WO2006120881A1 - Chemical supply system and chemical supply pump - Google Patents

Chemical supply system and chemical supply pump Download PDF

Info

Publication number
WO2006120881A1
WO2006120881A1 PCT/JP2006/308530 JP2006308530W WO2006120881A1 WO 2006120881 A1 WO2006120881 A1 WO 2006120881A1 JP 2006308530 W JP2006308530 W JP 2006308530W WO 2006120881 A1 WO2006120881 A1 WO 2006120881A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
chemical solution
chamber
pump
pressure
Prior art date
Application number
PCT/JP2006/308530
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuya Okumura
Shinichi Nitta
Tatsushi Nabei
Kazuhiro Sugata
Atsuyuki Sakai
Original Assignee
Ckd Corporation
Octec Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ckd Corporation, Octec Inc. filed Critical Ckd Corporation
Publication of WO2006120881A1 publication Critical patent/WO2006120881A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/084Machines, pumps, or pumping installations having flexible working members having tubular flexible members the tubular member being deformed by stretching or distortion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/10Pumps having fluid drive

Definitions

  • the present invention relates to a chemical solution supply system for inhaling and discharging a chemical solution by a chemical solution supply pump, and dropping the discharged chemical solution, specifically, a chemical solution such as a photoresist solution.
  • the present invention relates to a chemical solution supply system suitable for use in a chemical solution use process of a semiconductor manufacturing apparatus such as a coating process.
  • the present invention also relates to a chemical solution supply pump suitable for use in a chemical solution use process of a semiconductor manufacturing apparatus such as a chemical solution application process such as a photoresist solution.
  • a chemical solution supply pump is used to apply a predetermined amount of a chemical solution such as a photoresist solution to a semiconductor wafer.
  • a chemical solution such as a photoresist solution
  • the pump chamber filled with the chemical solution and the pressure working chamber for introducing compressed air are separated by a flexible membrane such as bellows or diaphragm, and the air pressure in the pressure working chamber is variably adjusted.
  • a flexible film is deformed to suck and discharge a chemical solution.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-54368
  • the main object of the present invention is to provide a chemical solution supply system that can control the flow rate of chemical solution suction or discharge with high accuracy, and can eliminate adverse effects caused by heat generation.
  • the chemical solution supply system according to the present invention is configured as follows. That is,
  • It has a pump chamber for filling a chemical solution and a pressure action chamber that is partitioned from the pump chamber by a volume variable member, and operates the variable volume member according to the gas pressure in the pressure action chamber.
  • Pressure adjusting means for adjusting the pressure of the gas supplied to the pressure working chamber; and an operation amount detecting means for detecting an operation amount of the volume variable member;
  • the target operating amount of the volume variable member is set when the chemical solution is sucked or discharged by the chemical solution supply pump, and the deviation between the target operating amount and the detection result force by the operating amount detection means is calculated.
  • the target operation amount of the volume variable member is set when the chemical solution is sucked or discharged by the chemical solution supply pump, and the target operation amount and the detection result force by the operation amount detection means are actually obtained.
  • the pressure adjusting means is controlled based on the deviation from the operating amount.
  • feedback control of the operation amount of the variable volume member as described above effectively causes a change in the volume of the pump chamber.
  • the suction flow rate or the discharge flow rate of the chemical solution can be controlled to a desired flow rate with high accuracy.
  • the chemical supply pump sucks or discharges chemical liquid using the gas pressure (for example, pneumatic force) adjusted by the pressure adjusting means as a drive source, unlike the electric system that controls the flow rate by the electric motor, Even a chemical solution requiring temperature control that does not cause the harmful effects of can be suitably used.
  • the gas pressure for example, pneumatic force
  • the operation amount of the variable volume member and the volume change of the pump chamber have a correlation.
  • the discharge flow rate of the chemical liquid can be calculated. For example, in a configuration in which the discharge flow rate is measured by a flow sensor provided in the chemical flow passage (discharge passage, etc.), it is necessary to consider changes in the characteristics of the chemical liquid (changes in specific gravity, viscosity, etc.) due to temperature changes. According to the above configuration, the discharge flow rate can be calculated in response to the volume change of the pump chamber without being affected by the change in the characteristics of the chemical solution.
  • the control means sets a target value of the moving speed of the variable volume member as the target operation amount, and an actual volume obtained based on the target value and a detection result by the operation amount detection means. It is preferable to control the pressure adjusting means based on a deviation from the moving speed of the variable member.
  • a relationship between the operation amount of the volume variable member and the pump discharge amount is further defined, and the control means uses the relationship to move the movement based on a flow rate command value each time. It is preferable to set a target value for speed.
  • the relationship between the operation amount of the variable volume member and the pump discharge amount is defined, and the relationship is used. If the target value of the moving speed of the variable volume member is set based on each flow rate command value, the target value of the moving speed can be easily set.
  • a means for linearly calculating a relationship between the operation amount of the volume variable member and the pump discharge amount for each of the sections divided into a plurality within the operation range of the volume variable member The control means preferably controls the pressure adjusting means using the linearized relationship.
  • the amount of operation of the variable volume member and the volume change (pump discharge amount) of the pump chamber are generally correlated with each other. Strictly speaking, depending on what is used as the variable volume member, the variable volume member It is considered that the operation amount of the pump and the volume change of the pump chamber become nonlinear. In this respect, in this configuration, the relationship between the operation amount of the variable volume member and the pump discharge amount is linearized for each of the sections divided into a plurality of within the operation range of the variable volume member, and the pressure is calculated using the linearized relationship. Control the adjusting means. As a result, the volume in the pump chamber can be changed appropriately, and the control accuracy of the chemical liquid suction flow rate or discharge flow rate is improved.
  • an axially expandable / contractible bellows is used as the volume variable member of the chemical solution supply pump, and the operation amount detecting means allows the volume variable member to be expanded. The amount of expansion and contraction of the bellows is detected as the operation amount,
  • the control means preferably controls the pressure adjusting means based on the amount of expansion and contraction of the bellows.
  • the bellows expands and contracts in the axial direction, and at that time, the volume change amount of the pump chamber with respect to the expansion and contraction amount of the bellows (that is, the amount of the chemical at the time of suction Z discharge) becomes substantially linear. Therefore, by controlling the pressure adjusting means based on the expansion / contraction amount of the bellows, the volume in the pump chamber can be appropriately changed, and the control accuracy of the chemical liquid suction flow rate or discharge flow rate is improved.
  • a diaphragm is used as the volume variable member of the chemical solution supply pump, and the amount of deformation of the diaphragm is detected as the operation amount of the volume variable member by the operation amount detection means.
  • control means comprises the linear It is preferable to control the pressure adjusting means using the converted relationship.
  • the volume change amount of the pump chamber with respect to the diaphragm deformation amount (that is, the chemical solution amount at the time of suction Z discharge) is not linear.
  • the deformation range of the diaphragm is divided into a plurality of sections and viewed in each section, the relationship between the volume change amount of the pump chamber and the diaphragm deformation amount can be approximated to a linear characteristic.
  • the relationship between the diaphragm deformation amount and the pump discharge amount is linearized for each of the sections divided into a plurality within the diaphragm deformation range, and the pressure adjusting means is controlled using the linearized relationship.
  • the volume in the pump chamber can be appropriately changed, and as a result, the control accuracy of the chemical liquid suction flow rate or the discharge flow rate is improved.
  • the configuration using the diaphragm as the variable volume member has an advantage that the liquid pool is less than the configuration using the bellows. Therefore, it is possible to realize a chemical supply system that can control the chemical flow rate with high accuracy and a small amount of liquid pool.
  • the relationship between the diaphragm deformation amount and the pump discharge amount can be linearized by linear interpolation based on the diaphragm deformation amount and the pump discharge amount at the boundary points of the respective sections. preferable.
  • the diaphragm deformation amount and the pump discharge amount at the boundary points of the respective sections are prepared in advance, the diaphragm deformation amount and the pump discharge amount are determined by linear interpolation based on each data.
  • the linear relationship of the relationship is possible. In such a case, linearization of the above relationship can be easily realized.
  • a detected body is connected to the variable volume member on the pressure acting chamber side, and the operation amount detection means is configured to operate the operation amount of the volume variable member. It is preferable to detect the amount of movement of the detected object.
  • a plurality of the chemical solution supply pumps are provided, and each of these pumps alternately perform a suction operation and The discharging operation may be performed.
  • the suction and discharge of the chemical liquid are alternately repeated in the same pump chamber. Therefore, in the configuration using the single chemical liquid supply pump, the discharge of the chemical liquid is performed intermittently. It will be. In this regard, if a plurality of chemical liquid supply pumps are alternately operated for suction and discharge, the chemical liquid can be continuously discharged without being interrupted.
  • the time required for the chemical solution discharge by each pump can be made constant every time, so that the supply of the chemical solution can be stabilized. Can do.
  • a chemical supply pump provided with a biasing means for biasing the volume variable member in a direction opposite to the gas pressure in the pressure acting chamber is applied, and the operation amount detection means Means for calculating the pressure in the pump chamber based on the detected operation amount of the variable volume member and the gas pressure in the pressure action chamber;
  • variable volume member In this configuration, the gas pressure in one side force / pressure working chamber acts on the variable volume member, and the urging force of the other side force urging means and the pressure in the pump chamber act. Then, the variable volume member is controlled to a position where these forces are balanced.
  • Fs is the force received by the variable volume member due to the gas pressure in the pressure acting chamber
  • Fb is the force received by the variable volume member by the biasing means
  • Fp is the force received by the variable volume member due to the pressure in the pump chamber.
  • Fb force received by the variable volume member by the biasing means
  • Fs force received by the variable volume member due to the gas pressure in the pressure chamber
  • the pressure in the pump chamber can be calculated from Fp (the force received by the variable volume member due to the pressure in the pump chamber) and the pressure receiving area of the variable volume member.
  • the pressure in the pump chamber is based on the operating amount of the volume variable member and the gas pressure in the pressure acting chamber. Force can be calculated. Then, by controlling the pressure in the pump chamber with the pressure in the pump chamber, proper pressure control is possible.
  • a chemical supply pump provided with a biasing means for biasing the volume variable member in a direction opposite to the gas pressure in the pressure working chamber is applied,
  • the pressure in the pump chamber can be calculated based on the operation amount of the variable volume member and the gas pressure in the pressure acting chamber. At this time, if clogging occurs in the chemical solution discharge path, the pressure in the pump chamber increases due to pressure loss even if the chemical solution discharge amount is the same. Therefore, occurrence of clogging can be determined.
  • a pressure determination value when discharge amount control is performed at a predetermined discharge flow rate is preliminarily determined, and clogging occurs when the calculated pressure in the pump chamber becomes larger than the pressure determination value. It is good to determine that it has occurred.
  • the pressure judgment value should be determined based on the initial (new) pressure value.
  • a suction valve is provided on the suction passage side leading to the pump chamber. And a chemical supply pump with a discharge valve on the discharge passage side leading to the pump chamber is applied.
  • the suction valve is closed and the discharge valve is opened at the time of discharge of the chemical liquid accompanying the operation of the variable volume member, and the state where the suction valve is closed and the discharge valve is opened after the discharge is completed is temporarily continued. It is preferable that the suction of the chemical solution is started by reversing the operation of the variable volume member.
  • the suction valve is closed and the discharge valve is opened, and the chemical solution is discharged from the pump chamber in accordance with the operation of the variable volume member. Then, after the discharge of the chemical liquid is completed, the state where the suction valve is closed and the discharge valve is opened is temporarily continued, and the operation of the variable volume member is reversed in that state, and the suction of the chemical liquid is started. At this time, suck back is performed by the suction operation of the chemical liquid with the suction valve closed and the discharge valve opened. As a result, dripping of the liquid under the medicine droplet can be prevented.
  • the above configuration eliminates the need for a suck-back on-off valve, thus simplifying the configuration.
  • the time for performing the liquid arch I operation with the suction valve closed and the discharge valve opened after the completion of the chemical liquid discharge, or the suction speed is variably controlled. I prefer that.
  • sucking back operation of the chemical solution can be arbitrarily controlled, and the sucking back amount can be controlled as desired.
  • the chemical liquid supply pump was configured as follows. That is, it has a pump chamber for filling a chemical solution and a diaphragm operation chamber that is partitioned by a diaphragm, and the diaphragm is squeezed and deformed according to the volume change of the diaphragm operation chamber.
  • a chemical supply pump that sucks or discharges the chemical based on a change in volume of the pump chamber accompanying stagnation deformation
  • the diaphragm operation chamber and a fluid chamber communicating with the diaphragm operation chamber are filled with an incompressible fluid, and a movable body that linearly changes the volume of the fluid chamber with respect to the operation amount is provided, and the movable body is sandwiched between In the pressure operation chamber provided on the opposite side of the diaphragm operation chamber, pressure adjusting means for adjusting the gas pressure in the pressure operation chamber is provided. Connected.
  • the pressure of the gas in the pressure operation chamber is adjusted by the pressure adjusting means, and the movable body is operated by the pressure adjustment.
  • the volume of the fluid chamber changes linearly with respect to the amount of operation, and the volume of the diaphragm operation chamber changes accordingly.
  • the diaphragm swells and deforms according to the volume change of the diaphragm operation chamber, and the chemical liquid is sucked or discharged based on the volume change of the pump chamber accompanying the diaphragm deformation.
  • the diaphragm operation chamber and the fluid chamber are filled with an incompressible fluid, and the volume change of the fluid chamber and the volume change of the diaphragm operation chamber coincide with each other (one increase is the other decrease). ).
  • the volume change of the fluid chamber with respect to the operating amount of the movable body is linear. Therefore, it becomes possible to control the flow rate at the time of suction or discharge of the chemical liquid with high accuracy based on the operation amount of the movable body.
  • the effective cross-sectional area of the movable body is made smaller than the effective cross-sectional area of the diaphragm, when the diaphragm is squeezed and deformed, the operation amount of the movable body becomes larger than the deformation amount of the diaphragm. Therefore, it is possible to control the amount of deformation of the diaphragm squeezingly.
  • the movable body is a plunger having a shape with a relatively small area on the side facing the pressure operation chamber and a relatively small area on the side facing the fluid chamber.
  • An operation amount detecting means for detecting an operation amount of the movable body
  • the target operation amount of the movable body is set during the suction or discharge of the chemical solution by the chemical solution supply pump, and the target operation amount and the detection result by the operation amount detection means are used.
  • the target operation amount of the movable body (such as a plunger whose operation amount is controlled by the gas pressure) is set, and the target operation amount is set.
  • the pressure adjusting means is controlled based on the deviation between the amount and the actual operating amount obtained from the detection result by the operating amount detecting means.
  • the volume change of the pump chamber is substantially as desired by performing feedback control of the operation amount of the movable body as described above. It will be possible to control.
  • the suction flow rate or the discharge flow rate of the chemical liquid can be controlled to a desired flow rate with high accuracy.
  • the chemical supply pump performs suction or discharge of the chemical using the gas pressure (for example, air pressure) adjusted by the pressure adjusting means as a drive source, unlike the electric system that controls the flow rate by the electric motor, Even chemicals requiring temperature control that can cause adverse effects due to the above can be suitably used.
  • a device further including means for calculating the discharge flow rate of the chemical solution based on the detection result by the operation amount detection means can be mentioned.
  • the operating amount of the movable body and the volume change of the pump chamber have a correlation as described above, it is possible to calculate the discharge flow rate of the chemical liquid based on the detection result by the operating amount detecting means. For example, in a configuration in which the discharge flow rate is measured by a flow sensor provided in the chemical flow passage (discharge passage, etc.), it is necessary to take into account changes in the chemical characteristics (changes in specific gravity, viscosity, etc.) due to temperature changes. According to the above means, the discharge flow rate can be calculated in response to the volume change of the pump chamber without being affected by the change in the characteristics of the chemical solution.
  • the control means sets a target value of the moving speed of the movable body as the target operation amount, and moves the actual movable body obtained based on the target value and the detection result by the operation amount detection means.
  • the pressure adjusting means is controlled based on a deviation from the speed.
  • the relationship between the operation amount of the movable body and the pump discharge amount is further defined.
  • control means sets the target value of the moving speed based on the flow rate command value each time using the relationship.
  • a plurality of the chemical solution supply pumps may be provided, and these pumps may be alternately operated for suction and discharge.
  • the time required for the chemical liquid discharge from each pump can be made constant every time, so that the chemical liquid supply can be stabilized. Can do.
  • FIG. 1 is a configuration diagram showing an outline of a chemical solution supply system in an embodiment of the invention.
  • FIG. 2 is a diagram showing an outline of discharge flow rate control in a controller.
  • FIG. 3 is a graph showing pump discharge characteristics.
  • FIG. 4 is a diagram showing a schematic configuration of a system having two chemical liquid supply pumps.
  • FIG. 5 is a time chart for explaining a chemical solution discharge operation.
  • FIG. 6 is a configuration diagram showing an outline of a chemical liquid supply system according to a second embodiment.
  • FIG. 7 is a diagram showing the relationship between diaphragm deformation and chemical discharge.
  • FIG. 8 (a) is a diagram showing a conversion formula from diaphragm deformation amount X to discharge amount q, and (b) is a diagram showing a conversion formula from diaphragm deformation speed XZt to discharge flow rate Q.
  • FIG. 9 is a flowchart showing processing by the controller relating to movement speed calculation.
  • FIG. 10 is a flowchart showing processing by the controller regarding actual discharge flow rate calculation.
  • FIG. 11 is a time chart for explaining a discharge amount measuring procedure.
  • FIG. 12 is a configuration diagram showing an outline of a chemical liquid supply system in a third embodiment.
  • FIG. 13 is a time chart for explaining a suck back operation.
  • the chemical solution supply system of FIG. 1 includes a chemical solution supply pump 10 for performing suction and discharge of the chemical solution.
  • a bellows type partition member 12 as a variable volume member is accommodated in the pump housing 11, and the pump chamber 13 and the pressure action chamber 14 are partitioned by the bellows type partition member 12.
  • Bellows type partition 12 has an axially expandable bellows 15 and a partition plate 16 attached to one end of the bellows 15 (the lower end in the figure). The upper end is fixed to an annular fixing plate 17.
  • the partition plate 16 moves due to the expansion and contraction of the bellows 15, and the volumes of the pump chamber 13 and the pressure acting chamber 14 change.
  • the volume increase of the pump chamber 13 corresponds to the volume decrease of the pressure chamber 14 ( Of course, the same applies if the increase or decrease is reversed).
  • a suction port 18 and a discharge port 19 communicating with the pump chamber 13 are formed in the pump housing 11, a suction pipe 21 is connected to the suction port 18, and a discharge pipe 22 is connected to the discharge port 19.
  • the suction pipe 21 is provided with a suction valve 23 that is a suction side opening / closing valve, and the suction valve 23 is opened and closed according to the energization state of the solenoid valve 24.
  • the discharge pipe 22 is provided with a discharge valve 25 which is a discharge side opening / closing valve, and the discharge valve 25 is opened / closed according to the energization state of the solenoid valve 26.
  • the suction valve 23 and the discharge valve 25 are constituted by, for example, air operated valves that are opened and closed by air pressure.
  • the air pressure acting on the valves 23 and 25 is adjusted according to the energization state of the electromagnetic valves 24 and 26, and the valves 23 and 25 are opened and closed accordingly.
  • the suction pipe 21 constitutes a chemical liquid supply passage for supplying a chemical liquid such as a resist liquid toward the pump chamber 13, and through the suction pipe 21, a chemical liquid bottle (chemical liquid storage container) (not shown) is provided.
  • the chemical solution stored in the inside or the chemical solution supplied from the chemical solution piping of the factory is supplied to the pump chamber 13. Thereby, the chemical solution is filled in the pump chamber 13.
  • the discharge pipe 22 constitutes a chemical liquid discharge passage for discharging the chemical liquid filled in the pump chamber 13, and the chemical liquid discharged from the pump chamber 13 through the discharge pipe 22 is discharged from the chemical liquid discharge nozzle ( (Not shown).
  • the chemical solution discharge nozzle is directed downward, and is arranged such that the chemical solution is dropped at the center position of the semiconductor wafer placed on a rotating plate or the like.
  • the chemical solution is applied to the wafer surface.
  • the pumping / housing 11 is formed with a supply / exhaust port 27 communicating with the pressure working chamber 14, and an electropneumatic regulator 28 is connected to the supply / exhaust port 27.
  • Electric air reguille 28 constitutes an air pressure adjusting means for adjusting the air pressure in the pressure working chamber 14, and supplies compressed air to the pressure working chamber 14 by switching operation of the built-in electromagnetic switching valve. The compressed air supply state is switched to the air release state where the air in the same pressure working chamber 14 is discharged to the outside.
  • a case body 31 is assembled to the pump housing 11, and an elongated cylindrical rod 33 is slidably inserted into a through-hole 32 formed in the pump housing 11, and the rod 33 is connected to the case body 31 side. Protruding. That is, the rod 33 has one end protruding into the pressure acting chamber 14 and the other end protruding into the internal space surrounded by the case body 31.
  • the partition plate 16 of the bellows-type partition member 12 is coupled to the end of the pressure working chamber 14 side of the rod 33, and the rod 33 moves as the partition plate 16 moves (ie, the bellows 15 expands and contracts). Reciprocates up and down.
  • a panel receiving plate 34 is connected to the end of the rod 33 on the case body 31 side, and a compression coil panel 35 is interposed between the panel receiving plate 34 and the outer wall surface of the pump housing 11. Yes.
  • the rod 33 is always urged upward in the figure by the urging force of the compression coil panel 35.
  • the compression coil panel 35 corresponds to an urging means for urging the bellows-type partition member 12 in a direction opposite to the air pressure in the pressure acting chamber 14.
  • the bellows 15 is expanded in accordance with the balance between the urging force of the compression coil panel 35 and the volume in the pump chamber 13 is reduced. At this time, the chemical solution filled in the pump chamber 13 is discharged through the discharge pipe 22 by closing the suction valve 23 and opening the discharge valve 25.
  • a position detector 36 for detecting the amount of movement of the rod 33 (that is, the amount of expansion and contraction of the bellows 15) is provided.
  • reference numeral 37 denotes the rod 33. This is a linear bearing for holding it so that it can be moved back.
  • Reference numeral 38 is a shaft seal for preventing air leakage of 14 pressure acting chambers.
  • the controller 40 is mainly a microcomputer including a CPU and various memories.
  • the controller 40 receives a suction Z discharge signal, a suction speed command, and a discharge flow rate command from a management computer (not shown) that manages the entire system, and receives a position detection signal from the position detector 36. Is done. Then, the controller 40 controls the open / close state of the suction valve 23 and the discharge valve 25 with the solenoid valves 24 and 26 energized or de-energized based on the input signal each time.
  • a control command value (operating air pressure command value) for the electropneumatic regulator 28 is calculated, and the state of the electropneumatic regulator 28 is controlled by the command value.
  • the controller 40 feeds back the state of the electropneumatic regulator 28 so that the moving speed of the partition plate 16 (rod 33) accompanying the expansion and contraction of the bellows 15 becomes the target moving speed at the time of sucking and discharging the chemical liquid. Control.
  • the controller 40 calculates a discharge flow rate value based on the position detection signal of the position detector 36, and outputs the calculated value to a management computer or the like.
  • the controller 40 calculates the moving speed of the partition plate 16 during chemical liquid suction based on the suction speed command, and calculates the moving speed of the partition plate 16 during chemical liquid discharge based on the discharge flow rate command.
  • the moving speed is calculated based on the pump discharge characteristic representing the relationship between the moving speed and the discharge flow rate.
  • the movement amount of the partition plate 16 and the discharge amount of the chemical solution supply pump 10 have the relationship shown in FIG. According to FIG. 3, the pump discharge amount with respect to the movement amount of the partition plate 16 is linear, and the movement speed of the partition plate 16 is calculated using this relationship.
  • XZt corresponds to the moving speed of the partition plate 16, and the moving speed can also be calculated by this formula.
  • the controller 40 selects either the moving speed at the time of suction or the moving speed at the time of discharge based on the suction Z discharge signal.
  • the moving speed selected at this time corresponds to the target moving speed of the partition plate 16.
  • the operating air pressure command value is calculated based on the deviation between the target moving speed of the partition plate 16 and the actual moving speed (actual moving speed) of the partition plate 16, and the electric power is calculated based on the operating air pressure command value. Controls the drive of the empty regulator 28.
  • the controller 40 calculates the actual moving speed (actual moving speed) of the partition plate 16 based on the detection result of the position detector 36 provided in the chemical solution supply pump 10.
  • the calculated value of the actual moving speed is used not only for feedback control of the electropneumatic regulator 28 but also for calculation of the discharge flow rate each time.
  • the controller 40 converts the actual moving speed of the partition plate 16 into a discharge flow rate using the pump discharge characteristics described above (for example, the relationship shown in FIG. 3), and outputs the result to the management computer as a discharge flow rate value. To do.
  • FIG. 4 shows a schematic configuration of a system having two chemical solution supply pumps 10a and 10b.
  • the two chemical liquid supply pumps 10a and 10b shown in FIG. 4 have the same configuration as the chemical liquid supply pump 10 described in FIG. 1, and the components of each pump are denoted by the same reference numerals and the description thereof. Is omitted.
  • the suction piping 21 of each chemical solution supply pump 10a, 10b is connected to a common suction port (chemical solution bottle or factory chemical solution piping), and the discharge piping 22 is connected to a common discharge port (chemical solution discharge nozzle).
  • a common suction port chemical solution bottle or factory chemical solution piping
  • the left side chemical liquid supply pump 10a has the bellows 15 in a contracted state, and in this state, the bellows 15 thereafter expands to discharge the chemical liquid filled in the pump chamber 13. .
  • the bellows 15 is in an extended state, and in this state, the bellows 15 is contracted thereafter, and the chemical solution is sucked into the pump chamber 13.
  • the controller 40 controls the open / close states of the suction valve 23 and the discharge valve 25 based on the signals input each time as described above, with the two chemical solution supply pumps 10a and 10b being controlled.
  • the control command value for each electropneumatic regulator 28 (operating air pressure finger (Command value) is calculated and the state of the electropneumatic regulator 28 is controlled by the command value.
  • FIG. 5 is a time chart for explaining the chemical liquid discharge operation in the chemical liquid supply system.
  • the continuous supply of chemical liquid to the semiconductor wafer is realized by the two chemical liquid supply pumps 10a, 10b alternately repeating the suction operation and the discharge operation.
  • one chemical supply pump 10 is referred to as a pump (A)
  • the other chemical supply pump 10 is referred to as a pump (B)
  • the suction valve and the discharge valve are also referred to as (A), (B).
  • the pump (A) Before the timing tl, the pump (A) is in the state of the chemical supply pump 10a in FIG.
  • (B) is in the state of the chemical supply pump 10b in FIG. 4, and both the suction valve and the discharge valve are closed. After timing tl, chemical suction and discharge are performed at each pump as the START signal rises.
  • the bellows 15 expands as the air pressure is increased by the electropneumatic regulator 28 on the pump (B) side, and the chemical solution is discharged (timing t6 to t7). Thereafter, the suction (Z) discharge operation is alternately performed by the pumps (A) and (B), and the chemical liquid is continuously discharged from the tip of the chemical liquid discharge nozzle.
  • the chemical solution discharge period TA by the pump (A) and the chemical solution discharge period TB by the pump (B) are set continuously, and the chemical solution is continuously discharged without interruption.
  • the discharge speed of the chemical liquid is controlled to be constant, the discharge periods TA and TB are the same, and the chemical liquid can be stably supplied.
  • the moving speed of the partition plate 16 constituting the bellows-type partition member 12 is feedback controlled at the time of suction or discharge of the chemical solution, the volume change of the pump chamber 13 can be controlled as desired.
  • the suction flow rate or the discharge flow rate of the chemical liquid can be controlled to a desired flow rate with high accuracy.
  • the chemical supply pump 10 is also equipped with an electropneumatic regulator. The chemical liquid is sucked or discharged by using the air pressure adjusted by the modulator 28 as a driving source. For this reason, unlike an electric system that controls the flow rate by an electric motor, even a chemical solution that requires temperature management that is unlikely to cause adverse effects due to heat can be suitably used.
  • the configuration of the pump drive system can be simplified as compared with the configuration of the electric actuator.
  • the position detector 36 detects the amount of movement of the rod 33 connected to the bellows-type partition member 12 (partition plate 16), and the detected amount of movement of the rod 33 (the amount of movement of the partition plate 16, the amount of the bellows 15)
  • the amount of expansion and contraction was also agreed) as a feedback parameter.
  • the flow rate sensor is provided with a variable throttle in the chemical solution discharge passage, and compared with other configurations using the result as a feedback parameter, the deterioration of the chemical solution due to liquid accumulation at the installation site of the sensor, throttle, etc. If inconvenience occurs or special processing is applied to prevent corrosion of the sensor or the like due to chemicals, the inconvenience is eliminated. Therefore, a simple system configuration can be realized, and as a result, the system can be reduced in size and cost.
  • the discharge flow rate of the chemical solution is calculated based on the detection result of the position detector 36, the discharge flow rate that is not affected by the change in the characteristics of the chemical solution can be calculated with high accuracy.
  • the position detector 36 is provided in the case body 31 isolated from the pump chamber 13, there is no possibility that the position detector 36 is exposed to the chemical solution. Therefore, it is possible to realize a simple and inexpensive system that does not require any chemical solution corrosion prevention measures for the position detector and its accessories.
  • FIG. 6 shows a schematic configuration of the chemical solution supply pump 50 and its surroundings.
  • the chemical solution supply pump 50 has bodies 51 and 52 that are divided into upper and lower parts, and in each of the bodies 51 and 52, recesses 51a and 52a are formed on opposing surfaces. ing .
  • a diaphragm 53 made of a substantially circular flexible film is interposed between the bodies 51 and 52, and a peripheral portion 53 a of the diaphragm 53 is sandwiched between the bodies 51 and 52.
  • a central thick part 53b is provided at the center of the diaphragm 53.
  • the space formed between the recess 51a on the body 51 side and the diaphragm 53 is the pump chamber 55, and the space formed between the recess 52a on the body 52 side and the diaphragm 53 is the pressure action chamber 56. ing.
  • a suction port 58 and a discharge port 59 communicating with the pump chamber 55 are formed in the body 51.
  • a suction pipe 61 is connected to the suction port 58, and a discharge pipe 62 is connected to the discharge port 59.
  • the suction pipe 61 is provided with a suction arch I valve 63 which is a suction side on-off valve.
  • the suction valve 63 is opened and closed according to the energization state of the solenoid valve 64.
  • the discharge pipe 62 is provided with a discharge valve 65 which is a discharge side on-off valve, and the discharge valve 65 is opened and closed according to the energization state of the electromagnetic valve 66.
  • the suction valve 63 and the discharge valve 65 may be constituted by, for example, air operated valves that are opened and closed by air pressure.
  • the air pressure acting on the valves 63 and 65 is adjusted according to the energized state of the solenoid valves 64 and 66, and the valves 63 and 65 are opened and closed accordingly.
  • the suction pipe 61 constitutes a chemical liquid supply passage for supplying a chemical liquid such as a resist liquid toward the pump chamber 55, and through the suction pipe 61, a chemical liquid bottle (chemical liquid storage container) (not shown) is provided.
  • the chemical solution stored in the inside or the chemical solution supplied from the chemical solution pipe of the factory is supplied to the pump chamber 55. Thereby, the chemical solution is filled in the pump chamber 55.
  • the discharge pipe 62 constitutes a chemical liquid discharge passage for discharging the chemical liquid filled in the pump chamber 55, and the chemical liquid discharged from the pump chamber 55 through the discharge pipe 62 is discharged from the chemical liquid discharge nozzle ( (Not shown).
  • the other body 52 is formed with a supply / discharge port 68 communicating with the pressure acting chamber 56, and an electropneumatic regulator 69 is connected to the supply / discharge port 68.
  • the electropneumatic regulator 69 constitutes an air pressure adjusting means for adjusting the air pressure in the pressure working chamber 56, and compressed air is supplied to the pressure working chamber 56 by switching operation of the built-in electromagnetic switching valve. It can be switched between a compressed air supply state to be supplied and an open air state in which the air in the same pressure working chamber 56 is discharged to the outside.
  • a case body 71 is assembled to the body 52, and an elongated cylindrical rod 73 is slidably inserted into a through-hole 72 formed in the body 52, and the rod 73 protrudes toward the case body 71 side. I'm out. That is, one end of the rod 73 projects into the pressure acting chamber 56 and the other end projects into the internal space surrounded by the case body 71.
  • the central thick portion 53b of the diaphragm 53 is coupled to the end of the rod 73 on the pressure acting chamber 56 side, and the mouth 73 reciprocates in the vertical direction in the figure as the diaphragm 53 is deformed.
  • a panel receiving plate 74 is connected to the end portion of the rod 73 on the case body 71 side, and a compression coil panel 75 is interposed between the panel receiving plate 74 and the outer wall surface of the body 52. .
  • the rod 73 is always urged upward in the figure by the urging force of the compression coil panel 75.
  • the compression coil spring 75 corresponds to an urging means for urging the diaphragm 53 in a direction opposite to the air pressure in the pressure acting chamber 56.
  • the diaphragm 53 stagnates and deforms downward in the figure, and the volume in the pump chamber 55 decreases. At this time, by closing the suction valve 63 and opening the discharge valve 65, the chemical solution filled in the pump chamber 55 is discharged through the discharge pipe 62.
  • a position detector 76 for detecting the amount of movement of the rod 73 (that is, the amount of deformation of the diaphragm 53) is provided.
  • reference numeral 77 is a linear bearing for holding the rod 73 so as to be able to reciprocate
  • reference numeral 78 is a shaft seal for preventing air leakage from the pressure working chamber 56.
  • the controller 80 is mainly composed of a microcomputer including a CPU and various memories. This is an electronic control device that controls the state of suction and discharge of the chemical liquid by the chemical liquid supply pump 50.
  • the controller 80 receives a suction Z discharge signal, a suction speed command, and a discharge flow rate command from a management computer (not shown) that manages and manages the entire system, and a position detection signal from the position detector 76. Is done. Then, the controller 80 controls the open / close state of the suction valve 63 and the discharge valve 65 by energizing or de-energizing the solenoid valves 64 and 66 based on the signal input each time.
  • a control command value (operating air pressure command value) for the electropneumatic regulator 69 is calculated, and the state of the electropneumatic regulator 69 is controlled by the command value.
  • the controller 80 feedback-controls the state of the electropneumatic regulator 69 so that the deformation speed of the diaphragm 53 becomes the target speed at the time of sucking and discharging the chemical liquid.
  • the controller 80 calculates the discharge flow rate value based on the position detection signal of the position detector 76, and outputs the calculated value to a management computer or the like.
  • the diaphragm-type chemical solution supply pump 50 as described above has a merit that the liquid pool is less than that of the bellows-type chemical solution supply pump, but has the merit, but the chemical solution discharge with respect to the deformation amount of the diaphragm 53. There is a concern that the amount becomes nonlinear and it becomes difficult to control the discharge amount.
  • FIG. 7 is a diagram showing the relationship between the amount of deformation of the diaphragm and the discharge amount of the chemical solution. According to the figure, it can be seen that the diaphragm characteristic is nonlinear with respect to the ideal linear characteristic.
  • the relationship between the diaphragm deformation amount and the pump discharge amount is linearized for each section divided into a plurality within the deformation range (full stroke range) of diaphragm 53, and the linear
  • the state of the electropneumatic regulator 69 is controlled by using the connected relationship.
  • the deformation range (XO to X5) of the diaphragm 53 is equally divided into five sections, and a linear characteristic is added to each section.
  • the state of the electropneumatic regulator 69 is controlled by using the linear characteristics of each section according to the deformation amount of the diaphragm 53 each time. Note that the data on the linear characteristics of each section is acquired by measurement, etc. and stored in memory in the controller 80 in advance.
  • the diaphragm deformation amount that becomes the boundary point of each section is XO, XI, X2, X3, X4, X5, of which corresponding to diaphragm deformation amount X1 to X5 Measure the discharge amount ql, q2, q3, q4, q5 (the discharge amount is 0 for diaphragm deformation amount XO and measurement is not required). Then, linearization is performed for each section by linear interpolation based on the diaphragm deformation amount and the discharge amount at the boundary point of each section.
  • the conversion formula from the diaphragm deformation amount X to the discharge amount q is defined as shown in FIG. 8 (a) according to the diaphragm deformation amount. Also, the conversion formula from the diaphragm deformation speed XZt to the discharge flow rate Q is defined as shown in FIG. 8 (b) according to the diaphragm deformation amount.
  • the characteristics linearized for each section as described above are the calculation of the deformation speed of the diaphragm 53 (calculation of the target value of the deformation speed) and the detection value of the amount of deformation of the diaphragm (position detection) This is used when calculating the actual discharge flow rate value based on the detection result of the vessel 76). That is, in the arithmetic logic described with reference to FIG. 2, the linear characteristic for each section is used in calculating the movement speed during discharge. Further, the linear characteristic for each section is used when converting the movement speed calculated based on the position detection result into the discharge flow rate.
  • FIG. 9 shows a processing flow by the controller 80 relating to the movement speed calculation
  • FIG. 10 shows a processing flow by the controller 80 relating to the actual discharge flow rate calculation.
  • the discharge flow rate command value Qc is taken and the diaphragm deformation amount X is measured (steps Sl 1 and S12). Thereafter, it is determined in which of the above sections the diaphragm deformation amount X is present (steps S13 to S17), and a conversion formula to be applied this time is determined according to the determination result (steps S18 to S22).
  • conversion equation (1) if X1 ⁇ X ⁇ X2, conversion equation (2), if X2 ⁇ X ⁇ X3, conversion equation (3), X3 ⁇ X ⁇ If X4, conversion formula (4) is applied, and if X ⁇ X4, conversion formula (5) is applied.
  • the fram deformation speed xZt is calculated, and the discharge amount control is performed based on the xZt value (step S23).
  • the diaphragm deformation amount X is measured, and the diaphragm deformation speed X Zt is calculated (steps S31 and S32). Thereafter, it is determined in which of the sections the diaphragm deformation amount X is present (steps S33 to S37), and a conversion formula to be applied this time is determined according to the determination result (steps S38 to S42).
  • the discharge flow rate value Q is calculated using the determined conversion formula (step S43).
  • the method for measuring the discharge amounts ql to q5 is arbitrary.
  • the following methods (1) and (2) are conceivable.
  • the diaphragm 53 is slowly deformed to the discharge side until the deformation amount XI is reached, and the deformation operation is stopped at the deformation amount XI. Measure the discharge volume at this time with a measuring cylinder, etc., and record it as the discharge volume ql. Thereafter, when the diaphragm deformation amount is set to X2, X3, X4, and X5, the discharge amount is similarly measured and recorded as discharge amounts q2, q3, q4, and q5. Each of the above data is input to the controller 80 and stored in the memory.
  • FIG. 11 when the ON output of the measurement start signal is input to the controller 80, a series of discharge amount measurement processing is started. First, the pump chamber 55 and the discharge amount measuring device of the chemical solution supply pump 50 are started. The chemical solution is supplied to the chemical solution introduction chambers, and each chamber is filled with the chemical solution. That is, the opening / closing of the suction valve 63 and the discharge valve 65 and the amount of diaphragm deformation are controlled as shown in the figure so that the operations are performed in the order of suction ⁇ discharge ⁇ suction.
  • the measuring valve is an on-off valve provided on the outlet side of the chemical solution introduction chamber of the discharge amount measuring device, and is opened during a period in which suction and discharge are performed once, and then closed.
  • the diaphragm deformation amount discharge amounts q2, q3, q4, and q5 at X2, X3, X4, and X5 are measured, and these values are stored in the controller 80. Stored in memory.
  • a plurality of chemical solution supply pumps 50 may be provided, and the pumps 50 may alternately perform a suction operation and a discharge operation. As a result, it is possible to continuously carry out the discharge of the chemical liquid without interruption. In addition, the time required to discharge the chemical liquid from each pump is constant each time, and a stable supply of chemical liquid can be realized. [0114] In the second embodiment described in detail above, the relationship between the diaphragm deformation amount and the pump discharge amount is linearized for each of the sections divided into a plurality within the deformation range of the diaphragm 53. The discharge amount control was performed using the relationship described above. For this reason, the suction flow rate or the discharge flow rate of the chemical liquid can be controlled with high accuracy even in the diaphragm type chemical liquid supply pump 50 in which the deformation amount and the discharge amount are not linear.
  • the chemical supply pump using a diaphragm as a variable volume member has an advantage that the liquid pool is less than that of the chemical supply pump using a bellows. Therefore, it is possible to realize a chemical supply system that can control the chemical flow rate with high accuracy and a small amount of liquid pool.
  • the chemical supply pump 100 has two bodies 101 and 102 that are divided into left and right parts, and in each of the bodies 101 and 102, recesses 101a and 102a are formed on opposing surfaces.
  • a diaphragm 103 made of a substantially circular flexible film is interposed between the bodies 101 and 102, and a peripheral edge 103a of the diaphragm 103 is held between the bodies 101 and 102.
  • the space formed between the recess 101a on the body 101 side and the diaphragm 103 is the pump chamber 105
  • the space formed between the recess 102a on the body 102 side and the diaphragm 103 is the diaphragm operation chamber 106. ing.
  • a suction port 108 and a discharge port 109 communicating with the pump chamber 105 are formed in the body 101.
  • a suction pipe 111 is connected to the suction port 108, and a discharge pipe 112 is connected to the discharge port 109. It has been.
  • the suction pipe 111 is provided with a suction arch I valve 113 which is a suction side on-off valve.
  • the suction valve 113 is opened and closed according to the energization state of the solenoid valve 114.
  • the discharge pipe 112 is provided with a discharge valve 115 which is a discharge side opening / closing valve, and the discharge valve 115 is opened / closed according to the energized state of the electromagnetic valve 116.
  • the suction valve 113 and the discharge valve 115 are constituted by, for example, air operated valves that are opened and closed by air pressure.
  • the air pressure acting on the valves 113 and 115 is adjusted according to the energized state of the solenoid valves 114 and 116, and the valves 113 and 115 are opened and closed accordingly.
  • the suction pipe 111 constitutes a chemical solution supply passage for supplying a chemical solution such as a resist solution toward the pump chamber 105.
  • the suction pipe 111 passes through a suction solution 111 (not shown) in a chemical solution bottle (chemical solution storage container).
  • the chemical solution stored in the tank or the chemical solution supplied from the factory chemical piping is supplied to the pump chamber 105.
  • the chemical solution is filled in the pump chamber 105.
  • the discharge pipe 112 constitutes a chemical liquid discharge path for discharging the chemical liquid filled in the pump chamber 105, and the chemical liquid discharged from the pump chamber 105 through the discharge pipe 112 is supplied with a chemical liquid discharge nozzle ( (Not shown).
  • the other body 102 is formed with a communication path 117 that communicates with the diaphragm operation chamber 106, and the communication path 117 communicates with the cylinder chamber 118.
  • the cylinder chamber 118 forms a two-stage cylindrical space having different diameters, and a plunger 119 is slidably accommodated in the cylinder chamber 118.
  • Plunger 119 has sliding parts 119a and 119b at the tip and intermediate part, and one side (the lower side in the figure) across the sliding part 119b is partly open to the atmosphere.
  • a chamber 121 is formed, and a pneumatic operation chamber 122 is formed on the other side (the lower side in the figure). Seal members are assembled to the outer peripheral portions of the sliding portions 119a and 119b.
  • the distal end side of the plunger 119 (below the sliding portion 119a) is a fluid chamber 123.
  • an incompressible fluid For example, silicon oil
  • the upper end portion of the plunger 119 in the figure protrudes above the body 102 through the through hole 124.
  • the body 102 is formed with a supply / discharge port 125 communicating with the pneumatic operation chamber 122, and an electropneumatic regulator 127 is connected to the supply / discharge port 125.
  • the electropneumatic regulator 127 constitutes an air pressure adjusting means for adjusting the air pressure in the pneumatic operation chamber 122, and is compressed into the pneumatic operation chamber 122 by switching the built-in electromagnetic switching valve. It can be switched between a compressed air supply state for supplying air and an open air state for discharging the air in the pneumatic operation chamber 122 to the outside.
  • a case body 131 is assembled to the body 102.
  • a panel receiving plate 132 is connected to the tip of the plunger 119 in the case body 131, and a compression coil panel 133 is interposed between the panel receiving plate 132 and the outer wall surface of the body 102.
  • the plunger 119 is always urged upward in the figure by the urging force of the compression coil panel 133.
  • the incompressible fluid moves from the diaphragm operation chamber 106 to the fluid chamber 123, the diaphragm 103 stagnates to the right in the figure, and the volume in the pump chamber 105 increases.
  • the chemical solution is sucked into the pump chamber 105 through the suction pipe 111 by opening the suction valve 113 and closing the discharge valve 115.
  • a position detector 135 for detecting the movement amount of the plunger 119 is provided in the case body 131.
  • reference numeral 137 is a linear bearing for holding the plunger 119 so as to be able to reciprocate
  • reference numeral 138 is a shaft seal for preventing air leakage from the pneumatic operation chamber 122.
  • the controller 140 is an electronic control unit mainly composed of a microcomputer composed of a CPU, various memories, and the like, and controls the state of suction and discharge of the chemical liquid by the chemical liquid supply pump 100.
  • the controller 140 receives a suction Z discharge signal, a suction speed command, and a discharge flow rate command from a management computer (not shown) that manages the entire system, and a position detection signal from the position detector 135. Is done. Then, the controller 140 controls the open / close state of the suction valve 113 and the discharge valve 115 with the electromagnetic valves 114 and 116 being energized or de-energized based on the signal input each time.
  • a control command value (operating air pressure command value) for the electropneumatic regulator 127 is calculated, and the state of the electropneumatic regulator 127 is controlled by the command value.
  • the controller 140 determines that the moving speed of the plunger 119 becomes the target speed during the suction and discharge of the chemical liquid. ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Feedback control of the state of electropneumatic regulator 127.
  • the controller 140 calculates a discharge flow rate value based on the position detection signal of the position detector 135 and outputs the calculated value to a management computer or the like.
  • the controller 140 calculates the moving speed of the plunger 119 during chemical liquid suction based on the suction speed command, and calculates the moving speed of the plunger 119 during chemical liquid discharge based on the discharge flow rate command.
  • the movement speed is calculated based on the pump discharge characteristic representing the relationship between the movement speed and the discharge flow rate. That is, the movement amount of the plunger 119 and the pump discharge flow rate have a correlation, and the movement speed of the plunger 119 is calculated for the discharge flow rate command value force using a linear characteristic defined in advance.
  • the operating air pressure command value is calculated based on the deviation between the target moving speed of the plunger 119 and the actual moving speed (actual moving speed), and the electropneumatic regulator 127 is driven based on the operating air pressure command value. To control.
  • the controller 140 calculates the actual moving speed (actual moving speed) of the plunger 119 based on the detection result of the position detector 135.
  • the calculated value of the actual moving speed is used for the feedback control of the electropneumatic regulator 127 and is used for the calculation of the discharge flow rate each time.
  • the controller 140 converts the actual movement speed of the plunger 119 into a discharge flow rate using the correlation (linear characteristics) between the movement amount of the plunger 119 and the pump discharge flow rate, and the result is used as the discharge flow rate value. Output to the management computer.
  • the air pressure in the pneumatic operation chamber 122 is adjusted by the electropneumatic regulator 127, and the plunger 119 moves to the top or bottom of the figure by the pressure adjustment.
  • the plunger 119 moves, the volume of the fluid chamber 123 changes linearly with respect to the movement amount, and the volume of the diaphragm operation chamber 106 changes accordingly.
  • the diaphragm 103 stagnates and deforms according to the volume change of the diaphragm operation chamber 106, and the suction or discharge of the chemical solution is performed based on the volume change of the pump chamber 105 accompanying the diaphragm deformation.
  • the diaphragm operation chamber 106 and the fluid chamber 123 are filled with an incompressible fluid, and the volume change of the fluid chamber 123 and the volume change of the diaphragm operation chamber 106 are the same. Match (one increase is the other decrease). Further, the volume change of the fluid chamber 123 with respect to the movement amount of the plunger 119 is linear. Therefore, it is possible to control the flow rate at the time of suction or discharge of the chemical liquid with high accuracy based on the movement amount of the plunger 119.
  • the effective sectional area of the plunger 119 is smaller than the effective sectional area of the diaphragm 103.
  • the plunger movement amount becomes larger than the diaphragm deformation amount. Therefore, the amount of deformation of the diaphragm 103 can be controlled with great force.
  • the effective area of the diaphragm is Ad and the diaphragm deformation amount Xd
  • the discharge amount V accompanying the diaphragm deformation is d * Xd.
  • the plunger 119 has two sliding portions 119a and 119b of different sizes, and the area on the side facing the pneumatic operation chamber 122 is relatively small in the area facing the fluid chamber 123. Has a relatively large shape.
  • the pressure receiving area of the plunger 119 on the side of the pneumatic operation chamber 122 is relatively large, a sufficient force can be applied when the plunger 119 is moved by air pressure.
  • the responsiveness of the plunger 119 is improved, and as a result, the deformation speed of the diaphragm 103 (the discharge amount of the chemical solution, etc.) can be arbitrarily controlled.
  • a plurality of chemical solution supply pumps 100 may be provided, and these pumps 100 may alternately perform a suction operation and a discharge operation. Thereby, it becomes possible to carry out continuously without interrupting the discharge of the chemical liquid.
  • the time required to discharge the chemical solution in each pump is constant every time, and a stable supply of the chemical solution can be realized.
  • the discharge amount control is performed using the plunger movement amount not the diaphragm deformation amount as a feedback parameter.
  • the pump discharge amount with respect to the diaphragm deformation amount is not linear, but it is relative to the plunger movement amount. Since the pump discharge amount is linear, the flow rate during the suction or discharge of the chemical solution can be controlled with high accuracy.
  • the chemical solution supply pump 100 sucks or discharges the chemical solution using the air pressure adjusted by the electropneumatic regulator 127 as a drive source. For this reason, unlike an electric system that controls the flow rate by an electric motor, there is no risk of adverse effects due to heat, and even a chemical solution that requires temperature management can be used suitably.
  • the configuration of the pump drive system can be simplified as compared with the configuration of the electric actuator.
  • the discharge flow rate of the chemical liquid is calculated based on the detection result of the position detector 135, the discharge flow rate that is not affected by the characteristic change of the chemical solution can be calculated with high accuracy.
  • the pressure in the pump chamber is calculated, and based on the calculated pressure in the pump chamber!
  • the clogging of the discharge passage may be determined. This will be described with respect to the configuration described in the first embodiment (FIG. 1).
  • the air pressure in the pressure working chamber 14 acts on the bellows-type partition member 12 from one side (the upper side in the figure), and the force on the other side (the lower side in the figure) is also applied to the compression coil panel.
  • the urging force by 35 and the pressure in the pump chamber 13 act.
  • the bellows type partition member 12 is controlled at a position where these forces are balanced.
  • the force received by the bellows partition member 12 due to the gas pressure in the pressure working chamber 14 is Fs
  • the force received by the bellows type cutting member 12 by the compression coil panel 35 is Fb
  • Fb the force received by the bellows type partition member 12 by the compression coil panel 35
  • Fb the force received by the bellows type partition member 12 by the compression coil panel 35
  • the panel constant is k
  • Fb k water (Xa + X) where Xa is the bellows position and X is the active bellows position.
  • Fs (the force received by the bellows type partitioning member 12 by the air pressure in the pressure action chamber 14) can be calculated from the air pressure in the pressure action chamber 14, and the effective area of the bellows is A, If the air pressure of Ps is Ps,
  • Fp the force received by the bellows type partitioning member 12 by the pressure in the pump chamber 13
  • P the force received by the bellows type partitioning member 12 by the pressure in the pump chamber 13
  • k, A, and Xa are fixed values, and the pump chamber pressure P can be calculated by measuring the air pressure Ps in the pressure working chamber 14 and the bellows position X during operation.
  • the pump chamber pressure P can basically be calculated from design dimensional data, etc., but considering individual differences, characteristics can be measured for each solid and the measured data stored in the controller. good. Thereby, the pump chamber pressure P can be accurately calculated.
  • (A is a constant). Therefore, when the pressure loss S increases, the pump chamber pressure P increases. In other words, when clogging (filter clogging, etc.) occurs in the discharge pipe, the pressure in the pump chamber increases due to pressure loss even if the chemical liquid discharge amount is the same. Therefore, occurrence of clogging can be determined. [0144] For example, if the pressure judgment value when performing discharge amount control at a predetermined discharge flow rate is preliminarily determined, and it is judged that clogging has occurred when the pump chamber pressure P becomes larger than the pressure judgment value, good. The pressure judgment value may be determined based on the initial (new) pressure value. When clogging occurs, for example, a sound or a lamp is notified, and the filter in the discharge pipe is replaced by the operator accordingly. By performing the clogging determination, it is possible to eliminate process malfunctions caused by clogging.
  • a suck back function may be added to prevent dripping at the end of discharge of the chemical liquid.
  • FIG. 13 is a time chart for explaining the suck back operation.
  • the suction valve is closed and the discharge valve is opened, and the chemical solution is discharged from the pump chamber in accordance with the operation of the variable volume member.
  • the suction valve is closed and the discharge valve is temporarily opened, and the operation of the volume variable member such as bellows is reversed and the suction of the chemical liquid is started. It is done.
  • suck back is performed by a chemical liquid suction operation in a state where the suction valve is closed and the discharge valve is opened.
  • TS in the figure is the suckback operation period. Thereby, dripping at the chemical liquid dropping nozzle or the like can be prevented.
  • the above configuration eliminates the need for a suck-back on-off valve, thus simplifying the configuration.
  • the suck back operation period (TS in Fig. 13) and the suction speed during suck back may be variably controlled.
  • the suck back operation of the chemical solution can be arbitrarily controlled, and the suck back amount can be controlled as desired.
  • the relationship between the bellows expansion / contraction amount and the pump discharge amount may be linearized for each section divided into a plurality of sections within the expansion / contraction range of the bellows, and the discharge amount control may be performed using the linear relationship. . This improves the control accuracy of the chemical liquid suction flow rate or the discharge flow rate. Note that the method described in the second embodiment is used as appropriate for the method of performing linear interpolation for each section.
  • the electropneumatic regulator when the air pressure in the pressure action chamber is reduced, the electropneumatic regulator is opened to the atmosphere, but this is changed.
  • a vacuum source is connected to the electropneumatic regulator, and the pressure inside the pressure working chamber is made negative by the operation of the vacuum source.
  • the amount of operation of bellows, diaphragm, etc. can be controlled arbitrarily.
  • the compression coil panel provided in the case body can be eliminated.
  • the force using the plunger 119 as a movable body that linearly changes the volume of the fluid chamber 123 with respect to the operation amount is changed.
  • a bellows can be used as the movable body.

Abstract

A chemical supply system in which suction or delivery flow rate of chemical is controlled with high precision while troubles incident to heat generation is removed. In a chemical supply pump (10), a bellows partition member (12) as a variable volume member is housed in a pump housing (11) which is used to section a pump chamber (13) from a pressure action chamber (14). The pressure action chamber (14) is connected with an electro-pneumatic regulator (28). The bellows partition member (12) is coupled with a rod (33) and moving amount of which is detected by a position detector (36). A controller (40) sets a target working amount of the bellows when the chemical is sucked or delivered, and controls the electro-pneumatic regulator (28) based on the difference between the target working amount and an actual working amount determined from detection results by the position detector (36).

Description

明 細 書  Specification
薬液供給システム及び薬液供給ポンプ  Chemical supply system and chemical supply pump
技術分野  Technical field
[0001] 本発明は、薬液供給ポンプによって薬液を吸入した上で吐出し、その吐出された薬 液を滴下させるための薬液供給システムに関するものであり、具体的にはフォトレジ スト液等の薬液塗布工程など半導体製造装置の薬液使用工程に用いるのに好適な 薬液供給システムに関する。また、同じくフォトレジスト液等の薬液塗布工程など半導 体製造装置の薬液使用工程に用いるのに好適な薬液供給ポンプに関する。  TECHNICAL FIELD [0001] The present invention relates to a chemical solution supply system for inhaling and discharging a chemical solution by a chemical solution supply pump, and dropping the discharged chemical solution, specifically, a chemical solution such as a photoresist solution. The present invention relates to a chemical solution supply system suitable for use in a chemical solution use process of a semiconductor manufacturing apparatus such as a coating process. The present invention also relates to a chemical solution supply pump suitable for use in a chemical solution use process of a semiconductor manufacturing apparatus such as a chemical solution application process such as a photoresist solution.
背景技術  Background art
[0002] 半導体製造装置の薬液使用工程においては、フォトレジスト液等の薬液を半導体 ウェハに所定量ずつ塗布するために薬液供給ポンプが用いられる。その薬液供給ポ ンプとして、薬液を充填したポンプ室と圧縮空気を導入する圧力作用室とをべローズ やダイアフラム等の可撓性膜で仕切り、圧力作用室内の空気圧力を可変調整するこ とにより可撓性膜を変形させて薬液の吸引及び吐出を行うようにしたものがある。  In a chemical solution use process of a semiconductor manufacturing apparatus, a chemical solution supply pump is used to apply a predetermined amount of a chemical solution such as a photoresist solution to a semiconductor wafer. As the chemical supply pump, the pump chamber filled with the chemical solution and the pressure working chamber for introducing compressed air are separated by a flexible membrane such as bellows or diaphragm, and the air pressure in the pressure working chamber is variably adjusted. There is one in which a flexible film is deformed to suck and discharge a chemical solution.
[0003] 上記の如く空気圧力により可撓性膜を変形させる構成では、可撓性膜の変形速度 を細力べ調整することが困難であり、薬液の吐出流量を高精度に制御することができ ないという問題があった。  [0003] In the configuration in which the flexible membrane is deformed by the air pressure as described above, it is difficult to finely adjust the deformation speed of the flexible membrane, and the discharge flow rate of the chemical solution can be controlled with high accuracy. There was a problem that it was not possible.
[0004] これに対し、空気圧力に代えて電動モータにより可撓性膜を変形させ、その変形に より薬液の吸入及び吐出を行うようにした薬液供給ポンプがある(例えば特許文献 1 参照)。こうした電動モータによる制御によれば、可撓性膜の変形速度を細力べ制御 することが可能となる。  On the other hand, there is a chemical supply pump in which a flexible film is deformed by an electric motor instead of air pressure, and chemical liquid is sucked and discharged by the deformation (see, for example, Patent Document 1). Control by such an electric motor makes it possible to control the deformation speed of the flexible membrane.
[0005] しカゝしながら、電動モータを使用した薬液供給ポンプの場合、高負荷又は高速で連 続動作を行うと発熱するため、薬液の温度管理が必要となる場合には使用できない という問題があった。また、半導体製造工程で使用される薬液、特に塩酸を使用する 場合、接液材質として 4フッ化工チレン榭脂 (テフロン (登録商標) )等を使用して耐食 を防いでも薬液が透過するおそれがあるため、電動モータの使用には不適であると いう問題があった。その他、電動モータを有する構成では、動力伝達や減速のため に複雑な機構を要する場合があることから高価なものとなり、し力もポンプの小型化が 妨げられるといった問題があった。 [0005] However, in the case of a chemical solution supply pump using an electric motor, heat is generated when continuous operation is performed at a high load or high speed, so that it cannot be used when temperature control of the chemical solution is required. was there. In addition, when using chemicals used in the semiconductor manufacturing process, especially hydrochloric acid, there is a possibility that the chemicals may permeate even if corrosion resistance is prevented by using tetrafluorinated styrene resin (Teflon (registered trademark)) as the wetted material. For this reason, there is a problem that it is not suitable for using an electric motor. Other configurations with electric motors for power transmission and deceleration In some cases, a complicated mechanism is required, which is expensive, and there is a problem that the force is hindered from downsizing the pump.
特許文献 1:特開平 10— 54368号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-54368
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、薬液の吸引又は吐出の流量を高精度に制御し、し力も発熱による弊害 等を排除することができる薬液供給システムを提供することを主たる目的とするもので ある。 [0006] The main object of the present invention is to provide a chemical solution supply system that can control the flow rate of chemical solution suction or discharge with high accuracy, and can eliminate adverse effects caused by heat generation.
課題を解決するための手段  Means for solving the problem
[0007] 本発明に係る薬液供給システムを次のように構成した。すなわち、 [0007] The chemical solution supply system according to the present invention is configured as follows. That is,
薬液を充填するためのポンプ室と、容積可変部材により前記ポンプ室から仕切られ てなる圧力作用室とを有し、その圧力作用室内の気体圧力に応じて前記容積可変 部材を作動させ、その作動に伴う前記ポンプ室の容積変化に基づ 、て前記薬液を 吸引又は吐出する薬液供給ポンプと、  It has a pump chamber for filling a chemical solution and a pressure action chamber that is partitioned from the pump chamber by a volume variable member, and operates the variable volume member according to the gas pressure in the pressure action chamber. A chemical supply pump for sucking or discharging the chemical based on the volume change of the pump chamber accompanying
前記圧力作用室に供給される気体の圧力を調整する圧力調整手段と、 前記容積可変部材の作動量を検出する作動量検出手段と、  Pressure adjusting means for adjusting the pressure of the gas supplied to the pressure working chamber; and an operation amount detecting means for detecting an operation amount of the volume variable member;
前記薬液供給ポンプによる薬液の吸引又は吐出時において前記容積可変部材の 目標作動量を設定するとともに、該目標作動量と前記作動量検出手段による検出結 果力 求めた実際の作動量との偏差に基づいて前記圧力調整手段を制御する制御 手段と、  The target operating amount of the volume variable member is set when the chemical solution is sucked or discharged by the chemical solution supply pump, and the deviation between the target operating amount and the detection result force by the operating amount detection means is calculated. Control means for controlling the pressure adjusting means based on;
を備えた。  Equipped with.
[0008] この薬液供給システムでは、薬液供給ポンプによる薬液の吸引又は吐出時におい て、容積可変部材の目標作動量が設定され、該目標作動量と前記作動量検出手段 による検出結果力 求めた実際の作動量との偏差に基づいて圧力調整手段が制御 される。かかる場合、容積可変部材の作動量とポンプ室の容積変化とは概ね相関を 有するため、上記のように容積可変部材の作動量をフィードバック制御することで、実 質的にはポンプ室の容積変化が望みとおりに制御できるようになる。これにより、薬液 の吸引流量又は吐出流量を所望とする流量に高精度に制御することが可能となる。 また、薬液供給ポンプは、圧力調整手段により調整される気体圧力(例えば空気圧 力)を駆動源として薬液の吸引又は吐出を行うため、電動モータによる流量制御を行 う電動式システムとは異なり、熱による弊害が生じるおそれがなぐ温度管理を要する 薬液であっても好適に使用できる。 [0008] In this chemical solution supply system, the target operation amount of the volume variable member is set when the chemical solution is sucked or discharged by the chemical solution supply pump, and the target operation amount and the detection result force by the operation amount detection means are actually obtained. The pressure adjusting means is controlled based on the deviation from the operating amount. In this case, since the operation amount of the variable volume member and the change in the volume of the pump chamber are substantially correlated, feedback control of the operation amount of the variable volume member as described above effectively causes a change in the volume of the pump chamber. Can be controlled as desired. As a result, the suction flow rate or the discharge flow rate of the chemical solution can be controlled to a desired flow rate with high accuracy. In addition, since the chemical supply pump sucks or discharges chemical liquid using the gas pressure (for example, pneumatic force) adjusted by the pressure adjusting means as a drive source, unlike the electric system that controls the flow rate by the electric motor, Even a chemical solution requiring temperature control that does not cause the harmful effects of can be suitably used.
[0009] 例えば、吐出流量のフィードバック制御手法としては、薬液の吐出通路に流量セン サゃ可変絞り等を設ける構成も考えられるが、かかる構成では、センサや絞り等の設 置部位における液溜まりに起因して薬液の劣化等が生じたり、薬液によるセンサ等の 腐食を防ぐために特殊加工が強いられたりするといつた不都合が生じる。この点、本 構成によれば上記不都合のおそれはなぐ簡易なシステム構成が実現でき、ひいて はシステムの小型化や低コストィ匕を図ることができる。  [0009] For example, as a method for feedback control of the discharge flow rate, a configuration in which a flow rate sensor or a variable throttle is provided in the chemical solution discharge passage is conceivable. However, in such a configuration, a liquid pool at a location where a sensor or a throttle is installed is considered. This can cause inconveniences when the chemical solution deteriorates or when special processing is forced to prevent corrosion of the sensor due to the chemical solution. In this respect, according to this configuration, a simple system configuration without the above-described disadvantage can be realized, and as a result, the system can be reduced in size and cost can be reduced.
[0010] 上記薬液供給システムの好適な例として、前記作動量検出手段による検出結果に 基づいて薬液の吐出流量を算出する手段を更に備えたものが挙げられる。  [0010] As a preferred example of the chemical liquid supply system, there may be mentioned one further provided with a means for calculating the discharge flow rate of the chemical liquid based on the detection result by the operation amount detection means.
[0011] 上記のとおり容積可変部材の作動量とポンプ室の容積変化とは相関を有するため [0011] As described above, the operation amount of the variable volume member and the volume change of the pump chamber have a correlation.
、作動量検出手段による検出結果に基づいて薬液の吐出流量の算出が可能となる。 仮に、例えば薬液の流通通路(吐出通路等)に設けた流量センサにより吐出流量を 計測する構成では、温度変化等による薬液の特性変化 (比重や粘性等の変化)を考 慮する必要が生じるが、上記構成によれば、薬液の特性変化に影響されることなぐ ポンプ室の容積変化に対応して吐出流量の算出が可能となる。 Based on the detection result by the operation amount detection means, the discharge flow rate of the chemical liquid can be calculated. For example, in a configuration in which the discharge flow rate is measured by a flow sensor provided in the chemical flow passage (discharge passage, etc.), it is necessary to consider changes in the characteristics of the chemical liquid (changes in specific gravity, viscosity, etc.) due to temperature changes. According to the above configuration, the discharge flow rate can be calculated in response to the volume change of the pump chamber without being affected by the change in the characteristics of the chemical solution.
[0012] 前記制御手段は、前記目標作動量として容積可変部材の移動速度の目標値を設 定するとともに、該目標値と、前記作動量検出手段による検出結果を基に求めた実 際の容積可変部材の移動速度との偏差に基づいて前記圧力調整手段を制御するこ とが好ましい。  [0012] The control means sets a target value of the moving speed of the variable volume member as the target operation amount, and an actual volume obtained based on the target value and a detection result by the operation amount detection means. It is preferable to control the pressure adjusting means based on a deviation from the moving speed of the variable member.
[0013] この構成では、容積可変部材の移動速度が望みとおりに制御できるため、薬液の 吐出動作が繰り返し行われる場合にも、毎回適切な薬液吐出動作が実現できる。  In this configuration, since the moving speed of the volume variable member can be controlled as desired, an appropriate chemical solution discharge operation can be realized every time even when the chemical solution discharge operation is repeated.
[0014] この構成においては、さらに、前記容積可変部材の作動量とポンプ吐出量との関 係を規定しておき、前記制御手段は、前記関係を用い都度の流量指令値に基づい て前記移動速度の目標値を設定することが好ま 、。  In this configuration, a relationship between the operation amount of the volume variable member and the pump discharge amount is further defined, and the control means uses the relationship to move the movement based on a flow rate command value each time. It is preferable to set a target value for speed.
[0015] 容積可変部材の作動量とポンプ吐出量との関係を規定しておき、該関係を用い、 都度の流量指令値に基づ!、て容積可変部材の移動速度の目標値を設定すれば、 前記移動速度の目標値を容易に設定することができる。 [0015] The relationship between the operation amount of the variable volume member and the pump discharge amount is defined, and the relationship is used. If the target value of the moving speed of the variable volume member is set based on each flow rate command value, the target value of the moving speed can be easily set.
[0016] 上記いずれの構成においても、前記容積可変部材の作動範囲内において複数に 分割した区間毎に容積可変部材の作動量とポンプ吐出量との関係を線形ィ匕する手 段を備え、前記制御手段は、前記線形化した関係を用いて前記圧力調整手段を制 御することが好ましい。  [0016] In any of the above-described configurations, there is provided a means for linearly calculating a relationship between the operation amount of the volume variable member and the pump discharge amount for each of the sections divided into a plurality within the operation range of the volume variable member, The control means preferably controls the pressure adjusting means using the linearized relationship.
[0017] 前述したように、容積可変部材の作動量とポンプ室の容積変化 (ポンプ吐出量)と は概ね相関を有する力 厳密には容積可変部材として何を使用するか等によっては 容積可変部材の作動量とポンプ室の容積変化とが非線形になると考えられる。この 点、この構成では、容積可変部材の作動範囲内において複数に分割した区間毎に 容積可変部材の作動量とポンプ吐出量との関係を線形ィ匕し、該線形化した関係を用 いて圧力調整手段を制御する。これにより、ポンプ室内の容積を適正に変化させるこ とができ、ひいては薬液の吸引流量又は吐出流量の制御精度が向上する。  [0017] As described above, the amount of operation of the variable volume member and the volume change (pump discharge amount) of the pump chamber are generally correlated with each other. Strictly speaking, depending on what is used as the variable volume member, the variable volume member It is considered that the operation amount of the pump and the volume change of the pump chamber become nonlinear. In this respect, in this configuration, the relationship between the operation amount of the variable volume member and the pump discharge amount is linearized for each of the sections divided into a plurality of within the operation range of the variable volume member, and the pressure is calculated using the linearized relationship. Control the adjusting means. As a result, the volume in the pump chamber can be changed appropriately, and the control accuracy of the chemical liquid suction flow rate or discharge flow rate is improved.
[0018] さらに、上記 、ずれの構成にお 、ても、前記薬液供給ポンプの容積可変部材とし て軸方向に伸縮自在のべローズを用い、前記作動量検出手段により、前記容積可 変部材の作動量として前記べローズの伸縮量が検出されるようにし、  [0018] Further, in the above-described displacement configuration, an axially expandable / contractible bellows is used as the volume variable member of the chemical solution supply pump, and the operation amount detecting means allows the volume variable member to be expanded. The amount of expansion and contraction of the bellows is detected as the operation amount,
前記制御手段は、前記べローズの伸縮量に基づ!、て前記圧力調整手段を制御す ることが好ましい。  The control means preferably controls the pressure adjusting means based on the amount of expansion and contraction of the bellows.
[0019] ベローズはその軸方向に伸縮し、その際、ベローズの伸縮量に対するポンプ室の 容積変化量 (すなわち、吸引 Z吐出時の薬液量)がほぼ線形となる。故に、ベローズ の伸縮量に基づいて圧力調整手段を制御することにより、ポンプ室内の容積を適正 に変化させることができ、ひいては薬液の吸引流量又は吐出流量の制御精度が向上 する。  [0019] The bellows expands and contracts in the axial direction, and at that time, the volume change amount of the pump chamber with respect to the expansion and contraction amount of the bellows (that is, the amount of the chemical at the time of suction Z discharge) becomes substantially linear. Therefore, by controlling the pressure adjusting means based on the expansion / contraction amount of the bellows, the volume in the pump chamber can be appropriately changed, and the control accuracy of the chemical liquid suction flow rate or discharge flow rate is improved.
[0020] あるいは、前記薬液供給ポンプの容積可変部材としてダイアフラムを用い、前記作 動量検出手段により、前記容積可変部材の作動量として前記ダイァフラムの変形量 が検出されるようにし、  [0020] Alternatively, a diaphragm is used as the volume variable member of the chemical solution supply pump, and the amount of deformation of the diaphragm is detected as the operation amount of the volume variable member by the operation amount detection means.
前記ダイァフラムの変形範囲内において複数に分割した区間毎にダイアフラム変 形量とポンプ吐出量との関係を線形化する手段を備え、前記制御手段は、前記線形 化した関係を用いて前記圧力調整手段を制御することが好ましい。 Means for linearizing the relationship between the diaphragm deformation amount and the pump discharge amount for each section divided into a plurality of sections within the deformation range of the diaphragm, and the control means comprises the linear It is preferable to control the pressure adjusting means using the converted relationship.
[0021] ダイアフラムを用いた薬液供給システムでは、ベローズを用いたシステムとは異なり 、ダイアフラム変形量に対するポンプ室の容積変化量 (すなわち、吸引 Z吐出時の 薬液量)が線形とならない。ただし、ダイァフラムの変形範囲を複数の区間に分割し、 各区間について見れば、ダイアフラム変形量に対するポンプ室の容積変化量の関係 を線形特性に近似することができる。かかる場合、この構成では、ダイァフラムの変形 範囲内において複数に分割した区間毎にダイアフラム変形量とポンプ吐出量との関 係を線形化し、該線形化した関係を用いて圧力調整手段を制御する。これにより、ポ ンプ室内の容積を適正に変化させることができ、ひいては薬液の吸引流量又は吐出 流量の制御精度が向上する。  [0021] Unlike a system using a bellows, in a chemical solution supply system using a diaphragm, the volume change amount of the pump chamber with respect to the diaphragm deformation amount (that is, the chemical solution amount at the time of suction Z discharge) is not linear. However, if the deformation range of the diaphragm is divided into a plurality of sections and viewed in each section, the relationship between the volume change amount of the pump chamber and the diaphragm deformation amount can be approximated to a linear characteristic. In such a case, in this configuration, the relationship between the diaphragm deformation amount and the pump discharge amount is linearized for each of the sections divided into a plurality within the diaphragm deformation range, and the pressure adjusting means is controlled using the linearized relationship. As a result, the volume in the pump chamber can be appropriately changed, and as a result, the control accuracy of the chemical liquid suction flow rate or the discharge flow rate is improved.
[0022] 容積可変部材としてダイアフラムを用いた構成では、ベローズを用いた構成と比し て液溜まりが少ないといったメリットがある。故に、液溜まりが少なぐかつ高精度な薬 液流量制御を可能とする薬液供給システムが実現できる。  [0022] The configuration using the diaphragm as the variable volume member has an advantage that the liquid pool is less than the configuration using the bellows. Therefore, it is possible to realize a chemical supply system that can control the chemical flow rate with high accuracy and a small amount of liquid pool.
[0023] この構成においては、さらに、前記各区間の境界点でのダイアフラム変形量とボン プ吐出量とに基づく直線補間によりダイアフラム変形量とポンプ吐出量との関係を線 形ィ匕することが好ましい。  [0023] In this configuration, the relationship between the diaphragm deformation amount and the pump discharge amount can be linearized by linear interpolation based on the diaphragm deformation amount and the pump discharge amount at the boundary points of the respective sections. preferable.
[0024] 前記各区間の境界点でのダイアフラム変形量とポンプ吐出量との各データをあらか じめ用意しておけば、その各データに基づく直線補間によりダイアフラム変形量とポ ンプ吐出量との関係の線形ィ匕が可能となる。かかる場合、上記関係の線形化を簡易 に実現することができる。  [0024] If the data of the diaphragm deformation amount and the pump discharge amount at the boundary points of the respective sections are prepared in advance, the diaphragm deformation amount and the pump discharge amount are determined by linear interpolation based on each data. The linear relationship of the relationship is possible. In such a case, linearization of the above relationship can be easily realized.
[0025] 上記 、ずれの構成にお 、ても、前記圧力作用室側にお!、て前記容積可変部材に 被検出体を連結し、前記作動量検出手段は、前記容積可変部材の作動量として前 記被検出体の移動量を検出することが好ましい。  [0025] Even in the above-described configuration of the displacement, a detected body is connected to the variable volume member on the pressure acting chamber side, and the operation amount detection means is configured to operate the operation amount of the volume variable member. It is preferable to detect the amount of movement of the detected object.
[0026] この構成によれば、容積可変部材の作動に伴う被検出体の移動が、ポンプ室から 隔離された圧力作用室側で検出されるため、作動量検出手段を構成する位置検出 器等が薬液に晒されるおそれはない。故に、位置検出器等について薬液による腐食 防止対策を施す必要はなぐ簡易で且つ安価なシステムが実現できる。  [0026] According to this configuration, since the movement of the detection object accompanying the operation of the variable volume member is detected on the pressure acting chamber side isolated from the pump chamber, the position detector that constitutes the operation amount detecting means, etc. There is no risk of exposure to chemicals. Therefore, it is possible to realize a simple and inexpensive system that does not require any countermeasures against corrosion caused by chemicals for the position detector and the like.
[0027] さらに、前記薬液供給ポンプを複数備え、これら各ポンプを交互に吸引動作及び 吐出動作させてもよい。 [0027] Furthermore, a plurality of the chemical solution supply pumps are provided, and each of these pumps alternately perform a suction operation and The discharging operation may be performed.
[0028] 上記構成の薬液供給ポンプでは、同一のポンプ室により薬液の吸引及び吐出が交 互に繰り返されるため、単一の薬液供給ポンプを用いた構成では、薬液の吐出が間 欠的に行われることになる。この点、複数の薬液供給ポンプを交互に吸引動作及び 吐出動作させれば、薬液の吐出を途切れさせることなく連続的に実施することが可能 となる。  [0028] In the chemical liquid supply pump having the above-described configuration, the suction and discharge of the chemical liquid are alternately repeated in the same pump chamber. Therefore, in the configuration using the single chemical liquid supply pump, the discharge of the chemical liquid is performed intermittently. It will be. In this regard, if a plurality of chemical liquid supply pumps are alternately operated for suction and discharge, the chemical liquid can be continuously discharged without being interrupted.
[0029] 特に、既述したとおり容積可変部材の移動速度をフィードバック制御する構成では 、各ポンプでの薬液吐出に要する時間を毎回一定とすることができるため、薬液供給 の安定ィ匕を図ることができる。  [0029] In particular, in the configuration in which the moving speed of the variable volume member is feedback-controlled as described above, the time required for the chemical solution discharge by each pump can be made constant every time, so that the supply of the chemical solution can be stabilized. Can do.
[0030] 上記いずれの構成においても、前記圧力作用室内の気体圧力とは相反する向きに 前記容積可変部材を付勢する付勢手段を設けた薬液供給ポンプを適用し、 前記作動量検出手段により検出した前記容積可変部材の作動量と前記圧力作用 室内の気体圧力とに基づいて前記ポンプ室内の圧力を算出する手段と、 [0030] In any of the above configurations, a chemical supply pump provided with a biasing means for biasing the volume variable member in a direction opposite to the gas pressure in the pressure acting chamber is applied, and the operation amount detection means Means for calculating the pressure in the pump chamber based on the detected operation amount of the variable volume member and the gas pressure in the pressure action chamber;
該算出したポンプ室内の圧力により当該ポンプ室の圧力制御を実施する手段とを 備えることが好ましい。  It is preferable to provide means for controlling the pressure in the pump chamber based on the calculated pressure in the pump chamber.
[0031] この構成では、容積可変部材には、その一方の側力 圧力作用室内の気体圧力が 作用し、他方の側力 付勢手段による付勢力とポンプ室内の圧力とが作用する。そし て、それらの力が均衡した位置に容積可変部材が制御される。この場合、圧力作用 室内の気体圧力により容積可変部材が受ける力を Fs、付勢手段により容積可変部 材が受ける力を Fb、ポンプ室内の圧力により容積可変部材が受ける力を Fpとすると  In this configuration, the gas pressure in one side force / pressure working chamber acts on the variable volume member, and the urging force of the other side force urging means and the pressure in the pump chamber act. Then, the variable volume member is controlled to a position where these forces are balanced. In this case, Fs is the force received by the variable volume member due to the gas pressure in the pressure acting chamber, Fb is the force received by the variable volume member by the biasing means, and Fp is the force received by the variable volume member due to the pressure in the pump chamber.
Fs = Fb + Fp Fs = Fb + Fp
の関係が成立する。ここで、 Fb (付勢手段により容積可変部材が受ける力)は、容積 可変部材の作動量に相関しており、容積可変部材の作動量に基づいて算出できる。 Fs (圧力作用室内の気体圧力により容積可変部材が受ける力)は、圧力作用室内の 気体圧力力も算出できる。また、ポンプ室内の圧力は、 Fp (ポンプ室内の圧力により 容積可変部材が受ける力)と容積可変部材の受圧面積とから算出できる。以上により 、容積可変部材の作動量と圧力作用室内の気体圧力とに基づいてポンプ室内の圧 力が算出できる。そして、このポンプ室内の圧力により当該ポンプ室内の圧力制御を 実施することで、適正な圧力制御が可能となる。 The relationship is established. Here, Fb (force received by the variable volume member by the biasing means) correlates with the operating amount of the variable volume member, and can be calculated based on the operating amount of the variable volume member. Fs (force received by the variable volume member due to the gas pressure in the pressure chamber) can also calculate the gas pressure force in the pressure chamber. The pressure in the pump chamber can be calculated from Fp (the force received by the variable volume member due to the pressure in the pump chamber) and the pressure receiving area of the variable volume member. As described above, the pressure in the pump chamber is based on the operating amount of the volume variable member and the gas pressure in the pressure acting chamber. Force can be calculated. Then, by controlling the pressure in the pump chamber with the pressure in the pump chamber, proper pressure control is possible.
[0032] また、この構成では、ポンプ室内の圧力を検出するための圧力センサが不要となる In addition, with this configuration, a pressure sensor for detecting the pressure in the pump chamber is not necessary.
。これにより、薬液に直接晒されるセンサ装置等がなくなるために、薬液による腐食防 止対策が強いられることはなぐ構成の簡素化やコストの低減を図ることができる。 . As a result, there is no sensor device or the like that is directly exposed to the chemical solution, so that it is possible to simplify the configuration and reduce the cost without being forced to take corrosion prevention measures with the chemical solution.
[0033] あるいは、前記圧力作用室内の気体圧力とは相反する向きに前記容積可変部材を 付勢する付勢手段を設けた薬液供給ポンプを適用し、 Alternatively, a chemical supply pump provided with a biasing means for biasing the volume variable member in a direction opposite to the gas pressure in the pressure working chamber is applied,
前記作動量検出手段により検出した前記容積可変部材の作動量と前記圧力作用 室内の気体圧力とに基づいて前記ポンプ室内の圧力を算出する手段と、  Means for calculating the pressure in the pump chamber based on the operation amount of the volume variable member detected by the operation amount detection means and the gas pressure in the pressure action chamber;
該算出したポンプ室内の圧力により、該ポンプ室に通じる薬液吐出通路で目詰まり が発生したかどうかを判定する手段とを備えてもよい。  There may be provided means for determining whether clogging has occurred in the chemical solution discharge passage leading to the pump chamber by the calculated pressure in the pump chamber.
[0034] 前記で説明したとおり、圧力作用室内の気体圧力により容積可変部材が受ける力([0034] As described above, the force that the variable volume member receives due to the gas pressure in the pressure acting chamber (
Fs)と、付勢手段により容積可変部材が受ける力(Fb)と、ポンプ室内の圧力により容 積可変部材が受ける力(Fp)とのノ《ランスにより、 Fs), the force received by the variable volume member by the biasing means (Fb), and the force received by the variable volume member by the pressure in the pump chamber (Fp),
Fs = Fb + Fp  Fs = Fb + Fp
の関係が成立し、かかる場合、容積可変部材の作動量と圧力作用室内の気体圧力 とに基づいてポンプ室内の圧力が算出できる。このとき、薬液吐出経路で目詰まりが 生じると、薬液吐出量が同一であっても、圧力損失によりポンプ室内の圧力上昇が生 じる。そのため、目詰まりの発生が判定できる。  In this case, the pressure in the pump chamber can be calculated based on the operation amount of the variable volume member and the gas pressure in the pressure acting chamber. At this time, if clogging occurs in the chemical solution discharge path, the pressure in the pump chamber increases due to pressure loss even if the chemical solution discharge amount is the same. Therefore, occurrence of clogging can be determined.
[0035] 例えば、所定の吐出流量で吐出量制御を行う場合の圧力判定値をあら力じめ定め ておき、前記算出したポンプ室内の圧力が前記圧力判定値よりも大きくなつた時に目 詰まりが生じたと判定すると良い。圧力判定値は、初期 (新品時)の圧力値を基に定 められると良い。目詰まり判定を実施することにより、目詰まりに起因するプロセスの 不具合を解消することができる。  [0035] For example, a pressure determination value when discharge amount control is performed at a predetermined discharge flow rate is preliminarily determined, and clogging occurs when the calculated pressure in the pump chamber becomes larger than the pressure determination value. It is good to determine that it has occurred. The pressure judgment value should be determined based on the initial (new) pressure value. By performing the clogging determination, it is possible to eliminate process failures caused by clogging.
[0036] また、この構成では、ポンプ室内の圧力を検出するための圧力センサが不要となる 。これにより、薬液に直接晒されるセンサ装置等がなくなるために、薬液による腐食防 止対策が強いられることはなぐ構成の簡素化やコストの低減を図ることができる。  [0036] Further, with this configuration, a pressure sensor for detecting the pressure in the pump chamber is not necessary. As a result, there is no sensor device or the like that is directly exposed to the chemical solution, so that it is possible to simplify the configuration and reduce the cost without being forced to take corrosion prevention measures with the chemical solution.
[0037] 上記いずれの構成においても、前記ポンプ室に通じる吸引通路側に吸引バルブを 設けるとともに、同ポンプ室に通じる吐出通路側に吐出バルブを設けた薬液供給ポ ンプを適用し、 [0037] In any of the above configurations, a suction valve is provided on the suction passage side leading to the pump chamber. And a chemical supply pump with a discharge valve on the discharge passage side leading to the pump chamber is applied.
前記容積可変部材の作動に伴う薬液の吐出時に前記吸引バルブを閉、前記吐出 バルブを開とし、該吐出の終了後において前記吸引バルブを閉、前記吐出バルブを 開とした状態を一時的に継続したまま前記容積可変部材の作動を反転させて薬液の 吸引を開始することが好ましい。  The suction valve is closed and the discharge valve is opened at the time of discharge of the chemical liquid accompanying the operation of the variable volume member, and the state where the suction valve is closed and the discharge valve is opened after the discharge is completed is temporarily continued. It is preferable that the suction of the chemical solution is started by reversing the operation of the variable volume member.
[0038] この構成によれば、薬液供給ポンプにおいて薬液の吐出時には、吸引バルブが閉 、吐出バルブが開とされ、容積可変部材の作動に伴いポンプ室から薬液が吐出され る。そして、薬液の吐出終了後において吸引バルブが閉、吐出バルブが開とされた 状態が一時的に継続され、その状態のまま容積可変部材の作動が反転されて薬液 の吸引が開始される。このとき、吸引バルブが閉、吐出バルブが開とされた状態での 薬液の吸引動作によりサックバックが行われる。これにより、薬液滴下ノズル等におけ る液だれが防止できる。上記構成ではサックバック用の開閉弁が不要となるため、構 成の簡素化が実現できる。  According to this configuration, when the chemical solution is discharged from the chemical solution supply pump, the suction valve is closed and the discharge valve is opened, and the chemical solution is discharged from the pump chamber in accordance with the operation of the variable volume member. Then, after the discharge of the chemical liquid is completed, the state where the suction valve is closed and the discharge valve is opened is temporarily continued, and the operation of the variable volume member is reversed in that state, and the suction of the chemical liquid is started. At this time, suck back is performed by the suction operation of the chemical liquid with the suction valve closed and the discharge valve opened. As a result, dripping of the liquid under the medicine droplet can be prevented. The above configuration eliminates the need for a suck-back on-off valve, thus simplifying the configuration.
[0039] この構成においては、さらに、薬液の吐出終了後において前記吸引バルブを閉、 前記吐出バルブを開とした状態で薬液の吸弓 I動作を実施する時間、又は吸引速度 を可変に制御することが好まし 、。  [0039] In this configuration, the time for performing the liquid arch I operation with the suction valve closed and the discharge valve opened after the completion of the chemical liquid discharge, or the suction speed is variably controlled. I prefer that.
[0040] このようにすれば、薬液のサックバック動作を任意に制御でき、サックバック量を望 みとおりに制御することが可能となる。  [0040] In this way, the sucking back operation of the chemical solution can be arbitrarily controlled, and the sucking back amount can be controlled as desired.
[0041] また、本発明に係る薬液供給ポンプを次のように構成した。すなわち、薬液を充填 するためのポンプ室と、ダイァフラムにより前記ポンプ室力 仕切られてなるダイァフ ラム操作室とを有し、そのダイアフラム操作室の容積変化に応じて前記ダイアフラム を橈み変形させ、その橈み変形に伴う前記ポンプ室の容積変化に基づいて前記薬 液を吸引又は吐出する薬液供給ポンプであって、  [0041] Further, the chemical liquid supply pump according to the present invention was configured as follows. That is, it has a pump chamber for filling a chemical solution and a diaphragm operation chamber that is partitioned by a diaphragm, and the diaphragm is squeezed and deformed according to the volume change of the diaphragm operation chamber. A chemical supply pump that sucks or discharges the chemical based on a change in volume of the pump chamber accompanying stagnation deformation,
前記ダイアフラム操作室と該ダイアフラム操作室に連通された流体室に非圧縮性 流体を充填するとともに、前記流体室の容積を作動量に対してリニアに変化させる可 動体を設け、該可動体を挟んで前記ダイアフラム操作室とは逆側に設けられた圧力 操作室に、該圧力操作室内における気体の圧力を調整するための圧力調整手段を 接続した。 The diaphragm operation chamber and a fluid chamber communicating with the diaphragm operation chamber are filled with an incompressible fluid, and a movable body that linearly changes the volume of the fluid chamber with respect to the operation amount is provided, and the movable body is sandwiched between In the pressure operation chamber provided on the opposite side of the diaphragm operation chamber, pressure adjusting means for adjusting the gas pressure in the pressure operation chamber is provided. Connected.
[0042] この薬液供給ポンプでは、圧力調整手段により圧力操作室内における気体の圧力 が調整され、その圧力調整により可動体が作動する。可動体が作動すると、その作 動量に対してリニアに流体室の容積が変化し、それに対応してダイアフラム操作室の 容積が変化する。そして、ダイアフラム操作室の容積変化に応じてダイァフラムが橈 み変形し、そのダイアフラム変形に伴うポンプ室の容積変化に基づ 、て薬液の吸引 又は吐出が行われる。このとき、ダイアフラム操作室及び流体室には非圧縮性流体 が充填されており、流体室の容積変化とダイアフラム操作室の容積変化とは一致す る(一方の増加分が他方の減少分となる)。また、可動体の作動量に対する流体室の 容積変化がリニア (線形)なものとなっている。したがって、可動体の作動量に基づい て薬液の吸引又は吐出時の流量を高精度に制御することが可能となる。  In this chemical solution supply pump, the pressure of the gas in the pressure operation chamber is adjusted by the pressure adjusting means, and the movable body is operated by the pressure adjustment. When the movable body is activated, the volume of the fluid chamber changes linearly with respect to the amount of operation, and the volume of the diaphragm operation chamber changes accordingly. Then, the diaphragm swells and deforms according to the volume change of the diaphragm operation chamber, and the chemical liquid is sucked or discharged based on the volume change of the pump chamber accompanying the diaphragm deformation. At this time, the diaphragm operation chamber and the fluid chamber are filled with an incompressible fluid, and the volume change of the fluid chamber and the volume change of the diaphragm operation chamber coincide with each other (one increase is the other decrease). ). Moreover, the volume change of the fluid chamber with respect to the operating amount of the movable body is linear. Therefore, it becomes possible to control the flow rate at the time of suction or discharge of the chemical liquid with high accuracy based on the operation amount of the movable body.
[0043] この薬液供給ポンプにおいては、前記ダイァフラムの有効断面積よりも前記可動体 の有効断面積を小さくすることが好ましい。  [0043] In this chemical solution supply pump, it is preferable to make the effective sectional area of the movable body smaller than the effective sectional area of the diaphragm.
[0044] ダイァフラムの有効断面積よりも可動体の有効断面積を小さくすれば、ダイアフラム を橈み変形させる際、ダイァフラムの変形量に比して可動体の作動量は大きくなる。 故に、ダイァフラムの橈み変形量を細力べ制御することができる。  If the effective cross-sectional area of the movable body is made smaller than the effective cross-sectional area of the diaphragm, when the diaphragm is squeezed and deformed, the operation amount of the movable body becomes larger than the deformation amount of the diaphragm. Therefore, it is possible to control the amount of deformation of the diaphragm squeezingly.
[0045] 前記可動体は、前記流体室に対向する側の面積が比較的小さぐ前記圧力操作 室に対向する側の面積が比較的大き 、形状を有するプランジャであることが好ま ヽ  [0045] Preferably, the movable body is a plunger having a shape with a relatively small area on the side facing the pressure operation chamber and a relatively small area on the side facing the fluid chamber.
[0046] この構成によれば、プランジャにお 、て圧力操作室側の受圧面積が比較的大き!/ヽ ことから、該プランジャを気体圧力で移動させる場合に十分な力を付与することがで きる。これにより、プランジャの応答性が向上し、ひいてはダイァフラムの変形速度 (薬 液の吐出量等)を任意に制御することができるようになる。 [0046] According to this configuration, since the pressure receiving area on the pressure operation chamber side is relatively large! / に お, a sufficient force can be applied when the plunger is moved by the gas pressure. wear. As a result, the response of the plunger is improved, and as a result, the deformation speed of the diaphragm (chemical solution discharge amount, etc.) can be arbitrarily controlled.
[0047] また、本発明に係る他の薬液供給システムを次のように構成した。すなわち、 [0047] Further, another chemical solution supply system according to the present invention was configured as follows. That is,
上記本発明に係る!、ずれかの薬液供給ポンプと、  According to the present invention! , Any chemical supply pump,
前記可動体の作動量を検出する作動量検出手段と、  An operation amount detecting means for detecting an operation amount of the movable body;
前記薬液供給ポンプによる薬液の吸引又は吐出時にぉ 、て前記可動体の目標作 動量を設定するとともに、該目標作動量と前記作動量検出手段による検出結果から 求めた実際の作動量との偏差に基づいて前記圧力調整手段を制御する制御手段と を備えた。 The target operation amount of the movable body is set during the suction or discharge of the chemical solution by the chemical solution supply pump, and the target operation amount and the detection result by the operation amount detection means are used. Control means for controlling the pressure adjusting means on the basis of a deviation from the obtained actual operation amount.
[0048] この薬液供給システムによれば、薬液供給ポンプによる薬液の吸引又は吐出時に おいて、可動体 (気体圧力により作動量が制御されるプランジャ等)の目標作動量が 設定され、該目標作動量と前記作動量検出手段による検出結果から求めた実際の 作動量との偏差に基づいて圧力調整手段が制御される。かかる場合、可動体の作動 量とポンプ室の容積変化とは相関を有するため、上記のように可動体の作動量をフィ ードバック制御することで、実質的にはポンプ室の容積変化が望みとおりに制御でき るようになる。これにより、薬液の吸引流量又は吐出流量を所望とする流量に高精度 に制御することが可能となる。また、薬液供給ポンプは、圧力調整手段により調整さ れる気体圧力(例えば空気圧力)を駆動源として薬液の吸引又は吐出を行うため、電 動モータによる流量制御を行う電動式システムとは異なり、熱による弊害が生じるお それがなぐ温度管理を要する薬液であっても好適に使用できる。  [0048] According to this chemical solution supply system, when the chemical solution is sucked or discharged by the chemical solution supply pump, the target operation amount of the movable body (such as a plunger whose operation amount is controlled by the gas pressure) is set, and the target operation amount is set. The pressure adjusting means is controlled based on the deviation between the amount and the actual operating amount obtained from the detection result by the operating amount detecting means. In such a case, since the operation amount of the movable body and the volume change of the pump chamber have a correlation, the volume change of the pump chamber is substantially as desired by performing feedback control of the operation amount of the movable body as described above. It will be possible to control. As a result, the suction flow rate or the discharge flow rate of the chemical liquid can be controlled to a desired flow rate with high accuracy. In addition, since the chemical supply pump performs suction or discharge of the chemical using the gas pressure (for example, air pressure) adjusted by the pressure adjusting means as a drive source, unlike the electric system that controls the flow rate by the electric motor, Even chemicals requiring temperature control that can cause adverse effects due to the above can be suitably used.
[0049] 例えば、吐出流量のフィードバック制御手法としては、薬液の吐出通路に流量セン サゃ可変絞り等を設ける構成も考えられるが、かかる構成では、センサや絞り等の設 置部位における液溜まりに起因して薬液の劣化等が生じたり、薬液によるセンサ等の 腐食を防ぐために特殊加工が強いられたりするといつた不都合が生じる。この点、本 手段の構成によれば上記不都合のおそれはなぐ簡易なシステム構成が実現でき、 ひいてはシステムの小型化や低コストィ匕を図ることができる。  [0049] For example, as a method for feedback control of the discharge flow rate, a configuration in which a flow rate sensor or a variable throttle is provided in the chemical solution discharge passage is conceivable. In such a configuration, however, a liquid pool at a site where a sensor or a throttle is installed is considered. This can cause inconveniences when the chemical solution deteriorates or when special processing is forced to prevent corrosion of the sensor due to the chemical solution. In this respect, according to the configuration of the present means, a simple system configuration without the above-described inconvenience can be realized, and as a result, the system can be reduced in size and cost can be reduced.
[0050] 上記薬液供給システムの好適な例として、前記作動量検出手段による検出結果に 基づいて薬液の吐出流量を算出する手段を更に備えたものが挙げられる。  [0050] As a preferable example of the chemical solution supply system, a device further including means for calculating the discharge flow rate of the chemical solution based on the detection result by the operation amount detection means can be mentioned.
[0051] 上記のとおり可動体の作動量とポンプ室の容積変化とは相関を有するため、作動 量検出手段による検出結果に基づいて薬液の吐出流量の算出が可能となる。仮に、 例えば薬液の流通通路(吐出通路等)に設けた流量センサにより吐出流量を計測す る構成では、温度変化等による薬液の特性変化 (比重や粘性等の変化)を考慮する 必要が生じるが、上記手段によれば、薬液の特性変化に影響されることなぐポンプ 室の容積変化に対応して吐出流量の算出が可能となる。 [0052] 前記制御手段は、前記目標作動量として可動体の移動速度の目標値を設定すると ともに、該目標値と、前記作動量検出手段による検出結果を基に求めた実際の可動 体の移動速度との偏差に基づ 、て前記圧力調整手段を制御することが好まし 、。 [0051] Since the operating amount of the movable body and the volume change of the pump chamber have a correlation as described above, it is possible to calculate the discharge flow rate of the chemical liquid based on the detection result by the operating amount detecting means. For example, in a configuration in which the discharge flow rate is measured by a flow sensor provided in the chemical flow passage (discharge passage, etc.), it is necessary to take into account changes in the chemical characteristics (changes in specific gravity, viscosity, etc.) due to temperature changes. According to the above means, the discharge flow rate can be calculated in response to the volume change of the pump chamber without being affected by the change in the characteristics of the chemical solution. [0052] The control means sets a target value of the moving speed of the movable body as the target operation amount, and moves the actual movable body obtained based on the target value and the detection result by the operation amount detection means. Preferably, the pressure adjusting means is controlled based on a deviation from the speed.
[0053] この構成では、可動体の移動速度が望みとおりに制御できるため、薬液の吐出動 作が繰り返し行われる場合にも、毎回適切な薬液吐出動作が実現できる。 In this configuration, since the moving speed of the movable body can be controlled as desired, an appropriate chemical liquid discharge operation can be realized every time even when the chemical liquid discharge operation is repeated.
[0054] この構成では、さらに前記可動体の作動量とポンプ吐出量との関係を規定しておきIn this configuration, the relationship between the operation amount of the movable body and the pump discharge amount is further defined.
、前記制御手段は、前記関係を用い都度の流量指令値に基づいて前記移動速度の 目標値を設定することが好ま 、。 Preferably, the control means sets the target value of the moving speed based on the flow rate command value each time using the relationship.
[0055] 可動体の作動量とポンプ吐出量との関係を規定しておき、該関係を用い、都度の 流量指令値に基づいて可動体の移動速度の目標値を設定すれば、前記移動速度 の目標値を容易に設定することができる。 [0055] If the relationship between the operating amount of the movable body and the pump discharge amount is defined and the target value of the moving speed of the movable body is set based on the flow rate command value each time using the relationship, the moving speed Can be easily set.
[0056] また、前記薬液供給ポンプを複数備え、これら各ポンプを交互に吸引動作及び吐 出動作させでもよい。 [0056] Further, a plurality of the chemical solution supply pumps may be provided, and these pumps may be alternately operated for suction and discharge.
[0057] 上記構成の薬液供給ポンプでは、同一のポンプ室により薬液の吸引及び吐出が交 互に繰り返されるため、単一の薬液供給ポンプを用いた構成では、薬液の吐出が間 欠的に行われることになる。この点、複数の薬液供給ポンプを交互に吸引動作及び 吐出動作させるれば、薬液の吐出を途切れさせることなく連続的に実施することが可 能となる。  [0057] In the chemical liquid supply pump configured as described above, since the suction and discharge of the chemical liquid are alternately repeated in the same pump chamber, the discharge of the chemical liquid is performed intermittently in the configuration using the single chemical liquid supply pump. It will be. In this regard, if a plurality of chemical liquid supply pumps are alternately operated for suction and discharge, the chemical liquid can be continuously discharged without being interrupted.
[0058] 特に、既述したとおり可動体の移動速度をフィードバック制御する構成では、各ボン プでの薬液吐出に要する時間を毎回一定とすることができるため、薬液供給の安定 ィ匕を図ることができる。  [0058] In particular, in the configuration in which the moving speed of the movable body is feedback-controlled as described above, the time required for the chemical liquid discharge from each pump can be made constant every time, so that the chemical liquid supply can be stabilized. Can do.
図面の簡単な説明  Brief Description of Drawings
[0059] [図 1]発明の実施の形態における薬液供給システムの概略を示す構成図である。  FIG. 1 is a configuration diagram showing an outline of a chemical solution supply system in an embodiment of the invention.
[図 2]コントローラにおける吐出流量制御の概要を示す図である。  FIG. 2 is a diagram showing an outline of discharge flow rate control in a controller.
[図 3]ポンプ吐出特性を示す図である。  FIG. 3 is a graph showing pump discharge characteristics.
[図 4]2つの薬液供給ポンプを有するシステムの概略構成を示す図である。  FIG. 4 is a diagram showing a schematic configuration of a system having two chemical liquid supply pumps.
[図 5]薬液吐出動作を説明するためのタイムチャートである。  FIG. 5 is a time chart for explaining a chemical solution discharge operation.
[図 6]第 2の実施の形態における薬液供給システムの概略を示す構成図である。 [図 7]ダイァフラム変形量と薬液の吐出量との関係を示す図である。 FIG. 6 is a configuration diagram showing an outline of a chemical liquid supply system according to a second embodiment. FIG. 7 is a diagram showing the relationship between diaphragm deformation and chemical discharge.
[図 8] (a)は、ダイアフラム変形量 Xから吐出量 qへの変換式を示す図であり、 (b) はダイアフラム変形速度 XZtから吐出流量 Qへの変換式を示す図である。  [FIG. 8] (a) is a diagram showing a conversion formula from diaphragm deformation amount X to discharge amount q, and (b) is a diagram showing a conversion formula from diaphragm deformation speed XZt to discharge flow rate Q.
[図 9]移動速度算出に関するコントローラによる処理を示すフローチャートである。  FIG. 9 is a flowchart showing processing by the controller relating to movement speed calculation.
[図 10]実際の吐出流量算出に関するコントローラによる処理を示すフローチャートで ある。  FIG. 10 is a flowchart showing processing by the controller regarding actual discharge flow rate calculation.
[図 11]吐出量計測手順を説明するためのタイムチャートである。  FIG. 11 is a time chart for explaining a discharge amount measuring procedure.
[図 12]第 3の実施の形態における薬液供給システムの概略を示す構成図である。  FIG. 12 is a configuration diagram showing an outline of a chemical liquid supply system in a third embodiment.
[図 13]サックバック動作を説明するためのタイムチャートである。  FIG. 13 is a time chart for explaining a suck back operation.
符号の説明  Explanation of symbols
[0060] 10···薬液供給ポンプ、 12···ベローズ式仕切部材、 13···ポンプ室、 14…圧力作用 室、 15···ベ Pーズ、 16"'ft¾l 、 23···吸弓 Iノ ノレブ、 25···吐出ノ ノレブ、 28··· ¾レ ギユレータ、 35···圧縮コイルパネ、 36···位置検出器、 40· "コントローラ、 50· "薬液 供給ポンプ、 53···ダイァフラム、 55···ポンプ室、 56···圧力作用室、 63···吸引バル ブ、 65···吐出ノ レブ、 69···電空レギユレータ、 73···ロッド、 75···圧縮コイルパネ、 7 6…位置検出器、 80· "コントローラ、 100···薬液供給ポンプ、 103…ダイァフラム、 1 05···ポンプ 、 106"'ダィァフラム 、 113···吸弓 Iノ ノレブ、 115···5£出ノ ノレブ 、 119···プランジャ、 122···空圧操作室、 123···流体室、 127···電空レギユレータ、 1 35···位置検出器、 140···コントローラ。  [0060] 10 ··· chemical feed pump, 12 ··· Bellows type partition member, 13 ··· Pump chamber, 14 ··· Pressure action chamber, 15 ······ Pease, 16 "'ft¾l, ··· · Bucking I Noreb, 25 ··· Discharge Noreb, 28 ··· 3 Regulator, 35 ··· Compression coil panel, 36 ··· Position detector, 40 · “Controller, 50 ·” Chemical feed pump, 53 ... Diaphragm, 55 ... Pump chamber, 56 ... Pressure chamber, 63 ... Suction valve, 65 ... Discharge nozzle, 69 ... Electropneumatic regulator, 73 ... Rod 75 ... Compression coil panel, 7 6 ... Position detector, 80 "Controller, 100 ... Chemical liquid supply pump, 103 ... Diaphragm, 1 05 ... Pump, 106" Diaphragm, 113 ... Bucking I Noreb, 115 ··· 5 £ Output Noreb, 119 ··· Plunger, 122 ··· Pneumatic operation chamber, 123 ··· Fluid chamber, 127 ··· Pneumatic regulator, 1 35 ··· Position Detector, 140 ... The controller.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0061] (第 1の実施の形態)  [0061] (First embodiment)
以下、本発明を具体ィ匕した第 1の実施の形態を図面に従って説明する。本実施の 形態は、半導体装置等の製造ラインにて使用される薬液供給システムについて具体 化しており、該システムの基本的構成を図 1に基づ!/、て説明する。  Hereinafter, a first embodiment embodying the present invention will be described with reference to the drawings. In the present embodiment, a chemical solution supply system used in a production line for semiconductor devices or the like is embodied, and the basic configuration of the system will be described with reference to FIG.
[0062] 図 1の薬液供給システムでは、薬液の吸引及び吐出を行うための薬液供給ポンプ 1 0を備えている。薬液供給ポンプ 10において、ポンプノヽウジング 11内には容積可変 部材としてのベローズ式仕切部材 12が収容されており、このべローズ式仕切部材 12 によってポンプ室 13と圧力作用室 14とが区画形成されている。ベローズ式仕切部材 12は、軸方向に伸縮自在のべローズ 15と、該べローズ 15の一端部(図の下端部)に 取り付けられた仕切板 16とを有しており、ベローズ 15の他端部(図の上端部)が環状 の固定板 17に固定されている。ベローズ 15の伸縮により仕切板 16が移動し、ポンプ 室 13と圧力作用室 14との容積が各々変化する。この場合、ポンプ室 13と圧力作用 室 14との合計容積は、ベローズ 15の伸縮に関係なく不変であるため、例えばポンプ 室 13の容積増加量は圧力作用室 14の容積減少量に相当する (もちろん増減が逆の 場合も同様である)。 The chemical solution supply system of FIG. 1 includes a chemical solution supply pump 10 for performing suction and discharge of the chemical solution. In the chemical supply pump 10, a bellows type partition member 12 as a variable volume member is accommodated in the pump housing 11, and the pump chamber 13 and the pressure action chamber 14 are partitioned by the bellows type partition member 12. ing. Bellows type partition 12 has an axially expandable bellows 15 and a partition plate 16 attached to one end of the bellows 15 (the lower end in the figure). The upper end is fixed to an annular fixing plate 17. The partition plate 16 moves due to the expansion and contraction of the bellows 15, and the volumes of the pump chamber 13 and the pressure acting chamber 14 change. In this case, since the total volume of the pump chamber 13 and the pressure chamber 14 is unchanged regardless of the expansion and contraction of the bellows 15, for example, the volume increase of the pump chamber 13 corresponds to the volume decrease of the pressure chamber 14 ( Of course, the same applies if the increase or decrease is reversed).
[0063] ポンプハウジング 11には、ポンプ室 13に連通する吸引ポート 18と吐出ポート 19と が形成されており、吸引ポート 18に吸引配管 21が接続され、吐出ポート 19に吐出配 管 22が接続されている。吸引配管 21には吸引側開閉弁である吸引バルブ 23が設 けられており、吸引バルブ 23は電磁弁 24の通電状態に応じて開閉される。また、吐 出配管 22には吐出側開閉弁である吐出バルブ 25が設けられており、吐出ノ レブ 25 は電磁弁 26の通電状態に応じて開閉される。吸引バルブ 23及び吐出バルブ 25は、 例えば、空気圧力により開閉操作されるエアオペレートバルブで構成されている。電 磁弁 24, 26の通電状態に応じて各バルブ 23, 25に作用する空気圧力が調節され、 それに伴い各バルブ 23, 25が開閉される。  [0063] A suction port 18 and a discharge port 19 communicating with the pump chamber 13 are formed in the pump housing 11, a suction pipe 21 is connected to the suction port 18, and a discharge pipe 22 is connected to the discharge port 19. Has been. The suction pipe 21 is provided with a suction valve 23 that is a suction side opening / closing valve, and the suction valve 23 is opened and closed according to the energization state of the solenoid valve 24. Further, the discharge pipe 22 is provided with a discharge valve 25 which is a discharge side opening / closing valve, and the discharge valve 25 is opened / closed according to the energization state of the solenoid valve 26. The suction valve 23 and the discharge valve 25 are constituted by, for example, air operated valves that are opened and closed by air pressure. The air pressure acting on the valves 23 and 25 is adjusted according to the energization state of the electromagnetic valves 24 and 26, and the valves 23 and 25 are opened and closed accordingly.
[0064] 吸引配管 21は、ポンプ室 13に向けてレジスト液等の薬液を供給するための薬液供 給通路を構成するものであり、吸引配管 21を通じて、図示しない薬液ボトル (薬液貯 留容器)内に貯留された薬液、或いは工場の薬液配管より供給される薬液がポンプ 室 13に供給される。これにより、ポンプ室 13内に薬液が充填される。また、吐出配管 22は、ポンプ室 13内に充填された薬液を排出するための薬液排出通路を構成する ものであり、吐出配管 22を通じて、ポンプ室 13から排出される薬液が薬液吐出ノズ ル(図示略)に供給される。薬液吐出ノズルは、下方に指向されるとともに、回転板等 の上に載置された半導体ウェハの中心位置に薬液が滴下されるように配置されてい る。薬液吐出ノズルから半導体ウェハ上に適量の薬液が滴下されることで、ウェハ表 面への薬液の塗布作業が行われる。  [0064] The suction pipe 21 constitutes a chemical liquid supply passage for supplying a chemical liquid such as a resist liquid toward the pump chamber 13, and through the suction pipe 21, a chemical liquid bottle (chemical liquid storage container) (not shown) is provided. The chemical solution stored in the inside or the chemical solution supplied from the chemical solution piping of the factory is supplied to the pump chamber 13. Thereby, the chemical solution is filled in the pump chamber 13. The discharge pipe 22 constitutes a chemical liquid discharge passage for discharging the chemical liquid filled in the pump chamber 13, and the chemical liquid discharged from the pump chamber 13 through the discharge pipe 22 is discharged from the chemical liquid discharge nozzle ( (Not shown). The chemical solution discharge nozzle is directed downward, and is arranged such that the chemical solution is dropped at the center position of the semiconductor wafer placed on a rotating plate or the like. When an appropriate amount of chemical solution is dropped from the chemical solution discharge nozzle onto the semiconductor wafer, the chemical solution is applied to the wafer surface.
[0065] 同じくポンプノ、ウジング 11には、圧力作用室 14に連通する給排ポート 27が形成さ れており、給排ポート 27には電空レギユレータ 28が接続されている。電空レギユレ一 タ 28は、圧力作用室 14内の空気圧力を調整するための空気圧力調整手段を構成 するものであり、内蔵された電磁式切替弁の切替操作によって、圧力作用室 14に圧 縮空気を供給する圧縮空気供給状態と、同圧力作用室 14内の空気を外部に排出 する大気開放状態とに切り替えられる。 Similarly, the pumping / housing 11 is formed with a supply / exhaust port 27 communicating with the pressure working chamber 14, and an electropneumatic regulator 28 is connected to the supply / exhaust port 27. Electric air reguille 28 constitutes an air pressure adjusting means for adjusting the air pressure in the pressure working chamber 14, and supplies compressed air to the pressure working chamber 14 by switching operation of the built-in electromagnetic switching valve. The compressed air supply state is switched to the air release state where the air in the same pressure working chamber 14 is discharged to the outside.
[0066] ポンプハウジング 11にはケース体 31が組み付けられており、ポンプハウジング 11 に形成された貫通孔 32には細長円柱状のロッド 33が摺動可能に挿通され、ロッド 33 はケース体 31側に突出している。すなわち、ロッド 33は、一端が圧力作用室 14内に 突出し、他端がケース体 31で囲まれた内部空間に突出している。ロッド 33の圧力作 用室 14側の端部にはべローズ式仕切部材 12の仕切板 16が結合されており、仕切 板 16の移動(すなわちべローズ 15の伸縮動作)に伴いロッド 33が図の上下方向に 往復動する。 [0066] A case body 31 is assembled to the pump housing 11, and an elongated cylindrical rod 33 is slidably inserted into a through-hole 32 formed in the pump housing 11, and the rod 33 is connected to the case body 31 side. Protruding. That is, the rod 33 has one end protruding into the pressure acting chamber 14 and the other end protruding into the internal space surrounded by the case body 31. The partition plate 16 of the bellows-type partition member 12 is coupled to the end of the pressure working chamber 14 side of the rod 33, and the rod 33 moves as the partition plate 16 moves (ie, the bellows 15 expands and contracts). Reciprocates up and down.
[0067] また、ロッド 33のケース体 31側の端部にはパネ受け板 34が連結されており、パネ 受け板 34とポンプハウジング 11の外壁面との間には圧縮コイルパネ 35が介在され ている。ロッド 33は、圧縮コイルパネ 35の付勢力により常に図の上方へ付勢されてい る。圧縮コイルパネ 35は、圧力作用室 14内の空気圧力とは相反する向きにベローズ 式仕切部材 12を付勢するための付勢手段に相当する。  In addition, a panel receiving plate 34 is connected to the end of the rod 33 on the case body 31 side, and a compression coil panel 35 is interposed between the panel receiving plate 34 and the outer wall surface of the pump housing 11. Yes. The rod 33 is always urged upward in the figure by the urging force of the compression coil panel 35. The compression coil panel 35 corresponds to an urging means for urging the bellows-type partition member 12 in a direction opposite to the air pressure in the pressure acting chamber 14.
[0068] 上記構成により、圧力作用室 14内に圧縮空気が導入されない状態 (大気開放状態 )では、圧縮コイルパネ 35の付勢力によりべローズ式仕切部材 12のべローズ 15が収 縮状態とされ、ポンプ室 13内の容積が増加する。このとき、吸引バルブ 23を開弁、吐 出バルブ 25を閉弁させることにより、吸引配管 21を通じてポンプ室 13内に薬液が吸 入される。また、圧縮空気供給状態では、図示しない空圧源から供給される圧縮空 気が電空レギユレータ 28と給排ポート 27とを通じて圧力作用室 14内に導入され、圧 力作用室 14内の空気圧力と圧縮コイルパネ 35の付勢力とのバランスに応じてベロ ーズ 15が伸長されてポンプ室 13内の容積が減少する。このとき、吸引バルブ 23を閉 弁、吐出バルブ 25を開弁させることにより、ポンプ室 13内に充填されている薬液が吐 出配管 22を通じて排出される。  [0068] With the above configuration, in a state where compressed air is not introduced into the pressure working chamber 14 (atmospheric release state), the bellows 15 of the bellows type partition member 12 is brought into a contracted state by the urging force of the compression coil panel 35, The volume in the pump chamber 13 increases. At this time, the chemical solution is sucked into the pump chamber 13 through the suction pipe 21 by opening the suction valve 23 and closing the discharge valve 25. In the compressed air supply state, compressed air supplied from an air pressure source (not shown) is introduced into the pressure working chamber 14 through the electropneumatic regulator 28 and the supply / discharge port 27, and the air pressure in the pressure working chamber 14 is increased. The bellows 15 is expanded in accordance with the balance between the urging force of the compression coil panel 35 and the volume in the pump chamber 13 is reduced. At this time, the chemical solution filled in the pump chamber 13 is discharged through the discharge pipe 22 by closing the suction valve 23 and opening the discharge valve 25.
[0069] ケース体 31内には、ロッド 33の移動量(すなわちべローズ 15の伸縮量)を検出する ための位置検出器 36が設けられている。なお図 1において、符号 37はロッド 33を往 復動可能に保持するためのリニアベアリングであり、符号 38は圧力作用室 14力もの 空気漏れを防止するための軸シールである。 [0069] In the case body 31, a position detector 36 for detecting the amount of movement of the rod 33 (that is, the amount of expansion and contraction of the bellows 15) is provided. In FIG. 1, reference numeral 37 denotes the rod 33. This is a linear bearing for holding it so that it can be moved back. Reference numeral 38 is a shaft seal for preventing air leakage of 14 pressure acting chambers.
[0070] コントローラ 40は、 CPUや各種メモリ等よりなるマイクロコンピュータを主体とし  [0070] The controller 40 is mainly a microcomputer including a CPU and various memories.
て構成される電子制御装置であり、薬液供給ポンプ 10による薬液の吸引及び吐出の 状態を制御する。コントローラ 40には、本システム全体を統括して管理する管理コン ピュータ(図示略)から吸引 Z吐出信号、吸引速度指令及び吐出流量指令が入力さ れるとともに、位置検出器 36から位置検出信号が入力される。そして、コントローラ 40 は、都度入力される信号に基づいて電磁弁 24, 26を通電又は非通電の状態として、 吸引バルブ 23と吐出バルブ 25との開閉状態を制御する。その一方、電空レギユレ一 タ 28に対する制御指令値 (操作空気圧力指令値)を算出し、該指令値により電空レ ギユレータ 28の状態を制御する。このとき特に、コントローラ 40は、薬液の吸引時及 び吐出時においてべローズ 15の伸縮に伴う仕切板 16 (ロッド 33)の移動速度が目標 の移動速度となるよう電空レギユレータ 28の状態をフィードバック制御する。加えて、 コントローラ 40は、位置検出器 36の位置検出信号に基づいて吐出流量値を算出し、 該算出値を管理コンピュータ等に出力する。  This is an electronic control device configured to control the suction and discharge states of the chemical liquid by the chemical liquid supply pump 10. The controller 40 receives a suction Z discharge signal, a suction speed command, and a discharge flow rate command from a management computer (not shown) that manages the entire system, and receives a position detection signal from the position detector 36. Is done. Then, the controller 40 controls the open / close state of the suction valve 23 and the discharge valve 25 with the solenoid valves 24 and 26 energized or de-energized based on the input signal each time. On the other hand, a control command value (operating air pressure command value) for the electropneumatic regulator 28 is calculated, and the state of the electropneumatic regulator 28 is controlled by the command value. At this time, in particular, the controller 40 feeds back the state of the electropneumatic regulator 28 so that the moving speed of the partition plate 16 (rod 33) accompanying the expansion and contraction of the bellows 15 becomes the target moving speed at the time of sucking and discharging the chemical liquid. Control. In addition, the controller 40 calculates a discharge flow rate value based on the position detection signal of the position detector 36, and outputs the calculated value to a management computer or the like.
[0071] 次に、コントローラ 40における吐出流量制御の概要を図 2を用いて説明する。  Next, the outline of the discharge flow rate control in the controller 40 will be described with reference to FIG.
[0072] コントローラ 40は、吸引速度指令に基づいて薬液吸引時における仕切板 16の移 動速度を算出するとともに、吐出流量指令に基づいて薬液吐出時における仕切板 1 6の移動速度を算出する。ここで、薬液吐出時における移動速度の算出時には、移 動速度と吐出流量との関係を表すポンプ吐出特性に基づいて同移動速度の算出が 行われる。具体的には、仕切板 16の移動量と薬液供給ポンプ 10の吐出量とは図 3 に示す関係にある。図 3によれば、仕切板 16の移動量に対するポンプ吐出量が線形 となり、この関係を用いて仕切板 16の移動速度が算出される。  [0072] The controller 40 calculates the moving speed of the partition plate 16 during chemical liquid suction based on the suction speed command, and calculates the moving speed of the partition plate 16 during chemical liquid discharge based on the discharge flow rate command. Here, at the time of calculating the moving speed at the time of discharging the chemical liquid, the moving speed is calculated based on the pump discharge characteristic representing the relationship between the moving speed and the discharge flow rate. Specifically, the movement amount of the partition plate 16 and the discharge amount of the chemical solution supply pump 10 have the relationship shown in FIG. According to FIG. 3, the pump discharge amount with respect to the movement amount of the partition plate 16 is linear, and the movement speed of the partition plate 16 is calculated using this relationship.
[0073] ここで、吐出流量を Q、ベローズ有効面積を A、仕切板 16の移動距離を X、仕切板 16の移動時間を tとして、ポンプ吐出特性を数式化すると、同特性は、  [0073] Here, when the discharge flow rate is Q, the bellows effective area is A, the movement distance of the partition plate 16 is X, and the movement time of the partition plate 16 is t,
Q=A*X/t  Q = A * X / t
として表される。上記数式において「XZt」が仕切板 16の移動速度に相当し、該式 によっても移動速度算出が可能となる。 [0074] また、コントローラ 40は、吸引 Z吐出信号に基づいて吸引時の移動速度と吐出時 の移動速度との何れかを選択する。このとき選択される移動速度が、仕切板 16の目 標移動速度に相当する。そして、仕切板 16の目標移動速度と仕切板 16の実際の移 動速度 (実移動速度)との偏差に基づいて操作空気圧力指令値を算出するとともに、 その操作空気圧力指令値に基づいて電空レギユレータ 28の駆動を制御する。 Represented as: In the above formula, “XZt” corresponds to the moving speed of the partition plate 16, and the moving speed can also be calculated by this formula. Further, the controller 40 selects either the moving speed at the time of suction or the moving speed at the time of discharge based on the suction Z discharge signal. The moving speed selected at this time corresponds to the target moving speed of the partition plate 16. Then, the operating air pressure command value is calculated based on the deviation between the target moving speed of the partition plate 16 and the actual moving speed (actual moving speed) of the partition plate 16, and the electric power is calculated based on the operating air pressure command value. Controls the drive of the empty regulator 28.
[0075] 一方、コントローラ 40は、薬液供給ポンプ 10に設けた位置検出器 36の検出結果に 基づいて仕切板 16の実際の移動速度 (実移動速度)を算出する。この実移動速度の 算出値は、電空レギユレータ 28のフィードバック制御に用いられる他、都度の吐出流 量の演算に用いられる。吐出流量演算に関して、コントローラ 40は、前述したポンプ 吐出特性 (例えば図 3の関係)を用いて仕切板 16の実移動速度を吐出流量に変換し 、その結果を吐出流量値として管理コンピュータ等に出力する。  On the other hand, the controller 40 calculates the actual moving speed (actual moving speed) of the partition plate 16 based on the detection result of the position detector 36 provided in the chemical solution supply pump 10. The calculated value of the actual moving speed is used not only for feedback control of the electropneumatic regulator 28 but also for calculation of the discharge flow rate each time. Regarding the discharge flow rate calculation, the controller 40 converts the actual moving speed of the partition plate 16 into a discharge flow rate using the pump discharge characteristics described above (for example, the relationship shown in FIG. 3), and outputs the result to the management computer as a discharge flow rate value. To do.
[0076] 現実の薬液供給システムには薬液供給ポンプ 10が複数設けられており、各ポンプ 10が交互に吐出動作と供給動作とを繰り返し実行することにより、連続的な薬液供 給動作が実現可能となっている。図 4には、 2つの薬液供給ポンプ 10a, 10bを有す るシステムについての概略構成を示す。図 4に示す 2つの薬液供給ポンプ 10a, 10b はいずれも前記図 1で説明した薬液供給ポンプ 10と同様の構成を有するものであり 、各ポンプの構成部材については同様の符号を付すとともにその説明を省略する。 なお、各薬液供給ポンプ 10a, 10bの吸引配管 21は共通の吸引口(薬液ボトル或い は工場の薬液配管)に接続されるとともに、吐出配管 22は共通の吐出口(薬液吐出 ノズル)に接続されている。  [0076] In an actual chemical supply system, a plurality of chemical supply pumps 10 are provided, and each pump 10 can repeatedly perform a discharge operation and a supply operation, whereby a continuous chemical supply operation can be realized. It has become. FIG. 4 shows a schematic configuration of a system having two chemical solution supply pumps 10a and 10b. The two chemical liquid supply pumps 10a and 10b shown in FIG. 4 have the same configuration as the chemical liquid supply pump 10 described in FIG. 1, and the components of each pump are denoted by the same reference numerals and the description thereof. Is omitted. The suction piping 21 of each chemical solution supply pump 10a, 10b is connected to a common suction port (chemical solution bottle or factory chemical solution piping), and the discharge piping 22 is connected to a common discharge port (chemical solution discharge nozzle). Has been.
[0077] 図 4において、左側の薬液供給ポンプ 10aはべローズ 15が収縮状態にあり、かかる 状態では、その後べローズ 15が伸長することによりポンプ室 13内に充填された薬液 の吐出が行われる。また、右側の薬液供給ポンプ 10bはべローズ 15が伸長状態にあ り、かかる状態では、その後べローズ 15が収縮することによりポンプ室 13への薬液吸 引が行われる。  In FIG. 4, the left side chemical liquid supply pump 10a has the bellows 15 in a contracted state, and in this state, the bellows 15 thereafter expands to discharge the chemical liquid filled in the pump chamber 13. . In the right chemical solution supply pump 10b, the bellows 15 is in an extended state, and in this state, the bellows 15 is contracted thereafter, and the chemical solution is sucked into the pump chamber 13.
[0078] コントローラ 40は、 2つの薬液供給ポンプ 10a, 10bを制御対象として、前述したと おり都度入力される信号に基づいて吸引バルブ 23と吐出ノ レブ 25との開閉状態を 制御する。その一方、各電空レギユレータ 28に対する制御指令値 (操作空気圧力指 令値)を算出して該指令値により電空レギユレータ 28の状態を制御する。 The controller 40 controls the open / close states of the suction valve 23 and the discharge valve 25 based on the signals input each time as described above, with the two chemical solution supply pumps 10a and 10b being controlled. On the other hand, the control command value for each electropneumatic regulator 28 (operating air pressure finger (Command value) is calculated and the state of the electropneumatic regulator 28 is controlled by the command value.
[0079] 図 5は、本薬液供給システムにおける薬液吐出動作を説明するためのタイムチヤ一 トである。図 5においては、 2つの薬液供給ポンプ 10a, 10bが交互に吸引動作と吐 出動作とを繰り返すことにより、半導体ウェハに対して連続的な薬液供給が実現され る。なお図 5の説明では便宜上、一方の薬液供給ポンプ 10をポンプ (A)、他方の薬 液供給ポンプ 10をポンプ (B)とするとともに、吸引バルブ及び吐出バルブにも (A) , (B)を付して区別する。 [0079] FIG. 5 is a time chart for explaining the chemical liquid discharge operation in the chemical liquid supply system. In FIG. 5, the continuous supply of chemical liquid to the semiconductor wafer is realized by the two chemical liquid supply pumps 10a, 10b alternately repeating the suction operation and the discharge operation. In the description of FIG. 5, for convenience, one chemical supply pump 10 is referred to as a pump (A), and the other chemical supply pump 10 is referred to as a pump (B), and the suction valve and the discharge valve are also referred to as (A), (B). To distinguish.
[0080] さて、タイミング tl以前は、ポンプ (A)が図 4の薬液供給ポンプ 10aの状態、ポンプ  [0080] Before the timing tl, the pump (A) is in the state of the chemical supply pump 10a in FIG.
(B)が図 4の薬液供給ポンプ 10bの状態にあり、吸引バルブ及び吐出バルブは何れ も閉鎖されている。そして、タイミング tl以降、 START信号の立ち上がりに伴い各ポ ンプでの薬液吸引及び吐出が行われる。  (B) is in the state of the chemical supply pump 10b in FIG. 4, and both the suction valve and the discharge valve are closed. After timing tl, chemical suction and discharge are performed at each pump as the START signal rises.
[0081] すなわち、ポンプ (A)側では、タイミング tlで吐出バルブ (A)が開放された後、電 空レギユレータ 28による空気圧上昇に伴いべローズ 15が伸長し、薬液吐出が行わ れる(タイミング t2〜t6)。また、ポンプ (A)での薬液吐出に並行して、ポンプ (B)側で は、タイミング t3〜t4で吸引バルブ (B)が開放されて薬液の吸引が行われる。そして 、薬液の吸引完了後のタイミング t5で吐出バルブ (B)が開放される。タイミング t6で は、ポンプ(B)側で電空レギユレータ 28による空気圧上昇に伴いべローズ 15が伸長 し、薬液吐出が行われる(タイミング t6〜t7)。以後、ポンプ (A) , (B)で交互に吸引 Z吐出動作が行われ、薬液吐出ノズルの先端部からは連続的に薬液が吐出される。  [0081] That is, on the pump (A) side, after the discharge valve (A) is opened at timing tl, the bellows 15 expands as the air pressure is increased by the electropneumatic regulator 28, and chemical solution is discharged (timing t2 ~ T6). In parallel with the discharge of the chemical solution from the pump (A), on the pump (B) side, the suction valve (B) is opened at timings t3 to t4 to suck the chemical solution. Then, the discharge valve (B) is opened at timing t5 after the completion of the chemical liquid suction. At timing t6, the bellows 15 expands as the air pressure is increased by the electropneumatic regulator 28 on the pump (B) side, and the chemical solution is discharged (timing t6 to t7). Thereafter, the suction (Z) discharge operation is alternately performed by the pumps (A) and (B), and the chemical liquid is continuously discharged from the tip of the chemical liquid discharge nozzle.
[0082] かかる場合、ポンプ (A)による薬液の吐出期間 TAと、ポンプ (B)による薬液の吐出 期間 TBとが連続して設定され、途切れることなく薬液が連続吐出される。また、薬液 の吐出速度が一定に制御されることから、各吐出期間 TA, TBが同一となり、薬液の 安定供給が可能となる。  In such a case, the chemical solution discharge period TA by the pump (A) and the chemical solution discharge period TB by the pump (B) are set continuously, and the chemical solution is continuously discharged without interruption. In addition, since the discharge speed of the chemical liquid is controlled to be constant, the discharge periods TA and TB are the same, and the chemical liquid can be stably supplied.
[0083] 以上詳述した本実施の形態によれば、以下の優れた効果が得られる。  [0083] According to the embodiment described above in detail, the following excellent effects can be obtained.
[0084] 薬液の吸引又は吐出時において、ベローズ式仕切部材 12を構成する仕切板 16の 移動速度をフィードバック制御する構成としたため、ポンプ室 13の容積変化が望みと おりに制御できるようになる。これにより、薬液の吸引流量又は吐出流量を所望とする 流量に高精度に制御することが可能となる。また、薬液供給ポンプ 10は、電空レギュ レータ 28により調整される空気圧力を駆動源として薬液の吸引又は吐出を行う。この ため、電動モータによる流量制御を行う電動式システムとは異なり、熱による弊害が 生じるおそれがなぐ温度管理を要する薬液であっても好適に使用できる。また、電 動式ァクチユエータの構成に比べて、ポンプ駆動系の構成の簡素化を図ることもでき る。 [0084] Since the moving speed of the partition plate 16 constituting the bellows-type partition member 12 is feedback controlled at the time of suction or discharge of the chemical solution, the volume change of the pump chamber 13 can be controlled as desired. As a result, the suction flow rate or the discharge flow rate of the chemical liquid can be controlled to a desired flow rate with high accuracy. The chemical supply pump 10 is also equipped with an electropneumatic regulator. The chemical liquid is sucked or discharged by using the air pressure adjusted by the modulator 28 as a driving source. For this reason, unlike an electric system that controls the flow rate by an electric motor, even a chemical solution that requires temperature management that is unlikely to cause adverse effects due to heat can be suitably used. In addition, the configuration of the pump drive system can be simplified as compared with the configuration of the electric actuator.
[0085] ベローズ式仕切部材 12 (仕切板 16)に連結されたロッド 33の移動量を位置検出器 36により検出し、該検出したロッド 33の移動量 (仕切板 16の移動量、ベローズ 15の 伸縮量も同意)をフィードバックパラメータとした。このため、薬液吐出通路に流量セ ンサゃ可変絞り等を設け、その結果をフィードバックパラメータとする他の構成と比較 して、センサや絞り等の設置部位における液溜まりに起因して薬液の劣化等が生じ たり、薬液によるセンサ等の腐食を防ぐために特殊加工が強 、られたりすると 、つた 不都合が解消される。したがって、簡易なシステム構成が実現でき、ひいてはシステ ムの小型化や低コストィ匕を図ることができる。  [0085] The position detector 36 detects the amount of movement of the rod 33 connected to the bellows-type partition member 12 (partition plate 16), and the detected amount of movement of the rod 33 (the amount of movement of the partition plate 16, the amount of the bellows 15) The amount of expansion and contraction was also agreed) as a feedback parameter. For this reason, the flow rate sensor is provided with a variable throttle in the chemical solution discharge passage, and compared with other configurations using the result as a feedback parameter, the deterioration of the chemical solution due to liquid accumulation at the installation site of the sensor, throttle, etc. If inconvenience occurs or special processing is applied to prevent corrosion of the sensor or the like due to chemicals, the inconvenience is eliminated. Therefore, a simple system configuration can be realized, and as a result, the system can be reduced in size and cost.
[0086] また、位置検出器 36の検出結果に基づいて薬液の吐出流量を算出するようにした ため、薬液の特性変化に影響されることなぐ吐出流量を精度良く算出することがで きる。 [0086] Further, since the discharge flow rate of the chemical solution is calculated based on the detection result of the position detector 36, the discharge flow rate that is not affected by the change in the characteristics of the chemical solution can be calculated with high accuracy.
[0087] 位置検出器 36をポンプ室 13から隔離されたケース体 31内に設けたため、当該位 置検出器 36が薬液に晒されるおそれはない。故に、位置検出器やその付属部品等 について薬液による腐食防止対策を施す必要はなぐ簡易で且つ安価なシステムが 実現できる。  Since the position detector 36 is provided in the case body 31 isolated from the pump chamber 13, there is no possibility that the position detector 36 is exposed to the chemical solution. Therefore, it is possible to realize a simple and inexpensive system that does not require any chemical solution corrosion prevention measures for the position detector and its accessories.
[0088] 薬液供給ポンプ 10を複数設け、これら各ポンプ 10を交互に吸引動作及び吐出動 作させる構成としたため、薬液の吐出を途切れさせることなく連続的に実施することが 可能となる。また、既述したとおりべローズ式仕切部材 12 (仕切板 16)の移動速度を フィードバック制御する構成としたため、各ポンプでの薬液吐出に要する時間を毎回 一定とすることができ、薬液の安定供給が可能となる。  [0088] Since a plurality of chemical liquid supply pumps 10 are provided and each of these pumps 10 is configured to alternately perform a suction operation and a discharge operation, the chemical liquid can be continuously discharged without being interrupted. In addition, as described above, since the moving speed of the bellows type partitioning member 12 (partition plate 16) is feedback-controlled, the time required to discharge the chemical solution by each pump can be made constant each time, and the stable supply of the chemical solution can be achieved. Is possible.
[0089] (第 2の実施の形態)  [0089] (Second Embodiment)
次に、第 2の実施の形態について、上記第 1の実施の形態との相違点を中心に説 明する。本実施の形態では、ダイアフラム式の薬液供給ポンプ 50を用いる構成として おり、図 6には薬液供給ポンプ 50とその周辺の概略構成を示す。 Next, the second embodiment will be described focusing on differences from the first embodiment. In the present embodiment, as a configuration using the diaphragm type chemical liquid supply pump 50, FIG. 6 shows a schematic configuration of the chemical solution supply pump 50 and its surroundings.
[0090] 図 6において、薬液供給ポンプ 50は、上下 2つに分割されるボディ 51, 52を有して おり、これら各ボディ 51, 52には各々対向する面に凹部 51a, 52aが形成されている 。両ボディ 51, 52の間には略円形状の可撓性膜よりなるダイアフラム 53が介在され 、該ダイアフラム 53の周縁部 53aが両ボディ 51, 52にて挟持されている。ダイアフラ ム 53の中心部には中央厚肉部 53bが設けられている。この場合、ボディ 51側の凹部 51aとダイアフラム 53との間に形成される空間がポンプ室 55、ボディ 52側の凹部 52 aとダイアフラム 53との間に形成される空間が圧力作用室 56となっている。  [0090] In FIG. 6, the chemical solution supply pump 50 has bodies 51 and 52 that are divided into upper and lower parts, and in each of the bodies 51 and 52, recesses 51a and 52a are formed on opposing surfaces. ing . A diaphragm 53 made of a substantially circular flexible film is interposed between the bodies 51 and 52, and a peripheral portion 53 a of the diaphragm 53 is sandwiched between the bodies 51 and 52. A central thick part 53b is provided at the center of the diaphragm 53. In this case, the space formed between the recess 51a on the body 51 side and the diaphragm 53 is the pump chamber 55, and the space formed between the recess 52a on the body 52 side and the diaphragm 53 is the pressure action chamber 56. ing.
[0091] ボディ 51には、ポンプ室 55に連通する吸引ポート 58と吐出ポート 59とが形成され ており、吸引ポート 58に吸引配管 61が接続され、吐出ポート 59に吐出配管 62が接 続されて!、る。吸引配管 61には吸引側開閉弁である吸弓 Iバルブ 63が設けられてお り、吸引バルブ 63は電磁弁 64の通電状態に応じて開閉される。また、吐出配管 62 には吐出側開閉弁である吐出バルブ 65が設けられており、吐出バルブ 65は電磁弁 66の通電状態に応じて開閉される。吸引バルブ 63及び吐出バルブ 65は、例えば、 空気圧力により開閉操作されるエアオペレートバルブで構成されて ヽる。電磁弁 64, 66の通電状態に応じて各バルブ 63, 65に作用する空気圧力が調節され、それに伴 い各バルブ 63, 65が開閉される。  [0091] A suction port 58 and a discharge port 59 communicating with the pump chamber 55 are formed in the body 51. A suction pipe 61 is connected to the suction port 58, and a discharge pipe 62 is connected to the discharge port 59. Te! The suction pipe 61 is provided with a suction arch I valve 63 which is a suction side on-off valve. The suction valve 63 is opened and closed according to the energization state of the solenoid valve 64. Further, the discharge pipe 62 is provided with a discharge valve 65 which is a discharge side on-off valve, and the discharge valve 65 is opened and closed according to the energization state of the electromagnetic valve 66. The suction valve 63 and the discharge valve 65 may be constituted by, for example, air operated valves that are opened and closed by air pressure. The air pressure acting on the valves 63 and 65 is adjusted according to the energized state of the solenoid valves 64 and 66, and the valves 63 and 65 are opened and closed accordingly.
[0092] 吸引配管 61は、ポンプ室 55に向けてレジスト液等の薬液を供給するための薬液供 給通路を構成するものであり、吸引配管 61を通じて、図示しない薬液ボトル (薬液貯 留容器)内に貯留された薬液、或いは工場の薬液配管より供給される薬液がポンプ 室 55に供給される。これにより、ポンプ室 55内に薬液が充填される。また、吐出配管 62は、ポンプ室 55内に充填された薬液を排出するための薬液排出通路を構成する ものであり、吐出配管 62を通じて、ポンプ室 55から排出される薬液が薬液吐出ノズ ル(図示略)に供給される。  [0092] The suction pipe 61 constitutes a chemical liquid supply passage for supplying a chemical liquid such as a resist liquid toward the pump chamber 55, and through the suction pipe 61, a chemical liquid bottle (chemical liquid storage container) (not shown) is provided. The chemical solution stored in the inside or the chemical solution supplied from the chemical solution pipe of the factory is supplied to the pump chamber 55. Thereby, the chemical solution is filled in the pump chamber 55. Further, the discharge pipe 62 constitutes a chemical liquid discharge passage for discharging the chemical liquid filled in the pump chamber 55, and the chemical liquid discharged from the pump chamber 55 through the discharge pipe 62 is discharged from the chemical liquid discharge nozzle ( (Not shown).
[0093] 他方のボディ 52には、圧力作用室 56に連通する給排ポート 68が形成されており、 給排ポート 68には電空レギユレータ 69が接続されている。電空レギユレータ 69は、 圧力作用室 56内の空気圧力を調整するための空気圧力調整手段を構成するもので あり、内蔵された電磁式切替弁の切替操作によって、圧力作用室 56に圧縮空気を 供給する圧縮空気供給状態と、同圧力作用室 56内の空気を外部に排出する大気開 放状態とに切り替えられる。 The other body 52 is formed with a supply / discharge port 68 communicating with the pressure acting chamber 56, and an electropneumatic regulator 69 is connected to the supply / discharge port 68. The electropneumatic regulator 69 constitutes an air pressure adjusting means for adjusting the air pressure in the pressure working chamber 56, and compressed air is supplied to the pressure working chamber 56 by switching operation of the built-in electromagnetic switching valve. It can be switched between a compressed air supply state to be supplied and an open air state in which the air in the same pressure working chamber 56 is discharged to the outside.
[0094] ボディ 52にはケース体 71が組み付けられており、ボディ 52に形成された貫通孔 72 には細長円柱状のロッド 73が摺動可能に挿通され、ロッド 73はケース体 71側に突 出している。すなわち、ロッド 73は、一端が圧力作用室 56内に突出し、他端がケース 体 71で囲まれた内部空間に突出している。ロッド 73の圧力作用室 56側の端部には ダイアフラム 53の中央厚肉部 53bが結合されており、ダイアフラム 53の変形に伴い口 ッド 73が図の上下方向に往復動する。  [0094] A case body 71 is assembled to the body 52, and an elongated cylindrical rod 73 is slidably inserted into a through-hole 72 formed in the body 52, and the rod 73 protrudes toward the case body 71 side. I'm out. That is, one end of the rod 73 projects into the pressure acting chamber 56 and the other end projects into the internal space surrounded by the case body 71. The central thick portion 53b of the diaphragm 53 is coupled to the end of the rod 73 on the pressure acting chamber 56 side, and the mouth 73 reciprocates in the vertical direction in the figure as the diaphragm 53 is deformed.
[0095] また、ロッド 73のケース体 71側の端部にはパネ受け板 74が連結されており、パネ 受け板 74とボディ 52の外壁面との間には圧縮コイルパネ 75が介在されている。ロッ ド 73は、圧縮コイルパネ 75の付勢力により常に図の上方へ付勢されている。圧縮コ ィルバネ 75は、圧力作用室 56内の空気圧力とは相反する向きにダイアフラム 53を 付勢するための付勢手段に相当する。  Further, a panel receiving plate 74 is connected to the end portion of the rod 73 on the case body 71 side, and a compression coil panel 75 is interposed between the panel receiving plate 74 and the outer wall surface of the body 52. . The rod 73 is always urged upward in the figure by the urging force of the compression coil panel 75. The compression coil spring 75 corresponds to an urging means for urging the diaphragm 53 in a direction opposite to the air pressure in the pressure acting chamber 56.
[0096] 上記構成により、圧力作用室 56内に圧縮空気が導入されない状態 (大気開放状態 )では、圧縮コイルパネ 75の付勢力によりダイアフラム 53が図の上方に橈み変形し、 ポンプ室 55内の容積が増加する。このとき、吸引バルブ 63を開弁、吐出バルブ 65を 閉弁させることにより、吸引配管 61を通じてポンプ室 55内に薬液が吸入される。また 、圧縮空気供給状態では、図示しない空圧源から供給される圧縮空気が電空レギュ レータ 69と給排ポート 68とを通じて圧力作用室 56内に導入され、圧力作用室 56内 の空気圧力と圧縮コイルパネ 75の付勢力とのバランスに応じてダイアフラム 53が図 の下方に橈み変形し、ポンプ室 55内の容積が減少する。このとき、吸引バルブ 63を 閉弁、吐出ノ レブ 65を開弁させることにより、ポンプ室 55内に充填されている薬液が 吐出配管 62を通じて排出される。  [0096] With the above configuration, in a state where compressed air is not introduced into the pressure action chamber 56 (atmospheric release state), the diaphragm 53 stagnate and deforms upward in the drawing due to the urging force of the compression coil panel 75, and the pump chamber 55 Volume increases. At this time, the chemical solution is sucked into the pump chamber 55 through the suction pipe 61 by opening the suction valve 63 and closing the discharge valve 65. In the compressed air supply state, compressed air supplied from an air pressure source (not shown) is introduced into the pressure action chamber 56 through the electropneumatic regulator 69 and the supply / discharge port 68, and the air pressure in the pressure action chamber 56 is reduced. According to the balance with the urging force of the compression coil panel 75, the diaphragm 53 stagnates and deforms downward in the figure, and the volume in the pump chamber 55 decreases. At this time, by closing the suction valve 63 and opening the discharge valve 65, the chemical solution filled in the pump chamber 55 is discharged through the discharge pipe 62.
[0097] ケース体 71内には、ロッド 73の移動量 (すなわちダイアフラム 53の変形量)を検出 するための位置検出器 76が設けられている。なお図 6において、符号 77はロッド 73 を往復動可能に保持するためのリニアベアリングであり、符号 78は圧力作用室 56か らの空気漏れを防止するための軸シールである。  In the case body 71, a position detector 76 for detecting the amount of movement of the rod 73 (that is, the amount of deformation of the diaphragm 53) is provided. In FIG. 6, reference numeral 77 is a linear bearing for holding the rod 73 so as to be able to reciprocate, and reference numeral 78 is a shaft seal for preventing air leakage from the pressure working chamber 56.
[0098] コントローラ 80は、 CPUや各種メモリ等よりなるマイクロコンピュータを主体として構 成される電子制御装置であり、薬液供給ポンプ 50による薬液の吸引及び吐出の状 態を制御する。コントローラ 80には、本システム全体を統括して管理する管理コンビ ユータ(図示略)から吸引 Z吐出信号、吸引速度指令及び吐出流量指令が入力され るとともに、位置検出器 76から位置検出信号が入力される。そして、コントローラ 80は 、都度入力される信号に基づいて電磁弁 64, 66を通電又は非通電の状態として吸 引バルブ 63と吐出バルブ 65との開閉状態を制御する。その一方、電空レギユレータ 69に対する制御指令値 (操作空気圧力指令値)を算出し、該指令値により電空レギ ユレータ 69の状態を制御する。このとき特に、コントローラ 80は、薬液の吸引時及び 吐出時においてダイアフラム 53の変形速度が目標の速度となるよう電空レギユレータ 69の状態をフィードバック制御する。カロえて、コントローラ 80は、位置検出器 76の位 置検出信号に基づいて吐出流量値を算出し、該算出値を管理コンピュータ等に出 力する。 [0098] The controller 80 is mainly composed of a microcomputer including a CPU and various memories. This is an electronic control device that controls the state of suction and discharge of the chemical liquid by the chemical liquid supply pump 50. The controller 80 receives a suction Z discharge signal, a suction speed command, and a discharge flow rate command from a management computer (not shown) that manages and manages the entire system, and a position detection signal from the position detector 76. Is done. Then, the controller 80 controls the open / close state of the suction valve 63 and the discharge valve 65 by energizing or de-energizing the solenoid valves 64 and 66 based on the signal input each time. On the other hand, a control command value (operating air pressure command value) for the electropneumatic regulator 69 is calculated, and the state of the electropneumatic regulator 69 is controlled by the command value. At this time, in particular, the controller 80 feedback-controls the state of the electropneumatic regulator 69 so that the deformation speed of the diaphragm 53 becomes the target speed at the time of sucking and discharging the chemical liquid. The controller 80 calculates the discharge flow rate value based on the position detection signal of the position detector 76, and outputs the calculated value to a management computer or the like.
[0099] ところで、上記のようなダイアフラム式の薬液供給ポンプ 50では、ベローズ式の薬 液供給ポンプと比して液溜まりが少な ヽと 、つたメリットがある反面、ダイアフラム 53の 変形量に対する薬液吐出量が非線形になり、吐出量制御が困難になるといった問題 が懸念される。図 7は、ダイアフラム変形量と薬液の吐出量との関係を示す図であり、 同図によれば、ダイアフラム特性が理想の線形特性に対して非線形となるのが分か る。  By the way, the diaphragm-type chemical solution supply pump 50 as described above has a merit that the liquid pool is less than that of the bellows-type chemical solution supply pump, but has the merit, but the chemical solution discharge with respect to the deformation amount of the diaphragm 53. There is a concern that the amount becomes nonlinear and it becomes difficult to control the discharge amount. FIG. 7 is a diagram showing the relationship between the amount of deformation of the diaphragm and the discharge amount of the chemical solution. According to the figure, it can be seen that the diaphragm characteristic is nonlinear with respect to the ideal linear characteristic.
[0100] そこで本実施の形態では、ダイアフラム 53の変形範囲内(フルストローク範囲内)に おいて複数に分割した区間毎にダイアフラム変形量とポンプ吐出量との関係を線形 化しておき、該線形ィ匕した関係を用いて電空レギユレータ 69の状態を制御する。例 えば、図 7に示すように、ダイアフラム 53の変形範囲(XO〜X5)を 5等分して 5つの区 間を設定しておき、それら区間毎に線形特性を付加する。そして、薬液供給ポンプ 5 0による薬液の吸引 Z吐出時には、その都度のダイアフラム 53の変形量に応じて各 区間の線形特性を使い分けて電空レギユレータ 69の状態を制御する。なお、上記各 区間の線形特性に関するデータは、計測等により取得され、コントローラ 80内のメモ リにあら力じめ記憶されて 、ると良!、。  [0100] Therefore, in the present embodiment, the relationship between the diaphragm deformation amount and the pump discharge amount is linearized for each section divided into a plurality within the deformation range (full stroke range) of diaphragm 53, and the linear The state of the electropneumatic regulator 69 is controlled by using the connected relationship. For example, as shown in FIG. 7, the deformation range (XO to X5) of the diaphragm 53 is equally divided into five sections, and a linear characteristic is added to each section. When the chemical solution is sucked and discharged by the chemical solution supply pump 50, the state of the electropneumatic regulator 69 is controlled by using the linear characteristics of each section according to the deformation amount of the diaphragm 53 each time. Note that the data on the linear characteristics of each section is acquired by measurement, etc. and stored in memory in the controller 80 in advance.
[0101] ここで、上記各区間における線形ィ匕の手法について説明する。 [0102] ダイアフラム 53の変形範囲を 5等分する場合、各区間の境界点となるダイアフラム 変形量は XO, XI, X2, X3, X4, X5であり、そのうちダイアフラム変形量 X1〜X5に 対応する吐出量 ql, q2, q3, q4, q5を計測する (ダイァフラム変形量 XOの場合の吐 出量は 0であり計測不要)。そして、各区間の境界点におけるダイアフラム変形量と吐 出量とに基づく直線補間により、区間毎に線形化を実施する。このとき、ダイアフラム 変形量 Xから吐出量 qへの変換式は、ダイアフラム変形量に応じて図 8の(a)のように 規定される。また、ダイアフラム変形速度 XZtから吐出流量 Qへの変換式は、ダイァ フラム変形量に応じて図 8の(b)のように規定される。 [0101] Here, a method of linearity in each of the above sections will be described. [0102] When the deformation range of diaphragm 53 is equally divided into five, the diaphragm deformation amount that becomes the boundary point of each section is XO, XI, X2, X3, X4, X5, of which corresponding to diaphragm deformation amount X1 to X5 Measure the discharge amount ql, q2, q3, q4, q5 (the discharge amount is 0 for diaphragm deformation amount XO and measurement is not required). Then, linearization is performed for each section by linear interpolation based on the diaphragm deformation amount and the discharge amount at the boundary point of each section. At this time, the conversion formula from the diaphragm deformation amount X to the discharge amount q is defined as shown in FIG. 8 (a) according to the diaphragm deformation amount. Also, the conversion formula from the diaphragm deformation speed XZt to the discharge flow rate Q is defined as shown in FIG. 8 (b) according to the diaphragm deformation amount.
[0103] 上記のように区間毎に線形ィ匕された特性は、薬液吐出時におけるダイアフラム 53 の変形速度の算出 (変形速度の目標値の算出)や、ダイアフラム変形量の検出値 (位 置検出器 76の検出結果)に基づく実際の吐出流量値の算出に際して用いられる。 すなわち、前記図 2で説明した演算ロジックにおいては、吐出時の移動速度算出に 際して前記区間毎の線形特性が用いられる。また、位置検出結果に基づき算出した 移動速度から吐出流量への変換に際して前記区間毎の線形特性が用いられる。  [0103] The characteristics linearized for each section as described above are the calculation of the deformation speed of the diaphragm 53 (calculation of the target value of the deformation speed) and the detection value of the amount of deformation of the diaphragm (position detection) This is used when calculating the actual discharge flow rate value based on the detection result of the vessel 76). That is, in the arithmetic logic described with reference to FIG. 2, the linear characteristic for each section is used in calculating the movement speed during discharge. Further, the linear characteristic for each section is used when converting the movement speed calculated based on the position detection result into the discharge flow rate.
[0104] 図 9には移動速度算出に関するコントローラ 80による処理フローを示し、図 10には 実際の吐出流量算出に関するコントローラ 80による処理フローを示す。  FIG. 9 shows a processing flow by the controller 80 relating to the movement speed calculation, and FIG. 10 shows a processing flow by the controller 80 relating to the actual discharge flow rate calculation.
[0105] 図 9では、吐出流量指令値 Qcを取り込むとともにダイアフラム変形量 Xを計測する( ステップ Sl l, S12)。その後、ダイアフラム変形量 Xが上記各区間の何れにあるかを 判定し (ステップ S13〜S17)、その判定結果に応じて今回適用する変換式を決定す る(ステップ S18〜S22)。この場合、 Xく XIであれば変換式(1)を、 X1≤X<X2で あれば変換式(2)を、 X2≤X<X3であれば変換式(3)を、 X3≤X<X4であれば変 換式 (4)を、 X≥X4であれば変換式 (5)を適用する。  In FIG. 9, the discharge flow rate command value Qc is taken and the diaphragm deformation amount X is measured (steps Sl 1 and S12). Thereafter, it is determined in which of the above sections the diaphragm deformation amount X is present (steps S13 to S17), and a conversion formula to be applied this time is determined according to the determination result (steps S18 to S22). In this case, if X and XI, then conversion equation (1), if X1≤X <X2, conversion equation (2), if X2≤X <X3, conversion equation (3), X3≤X < If X4, conversion formula (4) is applied, and if X≥X4, conversion formula (5) is applied.
X/t= (XI -XO) /ql * Qc …ひ)  X / t = (XI -XO) / ql * Qc…
X/t= (X2-Xl) / (q2-ql) * Qc "- (2)  X / t = (X2-Xl) / (q2-ql) * Qc "-(2)
X/t= (X3-X2) / (q3-q2) * Qc · '· (3)  X / t = (X3-X2) / (q3-q2) * Qc
X/t= (X4-X3) / (q4-q3) * Qc · '· (4)  X / t = (X4-X3) / (q4-q3) * Qc '' (4)
XZt= (X5— X4) Z (q5— q4) * Qc · '· (5)  XZt = (X5— X4) Z (q5— q4) * Qc · '· (5)
上記のように今回適用する変換式を決定した後、該決定した変換式を用いてダイァ フラム変形速度 xZtを算出するとともに、その xZt値に基づいて吐出量制御を実施 する(ステップ S 23)。 After determining the conversion formula to be applied this time as described above, using the determined conversion formula, The fram deformation speed xZt is calculated, and the discharge amount control is performed based on the xZt value (step S23).
[0106] また、図 10では、ダイアフラム変形量 Xを計測するとともに、ダイアフラム変形速度 X Ztを算出する (ステップ S31, S32)。その後、ダイアフラム変形量 Xが上記各区間の 何れにあるかを判定し (ステップ S33〜S37)、その判定結果に応じて今回適用する 変換式を決定する (ステップ S38〜S42)。この場合、 Xく XIであれば変換式 (6)を 、 X1≤X<X2であれば変換式(7)を、 X2≤X<X3であれば変換式(8)を、 X3≤X <X4であれば変換式(9)を、 X≥X4であれば変換式(10)を適用する。  In FIG. 10, the diaphragm deformation amount X is measured, and the diaphragm deformation speed X Zt is calculated (steps S31 and S32). Thereafter, it is determined in which of the sections the diaphragm deformation amount X is present (steps S33 to S37), and a conversion formula to be applied this time is determined according to the determination result (steps S38 to S42). In this case, if X and XI, then conversion equation (6) is satisfied, if X1≤X <X2, conversion equation (7) is satisfied, if X2≤X <X3, conversion equation (8) is satisfied, and X3≤X < Conversion formula (9) is applied if X4, and conversion formula (10) is applied if X≥X4.
Q = ql/ (X1 -X0) *X/t - -- (6)  Q = ql / (X1 -X0) * X / t--(6)
Q= (q2— ql) Z (X2— XI) *XZt · '· (7)  Q = (q2— ql) Z (X2— XI) * XZt · '· (7)
Q= (q3— q2) Z (X3— X2) *XZt · '· (8)  Q = (q3— q2) Z (X3— X2) * XZt · '· (8)
Q= (q4— q3) Z (X4— X3) *XZt · '· (9)  Q = (q4— q3) Z (X4— X3) * XZt · '· (9)
Q= (q5— q4) Z (X5—X4) *XZt "' (10)  Q = (q5— q4) Z (X5—X4) * XZt "'(10)
上記のように今回適用する変換式を決定した後、該決定した変換式を用いて吐出 流量値 Qを算出する (ステップ S43)。  After determining the conversion formula to be applied this time as described above, the discharge flow rate value Q is calculated using the determined conversion formula (step S43).
[0107] 吐出量 ql〜q5の計測方法は任意であるが、例えば次の(1) , (2)の手法が考えら れる。  [0107] The method for measuring the discharge amounts ql to q5 is arbitrary. For example, the following methods (1) and (2) are conceivable.
[0108] (1)ダイアフラム変形量を XO〜X5の範囲内で変化させ、同変形量を XI, X2, X3 , X4, X5とした時の吐出量をメスシリンダ等の計測器具でそれぞれ計測する。具体 的には、まず吸引バルブ 63を開、吐出バルブ 65を閉とした状態で、ダイアフラム 53 を吸引側に変形させてポンプ室 55内に薬液を吸引する。薬液の吸引完了後、吸引 バルブ 63を閉、吐出ノ レブ 65を開とし、待機する。この状態がダイアフラム変形量 = XOである。その後、ダイアフラム 53を変形量 XIになるまで吐出側にゆっくりと変形さ せ、変形量 XIで変形動作をー且停止させる。この時の吐出量をメスシリンダ等で計 測し、吐出量 qlとして記録する。以後、ダイアフラム変形量を X2, X3, X4, X5とした 場合についても同様に吐出量を計測し、それらを吐出量 q2, q3, q4, q5として記録 する。そして、上記の各データをコントローラ 80に入力し、メモリに記憶させる。  [0108] (1) Change the amount of diaphragm deformation in the range of XO to X5, and measure the amount of discharge when the amount of deformation is XI, X2, X3, X4, X5 with a measuring instrument such as a graduated cylinder. . Specifically, first, with the suction valve 63 opened and the discharge valve 65 closed, the diaphragm 53 is deformed to the suction side to suck the chemical into the pump chamber 55. After suction of the chemical solution is completed, close the suction valve 63 and open the discharge nozzle 65, and wait. This state is diaphragm deformation amount = XO. Thereafter, the diaphragm 53 is slowly deformed to the discharge side until the deformation amount XI is reached, and the deformation operation is stopped at the deformation amount XI. Measure the discharge volume at this time with a measuring cylinder, etc., and record it as the discharge volume ql. Thereafter, when the diaphragm deformation amount is set to X2, X3, X4, and X5, the discharge amount is similarly measured and recorded as discharge amounts q2, q3, q4, and q5. Each of the above data is input to the controller 80 and stored in the memory.
[0109] (2)ダイアフラム変形量をコントローラ 80でフィードバック制御しつつ、該制御時の 薬液の吐出量を順次計測しメモリに記憶する。かかる場合、薬液供給ポンプ 50の吐 出配管 62 (特に吐出バルブ 65よりも下流側)に吐出量計測器が接続され、当該ボン プ 50の吐出動作時における吐出量が吐出量計測器で計測される。そして、吐出量 計測器の計測結果 (計測信号)がコントローラ 80に逐次入力される。吐出量計測器と しては、例えば、いわゆるシリンダ式吐出量計測器が用いられる。シリンダ式吐出量 計測器では、該計測器内部に形成された薬液導入室に導入される薬液量に応じて プランジャのストローク量(プランジャ位置)を可変とし、該プランジャのスロトーク量を 検出することにより吐出量を計測する。 [0109] (2) While the diaphragm deformation amount is feedback controlled by the controller 80, The discharge amount of the chemical solution is sequentially measured and stored in the memory. In such a case, a discharge amount measuring device is connected to the discharge pipe 62 (especially downstream of the discharge valve 65) of the chemical solution supply pump 50, and the discharge amount during the discharge operation of the pump 50 is measured by the discharge amount measuring device. The Then, the measurement result (measurement signal) of the discharge amount measuring instrument is sequentially input to the controller 80. As the discharge amount measuring device, for example, a so-called cylinder type discharge amount measuring device is used. In the cylinder-type discharge amount measuring device, the stroke amount of the plunger (plunger position) is made variable according to the amount of the chemical solution introduced into the chemical solution introduction chamber formed inside the measuring device, and the stroke amount of the plunger is detected. Measure the discharge rate.
[0110] 上記(2)の場合における吐出量計測手順を図 11のタイムチャートを用いてより具体 的に説明する。 [0110] The discharge amount measurement procedure in the case (2) will be described more specifically with reference to the time chart of FIG.
[0111] 図 11において、計測スタート信号の ON出力がコントローラ 80に入力されると、一 連の吐出量計測処理が開始されるが、まずは薬液供給ポンプ 50のポンプ室 55と吐 出量計測器の薬液導入室に薬液が供給され、それら各室が薬液で満たされる。すな わち、吸引→吐出→吸引といった順に動作が行われるよう、吸引バルブ 63や吐出バ ルブ 65の開閉、並びにダイアフラム変形量が図示の如く制御される。なお、計測用 バルブは、吐出量計測器の薬液導入室の出口側に設けられる開閉弁であり、吸引 及び吐出が 1回ずつ行われる期間で開放され、その後閉鎖される。  [0111] In FIG. 11, when the ON output of the measurement start signal is input to the controller 80, a series of discharge amount measurement processing is started. First, the pump chamber 55 and the discharge amount measuring device of the chemical solution supply pump 50 are started. The chemical solution is supplied to the chemical solution introduction chambers, and each chamber is filled with the chemical solution. That is, the opening / closing of the suction valve 63 and the discharge valve 65 and the amount of diaphragm deformation are controlled as shown in the figure so that the operations are performed in the order of suction → discharge → suction. The measuring valve is an on-off valve provided on the outlet side of the chemical solution introduction chamber of the discharge amount measuring device, and is opened during a period in which suction and discharge are performed once, and then closed.
[0112] そして、タイミング tlO以降、ダイアフラム 53が吐出側に一定速度で変形され、それ に伴い XI〜X5の各ダイアフラム変形量 (ダイァフラム位置)に対する吐出流量が逐 次計測される。このとき、まずタイミング ti lでは、ダイアフラム変形量 =X1での吐出 量 qlが計測され、その ql値がコントローラ 80内のメモリに記憶される。その後同様に 、タイミングお, tl3, tl4, 15では、ダイアフラム変形量 =X2, X3, X4, X5での吐 出量 q2, q3, q4, q5が計測され、それらの各値がコントローラ 80内のメモリに記憶さ れる。  [0112] Then, after timing tlO, the diaphragm 53 is deformed to the discharge side at a constant speed, and accordingly, the discharge flow rate with respect to each diaphragm deformation amount (diaphragm position) of XI to X5 is sequentially measured. At this time, first, at the timing til, the discharge amount ql at the diaphragm deformation amount = X1 is measured, and the ql value is stored in the memory in the controller 80. Similarly, at timings tl3, tl4, and 15, the diaphragm deformation amount = discharge amounts q2, q3, q4, and q5 at X2, X3, X4, and X5 are measured, and these values are stored in the controller 80. Stored in memory.
[0113] 上記第 1の実施の形態で説明したように、薬液供給ポンプ 50を複数設け、これら各 ポンプ 50を交互に吸引動作及び吐出動作させる構成としても良い。これにより、薬液 の吐出を途切れさせることなく連続的に実施することが可能となる。また、各ポンプで の薬液吐出に要する時間を毎回一定とし、薬液の安定供給が実現することができる [0114] 以上詳述した第 2の実施の形態では、ダイアフラム 53の変形範囲内において複数 に分割した区間毎にダイアフラム変形量とポンプ吐出量との関係を線形ィ匕し、該線 形ィ匕した関係を用いて吐出量制御を実施するようにした。このため、変形量と吐出量 とが線形とならないダイアフラム式の薬液供給ポンプ 50にあっても薬液の吸引流量 又は吐出流量を高精度に制御することができる。 [0113] As described in the first embodiment, a plurality of chemical solution supply pumps 50 may be provided, and the pumps 50 may alternately perform a suction operation and a discharge operation. As a result, it is possible to continuously carry out the discharge of the chemical liquid without interruption. In addition, the time required to discharge the chemical liquid from each pump is constant each time, and a stable supply of chemical liquid can be realized. [0114] In the second embodiment described in detail above, the relationship between the diaphragm deformation amount and the pump discharge amount is linearized for each of the sections divided into a plurality within the deformation range of the diaphragm 53. The discharge amount control was performed using the relationship described above. For this reason, the suction flow rate or the discharge flow rate of the chemical liquid can be controlled with high accuracy even in the diaphragm type chemical liquid supply pump 50 in which the deformation amount and the discharge amount are not linear.
[0115] 容積可変部材としてダイアフラムを用いた薬液供給ポンプでは、ベローズを用いた 薬液供給ポンプと比して液溜まりが少ないといったメリットがある。故に、液溜まりが少 なぐかつ高精度な薬液流量制御を可能とする薬液供給システムが実現できる。  [0115] The chemical supply pump using a diaphragm as a variable volume member has an advantage that the liquid pool is less than that of the chemical supply pump using a bellows. Therefore, it is possible to realize a chemical supply system that can control the chemical flow rate with high accuracy and a small amount of liquid pool.
[0116] (第 3の実施の形態)  [0116] (Third embodiment)
第 3の実施の形態では、ダイアフラム式の薬液供給ポンプとして別の構成を説明す る。  In the third embodiment, another configuration of the diaphragm type chemical solution supply pump will be described.
[0117] 図 12において、薬液供給ポンプ 100は、左右 2つに分割されるボディ 101, 102を 有しており、これら各ボディ 101 , 102には各々対向する面に凹部 101a, 102aが形 成されている。両ボディ 101, 102の間には略円形状の可撓性膜よりなるダイアフラ ム 103が介在され、該ダイアフラム 103の周縁部 103aが両ボディ 101, 102にて挟 持されている。この場合、ボディ 101側の凹部 101aとダイアフラム 103との間に形成 される空間がポンプ室 105、ボディ 102側の凹部 102aとダイアフラム 103との間に形 成される空間がダイアフラム操作室 106となっている。  [0117] In FIG. 12, the chemical supply pump 100 has two bodies 101 and 102 that are divided into left and right parts, and in each of the bodies 101 and 102, recesses 101a and 102a are formed on opposing surfaces. Has been. A diaphragm 103 made of a substantially circular flexible film is interposed between the bodies 101 and 102, and a peripheral edge 103a of the diaphragm 103 is held between the bodies 101 and 102. In this case, the space formed between the recess 101a on the body 101 side and the diaphragm 103 is the pump chamber 105, and the space formed between the recess 102a on the body 102 side and the diaphragm 103 is the diaphragm operation chamber 106. ing.
[0118] ボディ 101には、ポンプ室 105に連通する吸引ポート 108と吐出ポート 109とが形 成されており、吸引ポート 108に吸引配管 111が接続され、吐出ポート 109に吐出配 管 112が接続されて 、る。吸引配管 111には吸引側開閉弁である吸弓 Iバルブ 113 が設けられており、吸引バルブ 113は電磁弁 114の通電状態に応じて開閉される。 また、吐出配管 112には吐出側開閉弁である吐出バルブ 115が設けられており、吐 出バルブ 115は電磁弁 116の通電状態に応じて開閉される。吸引バルブ 113及び 吐出バルブ 115は、例えば、空気圧力により開閉操作されるエアオペレートバルブで 構成されている。電磁弁 114, 116の通電状態に応じて各バルブ 113, 115に作用 する空気圧力が調節され、それに伴い各バルブ 113, 115が開閉される。 [0119] 吸引配管 111は、ポンプ室 105に向けてレジスト液等の薬液を供給するための薬 液供給通路を構成するものであり、吸引配管 111を通じて、図示しない薬液ボトル( 薬液貯留容器)内に貯留された薬液、或いは工場の薬液配管より供給される薬液が ポンプ室 105に供給される。これにより、ポンプ室 105内に薬液が充填される。また、 吐出配管 112は、ポンプ室 105内に充填された薬液を排出するための薬液排出通 路を構成するものであり、吐出配管 112を通じて、ポンプ室 105から排出される薬液 が薬液吐出ノズル(図示略)に供給される。 [0118] A suction port 108 and a discharge port 109 communicating with the pump chamber 105 are formed in the body 101. A suction pipe 111 is connected to the suction port 108, and a discharge pipe 112 is connected to the discharge port 109. It has been. The suction pipe 111 is provided with a suction arch I valve 113 which is a suction side on-off valve. The suction valve 113 is opened and closed according to the energization state of the solenoid valve 114. Further, the discharge pipe 112 is provided with a discharge valve 115 which is a discharge side opening / closing valve, and the discharge valve 115 is opened / closed according to the energized state of the electromagnetic valve 116. The suction valve 113 and the discharge valve 115 are constituted by, for example, air operated valves that are opened and closed by air pressure. The air pressure acting on the valves 113 and 115 is adjusted according to the energized state of the solenoid valves 114 and 116, and the valves 113 and 115 are opened and closed accordingly. [0119] The suction pipe 111 constitutes a chemical solution supply passage for supplying a chemical solution such as a resist solution toward the pump chamber 105. The suction pipe 111 passes through a suction solution 111 (not shown) in a chemical solution bottle (chemical solution storage container). The chemical solution stored in the tank or the chemical solution supplied from the factory chemical piping is supplied to the pump chamber 105. Thereby, the chemical solution is filled in the pump chamber 105. Further, the discharge pipe 112 constitutes a chemical liquid discharge path for discharging the chemical liquid filled in the pump chamber 105, and the chemical liquid discharged from the pump chamber 105 through the discharge pipe 112 is supplied with a chemical liquid discharge nozzle ( (Not shown).
[0120] 他方のボディ 102には、ダイアフラム操作室 106に連通する連通路 117が形成され 、この連通路 117はシリンダ室 118に連通されている。シリンダ室 118は径の異なる 2 段の円柱状空間を形成するものであり、そのシリンダ室 118内にはプランジャ 119が 摺動可能に収容されている。プランジャ 119は先端部と中間部とに摺動部 119a, 11 9bを有しており、摺動部 119bを挟んで一側(図の下側)には、一部が大気開放され た大気開放室 121が形成され、他側(図の下側)には空圧操作室 122が形成されて いる。各摺動部 119a, 119bの外周部にはシール部材が組み付けられている。また 、プランジャ 119の先端側(摺動部 119aの下側)は流体室 123となっており、この流 体室 123から連通路 117及びダイアフラム操作室 106に至る空間内には非圧縮性 流体 (例えばシリコン油)が充填されている。また、プランジャ 119の図の上端部は貫 通孔 124を通じてボディ 102の上方に突出している。  The other body 102 is formed with a communication path 117 that communicates with the diaphragm operation chamber 106, and the communication path 117 communicates with the cylinder chamber 118. The cylinder chamber 118 forms a two-stage cylindrical space having different diameters, and a plunger 119 is slidably accommodated in the cylinder chamber 118. Plunger 119 has sliding parts 119a and 119b at the tip and intermediate part, and one side (the lower side in the figure) across the sliding part 119b is partly open to the atmosphere. A chamber 121 is formed, and a pneumatic operation chamber 122 is formed on the other side (the lower side in the figure). Seal members are assembled to the outer peripheral portions of the sliding portions 119a and 119b. In addition, the distal end side of the plunger 119 (below the sliding portion 119a) is a fluid chamber 123. In the space from the fluid chamber 123 to the communication path 117 and the diaphragm operation chamber 106, an incompressible fluid ( For example, silicon oil) is filled. Further, the upper end portion of the plunger 119 in the figure protrudes above the body 102 through the through hole 124.
[0121] ボディ 102には、空圧操作室 122に連通する給排ポート 125が形成されており、給 排ポート 125には電空レギユレータ 127が接続されている。電空レギユレータ 127は、 空圧操作室 122内の空気圧力を調整するための空気圧力調整手段を構成するもの であり、内蔵された電磁式切替弁の切替操作によって、空圧操作室 122に圧縮空気 を供給する圧縮空気供給状態と、同空圧操作室 122内の空気を外部に排出する大 気開放状態とに切り替えられる。  [0121] The body 102 is formed with a supply / discharge port 125 communicating with the pneumatic operation chamber 122, and an electropneumatic regulator 127 is connected to the supply / discharge port 125. The electropneumatic regulator 127 constitutes an air pressure adjusting means for adjusting the air pressure in the pneumatic operation chamber 122, and is compressed into the pneumatic operation chamber 122 by switching the built-in electromagnetic switching valve. It can be switched between a compressed air supply state for supplying air and an open air state for discharging the air in the pneumatic operation chamber 122 to the outside.
[0122] ボディ 102にはケース体 131が組み付けられている。ケース体 131内においてプラ ンジャ 119の先端部にはパネ受け板 132が連結されており、パネ受け板 132とボディ 102の外壁面との間には圧縮コイルパネ 133が介在されている。プランジャ 119は、 圧縮コイルパネ 133の付勢力により常に図の上方へ付勢されている。 [0123] 上記構成により、空圧操作室 122内に圧縮空気が導入されない状態 (大気開放状 態)では、圧縮コイルパネ 133の付勢力によりプランジャ 119が図の上方に持ち上げ られた状態で保持される。これにより、非圧縮性流体がダイアフラム操作室 106から 流体室 123に移動してダイアフラム 103が図の右方に橈み変形し、ポンプ室 105内 の容積が増加する。このとき、吸引バルブ 113を開弁、吐出ノ レブ 115を閉弁させる ことにより、吸引配管 111を通じてポンプ室 105内に薬液が吸入される。 [0122] A case body 131 is assembled to the body 102. A panel receiving plate 132 is connected to the tip of the plunger 119 in the case body 131, and a compression coil panel 133 is interposed between the panel receiving plate 132 and the outer wall surface of the body 102. The plunger 119 is always urged upward in the figure by the urging force of the compression coil panel 133. [0123] With the above configuration, in a state where the compressed air is not introduced into the pneumatic operation chamber 122 (atmospheric release state), the plunger 119 is held in a state where it is lifted upward by the urging force of the compression coil panel 133. . As a result, the incompressible fluid moves from the diaphragm operation chamber 106 to the fluid chamber 123, the diaphragm 103 stagnates to the right in the figure, and the volume in the pump chamber 105 increases. At this time, the chemical solution is sucked into the pump chamber 105 through the suction pipe 111 by opening the suction valve 113 and closing the discharge valve 115.
[0124] また、圧縮空気供給状態では、図示しな!、空圧源から供給される圧縮空気が電空 レギユレータ 127と給排ポート 125とを通じて空圧操作室 122内に導入され、空圧操 作室 122内の空気圧力と圧縮コイルパネ 133の付勢力とのバランスに応じてプランジ ャ 119が図の下方に移動する。これにより、非圧縮性流体が流体室 123からダイァフ ラム操作室 106に移動してダイアフラム 103が図の左方に橈み変形し、ポンプ室 105 内の容積が減少する。このとき、吸引バルブ 113を閉弁、吐出ノ レブ 115を開弁させ ることにより、ポンプ室 105内に充填されている薬液が吐出配管 112を通じて排出さ れる。  [0124] In addition, in the compressed air supply state, not shown! Compressed air supplied from the pneumatic source is introduced into the pneumatic operating chamber 122 through the electropneumatic regulator 127 and the supply / discharge port 125, and the pneumatic operation is performed. The plunger 119 moves downward in the figure according to the balance between the air pressure in the chamber 122 and the urging force of the compression coil panel 133. As a result, the incompressible fluid moves from the fluid chamber 123 to the diaphragm operation chamber 106, the diaphragm 103 stagnates to the left in the figure, and the volume in the pump chamber 105 decreases. At this time, the chemical solution filled in the pump chamber 105 is discharged through the discharge pipe 112 by closing the suction valve 113 and opening the discharge valve 115.
[0125] ケース体 131内には、プランジャ 119の移動量を検出するための位置検出器 135 が設けられている。なお図 12において、符号 137はプランジャ 119を往復動可能に 保持するためのリニアベアリングであり、符号 138は空圧操作室 122からの空気漏れ を防止するための軸シールである。  [0125] In the case body 131, a position detector 135 for detecting the movement amount of the plunger 119 is provided. In FIG. 12, reference numeral 137 is a linear bearing for holding the plunger 119 so as to be able to reciprocate, and reference numeral 138 is a shaft seal for preventing air leakage from the pneumatic operation chamber 122.
[0126] コントローラ 140は、 CPUや各種メモリ等よりなるマイクロコンピュータを主体として 構成される電子制御装置であり、薬液供給ポンプ 100による薬液の吸引及び吐出の 状態を制御する。コントローラ 140には、本システム全体を統括して管理する管理コ ンピュータ(図示略)から吸引 Z吐出信号、吸引速度指令及び吐出流量指令が入力 されるとともに、位置検出器 135から位置検出信号が入力される。そして、コントロー ラ 140は、都度入力される信号に基づいて電磁弁 114, 116を通電又は非通電の状 態として、吸引バルブ 113と吐出バルブ 115との開閉状態を制御する。その一方、電 空レギユレータ 127に対する制御指令値 (操作空気圧力指令値)を算出し、該指令 値により電空レギユレータ 127の状態を制御する。このとき特に、コントローラ 140は、 薬液の吸引時及び吐出時にぉ 、てプランジャ 119の移動速度が目標の速度となるよ ぅ電空レギユレータ 127の状態をフィードバック制御する。加えて、コントローラ 140は 、位置検出器 135の位置検出信号に基づいて吐出流量値を算出し、該算出値を管 理コンピュータ等に出力する。 [0126] The controller 140 is an electronic control unit mainly composed of a microcomputer composed of a CPU, various memories, and the like, and controls the state of suction and discharge of the chemical liquid by the chemical liquid supply pump 100. The controller 140 receives a suction Z discharge signal, a suction speed command, and a discharge flow rate command from a management computer (not shown) that manages the entire system, and a position detection signal from the position detector 135. Is done. Then, the controller 140 controls the open / close state of the suction valve 113 and the discharge valve 115 with the electromagnetic valves 114 and 116 being energized or de-energized based on the signal input each time. On the other hand, a control command value (operating air pressure command value) for the electropneumatic regulator 127 is calculated, and the state of the electropneumatic regulator 127 is controlled by the command value. At this time, in particular, the controller 140 determines that the moving speed of the plunger 119 becomes the target speed during the suction and discharge of the chemical liquid. フ ィ ー ド バ ッ ク Feedback control of the state of electropneumatic regulator 127. In addition, the controller 140 calculates a discharge flow rate value based on the position detection signal of the position detector 135 and outputs the calculated value to a management computer or the like.
[0127] コントローラ 140による演算処理の内容は、概ね前記図 2の制御ロジックに準ずるも のとなつており、ここでは簡単に説明する。  [0127] The contents of the arithmetic processing by the controller 140 generally conform to the control logic shown in Fig. 2 and will be briefly described here.
[0128] コントローラ 140は、吸引速度指令に基づいて薬液吸引時におけるプランジャ 119 の移動速度を算出するとともに、吐出流量指令に基づいて薬液吐出時におけるブラ ンジャ 119の移動速度を算出する。ここで、薬液吐出時における移動速度の算出時 には、移動速度と吐出流量との関係を表すポンプ吐出特性に基づいて同移動速度 の算出が行われる。つまり、プランジャ 119の移動量とポンプ吐出流量とは相関を有 しており、あらかじめ規定された線形特性を用いて吐出流量指令値力もプランジャ 11 9の移動速度が算出される。そして、プランジャ 119の目標移動速度と実際の移動速 度 (実移動速度)との偏差に基づいて操作空気圧力指令値を算出するとともに、その 操作空気圧力指令値に基づいて電空レギユレータ 127の駆動を制御する。  The controller 140 calculates the moving speed of the plunger 119 during chemical liquid suction based on the suction speed command, and calculates the moving speed of the plunger 119 during chemical liquid discharge based on the discharge flow rate command. Here, at the time of calculating the movement speed at the time of discharging the chemical liquid, the movement speed is calculated based on the pump discharge characteristic representing the relationship between the movement speed and the discharge flow rate. That is, the movement amount of the plunger 119 and the pump discharge flow rate have a correlation, and the movement speed of the plunger 119 is calculated for the discharge flow rate command value force using a linear characteristic defined in advance. Then, the operating air pressure command value is calculated based on the deviation between the target moving speed of the plunger 119 and the actual moving speed (actual moving speed), and the electropneumatic regulator 127 is driven based on the operating air pressure command value. To control.
[0129] 一方、コントローラ 140は、位置検出器 135の検出結果に基づいてプランジャ 119 の実際の移動速度 (実移動速度)を算出する。この実移動速度の算出値は、電空レ ギユレータ 127のフィードバック制御に用いられる他、都度の吐出流量の演算に用い られる。吐出流量演算に関して、コントローラ 140は、プランジャ 119の移動量とポン プ吐出流量との相関関係 (線形特性)を用いてプランジャ 119の実移動速度を吐出 流量に変換し、その結果を吐出流量値として管理コンピュータ等に出力する。  On the other hand, the controller 140 calculates the actual moving speed (actual moving speed) of the plunger 119 based on the detection result of the position detector 135. The calculated value of the actual moving speed is used for the feedback control of the electropneumatic regulator 127 and is used for the calculation of the discharge flow rate each time. For the discharge flow rate calculation, the controller 140 converts the actual movement speed of the plunger 119 into a discharge flow rate using the correlation (linear characteristics) between the movement amount of the plunger 119 and the pump discharge flow rate, and the result is used as the discharge flow rate value. Output to the management computer.
[0130] 上記構成の薬液供給ポンプ 100では、電空レギユレータ 127により空圧操作室 12 2内における空気圧力が調整され、その圧力調整によりプランジャ 119が図の上下何 れかに移動する。プランジャ 119が移動すると、その移動量に対してリニアに流体室 123の容積が変化し、それに対応してダイアフラム操作室 106の容積が変化する。そ して、ダイアフラム操作室 106の容積変化に応じてダイアフラム 103が橈み変形し、 そのダイアフラム変形に伴うポンプ室 105の容積変化に基づいて薬液の吸引又は吐 出が行われる。このとき、ダイアフラム操作室 106及び流体室 123には非圧縮性流体 が充填されており、流体室 123の容積変化とダイアフラム操作室 106の容積変化とは 一致する(一方の増加分が他方の減少分となる)。また、プランジャ 119の移動量に 対する流体室 123の容積変化はリニア (線形)なものとなっている。したがって、ブラ ンジャ 119の移動量に基づいて薬液の吸引又は吐出時の流量を高精度に制御する ことが可能となる。 In the chemical solution supply pump 100 having the above configuration, the air pressure in the pneumatic operation chamber 122 is adjusted by the electropneumatic regulator 127, and the plunger 119 moves to the top or bottom of the figure by the pressure adjustment. When the plunger 119 moves, the volume of the fluid chamber 123 changes linearly with respect to the movement amount, and the volume of the diaphragm operation chamber 106 changes accordingly. The diaphragm 103 stagnates and deforms according to the volume change of the diaphragm operation chamber 106, and the suction or discharge of the chemical solution is performed based on the volume change of the pump chamber 105 accompanying the diaphragm deformation. At this time, the diaphragm operation chamber 106 and the fluid chamber 123 are filled with an incompressible fluid, and the volume change of the fluid chamber 123 and the volume change of the diaphragm operation chamber 106 are the same. Match (one increase is the other decrease). Further, the volume change of the fluid chamber 123 with respect to the movement amount of the plunger 119 is linear. Therefore, it is possible to control the flow rate at the time of suction or discharge of the chemical liquid with high accuracy based on the movement amount of the plunger 119.
[0131] また、薬液供給ポンプ 100では、ダイアフラム 103の有効断面積よりもプランジャ 11 9の有効断面積が小さくなつている。これにより、ダイアフラム 103を橈み変形させる 際、ダイアフラム変形量に比してプランジャ移動量が大きくなる。故に、ダイアフラム 1 03の橈み変形量を細力べ制御することができる。またこのとき、ダイアフラム有効断面 積を Ad、ダイアフラム変形量 Xdとすれば、ダイアフラム変形に伴う吐出量 Vは d *Xdとなる。一方、プランジャ 119の有効断面積を A、プランジャ移動量を Xとすれ ば、プランジャ移動に伴う吐出量 Vは V^A*Xとなる。したがって、 X= Ad/A* Xd となり、プランジャ移動量 Xはダイアフラム変形量 Xdに対して増幅率 AdZ Aで増幅さ れることとなる。  [0131] In the chemical solution supply pump 100, the effective sectional area of the plunger 119 is smaller than the effective sectional area of the diaphragm 103. As a result, when the diaphragm 103 is squeezed and deformed, the plunger movement amount becomes larger than the diaphragm deformation amount. Therefore, the amount of deformation of the diaphragm 103 can be controlled with great force. At this time, if the effective area of the diaphragm is Ad and the diaphragm deformation amount Xd, the discharge amount V accompanying the diaphragm deformation is d * Xd. On the other hand, if the effective cross-sectional area of the plunger 119 is A and the plunger movement amount is X, the discharge amount V accompanying the plunger movement is V ^ A * X. Therefore, X = Ad / A * Xd, and the plunger movement amount X is amplified by the amplification factor AdZ A with respect to the diaphragm deformation amount Xd.
[0132] また、プランジャ 119は、大小異なる 2つの摺動部 119a, 119bを有しており、流体 室 123に対向する側の面積が比較的小さぐ空圧操作室 122に対向する側の面積 が比較的大きい形状となっている。このとき、プランジャ 119において空圧操作室 12 2側の受圧面積が比較的大きいことから、該プランジャ 119を空気圧力で移動させる 場合に十分な力を付与することができる。これにより、プランジャ 119の応答性が向上 し、ひいてはダイアフラム 103の変形速度 (薬液の吐出量等)を任意に制御すること ができるようになつている。  [0132] Further, the plunger 119 has two sliding portions 119a and 119b of different sizes, and the area on the side facing the pneumatic operation chamber 122 is relatively small in the area facing the fluid chamber 123. Has a relatively large shape. At this time, since the pressure receiving area of the plunger 119 on the side of the pneumatic operation chamber 122 is relatively large, a sufficient force can be applied when the plunger 119 is moved by air pressure. As a result, the responsiveness of the plunger 119 is improved, and as a result, the deformation speed of the diaphragm 103 (the discharge amount of the chemical solution, etc.) can be arbitrarily controlled.
[0133] 上記第 1の実施の形態で説明したように、薬液供給ポンプ 100を複数設け、これら 各ポンプ 100を交互に吸引動作及び吐出動作させる構成としても良い。これにより、 薬液の吐出を途切れさせることなく連続的に実施することが可能となる。また、各ボン プでの薬液吐出に要する時間を毎回一定とし、薬液の安定供給が実現することがで きる。  [0133] As described in the first embodiment, a plurality of chemical solution supply pumps 100 may be provided, and these pumps 100 may alternately perform a suction operation and a discharge operation. Thereby, it becomes possible to carry out continuously without interrupting the discharge of the chemical liquid. In addition, the time required to discharge the chemical solution in each pump is constant every time, and a stable supply of the chemical solution can be realized.
[0134] 以上詳述した第 3の実施の形態では、ダイアフラム変形量ではなぐプランジャ移動 量をフィードバックパラメータとして吐出量制御を実施する構成とした。この場合、ダイ ァフラム変形量に対するポンプ吐出量は線形とならな 、が、プランジャ移動量に対す るポンプ吐出量は線形となるため、薬液の吸引又は吐出時の流量を高精度に制御 することが可能となる。また、薬液供給ポンプ 100は、電空レギユレータ 127により調 整される空気圧力を駆動源として薬液の吸引又は吐出を行う。このため、電動モータ による流量制御を行う電動式システムとは異なり、熱による弊害が生じるおそれがなく 、温度管理を要する薬液であっても好適に使用できる。また、電動式ァクチユエータ の構成に比べて、ポンプ駆動系の構成の簡素化を図ることもできる。 In the third embodiment described in detail above, the discharge amount control is performed using the plunger movement amount not the diaphragm deformation amount as a feedback parameter. In this case, the pump discharge amount with respect to the diaphragm deformation amount is not linear, but it is relative to the plunger movement amount. Since the pump discharge amount is linear, the flow rate during the suction or discharge of the chemical solution can be controlled with high accuracy. Further, the chemical solution supply pump 100 sucks or discharges the chemical solution using the air pressure adjusted by the electropneumatic regulator 127 as a drive source. For this reason, unlike an electric system that controls the flow rate by an electric motor, there is no risk of adverse effects due to heat, and even a chemical solution that requires temperature management can be used suitably. In addition, the configuration of the pump drive system can be simplified as compared with the configuration of the electric actuator.
[0135] また、薬液吐出通路に流量センサや可変絞り等を設けてその結果をフィードバック ノ ラメータとする他の構成では、センサや絞り等の設置部位における液溜まりに起因 して薬液の劣化等が生じたり、薬液によるセンサ等の腐食を防ぐために特殊加工が 強いられたりするといつた不都合が生じるが、本実施の形態ではこれらが解消される 。したがって、簡易なシステム構成が実現でき、ひいてはシステムの小型化や低コスト ィ匕を図ることができる。 [0135] In another configuration in which a flow sensor, a variable throttle, or the like is provided in the chemical liquid discharge passage and the result is used as a feedback meter, the chemical liquid is deteriorated due to liquid accumulation in the installation site of the sensor, the throttle, or the like. If this occurs, or if special processing is forced to prevent corrosion of the sensor or the like due to chemicals, inconveniences arise, but this embodiment solves these problems. Therefore, a simple system configuration can be realized, and as a result, the system can be reduced in size and cost.
[0136] また、位置検出器 135の検出結果に基づいて薬液の吐出流量を算出するようにし たため、薬液の特性変化に影響されることなぐ吐出流量を精度良く算出することが できる。  [0136] Further, since the discharge flow rate of the chemical liquid is calculated based on the detection result of the position detector 135, the discharge flow rate that is not affected by the characteristic change of the chemical solution can be calculated with high accuracy.
[0137] なお、本発明は上記実施の形態の記載内容に限定されず、例えば次のように実施 しても良い。  [0137] The present invention is not limited to the description of the above embodiment, and may be implemented as follows, for example.
[0138] 位置検出器による位置検出結果 (ベローズやダイアフラム等の作動量検出結果)に 基づ 、てポンプ室内の圧力を算出し、該算出したポンプ室内の圧力に基づ!/、て薬 液吐出通路の目詰まり判定などを実施しても良い。これを、第 1の実施の形態で説明 した構成(図 1)について説明する。  [0138] Based on the result of position detection by the position detector (result of detecting the amount of operation of bellows, diaphragm, etc.), the pressure in the pump chamber is calculated, and based on the calculated pressure in the pump chamber! The clogging of the discharge passage may be determined. This will be described with respect to the configuration described in the first embodiment (FIG. 1).
[0139] 図 1において、ベローズ式仕切部材 12には、その一方の側(図の上方側)から圧力 作用室 14内の空気圧力が作用し、他方の側(図の下方側)力も圧縮コイルパネ 35に よる付勢力とポンプ室 13内の圧力とが作用する。そして、それらの力が均衡した位置 にべローズ式仕切部材 12が制御される。この場合、圧力作用室 14内の気体圧力に よりべローズ式仕切部材 12が受ける力を Fs、圧縮コイルパネ 35によりべローズ式仕 切部材 12が受ける力を Fb、ポンプ室 13内の圧力によりべローズ式仕切部材 12が受 ける力を Fpとすると、 Fs = Fb + Fp In FIG. 1, the air pressure in the pressure working chamber 14 acts on the bellows-type partition member 12 from one side (the upper side in the figure), and the force on the other side (the lower side in the figure) is also applied to the compression coil panel. The urging force by 35 and the pressure in the pump chamber 13 act. Then, the bellows type partition member 12 is controlled at a position where these forces are balanced. In this case, the force received by the bellows partition member 12 due to the gas pressure in the pressure working chamber 14 is Fs, the force received by the bellows type cutting member 12 by the compression coil panel 35 is Fb, and the pressure in the pump chamber 13 is controlled by the pressure in the pump chamber 13. If the force received by the rose partition 12 is Fp, Fs = Fb + Fp
の関係が成立する。ここで、 Fb (圧縮コイルパネ 35によりべローズ式仕切部材 12が 受ける力)は、ベローズ式仕切部材 12の作動量に相関しており、パネ定数を k、吸引 しきった時(完全収縮時)のべローズ位置を Xa、作動中のベローズ位置を Xとすると、 Fb = k水 (Xa+X)  The relationship is established. Here, Fb (the force received by the bellows type partition member 12 by the compression coil panel 35) correlates with the operation amount of the bellows type partition member 12, and the panel constant is k, and when the suction is completed (at the time of complete contraction). Fb = k water (Xa + X) where Xa is the bellows position and X is the active bellows position.
で与えられる。  Given in.
[0140] Fs (圧力作用室 14内の空気圧力によりべローズ式仕切部材 12が受ける力)は、圧 力作用室 14内の空気圧力から算出でき、ベローズ有効面積を A、圧力作用室 14内 の空気圧力を Psとすると、  [0140] Fs (the force received by the bellows type partitioning member 12 by the air pressure in the pressure action chamber 14) can be calculated from the air pressure in the pressure action chamber 14, and the effective area of the bellows is A, If the air pressure of Ps is Ps,
Fs=A水 Ps  Fs = A Water Ps
で与えられる。  Given in.
[0141] また、 Fp (ポンプ室 13内の圧力によりべローズ式仕切部材 12が受ける力)は、ポン プ室圧力を Pとすると、  [0141] Further, Fp (the force received by the bellows type partitioning member 12 by the pressure in the pump chamber 13) is P.
Fp =A水 P  Fp = A water P
で与えられる。  Given in.
この場合、 Fp = Fs— Fbであたるため、ポンプ室圧力 Pは、  In this case, since Fp = Fs-Fb, the pump chamber pressure P is
P = Ps -k/A * (Xa+X)  P = Ps -k / A * (Xa + X)
となる。ここで、 k, A, Xaは固定値であり、圧力作用室 14内の空気圧力 Psと作動中 のべローズ位置 Xとを計測することにより、ポンプ室圧力 Pが算出できる。  It becomes. Here, k, A, and Xa are fixed values, and the pump chamber pressure P can be calculated by measuring the air pressure Ps in the pressure working chamber 14 and the bellows position X during operation.
[0142] なお、ポンプ室圧力 Pは、基本的には設計上の寸法データ等により演算できるが、 個体差を考慮すると、固体毎に特性を計測しその計測データをコントローラに記憶し ておくと良い。これにより、ポンプ室圧力 Pがー層正確に算出できる。  [0142] The pump chamber pressure P can basically be calculated from design dimensional data, etc., but considering individual differences, characteristics can be measured for each solid and the measured data stored in the controller. good. Thereby, the pump chamber pressure P can be accurately calculated.
[0143] ここで、吐出側の圧力損失を Sとすると、吐出流量 Qは概略、  [0143] Here, when the pressure loss on the discharge side is S, the discharge flow rate Q is roughly
Q = a /S * ^P  Q = a / S * ^ P
で与えられる ( aは定数である)。したがって、圧力損失 Sが大きくなるとポンプ室圧力 Pが大きくなる。つまり、吐出配管で目詰まり(フィルタの目詰まり等)が生じると、薬液 吐出量が同一であっても、圧力損失によりポンプ室圧力が上昇する。そのため、目詰 まりの発生が判定できる。 [0144] 例えば、所定の吐出流量で吐出量制御を行う場合の圧力判定値をあら力じめ定め ておき、ポンプ室圧力 Pが圧力判定値よりも大きくなつた時に目詰まりが生じたと判定 すると良い。圧力判定値は、初期 (新品時)の圧力値を基に定められると良い。 目詰 まり発生時には、例えば音声やランプ等での報知が行われ、それに伴い作業者によ つて吐出配管内のフィルタ等の交換が行われる。 目詰まり判定を実施することにより、 目詰まりに起因するプロセスの不具合を解消することができる。 (A is a constant). Therefore, when the pressure loss S increases, the pump chamber pressure P increases. In other words, when clogging (filter clogging, etc.) occurs in the discharge pipe, the pressure in the pump chamber increases due to pressure loss even if the chemical liquid discharge amount is the same. Therefore, occurrence of clogging can be determined. [0144] For example, if the pressure judgment value when performing discharge amount control at a predetermined discharge flow rate is preliminarily determined, and it is judged that clogging has occurred when the pump chamber pressure P becomes larger than the pressure judgment value, good. The pressure judgment value may be determined based on the initial (new) pressure value. When clogging occurs, for example, a sound or a lamp is notified, and the filter in the discharge pipe is replaced by the operator accordingly. By performing the clogging determination, it is possible to eliminate process malfunctions caused by clogging.
[0145] また、上記の如くポンプ室圧力 Pを算出する構成では、ポンプ室圧力 Pを検出する ための圧力センサが不要となる。これにより、薬液に直接晒されるセンサ装置等がな くなるために、薬液による腐食防止対策が強いられることはなぐ構成の簡素化ゃコ ストの低減を図ることができる。  [0145] Further, in the configuration in which the pump chamber pressure P is calculated as described above, a pressure sensor for detecting the pump chamber pressure P is not necessary. As a result, there is no sensor device or the like that is directly exposed to the chemical solution, and therefore, it is possible to reduce the cost if the configuration is simplified without the need for countermeasures against corrosion by the chemical solution.
[0146] ポンプ室圧力 Pの算出値に基づいて目詰まり判定を実施する以外に、同ポンプ室 圧力 Pの算出値に基づいてポンプ室圧力のフィードバック制御等を実施することも可 能である。  [0146] Besides performing the clogging determination based on the calculated value of the pump chamber pressure P, it is also possible to perform feedback control of the pump chamber pressure based on the calculated value of the pump chamber pressure P.
[0147] 薬液の吐出終了時における液だれ防止のためにサックバック機能を付加するように しても良い。図 13は、サックバック動作を説明するためのタイムチャートである。  [0147] A suck back function may be added to prevent dripping at the end of discharge of the chemical liquid. FIG. 13 is a time chart for explaining the suck back operation.
[0148] 図 13において、薬液吐出時には、吸引バルブが閉、吐出バルブが開とされ、容積 可変部材の作動に伴いポンプ室から薬液が吐出される。そして、薬液の吐出終了後 において吸引バルブが閉、吐出バルブが開とされた状態が一時的に継続され、その 状態のままべローズ等の容積可変部材の作動が反転されて薬液の吸引が開始され る。このとき、吸引バルブが閉、吐出バルブが開とされた状態での薬液の吸引動作に よりサックバックが行われる。図の TSがサックバック動作期間である。これにより、薬液 滴下ノズル等における液だれが防止できる。上記構成ではサックバック用の開閉弁 が不要となるため、構成の簡素化が実現できる。  In FIG. 13, when the chemical solution is discharged, the suction valve is closed and the discharge valve is opened, and the chemical solution is discharged from the pump chamber in accordance with the operation of the variable volume member. After the discharge of the chemical liquid, the suction valve is closed and the discharge valve is temporarily opened, and the operation of the volume variable member such as bellows is reversed and the suction of the chemical liquid is started. It is done. At this time, suck back is performed by a chemical liquid suction operation in a state where the suction valve is closed and the discharge valve is opened. TS in the figure is the suckback operation period. Thereby, dripping at the chemical liquid dropping nozzle or the like can be prevented. The above configuration eliminates the need for a suck-back on-off valve, thus simplifying the configuration.
[0149] サックバック動作期間(図 13の TS)や、サックバック時の吸引速度を可変に制御す るようにしても良い。これにより、薬液のサックバック動作を任意に制御でき、サックバ ック量を望みとおりに制御することが可能となる。  [0149] The suck back operation period (TS in Fig. 13) and the suction speed during suck back may be variably controlled. As a result, the suck back operation of the chemical solution can be arbitrarily controlled, and the suck back amount can be controlled as desired.
[0150] 上記実施の形態では、ベローズ式の薬液供給ポンプを用いた場合、ベローズ伸縮 量に対してポンプ吐出量が線形である旨説明した力 厳密には、ベローズの伸縮範 囲内において非線形な特性が含まれることも考えられる。故に、ベローズの伸縮範囲 内において複数に分割した区間毎にベローズ伸縮量とポンプ吐出量との関係を線 形化し、該線形ィ匕した関係を用いて吐出量制御を実施するようにしても良い。これに より、薬液の吸引流量又は吐出流量の制御精度が向上する。なお、区間毎に線形ィ匕 を行う手法については、第 2の実施の形態で説明した手法が適宜用いられる。 In the above embodiment, when a bellows type chemical supply pump is used, the force explained that the pump discharge amount is linear with respect to the bellows expansion / contraction amount. It is also conceivable that nonlinear characteristics are included in the range. Therefore, the relationship between the bellows expansion / contraction amount and the pump discharge amount may be linearized for each section divided into a plurality of sections within the expansion / contraction range of the bellows, and the discharge amount control may be performed using the linear relationship. . This improves the control accuracy of the chemical liquid suction flow rate or the discharge flow rate. Note that the method described in the second embodiment is used as appropriate for the method of performing linear interpolation for each section.
[0151] 上記各実施の形態では、圧力作用室内の空気圧力を減圧する際、電空レギユレ一 タを大気開放状態としたが、これを変更する。例えば、電空レギユレータに真空源を 接続し、その真空源の作動により圧力作用室内を負圧とする。こうした空気圧力の操 作によってべローズやダイアフラム等の作動量を任意に制御できる。この場合、ケー ス体内に設けた圧縮コイルパネを無くすことが可能となる。 [0151] In each of the above embodiments, when the air pressure in the pressure action chamber is reduced, the electropneumatic regulator is opened to the atmosphere, but this is changed. For example, a vacuum source is connected to the electropneumatic regulator, and the pressure inside the pressure working chamber is made negative by the operation of the vacuum source. By operating the air pressure, the amount of operation of bellows, diaphragm, etc. can be controlled arbitrarily. In this case, the compression coil panel provided in the case body can be eliminated.
[0152] 上記第 3の実施の形態で説明した薬液供給ポンプ 100では、流体室 123の容積を 作動量に対してリニアに変化させる可動体としてプランジャ 119を用いた力 この構 成を変更し、同可動体としてべローズを用いることも可能である。 [0152] In the chemical supply pump 100 described in the third embodiment, the force using the plunger 119 as a movable body that linearly changes the volume of the fluid chamber 123 with respect to the operation amount is changed. A bellows can be used as the movable body.
[0153] 上記各実施の形態では、複数の薬液供給ポンプを具備する薬液供給システムの具 体例として、複数個の薬液供給ポンプを組み合わせて各ポンプ間を配管等により接 続する構成としたが、それら複数個の薬液供給ポンプが一体化されたポンプユニット を採用するようにしても良い。これにより、配管等の削減や省スペース化を図ることが できる。 [0153] In each of the above-described embodiments, as a specific example of a chemical liquid supply system including a plurality of chemical liquid supply pumps, a plurality of chemical liquid supply pumps are combined and the pumps are connected by piping or the like. You may make it employ | adopt the pump unit with which these several chemical | medical solution supply pumps were integrated. As a result, piping and the like can be reduced and space can be saved.

Claims

請求の範囲 The scope of the claims
[1] 薬液を充填するためのポンプ室と、容積可変部材により前記ポンプ室から仕切られ てなる圧力作用室とを有し、その圧力作用室内の気体圧力に応じて前記容積可変 部材を作動させ、その作動に伴う前記ポンプ室の容積変化に基づ 、て前記薬液を 吸引又は吐出する薬液供給ポンプと、  [1] It has a pump chamber for filling a chemical solution and a pressure action chamber partitioned from the pump chamber by a volume variable member, and the volume variable member is operated according to the gas pressure in the pressure action chamber. A chemical supply pump for sucking or discharging the chemical based on a change in volume of the pump chamber accompanying the operation;
前記圧力作用室に供給される気体の圧力を調整する圧力調整手段と、 前記容積可変部材の作動量を検出する作動量検出手段と、  Pressure adjusting means for adjusting the pressure of the gas supplied to the pressure working chamber; and an operation amount detecting means for detecting an operation amount of the volume variable member;
前記薬液供給ポンプによる薬液の吸引又は吐出時において前記容積可変部材の 目標作動量を設定するとともに、該目標作動量と前記作動量検出手段による検出結 果力 求めた実際の作動量との偏差に基づいて前記圧力調整手段を制御する制御 手段と、  The target operating amount of the volume variable member is set when the chemical solution is sucked or discharged by the chemical solution supply pump, and the deviation between the target operating amount and the detection result force by the operating amount detection means is calculated. Control means for controlling the pressure adjusting means based on;
を備えたことを特徴とする薬液供給システム。  A chemical supply system characterized by comprising:
[2] 前記作動量検出手段による検出結果に基づいて薬液の吐出流量を算出する手段 を更に備えたことを特徴とする請求項 1に記載の薬液供給システム。  2. The chemical liquid supply system according to claim 1, further comprising means for calculating a discharge flow rate of the chemical liquid based on a detection result by the operation amount detection means.
[3] 前記制御手段は、前記目標作動量として容積可変部材の移動速度の目標値を設 定するとともに、該目標値と、前記作動量検出手段による検出結果を基に求めた実 際の容積可変部材の移動速度との偏差に基づいて前記圧力調整手段を制御するこ とを特徴とする請求項 1又は 2に記載の薬液供給システム。 [3] The control means sets a target value of the moving speed of the variable volume member as the target operation amount, and an actual volume obtained based on the target value and a detection result by the operation amount detection means. 3. The chemical solution supply system according to claim 1, wherein the pressure adjusting unit is controlled based on a deviation from a moving speed of the variable member.
[4] 前記容積可変部材の作動量とポンプ吐出量との関係を規定しておき、前記制御手 段は、前記関係を用い都度の流量指令値に基づいて前記移動速度の目標値を設 定することを特徴とする請求項 3に記載の薬液供給システム。 [4] The relationship between the operation amount of the variable volume member and the pump discharge amount is defined, and the control means sets the target value of the moving speed based on the flow rate command value each time using the relationship. The chemical solution supply system according to claim 3, wherein:
[5] 前記容積可変部材の作動範囲内において複数に分割した区間毎に容積可変部 材の作動量とポンプ吐出量との関係を線形化する手段を備え、前記制御手段は、前 記線形化した関係を用いて前記圧力調整手段を制御することを特徴とする請求項 1 乃至 4の!、ずれかに記載の薬液供給システム。 [5] The apparatus includes a means for linearizing a relationship between an operation amount of the volume variable member and a pump discharge amount for each of a plurality of sections divided within an operation range of the volume variable member, and the control means includes the linearization described above. 5. The chemical solution supply system according to claim 1, wherein the pressure adjusting means is controlled using the relationship described above.
[6] 前記薬液供給ポンプの容積可変部材として軸方向に伸縮自在のベローズを用い、 前記作動量検出手段により、前記容積可変部材の作動量として前記べローズの伸 縮量が検出される薬液供給システムであって、 前記制御手段は、前記べローズの伸縮量に基づ!、て前記圧力調整手段を制御す ることを特徴とする請求項 1乃至 5のいずれかに記載の薬液供給システム。 [6] A chemical liquid supply in which an axially expandable / contractible bellows is used as a volume variable member of the chemical liquid supply pump, and an expansion amount of the bellows is detected as an operation amount of the volume variable member by the operation amount detection means. A system, 6. The chemical solution supply system according to claim 1, wherein the control unit controls the pressure adjusting unit based on an expansion / contraction amount of the bellows.
[7] 前記薬液供給ポンプの容積可変部材としてダイアフラムを用い、前記作動量検出 手段により、前記容積可変部材の作動量として前記ダイァフラムの変形量が検出さ れる薬液供給システムであって、 [7] A chemical solution supply system in which a diaphragm is used as a volume variable member of the chemical solution supply pump, and a deformation amount of the diaphragm is detected as an operation amount of the volume variable member by the operation amount detection means,
前記ダイァフラムの変形範囲内において複数に分割した区間毎にダイアフラム変 形量とポンプ吐出量との関係を線形化する手段を備え、前記制御手段は、前記線形 化した関係を用いて前記圧力調整手段を制御することを特徴とする請求項 1乃至 4 の!、ずれかに記載の薬液供給システム。  Means for linearizing the relationship between the diaphragm deformation amount and the pump discharge amount for each section divided into a plurality of sections within the deformation range of the diaphragm, and the control means uses the linearized relationship for the pressure adjusting means. The chemical solution supply system according to any one of claims 1 to 4, wherein the chemical solution is controlled.
[8] 前記各区間の境界点でのダイアフラム変形量とポンプ吐出量とに基づく直線補間 によりダイアフラム変形量とポンプ吐出量との関係を線形ィ匕することを特徴とする請求 項 7に記載の薬液供給システム。 [8] The relationship between the diaphragm deformation amount and the pump discharge amount is linearized by linear interpolation based on the diaphragm deformation amount and the pump discharge amount at the boundary point of each section. Chemical supply system.
[9] 前記圧力作用室側において前記容積可変部材に被検出体を連結し、前記作動量 検出手段は、前記容積可変部材の作動量として前記被検出体の移動量を検出する ことを特徴とする請求項 1乃至 8のいずれかに記載の薬液供給システム。 [9] The object to be detected is connected to the variable volume member on the pressure acting chamber side, and the operation amount detection means detects the movement amount of the object to be detected as the operation amount of the volume variable member. The chemical solution supply system according to any one of claims 1 to 8.
[10] 前記薬液供給ポンプを複数備え、これら各ポンプを交互に吸引動作及び吐出動作 させることを特徴とする請求項 1乃至 9のいずれかに記載の薬液供給システム。 10. The chemical solution supply system according to any one of claims 1 to 9, wherein a plurality of the chemical solution supply pumps are provided, and these pumps are alternately operated for suction and discharge.
[11] 前記圧力作用室内の気体圧力とは相反する向きに前記容積可変部材を付勢する 付勢手段を設けた薬液供給ポンプを適用し、 [11] Applying a chemical supply pump provided with a biasing means for biasing the volume variable member in a direction opposite to the gas pressure in the pressure action chamber,
前記作動量検出手段により検出した前記容積可変部材の作動量と前記圧力作用 室内の気体圧力とに基づいて前記ポンプ室内の圧力を算出する手段と、  Means for calculating the pressure in the pump chamber based on the operation amount of the volume variable member detected by the operation amount detection means and the gas pressure in the pressure action chamber;
該算出したポンプ室内の圧力により当該ポンプ室の圧力制御を実施する手段とを 備えたことを特徴とする請求項 1乃至 10のいずれかに記載の薬液供給システム。  11. The chemical solution supply system according to claim 1, further comprising means for performing pressure control of the pump chamber based on the calculated pressure in the pump chamber.
[12] 前記圧力作用室内の気体圧力とは相反する向きに前記容積可変部材を付勢する 付勢手段を設けた薬液供給ポンプを適用し、 [12] Applying a chemical supply pump provided with a biasing means for biasing the volume variable member in a direction opposite to the gas pressure in the pressure action chamber,
前記作動量検出手段により検出した前記容積可変部材の作動量と前記圧力作用 室内の気体圧力とに基づいて前記ポンプ室内の圧力を算出する手段と、  Means for calculating the pressure in the pump chamber based on the operation amount of the volume variable member detected by the operation amount detection means and the gas pressure in the pressure action chamber;
該算出したポンプ室内の圧力により、該ポンプ室に通じる薬液吐出通路で目詰まり が発生したかどうかを判定する手段とを備えたことを特徴とする請求項 1乃至 10のい ずれかに記載の薬液供給システム。 The calculated pressure in the pump chamber is clogged in the chemical discharge passage leading to the pump chamber. 11. The chemical solution supply system according to claim 1, further comprising means for determining whether or not the occurrence has occurred.
前記ポンプ室に通じる吸引通路側に吸引バルブを設けるとともに、同ポンプ室に通 じる吐出通路側に吐出バルブを設けた薬液供給ポンプを適用し、  Applying a chemical supply pump having a suction valve on the suction passage side leading to the pump chamber and a discharge valve on the discharge passage side leading to the pump chamber,
前記容積可変部材の作動に伴う薬液の吐出時に前記吸引バルブを閉、前記吐出 バルブを開とし、該吐出の終了後において前記吸引バルブを閉、前記吐出バルブを 開とした状態を一時的に継続したまま前記容積可変部材の作動を反転させて薬液の 吸引を開始することを特徴とする請求項 1乃至 12のいずれかに記載の薬液供給シス テム。  The suction valve is closed and the discharge valve is opened at the time of discharge of the chemical liquid accompanying the operation of the variable volume member, and the state where the suction valve is closed and the discharge valve is opened after the discharge is completed is temporarily continued. 13. The chemical solution supply system according to claim 1, wherein the suction of the chemical solution is started by reversing the operation of the volume variable member while maintaining the same.
薬液の吐出終了後において前記吸引バルブを閉、前記吐出バルブを開とした状 態で薬液の吸弓 I動作を実施する時間、又は吸引速度を可変に制御することを特徴と する請求項 13に記載の薬液供給システム。  14. The time for performing the chemical liquid arch I operation in a state in which the suction valve is closed and the discharge valve is opened after the completion of the discharge of the chemical liquid, or the suction speed is variably controlled. The chemical solution supply system described.
薬液を充填するためのポンプ室と、ダイァフラムにより前記ポンプ室力 仕切られて なるダイアフラム操作室とを有し、そのダイアフラム操作室の容積変化に応じて前記 ダイアフラムを橈み変形させ、その橈み変形に伴う前記ポンプ室の容積変化に基づ Vヽて前記薬液を吸引又は吐出する薬液供給ポンプであって、  It has a pump chamber for filling a chemical solution and a diaphragm operation chamber that is partitioned by a diaphragm, and the diaphragm is squeezed and deformed according to the volume change of the diaphragm operation chamber. A chemical supply pump that sucks or discharges the chemical liquid based on the volume change of the pump chamber accompanying
前記ダイアフラム操作室と該ダイアフラム操作室に連通された流体室に非圧縮性 流体を充填するとともに、前記流体室の容積を作動量に対してリニアに変化させる可 動体を設け、該可動体を挟んで前記ダイアフラム操作室とは逆側に設けられた圧力 操作室に、該圧力操作室内における気体の圧力を調整するための圧力調整手段を 接続したことを特徴とする薬液供給ポンプ。  The diaphragm operating chamber and a fluid chamber communicating with the diaphragm operating chamber are filled with an incompressible fluid, and a movable body is provided for linearly changing the volume of the fluid chamber with respect to the operation amount. And a pressure adjusting means for adjusting the pressure of the gas in the pressure operating chamber is connected to the pressure operating chamber provided on the opposite side of the diaphragm operating chamber.
前記ダイァフラムの有効断面積よりも前記可動体の有効断面積を小さくしたことを 特徴とする請求項 15に記載の薬液供給ポンプ。  16. The chemical supply pump according to claim 15, wherein the effective sectional area of the movable body is smaller than the effective sectional area of the diaphragm.
前記可動体は、前記流体室に対向する側の面積が比較的小さぐ前記圧力操作 室に対向する側の面積が比較的大きい形状を有するプランジャであることを特徴とす る請求項 15又は 16に記載の薬液供給ポンプ。  The movable body is a plunger having a shape in which an area on the side facing the fluid chamber is relatively small and an area on the side facing the pressure operation chamber is relatively large. The chemical solution supply pump described in 1.
請求項 15乃至 17のいずれかに記載の薬液供給ポンプと、 前記薬液供給ポンプによる薬液の吸引又は吐出時にぉ 、て前記可動体の目標作 動量を設定するとともに、該目標作動量と前記作動量検出手段による検出結果から 求めた実際の作動量との偏差に基づいて前記圧力調整手段を制御する制御手段と を備えたことを特徴とする薬液供給システム。 A chemical supply pump according to any one of claims 15 to 17, When the chemical solution is sucked or discharged by the chemical solution supply pump, the target operation amount of the movable body is set, and the deviation between the target operation amount and the actual operation amount obtained from the detection result by the operation amount detection means is set. And a control means for controlling the pressure adjusting means on the basis thereof.
[19] 前記作動量検出手段による検出結果に基づいて薬液の吐出流量を算出する手段 を更に備えたことを特徴とする請求項 18に記載の薬液供給システム。  19. The chemical solution supply system according to claim 18, further comprising means for calculating a discharge flow rate of the chemical solution based on a detection result by the operation amount detection means.
[20] 前記制御手段は、前記目標作動量として可動体の移動速度の目標値を設定すると ともに、該目標値と、前記作動量検出手段による検出結果を基に求めた実際の可動 体の移動速度との偏差に基づいて前記圧力調整手段を制御することを特徴とする請 求項 18又は 19に記載の薬液供給システム。  [20] The control means sets a target value of the moving speed of the movable body as the target operation amount, and moves the actual movable body obtained based on the target value and a detection result by the operation amount detection means. 20. The chemical supply system according to claim 18 or 19, wherein the pressure adjusting unit is controlled based on a deviation from a speed.
[21] 前記可動体の作動量とポンプ吐出量との関係を規定しておき、前記制御手段は、 前記関係を用い都度の流量指令値に基づ!、て前記移動速度の目標値を設定するこ とを特徴とする請求項 20に記載の薬液供給システム。 [21] The relationship between the operating amount of the movable body and the pump discharge amount is defined, and the control means sets the target value of the moving speed based on the flow rate command value using the relationship! 21. The chemical solution supply system according to claim 20, wherein
[22] 前記薬液供給ポンプを複数備え、これら各ポンプを交互に吸引動作及び吐出動作 させることを特徴とする請求項 18乃至 21のいずれかに記載の薬液供給システム。 22. The chemical solution supply system according to any one of claims 18 to 21, wherein a plurality of the chemical solution supply pumps are provided, and these pumps are alternately operated for suction and discharge.
PCT/JP2006/308530 2005-05-13 2006-04-24 Chemical supply system and chemical supply pump WO2006120881A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-140705 2005-05-13
JP2005140705A JP2006316711A (en) 2005-05-13 2005-05-13 Chemical liquid supply system and chemical liquid supply pump

Publications (1)

Publication Number Publication Date
WO2006120881A1 true WO2006120881A1 (en) 2006-11-16

Family

ID=37396391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308530 WO2006120881A1 (en) 2005-05-13 2006-04-24 Chemical supply system and chemical supply pump

Country Status (2)

Country Link
JP (1) JP2006316711A (en)
WO (1) WO2006120881A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009134181A1 (en) 2008-05-02 2009-11-05 Xavitech Ab A pumping system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855226B2 (en) 2006-11-24 2012-01-18 シーケーディ株式会社 Chemical supply system and chemical supply control device
JP5053628B2 (en) * 2006-12-15 2012-10-17 パーパス株式会社 PRESSURE DEVICE, PRESSURE METHOD THEREOF, PUMP DEVICE, AND CULTURE DEVICE
JP5018255B2 (en) * 2007-06-07 2012-09-05 東京エレクトロン株式会社 Chemical supply system, chemical supply method, and storage medium
JP4610582B2 (en) * 2007-06-08 2011-01-12 日本ピラー工業株式会社 Liquid pump system
JP4701257B2 (en) * 2008-03-03 2011-06-15 日本ピラー工業株式会社 Liquid pump system
JP5779324B2 (en) * 2010-07-06 2015-09-16 Ckd株式会社 Chemical supply system
JP4977775B2 (en) * 2010-09-08 2012-07-18 日本ピラー工業株式会社 Liquid pump system
JP6089002B2 (en) * 2014-05-21 2017-03-01 東京エレクトロン株式会社 Discharge amount adjusting method, coating processing apparatus, and recording medium
JP6725528B2 (en) 2014-12-22 2020-07-22 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Device and method for negative pressure wound therapy
JP6712840B2 (en) * 2015-03-19 2020-06-24 Dicグラフィックス株式会社 Filling nozzle device
JP6626322B2 (en) * 2015-11-27 2019-12-25 Ckd株式会社 Pneumatic drive device and control method thereof
KR102152789B1 (en) * 2020-03-03 2020-09-07 신우선 Sampler for gas analyzer with gas pressure buffer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208683A (en) * 1987-02-24 1988-08-30 Tokyo Electron Ltd Diaphragm pump
JPH0296487U (en) * 1989-01-20 1990-08-01
JPH04179877A (en) * 1990-11-13 1992-06-26 Nec Kyushu Ltd Bellows pump
JPH0642463A (en) * 1992-04-30 1994-02-15 Dorr Oliver Inc Automatic controller for diaphragm pump
JPH09151854A (en) * 1995-11-29 1997-06-10 Hitachi Ltd Chemical feeding device
JPH09256959A (en) * 1996-03-21 1997-09-30 Sanyo Electric Works Ltd Pump
JPH09317648A (en) * 1996-05-23 1997-12-09 Sugino Mach Ltd Liquid force-feeding pump
JPH11343978A (en) * 1998-05-29 1999-12-14 Ckd Corp Liquid supplying device
JP2000002187A (en) * 1998-06-15 2000-01-07 Dainippon Screen Mfg Co Ltd Pump control mechanism, board treating device using it, and method for controlling pump
JP2003139064A (en) * 2001-10-31 2003-05-14 Matsushita Electric Ind Co Ltd Small pump

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208683A (en) * 1987-02-24 1988-08-30 Tokyo Electron Ltd Diaphragm pump
JPH0296487U (en) * 1989-01-20 1990-08-01
JPH04179877A (en) * 1990-11-13 1992-06-26 Nec Kyushu Ltd Bellows pump
JPH0642463A (en) * 1992-04-30 1994-02-15 Dorr Oliver Inc Automatic controller for diaphragm pump
JPH09151854A (en) * 1995-11-29 1997-06-10 Hitachi Ltd Chemical feeding device
JPH09256959A (en) * 1996-03-21 1997-09-30 Sanyo Electric Works Ltd Pump
JPH09317648A (en) * 1996-05-23 1997-12-09 Sugino Mach Ltd Liquid force-feeding pump
JPH11343978A (en) * 1998-05-29 1999-12-14 Ckd Corp Liquid supplying device
JP2000002187A (en) * 1998-06-15 2000-01-07 Dainippon Screen Mfg Co Ltd Pump control mechanism, board treating device using it, and method for controlling pump
JP2003139064A (en) * 2001-10-31 2003-05-14 Matsushita Electric Ind Co Ltd Small pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009134181A1 (en) 2008-05-02 2009-11-05 Xavitech Ab A pumping system
EP2279350A4 (en) * 2008-05-02 2017-04-26 Xavitech AB A pumping system

Also Published As

Publication number Publication date
JP2006316711A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
WO2006120881A1 (en) Chemical supply system and chemical supply pump
JP4694377B2 (en) Chemical supply system
KR101211365B1 (en) The System For Supplying Liquid Having Multiple Pressure Detectors
JP4855226B2 (en) Chemical supply system and chemical supply control device
US6554579B2 (en) Liquid dispensing system with enhanced filter
JPH02161183A (en) Hydraulic circuit-controlling
US8845306B2 (en) Pumping system
KR20130100343A (en) Pneumatic liquid dispensing apparatus and method
JP7123968B2 (en) A positive displacement pump for medical fluids and a blood processing apparatus comprising a positive displacement pump for medical fluids and a method for controlling a positive displacement pump for medical fluids
JP5779324B2 (en) Chemical supply system
JP4541069B2 (en) Chemical supply system
JP3863292B2 (en) Liquid supply device
JP6353732B2 (en) Bellows pump device
JP4768244B2 (en) Chemical liquid supply system and chemical liquid supply pump
JP5816726B2 (en) Chemical supply system
KR101312378B1 (en) Vacuum pressure control apparatus
JP2007051563A (en) Chemical supply system
JP4658248B2 (en) Chemical supply system
JP5989881B2 (en) Chemical supply system
JP4855056B2 (en) Liquid supply system
JP2006272276A (en) Pressure generation mechanism
JP2007148512A (en) Flow rate control method and flow rate controller
WO2023202928A1 (en) Pump for a bioprocessing system
JP2015522761A (en) Weighing system and its lightweight pump
WO2023079314A1 (en) Fluid control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06745608

Country of ref document: EP

Kind code of ref document: A1