WO2006118315A1 - Polyphase voltage converting apparatus and vehicle - Google Patents

Polyphase voltage converting apparatus and vehicle Download PDF

Info

Publication number
WO2006118315A1
WO2006118315A1 PCT/JP2006/309194 JP2006309194W WO2006118315A1 WO 2006118315 A1 WO2006118315 A1 WO 2006118315A1 JP 2006309194 W JP2006309194 W JP 2006309194W WO 2006118315 A1 WO2006118315 A1 WO 2006118315A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
voltage converter
driven
converters
phase
Prior art date
Application number
PCT/JP2006/309194
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Shige
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2006118315A1 publication Critical patent/WO2006118315A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/07Doubly fed machines receiving two supplies both on the stator only wherein the power supply is fed to different sets of stator windings or to rotor and stator windings
    • H02P2207/073Doubly fed machines receiving two supplies both on the stator only wherein the power supply is fed to different sets of stator windings or to rotor and stator windings wherein only one converter is used, the other windings being supplied without converter, e.g. doubly-fed induction machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a multiphase voltage converter and a vehicle including the same, and more particularly to a multiphase voltage converter capable of selectively driving some voltage / voltage converters and a vehicle including the same.
  • Japanese Patent Laid-Open No. 2000-035 5 3 8 8 discloses a multi-phase multiplex type buck-boost converter having both a step-up function and a step-down function as converter functions. Such a buck-boost converter is used in an inverter system such as an electric vehicle to reduce current ripple.
  • the multi-phase multiplex type converter converts the voltage converter corresponding to only a part of the phase (hereinafter referred to as the “voltage converter corresponding to the phase” to “phase”). It may be more efficient to operate the system and pause the remaining phases. However, in such a use, if the use is concentrated only on a specific phase, the deterioration of the specific phase is accelerated compared to other phases. Although the other phases have not deteriorated, the product life is determined by the specific phase when viewed as a whole of the multiphase converter. 'If you try to get a sufficient product life, you need to make room for the design, leading to increased costs.
  • An object of the present invention is to provide a multiphase voltage conversion device and a vehicle having a long product life while suppressing an increase in cost.
  • the present invention is a multi-phase voltage converter comprising a plurality of voltage variations ⁇ connected in parallel between a first node and a second node, and a plurality of voltage variations ⁇ And a controller that selects and drives a part of the plurality of voltage converters based on the result of detecting the state.
  • each of the plurality of voltage converters includes a temperature sensor that measures an element temperature.
  • the control unit determines a voltage converter to be driven based on each element temperature of the plurality of voltage converters.
  • control unit determines a voltage converter to be driven to be used in preference to a voltage converter having a low temperature.
  • control unit includes a storage unit that stores usage histories of the plurality of voltage converters in a nonvolatile manner.
  • the control unit determines a voltage converter to be driven based on the usage history. More preferably, the control unit selects and drives a voltage converter different from the previously driven voltage converter with reference to the use history.
  • the plurality of voltage converters are first to third voltage converters, and one-phase driving for driving only one voltage converter from three-phase driving for driving first to third voltage converters.
  • the control unit selects the voltage converter to be driven.
  • the control unit switches the voltage converter to be driven by another voltage converter that has not been driven.
  • the plurality of voltage converters are first to third voltage converters, and perform one-phase driving for driving only one voltage converter from the first to third voltage converters. Inside, the controller switches the voltage converter to be driven.
  • the control unit switches the voltage converter to be driven by another voltage converter that has not been driven.
  • the plurality of voltage converters are first to third voltage converters, and one-phase driving for driving only one voltage converter from the first to third voltage converters is being performed.
  • the control unit switches the voltage converter to be driven.
  • the present invention is a vehicle, which is any one of the multiphase voltage conversion devices described above, a fuel cell connected to a first node, and a power storage device connected to a second node.
  • the phase to be used when a part of a voltage converter of a plurality of phases is used, by determining the phase to be driven according to the state of each phase, the phase to be used can be optimized, and deterioration bias Can be reduced.
  • FIG. 1 is a circuit diagram showing a configuration of a vehicle 100 according to the present invention.
  • FIG. 2 is a flowchart showing a control structure of a program executed in control device 30 of FIG.
  • FIG. 3 is a flowchart showing the control structure of the program executed in the second embodiment.
  • FIG. 4 is a flowchart showing the control structure of the program executed in the third embodiment.
  • FIG. 5 is a flowchart showing the control structure of the program executed in the fourth embodiment.
  • FIG. 1 is a circuit diagram showing a configuration of a vehicle 100 according to the present invention.
  • the vehicle 100 is a fuel cell vehicle shown as an example of a vehicle equipped with a motor.
  • vehicle 1 0 0 includes a battery 2 connected between node N 1 and node N 3, and a smoothing capacitor 8 connected between node N 1 and node N 3. And a multi-phase voltage converter 10 connected between node N 1 and node N 2 and performing voltage conversion between battery voltage VB and inverter voltage VINV.
  • Vehicle 1 0 0 further includes a smoothing capacitor 14 connected between node N 2 and node N 3, diode 16 connected in series between node N 2 and node N 3, and It includes a fuel cell 18, an inverter 20 connected between the node N 2 and the node N 3, and a motor 22 driven by the inverter 20.
  • the diode 16 is a protective element for preventing current from flowing into the fuel cell 18 and is connected with the direction from the fuel cell toward the node N 2 as the forward direction.
  • the vehicle 1 0 0 further includes a voltage sensor 6 for detecting the battery voltage VB, A voltage sensor 12 for detecting the barter voltage VI NV and a control device 30 are included.
  • Multiphase voltage converter 10 includes voltage converters 31-33 connected in parallel between nodes N1 and N2.
  • the voltage converters 31 to 33 are connected to a node N 3 that provides reference potentials for voltages V B and V I NV.
  • Voltage converter 31 is a first arm connected between node N1 and node N3
  • the first arm A 1 includes an IGBT element GA, GB connected in series between the node N1 and the node N 3, a diode DA connected in parallel with the I GBT element GA, and an I GBT element GB. Including a diode DB connected in parallel.
  • the collector of the I GBT element GA is connected to the node N1, and the emitter is connected to the node N4.
  • the diode DA is connected with the direction from the node N 4 toward the node N 1 as the forward direction.
  • the collector of I GBT element GB is connected to node N4, and the emitter is connected to node N3.
  • the diode DB is connected with the direction from node N 3 to node N 4 as the forward direction.
  • the second arm A 2 includes IG, BT elements GC, GD connected in series between the node N 2 and the node N 3, a diode DC connected in parallel with the I GBT element GC, and an I GBT element Includes diode DD connected in parallel with GD.
  • the collector of the I GBT element GC is connected to node N2, and the emitter is connected to node N5.
  • the diode DC is connected with the direction from the node N4 to the node N2 as the forward direction.
  • the collector of the I GBT element GD is connected to the node N 5, and the emitter is connected to the node N 3.
  • Diode DD is connected with the direction from node N3 to node N5 as the forward direction.
  • the rear tuttle L 1 is connected between the node N 4 and the node N 5.
  • the IGBT element GB emitter and the IGBT element GD emitter are connected inside the voltage converter 31.
  • the node ⁇ 3 and the fuel cell are connected inside each of the voltage converters.
  • a configuration for connecting the negative electrode is shown.
  • the emitter of IG IG ⁇ element G ⁇ and the emitter of IGBT element GD are not connected inside each voltage converter, and node ⁇ 3 and the fuel cell are connected to the outside of the voltage converter.
  • One wiring common to the voltage converters 31 to 33 may be provided to connect the negative electrode.
  • the possible range of the battery voltage V B and the output voltage of the fuel cell 18 partially overlap.
  • a nickel-metal hydride battery is used as the battery, and its power supply voltage varies within a range of, for example, 2 00 V to 30 O V.
  • the output voltage of the fuel cell 1 8 varies within a range of 2 40 V to 4 0 0 V, for example.
  • the voltage of the battery 2 may be higher or lower than the output voltage of the fuel cell 18, the voltage variations 3 1 to 33 have the first and second arms as described above. It has a configuration like this. With this configuration, it is possible to step up and step down from the battery 2 side to the inverter 20 side, and step up and step down from the inverter 20 side to the battery 2 side.
  • the control device 30 selects and drives part of the voltage converters 31 to 33 based on the result of detecting the state of the voltage converters 31 to 33.
  • each of voltage converters 31 to 33 includes an element temperature sensor 41 for measuring the element temperature.
  • the control device 30 determines a voltage converter to be driven based on the element temperatures T 3 1 to T 3 3 of the voltage converters 31 to 33 detected by the element temperature sensor 41.
  • the control device 30 determines a voltage converter to be driven so as to be used preferentially from a voltage converter having a low element temperature.
  • FIG. 2 is a flowchart showing a control structure of a program executed in control device 30 of FIG. The process of this flowchart is called from the main routine and executed every certain time or whenever a predetermined condition is satisfied.
  • control device 30 when processing is started, first, in step S 1, control device 30 becomes: the power consumed or generated by inverter 20 and the power output from fuel cell 18. In consideration of the state of charge of battery 2, the multi-phase voltage converter It is determined whether or not a switching request is generated.
  • the phase switching request includes a case where the drive phase is reduced from the three-phase drive to the one-phase drive and a case where the drive phase is increased from the one-phase drive to the three-phase drive.
  • the battery 2 will continue to increase until the output of the fuel cell 18 increases. Large power must be supplied to the inverter 20. In such a case, the drive phase is increased from 1-phase drive to 3-phase drive.
  • step S 1 If it is determined in step S 1 that there is no phase switching request, the process proceeds to step S 7. If it is determined that there is a phase switching request, the process proceeds to step S 2.
  • step S7 it is determined that the current converter control is to be maintained, and the process proceeds to step S8 where control is returned to the main routine.
  • step S2 it is determined whether the phase switching request is a request for switching from three phases to one phase. If the phase switching request is a request to switch from three phases to one phase, the process proceeds to step S3. On the other hand, if not, the process proceeds to step S5.
  • step S3 the temperature T3 1 to T3 3 is measured by the element temperature sensor 4
  • controller 30 takes this temperature. Then, the process proceeds to step S 4, and the control device 30 selects one of the voltage converters 3 1-3 3 having the lowest element temperature, operates this for one phase, and the other two phases Stop. During three-phase drive, even if an on-time command is given to each phase with the same duty ratio, a slight current variation will occur due to device variations. Since the phase with the lowest heat generation during three-phase driving can be considered as a phase in which no current flows, use of that phase during one-phase driving can level the use of elements. The process then proceeds to step S8, and control is returned to the main routine.
  • step S5 the drive phase changes from 1 to 3 This is a case where there is a switching request so as to increase. Therefore, in step S5, the control device 30 determines that a request for switching from 1-phase drive to 3-phase drive has been made, and proceeds to step S6 to drive the currently stopped 2-phase to change to 3-phase drive. Switch.
  • FIG. 3 is a flowchart showing the control structure of the program executed in the second embodiment. Note that the processing of this flowchart is called from the main routine and executed at regular time intervals or whenever a predetermined condition is established.
  • steps S 11 to S 16 in the flowchart of FIG. 3 are performed in the same manner as steps S 1 to S 6 of FIG. 2, their description will not be repeated.
  • step S 11 if it is determined in step S 11 that there is no phase switching request, the process proceeds to step S 17.
  • step S 17 it is determined whether one-phase driving is currently in progress. If the one-phase drive is being performed, the process proceeds to step S 18, and if the one-phase drive is not being performed, that is, if the three-phase drive is being performed, the process proceeds to step S 21.
  • step S 18 element temperatures T 3 1 to T 3 3 are measured by the element temperature sensor 41, and the control device 30 takes in this temperature. Then, the process proceeds to step S 19, and control device 30 determines whether or not each element temperature ⁇ 31 to ⁇ 33 exceeds a threshold value.
  • step S 19 If the element temperature of the drive phase exceeds the threshold value in step S 19, the process proceeds to step S 20, and the operation phase is switched to the phase that is not currently driven. At this time, switching is performed so that the phase with the lowest element temperature is driven by one phase. This is to avoid the continued use in a state that generates a large amount of heat, as it will greatly affect the deterioration of internal elements.
  • the threshold is set to a value that ensures a margin for the maximum allowable temperature of the device. For example, if the element's rated allowable temperature is 105 ° C, it should be set to about 90 ° C. The process then proceeds to step S 22 and control returns to the main routine. It is.
  • step S 19 if the element temperature does not exceed the threshold value in step S 19, the process proceeds to step S 21.
  • step S 21 it is determined that the current converter control is to be maintained, and the process proceeds to step S 22 and control is returned to the main routine.
  • the cumulative driving time of the voltage converters of each phase can be averaged compared to the case of the first embodiment, and the life can be further extended.
  • the control device 30 includes a nonvolatile memory 50 that stores usage histories of the voltage converters 31 to 33 in a nonvolatile manner.
  • the control device 30 may determine a voltage converter to be driven based on this usage history.
  • the control device 30 refers to the usage history and selects and drives a voltage converter that is different from the previously driven voltage converter.
  • FIG. 4 is a flowchart showing the control structure of the program executed in the third embodiment. Note that the processing of this flowchart is called from the main routine and executed at regular time intervals or whenever a predetermined condition is established.
  • control device 30 when the process is first started, in step S 3 1, control device 30 outputs power consumed or generated by inverter 20 and power output from fuel cell 18. And whether or not a phase switching request is generated in the multiphase voltage converter 1 ⁇ in consideration of the state of charge of the battery 2.
  • the phase switching request includes a case where the drive phase is decreased from the three-phase drive to the one-phase drive and a case where the drive phase is increased from the one-phase drive to the three-phase drive.
  • step S 3 1 If it is determined in step S 3 1 that there is no phase switching request, the process proceeds to step S 3 8. If it is determined that there is a phase switching request, the process proceeds to step S 3. Proceed to step 2.
  • step S 3 8 it is determined that the current converter control is maintained, and the process proceeds to step S 39 and control is returned to the main routine.
  • step S 3 2 it is determined whether or not the phase switching request is a request for switching from three phases to one phase.
  • the phase switching request is a request to switch from 3 phase to 1 phase
  • the process proceeds to step S 3 3.
  • the process proceeds to step S 35.
  • step S 33 the control device 30 reads out the last drive phase information in the previous one-phase drive from the nonvolatile memory 50.
  • step S 3 4 one of the phases positioned next to the final drive phase in the predetermined rotation order is selected as the drive phase, this is operated for one phase, and the other two phases are stopped. For example, this rotation order is determined so that the voltage converter 31 is driven again after switching from the voltage converter 3 1 ⁇ 3 2 ⁇ 3 3 and the switching in the same order is returned. Then, the process proceeds to step S 39 and the control is returned to the main routine.
  • step S 3 2 When the process proceeds from step S 3 2 to step S 3 5, there is a switching request to increase the drive phase from 1 phase to 3 phases. Therefore, the control device 30 determines that there is a request for switching from the one-phase drive to the three-phase drive, and the process proceeds to step S36, where the current drive phase is stored in the nonvolatile memory 50 as the last drive phase information. Write. Then, the process proceeds to step S 37 to drive the currently stopped two phases and switch to the three-phase drive.
  • FIG. 5 is a flowchart showing the control structure of the program executed in the fourth embodiment. Note that the processing of this flowchart is called from the main routine and executed at regular time intervals or whenever a predetermined condition is established.
  • steps S 4 1 to S 47 in the flowchart of FIG. 5 are performed in the same manner as steps S 31 to S 37 in FIG. 4, their description will not be repeated.
  • step S 4 1 when it is determined in step S 4 1 that there is no phase switching request, the process proceeds to step S 48.
  • step S 48 it is determined whether one-phase driving is currently in progress. During 1-phase drive If YES, the process proceeds to step S 49, and if not one-phase driving, that is, if three-phase driving is being performed, the process proceeds to step S 51.
  • control device 30 determines whether or not the drive phase currently driven in phase has been driven for one phase for a predetermined time.
  • step S 4 9 If one-phase driving has been performed for a predetermined time in step S 4 9, the process proceeds to step S 5 0 and the operation phase is switched to the non-driven phase.
  • the drive phase is changed based on the rotation order. For example, this rotation order is determined so that the voltage converter 3 1 is started again after the voltage converters 3 1 ⁇ 3 2 ⁇ 3 3 are switched in order and the same order is repeated thereafter. Then, the process proceeds to step S 52 and control is returned to the main routine.
  • step S 4 9 the process proceeds to step S 51. .
  • step S 51 it is determined that the current converter control is to be maintained, the process proceeds to step S 52, and control is returned to the main routine.

Abstract

A polyphase voltage converting apparatus (10) is provided with a plurality of voltage converters (31-33) connected in parallel between a first node and a second node; and a controller (30) which selects one or two voltage converters to be driven from the voltage converters (31-33) based on the detection results of the status of the voltage converters (31-33). Preferably, each of the voltage converters (31-33) includes an element temperature sensor (41) for measuring element temperature. The controller (30) decides the voltage converter to be driven based on each element temperature of the voltage converters. The controller (30) decides the voltage converter to be driven so that the voltage converters are used from the one having a lower temperature by giving priority. Thus, while suppressing cost increase, the polyphase voltage converting apparatus having a long product life and a vehicle are provided.

Description

明細書 多相電圧変換装置および車両 技術分野  TECHNICAL FIELD Technical Field
この発明は、 多相電圧変換装置およびそれを備える車両に関し、 特に一部の電 • 圧変換器を選択して駆動させることが可能な多相電圧変換装置およびそれを備え る車両に関する。 背景技術  The present invention relates to a multiphase voltage converter and a vehicle including the same, and more particularly to a multiphase voltage converter capable of selectively driving some voltage / voltage converters and a vehicle including the same. Background art
特開 2 0 0 4— 3 5 7 3 8 8号公報は、 コンバータの機能として昇圧及び降圧 の機能を併せ持つ多相多重型の昇降圧コンバータを開示する。 このような昇降圧 コンバータは電気自動車などのインバータシステムに用いられ、 電流リップルを Japanese Patent Laid-Open No. 2000-035 5 3 8 8 discloses a multi-phase multiplex type buck-boost converter having both a step-up function and a step-down function as converter functions. Such a buck-boost converter is used in an inverter system such as an electric vehicle to reduce current ripple.
: 低減させることができる。 : Can be reduced.
多相多重型のコンバータは、 出力側で消費される電力が小さい場合には一部の みの相に対応する電圧変換器 (以下、 「相に対応する電圧変換器」 を単に 「相」 と称する場合がある) を運転させて残りの相は休止させるほうが効率がょレ、場合 がある。 しかし、 このような使用をする場合には、 特定相のみに使用が集中する と、 他の相に比べて特定相の劣化が早くなる。 他の相は劣化していないにも拘ら ず多相コンバータ全体としてみれば製品寿命が特定相によって定まってしまう。 ' 十分な製品寿命を得ようとすると、 設計に余裕を持たせる必要がありコストア ' ップにつながってしまう。  When the power consumed on the output side is small, the multi-phase multiplex type converter converts the voltage converter corresponding to only a part of the phase (hereinafter referred to as the “voltage converter corresponding to the phase” to “phase”). It may be more efficient to operate the system and pause the remaining phases. However, in such a use, if the use is concentrated only on a specific phase, the deterioration of the specific phase is accelerated compared to other phases. Although the other phases have not deteriorated, the product life is determined by the specific phase when viewed as a whole of the multiphase converter. 'If you try to get a sufficient product life, you need to make room for the design, leading to increased costs.
発明の開示  Disclosure of the invention
この発明の目的は、 コストの上昇を抑えつつ製品寿命が長い多相電圧変換装置 および車両を提供することである。  An object of the present invention is to provide a multiphase voltage conversion device and a vehicle having a long product life while suppressing an increase in cost.
. この発明は、 要約すると、 多相電圧変換装置であって、 第 1のノードと第 2の ノードとの間に並列的に接続される複数の電圧変^^と、 複数の電圧変^^の状 態を検知した結果に基づいて複数の電圧変換器のうちから一部を選択して駆動さ せる制御部とを備える。 好ましくは、 複数の電圧変換器の各々は、 素子温度を測定する温度センサを含 む。 制御部は、 複数の電圧変換器の各素子温度に基づき駆動させる電圧変換器を 決定する。 In summary, the present invention is a multi-phase voltage converter comprising a plurality of voltage variations ^^ connected in parallel between a first node and a second node, and a plurality of voltage variations ^^ And a controller that selects and drives a part of the plurality of voltage converters based on the result of detecting the state. Preferably, each of the plurality of voltage converters includes a temperature sensor that measures an element temperature. The control unit determines a voltage converter to be driven based on each element temperature of the plurality of voltage converters.
より好ましくは、 制御部は、 温度の低い電圧変換器から優先して使用するよう ' 'に駆動させる電圧変換器を決定する。  More preferably, the control unit determines a voltage converter to be driven to be used in preference to a voltage converter having a low temperature.
好ましくは、 制御部は、 複数の電圧変換器の使用履歴を不揮発的に記憶する記 憶部を含む。 制御部は、 使用履歴に基づいて駆動させる電圧変換器を決定する。 より好ましくは、 制御部は、 使用履歴を参照して前回駆動した電圧変換器とは 異なる電圧変換器を選択して駆動させる。  Preferably, the control unit includes a storage unit that stores usage histories of the plurality of voltage converters in a nonvolatile manner. The control unit determines a voltage converter to be driven based on the usage history. More preferably, the control unit selects and drives a voltage converter different from the previously driven voltage converter with reference to the use history.
好ましくは、 複数の電圧変換器は、 第 1〜第 3の電圧変換器であり、 第 1〜第 3の電圧変換器を駆動させる 3相駆動から 1つの電圧変換器のみを駆動させる 1 相駆動に切換える指令を受けた場合に、 制御部は駆動させる電圧変換器を選択す る。  Preferably, the plurality of voltage converters are first to third voltage converters, and one-phase driving for driving only one voltage converter from three-phase driving for driving first to third voltage converters. When receiving a command to switch to, the control unit selects the voltage converter to be driven.
好ましくは、 制御部は、 駆動中の電圧変換器の駆動時間が所定時間を経過した 場合には、 非駆動中であった他の電圧変換器に駆動させる電圧変換器を切換える。 より好ましくは、 複数の電圧変換器は、 第 1〜第 3の電圧変換器であり、 第 1 〜第 3の電圧変換器のうちから 1つの電圧変換器のみを駆動させる 1相駆動を実 行中において、 制御部は駆動させる電圧変換器の切換を行なう。  Preferably, when the drive time of the voltage converter being driven has passed a predetermined time, the control unit switches the voltage converter to be driven by another voltage converter that has not been driven. More preferably, the plurality of voltage converters are first to third voltage converters, and perform one-phase driving for driving only one voltage converter from the first to third voltage converters. Inside, the controller switches the voltage converter to be driven.
好ましくは、 制御部は、 駆動中の電圧変換器の温度が所定温度を超えた場合に · は、 非駆動中であった他の電圧変換器に駆動させる電圧変換器を切換える。'  Preferably, when the temperature of the voltage converter being driven exceeds a predetermined temperature, the control unit switches the voltage converter to be driven by another voltage converter that has not been driven. '
より好ましくは、 複数の電圧変換器は、 第 1〜第 3の電圧変換器であり、 第 1 〜第 3の電圧変 のうちから 1つの電圧変換器のみを駆動させる 1相駆動を実 行中において、 制御部は駆動させる電圧変換器の切換を行なう。  More preferably, the plurality of voltage converters are first to third voltage converters, and one-phase driving for driving only one voltage converter from the first to third voltage converters is being performed. The control unit switches the voltage converter to be driven.
この発明は、 他の局面においては、 車両であって、 上記いずれかの多相電圧変 換装置と、 第 1のノードに接続される燃料電池と、 第 2のノードに接続される蓄 電装置とを備える。  In another aspect, the present invention is a vehicle, which is any one of the multiphase voltage conversion devices described above, a fuel cell connected to a first node, and a power storage device connected to a second node. With.
本発明によれば、 複数相の電圧変換器の一部を用いる場合において各相の状態 に応じて駆動する相を決めることにより、 使用する相を最適なものとすることが でき、 劣化の偏りを少なくできる。 図面の簡単な説明 According to the present invention, when a part of a voltage converter of a plurality of phases is used, by determining the phase to be driven according to the state of each phase, the phase to be used can be optimized, and deterioration bias Can be reduced. Brief Description of Drawings
図 1は、 本発明に係る車両 1 0 0の構成を示した回路図である。  FIG. 1 is a circuit diagram showing a configuration of a vehicle 100 according to the present invention.
図 2は、 図 1の制御装置 3 0において実行されるプログラムの制御構造を示し たフローチャートである。  FIG. 2 is a flowchart showing a control structure of a program executed in control device 30 of FIG.
図 3は、 実施の形態 2で実行されるプログラムの制御構造を示したフローチヤ ートである。  FIG. 3 is a flowchart showing the control structure of the program executed in the second embodiment.
図 4は、 実施の形態 3で実行されるプログラムの制御構造を示したフローチヤ ートである。  FIG. 4 is a flowchart showing the control structure of the program executed in the third embodiment.
図 5は、 実施の形態 4で実行されるプログラムの制御構造を示したフローチヤ ートである。 発明を実施するための最良の形態  FIG. 5 is a flowchart showing the control structure of the program executed in the fourth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について図面を参照しながら詳細に説明する。 なお、 図中同一または相当部分には同一符号を付してその説明は繰返さない。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
[実施の形態 1 ]  [Embodiment 1]
図 1は、 本発明に係る車両 1 0 0の構成を示した回路図である。 車両 1 0 0は、 モータを搭載する自動車の一例として示される燃料電池自動車である。  FIG. 1 is a circuit diagram showing a configuration of a vehicle 100 according to the present invention. The vehicle 100 is a fuel cell vehicle shown as an example of a vehicle equipped with a motor.
図 1を参照して、 車両 1 0 0は、 ノード N 1とノード N 3との間に接続される バッテリ 2と、 ノード N 1とノード N 3との間に接続される平滑用コンデンサ 8 と、 ノード N 1とノード N 2との間に接続されバッテリの電圧 V Bとインバータ の電圧 V I N Vとの間で相互に電圧変換を行なう多相電圧変換装置 1 0とを含む。 車両 1 0 0は、 さらに、 ノード N 2とノード N 3との間に接続される平滑用コ ンデンサ 1 4と、 ノード N 2とノード N 3との間に直列に接続されるダイォード 1 6および燃料電池 1 8と、 ノード N 2とノード N 3との間に接続されるインパ ータ 2 0と、 インバータ 2 0によって駆動されるモータ 2 2とを含む。 ダイォー ド 1 6は、 燃料電池 1 8に電流が流入するのを防止するための保護素子であり、 燃料電池からノード N 2に向かう向きを順方向として接続される。  Referring to FIG. 1, vehicle 1 0 0 includes a battery 2 connected between node N 1 and node N 3, and a smoothing capacitor 8 connected between node N 1 and node N 3. And a multi-phase voltage converter 10 connected between node N 1 and node N 2 and performing voltage conversion between battery voltage VB and inverter voltage VINV. Vehicle 1 0 0 further includes a smoothing capacitor 14 connected between node N 2 and node N 3, diode 16 connected in series between node N 2 and node N 3, and It includes a fuel cell 18, an inverter 20 connected between the node N 2 and the node N 3, and a motor 22 driven by the inverter 20. The diode 16 is a protective element for preventing current from flowing into the fuel cell 18 and is connected with the direction from the fuel cell toward the node N 2 as the forward direction.
車両 1 0 0は、 さらに、 バッテリの電圧 V Bを検出する電圧センサ 6と、 イン バータ電圧 V I NVを検出する電圧センサ 12と、 制御装置 30とを含む。 The vehicle 1 0 0 further includes a voltage sensor 6 for detecting the battery voltage VB, A voltage sensor 12 for detecting the barter voltage VI NV and a control device 30 are included.
多相電圧変換装置 10は、 ノード N1とノード N 2との間に並^接続される電 圧変換器 31〜 33を含む。 電圧変換器 31〜 33にはともに電圧 V Bおよび V I NVの基準電位を与えるノード N 3が接続されている。  Multiphase voltage converter 10 includes voltage converters 31-33 connected in parallel between nodes N1 and N2. The voltage converters 31 to 33 are connected to a node N 3 that provides reference potentials for voltages V B and V I NV.
電圧変換器 3 1は、 ノード N1とノード N 3との間に接続される第 1のアーム Voltage converter 31 is a first arm connected between node N1 and node N3
' A1と、 ノード N2とノード N3との間に接続される第 2のアーム A2と、 ァー • ム A 1 A2間に接続されるリアタトル L 1と、 電圧変換器 3 1中の素子温度を ' 検出する素子温度センサ 41とを含む。 'A1, second arm A2 connected between node N2 and node N3, rear tutor L 1 connected between arm A 1 and A2, and element temperature in voltage converter 3 1 'Including element temperature sensor 41 to detect.
第 1のアーム A 1は、 ノード N1とノード N 3との間に直列に接続される I G BT素子 GA, GBと、 I GBT素子 GAと並列に接続されるダイオード DAと、 I GBT素子 GBと並列に接続されるダイオード DBとを含む。  The first arm A 1 includes an IGBT element GA, GB connected in series between the node N1 and the node N 3, a diode DA connected in parallel with the I GBT element GA, and an I GBT element GB. Including a diode DB connected in parallel.
I GBT素子 GAのコレクタはノード N1に接続され、 ェミッタはノード N4 に接続される。 ダイオード DAはノード N 4からノード N 1に向かう向きを順方 向として接続される。  The collector of the I GBT element GA is connected to the node N1, and the emitter is connected to the node N4. The diode DA is connected with the direction from the node N 4 toward the node N 1 as the forward direction.
I GBT素子 GBのコレクタはノード N4に接続され、 ェミッタはノード N3 に接続される。 ダイォード DBはノード N 3からノード N 4に向かう向きを順方 向として接続される。  The collector of I GBT element GB is connected to node N4, and the emitter is connected to node N3. The diode DB is connected with the direction from node N 3 to node N 4 as the forward direction.
第 2のアーム A 2は、 ノード N 2とノード N 3との間に直列に接続される I G , BT素子 GC, GDと、 I GBT素子 GCと並列に接続されるダイオード DCと、 I GBT素子 GDと並列に接続されるダイオード DDとを含む。  The second arm A 2 includes IG, BT elements GC, GD connected in series between the node N 2 and the node N 3, a diode DC connected in parallel with the I GBT element GC, and an I GBT element Includes diode DD connected in parallel with GD.
I GBT素子 GCのコレクタはノード N2に接続され、 ェミッタはノード N 5 に接続される。 ダイオード DCはノード N4からノード N 2に向かう向きを順方 向として接続される。  The collector of the I GBT element GC is connected to node N2, and the emitter is connected to node N5. The diode DC is connected with the direction from the node N4 to the node N2 as the forward direction.
I GBT素子 GDのコレクタはノード N 5に接続され、 ェミッタはノード N 3 に接続される。 ダイオード DDはノード N3からノード N5に向かう向きを順方 向として接続される。  The collector of the I GBT element GD is connected to the node N 5, and the emitter is connected to the node N 3. Diode DD is connected with the direction from node N3 to node N5 as the forward direction.
リアタトル L 1は、 ノード N 4とノード N 5との間に接続される。  The rear tuttle L 1 is connected between the node N 4 and the node N 5.
なお、 電圧変換器 32, 33の内部の構成については、 電圧変換器 3 1と同様 であるので、 説明は繰返さない。 ただし、 電圧変換器 32、 33中の素子温度セ ンサ 4 1からはそれぞれ素子温度 T 3 2 , Τ 3 3が出力される。 Since the internal configuration of voltage converters 32 and 33 is the same as that of voltage converter 31, description thereof will not be repeated. However, the element temperature sensor in the voltage converters 32 and 33 The element temperatures T 3 2 and Τ 3 3 are output from the sensor 41, respectively.
また、 図 1では、 I G B T素子 G Bのェミッタと I G B T素子 G Dのェミッタ とが電圧変換器 3 1内部で接続されている構成、 つまり複数の電圧変換器の各々 の内部でノード Ν 3と燃料電池の負極とを接続する構成を示した。 しカ し、 図 1 の構成に代えて、 各電圧変換器内部では I G Β Τ素子 G Βのェミッタと I G B T 素子 G Dのエミッタとは接続せずに、 電圧変換器外部にノード Ν 3と燃料電池の 負極とを接続する配線を電圧変換器 3 1〜3 3共通に 1本設けても良い。  In FIG. 1, the IGBT element GB emitter and the IGBT element GD emitter are connected inside the voltage converter 31. In other words, the node Ν3 and the fuel cell are connected inside each of the voltage converters. A configuration for connecting the negative electrode is shown. However, instead of the configuration of Fig. 1, the emitter of IG IG Τ element G と and the emitter of IGBT element GD are not connected inside each voltage converter, and node Ν 3 and the fuel cell are connected to the outside of the voltage converter. One wiring common to the voltage converters 31 to 33 may be provided to connect the negative electrode.
バッテリの電圧 V Bと燃料電池 1 8の出力電圧とはとり得る範囲が一部重なつ ている。 たとえばパッテリはニッケル水素パッテリなどが使用され、 その電源電 圧はたとえば 2 0 0 Vから 3 0 O Vの範囲で変動するとする。 一方燃料電池 1 8 の出力電圧はたとえば 2 4 0 V〜4 0 0 Vの範囲で変動する。  The possible range of the battery voltage V B and the output voltage of the fuel cell 18 partially overlap. For example, a nickel-metal hydride battery is used as the battery, and its power supply voltage varies within a range of, for example, 2 00 V to 30 O V. On the other hand, the output voltage of the fuel cell 1 8 varies within a range of 2 40 V to 4 0 0 V, for example.
したがってバッテリ 2の電圧が燃料電池 1 8の出力電圧よりも高い場合と低い 場合とがあるので、 電圧変 3 1〜3 3は先に説明したように第 1、 第 2のァ ームを有するような構成となっている。 この構成により、 バッテリ 2側からイン バータ 2 0側に昇圧および降圧が可能となり、 かつインバータ 2 0側からバッテ リ 2側に昇圧および降圧が可能となる。  Therefore, since the voltage of the battery 2 may be higher or lower than the output voltage of the fuel cell 18, the voltage variations 3 1 to 33 have the first and second arms as described above. It has a configuration like this. With this configuration, it is possible to step up and step down from the battery 2 side to the inverter 20 side, and step up and step down from the inverter 20 side to the battery 2 side.
制御装置 3 0は、 電圧変換器 3 1〜3 3の状態を検知した結果に基づいて電圧 変換器 3 1〜3 3のうちから一部を選択して駆動させる。  The control device 30 selects and drives part of the voltage converters 31 to 33 based on the result of detecting the state of the voltage converters 31 to 33.
好ましくは、 電圧変換器 3 1〜 3 3の各々は、 素子温度を測定する素子温度セ ンサ 4 1を含む。 制御装置 3 0は、 素子温度センサ 4 1の検出した電圧変換器 3 1〜 3 3の各素子温度 T 3 1〜T 3 3に基づき駆動させる電圧変換器を決定する。 制御装置 3 0は、 素子温度の低い電圧変換器から優先して使用するように駆動さ せる電圧変換器を決定する。  Preferably, each of voltage converters 31 to 33 includes an element temperature sensor 41 for measuring the element temperature. The control device 30 determines a voltage converter to be driven based on the element temperatures T 3 1 to T 3 3 of the voltage converters 31 to 33 detected by the element temperature sensor 41. The control device 30 determines a voltage converter to be driven so as to be used preferentially from a voltage converter having a low element temperature.
図 2は、 図 1の制御装置 3 0において実行されるプログラムの制御構造を示し たフローチャートである。 なお、 このフローチャートの処理が一定時間毎または 所定条件が成立するごとにメインルーチンから呼び出されて実行される。  FIG. 2 is a flowchart showing a control structure of a program executed in control device 30 of FIG. The process of this flowchart is called from the main routine and executed every certain time or whenever a predetermined condition is satisfied.
図 2を参照して、 まず処理が開始されると、 ステップ S 1において制御装置 3 0は ·、 インバータ 2 0で消費されるまたは発電される電力と燃料電池 1 8から出 力される電力と、 バッテリ 2の充電状態とを考慮して多相電圧変換装置 1 0に相 切換要求が発生するか否かを判断する。 相切換要求は、 3相駆動から 1相駆動に 駆動相を少なくする場合と、 1相駆動から 3相駆動に駆動相を増加させる場合と を含む。 Referring to FIG. 2, when processing is started, first, in step S 1, control device 30 becomes: the power consumed or generated by inverter 20 and the power output from fuel cell 18. In consideration of the state of charge of battery 2, the multi-phase voltage converter It is determined whether or not a switching request is generated. The phase switching request includes a case where the drive phase is reduced from the three-phase drive to the one-phase drive and a case where the drive phase is increased from the one-phase drive to the three-phase drive.
たとえば、 静止時から運転者がァクセルペダルを踏込み急加速が行なわれた場 合にインバータ 2 0の電力消費が増大した場合には、 燃料電池 1 8の出力が増加 されるまでの間はバッテリ 2から大きな電力がインバータ 2 0に供給されねばな らない。 このような場合には 1相駆動から 3相駆動に駆動相を増加させる。  For example, if the power consumption of the inverter 20 increases when the driver depresses the accelerator pedal and sudden acceleration is performed from a standstill, the battery 2 will continue to increase until the output of the fuel cell 18 increases. Large power must be supplied to the inverter 20. In such a case, the drive phase is increased from 1-phase drive to 3-phase drive.
逆に、 急加速後に 3相駆動が行なわれてその後燃料電池 1 8の出力が十分とな り多相電圧変換装置 1 0を通過する電力が少なくなつた場合には、 トータルの燃 費をよくするために 3相駆動から 1相駆動に駆動相を少なくする。  Conversely, if three-phase drive is performed after sudden acceleration, and then the output of the fuel cell 18 becomes sufficient and the power passing through the multi-phase voltage converter 10 becomes less, the total fuel consumption will be reduced. To achieve this, the number of drive phases is reduced from three-phase drive to one-phase drive.
ステップ S 1において相切換要求が無しと判断された場合には、 処理はステツ プ S 7に進み、 逆に相切換要求が有りと判断された場合には、 処理はステップ S 2に進む。  If it is determined in step S 1 that there is no phase switching request, the process proceeds to step S 7. If it is determined that there is a phase switching request, the process proceeds to step S 2.
ステップ S 7では現状のコンバータ制御が維持されることが決定されて、 処理 はステップ S 8に進み制御がメインルーチンに戻される。  In step S7, it is determined that the current converter control is to be maintained, and the process proceeds to step S8 where control is returned to the main routine.
ステップ S 2においては、 相切換要求が 3相から 1相に切換える要求であるか 否かが判断される。 相切換要求が 3相から 1相に切換える要求であった場合には 処理はステップ S 3に進む。 一方、 そうでなかった場合には処理はステップ S 5 に進む。  In step S2, it is determined whether the phase switching request is a request for switching from three phases to one phase. If the phase switching request is a request to switch from three phases to one phase, the process proceeds to step S3. On the other hand, if not, the process proceeds to step S5.
ステップ S 3では、 素子温度センサ 4 1によって温度 T 3 1〜T 3 3の測定が In step S3, the temperature T3 1 to T3 3 is measured by the element temperature sensor 4
:行なわれ、 制御装置 3 0はこの温度を取込む。 そして処理はステップ S 4に進み、 制御装置 3 0は、 電圧変換器 3 1 - 3 3の中から最も素子温度の低いものを 1つ 選択し、 これを 1相運転させて他の 2相は停止させる。 3相駆動時は、 各相に同 じデューティー比でオン時間指令を与えていても、 素子のばらつきなどにより若 干の電流ばらつきが発生してしまう。 3相駆動時にもっとも発熱が低い相はもつ とも電流が流れていない相であると考えることができるので、 1相駆動時にその 相を使用することで素子使用の平準化を図ることができる。 そして処理はステツ プ S 8に進み制御がメインルーチンに戻される。 : Done, controller 30 takes this temperature. Then, the process proceeds to step S 4, and the control device 30 selects one of the voltage converters 3 1-3 3 having the lowest element temperature, operates this for one phase, and the other two phases Stop. During three-phase drive, even if an on-time command is given to each phase with the same duty ratio, a slight current variation will occur due to device variations. Since the phase with the lowest heat generation during three-phase driving can be considered as a phase in which no current flows, use of that phase during one-phase driving can level the use of elements. The process then proceeds to step S8, and control is returned to the main routine.
ステップ S 2からステップ S 5に処理が進んだ場合には 1相から 3相に駆動相 を増加させるように切換え要求があつた場合である。 したがってステップ S 5に おいて制御装置 3 0は 1相駆動から 3相駆動に切換え要求があつたと判定し、 ス テツプ S 6に進み現在休止中であった 2相を駆動させて 3相駆動に切換える。 このように温度の比較的上昇していない電圧変換器を選択して 1相駆動させる ことにより、 相切換制御を用いて 3相コンバータを使用しても、 特定相だけ劣化 することを防止でき、 全体として 3相コンバータの寿命を延ばすことができる。 When the process proceeds from step S2 to step S5, the drive phase changes from 1 to 3 This is a case where there is a switching request so as to increase. Therefore, in step S5, the control device 30 determines that a request for switching from 1-phase drive to 3-phase drive has been made, and proceeds to step S6 to drive the currently stopped 2-phase to change to 3-phase drive. Switch. By selecting a voltage converter that does not have a relatively high temperature and driving it in one phase, even if a three-phase converter is used using phase switching control, it can be prevented that only a specific phase is deteriorated. Overall, the life of the three-phase converter can be extended.
[実施の形態 2 ]  [Embodiment 2]
図 3は、 実施の形態 2で実行されるプログラムの制御構造を示したフロ一チヤ ートである。 なお、 このフローチャートの処理が一定時間毎または所定条件が成 立するごとにメインルーチンから呼び出されて実行される。  FIG. 3 is a flowchart showing the control structure of the program executed in the second embodiment. Note that the processing of this flowchart is called from the main routine and executed at regular time intervals or whenever a predetermined condition is established.
図 3のフローチャートのステップ S 1 1〜ステップ S 1 6は、 図 2のステップ S 1〜ステップ S 6とそれぞれ同様な処理が行なわれるのでこれらの説明は繰返 さない。  Since steps S 11 to S 16 in the flowchart of FIG. 3 are performed in the same manner as steps S 1 to S 6 of FIG. 2, their description will not be repeated.
図 3において、 ステップ S 1 1において相切換要求が無しと判断された場合に は、 処理はステップ S 1 7に進む。  In FIG. 3, if it is determined in step S 11 that there is no phase switching request, the process proceeds to step S 17.
ステップ S 1 7では、 現在 1相駆動中であるか否かが判断される。 1相駆動中 であった場合には処理はステップ S 1 8に進み、 1相駆動中でない場合つまり 3 相駆動中である場合には処理はステップ S 2 1に進む。  In step S 17, it is determined whether one-phase driving is currently in progress. If the one-phase drive is being performed, the process proceeds to step S 18, and if the one-phase drive is not being performed, that is, if the three-phase drive is being performed, the process proceeds to step S 21.
ステップ S 1 8では、 素子温度センサ 4 1によって素子温度 T 3 1〜T 3 3の 測定が行なわれ、 制御装置 3 0はこの温度を取込む。 そして処理はステップ S 1 9に進み、 制御装置 3 0は、 各素子温度 Τ 3 1〜Τ 3 3がしきい値を超えたか否 かを判断する。  In step S 18, element temperatures T 3 1 to T 3 3 are measured by the element temperature sensor 41, and the control device 30 takes in this temperature. Then, the process proceeds to step S 19, and control device 30 determines whether or not each element temperature Τ 31 to Τ 33 exceeds a threshold value.
ステップ S 1 9において駆動相の素子温度がしきい値を超えた場合には、 ステ ップ S 2 0に処理が進み、 現在駆動していない相に運転相を切換える。 このとき、 最も素子温度が低い相を 1相駆動するように切換が行なわれる。 発熱が大きい状 態で使用し続けることは、 内部素子の劣化に大きく影響するのでこれを避けるた めである。 しきい値は、 素子の許容最高温度に対してマージンを確保した値に設 定する。 たとえば、 素子の定格許容温度が 1 0 5 °Cであれば 9 0 °C程度に設定す るのがよい。 そして処理はステップ S 2 2に進み、 制御はメインルーチンに戻さ れる。 If the element temperature of the drive phase exceeds the threshold value in step S 19, the process proceeds to step S 20, and the operation phase is switched to the phase that is not currently driven. At this time, switching is performed so that the phase with the lowest element temperature is driven by one phase. This is to avoid the continued use in a state that generates a large amount of heat, as it will greatly affect the deterioration of internal elements. The threshold is set to a value that ensures a margin for the maximum allowable temperature of the device. For example, if the element's rated allowable temperature is 105 ° C, it should be set to about 90 ° C. The process then proceeds to step S 22 and control returns to the main routine. It is.
一方、 ステップ S 1 9において素子温度がしきい値を超えていない場合には処 理はステップ S 2 1に進む。  On the other hand, if the element temperature does not exceed the threshold value in step S 19, the process proceeds to step S 21.
ステップ S 2 1では、 現状のコンバータ制御が維持されることが決定されて、 処理はステップ S 2 2に進み制御がメインルーチンに戻される。  In step S 21, it is determined that the current converter control is to be maintained, and the process proceeds to step S 22 and control is returned to the main routine.
このような制御とすることで、 実施の形態 1の場合よりも各相の電圧変換器の 駆動累積時間が平均化されて、 さらに寿命を延ばすことができる。  By adopting such control, the cumulative driving time of the voltage converters of each phase can be averaged compared to the case of the first embodiment, and the life can be further extended.
[実施の'形態3 ] [Embodiment 3 ]
図 1において、 制御装置 3 0は、 電圧変換器 3 1〜3 3の使用履歴を不揮発的 に記憶する不揮発メモリ 5 0を含む。 制御装置 3 0は、 この使用履歴に基づいて 駆動させる電圧変換器を決定してもよい。 この場合は、 制御装置 3 0は、 使用履 歴を参照して前回駆動した電圧変換器とは異なる電圧変換器を選択して駆動させ る。  In FIG. 1, the control device 30 includes a nonvolatile memory 50 that stores usage histories of the voltage converters 31 to 33 in a nonvolatile manner. The control device 30 may determine a voltage converter to be driven based on this usage history. In this case, the control device 30 refers to the usage history and selects and drives a voltage converter that is different from the previously driven voltage converter.
図 4は、 実施の形態 3で実行されるプログラムの制御構造を示したフローチヤ ートである。 なお、 このフローチャートの処理が一定時間毎または所定条件が成 立するごとにメインルーチンから呼び出されて実行される。  FIG. 4 is a flowchart showing the control structure of the program executed in the third embodiment. Note that the processing of this flowchart is called from the main routine and executed at regular time intervals or whenever a predetermined condition is established.
図 1、 図 4を参照して、 まず処理が開始されると、 ステップ S 3 1において制 御装置 3 0は、 インバータ 2 0で消費または発電される電力と燃料電池 1 8から 出力される電力と、 バッテリ 2の充電状態とを考慮して多相電圧変換装置 1 Όに 相切換要求が発生するか否かを判断する。 相切換要求は、 3相駆動から 1相駆動 に駆動相を少なくする場合と、 1相駆動から 3相駆動に駆動相を増加させる場合 とを含む。  Referring to FIG. 1 and FIG. 4, when the process is first started, in step S 3 1, control device 30 outputs power consumed or generated by inverter 20 and power output from fuel cell 18. And whether or not a phase switching request is generated in the multiphase voltage converter 1 Ό in consideration of the state of charge of the battery 2. The phase switching request includes a case where the drive phase is decreased from the three-phase drive to the one-phase drive and a case where the drive phase is increased from the one-phase drive to the three-phase drive.
ステップ S 3 1において相切換要求が無しと判断された場合には、 処理はステ ップ S 3 8に進み、 逆に相切換要求が有りと判断された場合には、 処理はステツ プ S 3 2に進む。  If it is determined in step S 3 1 that there is no phase switching request, the process proceeds to step S 3 8. If it is determined that there is a phase switching request, the process proceeds to step S 3. Proceed to step 2.
ステップ S 3 8では現状のコンバータ制御が維持されることが決定されて、 処 理はステップ S 3 9に進み制御がメインルーチンに戻される。  In step S 3 8, it is determined that the current converter control is maintained, and the process proceeds to step S 39 and control is returned to the main routine.
ステップ S 3 2においては、 相切換要求が 3相から 1相に切換える要求である か否かが判断される。 相切換要求が 3相から 1相に切換える要求であった場合に は処理はステップ S 3 3に進む。 一方、 そうでなかった場合には処理はステップ S 3 5に進む。 In step S 3 2, it is determined whether or not the phase switching request is a request for switching from three phases to one phase. When the phase switching request is a request to switch from 3 phase to 1 phase The process proceeds to step S 3 3. On the other hand, if not, the process proceeds to step S 35.
ステップ S 3 3では、 制御装置 3 0は不揮発メモリ 5 0から前回 1相駆動時の 蕞終駆動相の情報を読み出す。 そしてステップ S 3 4において所定のローテーシ ョン順において最終駆動相の次に位置する相を駆動相として 1つ選択し、 これを 1相運転させて他の 2相は停止させる。 たとえば、 このローテーション順は電圧 変換器 3 1→3 2→3 3と切換えた後は再び電圧変換器 3 1を駆動させ同じ順番 の切換が操返されるように定められる。 そして処理はステップ S 3 9に進み制御 がメインルーチンに戻される。  In step S 33, the control device 30 reads out the last drive phase information in the previous one-phase drive from the nonvolatile memory 50. In step S 3 4, one of the phases positioned next to the final drive phase in the predetermined rotation order is selected as the drive phase, this is operated for one phase, and the other two phases are stopped. For example, this rotation order is determined so that the voltage converter 31 is driven again after switching from the voltage converter 3 1 → 3 2 → 3 3 and the switching in the same order is returned. Then, the process proceeds to step S 39 and the control is returned to the main routine.
ステップ S 3 2からステップ S 3 5に処理が進んだ場合には 1相から 3相に駆 動相を増加させるように切換え要求があった場合である。 したがって制御装置 3 0は、 1相駆動から 3相駆動に切換え要求があつたと判定し、 ステップ S 3 6に ' 処理が進み、 現在の駆動相を前回最終駆動相の情報として不揮発メモリ 5 0に書 き込む。 そして処理はステップ S 3 7に進み、 現在休止中であった 2相を駆動さ せて 3相駆動に切換える。  When the process proceeds from step S 3 2 to step S 3 5, there is a switching request to increase the drive phase from 1 phase to 3 phases. Therefore, the control device 30 determines that there is a request for switching from the one-phase drive to the three-phase drive, and the process proceeds to step S36, where the current drive phase is stored in the nonvolatile memory 50 as the last drive phase information. Write. Then, the process proceeds to step S 37 to drive the currently stopped two phases and switch to the three-phase drive.
このように 1相駆動する場合には所定のローテーション順に基づいて 1相駆動 させる相に偏りが生じないようにすることにより、 3相コンバータを相切換制御 を用いて使用しても、 特定相だけ劣化することを防止でき、 全体として 3相コン バーダの寿命を延ばすことができる。  In this way, in the case of single-phase driving, by avoiding bias in the phase to be driven in one phase based on a predetermined rotation order, even if a three-phase converter is used with phase switching control, only a specific phase is used. Deterioration can be prevented and overall life of the three-phase converter can be extended.
[実施の形態 4 ]  [Embodiment 4]
図 5は、 実施の形態 4で実行されるプログラムの制御構造を示したフ口一チヤ ートである。 なお、 このフローチャート.の処理が一定時間毎または所定条件が成 立するごとにメインルーチンから呼び出されて実行される。  FIG. 5 is a flowchart showing the control structure of the program executed in the fourth embodiment. Note that the processing of this flowchart is called from the main routine and executed at regular time intervals or whenever a predetermined condition is established.
図 5のフローチャートのステップ S 4 1〜ステップ S 4 7は、 図 4のステップ S 3 1〜ステップ S 3 7とそれぞれ同様な処理が行なわれるのでこれらの説明は 繰返さない。  Since steps S 4 1 to S 47 in the flowchart of FIG. 5 are performed in the same manner as steps S 31 to S 37 in FIG. 4, their description will not be repeated.
図 5において、 ステップ S 4 1において相切換要求が無しと判断された場合に は、 処理はステップ S 4 8に進む。  In FIG. 5, when it is determined in step S 4 1 that there is no phase switching request, the process proceeds to step S 48.
ステップ S 4 8では、 現在 1相駆動中であるか否かが判断される。 1相駆動中 であった場合には処理はステップ S 4 9に進み、 1相駆動中でない場合つまり 3 相駆動中である場合には処理はステップ S 5 1に進む。 In step S 48, it is determined whether one-phase driving is currently in progress. During 1-phase drive If YES, the process proceeds to step S 49, and if not one-phase driving, that is, if three-phase driving is being performed, the process proceeds to step S 51.
■ ステップ S 4 9では、 制御装置 3 0は、 現在 相駆動している駆動相を所定時 間 1相駆動したか否かを判断する。  ■ In step S 4 9, control device 30 determines whether or not the drive phase currently driven in phase has been driven for one phase for a predetermined time.
ステップ S 4 9において所定時間 1相駆動していた場合には、 ステップ S 5 0 に処理が進み駆動していない相に運転相を切換えるのであるが、 制御装置 3 0は 偏りをなくすため所定のローテーション順に基づいて駆動相を変更する。 たとえ ば、 このローテーション順は電圧変換器 3 1→3 2→3 3の順に切換がなされた 後は再び電圧変換器 3 1が起動され以後同じ順番が繰返されるように定められる。 そして処理はステップ S 5 2に進み、 制御はメインルーチンに戻される。  If one-phase driving has been performed for a predetermined time in step S 4 9, the process proceeds to step S 5 0 and the operation phase is switched to the non-driven phase. The drive phase is changed based on the rotation order. For example, this rotation order is determined so that the voltage converter 3 1 is started again after the voltage converters 3 1 → 3 2 → 3 3 are switched in order and the same order is repeated thereafter. Then, the process proceeds to step S 52 and control is returned to the main routine.
一方、 ステップ S 4 9においてしきい値を超えていない場合には処理はステツ プ S 5 1に進む。 .  On the other hand, if the threshold is not exceeded in step S 4 9, the process proceeds to step S 51. .
ステップ S 5 1では、 現状のコンバータ制御が維持されることが決定されて、 処理はステップ S 5 2に進み制御がメインルーチンに戻される。 , このような制御とすることで、 実施の形態 3の場合よりもさらに寿命を延ばす ことができる。  In step S 51, it is determined that the current converter control is to be maintained, the process proceeds to step S 52, and control is returned to the main routine. By adopting such control, the life can be further extended as compared with the case of the third embodiment.
今回開示された実施の形態はすべての点で例示であって制限的なものではない と考えられるべきである。 本発明の範囲は上記した説明ではなくて請求の範囲に よって示され、 請求の範囲と均等の意味および範囲内でのすべての変更が含まれ ることが意図される。  The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims

請求の範囲 The scope of the claims
1. 第 1のノードと第 2のノードとの間に並列的に接続される複数の電圧変換器 (3 1〜33) と、 1. a plurality of voltage converters (31 to 33) connected in parallel between a first node and a second node;
前記複数の電圧変換器 (31〜33) の状態を検知した結果に基づいて前記複 数の電圧変 (31〜33) のうちから一部を選択して駆動させる制御部 (3 ' 0) とを備える、 多相電圧変換装置。  A control unit (3'0) for selecting and driving a part of the plurality of voltage changes (31-33) based on the result of detecting the states of the plurality of voltage converters (31-33); A multiphase voltage converter.
2. 前記複数の電圧変換器 (31〜33) の各々は、  2. Each of the plurality of voltage converters (31 to 33)
素子温度を測定する温度センサ (41) を含み、  Including temperature sensor (41) to measure element temperature,
前記制御部 (30) は、 前記複数の電圧変換器 (31〜33) の各素子温度に 基づき駆動させる電圧変換器を決定する、 請求の範囲第 1項に記載の多相電圧変 换装置。  The multi-phase voltage converter according to claim 1, wherein the control unit (30) determines a voltage converter to be driven based on each element temperature of the plurality of voltage converters (31 to 33).
,  ,
3. 前記制御部 (30) は、 温度の低い電圧変換器から優先して使用するように 駆動させる電圧変換器を決定する、 請求の範囲第 2項に記載の多相電圧変換装置。 3. The multiphase voltage conversion device according to claim 2, wherein the control unit (30) determines a voltage converter to be driven so as to be used preferentially from a voltage converter having a low temperature.
4. 前記制御部 (30) は、 4. The control unit (30)
前記複数の電圧変換器の使用履歴を不揮発的に記憶する記憶部 (50) を含み、 前記制御部 (30) は、 前記使用履歴に基づいて駆動させる電圧変換器を決定 する、 請求の範囲第 1項に記載の多相電圧変換装置。  The storage unit (50) that stores usage histories of the plurality of voltage converters in a non-volatile manner, and the control unit (30) determines a voltage converter to be driven based on the usage histories. The multiphase voltage conversion device according to item 1.
5. 前記制御部 (30) は、 前記使用履歴を参照して前回駆動した電圧変換器と は異なる電圧変換器を選択して駆動させる、 請求の範囲第 4項に記載の多相電圧 変換装置。  5. The multiphase voltage converter according to claim 4, wherein the control unit (30) selects and drives a voltage converter different from the voltage converter driven last with reference to the use history. .
6. 前記複数の電圧変換器は、 第 1〜第 3の電圧変換器であり、  6. The plurality of voltage converters are first to third voltage converters,
前記第 1〜第 3の電圧変換器を駆動させる 3相駆動から 1つの電圧変換器のみ . を駆動させる 1相駆動に切換える指令を受けた場合に、 前記制御部 (30) は駆 動させる電圧変換器を選択する、 請求の範囲第 1項に記載の多相電圧変換装置。  When receiving an instruction to switch from three-phase driving for driving the first to third voltage converters to one-phase driving for driving only one voltage converter, the control unit (30) drives the voltage to be driven. The multiphase voltage converter according to claim 1, wherein a converter is selected.
7. 前記制御部 (30) は、 駆動中の電圧変換器の駆動時間が所定時間を経過し た場合には、 非駆動中であつた他の電圧変換器に駆動させる電圧変換器を切換え る、 請求の範囲第 1項に記載の多相電圧変換装置。  7. When the drive time of the voltage converter being driven has exceeded a predetermined time, the control unit (30) switches the voltage converter to be driven by another voltage converter that is not being driven. The multiphase voltage conversion device according to claim 1.
8. 前記複数の電圧変換器は、 第 1〜第 3の電圧変換器であり、 前記第 1〜第 3の電圧変換器のうちから 1つの電圧変換器のみを駆動させる 1 相駆動を実行中において、 前記制御部 (30) は駆動させる電圧変換器の切換を 行なう、 請求の範囲第 7項に記載の多相電圧変換装置。 8. The plurality of voltage converters are first to third voltage converters, The control unit (30) performs switching of a voltage converter to be driven during execution of one-phase driving for driving only one voltage converter among the first to third voltage converters. The multiphase voltage converter according to Item 7.
9. 前記制御部 (30) は、 駆動中の電圧変換器の温度が所定温度を超えた場合 には、 非駆動中であった他の電圧変換器に駆動させる電圧変換器を切換える、 請 求の範囲第 1項に記載の多相電圧変換装置。  9. When the temperature of the voltage converter being driven exceeds a predetermined temperature, the control unit (30) switches the voltage converter to be driven by another voltage converter that has not been driven. A multi-phase voltage converter as set forth in claim 1,
10. 前記複数の電圧変換器は、 第 1〜第 3の電圧変換器であり、  10. The plurality of voltage converters are first to third voltage converters,
前記第 1〜第 3の電圧変換器のうちから 1つの電圧変換器のみを駆動させる 1 相駆動を実行中において、 前記制御部は駆動させる電圧変換器の切換を行なう、 請求の範囲第 9項に記載の多相電圧変換装置。  10. The voltage converter to be driven is switched while the one-phase driving for driving only one voltage converter from among the first to third voltage converters is being executed. A multiphase voltage conversion device according to claim 1.
1 1. 車両であって、 多相電圧変換装置を備え、  1 1. A vehicle with a multi-phase voltage converter,
前記多相電圧変換装置は、  The multi-phase voltage converter is
• 第 1のノードと第 2のノードとの間に並列的に接続される複数の電圧変換器 (3 1~33) と、  • Multiple voltage converters (31 to 33) connected in parallel between the first node and the second node;
前記複数の電圧変換器 (31〜33) の状態を検知した結果に基づいて前記複 数の電圧変 (31〜33) のうちから一部を選択して駆動させる制御部 (3 0) とを含み、 '  A control unit (30) that selects and drives a part of the plurality of voltage changes (31 to 33) based on a result of detecting a state of the plurality of voltage converters (31 to 33). Including, '
』記車両は、  The vehicle
前記第 1のノードに接続される燃料電池 (18) と、  A fuel cell (18) connected to the first node;
前記第 2のノードに接続される蓄電装置 (2) とをさらに備える、 車両。  And a power storage device (2) connected to the second node.
12. 前記複数の電圧変換器 (31〜33) の各々は、  12. Each of the plurality of voltage converters (31-33)
素子温度を測定する温度センサ (41.) を含み、  Including temperature sensor (41.) to measure element temperature,
前記制御部 (30) は、 前記複数の電圧変換器 (31〜33) の各素子温度に 基づき駆動させる電圧変換器を決定する、 請求の範囲第 11項に記載の車両。  The vehicle according to claim 11, wherein the control unit (30) determines a voltage converter to be driven based on each element temperature of the plurality of voltage converters (31 to 33).
13. 前記制御部 (30) は、 温度の低い電圧変換器から優先して使用するよう に駆動させる電圧変換器を決定する、 請求の範囲第 12項に記載の車両。 13. The vehicle according to claim 12, wherein the control unit (30) determines a voltage converter to be driven so as to be used preferentially from a voltage converter having a low temperature.
14. 前記制御部 (30) は、  14. The control unit (30)
前記複数の電圧変換器の使用履歴を不揮発的に記憶する記憶部 (50) を含み、 • 前記制御部 (30) は、 前記使用履歴に基づいて駆動させる電圧変換器を決定 する、 請求の範囲第 1 1項に記載の車両。 A storage unit (50) for storing usage histories of the plurality of voltage converters in a non-volatile manner; • the control unit (30) determines a voltage converter to be driven based on the usage histories; The vehicle according to claim 11.
1 5 . 前記制御部 (3 0 ) は、 前記使用履歴を参照して前回駆動した電圧変換器 とは異なる電圧変換器を選択して駆動させる、 請求の範囲第 1 4項に記載の車両。 15. The vehicle according to claim 14, wherein the control unit (3 0) selects and drives a voltage converter different from the voltage converter driven last time with reference to the use history.
1 6 . 前記複数の電圧変換器は、 第 1〜第 3の電圧変換器であり、 1 6. The plurality of voltage converters are first to third voltage converters,
前記第 1〜第 3の電圧変換器を駆動させる 3相駆動から 1つの電圧変 のみ を駆動させる 1相駆動に切換える指令を受けた場合に、 前記制御部 (3 0 ) は駆 動させる電圧変換器を選択する、 請求の範囲第 1 1項に記載の車両。  When receiving a command to switch from three-phase driving for driving the first to third voltage converters to one-phase driving for driving only one voltage change, the control unit (30) is driven to perform voltage conversion. The vehicle according to claim 11, wherein the vehicle is selected.
1 7 . 前記'制御部 (3 0 ) は、 駆動中の電圧変換器の駆動時間が所定時間を経過 した場合には、 非駆動中であった他の電圧変換器に駆動させる電圧変換器を切換 える、 請求の範囲第 1 1項に記載の車両。  17. The control unit (30) controls the voltage converter to be driven by another voltage converter that has not been driven when the drive time of the voltage converter being driven has exceeded a predetermined time. The vehicle according to claim 11, wherein the vehicle can be switched.
1 8 . 前記複数の電圧変換器は、 第 1〜第 3の電圧変換器であり、  1 8. The plurality of voltage converters are first to third voltage converters,
前記第 1〜第 3の電圧変換器のうちから 1つの電圧変換器のみを駆動させる 1 相駆動を実行中において、 前記制御部 (3 0 ) は駆動させる電圧変^!の切換を 行なう、 請求の範囲第 1 7項に記載の車両。  The control unit (3 0) performs switching of a voltage change to be driven during execution of one-phase driving for driving only one voltage converter among the first to third voltage converters. A vehicle as set forth in paragraph 17 of
1 9 . 前記制御部 (3 0 ) は、 駆動中の電圧変換器の温度が所定温度を超えた場 合には、 非駆動中であった他の電圧変換器に駆動させる電圧変換器を切換える、 請求の範囲第 1 1項に記載の車両。  1 9. When the temperature of the voltage converter being driven exceeds a predetermined temperature, the control unit (30) switches the voltage converter to be driven by another voltage converter that has not been driven. The vehicle according to claim 11.
2 0 . 前記複数の電圧変換器は、 第 1〜第 3の電圧変換器であり、  2 0. The plurality of voltage converters are first to third voltage converters,
前記第 1〜第 3の電圧変換器のうちから 1つの電圧変換器のみを駆動させる 1相 駆動を実行中において、 前記制御部は駆動させる電圧変換器の切換を行なう、 請 求の範囲第 1 9項に記載の車両。 While performing one-phase driving for driving only one voltage converter among the first to third voltage converters, the control unit switches the voltage converter to be driven. The vehicle according to item 9.
PCT/JP2006/309194 2005-05-02 2006-04-26 Polyphase voltage converting apparatus and vehicle WO2006118315A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-134416 2005-05-02
JP2005134416A JP2006311776A (en) 2005-05-02 2005-05-02 Multiple-phase voltage converter and vehicle

Publications (1)

Publication Number Publication Date
WO2006118315A1 true WO2006118315A1 (en) 2006-11-09

Family

ID=37308102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309194 WO2006118315A1 (en) 2005-05-02 2006-04-26 Polyphase voltage converting apparatus and vehicle

Country Status (2)

Country Link
JP (1) JP2006311776A (en)
WO (1) WO2006118315A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080744A (en) * 2010-10-06 2012-04-19 Renesas Electronics Corp Power supply unit
WO2017145304A1 (en) * 2016-02-24 2017-08-31 本田技研工業株式会社 Power supply device, apparatus, and control method

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967584B2 (en) 2006-10-12 2012-07-04 トヨタ自動車株式会社 Converter control device
JP4967588B2 (en) 2006-10-17 2012-07-04 トヨタ自動車株式会社 Converter control device
JP4967595B2 (en) 2006-10-20 2012-07-04 トヨタ自動車株式会社 Converter control device
JP4952312B2 (en) * 2007-03-14 2012-06-13 オムロン株式会社 Power supply device and method for adjusting output voltage of power supply device
JP2008245348A (en) * 2007-03-26 2008-10-09 Fujitsu Ten Ltd Device and method for controlling booster circuit
JP4611368B2 (en) * 2007-12-21 2011-01-12 本田技研工業株式会社 DC / DC converter device, vehicle, fuel cell system, and driving method of DC / DC converter device
JP4873260B2 (en) 2007-12-25 2012-02-08 トヨタ自動車株式会社 Fuel cell system
KR101236394B1 (en) 2008-07-15 2013-02-22 삼성전자주식회사 Dc/dc converter, computer sysem having the same and dc/dc conversion method
JP5188367B2 (en) * 2008-11-19 2013-04-24 本田技研工業株式会社 DC / DC converter device and control method thereof
JP5354457B2 (en) * 2009-03-23 2013-11-27 トヨタ自動車株式会社 Converter control device
DE112009004850T8 (en) 2009-06-03 2012-12-20 Toyota Jidosha K.K. CONVERTER CONTROL DEVICE
TWI397805B (en) * 2009-11-11 2013-06-01 Giga Byte Tech Co Ltd Circuit system and control method thereof
DE202011001610U1 (en) * 2011-01-18 2014-05-06 Robert Bosch Gmbh Inverter assembly
US9780665B2 (en) 2012-03-15 2017-10-03 GM Global Technology Operations LLC Methods and systems for controlling a boost converter
JP5885601B2 (en) * 2012-06-27 2016-03-15 本田技研工業株式会社 Inspection device
EP3024130B1 (en) * 2014-11-21 2017-08-02 Brusa Elektronik AG DC/DC converter
JP6400484B2 (en) * 2015-01-07 2018-10-03 株式会社東芝 Power storage system, power storage control method, and power storage control program
JP2017093202A (en) * 2015-11-13 2017-05-25 株式会社オートネットワーク技術研究所 Polyphase converter
JP2018038103A (en) * 2016-08-29 2018-03-08 三菱電機株式会社 Power Conditioner
JP6763315B2 (en) * 2017-02-02 2020-09-30 Tdk株式会社 Switching power supply
JP6922635B2 (en) * 2017-10-10 2021-08-18 株式会社デンソー Power converter
JP6783217B2 (en) * 2017-11-16 2020-11-11 三菱電機株式会社 Power semiconductor application system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223032A (en) * 1988-07-07 1990-01-25 Yuasa Battery Co Ltd Parallel operation control system
JPH0223031A (en) * 1988-07-07 1990-01-25 Yuasa Battery Co Ltd Parallel operation control system
JPH09204240A (en) * 1996-01-24 1997-08-05 Fujitsu Ltd Power supplying device
JP2002101668A (en) * 2000-09-26 2002-04-05 Meidensha Corp Life time estimation method of semiconductor power converter and semiconductor power converter
JP2003235252A (en) * 2002-02-08 2003-08-22 Toyota Motor Corp Power circuit
WO2004055929A1 (en) * 2002-12-16 2004-07-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system with secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223032A (en) * 1988-07-07 1990-01-25 Yuasa Battery Co Ltd Parallel operation control system
JPH0223031A (en) * 1988-07-07 1990-01-25 Yuasa Battery Co Ltd Parallel operation control system
JPH09204240A (en) * 1996-01-24 1997-08-05 Fujitsu Ltd Power supplying device
JP2002101668A (en) * 2000-09-26 2002-04-05 Meidensha Corp Life time estimation method of semiconductor power converter and semiconductor power converter
JP2003235252A (en) * 2002-02-08 2003-08-22 Toyota Motor Corp Power circuit
WO2004055929A1 (en) * 2002-12-16 2004-07-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system with secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080744A (en) * 2010-10-06 2012-04-19 Renesas Electronics Corp Power supply unit
WO2017145304A1 (en) * 2016-02-24 2017-08-31 本田技研工業株式会社 Power supply device, apparatus, and control method
JPWO2017145304A1 (en) * 2016-02-24 2018-07-19 本田技研工業株式会社 Power supply device, device and control method
CN108702090A (en) * 2016-02-24 2018-10-23 本田技研工业株式会社 Supply unit, equipment and control method
US10454372B2 (en) 2016-02-24 2019-10-22 Honda Motor Co., Ltd. Power supply device, apparatus, and control method

Also Published As

Publication number Publication date
JP2006311776A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
WO2006118315A1 (en) Polyphase voltage converting apparatus and vehicle
JP5126003B2 (en) Vehicle control apparatus and control method
US7099756B2 (en) Motor drive apparatus, hybrid vehicle drive apparatus using the same, and computer readable recording medium recorded with program for causing computer to perform control of motor drive apparatus
JP4874874B2 (en) Vehicle power supply
JP6256214B2 (en) Electric vehicle and control method thereof
US20070058404A1 (en) Voltage conversion device
JP5435028B2 (en) Converter control device
JP6247034B2 (en) CONVERTER DEVICE, FUEL CELL SYSTEM INCLUDING THE SAME, CONVERTER DEVICE CONTROL METHOD AND CONTROL DEVICE
US7923861B2 (en) Method of controlling hybrid DC power supply system
JP2009027774A (en) Vehicle
JP5851589B2 (en) Lifetime diagnosis method for electricity storage devices
JP2010239770A (en) Dc/dc converter and power supply system using the same
JP4828593B2 (en) DC / DC converter and program
CN109889129B (en) Power conversion device
US20220144114A1 (en) Multi-input charging system and method using a motor driving device
JP4473156B2 (en) Voltage converter and vehicle
US20140222274A1 (en) Hybrid excavator and method of controlling hybrid excavator
JP3994883B2 (en) Voltage conversion device and computer-readable recording medium recording a program for causing computer to execute failure determination of voltage conversion device
JP2004194475A (en) Inverter
JP2009171735A (en) Dc/dc converter
JP2008289258A (en) Power supply device, control method therefor, and vehicle
JP2003333835A (en) Power supply system, power supply control method, and computer readable recording medium recorded program for making computer perform power supply control
JP4356476B2 (en) Voltage conversion device, voltage conversion device failure determination method, and computer-readable recording medium storing a program for causing a computer to execute the method
JP5188369B2 (en) DC / DC converter device
JP2019165579A (en) Power system of vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732496

Country of ref document: EP

Kind code of ref document: A1