11 Cooler with defroster and refrigerator having cooler with defroster WO2006121103A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005139546 2005-05-12
JP2005-139546 2005-05-12
JP2006-078445 2006-03-22
JP2006078445A JP2006343089A (en) 2005-05-12 2006-03-22 Cooler with defroster, and refrigerator having cooler with defroster

Publications (1)

Publication Number Publication Date
WO2006121103A1 true WO2006121103A1 (en) 2006-11-16

Family

ID=37396611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309458 WO2006121103A1 (en) 2005-05-12 2006-05-11 Cooler with defroster and refrigerator having cooler with defroster

Country Status (2)

Country Link
JP (1) JP2006343089A (en)
WO (1) WO2006121103A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739503A (en) * 2021-11-08 2021-12-03 烟台永诚制冷科技有限公司 Aluminum row pipeline defroster with intelligent regulation function

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998163B2 (en) * 2007-09-13 2012-08-15 パナソニック株式会社 Heat exchanger
CN102506558A (en) * 2011-11-04 2012-06-20 海信容声(广东)冰箱有限公司 Defrosting control system for air-cooled refrigerator and control method for same
CN102494462B (en) * 2011-12-06 2014-05-21 合肥美的电冰箱有限公司 Refrigerator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145689U (en) * 1983-05-18 1984-09-28 株式会社日立製作所 Evaporator with defrost heater tube
JP2002267331A (en) * 2001-03-13 2002-09-18 Matsushita Refrig Co Ltd Refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145689U (en) * 1983-05-18 1984-09-28 株式会社日立製作所 Evaporator with defrost heater tube
JP2002267331A (en) * 2001-03-13 2002-09-18 Matsushita Refrig Co Ltd Refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739503A (en) * 2021-11-08 2021-12-03 烟台永诚制冷科技有限公司 Aluminum row pipeline defroster with intelligent regulation function
CN113739503B (en) * 2021-11-08 2022-02-08 烟台永诚制冷科技有限公司 Aluminum row pipeline defroster with intelligent regulation function

Also Published As

Publication number Publication date
JP2006343089A (en) 2006-12-21

Similar Documents

Publication Publication Date Title
EP3279598B1 (en) Heat exchanger and air conditioner
JP4796800B2 (en) Evaporator
AU2002323724B2 (en) Defroster for Evaporator of Refrigerator
US20110138834A1 (en) Refrigerating apparatus and storge device using the same
EP1467165A1 (en) Defroster for heat exchanger and fabrication method thereof
WO2006121103A1 (en) Cooler with defroster and refrigerator having cooler with defroster
EP1793186B1 (en) Refrigerator
WO2015174055A1 (en) Heat exchanger and cooling device using same
JP2007046868A (en) Evaporator
KR100739196B1 (en) Fin-tube heat exchanger
CN100513950C (en) Cooler with defroster, and refrigerator having cooler with defroster
JP5752199B2 (en) Refrigerator refrigerator heat exchanger
JP2008151378A (en) Cooler with defroster and refrigerator comprising cooler with defroster
JP2010032152A (en) Cooler with defrosting device, its manufacturing method, and article storage device comprising cooler
JP2011208832A (en) Cooling device and article storage device
KR100547327B1 (en) Defrost apparatus of refrigerator
JP4772277B2 (en) Defrost heater and refrigerator equipped with this defrost heater
JP4998163B2 (en) Heat exchanger
EP2317252A2 (en) Evaporator unit
KR100344802B1 (en) vaporiger for refrigerator
JP2010014332A (en) Refrigerator
JP2007278661A (en) Cooler with defroster and refrigerator having cooler with defroster
TW202132736A (en) refrigerator
JP2012107769A (en) Heat exchanger, and article storage apparatus with the same
KR20130036417A (en) Heat exchanging apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680007659.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746267

Country of ref document: EP

Kind code of ref document: A1