WO2006121005A1 - Engine starting device and automobile using the same - Google Patents

Engine starting device and automobile using the same Download PDF

Info

Publication number
WO2006121005A1
WO2006121005A1 PCT/JP2006/309249 JP2006309249W WO2006121005A1 WO 2006121005 A1 WO2006121005 A1 WO 2006121005A1 JP 2006309249 W JP2006309249 W JP 2006309249W WO 2006121005 A1 WO2006121005 A1 WO 2006121005A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
battery
double layer
electric double
layer capacitor
Prior art date
Application number
PCT/JP2006/309249
Other languages
French (fr)
Japanese (ja)
Inventor
Ichiro Aoki
Norio Nakajima
Toshiaki Shimizu
Susumu Nishimoto
Muneyoshi Noda
Hiroyuki Jinbo
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005140920A external-priority patent/JP2008190323A/en
Priority claimed from JP2005140921A external-priority patent/JP2008190324A/en
Priority claimed from JP2005140919A external-priority patent/JP2008190322A/en
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006121005A1 publication Critical patent/WO2006121005A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • F02N11/0866Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery comprising several power sources, e.g. battery and capacitor or two batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0885Capacitors, e.g. for additional power supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0888DC/DC converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/061Battery state of charge [SOC]

Definitions

  • the present invention relates to an engine starter optimum for an automobile having an idling stop function and an automobile using the same.
  • An electric double layer capacitor is one of the important components that support such technology.
  • An electric double layer capacitor is generally used in combination with a lead-acid battery, which is a conventionally used battery.
  • a method for charging such an electric double layer capacitor use of a control energy is proposed in, for example, Japanese Patent Application Laid-Open No. 11-122709.
  • Japanese Patent Laid-Open No. 2-259276 is a technology that reduces the load on a lead storage battery and extends its life by connecting a lead storage battery in series to an electric double layer capacitor and driving a starter motor to start the engine. Proposed in the gazette.
  • restart after idling stop requires a current of several tens of A at a voltage of about 12V. Therefore, frequent restarts put a heavy burden on the lead storage battery, resulting in a significant decrease in the life of the lead storage battery.
  • the present invention provides an engine starter excellent in long-term reliability, which can reduce the burden on the electric double layer capacitor and the battery and extend the life.
  • An engine starter that starts gin includes an electric double layer capacitor, a rechargeable battery, a starter motor, and a storage amount control unit.
  • the starter motor is powered by at least one of an electric double layer capacitor and a battery.
  • the storage amount control unit controls the storage amount of the electric double layer capacitor when the vehicle is at rest to 24% to 60% of the storage amount when the vehicle is in operation.
  • the engine starter according to the present invention controls so as to reduce the amount of electricity stored in the electric double layer capacitor when the vehicle is at rest. This control reduces the burden on the electric double layer capacitor.
  • the amount of electricity stored in the electric double layer capacitor is not zero, there is no significant burden on the battery. As a result, the burden on the electric double layer capacitor and the burden on the battery can be reduced, and the life can be extended.
  • FIG. 1 is a circuit configuration diagram showing a configuration of an engine starter according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of an automobile equipped with an engine starter according to Embodiment 1 of the present invention.
  • FIG. 3 is a graph showing the relationship between the amount of electricity stored in the electric double layer capacitor constituting the capacitor bank and the change in capacity.
  • FIG. 4 is a conceptual diagram showing a state where a battery and a capacitor bank are integrated together in the engine starting device according to Embodiment 1 of the present invention.
  • FIG. 5 is an exploded perspective view showing a state in which the battery, the capacitor bank, and the engine control unit are removed from the state shown in FIG.
  • FIG. 6 is a circuit configuration diagram showing a configuration of an engine starting device according to Embodiment 2 of the present invention.
  • Fig. 7 is an explanatory diagram when the deterioration of the battery is predicted by the charge amount value in the engine starting device shown in Fig. 6.
  • FIG. 8 is an explanatory diagram in the case of predicting battery deterioration by internal DC resistance in the engine starting device shown in FIG.
  • FIG. 1 is a circuit configuration diagram showing the configuration of an engine starter according to Embodiment 1 of the present invention. is there.
  • FIG. 2 is a schematic diagram of an automobile equipped with this engine starting device.
  • the engine 1 drives a rear wheel 24 that is a drive wheel and drives an on-vehicle generator (hereinafter referred to as a generator) 2.
  • the front wheel 23 which is a steered wheel is operated by a steering 25 provided in the body 22.
  • the front wheel 23 and the rear wheel 24 support the body 22.
  • Engine 1 is started by an engine starter 21.
  • the engine starter 21 is composed of a capacitor bank 4, a battery 3, a starter motor (hereinafter referred to as motor) 5, a switching switch 6, a DCZDC converter 7, a starter relay 8, a relay 9, and a storage amount control. It consists of 12 parts.
  • the rated voltage of the battery 3 composed of a lead-acid battery is 14V.
  • Capacitor bank 4 consists of six electric double layer capacitors with a rated voltage of 2.5V connected in series to form one unit, and a plurality of these units connected in parallel.
  • Motor 5 is powered by battery 3 or battery 3 and capacitor bank 4.
  • Changeover switch 6 switches the circuit according to normal driving and when engine 1 is restarted.
  • the DCZDC converter 7 converts the voltage of the electric power from the generator 2.
  • the starter relay 8 turns the power supply circuit to the motor 5 on and off.
  • the relay 9 is provided in a circuit that directly connects the notch 3 and the starter relay 8.
  • the switching switch 6, the starter relay 8, and the relay 9 may be composed of electronic switching circuits in addition to the contact type switching device.
  • the storage amount control unit 12 includes a charge / discharge control unit 11, a storage amount measurement unit 14, and a discharge unit 13.
  • the charging / discharging control unit 11 switches the switching switch 6 and controls the discharging unit 13 based on information from the charged amount measuring unit 14.
  • the storage amount measuring unit 14 measures the storage amount charged in the capacitor bank 4.
  • the discharge unit 13 discharges the capacitor bank 4 when the vehicle is at rest to adjust the amount of power stored in the capacitor bank 4 to a predetermined range.
  • the discharge unit 13 can be composed of a fixed resistor, an electronic load device, a constant current power source, or the like.
  • the charge / discharge control unit 11 can be composed of a microcomputer or the like. Further, two or more of the charge / discharge control unit 11, the storage amount measurement unit 14, and the discharge unit 13 may be integrally configured. Further, the engine control unit 10 may be integrated.
  • the engine control unit 10 controls starting and stopping of the engine 1.
  • the engine control unit 10 can also be composed of a microcomputer or the like.
  • Ignition key 18 starts engine from user Receives instructions and communicates to engine control unit 10.
  • the ignition key 18 can be composed of a rotary switch or the like.
  • the engine starter 21 configured as described above, first, a normal case of starting the engine 1 only with the electric power of the battery 3 will be described.
  • the signal is input to the engine control unit 10.
  • the engine control unit 10 receives this signal and turns on the relay 9 and the starter relay 8 respectively.
  • electric power is supplied from the battery 3 and the motor 5 is driven.
  • the motor 1 is rotated and started by the motor 5.
  • the power supplied from the battery 3 required to drive the motor 5 when the engine 1 is started is about 600 A at 12V.
  • Braking energy is generated when the vehicle is stopped by applying a brake while the vehicle is running. Recovering this braking energy is also preferable from the viewpoint of energy saving.
  • the maximum current of braking energy reaches 200A, which is very large energy.
  • Battery 3 is not capable of charging all braking energy.
  • electric double layer capacitors are excellent in charge acceptance at large currents. For this reason, most of the braking energy is charged in the capacitor bank 4 and regenerated.
  • the capacitor bank 4 is mainly charged by the power charged by the generator 2 using braking energy rather than the power generated by the operation of the engine 1 during normal driving.
  • the engine control unit 10 temporarily stops the engine 1 when certain conditions are met based on information from an accelerator, a brake, a vehicle speed sensor, a water temperature sensor, and the like (not shown). That is, the engine 1 is brought into a so-called idling stop state. After this idling stop, the engine control unit 10 causes the user to depress the accelerator. Restart engine 1 based on information such as That is, the engine control unit 10 turns off the relay 9 and connects the switching switch 6 upward in the drawing via the charge / discharge control unit 11. By these switching operations, the capacitor bank 4 is connected in series with the battery 3. When the starter relay 8 is turned on in this state, the electric power obtained by adding the voltage of the capacitor bank 4 to the notch 3 is supplied to the motor 5. When the motor 5 is driven, the engine 1 is restarted.
  • the idling stop is performed relatively frequently. And restarting after idling stops requires a current of several tens of A at a voltage of 12V. Therefore, the idling stop places a heavy burden on battery 3. However, the deterioration of the characteristic of the battery 3 can be suppressed by performing the restart after the idling stop with the capacitor bank 4 assisting as in the present embodiment. Thus, it is preferable to apply the operation that the capacitor bank 4 starts while assisting, particularly to restart after idling stop.
  • the charging / discharging control unit 11 controls the discharging unit 13 based on the information from the charged amount measuring unit 14 to discharge the capacitor bank 4. . Then, the charge / discharge control unit 11 adjusts the amount of electricity stored in the capacitor bank 4 to 24% or more and 60% or less of the amount of electricity stored when the vehicle is operating.
  • the electricity storage amount measuring unit 14 There are various methods for measuring the amount of electricity stored in the capacitor bank 4 by the electricity storage amount measuring unit 14. That is, the amount of electricity charged from the generator 2 and the battery 3 is measured, and the amount of electricity stored in the capacitor bank 4 is determined by measuring the amount of electricity discharged from the discharge unit 13 and the amount of electricity supplied to the motor 5. be able to.
  • the storage amount measuring unit 14 is configured as an integrator for the amount of electricity flowing in and out of the capacitor bank 4.
  • the storage amount measuring unit 14 monitors the voltage of the capacitor bank 4 when the vehicle is running, and when the voltage of the capacitor bank 4 becomes equal to or higher than a predetermined value, the charge / discharge control unit 11 Is determined to be fully charged.
  • the charge / discharge control unit 11 sets the amount of electricity stored at this time as the amount of electricity stored when the vehicle is operating.
  • the charge / discharge control unit 11 uses the amount of electricity stored when the voltage of the capacitor bank 4 reaches the maximum during vehicle operation as the amount of electricity stored during vehicle operation.
  • the charged amount measuring unit 14 can measure the capacity of the capacitor bank 4 only by measuring the voltage.
  • the amount of electricity stored in Sitabank 4 can be estimated.
  • the voltage of the electric double layer capacitor correlates with the amount of electricity stored, and there is a nearly linear relationship between the two. Therefore, the amount of electricity stored in the capacitor bank 4 can be estimated by comparing the maximum operating voltage (for example, 2.5 V) with the voltage at that time. In such a method, the measurement accuracy is slightly lowered as compared with the above-described method, but the storage amount measuring unit 14 can be easily configured.
  • the amount of electricity stored in the capacitor bank 4 when the automobile is at rest will be described. Judging from the long-term life potential of electric double layer capacitors, it is desirable to control the amount of electricity stored in capacitor bank 4 at rest to zero. However, if the amount of electricity stored is zero, it is necessary to charge the capacitor bank 4 from the battery 3, and the battery 3 is burdened. From this point of view, it is desirable that the amount of power stored in the capacitor bank 4 during a standstill maintains the amount of power stored when the vehicle is operating and is in a fully charged state.
  • FIG. 3 is a graph showing the relationship between the amount of electricity stored in the electric double layer capacitor constituting the capacitor bank 4 and the change in capacity at 50 ° C.
  • This graph shows the results of measuring the rate of change in capacitance when a constant voltage continuous energization load test was performed on an electric double layer capacitor rated at 2.5V.
  • the amount of electricity stored in the electric double layer capacitor is adjusted by changing the voltage level.
  • a voltage value of 1.8V corresponds to 72% of the charged amount, and a voltage value of 0.6V corresponds to 24% of the charged amount.
  • a voltage value of 0.9V corresponds to 36% of charge, a voltage value of 1.2V corresponds to charge of 48%, and a voltage value of 1.5V corresponds to charge of 60%.
  • the storage amount measurement unit 14 is configured as an integrator for the amount of electricity entering and exiting the capacitor bank 4, when the storage amount is controlled to 36% or less, the rated value should be used as the storage amount when the vehicle is in operation. Is possible. That is, the storage amount measuring unit 14 does not need to constantly update the storage amount when the vehicle is operating, and the calculation of the storage amount is simplified.
  • the charge / discharge control unit 11 compares this maximum voltage with the maximum use voltage, The amount of stored electricity may be changed. For example, when the maximum voltage per electric double-layer capacitor is 2.3V, 60% of the amount of electricity stored in the vehicle is discharged, and when the maximum voltage is 2.OV, the amount of electricity stored in the vehicle is 55%. You can discharge it.
  • the engine starter 21 performs control so as to decrease the amount of power stored in the capacitor bank 4 when the vehicle is at rest.
  • the burden imposed on the electric double layer capacitor constituting the capacitor bank 4 and the burden imposed on the notch 3 are simultaneously reduced, thereby extending the life of both.
  • the electric double layer capacitor is also used to restart the engine after idling stops. As a result, the burden on the battery 3 is greatly reduced, and deterioration of the battery 3 due to idling stop can be reduced.
  • the charge / discharge control unit 11 switches the switch 6 to charge the capacitor bank 4 from the battery 3.
  • the electric power from the capacitor bank 4 charged in this way drives the motor 5 in the initial stage.
  • the initial drive can be performed with the notch 3 and the capacitor bank 4 connected in series.
  • the capacitor bank 4 has a smaller charge / discharge capacity than the battery 3, but can be charged / discharged with a large current. For this reason, even when the voltage of the battery 3 drops, the battery 3 can be charged to the same voltage without using much of the battery 3's storage capacity. Since the battery 3 can be discharged at a higher current than the battery 3, the motor 5 can be driven initially.
  • the voltage measuring unit 16 is provided as described above, and the charge / discharge control unit 11 switches the switching switch 6 according to the voltage of the battery 3.
  • the engine starter 21 can start the engine 1 using the capacitor bank 4 even when the motor 5 cannot be initially driven due to deterioration or abnormality of the battery 3. That is, the reliability of the engine starter 21 is further improved.
  • FIG. 4 is a conceptual diagram showing a state in which the battery 3 and the capacitor bank 4 are integrated.
  • FIG. 5 is an exploded perspective view showing a state in which the battery 3, the capacitor bank 4, and the engine control unit 10 are removed from the integrated state.
  • the notch 3 and the capacitor bank 4 are housed integrally in a case 19 that is also configured with a force such as insulating grease. Since a large current is applied to the battery 3 and the capacitor bank 4 which are electrochemical elements, they cannot be installed indoors as they are. By storing such an electrochemical element in the case 19 as a whole, it is possible to prevent electric leakage and electric shock at the same time, thereby increasing safety.
  • the battery 3 and the capacitor bank 4 can be arranged at a place other than the engine compartment 26 if the safety is increased in this way. For example, it can be placed under the sheet shown in FIG. If the battery 3 and the capacitor bank 4 are arranged in a place other than the engine room 26 in a high temperature environment as described above, the life can be further extended.
  • Notch 3 needs to supply accessory power even when the ignition key is OFF. For example, current flows even when the vehicle is stopped and the vehicle is locked, as in keyless entry. This is called dark current. This dark current continues to flow even if the vehicle is exported by ship for about 30 days, 60 days, etc. During this time, engine 1 It cannot be started. Therefore, even if dark current flows for about 30 days, 60 days, etc., it is necessary to leave the battery 3 with enough charge to start the engine 1 the next time the vehicle is removed from the ship. Therefore, the conventional engine starter must use a large battery.
  • a voltage measurement unit 16 is provided, and the charge / discharge control unit 11 switches the switching switch 6 according to the voltage of the battery 3. Therefore, even when the voltage of the battery 3 drops during export by sea as described above, the capacitor bank 4 can be charged by the battery 3, and the motor 5 can be initially driven by the charged capacitor bank 4.
  • the battery 3 can be downsized as compared with the conventional engine starter.
  • a mounting space for the capacitor bank 4 can be secured in the engine compartment 26. Further, as described above, it can be arranged in a place other than the engine compartment 26 such as a vehicle compartment.
  • the engine control unit 10 is also housed in the case 19.
  • the charge / discharge control unit 11 or the storage amount control unit 12 may be housed in the case 19 instead of the engine control unit 10.
  • the switching switch 6 and the DCZDC converter 7 may be housed in the case 19. By storing at least one of these electrical components in the case 19, space is saved.
  • FIG. 6 is a circuit configuration diagram showing the configuration of the engine starter according to Embodiment 2 of the present invention.
  • the engine starting device 21A according to the present embodiment differs from the engine starting device 21 according to the first embodiment in configuration in that a timer 17 is provided.
  • the switch 6 is provided with a contact for supplying power from the battery 3 to the capacitor bank 4 via the DC / DC converter 7. Further, a current sensor 15 for measuring the current from the battery 3 is provided.
  • the charge / discharge control unit 11 predicts deterioration of the battery 3.
  • Other configurations are The same as in the first embodiment. That is, similar to the engine starter 21, the engine starter 21A connects the capacitor bank 4 in series with the battery 3 when restarting from the idling stop.
  • the motor 5 is driven and the engine 1 is restarted.
  • the amount of electricity stored in the capacitor bank 4 is controlled to 24% to 60% of the amount of electricity stored during operation.
  • the charge / discharge control unit 11 in the engine starting device 21A predicts the deterioration of the battery 3. This will be described below with reference to FIGS.
  • FIG. 7 is an explanatory diagram in the case of predicting the deterioration of the battery by the charge amount value in the engine starting device shown in FIG.
  • the voltage measuring unit 16 measures the voltage of the battery 3.
  • the voltage of battery 3 is usually about 14V.
  • the charge / discharge control unit 11 switches the switch 6 to charge the capacitor bank 4 from the battery 3 via the DC / DC converter 7 with a constant current (for example, 15 A).
  • the charge / discharge control unit 11 measures the time T1 when the terminal voltage of the battery 3 becomes VI (for example, 12. OV) and the time T2 when it decreases to V2 (for example, 11. OV) by the time measuring unit 17. To do.
  • the charge / discharge control unit 11 measures the current I from the battery 3 by the current sensor 15.
  • the charge / discharge control unit 11 calculates the charge amount value C from (Equation 1).
  • the charge / discharge control unit 11 predicts the deterioration of the battery 3 by determining what state the charge amount value C obtained in this way is with respect to a predetermined value.
  • the charge / discharge control unit 11 determines that the deterioration of the notch 3 is proceeding when the charge amount value C becomes equal to or less than the predetermined value.
  • a temperature sensor for measuring the temperature of the notch 3 is further provided, and the charge / discharge control unit 11 takes into account the information on the temperature sensor force to It is preferable to predict the deterioration of the material.
  • FIG. 8 is an explanatory diagram when battery deterioration is predicted by the internal DC resistance by the engine starter shown in FIG. 6, and corresponds to the broken line portion of FIG.
  • the voltage measurement unit 16 measures the voltage of the battery 3.
  • the charge / discharge control unit 11 switches the switching switch 6 so that the capacitor band from the battery 3 through the DC / DC converter 7 is switched.
  • the voltage measurement unit 16 measures the terminal voltage of the battery 3 0.5 seconds and 2.0 seconds after the start of discharge.
  • the voltage measuring unit 16 scans the voltage of the battery 3 with an accuracy of lms immediately after the start of discharging.
  • the charge / discharge control unit 11 calculates this voltage difference ⁇ .
  • the voltage measurement unit 16 may calculate ⁇ .
  • the current sensor 15 measures the current I from the battery 3. Then, the charge / discharge control unit 11 calculates the internal DC resistance R from the voltage difference ⁇ V and the current I by (Equation 2).
  • the charge / discharge control unit 11 predicts the deterioration of the battery 3 by determining the state of the internal DC resistance R thus determined with respect to a predetermined value.
  • the charge / discharge control unit 11 determines that the deterioration of the notch 3 is proceeding when the internal DC resistance R becomes a predetermined value or more.
  • a temperature sensor for measuring the temperature of the battery 3 is further provided, and the charge / discharge control unit 11 takes into account the information from this temperature sensor to deteriorate the battery 3 Is preferably predicted.
  • the engine starter 21A discharges the battery 3 when the vehicle is at a standstill and grasps the state of the battery 3, so that it is possible to take a prior action according to the state. That is, the charge / discharge control unit 11 determines that the voltage of the notch 3 becomes lower than a predetermined value due to factors such as deterioration or abnormality and the motor 5 cannot be driven initially. In such a case, the charge / discharge control unit 11 can charge the capacitor bank 4 with the battery 3 and perform the initial drive of the motor 5 with the charged capacitor bank 4. This makes it possible to avoid the worst condition that the engine 1 cannot be started by itself. Thus, the engine starter 21A has higher reliability than the engine starter 21. As in the first embodiment, the notch 3 and the capacitor bank 4, the charge / discharge control unit 11, the engine control unit 10, and the like may be integrally formed in the case 19.
  • the case where a lead storage battery is used as the battery 3 is described as an example, but the present invention is not limited to this. Any rechargeable battery such as a nickel metal hydride battery or a lithium ion battery! Further, the number of series and parallel number of electric double layer capacitors constituting the capacitor bank 4 is not limited. In recent years, the voltage of automobile electrical systems has been increasing. Also, the capacity of the battery 3 used depends on the size of the vehicle. In accordance with this, the number and capacity of electric double layer capacitors can be changed as appropriate. In addition, depending on the difference in the configuration of the battery 3 and capacitor bank 4, the voltage value, current value, etc. at the time of predicting the deterioration of the battery 3 can be changed.
  • the engine starter according to the present invention has the effect of reducing the burden on the battery and the electric double layer capacitor and extending their life. This engine starter is useful for hybrid cars and cars with an idling stop function. It can also be applied to starters other than automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A device for starting an engine has an electric double layer capacitor, a rechargeable battery, a starter motor, and a power storage amount control section. Power to the starter motor is supplied from at least either the electric double layer capacitor or the battery. The power storage amount control section controls the amount of power storage in the electric double layer capacitor when a vehicle is in rest to not less than 24% and not more than 60% of the amount of power storage when the vehicle is in operation.

Description

明 細 書  Specification
エンジン始動装置とそれを用いた自動車  Engine starter and car using it
技術分野  Technical field
[0001] 本発明はアイドリングストップ機能を有する自動車に最適なエンジン始動装置とそ れを用いた自動車に関する。  TECHNICAL FIELD [0001] The present invention relates to an engine starter optimum for an automobile having an idling stop function and an automobile using the same.
背景技術  Background art
[0002] 近年、地球環境保護の流れを受け、特に自動車の技術革新は顕著に進んで 、る。  [0002] In recent years, technological innovation in automobiles has been remarkably advanced in response to the trend of protecting the global environment.
この技術の一環として既にノ、イブリツド自動車が市販されている。また、自動車が走 行していない場合に、ある一定の条件が整えばエンジンを一時的に停止させ、再び 自動的に再始動させるアイドリングストップ機能を有する自動車が開発され、市販さ れている。  As part of this technology, noble and hybrid cars are already on the market. In addition, when an automobile is not running, an automobile having an idling stop function that stops the engine temporarily and automatically restarts it when certain conditions are met has been developed and marketed.
[0003] 電気二重層コンデンサはこのような技術を支える重要な部品の一つである。電気二 重層コンデンサは、従来力 用いられているノ ッテリである鉛蓄電池と併用して使用 されるのが一般的である。このような電気二重層コンデンサを充電する方法として、制 動エネルギを使用することが例えば特開平 11— 122709号公報に提案されている。 また、電気二重層コンデンサに鉛蓄電池を直列接続してスタータモータを駆動してェ ンジンを始動させることにより、鉛蓄電池の負荷を軽減して長寿命化する技術が例え ば特開平 2— 259276号公報に提案されて 、る。  [0003] An electric double layer capacitor is one of the important components that support such technology. An electric double layer capacitor is generally used in combination with a lead-acid battery, which is a conventionally used battery. As a method for charging such an electric double layer capacitor, use of a control energy is proposed in, for example, Japanese Patent Application Laid-Open No. 11-122709. For example, Japanese Patent Laid-Open No. 2-259276 is a technology that reduces the load on a lead storage battery and extends its life by connecting a lead storage battery in series to an electric double layer capacitor and driving a starter motor to start the engine. Proposed in the gazette.
[0004] しかしながら従来のエンジン始動装置では、車両休止時の電気二重層コンデンサ には車両稼動時に充電された電荷がそのまま残って 、る。この状態で休止状態が続 くと、電気二重層コンデンサに大きな負担力 Sかかり寿命低下に繋がる。  [0004] However, in the conventional engine starter, the electric charge charged when the vehicle is operating remains in the electric double layer capacitor when the vehicle is at rest. If the dormant state continues in this state, a large burden S is applied to the electric double layer capacitor, leading to a decrease in the service life.
[0005] また、アイドリングストップ後の再始動には約 12Vの電圧で数十 Aの電流が必要で ある。そのため、再始動を頻繁に行うと鉛蓄電池に大きな負担がかかり、結果として 鉛蓄電池の寿命が大幅に低下する。  [0005] Also, restart after idling stop requires a current of several tens of A at a voltage of about 12V. Therefore, frequent restarts put a heavy burden on the lead storage battery, resulting in a significant decrease in the life of the lead storage battery.
発明の開示  Disclosure of the invention
[0006] 本発明は電気二重層コンデンサとバッテリの負担を軽減して長寿命化することが可 能な、長期信頼性に優れたエンジン始動装置を提供する。本発明による車両のェン ジンを始動させるエンジン始動装置は、電気二重層コンデンサと、充電可能なバッテ リと、スタータモータと、蓄電量制御部とを有する。スタータモータは電気二重層コン デンサとバッテリとの少なくともいずれかにより給電される。蓄電量制御部は、車両が 休止時の電気二重層コンデンサの蓄電量を車両が稼動時の蓄電量の 24%以上 60 %以下に制御する。このように本発明によるエンジン始動装置は、車両休止時の電 気二重層コンデンサの蓄電量を減少させるように制御する。この制御により電気二重 層コンデンサに加わる負担が軽減される。さらに、電気二重層コンデンサの蓄電量を ゼロとしないことによりバッテリにも大きな負担が掛カることがない。そのため、電気二 重層コンデンサの負担とバッテリの負担とが軽減され、これらを長寿命化することがで きる。 [0006] The present invention provides an engine starter excellent in long-term reliability, which can reduce the burden on the electric double layer capacitor and the battery and extend the life. Entry of a vehicle according to the invention An engine starter that starts gin includes an electric double layer capacitor, a rechargeable battery, a starter motor, and a storage amount control unit. The starter motor is powered by at least one of an electric double layer capacitor and a battery. The storage amount control unit controls the storage amount of the electric double layer capacitor when the vehicle is at rest to 24% to 60% of the storage amount when the vehicle is in operation. Thus, the engine starter according to the present invention controls so as to reduce the amount of electricity stored in the electric double layer capacitor when the vehicle is at rest. This control reduces the burden on the electric double layer capacitor. In addition, since the amount of electricity stored in the electric double layer capacitor is not zero, there is no significant burden on the battery. As a result, the burden on the electric double layer capacitor and the burden on the battery can be reduced, and the life can be extended.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は本発明の実施の形態 1によるエンジン始動装置の構成を示す回路構成 図である。 FIG. 1 is a circuit configuration diagram showing a configuration of an engine starter according to Embodiment 1 of the present invention.
[図 2]図 2は本発明の実施の形態 1によるエンジン始動装置を搭載した自動車の模式 図である。  FIG. 2 is a schematic diagram of an automobile equipped with an engine starter according to Embodiment 1 of the present invention.
[図 3]図 3はキャパシタバンクを構成する電気二重層コンデンサの蓄電量と容量変化 との関係を示すグラフである。  FIG. 3 is a graph showing the relationship between the amount of electricity stored in the electric double layer capacitor constituting the capacitor bank and the change in capacity.
[図 4]図 4は本発明の実施の形態 1によるエンジン始動装置におけるバッテリとキャパ シタバンクとを一体ィ匕した状態を示す概念図である。  FIG. 4 is a conceptual diagram showing a state where a battery and a capacitor bank are integrated together in the engine starting device according to Embodiment 1 of the present invention.
[図 5]図 5は図 4に示す状態からバッテリとキャパシタバンクとエンジン制御部とを取り 外した状態を示す分解斜視図である。  5 is an exploded perspective view showing a state in which the battery, the capacitor bank, and the engine control unit are removed from the state shown in FIG.
[図 6]図 6は本発明の実施の形態 2によるエンジン始動装置の構成を示す回路構成 図である。  FIG. 6 is a circuit configuration diagram showing a configuration of an engine starting device according to Embodiment 2 of the present invention.
[図 7]図 7は図 6に示すエンジン始動装置において、電荷量値でバッテリの劣化を予 測する場合の説明図である。  [Fig. 7] Fig. 7 is an explanatory diagram when the deterioration of the battery is predicted by the charge amount value in the engine starting device shown in Fig. 6.
[図 8]図 8は図 6に示すエンジン始動装置において、内部直流抵抗でバッテリの劣化 を予測する場合の説明図である。  [FIG. 8] FIG. 8 is an explanatory diagram in the case of predicting battery deterioration by internal DC resistance in the engine starting device shown in FIG.
符号の説明 1 エンジン Explanation of symbols 1 engine
2 車載発電機  2 On-vehicle generator
3 ノ ッテリ  3 Notteri
4 キャパシタバンク(電気二重層コンデンサ)  4 Capacitor bank (electric double layer capacitor)
5 スタータモータ  5 Starter motor
6 切替スィッチ  6 Changeover switch
7 DC/DCコンノ ータ  7 DC / DC converter
8 スタータリレー  8 Starter relay
9 リレー  9 Relay
10 エンジン制御部  10 Engine control unit
11 充放電制御部  11 Charge / discharge controller
12 蓄電量制御部  12 Storage amount control unit
13 放電部  13 Discharge section
14 蓄電量測定部  14 Energy storage unit
15 電流センサ  15 Current sensor
16 電圧測定部  16 Voltage measurement section
17 計時部  17 Timekeeping section
18 イグニッションキー  18 Ignition key
19 ケース  19 cases
21, 21 A エンジン始動装置  21, 21 A Engine starter
22 ボアイ  22 Boai
23 前輪 (操舵輪)  23 Front wheel (steering wheel)
24 後輪 (駆動輪)  24 Rear wheel (drive wheel)
25 ステアリング  25 Steering
26 ェン、 ン室 発明を実施するための最良の形態  The best mode for carrying out the invention
(実施の形態 1)  (Embodiment 1)
図 1は本発明の実施の形態 1によるエンジン始動装置の構成を示す回路構成図で ある。図 2はこのエンジン始動装置を搭載した自動車の模式図である。 FIG. 1 is a circuit configuration diagram showing the configuration of an engine starter according to Embodiment 1 of the present invention. is there. FIG. 2 is a schematic diagram of an automobile equipped with this engine starting device.
[0010] エンジン 1は、駆動輪である後輪 24を駆動するとともに車載発電機 (以下、発電機) 2を駆動する。操舵輪である前輪 23は、ボディ 22内に設けられたステアリング 25によ り操作される。前輪 23、後輪 24はボディ 22を支持している。エンジン 1はエンジン始 動装置 21により始動される。エンジン始動装置 21は、電気二重層コンデンサ力も構 成されたキャパシタバンク 4、バッテリ 3、スタータモータ(以下、モータ) 5、切替スイツ チ 6、 DCZDCコンバータ 7、スタータリレー 8、リレー 9、蓄電量制御部 12で構成され ている。 The engine 1 drives a rear wheel 24 that is a drive wheel and drives an on-vehicle generator (hereinafter referred to as a generator) 2. The front wheel 23 which is a steered wheel is operated by a steering 25 provided in the body 22. The front wheel 23 and the rear wheel 24 support the body 22. Engine 1 is started by an engine starter 21. The engine starter 21 is composed of a capacitor bank 4, a battery 3, a starter motor (hereinafter referred to as motor) 5, a switching switch 6, a DCZDC converter 7, a starter relay 8, a relay 9, and a storage amount control. It consists of 12 parts.
[0011] 一般に鉛蓄電池で構成されたバッテリ 3の定格電圧は 14Vである。キャパシタバン ク 4は定格電圧 2. 5Vの電気二重層コンデンサを 6個直列接続して 1ユニットとし、こ のユニットを複数個並列接続して構成されている。モータ 5はバッテリ 3、またはバッテ リ 3とキャパシタバンク 4とにより給電される。切替スィッチ 6は通常走行時とエンジン 1 の再始動時とに応じて回路を切り替える。 DCZDCコンバータ 7は発電機 2からの電 力の電圧を変換する。スタータリレー 8はモータ 5への給電回路を ONZOFFする。リ レー 9はノ ッテリ 3とスタータリレー 8とを直接つなぐ回路に設けられている。切替スイツ チ 6、スタータリレー 8、リレー 9は接点式の切り替え器以外に、電子式のスイッチング 回路で構成してもよい。  [0011] Generally, the rated voltage of the battery 3 composed of a lead-acid battery is 14V. Capacitor bank 4 consists of six electric double layer capacitors with a rated voltage of 2.5V connected in series to form one unit, and a plurality of these units connected in parallel. Motor 5 is powered by battery 3 or battery 3 and capacitor bank 4. Changeover switch 6 switches the circuit according to normal driving and when engine 1 is restarted. The DCZDC converter 7 converts the voltage of the electric power from the generator 2. The starter relay 8 turns the power supply circuit to the motor 5 on and off. The relay 9 is provided in a circuit that directly connects the notch 3 and the starter relay 8. The switching switch 6, the starter relay 8, and the relay 9 may be composed of electronic switching circuits in addition to the contact type switching device.
[0012] 蓄電量制御部 12は、充放電制御部 11、蓄電量測定部 14、放電部 13で構成され ている。充放電制御部 11は切替スィッチ 6を切り替えるとともに、蓄電量測定部 14か らの情報に基づき放電部 13を制御する。蓄電量測定部 14はキャパシタバンク 4に充 電されている蓄電量を測定する。放電部 13は後述するように車両休止時にキャパシ タバンク 4を放電させることでキャパシタバンク 4の蓄電量を所定の範囲に調整する。 放電部 13は固定抵抗や電子負荷装置、定電流電源などで構成することができる。充 放電制御部 11はマイコン等で構成することができる。また、充放電制御部 11、蓄電 量測定部 14、放電部 13の二者以上を一体に構成してもよい。さらにエンジン制御部 10と一体に構成してもよい。  [0012] The storage amount control unit 12 includes a charge / discharge control unit 11, a storage amount measurement unit 14, and a discharge unit 13. The charging / discharging control unit 11 switches the switching switch 6 and controls the discharging unit 13 based on information from the charged amount measuring unit 14. The storage amount measuring unit 14 measures the storage amount charged in the capacitor bank 4. As will be described later, the discharge unit 13 discharges the capacitor bank 4 when the vehicle is at rest to adjust the amount of power stored in the capacitor bank 4 to a predetermined range. The discharge unit 13 can be composed of a fixed resistor, an electronic load device, a constant current power source, or the like. The charge / discharge control unit 11 can be composed of a microcomputer or the like. Further, two or more of the charge / discharge control unit 11, the storage amount measurement unit 14, and the discharge unit 13 may be integrally configured. Further, the engine control unit 10 may be integrated.
[0013] エンジン制御部 10は、エンジン 1の始動、休止を制御する。エンジン制御部 10もマ イコン等で構成することができる。イグニッションキー 18はユーザからのエンジン始動 指示を受け、エンジン制御部 10に伝える。イグニッションキー 18は回転式のスィッチ 等で構成することができる。 The engine control unit 10 controls starting and stopping of the engine 1. The engine control unit 10 can also be composed of a microcomputer or the like. Ignition key 18 starts engine from user Receives instructions and communicates to engine control unit 10. The ignition key 18 can be composed of a rotary switch or the like.
[0014] このように構成されたエンジン始動装置 21の動作について、まず、バッテリ 3の電力 のみでエンジン 1を始動する通常の場合を説明する。ユーザがイグニッションキー 18 を回すと、その信号がエンジン制御部 10に入力される。エンジン制御部 10はこの信 号を受けてリレー 9とスタータリレー 8をそれぞれ ONにする。これによりバッテリ 3から 電力が供給されてモータ 5が駆動する。そしてモータ 5によりエンジン 1が回転して始 動する。エンジン 1の始動時にモータ 5を駆動させるために必要なバッテリ 3からの供 給電力は、 12Vで約 600Aである。  [0014] Regarding the operation of the engine starter 21 configured as described above, first, a normal case of starting the engine 1 only with the electric power of the battery 3 will be described. When the user turns the ignition key 18, the signal is input to the engine control unit 10. The engine control unit 10 receives this signal and turns on the relay 9 and the starter relay 8 respectively. As a result, electric power is supplied from the battery 3 and the motor 5 is driven. Then, the motor 1 is rotated and started by the motor 5. The power supplied from the battery 3 required to drive the motor 5 when the engine 1 is started is about 600 A at 12V.
[0015] 次に、エンジン 1が稼動中に行われる充電動作について説明する。通常走行時、 発電機 2はエンジン 1の回転に連動して駆動される。また切替スィッチ 6は充放電制 御部 11により図中の下方向に接続された状態にされている。そして、エンジン制御 部 10はリレー 9を OFFにする。これにより発電機 2からの電力は DC/DCコンバータ 7を介してバッテリ 3に充電されるとともに、キャパシタバンク 4には発電機 2からの電 力が直接充電される。  Next, a charging operation performed while the engine 1 is in operation will be described. During normal travel, generator 2 is driven in conjunction with engine 1 rotation. The switching switch 6 is connected in the downward direction in the figure by the charge / discharge control unit 11. Then, the engine control unit 10 turns off the relay 9. As a result, the electric power from the generator 2 is charged into the battery 3 via the DC / DC converter 7 and the electric power from the generator 2 is directly charged into the capacitor bank 4.
[0016] 車両走行時にブレーキをかけて自動車を停止させる際には制動エネルギが発生す る。この制動エネルギを回収することが省エネルギの観点力も好ましい。しかしながら 制動エネルギの最大電流は 200Aに達し、極めて大きなエネルギである。バッテリ 3 は制動エネルギ全てを充電するだけの能力がない。一方、電気二重層コンデンサは 大電流での充電受け入れ性に優れている。このため、制動エネルギのほとんどはキ ャパシタバンク 4に充電されて回生される。このように、キャパシタバンク 4は通常走行 時にエンジン 1の稼動によって発電される電力よりはむしろ、制動エネルギを用いて 発電機 2により充電される電力によって主に充電されることが好ま 、。  [0016] Braking energy is generated when the vehicle is stopped by applying a brake while the vehicle is running. Recovering this braking energy is also preferable from the viewpoint of energy saving. However, the maximum current of braking energy reaches 200A, which is very large energy. Battery 3 is not capable of charging all braking energy. On the other hand, electric double layer capacitors are excellent in charge acceptance at large currents. For this reason, most of the braking energy is charged in the capacitor bank 4 and regenerated. Thus, it is preferable that the capacitor bank 4 is mainly charged by the power charged by the generator 2 using braking energy rather than the power generated by the operation of the engine 1 during normal driving.
[0017] 次に、自動車が走行していない場合のアイドリングストップと、その後の再始動時の 動作について説明する。エンジン制御部 10は、図示しないアクセル、ブレーキ、車速 センサ、水温センサ等からの情報を基に、ある一定の条件が整った場合にエンジン 1 を一時的に停止させる。すなわち、エンジン 1をいわゆるアイドリングストップの状態に する。このアイドリングストップ後、エンジン制御部 10は、ユーザがアクセルを踏み込 むなどの情報に基づき、エンジン 1を再始動する。すなわち、エンジン制御部 10はリ レー 9を OFFにすると共に、充放電制御部 11を介して切替スィッチ 6を図中の上方 向に接続した状態にする。これらのスイッチングによりキャパシタバンク 4はバッテリ 3 に直列接続される。この状態でスタータリレー 8が ONにされると、ノ ッテリ 3にキャパ シタバンク 4の電圧が加算された電力がモータ 5に供給される。そしてモータ 5が駆動 されることによりエンジン 1が再始動する。 [0017] Next, idling stop when the vehicle is not running and subsequent operation at restart will be described. The engine control unit 10 temporarily stops the engine 1 when certain conditions are met based on information from an accelerator, a brake, a vehicle speed sensor, a water temperature sensor, and the like (not shown). That is, the engine 1 is brought into a so-called idling stop state. After this idling stop, the engine control unit 10 causes the user to depress the accelerator. Restart engine 1 based on information such as That is, the engine control unit 10 turns off the relay 9 and connects the switching switch 6 upward in the drawing via the charge / discharge control unit 11. By these switching operations, the capacitor bank 4 is connected in series with the battery 3. When the starter relay 8 is turned on in this state, the electric power obtained by adding the voltage of the capacitor bank 4 to the notch 3 is supplied to the motor 5. When the motor 5 is driven, the engine 1 is restarted.
[0018] アイドリングストップは比較的頻繁に行われる。そしてアイドリングストップ後の再始 動には 12Vの電圧で数十 Aの電流が必要である。そのため、アイドリングストップはバ ッテリ 3に大きな負担をかける。しかしながら本実施の形態のように、キャパシタバンク 4が補助しながらアイドリングストップ後の再始動を行うことにより、ノ ッテリ 3の特性低 下を抑制することができる。このように、キャパシタバンク 4が補助しながら始動する動 作は、特にアイドリングストップ後の再始動に適用することが好ましい。  [0018] The idling stop is performed relatively frequently. And restarting after idling stops requires a current of several tens of A at a voltage of 12V. Therefore, the idling stop places a heavy burden on battery 3. However, the deterioration of the characteristic of the battery 3 can be suppressed by performing the restart after the idling stop with the capacitor bank 4 assisting as in the present embodiment. Thus, it is preferable to apply the operation that the capacitor bank 4 starts while assisting, particularly to restart after idling stop.
[0019] 次に、エンジン 1を停止させて自動車を休止状態にする際には、充放電制御部 11 が蓄電量測定部 14からの情報に基づき放電部 13を制御しキャパシタバンク 4を放電 させる。そして、充放電制御部 11はキャパシタバンク 4の蓄電量を車両稼動時の蓄 電量の 24%以上 60%以下に調整する。  Next, when the engine 1 is stopped and the vehicle is put into a resting state, the charging / discharging control unit 11 controls the discharging unit 13 based on the information from the charged amount measuring unit 14 to discharge the capacitor bank 4. . Then, the charge / discharge control unit 11 adjusts the amount of electricity stored in the capacitor bank 4 to 24% or more and 60% or less of the amount of electricity stored when the vehicle is operating.
[0020] 蓄電量測定部 14によるキャパシタバンク 4の蓄電量測定方法には種々の方法があ る。すなわち、発電機 2ゃバッテリ 3から充電される電気量を測定するとともに、放電 部 13による放電電気量やモータ 5に供給される電気量を測定することでキャパシタバ ンク 4の蓄電量を決定することができる。この場合、蓄電量測定部 14はキャパシタバ ンク 4から出入りする電気量の積算計として構成される。  [0020] There are various methods for measuring the amount of electricity stored in the capacitor bank 4 by the electricity storage amount measuring unit 14. That is, the amount of electricity charged from the generator 2 and the battery 3 is measured, and the amount of electricity stored in the capacitor bank 4 is determined by measuring the amount of electricity discharged from the discharge unit 13 and the amount of electricity supplied to the motor 5. be able to. In this case, the storage amount measuring unit 14 is configured as an integrator for the amount of electricity flowing in and out of the capacitor bank 4.
[0021] なお、蓄電量測定部 14は車両走行時のキャパシタバンク 4の電圧をモニターし、キ ャパシタバンク 4の電圧が所定値以上で一定になったときに、充放電制御部 11はキ ャパシタバンク 4がいわゆるフル充電されたと判断する。充放電制御部 11はこのとき の蓄電量を車両稼動時の蓄電量とする。あるいは、車両稼動時にキャパシタバンク 4 の電圧が最大になった時点における蓄電量を、充放電制御部 11は車両稼動時の蓄 電量とする。  [0021] The storage amount measuring unit 14 monitors the voltage of the capacitor bank 4 when the vehicle is running, and when the voltage of the capacitor bank 4 becomes equal to or higher than a predetermined value, the charge / discharge control unit 11 Is determined to be fully charged. The charge / discharge control unit 11 sets the amount of electricity stored at this time as the amount of electricity stored when the vehicle is operating. Alternatively, the charge / discharge control unit 11 uses the amount of electricity stored when the voltage of the capacitor bank 4 reaches the maximum during vehicle operation as the amount of electricity stored during vehicle operation.
[0022] あるいは、蓄電量測定部 14はキャパシタバンク 4の電圧を測定するだけでもキャパ シタバンク 4の蓄電量を推定することができる。電気二重層コンデンサの電圧は蓄電 量と相関し、両者にはほぼ直線的な関係がある。そのため最大使用電圧 (例えば 2. 5V)とその時点における電圧とを比較することにより、キャパシタバンク 4の蓄電量を 推定することができる。このような方法は、前述の方法に比べて測定精度はやや低下 するが、蓄電量測定部 14を簡易に構成することができる。 [0022] Alternatively, the charged amount measuring unit 14 can measure the capacity of the capacitor bank 4 only by measuring the voltage. The amount of electricity stored in Sitabank 4 can be estimated. The voltage of the electric double layer capacitor correlates with the amount of electricity stored, and there is a nearly linear relationship between the two. Therefore, the amount of electricity stored in the capacitor bank 4 can be estimated by comparing the maximum operating voltage (for example, 2.5 V) with the voltage at that time. In such a method, the measurement accuracy is slightly lowered as compared with the above-described method, but the storage amount measuring unit 14 can be easily configured.
[0023] 次に、自動車の休止時のキャパシタバンク 4の蓄電量について説明する。電気二重 層コンデンサの長期的な寿命力 判断すると、休止時のキャパシタバンク 4の蓄電量 はゼロに制御することが望ましい。し力しながら、蓄電量がゼロであるとバッテリ 3から キャパシタバンク 4に充電を行う必要が生じ、ノ ッテリ 3に負担が掛かる。このような観 点からでは、休止時のキャパシタバンク 4の蓄電量は車両稼動時の蓄電量をそのま ま維持し、フル充電状態が望ましい。  [0023] Next, the amount of electricity stored in the capacitor bank 4 when the automobile is at rest will be described. Judging from the long-term life potential of electric double layer capacitors, it is desirable to control the amount of electricity stored in capacitor bank 4 at rest to zero. However, if the amount of electricity stored is zero, it is necessary to charge the capacitor bank 4 from the battery 3, and the battery 3 is burdened. From this point of view, it is desirable that the amount of power stored in the capacitor bank 4 during a standstill maintains the amount of power stored when the vehicle is operating and is in a fully charged state.
[0024] 図 3はキャパシタバンク 4を構成する電気二重層コンデンサの蓄電量と、 50°Cにお けるその容量変化との関係を示すグラフである。このグラフは、定格 2. 5Vの電気二 重層コンデンサに定電圧連続通電負荷試験を行った場合の容量変化率を測定した 結果を示している。すなわち電圧レベルを変えることによって、電気二重層コンデン サの蓄電量を調整している。電圧値 1. 8Vは蓄電量 72%に相当し、電圧値 0. 6Vは 蓄電量 24%に相当する。電圧値 0. 9Vは蓄電量 36%に、電圧値 1. 2Vは蓄電量 4 8%に、電圧値 1. 5Vは蓄電量 60%にそれぞれ相当する。  FIG. 3 is a graph showing the relationship between the amount of electricity stored in the electric double layer capacitor constituting the capacitor bank 4 and the change in capacity at 50 ° C. This graph shows the results of measuring the rate of change in capacitance when a constant voltage continuous energization load test was performed on an electric double layer capacitor rated at 2.5V. In other words, the amount of electricity stored in the electric double layer capacitor is adjusted by changing the voltage level. A voltage value of 1.8V corresponds to 72% of the charged amount, and a voltage value of 0.6V corresponds to 24% of the charged amount. A voltage value of 0.9V corresponds to 36% of charge, a voltage value of 1.2V corresponds to charge of 48%, and a voltage value of 1.5V corresponds to charge of 60%.
[0025] 図 3から明らかなように、蓄電量を 24%あるいは 36%に制御した場合には 7000時 間後においても容量低下は認められない。すなわち、蓄電量を 36%以下に制御す ることによって電気二重層コンデンサの劣化を抑制することができる。一方、蓄電量を 48%あるいは 60%に制御した場合には、初期に容量が低下するものの、 5000時間 以降はほぼ一定になっている。これに対し、蓄電量を 72%に制御すると 7000時間 経過後でも容量が低下し続けている。したがって蓄電量を 60%以下に制御すること によってコンデンサの劣化をある程度までに抑えることができる。以上より、休止時の キャパシタバンク 4の蓄電量を、車両稼動時の蓄電量の 24%以上 60%以下の範囲 に制御することが好ましぐ 24以上 36%以下の範囲に制御することがより好ましい。  As is apparent from FIG. 3, when the charged amount is controlled to 24% or 36%, no capacity decrease is observed even after 7000 hours. That is, it is possible to suppress the deterioration of the electric double layer capacitor by controlling the charged amount to 36% or less. On the other hand, when the amount of electricity stored is controlled to 48% or 60%, the capacity decreases in the initial stage, but is almost constant after 5000 hours. In contrast, when the amount of electricity stored is controlled to 72%, the capacity continues to decline even after 7000 hours. Therefore, capacitor deterioration can be suppressed to some extent by controlling the amount of stored electricity to 60% or less. Based on the above, it is preferable to control the amount of electricity stored in capacitor bank 4 at rest in the range of 24% to 60% of the amount of electricity stored during vehicle operation. preferable.
[0026] なお上述のように、電気二重層コンデンサの蓄電量を 36%以下に制御する場合、 電気二重層コンデンサの容量はほとんど低下しない。そのため、蓄電量測定部 14を キャパシタバンク 4から出入りする電気量の積算計として構成する場合でも、蓄電量 を 36%以下に制御する場合には、車両稼動時の蓄電量として定格値を用いることが できる。すなわち、蓄電量測定部 14は車両稼動時の蓄電量を常時更新する必要が なくなり、蓄電量の算出が簡易になる。 [0026] As described above, when the amount of electricity stored in the electric double layer capacitor is controlled to 36% or less, The capacity of the electric double layer capacitor hardly decreases. For this reason, even when the storage amount measurement unit 14 is configured as an integrator for the amount of electricity entering and exiting the capacitor bank 4, when the storage amount is controlled to 36% or less, the rated value should be used as the storage amount when the vehicle is in operation. Is possible. That is, the storage amount measuring unit 14 does not need to constantly update the storage amount when the vehicle is operating, and the calculation of the storage amount is simplified.
[0027] また、キャパシタバンク 4の電圧が最大になった時点における蓄電量を車両稼動時 の蓄電量とする場合、充放電制御部 11はこの最大電圧と使用最大電圧とを比較し、 休止時の蓄電量を変化させてもよい。例えば電気二重層コンデンサ 1セルあたりの最 大電圧が 2. 3Vの場合は車両稼動時の蓄電量の 60%を放電し、最大電圧が 2. OV の場合は車両稼動時の蓄電量の 55%を放電してもよ 、。  [0027] In addition, when the storage amount at the time when the voltage of the capacitor bank 4 becomes the maximum is the storage amount when the vehicle is operating, the charge / discharge control unit 11 compares this maximum voltage with the maximum use voltage, The amount of stored electricity may be changed. For example, when the maximum voltage per electric double-layer capacitor is 2.3V, 60% of the amount of electricity stored in the vehicle is discharged, and when the maximum voltage is 2.OV, the amount of electricity stored in the vehicle is 55%. You can discharge it.
[0028] 以上のようにエンジン始動装置 21は、車両休止時のキャパシタバンク 4の蓄電量を 減少させるように制御する。これにより、キャパシタバンク 4を構成する電気二重層コ ンデンサに加わる負担と、ノ ッテリ 3に加わる負担を同時に軽減して両者を長寿命化 する。し力も電気二重層コンデンサがアイドリングストップ後のエンジン再始動に用い られる。これによりバッテリ 3の負担が大きく低減され、アイドリングストップによるバッテ リ 3の劣化を低減することができる。  [0028] As described above, the engine starter 21 performs control so as to decrease the amount of power stored in the capacitor bank 4 when the vehicle is at rest. As a result, the burden imposed on the electric double layer capacitor constituting the capacitor bank 4 and the burden imposed on the notch 3 are simultaneously reduced, thereby extending the life of both. The electric double layer capacitor is also used to restart the engine after idling stops. As a result, the burden on the battery 3 is greatly reduced, and deterioration of the battery 3 due to idling stop can be reduced.
[0029] 次に、エンジン始動装置 21をアイドリングストップ力もの再始動以外に、通常のェン ジン始動に適用する場合について説明する。通常のエンジン始動においても初期駆 動では、エンジン 1やモータ 5が停止して 、る状態力 モータ 5を駆動させるために負 荷が大きい。そしてエンジン 1が始動するまで、負荷は徐々に低下してゆく。このよう に初期駆動には大きな電力を必要とする。一方、バッテリ 3が自己放電などによりある 程度電圧が低下すると、出力可能な電力は低下する。そのためバッテリ 3の電圧が所 定の値以下になるとモータ 5の初期駆動ができなくなる。  [0029] Next, a description will be given of a case where the engine starter 21 is applied to normal engine start-up in addition to restart with idling stop force. Even during normal engine starting, in the initial driving, the engine 1 and the motor 5 are stopped, and the state force motor 5 is driven, so the load is large. Until the engine 1 starts, the load gradually decreases. Thus, large electric power is required for initial driving. On the other hand, when the voltage of the battery 3 decreases to some extent due to self-discharge or the like, the power that can be output decreases. For this reason, when the voltage of the battery 3 is below a predetermined value, the motor 5 cannot be driven initially.
[0030] このため、ノ ッテリ 3の電圧を測定する電圧測定部 16を設けることが好ましい。そし てノ ッテリ 3の電圧がモータ 5の初期駆動に必要な値以下になった場合に、充放電 制御部 11が切替スィッチ 6を切り替えてバッテリ 3からキャパシタバンク 4を充電するこ とが好ましい。このようにして充電されたキャパシタバンク 4からの電力がモータ 5を初 期駆動させる。この時、キャパシタバンク 4単独でモータ 5を初期駆動させてもよぐ上 述のアイドリングストップ後の再始動と同様に、ノ ッテリ 3とキャパシタバンク 4とを直列 接続した状態で初期駆動させてもょ 、。 [0030] For this reason, it is preferable to provide a voltage measuring unit 16 for measuring the voltage of the battery 3. Then, when the voltage of the notch 3 becomes equal to or lower than the value necessary for the initial drive of the motor 5, it is preferable that the charge / discharge control unit 11 switches the switch 6 to charge the capacitor bank 4 from the battery 3. The electric power from the capacitor bank 4 charged in this way drives the motor 5 in the initial stage. At this time, it is possible to drive the motor 5 initially with the capacitor bank 4 alone. As with the restart after the idling stop described above, the initial drive can be performed with the notch 3 and the capacitor bank 4 connected in series.
[0031] キャパシタバンク 4はバッテリ 3に比べ充放電容量は小さいが、大電流で充放電す ることができる。そのため、ノ ッテリ 3の電圧が低下した場合でも、あまりバッテリ 3の蓄 電量を使わずに同じ電圧まで充電することができる。そしてバッテリ 3に比べて大電 流で放電できるため、モータ 5を初期駆動させることができる。  The capacitor bank 4 has a smaller charge / discharge capacity than the battery 3, but can be charged / discharged with a large current. For this reason, even when the voltage of the battery 3 drops, the battery 3 can be charged to the same voltage without using much of the battery 3's storage capacity. Since the battery 3 can be discharged at a higher current than the battery 3, the motor 5 can be driven initially.
[0032] このように電圧測定部 16を設け、バッテリ 3の電圧に応じて充放電制御部 11が切 替スィッチ 6を切り替えることが好ましい。この構成によりエンジン始動装置 21は、バッ テリ 3が劣化や異常等の要因でモータ 5を初期駆動できなくなった際でも、キャパシタ バンク 4を利用してエンジン 1を始動させることができる。すなわち、エンジン始動装置 21の信頼性がより向上する。  It is preferable that the voltage measuring unit 16 is provided as described above, and the charge / discharge control unit 11 switches the switching switch 6 according to the voltage of the battery 3. With this configuration, the engine starter 21 can start the engine 1 using the capacitor bank 4 even when the motor 5 cannot be initially driven due to deterioration or abnormality of the battery 3. That is, the reliability of the engine starter 21 is further improved.
[0033] 次に、ノ ッテリ 3とキャパシタバンク 4との好まし 、配置にっ 、て説明する。図 4はバ ッテリ 3とキャパシタバンク 4とを一体ィ匕した状態を示す概念図である。図 5はその一体 化した状態からバッテリ 3とキャパシタバンク 4とエンジン制御部 10とを取り外した状態 を示す分解斜視図である。  Next, the preference and arrangement of the battery 3 and the capacitor bank 4 will be described. FIG. 4 is a conceptual diagram showing a state in which the battery 3 and the capacitor bank 4 are integrated. FIG. 5 is an exploded perspective view showing a state in which the battery 3, the capacitor bank 4, and the engine control unit 10 are removed from the integrated state.
[0034] 図 4、図 5に示すように、ノ ッテリ 3とキャパシタバンク 4とは絶縁榭脂など力も構成さ れたケース 19内に一体に収納されて 、ることが好まし 、。電気化学素子であるバッ テリ 3とキャパシタバンク 4とには大電流が印加されるためにそのままでは室内には設 置できない。このような電気化学素子をケース 19に一体に収納することにより、漏電 や感電などを一括して防止できるので安全性が高まる。  As shown in FIG. 4 and FIG. 5, it is preferable that the notch 3 and the capacitor bank 4 are housed integrally in a case 19 that is also configured with a force such as insulating grease. Since a large current is applied to the battery 3 and the capacitor bank 4 which are electrochemical elements, they cannot be installed indoors as they are. By storing such an electrochemical element in the case 19 as a whole, it is possible to prevent electric leakage and electric shock at the same time, thereby increasing safety.
[0035] なお、このように安全性が高まればバッテリ 3とキャパシタバンク 4とをエンジン室 26 以外の場所に配置することができる。例えば、図 2に示すシートの下などに配置する ことができる。このように高温環境のエンジン室 26以外の場所にバッテリ 3とキャパシ タバンク 4とを配置すれば、さらに長寿命化することができる。  It should be noted that the battery 3 and the capacitor bank 4 can be arranged at a place other than the engine compartment 26 if the safety is increased in this way. For example, it can be placed under the sheet shown in FIG. If the battery 3 and the capacitor bank 4 are arranged in a place other than the engine room 26 in a high temperature environment as described above, the life can be further extended.
[0036] イグニッションキーを OFFにした状態でも、ノ ッテリ 3はアクセサリ電源を供給する必 要がある。例えばキーレスエントリーのように、車両が停止し、かつ車両がロックされた 状態においても電流が流れる。これを暗電流という。車両が約 30日、 60日等の日数 を掛けて船で輸出される場合でも、この暗電流は流れ続ける。この間にエンジン 1を 始動することはできない。そのために、約 30日、 60日等の間、暗電流が流れていて も、次に車両を船から降ろす際にエンジン 1を始動するだけの電荷をバッテリ 3に残し ておく必要がある。そのため従来のエンジン始動装置では、大型のバッテリを用いる 必要がある。 [0036] Notch 3 needs to supply accessory power even when the ignition key is OFF. For example, current flows even when the vehicle is stopped and the vehicle is locked, as in keyless entry. This is called dark current. This dark current continues to flow even if the vehicle is exported by ship for about 30 days, 60 days, etc. During this time, engine 1 It cannot be started. Therefore, even if dark current flows for about 30 days, 60 days, etc., it is necessary to leave the battery 3 with enough charge to start the engine 1 the next time the vehicle is removed from the ship. Therefore, the conventional engine starter must use a large battery.
[0037] これに対し、本実施の形態では電圧測定部 16が設けられ、ノ ッテリ 3の電圧に応じ て充放電制御部 11が切替スィッチ 6を切り替える。そのため、上述のように船便によ る輸出においてバッテリ 3の電圧が低下してもバッテリ 3によりキャパシタバンク 4を充 電し、この充電されたキャパシタバンク 4によりモータ 5の初期駆動を行うことができる  In contrast, in the present embodiment, a voltage measurement unit 16 is provided, and the charge / discharge control unit 11 switches the switching switch 6 according to the voltage of the battery 3. Therefore, even when the voltage of the battery 3 drops during export by sea as described above, the capacitor bank 4 can be charged by the battery 3, and the motor 5 can be initially driven by the charged capacitor bank 4.
[0038] したがって従来のエンジン始動装置に比べてバッテリ 3を小型化することができる。 Therefore, the battery 3 can be downsized as compared with the conventional engine starter.
これにより生じた余裕スペースを利用することができる。そのためケース 19内にバッテ リ 3とキャパシタバンク 4とを一体に構成しても大型にならず、スペースに余裕がない エンジン室 26内にキャパシタバンク 4の取付スペースを確保することができる。さらに 上述のように車室などエンジン室 26以外の場所に配置することもできる。  The marginal space generated by this can be used. For this reason, even if the battery 3 and the capacitor bank 4 are integrally formed in the case 19, it does not become large in size, and there is not enough space. A mounting space for the capacitor bank 4 can be secured in the engine compartment 26. Further, as described above, it can be arranged in a place other than the engine compartment 26 such as a vehicle compartment.
[0039] なお図 4、図 5に示すように、ケース 19内にはエンジン制御部 10も収納することが 好ましい。また図示していないが、エンジン制御部 10とともに充放電制御部 11やこれ を含む蓄電量制御部 12をケース 19内に収納することが好ましい。あるいは、ェンジ ン制御部 10の代わりに充放電制御部 11または蓄電量制御部 12をケース 19内に収 納してもよい。さらに切替スィッチ 6や DCZDCコンバータ 7をケース 19内に収納して もよい。これらの電装部品の少なくともいずれかをケース 19に収納することにより、省 スペースになる。  As shown in FIGS. 4 and 5, it is preferable that the engine control unit 10 is also housed in the case 19. Although not shown, it is preferable to store the charge / discharge control unit 11 and the power storage amount control unit 12 including the engine control unit 10 in the case 19 together with the engine control unit 10. Alternatively, the charge / discharge control unit 11 or the storage amount control unit 12 may be housed in the case 19 instead of the engine control unit 10. Further, the switching switch 6 and the DCZDC converter 7 may be housed in the case 19. By storing at least one of these electrical components in the case 19, space is saved.
[0040] (実施の形態 2)  [0040] (Embodiment 2)
図 6は本発明の実施の形態 2によるエンジン始動装置の構成を示す回路構成図で ある。本実施の形態によるエンジン始動装置 21Aが実施の形態 1によるエンジン始 動装置 21と構成上で異なる点は、計時部 17が設けられている点である。また切替ス イッチ 6にバッテリ 3から DC/DCコンバータ 7を経てキャパシタバンク 4に給電するた めの接点が設けられている。さらにバッテリ 3からの電流を測定する電流センサ 15が 設けられている。充放電制御部 11はバッテリ 3の劣化を予測する。これ以外の構成は 実施の形態 1と同様である。すなわち、エンジン始動装置 21と同様に、エンジン始動 装置 21Aではアイドリングストップからの再始動時に、キャパシタバンク 4がバッテリ 3 に直列接続される。この状態でモータ 5が駆動されエンジン 1が再始動する。そして 車両休止時には、キャパシタバンク 4の蓄電量は、稼動時の蓄電量の 24%以上 60 %以下に制御される。これ以外にエンジン始動装置 21Aにおける充放電制御部 11 はバッテリ 3の劣化を予測する。以下、これについて図 6、図 7を用いて説明する。 FIG. 6 is a circuit configuration diagram showing the configuration of the engine starter according to Embodiment 2 of the present invention. The engine starting device 21A according to the present embodiment differs from the engine starting device 21 according to the first embodiment in configuration in that a timer 17 is provided. The switch 6 is provided with a contact for supplying power from the battery 3 to the capacitor bank 4 via the DC / DC converter 7. Further, a current sensor 15 for measuring the current from the battery 3 is provided. The charge / discharge control unit 11 predicts deterioration of the battery 3. Other configurations are The same as in the first embodiment. That is, similar to the engine starter 21, the engine starter 21A connects the capacitor bank 4 in series with the battery 3 when restarting from the idling stop. In this state, the motor 5 is driven and the engine 1 is restarted. When the vehicle is at rest, the amount of electricity stored in the capacitor bank 4 is controlled to 24% to 60% of the amount of electricity stored during operation. In addition to this, the charge / discharge control unit 11 in the engine starting device 21A predicts the deterioration of the battery 3. This will be described below with reference to FIGS.
[0041] 図 7は図 6に示すエンジン始動装置において、電荷量値でバッテリの劣化を予測す る場合の説明図である。まず電圧測定部 16がバッテリ 3の電圧を測定する。バッテリ 3の電圧は通常、約 14Vである。次に、充放電制御部 11は、切替スィッチ 6を切り替 え、ノ ッテリ 3から DC/DCコンバータ 7を介してキャパシタバンク 4に定電流(例えば 15A)で充電する。そして充放電制御部 11は計時部 17によりバッテリ 3の端子電圧 が VI (例えば 12. OV)になった時間 T1と、低下して V2(例えば 11. OV)になった時 間 T2とを測定する。また充放電制御部 11は電流センサ 15によりバッテリ 3からの電 流 Iを測定する。そして充放電制御部 11は(式 1)より電荷量値 Cを算出する。このよう にして求めた電荷量値 Cが所定の値に対してどのような状態にあるのかを判定するこ とにより、充放電制御部 11はバッテリ 3の劣化を予測する。  [0041] FIG. 7 is an explanatory diagram in the case of predicting the deterioration of the battery by the charge amount value in the engine starting device shown in FIG. First, the voltage measuring unit 16 measures the voltage of the battery 3. The voltage of battery 3 is usually about 14V. Next, the charge / discharge control unit 11 switches the switch 6 to charge the capacitor bank 4 from the battery 3 via the DC / DC converter 7 with a constant current (for example, 15 A). The charge / discharge control unit 11 measures the time T1 when the terminal voltage of the battery 3 becomes VI (for example, 12. OV) and the time T2 when it decreases to V2 (for example, 11. OV) by the time measuring unit 17. To do. The charge / discharge control unit 11 measures the current I from the battery 3 by the current sensor 15. The charge / discharge control unit 11 calculates the charge amount value C from (Equation 1). The charge / discharge control unit 11 predicts the deterioration of the battery 3 by determining what state the charge amount value C obtained in this way is with respect to a predetermined value.
[0042] C=I X (T2—T1)Z(V1—V2) · · · (式 1)  [0042] C = I X (T2—T1) Z (V1—V2) (Equation 1)
バッテリ 3が劣化すると定電流放電した場合に電圧が短時間に低下する。すなわち 、電荷量値 Cが小さくなる。このように充放電制御部 11は電荷量値 Cが所定値以下 になった場合、ノ ッテリ 3の劣化が進行していると判断する。この際、ノ ッテリ 3の温度 は電荷量値 Cに影響するので、ノ ッテリ 3の温度を測定する温度センサをさらに設け 、充放電制御部 11はこの温度センサ力 の情報を加味してバッテリ 3の劣化を予測 することが好ましい。  When the battery 3 deteriorates, the voltage drops in a short time when a constant current is discharged. That is, the charge amount value C decreases. Thus, the charge / discharge control unit 11 determines that the deterioration of the notch 3 is proceeding when the charge amount value C becomes equal to or less than the predetermined value. At this time, since the temperature of the notch 3 affects the charge amount value C, a temperature sensor for measuring the temperature of the notch 3 is further provided, and the charge / discharge control unit 11 takes into account the information on the temperature sensor force to It is preferable to predict the deterioration of the material.
[0043] 次に、充放電制御部 11がバッテリ 3の劣化を予測する他の方法について図 6、図 8 を用いて説明する。図 8は図 6に示すエンジン始動装置によって内部直流抵抗でバ ッテリの劣化を予測する場合の説明図であり、図 7の破線部分に相当する。  Next, another method for the charge / discharge control unit 11 to predict the deterioration of the battery 3 will be described with reference to FIGS. 6 and 8. FIG. FIG. 8 is an explanatory diagram when battery deterioration is predicted by the internal DC resistance by the engine starter shown in FIG. 6, and corresponds to the broken line portion of FIG.
[0044] まず電圧測定部 16がバッテリ 3の電圧を測定する。次に、充放電制御部 11は、切 替スィッチ 6を切り替え、バッテリ 3から DC/DCコンバータ 7を介してキャパシタバン ク 4に定電流 (例えば 15A)で充電する。すなわちバッテリ 3を放電させる。この時の 放電開始直後の電圧変化力 内部直流抵抗を算出する。例えば、放電開始から 0. 5秒後と 2. 0秒後のバッテリ 3の端子電圧を電圧測定部 16が測定する。なお、電圧 測定部 16は、放電開始直後にはバッテリ 3の電圧を lmsの精度でスキャンする。 First, the voltage measurement unit 16 measures the voltage of the battery 3. Next, the charge / discharge control unit 11 switches the switching switch 6 so that the capacitor band from the battery 3 through the DC / DC converter 7 is switched. Charge the battery 4 with a constant current (eg 15A). That is, the battery 3 is discharged. Calculate the voltage change force internal DC resistance immediately after the start of discharge. For example, the voltage measurement unit 16 measures the terminal voltage of the battery 3 0.5 seconds and 2.0 seconds after the start of discharge. The voltage measuring unit 16 scans the voltage of the battery 3 with an accuracy of lms immediately after the start of discharging.
[0045] 充放電制御部 11はこの電圧差 Δνを算出する。電圧測定部 16が Δνを算出しても よい。一方、電流センサ 15はバッテリ 3からの電流 Iを測定する。そして充放電制御部 11は電圧差 Δ Vと電流 Iとから (式 2)により内部直流抵抗 Rを算出する。  The charge / discharge control unit 11 calculates this voltage difference Δν. The voltage measurement unit 16 may calculate Δν. On the other hand, the current sensor 15 measures the current I from the battery 3. Then, the charge / discharge control unit 11 calculates the internal DC resistance R from the voltage difference ΔV and the current I by (Equation 2).
[0046] R= ΔνΖΐ· · · (式 2)  [0046] R = ΔνΖΐ · · (Formula 2)
このようにして求められた内部直流抵抗 Rが所定の値に対してどのような状態にあ るのかを判定することにより、充放電制御部 11はバッテリ 3の劣化を予測する。  The charge / discharge control unit 11 predicts the deterioration of the battery 3 by determining the state of the internal DC resistance R thus determined with respect to a predetermined value.
[0047] 一般に蓄電池は劣化すると内部直流抵抗 Rが増大する。このように充放電制御部 1 1は内部直流抵抗 Rが所定値以上になった場合、ノ ッテリ 3の劣化が進行していると 判断する。この際、バッテリ 3の温度は内部直流抵抗 Rに影響するので、バッテリ 3の 温度を測定する温度センサをさらに設け、充放電制御部 11はこの温度センサからの 情報を加味してバッテリ 3の劣化を予測することが好ましい。  [0047] Generally, when the storage battery deteriorates, the internal DC resistance R increases. In this way, the charge / discharge control unit 11 determines that the deterioration of the notch 3 is proceeding when the internal DC resistance R becomes a predetermined value or more. At this time, since the temperature of the battery 3 affects the internal DC resistance R, a temperature sensor for measuring the temperature of the battery 3 is further provided, and the charge / discharge control unit 11 takes into account the information from this temperature sensor to deteriorate the battery 3 Is preferably predicted.
[0048] 従来のエンジン始動装置では、主たる電力の供給は鉛蓄電池によって行われる。  [0048] In a conventional engine starter, main power is supplied by a lead storage battery.
そのため、充放電の繰り返しを行うことにより鉛蓄電池の性能が劣化する。そのため、 スタータモータを駆動してエンジンを始動させるために必要な電力を鉛蓄電池から取 り出せない状態になってしまった場合には、自力でエンジンを始動させることができ ずユーザは自動車を使用できな 、。  Therefore, the performance of a lead storage battery deteriorates by repeating charging / discharging. Therefore, if the power required to start the engine by driving the starter motor cannot be taken from the lead-acid battery, the engine cannot be started on its own and the user uses a car. Can not ,.
[0049] 一方、エンジン始動装置 21Aは、車両休止時にバッテリ 3を放電させてバッテリ 3の 状態を把握することにより、その状態に応じた事前の対応が可能になる。すなわち、 ノ ッテリ 3が劣化や異常等の要因で電圧が所定の値以下になり、モータ 5の初期駆 動ができないことを充放電制御部 11が判断する。このような場合に、充放電制御部 1 1はバッテリ 3によりキャパシタバンク 4を充電し、充電されたキャパシタバンク 4により モータ 5の初期駆動を行うことができる。これによつて、自力でエンジン 1を始動ができ な 、と 、う最悪の状態を回避することができる。このようにエンジン始動装置 21Aはェ ンジン始動装置 21よりさらに高い信頼性を有する。 [0050] なお実施の形態 1と同様に、ノ ッテリ 3とキャパシタバンク 4や、さらに充放電制御部 11やエンジン制御部 10などをケース 19内に一体に構成してもよい。 [0049] On the other hand, the engine starter 21A discharges the battery 3 when the vehicle is at a standstill and grasps the state of the battery 3, so that it is possible to take a prior action according to the state. That is, the charge / discharge control unit 11 determines that the voltage of the notch 3 becomes lower than a predetermined value due to factors such as deterioration or abnormality and the motor 5 cannot be driven initially. In such a case, the charge / discharge control unit 11 can charge the capacitor bank 4 with the battery 3 and perform the initial drive of the motor 5 with the charged capacitor bank 4. This makes it possible to avoid the worst condition that the engine 1 cannot be started by itself. Thus, the engine starter 21A has higher reliability than the engine starter 21. As in the first embodiment, the notch 3 and the capacitor bank 4, the charge / discharge control unit 11, the engine control unit 10, and the like may be integrally formed in the case 19.
[0051] 実施の形態 1、 2ではバッテリ 3として鉛蓄電池を用いた場合を例に説明しているが これに限定されな 、。ニッケル水素蓄電池やリチウムイオン電池など充電可能な電池 であればよ!、。またキャパシタバンク 4を構成する電気二重層コンデンサの直列数や 並列数も限定されない。最近では自動車の電装系の高電圧化が進んでいる。また車 両の規模によって用いられるバッテリ 3の容量も変化する。これに合せて、電気二重 層コンデンサの数や容量は適宜変更することができる。またこのようなバッテリ 3、キヤ パシタバンク 4の構成の違いに応じて、ノ ッテリ 3の劣化予測の際の電圧値や電流値 等は変更することができる。  In the first and second embodiments, the case where a lead storage battery is used as the battery 3 is described as an example, but the present invention is not limited to this. Any rechargeable battery such as a nickel metal hydride battery or a lithium ion battery! Further, the number of series and parallel number of electric double layer capacitors constituting the capacitor bank 4 is not limited. In recent years, the voltage of automobile electrical systems has been increasing. Also, the capacity of the battery 3 used depends on the size of the vehicle. In accordance with this, the number and capacity of electric double layer capacitors can be changed as appropriate. In addition, depending on the difference in the configuration of the battery 3 and capacitor bank 4, the voltage value, current value, etc. at the time of predicting the deterioration of the battery 3 can be changed.
産業上の利用可能性  Industrial applicability
[0052] 本発明によるエンジン始動装置は、ノ ッテリや電気二重層コンデンサに与える負担 を軽減し、これらを長寿命化するという効果を有する。このエンジン始動装置はハイ ブリツド自動車や、アイドリングストップ機能を有する自動車等に有用である。また自 動車以外にスタータなどにも適用することができる。  [0052] The engine starter according to the present invention has the effect of reducing the burden on the battery and the electric double layer capacitor and extending their life. This engine starter is useful for hybrid cars and cars with an idling stop function. It can also be applied to starters other than automobiles.

Claims

請求の範囲 The scope of the claims
[1] 車両のエンジンを始動させるエンジン始動装置であって、  [1] An engine starter for starting a vehicle engine,
電気二重層コンデンサと、  An electric double layer capacitor;
充電可能なバッテリと、  A rechargeable battery,
前記電気二重層コンデンサと前記バッテリとの少なくともいずれかにより給電されるス Power supplied by at least one of the electric double layer capacitor and the battery.
At ~々モ' ~ At
前記車両が休止時の前記電気二重層コンデンサの蓄電量を前記車両が稼動時の 蓄電量の 24%以上 60%以下に制御する蓄電量制御部と、を備えた、  A power storage amount control unit that controls a power storage amount of the electric double layer capacitor when the vehicle is at rest to 24% or more and 60% or less of a power storage amount when the vehicle is operating,
エンジン始動装置。  Engine starter.
[2] 前記電気二重層コンデンサは主に制動エネルギを用 ヽて車載された発電機により充 電される、  [2] The electric double layer capacitor is mainly charged by a generator mounted on the vehicle using braking energy.
請求項 1記載のエンジン始動装置。  The engine starter according to claim 1.
[3] 前記エンジンのアイドリングストップ後の再始動用である、 [3] For restarting after idling stop of the engine,
請求項 1記載のエンジン始動装置。  The engine starter according to claim 1.
[4] 前記バッテリの能力が前記スタータモータの初期駆動に必要な値以下に低下した場 合、前記バッテリから前記電気二重層コンデンサを充電する充放電制御部をさらに 備えた、 [4] The battery further includes a charge / discharge control unit that charges the electric double layer capacitor from the battery when the capacity of the battery decreases below a value necessary for initial drive of the starter motor.
請求項 1記載のエンジン始動装置。  The engine starter according to claim 1.
[5] 前記バッテリと前記電気二重層コンデンサとを一体で収納するケースをさらに備えた 請求項 1記載のエンジン始動装置。 5. The engine starter according to claim 1, further comprising a case for integrally storing the battery and the electric double layer capacitor.
[6] 前記ケースは前記蓄電量制御部を収納して!/、る、 [6] The case houses the storage amount control unit! /,
請求項 5記載のエンジン始動装置。  The engine starter according to claim 5.
[7] 前記バッテリの能力が前記スタータモータの初期駆動に必要な値以下に低下した場 合、前記バッテリから前記電気二重層コンデンサを充電する充放電制御部をさらに 備え、 [7] The battery further includes a charge / discharge control unit that charges the electric double layer capacitor from the battery when the capacity of the battery decreases below a value necessary for initial drive of the starter motor.
前記ケースは前記充放電制御部を収納して 、る、  The case houses the charge / discharge control unit.
請求項 5記載のエンジン始動装置。 The engine starter according to claim 5.
[8] 前記車両が休止時に前記バッテリから供給される電流を前記電気二重層コンデンサ に充電し、この充電時の特性力 前記バッテリの劣化予測を行う充放電制御部をさら に備えた、 [8] The electric double layer capacitor is charged with the current supplied from the battery when the vehicle is at rest, and further includes a charge / discharge control unit for predicting deterioration of the battery.
請求項 1記載のエンジン始動装置。  The engine starter according to claim 1.
[9] 前記バッテリと前記電気二重層コンデンサと前記充放電制御部とを収納するケース をさらに備えた、 [9] The battery further includes a case that houses the battery, the electric double layer capacitor, and the charge / discharge control unit.
請求項 8記載のエンジン始動装置。  The engine starter according to claim 8.
[10] 前記蓄電量制御部は、 [10] The power storage amount control unit includes:
前記電気二重層コンデンサの蓄電量を測定する蓄電量測定部と、 前記電気二重層コンデンサを放電する放電部と、  A storage amount measuring unit for measuring a storage amount of the electric double layer capacitor; a discharge unit for discharging the electric double layer capacitor;
前記蓄電量測定部の測定結果に基づき、前記放電部を制御して前記電気二 重層コンデンサの蓄電量を調整する充放電制御部と、を有する、  A charge / discharge control unit that controls the discharge unit to adjust the storage amount of the electric double layer capacitor based on the measurement result of the storage amount measurement unit,
請求項 1記載のエンジン始動装置。  The engine starter according to claim 1.
[11] 前記蓄電量測定部は前記電気二重層コンデンサから出入りする電気量を積算する、 請求項 10記載のエンジン始動装置。 11. The engine starter according to claim 10, wherein the storage amount measuring unit integrates the amount of electricity that enters and exits the electric double layer capacitor.
[12] 前記蓄電量測定部は前記電気二重層コンデンサの電圧を測定する、 [12] The storage amount measuring unit measures the voltage of the electric double layer capacitor.
請求項 10記載のエンジン始動装置。  The engine starter according to claim 10.
[13] 前記蓄電量制御部は前記車両が休止時の前記電気二重層コンデンサの蓄電量を、 前記車両が稼動時の蓄電量を一定値として、前記一定値の 24%以上 36%以下に 制御する、 [13] The storage amount control unit controls the storage amount of the electric double layer capacitor when the vehicle is at rest to a value between 24% and 36% of the fixed value, with the storage amount when the vehicle is in operation as a constant value. To
請求項 1記載のエンジン始動装置。  The engine starter according to claim 1.
[14] ボディと、 [14] the body,
前記ボディに設けられた請求項 1記載のエンジン始動装置と、  The engine starter according to claim 1, provided on the body,
前記エンジン始動装置により始動されるエンジンと、  An engine started by the engine starter;
前記エンジンに駆動され、前記ボディを支持する駆動輪と、  Driving wheels driven by the engine and supporting the body;
前記ボディに設けられたステアリングと、  A steering wheel provided on the body;
前記ステアリングに操作される操舵輪と、を備えた、  A steering wheel operated by the steering, and
自動車。 Car.
[15] 前記エンジンの駆動を制御するエンジン制御部をさらに備え、 [15] The engine further includes an engine control unit that controls driving of the engine,
前記エンジン制御部が前記エンジンをアイドリングストップした後に前記エンジン始動 装置が前記エンジンを再始動時する、  The engine starter restarts the engine after the engine controller has stopped idling the engine;
請求項 14記載の自動車。  The automobile according to claim 14.
[16] 前記バッテリと前記電気二重層コンデンサと前記エンジン制御部とを一体で収納する ケースをさらに備えた、 [16] The battery further includes a case for integrally storing the battery, the electric double layer capacitor, and the engine control unit.
請求項 15記載の自動車。  The automobile according to claim 15.
[17] 前記バッテリと前記電気二重層コンデンサを一体で収納するケースをさらに備え、 前記バッテリと前記電気二重層コンデンサとは、前記ボディにおける前記エンジンを 収納するエンジン室とは別の場所に配置された、 [17] The apparatus further includes a case for integrally storing the battery and the electric double layer capacitor, wherein the battery and the electric double layer capacitor are arranged in a location different from the engine compartment in the body for storing the engine. The
請求項 14記載の自動車。  The automobile according to claim 14.
PCT/JP2006/309249 2005-05-13 2006-05-08 Engine starting device and automobile using the same WO2006121005A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-140919 2005-05-13
JP2005-140921 2005-05-13
JP2005140920A JP2008190323A (en) 2005-05-13 2005-05-13 Engine starting system
JP2005140921A JP2008190324A (en) 2005-05-13 2005-05-13 Engine starting device
JP2005-140920 2005-05-13
JP2005140919A JP2008190322A (en) 2005-05-13 2005-05-13 Engine starting system

Publications (1)

Publication Number Publication Date
WO2006121005A1 true WO2006121005A1 (en) 2006-11-16

Family

ID=37396514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309249 WO2006121005A1 (en) 2005-05-13 2006-05-08 Engine starting device and automobile using the same

Country Status (1)

Country Link
WO (1) WO2006121005A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108733A (en) * 2007-10-29 2009-05-21 Mazda Motor Corp Engine automatic stopping device
WO2011121052A1 (en) * 2010-03-30 2011-10-06 Continental Automotive Gmbh On-board supply system for a vehicle and control device for an on-board supply system
JP2012120214A (en) * 2006-11-27 2012-06-21 Fujitsu Semiconductor Ltd Reset circuit and system
CN103345171A (en) * 2013-06-24 2013-10-09 天津山河装备开发有限公司 Safety control system of engineering machinery engine
JP2014046737A (en) * 2012-08-30 2014-03-17 Mazda Motor Corp Vehicle power supply control device and method
JP2014234105A (en) * 2013-06-04 2014-12-15 日産自動車株式会社 Hybrid-vehicle control apparatus
WO2015092886A1 (en) * 2013-12-18 2015-06-25 新電元工業株式会社 Internal combustion engine control circuit and internal combustion engine control method
WO2017151784A1 (en) * 2016-03-02 2017-09-08 Gentherm Incorporated System and method for supplying power in a hybrid vehicle provided with capacitors, a battery and one or more dc/dc converters
CN107407246A (en) * 2015-02-26 2017-11-28 杰斯蒂马太阳能有限公司 For the apparatus and method for the discharge and recharge that ultracapacitor is managed without control wiring
CN110103855A (en) * 2019-04-18 2019-08-09 浙江吉利控股集团有限公司 A kind of distribution system and method for mixed motor-car
US10876510B2 (en) 2016-03-02 2020-12-29 Gentherm Incorporated Systems and methods for supplying power in a hybrid vehicle using capacitors, a battery and one or more DC/DC converters
US10886583B2 (en) 2016-03-02 2021-01-05 Gentherm Incorporated Battery and capacitor assembly for a vehicle and a method for heating and cooling the battery and capacitor assembly

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02264154A (en) * 1989-04-03 1990-10-26 Isuzu Motors Ltd Charging discharging device for vehicle
JPH05161280A (en) * 1991-11-28 1993-06-25 Isuzu Motors Ltd Auxiliary power supply for vehicle
JPH05321798A (en) * 1992-05-26 1993-12-07 Yuasa Corp Engine starter
JPH09209790A (en) * 1996-01-29 1997-08-12 Toyota Motor Corp Engine stop control device
JP2004208414A (en) * 2002-12-25 2004-07-22 Nec Infrontia Corp Uninterruptible power supply system
JP2004215459A (en) * 2003-01-08 2004-07-29 Hitachi Ltd Power controller
JP2005045883A (en) * 2003-07-24 2005-02-17 Honda Motor Co Ltd Hybrid vehicle
JP2006029142A (en) * 2004-07-13 2006-02-02 Toyota Motor Corp Engine start control device for vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02264154A (en) * 1989-04-03 1990-10-26 Isuzu Motors Ltd Charging discharging device for vehicle
JPH05161280A (en) * 1991-11-28 1993-06-25 Isuzu Motors Ltd Auxiliary power supply for vehicle
JPH05321798A (en) * 1992-05-26 1993-12-07 Yuasa Corp Engine starter
JPH09209790A (en) * 1996-01-29 1997-08-12 Toyota Motor Corp Engine stop control device
JP2004208414A (en) * 2002-12-25 2004-07-22 Nec Infrontia Corp Uninterruptible power supply system
JP2004215459A (en) * 2003-01-08 2004-07-29 Hitachi Ltd Power controller
JP2005045883A (en) * 2003-07-24 2005-02-17 Honda Motor Co Ltd Hybrid vehicle
JP2006029142A (en) * 2004-07-13 2006-02-02 Toyota Motor Corp Engine start control device for vehicle

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120214A (en) * 2006-11-27 2012-06-21 Fujitsu Semiconductor Ltd Reset circuit and system
JP2009108733A (en) * 2007-10-29 2009-05-21 Mazda Motor Corp Engine automatic stopping device
WO2011121052A1 (en) * 2010-03-30 2011-10-06 Continental Automotive Gmbh On-board supply system for a vehicle and control device for an on-board supply system
US9434262B2 (en) 2012-08-30 2016-09-06 Mazda Motor Corporation Power-source apparatus for vehicle and control method of the same
JP2014046737A (en) * 2012-08-30 2014-03-17 Mazda Motor Corp Vehicle power supply control device and method
JP2014234105A (en) * 2013-06-04 2014-12-15 日産自動車株式会社 Hybrid-vehicle control apparatus
CN103345171A (en) * 2013-06-24 2013-10-09 天津山河装备开发有限公司 Safety control system of engineering machinery engine
CN104884784B (en) * 2013-12-18 2017-03-08 新电元工业株式会社 Internal combustion engine control circuit and internal combustion engine control method
CN104884784A (en) * 2013-12-18 2015-09-02 新电元工业株式会社 Internal combustion engine control circuit and internal combustion engine control method
WO2015092886A1 (en) * 2013-12-18 2015-06-25 新電元工業株式会社 Internal combustion engine control circuit and internal combustion engine control method
JP5933729B2 (en) * 2013-12-18 2016-06-15 新電元工業株式会社 Internal combustion engine control circuit and internal combustion engine control method
CN107407246B (en) * 2015-02-26 2019-04-26 杰斯蒂马太阳能有限公司 Device and method for managing the charge and discharge of supercapacitor
CN107407246A (en) * 2015-02-26 2017-11-28 杰斯蒂马太阳能有限公司 For the apparatus and method for the discharge and recharge that ultracapacitor is managed without control wiring
WO2017151784A1 (en) * 2016-03-02 2017-09-08 Gentherm Incorporated System and method for supplying power in a hybrid vehicle provided with capacitors, a battery and one or more dc/dc converters
US10124793B2 (en) 2016-03-02 2018-11-13 Gentherm Incorporated Systems and methods for supplying power in a hybrid vehicle using capacitors, a battery and one or more DC/DC converters
US10696291B2 (en) 2016-03-02 2020-06-30 Gentherm Incorporated Systems and methods for supplying power in a hybrid vehicle using capacitors, a battery and one or more DC/DC converters
US10876510B2 (en) 2016-03-02 2020-12-29 Gentherm Incorporated Systems and methods for supplying power in a hybrid vehicle using capacitors, a battery and one or more DC/DC converters
US10886583B2 (en) 2016-03-02 2021-01-05 Gentherm Incorporated Battery and capacitor assembly for a vehicle and a method for heating and cooling the battery and capacitor assembly
US11220988B2 (en) 2016-03-02 2022-01-11 Gentherm Incorporated Systems and methods for supplying power in a hybrid vehicle using capacitors, a battery and one or more DC/DC converters
US11616262B2 (en) 2016-03-02 2023-03-28 Gentherm Incorporated Battery and capacitor assembly for a vehicle and a method for heating and cooling the battery and capacitor assembly
US11852114B2 (en) 2016-03-02 2023-12-26 Gentherm Incorporated Systems and methods for supplying power in a hybrid vehicle using capacitors, a battery and one or more DC/DC converters
CN110103855A (en) * 2019-04-18 2019-08-09 浙江吉利控股集团有限公司 A kind of distribution system and method for mixed motor-car

Similar Documents

Publication Publication Date Title
WO2006121005A1 (en) Engine starting device and automobile using the same
JP4840359B2 (en) Engine starter
US7963264B2 (en) Engine cranking system and method
JP4702368B2 (en) Auxiliary power supply for vehicle and charging / discharging device for vehicle using the same
JP3549806B2 (en) Automotive power supply controller
JP4835690B2 (en) Power supply
JP4807058B2 (en) Vehicle power supply
EP2154028B1 (en) Vehicle power supply system
JP4209423B2 (en) Secondary battery control device and secondary battery output control method
JP5182576B2 (en) Vehicle power supply control device
JP2002503937A (en) Improved battery controller with charge control status
WO2007063865A1 (en) Auxiliary power supply device for vehicle, power supply device for vehicle, having the auxiliary power supply device, and automobile
US20140132063A1 (en) Vehicle power unit
JP5211954B2 (en) Vehicle power supply
WO2011001606A1 (en) Power source device
US20140132002A1 (en) Vehicle power source device
US10498154B2 (en) Electric power system
JP2013176197A (en) Power supply device
WO2007086271A1 (en) Automobile
JP5011978B2 (en) Power storage device
JP6732831B2 (en) Power supply
JPH10201091A (en) Power unit for vehicle using electric double layer capacitor
JP4871180B2 (en) Storage device control device
JP4735523B2 (en) Power storage device
JP2009095209A (en) Power storage apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP